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Assume G is a semi–simple Chevalley group, so G(Zp) ⊂ G(Qp) is a maximal
compact subgroup. Both the p–adic representation theory of G(Qp) and non–
commutative Iwasawa theory involve the Iwasawa algebra of G(Zp) or suitable
congruence subgroups. It seems to have been assumed that explicit descrip-
tions, by generators and relations, of these algebras were inaccessible. However,
it is a general principle that natural objects coming from semi–simple (split)
groups have explicit presentations. Famous examples are Serre’s presentation of
the semi–simple algebras and Steinberg’s presentation of the Chevalley groups
[7, 8]. In this paper we will give a presentation for the Iwasawa algebra of the
subgroup of level 1 in SL(2,Zp) (p 6= 2).
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546 Laurent Clozel

1

Let G = SL(2) and let G be the subgroup of level 1 in G(Zp) :

G = {g ∈ SL(2,Zp) : g ≡ 1[p]} .

We assume p > 2, so G has no p–torsion. It has a triangular decomposition

G = N− T N+

where N− =

(
1 0
∗ 1

)
, N+ =

(
1 ∗
0 1

)
(entries ∗ in pZp) and T =

(
∗ 0
0 ∗

)

(entries in 1 + pZp). We identify N−, N+ with Zp by ∗ = px (x ∈ Zp).
Similarly T ∼= Zp by

x 7−→

(
(1 + p)x

(1 + p)−x

)
(x ∈ Zp) .

We consider the Iwasawa algebra ΛG of Zp–valued measures (or distributions,
in the sense of [9]), on G, which we will denote by D(G,Zp). The triangular
decomposition ofG, as an analytic manifold, yields a decomposition ofD(G,Zp)
as a topological Zp–module :

(1.1) D(G,Zp) = D(N−,Zp)⊗̂D(T,Zp)⊗̂D(N+,Zp) ,

the factors of (1.1) being the spaces of distributions on the factors of G. If f
is a function on G and U , V , W distributions on N−, T , N+,

(1.2) < U ⊗ V ⊗W, f >:=< U ⊗ V ⊗W, f(uhn) >

where u ∈ N−, h ∈ T , n ∈ N+ and f is therefore seen as a function on
N− × T × N+. The natural definition of the completed tensor product is
equivalent to the explicit description of D(G,Zp) reviewed below.

The algebra ΛZp
= D(Zp, Zp) is identified with the ring of power series Zp[[T ]]

by Iwasawa’s theorem. For µ ∈ ΛZp
, the associated series is given by the

Fourier–Amice transform

µ̂(t) =

∫

Zp

(1 + t)xdµ(x) (t ∈ Zp, |t| < 1) .

In particular, δ(x) being the Dirac measure at x :

δ̂(1) = 1 + T ,

so T = δ̂(1)− δ̂(0) .
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In each factor of the decomposition (1.1), we therefore have the Dirac
measures :

µ− = δ(

(
1
p 1

)
) , µ̂− = 1 + Y ∈ D(N−,Zp) ∼=

∼= Zp[[Y ]]

µ+ = δ(

(
1 p

1

)
) , µ̂+ = 1 +X ∈ D(N+,Zp) ∼=

∼= Zp[[X ]]

µ0 = δ(

(
(1 + p)

(1 + p)−1

)
) , µ̂0 = 1 +H ∈ D(T,Zp) ∼=

∼= Zp[[H ]]

For each factor, U = N−, T or N+ of G, D(U,Zp) is naturally sent to D(G,Zp),
by integrating a function f ∈ C(G,Zp) against µ ∈ D(U,Zp) on the U–factor.
This map is compatible with the convolution product. We therefore write,
unambiguously, Y n, Xn, Hn (n ≥ 0) in D(G,Zp). A distribution λ in this
space can then be written uniquely

(1.3) λ =
∑

n

λn Y n1 Hn2 Xn3 (n ∈ N3)

with λn ∈ Zp. This is the meaning of the completed tensor product (1.1). The
expansion is convergent in D(G,Zp). Of course the product Y n1Hn2Xn3 :=
Y n1⊗Hn2⊗Xn3 is defined as above. This easily follows from Mahler’s theorem
in several variables (cf. Lazard [4, Théorème 1.2.4]).
It immediately follows from formula (1.2) that the distributions Y , H , X ∈
D(G,Zp) multiply in the obvious fashion when the variables are taken in the
“natural order”, i.e.

