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Abstract. We study the geometry of tessellation defined by the
walls in the Moussong complex MW of a Coxeter group W . It is
proved that geodesics in MW can be approximated by geodesic gal-
leries of the tessellation. A formula for the translation length of an
element of W is given. We prove that the restriction of the word met-
ric on the W to any free abelian subgroup A is Hausdorff equivalent
to a regular norm on A.
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Introduction

For any Coxeter system (W,S), Moussong constructed a certain piecewise Eu-
clidean complex MW on which W acts properly and cocompactly by isometries
[Mou88]. This complex is complete, contractible, has nonpositive curvature and
the Cayley graph CW of W (with respect to S) is isomorphic to the 1-skeleton
of MW . A wall in M is the fixed-point set of a reflection in W. It turns out
that the walls are totally geodesic subspaces in MW and each wall divides MW

into two path components. The set of all walls defines a wall tessellation of M.
The set of all tiles (=chambers) of this tessellation together with an appropriate
adjacency relation is isomorphic to the Cayley graph CW . We shall prove that
geodesics in MW can be uniformly approximated by geodesic galleries of the
wall tessellation (= geodesic paths in CW ) (Theorem 3.3.2). This approxima-
tion result allows us to prove that for any ”generic” element w ∈ W of infinite
order there is a conjugate v which is straight i.e., ℓ(vn) = nℓ(v) for all n ∈ N,
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where ℓ(v) is the word length on W (Theorem 4.1.5). There is a constant
c = c(W ), such that for any w ∈ W of infinite order there is a conjugate v of
wc, which is straight (Theorem 4.1.6). The restriction of the word metric on
W to any free abelian subgroup A is Hausdorff equivalent to a regular norm
on A (Theorem 4.3.2).
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1 Preliminaries on Moussong complexes

To any Coxeter system (W,S) one can canonically associate the Moussong
complex M = MW , which is a piecewise Euclidean complex with W as the set
of vertices. Their cells are Euclidean polyhedra, which are the convex hulls of
sets, naturally bijected with the spherical cosets of W . In particular, the 1-cells
of M are in bijective correspondence with the sets {w,ws}, where w ∈ W and
s ∈ S. Hence the 1-skeleton of M is nothing but a modified Cayley graph of
W with respect to S ( the modification consists in identifying an edge w

s
→ ws

with its inverse ws
s
→ w). W acts cellularly and isometrically on MW and

this induces the standard W -action on the Cayley graph of W . In the next
subsections we carry out in detail the construction of MW following the thesis
of D. Krammer [Kra94].

1.1 Coxeter groups

A Coxeter system is a pair (W,S) where W is a group and where S is a finite
set of involutions in W such that W has the following presentation:

〈s : s ∈ S|(ss′)mss
′ = 1 when mss′ < ∞〉,

where mss′ ∈ {1, 2, 3, . . . ,∞} is the order of ss′, and mss′ = 1 if and only
if s = s′. We refer to W itself as a Coxeter group when the presentation is
understood. The number of elements of S is called its rank. The Coxeter
system (W,S) is called spherical if W has finite order. A subgroup of W is
called special if it is generated by a subset of S. For each T ⊆ S, WT denotes
the special subgroup generated by T . Any conjugate of such a subgroup will
be called parabolic. A remarkable feature of Coxeter systems is that for any
subset T ⊆ S the pair (WT , T ) is a Coxeter system in its right and moreover
a presentation of WT is defined by the numbers mtt′ , t, t

′ ∈ T . If (WS , S) is a
Coxeter system of finite rank then we write VS for the real vector space with
a basis of elements (es) for s ∈ S. Put a symmetric bilinear form B on VS by
requiring:

B(es, es′) = − cos(π/mss′).
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(This expression is interpreted to be −1 in case m(s, s′) = ∞.) Evidently
B(es, es) = 1, while B(es, es′) ≤ 0 if s 6= s′. Since es is non-isotropic, the sub-
spaceHs = e⊥s orthogonal to es is complementary to the line Res. Associated to
s ∈ S is an automorphism as of B acting as the reflection v 7→ v− 2(v, es)es in
the hyperplane e⊥s . The result by Tits asserts that the correspondence s 7→ as
extends to a faithful representation of W as a group of automorphisms of the
form B. (cf. [Bou], Ch.V, s.4).

1.2 Trading Coxeter cells

The Coxeter group W is finite if and only if the form B(es, es′) is positive
definite. We call a set J ⊆ S spherical if WJ is finite or, equivalently, the
restriction of the form B to the subspace VJ =

∑
j∈J R ej is positive definite.

Let J ⊆ S be spherical. Since VJ is non-degenerate, there exists a unique basis
{fJ

j |j ∈ J} of VJ dual to {ej : j ∈ J} with respect to B. A space VJ that comes
equipped with a positive definite inner product B|VJ will be denoted by EJ

and called the Euclidean space associated to J . Define the Coxeter cell XJ to be
the convex hull of the WJ -orbit:

XJ = Ch(WJxJ )

where
xJ =

∑

j∈J

fJ
j ∈ EJ .

For convenience we define W∅ = {1} and X∅ = {0}– the origin of EJ . More
generally, for any spherical K and any J ⊆ K we consider the faces of the
polyhedron XK = Ch(WKxK) of the form

XJK = Ch(WJxK).

We do not exclude the case J = ∅, where X∅K = {xK}. We call the extremal
points of the cell XJ the vertices.
For spherical J ⊆ S, let pJ : VS → EJ denote the orthogonal projection. It is
well defined since the quadratic form on EJ is non-degenerate.

Lemma 1.2.1 ([Kra94], B.2.2.) The dimension of the cell XJ equals the cardi-
nality of J . For spherical subsets J ⊆ K of S we have pJxK = xJ . Moreover,
pJ |XJK : XJK → XJ is a WJ−equivariant isometry of cells. The nonempty
faces of XK are precisely those of the form wXJK (J ⊆ K,w ∈ WK). In
particular, the vertex set of XJ is precisely WJxJ .

Example 1.2.2 1) If J = {j} then fJ
j = ej and XJ = Ch(ej ,−ej) is a line

segment. 2) Let J = {s, s′} be spherical, so w = ss′ has finite order mss′ .
Set Vs,s′ = Res + Res′ . The restriction of B to Vs,s′ is positive definite and
both s and s′ act as orthogonal reflections in the lines Rfs,Rfs′ respectively.
Since B(es, es′) = − cos(π/mss′) = cos(π − (π/mss′ )), the angle between the
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rays R+es and R
+es′ is equal to π − (π/mss′), forcing the angle between the

reflecting lines Rfs,Rfs′ to be equal π/mss′ . The vectors fs, fs′ are of the same
length, lie in the cone R

+es + R
+es′ ; moreover, fs + fs′ is a bisectrix between

the reflecting lines Rfs,Rfs′ hence the convex hull of the orbit WJ (fs + fs′) is
a regular 2mss′−gon.

es

es′ fs′

fs

fs′ + fs

Figure 1: The cell XJ for J = {s, s′},mss′ = 3.

1.3 Gluing the Moussong complex

Now we build the Moussong complex of W = WS as follows. Take the union

U =
⋃

{(w,XJ ) : w ∈ W,J ⊆ S spherical}.

Introduce an equivalence relation R on U , generated by the following gluing
relations:

1. (wu, x) ∼ (w, u−1x), whenever w ∈ W,u ∈ WJ , x ∈ XJ ,

2. The cells (w,XK), (w,XL) are glued along the face (w,XJ ), J = K ∩ L,
which is embedded into each of them (by the map pJ) as (w,XJK) and
(w,XJL) respectively .

