
Documenta Math. 921

The Singularity Category of an

Algebra with Radical Square Zero

Xiao-Wu Chen1

Received: April 21, 2011

Communicated by Stefan Schwede

Abstract. To an artin algebra with radical square zero, a regular
algebra in the sense of von Neumann and a family of invertible bi-
modules over the regular algebra are associated. These data describe
completely, as a triangulated category, the singularity category of the
artin algebra. A criterion on the Hom-finiteness of the singularity
category is given in terms of the valued quiver of the artin algebra.
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1. Introduction

Let R be a commutative artinian ring. All algebras, categories and functors
are R-linear. We recall that an R-linear category is Hom-finite provided that
all the Hom sets are finitely generated R-modules.
Let A be an artin R-algebra. Denote by A-mod the category of finitely gener-
ated left A-modules, and by Db(A-mod) the bounded derived category. Follow-
ing [14], the singularity category Dsg(A) is the quotient triangulated category
of Db(A-mod) with respect to the full subcategory formed by perfect com-
plexes; see also [3, 12, 10, 15, 2] and [13]. Here, we recall that a complex in
Db(A-mod) is perfect provided that it is isomorphic to a bounded complex
consisting of finitely generated projective modules.
The singularity category measures the homological singularity of an algebra
in the sense that an algebra A has finite global dimension if and only if its
singularity categoryDsg(A) vanishes. In the meantime, the singularity category
captures the stable homological features of an algebra ([3]). A fundamental
result of Buchweitz and Happel states that for a Gorenstein algebra A, the
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singularity category Dsg(A) is triangle equivalent to the stable category of
(maximal) Cohen-Macaulay A-modules ([3, 10]). This implies in particular
that the singularity category of a Gorenstein algebra is Hom-finite and has
Auslander-Reiten triangles. We point out that Buchweitz and Happel’s result
specializes to Rickard’s result ([15]) on self-injective algebras. However, for
non-Gorenstein algebras, not much is known about their singularity categories
([4]).
Our aim is to describe the singularity category of an algebra with radical square
zero. We point out that such algebras are usually non-Gorenstein ([5]). In what
follows, we describe the results in this paper.
We denote by r the Jacobson radical of A. The algebra A is said to be with
radical square zero provided that r2 = 0. In this case, r has a natural A/r-A/r-
bimodule structure. Set r⊗0 = A/r and r⊗i+1 = r ⊗A/r (r

⊗i) for i ≥ 0. Then

there are obvious algebra homomorphisms EndA/r(r
⊗i) → EndA/r(r

⊗i+1) in-
duced by r⊗A/r−. We denote by Γ(A) the direct limit of this chain of algebra
homomorphisms. It is a regular algebra ([7, 8]) in the sense of von Neumann.
We call Γ(A) the associated regular algebra of A. In most cases, the algebra
Γ(A) is not semisimple.
For n ∈ Z and i ≥ max{0, n}, HomA/r(r

⊗i, r⊗i−n) has a natural

EndA/r(r
⊗i−n)-EndA/r(r

⊗i)-bimodule structure. Set Kn(A) to be the direct

limit of the chain of maps HomA/r(r
⊗i, r⊗i−n) → HomA/r(r

⊗i+1, r⊗i+1−n),
which are induced by r ⊗A/r −. Then Kn(A) is naturally a Γ(A)-Γ(A)-

bimodule for each n ∈ Z. Observe that K0(A) = Γ(A)Γ(A)Γ(A) as bimod-
ules, and that composition of maps induces Γ(A)-Γ(A)-bimodule morphisms
φn,m : Kn(A) ⊗Γ(A) K

m(A) → Kn+m(A) for all n,m ∈ Z. These bimodules
Kn(A) are called the associated bimodules of A.
Recall that for an algebra Γ, a Γ-Γ-bimodule K is invertible provided that the
functor K⊗Γ− induces an auto-equivalence on the category of left Γ-modules.

Theorem A. Let A be an artin algebra with radical square zero. Use the above
notation. Then the associated Γ(A)-Γ(A)-bimodules Kn(A) are invertible and
the maps φn,m are isomorphisms of bimodules.

Since the algebra Γ(A) is regular, the category proj Γ(A) of finitely generated
right projective Γ(A)-modules is a semisimple abelian category. The invertible
bimodule K1(A) induces an auto-equivalence

ΣA = −⊗Γ(A) K
1(A) : proj Γ(A) −→ proj Γ(A).

We observe that the category proj Γ(A) has a unique triangulated structure
with ΣA its shift functor; see Lemma 3.4. This unique triangulated category is
denoted by (proj Γ(A),ΣA).
The following result describes the singularity category of an artin algebra with
radical square zero, which is based on a result by Keller and Vossieck ([12]).
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Theorem B. Let A be an artin algebra with radical square zero. Use the above
notation. Then we have a triangle equivalence

Dsg(A) ≃ (proj Γ(A),ΣA).