Y ⊗H = Y ∗H

Y ⊗X = Y ∗X

H ⊗X = H ∗X ,

the convolution product being taken on G. We will simply write, consistent
with previous notation :

(1.4) Y H = Y ∗H , Y X = Y ∗X , HX = H ∗X .

To determine the product structure in D(G,Zp) is to understand first the prod-
uct of monomials in a different order.
Consider first the product HY . It suffices to compute, in G, the product
µ0µ− = δ(h0)δ(u0), say. We compute h0u0h

−1
0 .

Since (
t

t−1

)(
1
x 1

)(
t−1

t

)
=

(
1

t−2x 1

)
,
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548 Laurent Clozel

we have h0u0h
−1
0 = u

(1+p)−2

0 if we write the group N− multiplicatively. The
equation

µ0µ− = δ(h0u0h
−1
0 )δ(h0) ,

and the fact that D(N−,Zp) ∼= Zp[[Y ]] is a homomorphism, show that

(1.5) (1 +H)(1 + Y ) = (1 + Y )q(1 +H)

where we have set

(1.6) q = (1 + p)−2 ≡ 1 [p] .

Similarly considerXH . Let n0 be the generator ofN
+. Now δ(n0)δ(h0) reduces

to h−1
0 n0h0. Again

(
t−1

t

)(
1 x

1

)(
t

t−1

)
=

(
1 t−2x

1

)
,

so h−1
0 n0h0 = n

(1+p)−2

0 = nq
0, whence

(1.7) (1 +X)(1 +H) = (1 +H)(1 +X)q .

Finally, to express XY we have to decompose

n0u0 =

(
1 p

1

)(
1
p 1

)
=

(
1 + p2 p

p 1

)
.

Since (
1
a 1

)(
t

t−1

)(
1 b

1

)
=

(
t tb
ta abt+ t−1

)
,

we see that
p = ta = tb

with
1 + p2 = t = (1 + p)P , P ∈ Zp .

This yields, since t0 = 1+ p is the parameter of h0 :

(1.8) (1 +X)(1 + Y ) = (1 + Y )Q(1 +H)P (1 +X)Q

with

(1.9) Q = (1 + p2)−1 ≡ 1[p2] , P =
log(1 + p2)

log(1 + p)
.

For p > 2, we have

log(1 + p) = p− p2

2 + p3

3 · · · = p(1 +O(p))

log(1 + p2) = p2(1 +O(p2))
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Presentation of an Iwasawa Algebra . . . 549

whence

(1.10) P = p(1 +O(p)) .

Note that we have simply written HY for H ∗ Y , etc. . . This will cause no
confusion if we remember that a product such as HY , for variables not in
the natural order, is not given by the ostensible product of monomials in the
expression (1.3).
To summarize, we have :

Proposition 1.1. Set Q = (1 + p2)−1 , q = (1 + p)−2, P = log(1+p2)
log(1+p) . Then

the elements X, Y , H of D(G,Zp) verify the relations

(a) (1 +H)(1 + Y ) = (1 + Y )q(1 +H)

(b) (1 +X)(1 +H) = (1 +H)(1 +X)q

(c) (1 +X)(1 + Y ) = (1 + Y )Q(1 +H)P (1 +X)Q.