The quotient space of U modulo R is called the Moussong complex of W and
is denoted by MW . The group W acts on U by u(w, x) = (uw, x). This action
respects the relation R and hence induces a cellular action of W on MW . With
some abuse in notation we will denote the natural image of (1, XJ) in M by
XJ , so any cell in M is of the form wXJ for some w ∈ W,J ⊆ S. We call J
the type of the cell wXJ . There is a distinguished vertex x0 = X∅ in M. Note
that xJ = x0 for any spherical J (by condition (2)).
It can be shown that the inclusion maps of the cells are injective, see [Kra94].
The canonical metric in each cell allows to measure the lengths of finite polyg-
onal paths in M. The path metric d on M is defined by setting the distance

Documenta Mathematica 16 (2011) 373–398



Asymptotic Behavior of Word Metrics on Coxeter Groups377

between x, y ∈ M to be the infimum of the lengths of polygonal paths joining
x to y.
We summarize the main properties of M in the following theorem.

Theorem 1.3.1 ([Kra94],[Mou88]) Relative to the path metric M is a con-
tractible, complete, proper CAT(0) space. The Coxeter group W acts on M
cellularly and this action is isometric, proper and cocompact. This action is
simply transitive on the set of vertices M(0) of M, in particular M(0) coincides
with Wx0.

For the convenience of the reader we repeat the relevant definitions. A geodesic,
or geodesic segment, in a metric space (X, d) is a subset isometric to a closed
interval of real numbers. Similarly, a loop S1 → X is a closed geodesic if it
is an isometric embedding. ( Here S1 denotes the standard circle equipped
with its arc metric, possibly rescaled so that its length can be arbitrary). We
say that X is a geodesic metric space if any two points of X can be connected
by a geodesic. We denote by [x, y] any geodesic joining x and y. We will
always parameterize [x, y] by t 7→ pt(0 ≤ t ≤ 1), where d(x, pt) = td(x, y)
for all t. Given three points x, y, z in X , the triangle inequality implies that
there is a comparison triangle in the Euclidean plane R

2, whose vertices x, y, z
have the same pairwise distances as x, y, z. Given a geodesic [x, y] and a point
p = pt ∈ [x, y], there is a corresponding point p = pt on the line segment [x, y]
in R

2. A geodesic metric space X is called a CAT(0) space if for any x, y in X
there is a geodesic [x, y] with the following property: For all p ∈ [x, y] and all
z ∈ X , we have

d(z, p) ≤ dR2(z, p),

with z and p as above. Let X be a CAT(0) space. Then there is a unique
geodesic segment joining each pair of points x, y ∈ X and this geodesic segment
varies continuously with its endpoints. Every local geodesic in X is a geodesic.
For the proof see [BH99], Chapter II.1 , Prop. 1.4.

Examples 1.3.2 IfW is a finite Coxeter group of rank n thenMW is isometric
to an n-dimensional convex polyhedron. If, for example, W is the dihedral
group of order 2m, then M is a regular 2m-gon with the usual W -action. If
W is an affine Coxeter group of rank n then MW is a tessellation of the n− 1-
dimensional Euclidean space E. This tessellation is dual to the tessellation,
given by the structure of a Coxeter complex on E. Let, for example, W be an
affine Coxeter group generated by the reflections s1, s2, s3 in the sides of an
equilateral triangle C in the Euclidean plane. Then MW is the tessellation of
the plane by hexagons, dual to the tessellation consisting of the images of C
under W . If W is a product of n ≥ 2 copies of Z/2 (that is mss′ = ∞ for
s 6= s′), then MW is an infinite n-regular tree with edges of length 2. �

Lemma 1.3.3 Any cell of a CAT (0) piecewise Euclidean complex X is isomet-
rically embedded into X. In view of uniqueness of geodesics this is equivalent
to the convexity of a cell.
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Proof.We have to show is that for any two points a, b of a cell C the Euclidean
arc α in C between them is a global geodesic. We may assume that C is of
minimal dimension. For any two points x and y in the interior of α the closed
subarc β ⊂ α between x and y lies in the interior of C. Clearly there is an
ǫ > 0, such that for any cell C′, having C as a face, the distance from β to the
set ∂C′ − C is ≥ ǫ. Let us cover β by intervals of radius ǫ/2. Each such an
interval is geodesic. Indeed, a geodesic γ connecting the points of the interval
can not cross ∂C, hence it lies in the union U of cells, having C as a face. For
any cell C′, having C as a face, γ can not cross ∂C′ − C since it has to pass a
distance at least ǫ. Hence it lies in only one such C′ and thus coincides with
the interval. It follows from the considerations above that β is a local geodesic,
and therefore a global geodesic since X is CAT(0).
Now let γ be a path in X joining a to b. For any positive ǫ < dC(a, b)/2 we
may choose points x and y in the interior of α such that d(a, x) = ǫ = d(y, b)
A path from x to y obtained by traveling along α to a then along γ to b has
length length(γ)+ 2ǫ, while a geodesic from x to y has length dC(a, b)− 2ǫ, so
dC(a, b) ≤ length(γ)+ 4ǫ. Since this is true for any sufficiently small ǫ > 0, we
conclude that dC(a, b) ≤ length(γ), and so α is a geodesic from a to b. �

1.4 The action of reflections on cells

We refer to the notation of §1.3.

Lemma 1.4.1 An element w ∈ W leaves the cell uXK invariant if and only if
u−1wu ∈ WK . In the latter case w acts on the XK-coordinate of ux ∈ uXK as
the element u−1wu ∈ WK .

Proof. Indeed, the cell uXK is uniquely determined by its set of vertices
uWKx0 and it is w-invariant if and only if uWK is w-invariant under left
translation. The latter happens if and only if wuWK = uWk ⇔ u−1wu ∈ WK .
The second assertion follows from the equality w(ux) = u(u−1wux). �

Lemma 1.4.2 (An ”overcell” of invariant cell is invariant too.) If C ⊆ C′ are
cells and wC = C for some w ∈ W, then wC′ = C′.

Proof. Writing C = uXJ with w ∈ W,J ⊆ S we can represent C′ in the form
C′ = uXK , J ⊆ K. By Lemma 1.4.1 wC = C implies u−1wu ∈ WJ and thus
u−1wu ∈ WK . Again by the same lemma wC′ = C′. �

Definition 1.4.3 Let (W ;S) be a Coxeter system. A reflection in W is an
element that is conjugate in W to an element of S.

Lemma 1.4.4 For any cell C of M and any reflection w ∈ W either C ∩ wC
is empty or else w acts as a reflection on C.

Proof. Suppose that the cell C ∩wC is nonempty. Then it is invariant under
the action of w. Since it is a face of C, by Lemma 1.4.2 we conclude that
wC = C. Now by Lemma 1.4.1 w ∈ W acts as a reflection on C. �
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1.5 Angles and geodesics in M

The notion of angle in an arbitrary piecewise Euclidean complex can be defined
in terms of the link distance, see e.g. [BB97]. Namely, let X be a piecewise
Euclidean complex, x ∈ X and let A be a Euclidean cell of X containing x. The
link lkxA of is the set of unit tangent vectors ξ at x such that a nontrivial line
segment with the initial direction ξ is contained in A. We define the link lkxX
by lkxX = ∪A∋xlkxA, where the union is taken over all closed cells containing
x.
Recall that the CAT(0)– condition for X is equivalent to the following (see e.g.
[BB97]):

1. X is 1-connected and

2. The length of any geodesic loop in the link of any vertex of X is greater
or equal to 2π.

A path α : [a, b] → X is geodesic if it is an isometric embedding: d(α(s), α(t)) =
|s− t|, for any s, t ∈ [a, b]. Similarly, a loop α : S1 → X is a closed geodesic if it
is an isometric embedding. Here S1 denotes the standard circle equipped with
its arc metric (possibly rescaled so that its length can be arbitrary). Angles
in lkxA induce a natural length metric dx on lkxS, which turns lkxS into a
piecewise spherical complex. For ξ, η ∈ lkxX define ∠(ξ, η) = min(dx(ξ, η), π).
Now any two segments σ1, σ2 in X with the same endpoint x have the natural
projection image in lkxX and we define ∠x(σ1, σ2) to be the angle between
these two projections.
We will use the following criterion of geodesicity:

Lemma 1.5.1 ([BB97]) Let X be a piecewise Euclidean CAT(0)-complex. If
each of the segments σ1, σ2 is contained in a cell and σ1 ∩σ2 = {x}, where x is
an endpoint of each of the segments, then the union σ1 ∪ σ2 is geodesic if and
only if ∠x(σ1, σ2) = π.

An m- chain from x to y is an (m+ 1)-tuple T = (x0, x1, . . . , xm) of points in
X such that x = x0, y = xm and each consecutive pair of points is contained
in a cell. Every m-chain determines a polygonal path in X , given by the
concatenation of the line segments [xi, xi+1], i = 0, ..., i = m. An m-taut chain
from x to y is an m-chain such that

1. there is no triple of consecutive points contained in a cell and

2. (2) the union of two subsequent segments is geodesic in the union of cells,
containing these segments.

(The union is equipped with its path metric). Note that if a chain is taut then
only its first and last entries lie in the interior of a top dimensional simplex
of X . The result of M. Bridson asserts that if X is a piecewise Euclidean
complex then X with its path metric is a geodesic space and the geodesics are
the paths determined by taut chains [BH99, Theorem. 7.21].

Documenta Mathematica 16 (2011) 373–398



380 G. A. Noskov

2 Walls in the Moussong complex

The notion of wall in the Moussong complex (as well as in the Coxeter com-
plex) can be defined as the fixed-point set of reflection from the underlying
Coxeter group. On the other hand they can be defined as the equivalence
classes of ”midplanes” (which are the fixed-point sets of stabilizers of cells).
Both points of view are useful. Note that in contrast to the situation with
Coxeter complexes, the walls in the Moussong complex are not subcomplexes.

2.1 Midplanes and blocks in cells

Let (WJ , J) be a finite Coxeter group and VJ the Euclidean vector space on
which WJ acts. We summarize here the basic properties of a Coxeter complex
of W = WJ . For more about them see [Hum90] or [Bro96]. We define a re-
flection in WJ to be a conjugate of element of J. The reflecting hyperplanes
Hw of reflection w ∈ WJ cut VJ into polyhedral pieces, which turn out to be
cones over simplices. In this way one obtains a simplicial complex C = C(W )
which triangulates the unit sphere in VJ . This is called the Coxeter complex
associated with WJ . The group WJ acts simplicially on C and this action is
simply transitive on the set of maximal simplices (=chambers). Moreover the
closure of any chamber C is a fundamental domain of the action of W on C,
i.e., each x ∈ V is conjugated under W to one and only one point in C. Two
chambers are adjacent if they have a common codimension one face. For any
two adjacent chambers there is a unique reflection in WJ interchanging these
two chambers.
A similar picture we have for the Coxeter cell XJ . By a midplane in XJ we mean
the intersection Hw ∩XJ , where w ∈ WJ is a reflection and Hw its reflecting
hyperplane. We denote this midplane by M(J,w). By equivariance we define
the notion of a midplane in any cell ofMW . Each midplane M defines a unique
cell in MW , the cell of least dimension in MW which contains M , and we will
denote this by C(M).

Lemma 2.1.1 Every cell XJ contains an open neighborhood of the origin of VJ .
In particular midplanes in XJ have dimension |J | − 1 and there is one-to-one
correspondence between reflecting hyperplanes and midplanes.

Proof. Note first that the ray R
+xJ lies in the interior of the chamber C =

{x ∈ VJ : B(x, es) > 0 ∀s ∈ S}. Hence in each chamber wC,w ∈ WJ there
is a vertex wxJ of XJ . Now suppose that XJ does not contain the origin in
the interior, then there is a hyperplane H through the origin such that XJ is
contained in one of the closed half-spaces defined by H, say in H+. This implies
that each chamber has an interior point, lying in H+. Take an arbitrary closed
chamber D. If D lies entirely in H+ then −D lies in the opposite half-space
H− and hence there is no interior point in it belonging H+ – contradiction. If
D does not lie entirely in H+ then H separates some codimension one face F
of D from the remaining vertex x of D. Let D′ be the chamber, adjacent to
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D in a face F , then D′ lies entirely either in H+ or in H− and the previous
argument works. �

Definitions 2.1.2 It follows from Lemma 2.1.1 that the midplanes M(J,w)
also cut XJ into (relatively open) polyhedral pieces of dimension |J | – blocks.
Two blocks are adjacent if they have a common codimension one face. There
is a canonical one-to-one correspondence between blocks in XJ , chambers of
the Coxeter complex C(WJ) and vertices of XJ . This correspondence clearly
preserves the adjacency relation. Each block contains a unique vertex of XJ

since a closed block B is a fundamental domain of the action of W on XJ , i.e.,
each x ∈ XJ is conjugated under W to one and only one point in B. The group
WJ acts on the set of blocks and this action is simply transitive. For a block
B the intersection of the closed block B with a midplane is called by internal
face of B.

xJ

BJ

midplanes

block

XJ

Figure 2: The cell XJ for J = {s, s′}, mss′ = 3 divided into blocks by midplanes.

Lemma 2.1.3 The only faces of a cell XK having nonempty intersection with
midplane M(K, s), s ∈ S are those wXJK with w−1sw ∈ WJ . In particular
M(K, s) contains no vertices of XK . More generally a face of XK has nonempty
intersection with midplane M(K,usu−1), s ∈ S, u ∈ W iff it is of the form
uwXJK with w−1sw ∈ WJ .

Proof. If w−1sw ∈ WJ then swWJ = wWJ , that is s leaves the vertex set of
wXJK invariant and hence it leaves invariant the cell itself and has a nonempty
fixed-point set in this cell. Conversely if M(K, s) ∩ wXJK is nonempty then
there a face F of the cell wXJK such that M(K, s)∩F contains an interior point
of F . But then s leaves F invariant hence by Lemma 1.4.2 it also leaves any
”overcell” invariant in particular wXJK and this implies that w−1sw ∈ WJ .
To deduce the second statement from the first, one need only to note that
M(K,wsw−1) ∩ wXJK = w(M(K, s) ∩XJK). �
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Lemma 2.1.4 If w ∈ WJ leaves invariant some midplane M in XJ then it
fixes this midplane pointwise.

Proof. Indeed, w leaves invariant the ambient face C and we can apply Lemma
1.4.1. �

Lemma 2.1.1 For any cell XK the following hold:

1. The intersection of a midplane of XK with any of its face is again a
midplane.

2. Any midplane of any face of XK is an intersection with this face of a
precisely one midplane of XK .

Proof. 1) We may assume that a given midplane M is of the form M(K, s)
and the face of XK is XJK , J ⊆ K. Since s belongs to WJ , it leaves XJK

invariant and its fixed-point set Xs
JK bijects onto the fixed-point set Xs

J by a
WJ−equivariant isometry pJ |XJK : XJK → XJ . The general assertion follows
by equivariance.
2) We may assume that the face is of the form XJK for J ⊆ K. Let MJK be
a midplane of XJK , then by definition MJK = (pJ |XJK)−1(M(J,w)) for some
w ∈ WJ . Hence, by WJ–equivariance, w is identical on MJK thus MJK =
M(K,w) ∩ XJK . Furthermore, w ∈ J by Lemma 2.1.3. Hence the segment
σ = [wxJ , xJ ] is an edge of the face XJK , flipped by w. The intersection
MJK ∩σ = {m} is a midpoint of σ and MJK is orthogonal to σ. Now if M any
midplane with the same intersection with XJK as MK , then the reflection in
M flips the edge σ and hence this edge is orthogonal to M and thus M = MK .
�

Lemma 2.1.5 1)For every x ∈ M(K, s) ∩ XJK there is a nondegenerate seg-
ment of the form [y, sy], y ∈ XJK with x as a midpoint. 2) The segment [y, sy]
is orthogonal to midplane M(K, s). 3) For any midplane M in XK there is an
edge of XK , intersected by M in the midpoint.