Consider now the universal, non–commutative p–adic algebra in the variables
Y , H , X : thus

A = Zp{{Y,H,X}}

is composed of all the non–commutative series

(1.11) f =
∑

n≥0

∑

i

aix
i

where the coefficients ai ∈ Zp and, for all n ≥ 0, i runs over all maps
{1, 2, . . . n} −→ {1, 2, 3} ; we set x1 = Y , x2 = H , x3 = X and xi =

xi(1) · · ·xi(n). The topology on A is the product topology on
∏
n
Z
I(n)
p where

I(n) is the set of maps (≡ of non–commutative monomials of degree n). The
algebra A has a maximal ideal MA generated by (p, x1, x2, x3) and a prime
ideal PA generated by (x1, x2, x3). Its topology is given by the powers of MA.
The non–commutative polynomial algebra

A = Zp{Y,H,X}

is a dense subalgebra of A.
Let R be the closed two–sided ideal generated in A by the relations (a, b, c).
Our main result is

Theorem 1.2. The Iwasawa algebra ΛG is naturally isomorphic to A/R.

The proof will in fact rely on the corresponding result with coefficients in
Fp. So let ΩG = ΛG

⊗
Zp

Fp be the Iwasawa algebra with finite coefficients,

A = Fp{{Y,H,X}} the algebra of non–commutative series with coefficients in
Fp, with its natural linearly compact topology, given by its maximal ideal MA.
Let R be the image of R in A.
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550 Laurent Clozel

Lemma 1.3. R is the closed two–sided ideal generated in A by the image of the
relations (a, b, c).

Proof.– Denote by I ⊂ A the ideal generated by the relations ; let J ⊂ A be
the similar ideal. Then J is obviously the image of I in A ; we denote it by I.
Let R be the reduction of R, and consider the closure cl(I) of I in A. If
f ∈ R, we have f = lim

n
fn (fn ∈ I) for the topology given by (MN

A ). This

implies that f = lim fn for the topology given by MN
A

on A, thus f ∈ cl(I).

Conversely assume f ∈ A can be written f = lim fn with fn ∈ I. Then fn is
the reduction of a series fn ∈ I ⊂ R. Since R is closed and A compact, we
may assume that fn converges to g ∈ R. Then, by definition of the topologies,
f = lim fn = g. Thus cl(I) = R, which finishes the proof.

Theorem 1.4. The Iwasawa algebra mod p, ΩG, is naturally isomorphic to
A/R.

The proof of these results will occupy § 2, 3.

2

We consider the natural map
A −→ ΛG

given by the universal property of A. Note that the topology of ΛG, as a dis-
tribution algebra, coincides with its topology when it is seen as the algebra of
distributions on the commutative group Z3

p. In particular a basis of neighbour-

hoods of 0 is given by the family of Zp–modules MN
Λ (Λ = ΛG), where

(2.1) MN
Λ = {λ ∈ ΛG , λ =

∑

n

λnY
n1Hn2Xn3 , v(λn) + |n| ≥ N}

with the usual notation |n| = n1 + n2 + n3. For a linear monomial x = Y , H
or X , we have w(x) = 1, w being the function on Λ given by

(2.2) w(λ) = inf
n
(v(λn) + |n|) .

We will use the following deep result of Lazard :

Proposition 2.1 (Lazard). The valuation w is additive : w(λ ∗ µ) = w(λ) +
w(µ) (λ, µ ∈ ΛG).

Cf. [4, III 2.3.3]. Lazard proves, in fact, that the associated graded ring is an
enveloping algebra, thus an integral domain, and this implies the additivity. I
am indebted to the paper of Schneider and Teitelbaum [6] for a lucid exposition
of Lazard’s results.
In fact, it follows from Lazard’s results that MN

Λ is indeed the N -th power of
the maximal ideal MΛ of ΛG. Indeed, let JN be defined by w(λ) ≥ N . It is
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Presentation of an Iwasawa Algebra . . . 551

easy to check that J1 = MΛ. The additivity implies that MN
Λ is contained in

JN . Since every linear monomial belongs to the maximal ideal, the expression
(2.1) implies the converse inclusion since MN

Λ is closed.
Consider now the filtration of A by the powers of its maximal ideal. It is
defined by a valuation wA given by a formula similar to (2.2) : if

f =
∑

i

ai x
i ,

wA(f) = inf
i
(v(ai) + |i|)

where |i| = n is the degree of i (cf. after (1.11)). We now have the following
(“ideal” means two–sided ideal unless otherwise indicated).