Proof. 1) Since M(K, s)∩XJK is nonempty, it follows from Lemma 2.1.3 that
s ∈ J. Let

U = {u ∈ WJ ;xk and uxK are on the same side of M(K, s).}

Clearly WJ = U ∪ sU, U ∩ sU = ∅ and the sets UxK , sUxK lie entirely on the
different sides of the midplane M(K, s). Since XJK = Ch(WJxK), we have

x =
∑

u∈U

(λuuxK + µusuxK),

where
∑

u∈U (λu +µu) = 1 and all coefficients are nonnegative. Since x is fixed
by s, applying s to both parts of the equality above we get

x =
∑

u∈U

(µuuxK + λusuxK),
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We conclude from these two equalities that x = 1/2(y + sy), where y =∑
u∈U (λu + µu)ux ∈ XJK .

2) The segment [y, sy] is orthogonal to M(K, s) since it is flipped by an orthog-
onal transformation s.
3) If M = M(K, s), then the edge [sxK , xK ] of XK is intersected by M in the
midpoint. �

We will call the segment [y, sy] from the lemma above to be a perpendicular to
M(K, s) in the point x.

Lemma 2.1.6 Let x ∈ M(K, s), z ∈ XK , x 6= z and let [y, sy] be a perpendicular
to M(K, s) in the point x. Then either [x, z] ⊂ M(K, s) or one of the angles
∠x([x, z], [x, y]), ∠x([x, z], [x, y]) is strictly less than π/2.

Proof. It follows from the fact that the tangent space in x is orthogonal sum
of a the tangent space of M(K, s) and a tangent space of the segment [y, sy].
�

2.2 Walls as equivalence classes of midplanes

We assume that M = MW is the Moussong complex of a Coxeter group W .
The following definition mimics the definition of a hyperplane in a cube complex
given in [NR98].

Definitions 2.2.1 For midplanes M1 and M2 of the cells C1 = C(M1) and
C2 = C(M2) respectively we write M1 ∼ M2 if M1 ∩M2 is again a midplane
(and then of course it is a midplane of C1 ∩C2). The transitive closure of this
symmetric relation is an equivalence relation, and the union of all midplanes in
an equivalence class is called a wall in M. Clearly the equivalences above are
generated by those of the form M1 ∼ M2, C1 ≤ C2 or C2 ≤ C1. Thus to prove
some property P for midplanes of a wall H it is enough to prove this property
for some midplane in H and then show that the validity of P is preserved under
equivalences just mentioned. If M is a midpoint of a 1-cell(=edge) in M then
the wall spanned by M will be called a dual wall of e and denoted by H(e). We
denote by HM the union of midplanes in the equivalence class of a midplane
M.

It follows immediately from Lemma 2.1.5 that

Lemma 2.2.2 Any wall H of M has the form H(e) for some edge e.

Clearly W acts on the set of midplanes, preserving the equivalence relation and
hence acts on the set of walls. For any wall H we denote by H̃ the complex
obtained from the disjoint union of midplanes inH by gluing any two midplanes
in H along their common submidplane inM (if such one exists). One can easily
see that H̃ is nonpositively curved, i. e. satisfies the link condition. Namely,
the link of any cell C of M is isometric to the product C × [−π, π].
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Lemma 2.2.3 Let p : H̃ → M be the natural map which sends each midplane
in H̃ to its image in M. Then p is an isometry of H̃ onto H. As a consequence
of the above walls are convex in M.

Proof. It is similar to the proof of lemma 2.6 in [NR98]. Clearly, p is an
isometry on each midplane. By result of M. Gromov ([Gro87], Section 4) it
is enough to show that p is a local isometry, that is if x ∈ H̃, then there is a
neighborhood U of x such that p|U is an isometry. Clearly p bijects the star
St(x) onto the union U of all midplanes, containing p(x). This union is the
fixed-point set of some reflection from W ( see Lemmas 1.4.1, 1.4.2, 1.4.4).
Hence U is convex, and p maps St(x) isometrically onto U. �

Lemma 2.2.4 Each wall in MW is the fixed-point set of a precisely one reflec-
tion in W . Conversely, the fixed-point set of a reflection in W is a wall.

Proof. Let HM be the wall, spanned by a midplane M of the cell C. From
the description of cells and that of the action of W we know that M is the
fixed point set of a reflection from the stabilizer SC of C in W. We will show
that HM coincides with the fixed-point set Hw of w.

Any reflection w fixing a midplane M pointwise fixes also HM pointwise,
i.e., HM ⊆ Hw. We have to show that the claimed property is invariant under
equivalence relation of midplanes, see §2.2.1. If M1 ∼ M2 are midplanes in
C1 = C(M1), C2 = C(M2) respectively, C1 ≤ C2, and w fixes M1 then w leaves
C1 invariant, hence by Lemma 1.4.2 it leaves C2 invariant and by Lemma 2.1.1
it leaves M2 invariant and finally by Lemma 2.1.4 it fixes M2 pointwise. In
case M1 ∼ M2, C1 ≥ C2, and w fixes M1 pointwise it is clear that w fixes M2

pointwise.
Every wall H is the fixed-point set of a unique reflection in W. Write H as

the dual wall H = H(e) of some edge e of M. If there were two reflections
w,w′ with the same reflection wall H then their difference w−1w′ would fix e
pointwise. But W acts simply transitively on the vertices of M hence w = w′.
Now any w ∈ W fixing at least one cell pointwise is an identity. Indeed the
set of cells fixing by w pointwise is nonempty and containing with each cell C
every its ”overcell” C′ ⊃ C because by Lemma 1.4.2 wC′ = C′ and since the
stabilizer of C′ acts fixed point free on the cell we conclude that w = 1.

Hw coincides with HM . Suppose, to the contrary, that there is a w-fixed
point x outside HM . Take any y ∈ HM , then w fixes the endpoints x, y of
the geodesic [x, y] hence, by uniqueness, it fixes the whole geodesic. Shortening
[x, y] if necessary we may assume that [x, y) is outsideHM . Take z ∈ [x, y], z 6= y
such that the open segment (z, y) is contained entirely in the interior of some
cell C. Since w fixes (z, y), it leaves C invariant. As far as y ∈ HM ∩ C, the
point y is contained in some midplane M ′ ⊂ HM of C. Because w fixes M ′

and the segment (z, y), lying entirely outside HM , we conclude that w fixes C
pointwise - contradiction.
For the converse, let w be a reflection in W. Note first that Hw contains at

least one midplane. Indeed, since any reflection inW is conjugate to some s, s ∈
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S, we may assume that w = s. Take J = {s}, then the cell XJ = Ch(xJ , sxJ )
is a segment on which s acts as a reflection thereby fixing its midpoint M .
We conclude that Hw contains HM for some midplane M . Therefore, as was
proved above, Hw coincides with HM . �

Lemma 2.2.5 The edge path in M(1) is geodesic if and only if it crosses each
wall at most once.

Proof. If an edge path p = e1e2 · · · ek crosses a wallH twice, say distinct edges
ei, ej , i < j cross H, then we delete the subpath ei · · · ej and instead insert the
path w(ei+1 · · · ej−1), where w is the reflection in the wallH. The resulting path
is strictly shorter than p but connects the same vertices. Conversely, suppose
that an edge path p from x to y crosses each wall at most once. Let HH be the
set of all walls crossing by p. Since x and y are at the different sides of each
wall from HH , we conclude that any path from x to y should cross than that
of p. �

Any wall in the Moussong complex is ”totally geodesic” in the following sense

Lemma 2.2.6 Any geodesic in M having nondegenerate piece in a wall H, lies
entirely in H.

Proof. Suppose the lemma is false, then there are nondegenerate segments
σ1 = [x, x1], σ2 = [x, x2], cells C1, C2, and midplanes M1,M2 of C1, C2 respec-
tively such that
1) M1 ∼ M2,
2) x ∈ M1 ∩M2,
3) σ1 ⊂ M1, x2 ∈ C2 −M2,
4) σ1 ∪ σ2 is geodesic.
It follows from Lemma 2.1.5 that there is a reflection w ∈ W and a seg-
ment [y, wy] with x as a midpoint and orthogonal to both M1 and M2. Write
σ = [x, y], σ′ = [x,wy]. Since, by 3), x2 ∈ (C2 − M2), it follows from Lemma
2.1.6 that one of the angles ∠x(σ2, σ), ∠x(σ2, σ

′) is strictly less than π/2 and
∠x(σ1, σ

′) = ∠x(σ2, σ) = π/2. Hence the angle between the segments σ1, σ2 in
the point x is strictly less than π, thus σ1 ∪σ2 can not be geodesic by criterion
of Lemma 1.5.1.

2.3 Separation properties

Lemma 2.3.1 Every wall in M separates M into exactly two connected com-
ponents.

Proof. First, we claim that H separates M into at least two components. We
know from Lemma 2.2.2 that H = H(e) – the dual wall of some edge e = [x, y].
We will show that x, y belong to different connectedness components. Suppose,
to the contrary, that x, y are in the same connectedness component. Then
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there is a closed edge path α in M(1) crossing H only once. (Clearly any edge
either intersects H in a midpoint or does not intersects H at all.) Since M is
contractible this path can be contracted to a constant path by a sequence of
combinatorial contractions in cells. By Lemma 2.1.1 any cell C either has an
empty intersection with HM or HM ∩ C is a midplane of C. This implies that
each combinatorial contraction of the edge path in the cell does not change the
number of intersections with HM modulo 2. Since this number is 0 for the final
constant path, it cannot be 1 for the initial path.

To prove that the H cuts out M into exactly two components, we proceed as
in [NR98], lemma 2.3 (preprint version.) Notice first that H is 2-sided, that is
there exists a neighborhood ofH in M which is homeomorphicH×I, I = [0, 1].
Indeed, by Lemma 2.1.5, in each cell there is a neighborhood which is fibered
as M × I: the fibrations can be chosen to agree on face maps so this induces
an I-bundle structure on some neighborhood N over H .

Since H itself is CAT(0) it is contractible so the bundle is trivial. It follows
that N has two disjoint components, {−1/2}×H and {1/2}×H . Any point in
the complement of H can be joined to one of these boundary components by a
path in the complement of H , and therefore X −H has exactly 2 components
as required. �

Lemma 2.3.1 For any wall H both components of the complement M−H are
convex.

Proof. Suppose that x1, x2 lie on the same side of H, say H+. We claim that
[x1, x2] lies entirely in H+. Suppose the contrary, then by Lemma 2.2.6 the
intersection [x1, x2] ∩ H consists of precisely one point, say x. Similar to the
proof of Lemma 2.2.6 there are segments σ1 ⊂ [x, x1], σ2 ⊂ [x, x2], cells C1, C2,
and midplanes M1,M2 of C1, C2 respectively such that

1) M1,M2 ⊂ H,

2) x ∈ σ1 ∩ σ2,

3) σ1 ⊂ C1, σ2 ⊂ C2,

4) σ1 ∪ σ2 is geodesic.

5) The interiors of σ1, σ2 are contained entirely in H+.

Then it follows from Lemma 2.1.5 that there exists a reflection w ∈ W and a
segment [y, wy] such that the segment has x as a midpoint and is orthogonal to
both M1 and M2. By interchanging the roles of y and wy if necessary we may
assume that y ∈ H+. Denote σ = [x, y], σ′ = [x,wy]. It follows from Lemma
2.1.6 that the angles ∠x(σ2, σ), ∠x(σ2, σ

′) are both strictly less than π/2. But
a small nonzero move of x along σ would strictly shorten the length of σ1 ∪ σ2

contradicting the assumption 4) above. �
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3 Chambers and galleries

3.1 Chambers

Since the complex M is locally finite and there are only finite number of mid-
planes in each cell, we conclude that the set of all walls H in M is locally
finite, in the sense that every point of M has a neighborhood which meets only
finitely many H ∈ H.

Definition 3.1.1 By Lemma 2.3.1 the walls H ∈ H yield a partition of M
into open convex sets, which are the connected components of the complement
M− (∪HH). We call these sets chambers.

To distinguish chambers from cells, we will denote them by letter D, possibly
with indices, dashes, etc.

Lemma 3.1.2 For any two distinct chambers D(x), D(y), x, y ∈ M(0) there is
a wall H separating them.

Proof. Consider a geodesic edge path p = e1e2 · · · ek from x to y, then by
Lemma 2.2.5 H(e1) separates x from y and hence separates D(x) from D(y).
�

Lemma 3.1.3 Each chamber contains precisely one vertex of M.

Proof. Since W acts simply transitively on the set of vertices of M and each
vertex is contained in some chamber we deduce that each chamber contains at
least one vertex. Now, if x, y are distinct vertices in a chamber C, we connect
them by a geodesic path p in M(1). Then by criterion of geodesicity any wall
crossed by p separates x from y, contradicting the definition of chamber. �

In view of this lemma we will write D(x) for the chamber containing the vertex
x of M.

Definitions 3.1.4 Recall from §2.1.2 that midplanes of any cell C in M yield
a partition of C into convex (open) blocks. (Blocks are open in C, not in M.) A
maximal block is a block in a maximal cell. Two maximal blocks are adjacent if
they are contained in the same maximal cell and share a codimension one face.
Two chambers D,D′ are adjacent if there are maximal blocks B ⊂ D,B′ ⊂ D′

which are adjacent. A wall H is a wall of a chamber D if there is a maximal
cell C such that H ∩C contains a codimension one face F of a maximal block
B of D.

Lemma 3.1.5 1) Every chamber is uniquely determined by any of its maximal
blocks. 2) Every chamber is a union of maximal blocks, and it contains at most
one maximal block from each maximal cell.
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Proof. 1) Indeed, the interior of a maximal block is open in M and does
not intersect any wall, consequently there is only one chamber containing this
block.
2) Since M is a union of maximal cells, any chamber is a union of maximal
blocks. Take a chamber D, then

D = ∪{D ∩ C : C is a maximal Moussong cell }.

The intersection D ∩ C is a union of maximal blocks because D ∩ C is an
intersection of open half-cells in M . Next, if D contains two maximal blocks
B1, B2 from one cell, then there is a midplane M separating B1 from B2 and
the ambient wall H also separates B1 from B2 contradicting the definition of
D. �

Lemma 3.1.6 Let B,B′ be maximal adjacent blocks and let D,D′ be corre-
sponding ambient chambers. Let H be a wall separating B from B′. Then H is
the only wall that separates D from D′.

Proof. Let C be a maximal cell containing B,B′, then B,B′ are adjacent in
this cell and clearly there is only one midplane separating them. But the wall
is uniquely determined by any of its midplanes, whence the lemma. �

Lemma 3.1.7 Let D,D′ be chambers such that their closures D,D′ have a
nonempty intersection. Let H be a wall, separating D from D′. Then H
contains the intersection D ∩D′.