Proposition 2.2. The natural map ϕ : A → ΛG extends continuously to a
surjective homomorphism A → ΛG. In fact,

ϕ(MN
A ) ⊂ MN

Λ (N ≥ 0) .

Proof : The continuity is implied by the stronger property

(2.3) w(ϕ(xi)) = n = |i|

where n, as after (1.11), is the degree of the monomial. By induction on n,
this follows from Proposition 2.1. If f ∈ MN

A , we have wA(f) ≥ N and the
continuity follows from (2.3) by Zp–linearity. The surjectivity follows from the
fact that ϕ is already surjective ifA is replaced by the set of linear combinations
of well-ordered monomials (i increasing).

Corollary 2.3. There is a natural, continuous surjection

B = A/R −→ ΛG .

Corollary 2.4. There is a continuous surjection

ϕ : B = A/R −→ ΩG .

This follows from Lemma 1.3.
It follows from Abelian distribution theory that ΩG is, as a space, isomorphic
to

Fp[[Y,H,X ]]

with the compact topology. An obvious computation shows that

MN
Ω = {λ ∈ ΩG : vΩ(λ) ≥ N} ,

vΩ being the usual valuation on power series, is the image of MN
Λ . In particular

it is an ideal ; for N = 1, MΩ is the maximal (two–sided) ideal, and (MΩ)
N ⊂

MN
Ω . (Reduce mod p the corresponding property for Λ.)
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Similarly in A, we find that the reduction mod p (image in A) of MN
A is the

ideal of series
f =

∑

i

αi x
i (αi ∈ Fp)

such that |i| ≥ N . For N = 1 we obtain the maximal ideal in A. Furthermore
in this case too (MA)

N = MN
A
.

3

In this paragraph we will directly study the quotient algebra B = A/R, using
the properties of the relations (a, b, c).
Consider the natural filtration of A by the powers of MA, which we denote by

FnA. We have FnA/Fn+1A = grnA ∼= F
I(n)
p where I(n) is the set of maps

{1, . . . , n} → {1, 2, 3} (§1). The filtration Fn induces a filtration on
B = A/R :

FnB = FnA+R

whence a graduation

grnB = FnA+R/Fn+1A+R

= FnA/Fn+1A+ (FnA ∩R) .

Let Sn = Sn(X,Y, Z) be the space of commutative polynomials over Fp of

degree n ; thus dimSn = (n+1)(n+2)
2 . Let Σn be the space of homogeneous

non–commutative polynomials of degree n ; thus Σn → FnA/Fn+1A, and
therefore Σn → grnB, is surjective.

Proposition 3.1. dim grnB ≤ dimSn.

In order to prove this we consider the relations defining R (or rather R).
Consider first the relation (a) :

(1 +H)(1 + Y ) = (1 + Y )q(1 +H)

with q ≡ 1 [p]. Expanding the power series gives

1 +H + Y +HY = (1 + qY +

(
q
2

)
Y 2 + · · · )(1 +H) .

We note that

(
q
2

)
=

q(q − 1)

2
≡ 0 [p]. Thus in A/R :

1 +H + Y +HY = (1 + qY )(1 +H) +R(Y )(1 +H) ,

the term R(Y ) being of degree ≥ 3, so

HY = (q − 1)Y + qY H +R1(Y,H)

= Y H +R1(Y,H)
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since q ≡ 1, R1(Y,H) of degree ≥ 3. This shows that in B = A/R :

(3.1) HY = Y H mod F 3B i.e.

HY = Y H in gr2B .

The computation for relation (b) is obviously similar, yielding in B

(3.2) XH = HX mod F 3B .

Consider now the identity (c) :

(1 +X)(1 + Y ) = (1 + Y )Q(1 +H)P (1 +X)Q .

We have Q ≡ 1 [p2], P ≡ p [p2]. Again the coefficients
Q(Q− 1)

2
of Y 2, X2

in the power series vanish mod p. Modulo M3
A
, whose image is in F 3B, we

then have
(1 +X)(1 + Y ) ≡ (1 +QY )(1 +H)P (1 +QX) .