Proof. Suppose, to the contrary, that there is b ∈ D∩D′ which is not contained
in H . Since H is closed a small neighborhood of b does not intersect H . But
this neighborhood contains points both from D and D′, which thus belong to
one halfspace of H , contradicting the separation hypothesis. �

Lemma 3.1.8 Two distinct chambers D(x), D(y) (x, y ∈ M(0)) are adjacent
if and only if the vertices x, y are adjacent in M(1). For any two adjacent
chambers there is a reflection in W , permuting these chambers and fixing the
intersection of their closures pointwise.

Proof. The lemma is about Coxeter cell, thus it follows from the description
of its structure as a Coxeter complex. �

Definition 3.1.9 The base chamber D0 of M is the chamber, containing the
base vertex x0 of M. For each s from the generating set S of W, we denote by
H−

s those open halfspace of the wall Hs, which contains the base vertex x0.

Lemma 3.1.10 D0 = ∩{Hs
− : s ∈ S}.
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Proof. Since D = ∩{Hs
− : s ∈ S} contains x0, it contains also D0. Let BJ be

a block of a maximal cell XJ , containing xJ = x0. Then BJ ⊂ D0 – indeed it
follows from the description of the chambers in the Coxeter complex that BJ

is bounded by the hyperplanes Hs = e⊥s , s ∈ J. Suppose now that D strictly
contains D0 and let x ∈ D −D0. Since D is convex, the whole segment [x, x0]
lies in D. Let T = (x0, x1, . . . , xm) be a taut chain from x0 to xm = x. The
first piece [x0, x1] lies entirely in some maximal cell of the form XK and we
know that the block BK = D0 ∩ XK is the maximal block in XK and it is
bounded by the hyperplanes H−

s , s ∈ K.
If x1 is a vertex of XK , then it is separated by some Hs, s ∈ K from x0. If x1

is not a vertex of XK , then x1 is the boundary point of XK and hence it is
contained in the interior of some face F of XK . If F contains x0, then all three
points x0, x1, x2 lie in some cell contradicting to the choice. Hence F does not
contain x0 and thus the open interval (x0, x1) lies entirely in the interior of XJ

and hence crosses some wall Hs, s ∈ J – contradiction. �

3.2 Galleries

Definitions 3.2.1 A gallery is a sequence of chambers Γ = D1D2 · · ·Dk such
that any two consecutive ones are adjacent.

Recall that the chambers are in one-to-one correspondence with the vertices
of M and chambers are adjacent if and only if the correspondent vertices are
adjacent in the 1-skeleton of M. It follows immediately that the following
lemma is true.

Lemma 3.2.2 1) Any two chambers D,D′ can be connected by a gallery of
length d(D,D′). 2) A gallery is geodesic if and only if and only if it does not
cross any wall more than once. 3) Given s1, . . . , sd ∈ S, there is a gallery of the
form D0(s1D0)(s1s2D0) · · · (s1s2 · · · sdD0). Conversely, any gallery starting at
C has this form. 4) The action of W is simply transitive on the set of chambers.

�

Lemma 3.2.3 There is a constant c(M) such that for any two distinct cham-
bers D,D′ with nonempty intersection D ∩ D′, there is a geodesic gallery
Γ = D0D1 · · ·Dk from D0 = D to Dk = D′ whose length k does not exceed
c(M).

Proof. Let H0 be the set of walls separating D from D′. In view of Lemma
3.2.2, it is enough to bound the cardinality of H0. According to Lemma 3.1.7
each H ∈ H0 contains D ∩ D′. Let x ∈ D ∩ D′. Clearly the number of cells
containing x is uniformly bounded and for each such a cell C the number of
midplanes in C containing x is also uniformly bounded. Since a wall is uniquely
determined by any of its midplanes, this proves the lemma. �
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3.3 Approximation property

Definition 3.3.1 Let (X,G) be a pair consisting of a geodesic metric space
X and a graph G embedded into X . We say that (X,G) satisfies the approx-
imation property if X-geodesics between the vertices of G can be uniformly
approximated by geodesics in G. This means that there is a constant δ such
that for any X-geodesic αX between the vertices of G there is a G-geodesic
αG between the same vertices such that both αX and αG lie entirely in the
δ-neighborhoods of each other. We will express this by saying that αX , αG are
δ-close to each other.

Of particular interest is the case when G is the embedded Cayley graph of a
group acting on X.

Theorem 3.3.2 Let (W,S) be a Coxeter group and let M be its Moussong
complex. Embed the Cayley graph CW as an orbit Wx0 for a point x0 in a
base chamber D0 of M. Then the pair (MW , CW ) satisfies the approximation
property.

Proof. Let σ = [a, b] be a nondegenerate segment in M and Hσ be the set of
walls having a nonempty intersection with the interior (a, b). Since the family
of all walls is locally finite and the walls are totally geodesic, we have a partition

Hσ = H′
σ ∪H1 ∪H2 ∪ · · · ∪ Hn,

where the walls from H′
σ contain σ and the walls from Hi cross σ precisely in

the point ai, i = 1, · · · , n, and a = a0 < a1 < · · · < an < an+1 = b.
Now we define a gallery Γ along the geodesic σ = [a, b] as the gallery

Γ = D1Γ1D2Γ2D3 · · ·DnΓnDn+1

such that
1) Di ∩ [a, b] = [ai−1, ai] (i = 1, 2 . . . , n+ 1),
2) Each spherical piece DiΓiDi+1 is a geodesic gallery and the lengths of spher-
ical pieces are bounded from above by the constant c(M) from Lemma 3.2.3,
3) Each spherical piece DiΓiDi+1, i = 1, . . . , n crosses the walls only from the
set H′

σ ∪Hi.

Lemma 3.3.3 For any geodesic σ = [a, b] in M there is a geodesic gallery along
σ.

Proof of the lemma. By construction of the sequence {ai}, for each
i = 1, . . . , n + 1 there is a chamber Di such that Di ∩ [a, b] = [ai−1, ai]. The
corresponding sequence of chambers D1, D2, . . . Dn, D1 = D,Dn = D′ is the
first approximation to the required gallery. In general, this sequence is not a
gallery, since two consecutive chambers are not necessarily adjacent. For each
1 ≤ i ≤ n, the intersection of neighbors Di ∩Di+1 contains the point ai.
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Application of Lemmas 3.1.7, 3.2.3 enables us to inscribe a spherical geodesic
subgallery of bounded length between these neighbors and get a gallery

Γ = D1Γ1D2Γ2 · · ·Dn−1Γn−1Dn

such that the spherical pieces DiΓiDi+1 are geodesic galleries of uniformly
bounded length satisfying condition 3) from the definition above. We will show
that Γ can be modified to a geodesic gallery along [a, b]. If Γ is not geodesic
then by Lemma 3.2.2 it crosses some wall H at least twice. Clearly H ∈ H′

σ

i.e., H contains σ. Then there are indices i+1 < j and subgalleries Γ1,Γ2 each
of length 1 such that
a) Γ1,Γ2 belong to i-th and j−th spherical piece respectively,
b) Γ1,Γ2 cross H and moreover there are no crossing subgalleries in between.
Let Γ1 = DD′,Γ2 = D′′D′′′. In particular the chambers D and D′′′ lie on the
same side of H , say H−, and the subgallery Γ′ of Γ, joining D′ with D′′ lies on
the opposite side, say H+.
Let w ∈ W be the reflection in the wall H . If we modify Γ by applying w
to the portion Γ̃, we obtain the gallery from D to D′′′ that is strictly shorter
than DΓ′D′′′. Replacing DΓ′D′′′ by w(Γ̃) we get the gallery Γ′ that is strictly
shorter than Γ but still is the gallery along σ. Repeating the previous process
will construct a geodesic gallery along σ. This proves Lemma 3.3.3.
The theorem now follows easily from Lemma 3.3.3. Namely, given two chambers
D,D′ we take the points d, d′ inside them and build a geodesic gallery Γ =
D1 · · ·Dn along [d, d′]. Γ not necessarily joins D to D′ but the intersections
D∩D1, D′∩Dn are nonempty, so we can join D toD1 and D′ toD2 respectively
by the galleries of uniformly bounded length thereby getting the gallery joining
D to D′ and that is δ(M)−close to σ for some universal constant δ(M). �

D1

D2

D3

D4

D
D′

D5

D6

D7

D8

Figure 3: Gallery along geodesic. The spherical piece is D4DD′D5.

4 Word length on abelian subgroups of a Coxeter group

4.1 Straightness

Definition 4.1.1 Let G be a group with a fixed word metric x 7→ ℓ(x). We
say that an element x 6= 0 is straight if ℓ(vn) = nℓ(v) for all natural n.
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Remark 4.1.2 Straight elements have been studied for Coxeter groups in
[Kra94] and for small cancellation groups in [Kap97] (in the last paper they are
called periodically geodesic.

Example 4.1.3 (An element that is not straight.) Let W be an affine Coxeter
group generated by reflections s1, s2, s3 in the sides of an equilateral triangle
C of a Euclidean plane. Let L1, L2, L3 be the corresponding reflecting lines of
this triangle. It is easily seen that there is nontrivial translation u ∈ W with an
axis L1. We assert that nor s1u neither any of it conjugates v = ws1uw

−1 are
straight. Indeed, the length |ws1uw

−1| is the length of a geodesic gallery Γ from
C to ws1uw

−1C. Any such a gallery intersects the line wL1. The concatenation
Γ(vΓ) is a gallery from C to v2C of length 2|ws1uw−1|. But Γ(vΓ) can not be
geodesic, since it intersects wL1 twice. Hence |v2| < 2|v|. �

Definition 4.1.4 Let M be the Moussong complex of a Coxeter group W .
Recall that M is a proper complete CAT(0) space and W acts properly and
cocompactly on M by isometries. In particular, any element w ∈ W of infinite
order acts as an axial isometry i.e., there is a geodesic axis Aw in M, isometrical
to R, on which w acts as a nonzero translation [Bal95]. We say that w is generic
if Aw intersects any wall in at most one point. In view of Lemma 2.2.6, this
is equivalent to saying that no nondegenerate segment of Aw is contained in a
wall.

Theorem 4.1.5 Let (W,S) be a Coxeter system of finite type. For any generic
element w of W of infinite order there is a conjugate v which is straight, that
is ℓ(vn) = nℓ(v) for all n ∈ N, where ℓ(v) is a word length in generators S.

Proof. We make use of the action of W on the Moussong complex M. Since
the family of all walls is locally finite, there is a point a on the axis Aw such
that a does not belong to any wall of M. Every point wia(i ∈ Z) also does
not belong to any wall of M. Let H be the set of walls crossed by the seg-
ment [a, wa] and let a < a1 < a2 < · · · < ak < wa be the crossing points,
so that H is a disjoint union H = H1 ∪ · · · ∪ Hk of subsets Hi crossing
[a, wa] in ai, i = 1, 2, . . . , k. There are the chambers D1, D2, · · · , Dk such that
D1 ∩ [a, wa] = [a, a1], Di ∩ [a, wa] = [ai−1, ai](i = 1, 2, . . . , k). Inscribe into
the sequence D1, D2, · · · , Dk(wD1) subgalleries Γ1, . . . ,Γk, so that the concate-
nation Γ = D1Γ1D2 · · ·Γk−1DkΓk(wD1) is a gallery, crossing only the walls
from H and crossing each wall precisely once. In particular this gallery is
geodesic. Let Γ0 = D1Γ1D2 · · ·Γk−1DkΓk. Translating by w and concatenat-
ing, we get a gallery Γ̃ = Γ0(wΓ0))(w

2Γ0) · · · (wn−1Γ0)w
nD1. The walls that it

crosses are precisely those from the union H ∪ wH ∪ w2H ∪ · · · ∪ wn−1H, and
each wall is crossed precisely once. Hence the gallery Γ̃ is geodesic. Now let
D1 = uD0, u ∈ W, where D0 is the base chamber. Being a geodesic path in the
Cayley graph, the gallery Γ̃ joins the vertex u to the vertex wnu = u(u−1wnu).
Hence its length nℓ(Γ0) equals the word length of the element u−1wnu ∈ W.
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We conclude that for v = u−1wu the equality |vn| = n|v| holds for all n ∈ N.
�

Theorem 4.1.6 Let (W,S) be a Coxeter group of finite type. There is a con-
stant c = c(W ) such that for any element w of W of infinite order there is a
conjugate v of wc which is straight.

Proof. Let w ∈ W be of infinite order and let Aw be an axis of w. Let
Hu = Hu(Au) denote the set of walls in the Moussong complexMW , containing
Au. It is easy to see that the cardinality of Hw is bounded by a constant
depending only on W and we take c = c(W ) to be the number

2× l.c.m.× (card{Hw : w ∈ W is of infinite order }).

Clearly Aw is an axis of wc as well. Furthermore, wc leaves invariant each
wall H ∈ Hw ; moreover, it leaves invariant each of the two components of
MW −H,H ∈ Hw. It follows that for any chamber D, a geodesic gallery from
D to wcD does not cross a wall H from Hw. Indeed, otherwise D and wcD
would lie in different components of MW −H implying that wc interchanges
these components, contradicting the property above. Take a chamber D such
that D ∩ Aw is a nondegenerate segment and fix a point a in the interior of
this segment. Let H denote the set of walls H that are crossed by the segment
[a, wca] but do not contain it. Clearly any H ∈ H separates D from wcD. And
conversely, if H separates, then the points a, wca lie in different components of
MW −H implying that H crosses the segment [a, wca] in precisely one point.
Let Γ be a geodesic gallery from D to wcD then the walls that it crosses
are precisely those from H, and each wall H ∈ H is crossed by Γ precisely
once. Iterating we obtain a gallery Γ̃ = Γ(wΓ))(w2Γ) · · · (wn−1Γ)wnD(n ∈ N)
of the length nℓ(Γ). This gallery crosses the walls only from (disjoint) union
H ∪ wcH ∪ w2cH ∪ · · · ∪ w(n−1)cH, each precisely once. Hence the gallery Γ̃
is geodesic. Now let D = uD0, u ∈ W, where D0 is the base chamber. Being
a geodesic path in the Cayley graph, the gallery Γ̃ joins the vertex u to the
vertex wncu = u(u−1wncu). Hence its length nℓ(Γ) equals the word length of
the element u−1wncu ∈ W. We conclude that for v = u−1wcu the equality
|vn| = n|v| holds for all n ∈ N. �

For elements which are not necessarily generic we have the following

Lemma 4.1.7 Let (W,S) be a Coxeter group of finite type and let w ∈ W be
an element of infinite order. Fix an axis Aw of w in the Moussong complex
MW . There is a chamber D such that for all n ∈ Z

d(D,wnD) = n d(D,wD) − n card (wZ\Hw) + cn,

where |cn| is bounded by a constant depending only on W and Hw is the set
of all walls H in MW , containing Aw and such that H separates wiD from
wi+1D for some i ∈ Z.
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Proof. We follow the proof of Theorem 4.1.5. Take a chamber D, such D∩Aw

is a nondegenerate segment. Let H be the set of walls, separating D from
wD and do not containing Aw. By total geodesicity, any H ∈ H crosses Aw

precisely in one point. Let Γ be a geodesic gallery from D to wD then it crosses
all H ∈ H, each precisely once, and some of the walls from Hw. Iterating we
get the gallery Γ̃ = Γ(wΓ))(w2Γ) · · · (wn−1Γ)wnD. This gallery crosses the
walls from (disjoint) union H∪wH∪w2H∪ · · · ∪wn−1H, each precisely once.
Also, it crosses some walls from Hw. Note that, whenever Γ̃ crosses H ∈ Hw, it
crosses it periodically with a period rH = card wZH. Hence, the integer part
[n/rH ] is the number of times the gallery Γ̃ crosses each H ′ ∈ wZH. Hence it
crosses the walls from the orbit wZH approximately n times, up to a universal
constant. Hence, the number d(D,wnD) of walls, separating D from wnD,
equals n d(D,wD)−n card (wZ\Hw)+ cn, where cn is uniformly bounded. �

Theorem 4.1.8 If, under conditions of Lemma 4.1.7, D = uD0, u ∈ W, where
D0 is the base chamber, then d(D,wD) is the word length of the conjugate
v = u−1wu ∈ W and we get the following formula

ℓ(vn) = nℓ(v)− card (wZ\HW ) + cn.