Since P ≡ p [p2] and since 2 is invertible, (1 +H)P ≡ 1 mod (p,H3). Thus

1 +X + Y +XY ≡ 1 +QX +QY +Q2Y X ( mod F 3B) ,

and since Q ≡ 1 :

(3.3) XY ≡ Y X ( mod F 3B) .

Since gr2B is generated by these three monomials and the squares Y 2, H2, X2 ,
the identities (3.1)–(3.3) show that dim gr2B ≤ 6, whence the result for n = 2.
The proposition for general n is deduced from this case. Consider an arbitrary
monomial of degree n,

xi = xi1 ...xin .

The following lemma is obvious :

Lemma 3.2. We can change xi into a well–ordered monomial xi′ (i′ increasing)
by a sequence of transpositions xiαxiα+1 7→ xiα+1xiα .

(Consider the set of inversions {α < β : iα > iβ}. Assume iγ > iγ+1, and
replace in xi the term xiγxiγ+1 by xiγ+1xiγ . It is easy to check that the set of
inversions decreases by one element.)

We now write xi = xjxiαxiα+1x
ℓ. We will prove by induction

Lemma 3.3. In B, xi ≡ xi′ mod Fn+1B, where i′ is well–ordered.

But this is now equally obvious. Let r, s be the degrees of xj , xℓ, so n = r+s+2.
Then xj ≡ xj′ [F r+1B], xℓ ≡ xℓ′ [F s+1B] and xiαxiα+1 ≡ xiα+1xiα [F

3B]
; we are of course assuming iα > iα+1. Factoring the congruences gives
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xi ≡ xj′xiα+1xiαx
ℓ′ [Fn+1B] since the filtration Fn, image of Fn on A, ver-

ifies FnFm ⊂ Fn+m. Using induction if necessary, we obtain the Lemma,
whence Proposition 3.1.

Proof of Theorem 1.4.– The natural map ϕ : A → ΛG sends Mn
A to Mn

Λ. Since
F • is on B the filtration inherited from the natural filtration on A, we see that
ϕ sends FnB to Mn

Ω. We then have a natural map grϕ : gr•B → gr•ΩG,
surjective since ϕ is so. It is an isomorphism since dim grnB ≤ dim Sn =
dim grnΩG. (The last equality follows from the considerations after Cor.2.4 ;
cf also [3, Theorem 7.24]). Therefore ϕ is isomorphic since the filtration on B
is complete. The last point follows from the fact that B = A/R where R is
closed and therefore complete for the filtration induced from that of A : see
e.g. [5, Thm 4 (5) p. 31].

Proof of Theorem 1.2.– The reduction of ϕ : A/R → ΛG is ϕ. Recall that R is
the image of R in A. Assume f ∈ A satisfies ϕ(f) = 0. We then have f ∈ R
by Theorem 1.3, so f = r1+pf1, r1 ∈ R, f1 ∈ A. Then ϕ(f1) = 0. Inductively,
we obtain an expression f = rn + pnfn of the same type. Since pnfn → 0 in A
and R is closed, we see that f ∈ R, QED.

4

In this section, we show that the description of ΛG given in § 1 allows one
to give different proofs of some results of Ardakov and to understand them in
terms of the growth of coefficients in the Iwasawa expansion.

Ardakov’s main result in [1] is that the centre of the Iwasawa algebra reduces
to the Iwasawa algebra of the centre of G, trivial in our case. We will see that
the fact of being central is incompatible with the boundedness of the Iwasawa
coefficients.

It will be instructive to compare this behaviour with what happens for the cen-
tre of the enveloping algebra. Recall that instead of the Iwasawa distributions,
or measures, we can consider the analytic distributions (or hyperfunctions),
dual to the locally analytic functions on G (cf. Schneider–Teitelbaum [6]).
They admit an expansion (1.3), but with now

(4.1) |λn|r
|n| −→ 0 ∀r < 1 , |n| = n1 + n2 + n3 .