From this we get the following formula for a translation length ||w|| of w:

||w||
def
= lim

n→∞

ℓ(wn)

n
= lim

n→∞

ℓ(vn)

n
= ℓ(v)− card(wZ\Hw).

In particular, translation length of any element of W is rational (even integral).

Remark 4.1.9 The formula for translation length is similar to the one given
in [Kra94], where it follows from the classification of roots. It seems unknown
whether translation length is rational in an arbitrary ”semihyperbolic group”.

4.2 Norms and Burago’s inequality

Let A be a normed abelian group, so A is equipped with a function ℓ : A → R

satisfying (1) ℓ(a−1) = ℓ(a), (2) ℓ(ab) ≤ ℓ(a) + ℓ(b), and (3) ℓ(a) ≥ 0 with
ℓ(a) = 0 iff a = 1, for a, b ∈ A. If (3) is replaced by (3’) ℓ(a) ≥ 0 for a ∈ A, we
call A a pseudonormed abelian group. Two pseudonorms ℓ and ℓ′ on the abelian
group A are called Hausdorff equivalent if there is a constant k > 0 so that
|ℓ(a)− ℓ′(a)| ≤ k for all a ∈ A. The (pseudo)norm ℓ on the abelian group A is
called regular if ℓ(an) = nℓ(a) for all a ∈ A and all positive natural numbers n.
Let ℓ be a norm on the abelian group A. We define the regularization Rℓ of ℓ
by

Rℓ(a) = lim
n→∞

ℓ(an)

n
.

By [PS78], p. 23, Exercise 99, this limit always exists, and it is an exercise to
see that Rℓ is a regular pseudonorm.
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Lemma 4.2.1 The norm ℓ on the abelian group A is regular iff Rℓ = ℓ.

Proof. If ℓ is regular, then clearly Rℓ = ℓ. Conversely, if ℓ(an) < nℓ(a) for
some positive number n and some a ∈ A, then

Rℓ(a) = lim
m→∞

ℓ(amn)

mn
≤

ℓ(an)

n
< ℓ(a),

thus the lemma. �

In general positivity of Rℓ fails, so it is possible that Rℓ(a) = 0 but a 6=
0. Also it may easily happen that Rℓ is not Hausdorff equivalent to ℓ. We
give a criterion for positivity and Hausdorff equivalence in terms of Burago’s
inequality [Gro93].

Definition 4.2.2 We say that a norm ℓ on an abelian group A satisfies the
Burago’s inequality if there exists a constant c = c(A) > 0 such that

ℓ(a2) ≥ 2ℓ(a)− c for all a ∈ A.

The norm is discrete if for all n ∈ N the ball Bn = {x ∈ A : ℓ(x) ≤ n} is
finite. For example any word metric, corresponding to a finite generating set,
is discrete.

Lemma 4.2.3 If a discrete norm ℓ on a torsionfree abelian group A satisfies
Burago’s inequality then its regularization Rℓ is a norm also and, furthermore,
Rℓ is Hausdorff equivalent to ℓ.

Proof. By induction from Burago’s inequality we deduce that ℓ(a2
n

) ≥
2nℓ(a)− (2n − 1)c, for all a ∈ A, n ∈ N. This implies that

ℓ(a) ≥ Rℓ(a) = lim
m→∞

ℓ(a2
m

)

2m
≥ ℓ(a)− c

for all a ∈ A. Thus the regularization Rℓ is Hausdorff equivalent to ℓ. As any
regularization, this pseudonorm is regular. It remains to prove that Rℓ is a
norm on A, i.e., it does not vanish on nonzero a ∈ A. If a ∈ A is such that
ℓ(a) ≥ 1 + c, then

Rℓ(a) = lim
m→∞

ℓ(a2
m

)

2m
≥ ℓ(a)− c ≥ 1.

Now suppose a ∈ A is arbitrary nonzero, then by the discreteness assumption
ℓ(an) ≥ 1+c for sufficiently large n, and since Rℓ is regular, Rℓ(a) = 1

n
Rℓ(an) >

0. �
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4.3 Approximation and Burago’s inequality

Lemma 4.3.1 Let Γ be a finitely generated group of isometries of a proper
CAT(0) space X, acting cocompactly and properly on X. Suppose that x0 ∈ X
has a trivial stabilizer so that the Cayley graph C of Γ can be considered as
embedded into X via the orbit map g 7→ gx0(g ∈ Γ). Suppose that the pair
(X,Γx0) satisfies the approximation property. Then the restriction of the word
length ℓ on Γ to any finitely generated free abelian subgroup A satisfies the
Burago’s inequality.

Proof. By assumption there is a δ > 0 such that for any g ∈ Γ the X-geodesic
αX from x0 to gx0 and some C–geodesic αC from x0 to gx0 are δ–close to
each other. By the flat torus theorem [Bow95], [Bri95] there is a Euclidean
subspace F in X on which A acts by translation. Fix the point y0 ∈ F and let
a be an arbitrary nontrivial element in A. We will show that ax0 is contained
in a c-neighborhood of αC for a suitable c > 0. Clearly dX(a2x0, a

2y0) =
dX(x0, y0). Parameterize the segments [x0, a

2x0], [y0, a
2y0] by the segment [0, 1]

proportionally to arc length. It follows from the convexity of X–metric that
the corresponding points on the segments are distance at most dX(x0, y0) from
each other. Let u be the point on [x0, a

2x0] corresponding to the point ay0.
By assumption u is distance at most δ from some point v on αC . Hence we
have bounded the X-distance from ax0 ∈ C to v ∈ C. (This key observation
is illustrated in Figure 4). Since the Cayley graph C is quasiisometric to X
this bounds the Cayley graph distance also. Thus, there is a constant c =
c(Γ, X) > 0 such that dC(ax0, v) ≤ c. We have ℓ(a2) = dC(x0, v)+dC(v, a

2x0) ≥
(dC(x0, ax0) − c) + (dC(ax0, a

2x0) − c) = (ℓ(a) − c) + (ℓ(a) − c) = 2ℓ(a) − 2c,
that is the Burago’s inequality. �

ax0

αC

αX

a2x0

ay0

v

a2y0

u

F

x0

y0

Figure 4: Lemma 4.3.1

Theorem 4.3.2 Let (W,S) be a Coxeter group and let ℓ be the word length in
generators S. Then the restriction of ℓ to any free abelian subgroup A of W is
Hausdorff equivalent to a regular norm on A.

Proof. Consider the pair (MW , CW ) where the Cayley graph CW is embedded
into the Moussong complex as an orbit Wx0. By Theorem 3.3.2 (MW , CW )
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satisfies the approximation property. Therefore by Lemma 4.3.1 the restriction
of the word length ℓ on W to any finitely generated free abelian subgroup
A satisfies the Burago’s inequality. Finally, by Lemma 4.2.3 ℓ is Hausdorff
equivalent to its regularization Rℓ and thus Rℓ is the required norm on A.

�

I am grateful to Herbert Abels for asking the question that leads to the theorem
above.
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