Among these we have the Casimir operator (seen as a distribution with support
at 1)

ω = h2 + 2(xy + yx) = h2 − 2h+ 4xy

(cf. e.g. Borel [2, p. 19]) where h, x, y are the infinitesimal generators of the
groups T , N+, N−. It suffices to compute ω on a function f given by

f(utn) = (1 + Y )x1(1 +H)x2(1 +X)x3
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where u, t, n have parameters x1, x2, x3 ∈ Zp and Y , H , X belong to the disc
|w| < 1 in Cp or even Qp (such functions are dense). Now

(xyf)(1) =
d

dt

∣∣∣
0
yf(etx) =

d

dt

∣∣∣
0

d

ds

∣∣∣
0
f(esyetx)

=
d

dt

∣∣∣
0

d

ds

∣∣∣
0
f

((
1
s 1

)(
1 t

1

))

= ∂2

∂s∂t

∣∣∣
0
(1 + Y )s/p(1 +X)t/p

= 1
p2 log(1 + Y ) log(1 +X) ,

hf(1) =
d

dt

∣∣∣
0
f

(
et

e−t

)

=
1

log(1 + p)

d

dt

∣∣∣
0
f

(
(1 + p)t

(1 + p)−t

)

=
1

log(1 + p)
log(1 +H) ,

h2f(1) =
1

log2(1 + p)

d2

dp2

∣∣∣
0
f

(
(1 + p)t

(1 + p)−t

)

=
1

log2(1 + p)
[log(1 +H)] ,

Thus the Amice transform of ω is

F (Y,H,X) =

=
1

log2(1 + p)
log2(1 +H)−

2

log(1 + p)
log(1 +H) +

4

p2
log(1 + Y ) log(1 +X) .

This obviously has an expansion (4.1) – and is an element of the ring of con-
vergent series on D(1)3, D(1) ⊂ Qp being the open unit disc – but it is not an
element of ΛG.
We will see that the invariance under T suffices to impose such a logarithmic
behaviour. This leads to :

Theorem 4.1. The space of elements on ΛG invariant by conjugation under
T is equal to the Iwasawa algebra ΛT ⊂ ΛG.

Assume indeed λ ∈ ΛG is T –invariant, with Amice transform

F (Y,H,X) .

We have Y = u0−1, with h0u0h
−1
0 = u

(1+p)−2

0 ; thus the automorphism Ad(h0)

of G sends 1 + Y to (1 + Y )(1+p)−2

. Similarly, h0n0h
−1
0 = n

(1+p)2

0 , so 1 + X
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is sent to (1 +X)(1+p)2 . Of course H is left invariant. If λ is T –invariant we
therefore have

(4.2) F (Y,H,X) = F (Y ′, H,X ′)

where 1 + Y ′ = (1 + Y )(1+p)−2

, 1 +X ′ = (1 +X)(1+p)2 . Since p 6= 2, (1 + p)2

is a topological generator of 1 + Zp. Therefore (4.2) remains true if

(4.3) 1 + Y ′ = (1 + Y )u , 1 +X ′ = (1 +X)u
−1

, u ∈ 1 + pZp .

In the following computations consider F as an element of the Lazard ring
in three variables. If we fix a value of H in Cp such that |H | < 1, say H0,
F (Y,H0, X) := F1(Y,X) becomes an Iwasawa series in the two variables, still
invariant under (4.3). Now set

(4.4) U = log(1 + Y ) , V = log(1 +X) ,

two series convergent in D(1). We have

F1(Y,X) = G1(U, V )

where G1 converges absolutely in the domain of convergence of the exponential,

i.e. for |U |, |V | < r0 = p−
1

p−1 . Moreover G1 is invariant by U 7→ uU , V 7→
u−1V , |u− 1| < p−1. This implies that

G1(U, V ) = G2(UV )

with G2(z) convergent for |z| < r20 .
Let

G2(z) =

∞∑

0

bqz
q ,

F1(Y,X) =
∑

m,n

amnY
mXn (|amn| ≤ 1) .

Then F1(Y,X) = G2(log(1 + Y ) log(1 +X)) ,

log(1 + Y ) = Y

∞∑

0

(−1)k

k + 1
Y k := Y L1(Y )

log(1 +X) = X

∞∑

0

(−1)ℓ

ℓ+ 1
Y ℓ := XL1(X)

Thus (log(1+Y ) log(1+X))q contains only terms the degree of which in Y and

X is at least q. We have of course b0 = a0, and the previous remark implies
that ∑

n≥0

a1n Y Xn +
∑

m≥0

am1Y
mX
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is identical with the sum of terms of these degrees in

b1 Y X L1(Y )L1(X) ,

i.e. with
b1 Y X (L1(Y ) + L1(X)− 1) .

Since the amn are integral, this implies that b1 = 0 as the denominators in the
log–series are not bounded.
By induction assume that b1 = · · · bN−1 = 0, so

G2 =

∞∑

N

bqz
q .

We then find that

(4.4) F1(Y,X) = bNY NXNL1(Y )NL1(X)N

+ terms of degree > N in X and Y .

Now L1(Y ) = 1 + YM1(Y ) , say ,

L1(X) = 1 +XM1(X)

so (4.4) implies that

F1(Y,X) = bNY NXN (1 +NYM1(Y ) +NXM1(X))

+ terms of degree > N in X and Y .

Since M1 does not have bounded denominators, we deduce that bN = 0.
Finally we have proved that F1 = b0, i.e. F (Y,H,X) ≡ b0(H) for any H ∈ Cp,
|H | < 1, This implies that F (Y,H,X) = F (H) has no terms involving X or Y ,
whence the result.

Corollary 4.2. The centre of ΛG is composed of the multiples of the Dirac
measure at 1.

For assume that λ ∈ ΛG is central, so invariant by all conjugates of T in G.
By Thm. 4.1 its support is contained in the intersection of the tori gTg−1

(g ∈ G) . This intersection is reduced to {1}.
We note that Theorem 4.1 itself follows from Ardakov’s results [1, Proposition
2.2]: a simple computation shows that the only finite orbits of T in G are the
elements of T (use the triangular decomposition).

5

This section is devoted to conjectural remarks on a formal extension of the
main result.
Consider the formulas of Proposition 1, for example
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(a) (1 +H)(1 + Y ) = (1 + Y )(1+p)−2

(1 +H)

(c) (1 +X)(1 + Y ) = (1 + Y )(1+p2)−1

(1 +H)
log(1+p

2)
log(1+p) (1 +X)(1+p2)−1

.

In the p–adic computation the series for, say, (1 +X)x (x ∈ Zp) converges as

an Iwasawa expansion because of the integrality of the binomial function

(
x
n

)
.

However, replace now ΛG by k[[Y,H,X ]] where k is a field of characteristic
zero. Set p = ε, another formal variable, which should however be considered
as a small parameter. The binomial coefficients, namely

(5.1)

(
(1 + ε)−2

n

)
=

(1 + ε)−2((1 + ε)−2 − 1) · · · ((1 + ε)−2 − n+ 1)

n!

and similarly (
log(1 + ε2)/ log(1 + ε)

n

)

are well–defined series in k[[ε]]. Formulas (a, b, c) therefore define the products
HY , XH and XY in k[[ε]][[Y,H,X ]]. The p–adic results do not seem to imply
that this extends to an associative product in this ring of power series. Note
that if it were so, equations (a, b, c) at ε = 0 would simply yield HY = Y H ,
XH = HX and XY = Y X . Such an extension would therefore define, quite
naturally, a formal deformation of the algebra of power series k[[Y,H,X ]] as-
sociated to the group SL(2). It would be interesting to understand this defor-
mation in group–theoretic terms (or in terms of the Lie algebra) –assuming, of
course, it exists. In this respect one should note that formulas (a, b) allow one
to define inductively the products HnY m and XnHm. However I do not see
how to define XnY m, even granting (c).
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[7] J.–P. Serre, Algèbres de Lie semi–simples complexes, Benjamin, 1966.

[8] R. Steinberg, Lectures on Chevalley groups, mimeographed notes, Yale
University, 1967.

[9] L. Washington, Introduction to cyclotomic fields, Springer, 1982.

Laurent Clozel
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