We are interested in the Hom-finiteness of singularity categories. For this, we
recall the notion of valued quiver of an artin algebraA. Choose a complete set of
representatives of pairwise non-isomorphic simple A-modules {S1, S2, · · · , Sn}.
Set ∆i = EndA(Si); they are division algebras. Observe that Ext1A(Si, Sj)
has a natural ∆j-∆i-bimodule structure. The valued quiver QA of A is de-
fined as follows: its vertex set is {S1, S2, · · · , Sn}, here we identify each
simple module Si with its isoclass; there is an arrow from Si to Sj when-

ever Ext1A(Si, Sj) 6= 0, in which case the arrow is endowed with a valuation

(dim∆j
Ext1A(Si, Sj), dim∆i

op Ext1A(Si, Sj)); here ∆i
op denotes the opposite

algebra of ∆i. We say that the valuation of QA is trivial provided that all
the valuations are (1, 1). Recall that a vertex in a valued quiver is a source
(resp. sink) provided that there is no arrows ending (resp. starting) at it. For a
valued quiver, to adjoin a (new) source (resp. sink) is to add a vertex together
with some valued arrows starting (resp. ending) at this vertex. For details, we
refer to [1, III.1].
The following result characterizes when the singularity category is Hom-finite,
using the valued quivers.

Theorem C. Let A be an artin algebra with radical square zero. Then the
following statements are equivalent:

(1) the singularity category Dsg(A) is Hom-finite;
(2) the associated regular algebra Γ(A) is semisimple;
(3) the valued quiver QA is obtained from a disjoint union of oriented cycles

with the trivial valuation by repeatedly adjoining sources or sinks.

The paper is structured as follows. In Section 2, we collect some facts on
singularity categories and recall a basic result of Keller and Vossieck. We prove
Theorem A and B in Section 3, where an explicit example is presented. In
Section 4, we prove that one-point extensions and coextensions of algebras
preserve their singularity categories. We introduce the notion of cyclicization
of an algebra, which is used in the proof of Theorem C in Section 5.
For artin algebras, we refer to [1]. For triangulated categories, we refer to [11]
and [9].

2. Preliminaries

In this section, we collect some facts on singularity categories of artin algebras.
We recall a basic result due to Keller and Vossieck ([12]), which is applied to
Ω∞-finite algebras.
Let A be an artin algebra over a commutative artinian ring R. Recall that
A-mod denotes the category of finitely generated left A-modules. We denote

Documenta Mathematica 16 (2011) 921–936



924 Xiao-Wu Chen

by A-proj the full subcategory formed by projective modules, and by A-mod
the stable category of A-mod modulo projective modules ([1, p.104]). The
morphism space HomA(M,N) of two modules M and N in A-mod is defined
to be HomA(M,N)/p(M,N), where p(M,N) denotes the R-submodule formed
by morphisms that factor through projective modules.
Recall that for an A-module M , its syzygy Ω(M) is the kernel of its projective
cover P → M . This gives rise to the syzygy functor Ω: A-mod → A-mod
([1, p.124]). Set Ω0(M) = M and Ωi+1(M) = Ωi(Ω(M)) for i ≥ 0. Denote
by Ωi(A-mod) the full subcategory of A-mod formed by modules of the form
P ⊕ Ωi(M) for some module M and projective module P . Then an A-module
X belongs to Ωi(A-mod) if and only if there is an exact sequence 0 → X →
P 1−i → · · · → P−1 → P 0 with each P j projective.
Recall that Db(A-mod) denotes the bounded derived category of A-mod, whose
shift functor is denoted by [1]. For n ∈ Z, [n] denotes the n-th power of [1]. The
module categoryA-mod is viewed as a full subcategory ofDb(A-mod) by identi-
fying an A-module with the corresponding stalk complex concentrated at degree
zero ([11, Proposition I.4.3]). Recall that a complex in Db(A-mod) is perfect
provided that it is isomorphic to a bounded complex consisting of projective
modules; these complexes form a full triangulated subcategory perf(A). Re-
call that, via an obvious functor, perf(A) is triangle equivalent to the bounded
homotopy category Kb(A-proj); compare [3, 1.1-1.2].
Following [14], we call the quotient triangulated category

Dsg(A) = Db(A-mod)/perf(A)

the singularity category of A. Denote by q : Db(A-mod) → Dsg(A) the quotient
functor.
The following two results are known; compare [14, Lemma 1.11] and [3, Lemma
2.2.2].

Lemma 2.1. Let X• be a complex in Dsg(A) and n0 > 0. Then for any n large
enough, there exists a module M in Ωn0(A-mod) such that X• ≃ q(M)[n].

Proof. Take a quasi-isomorphism P • → X• with P • a bounded above complex
of projective modules ([11, Lemma I.4.6]). Take n ≥ n0 such that Hi(X•) = 0
for all i < n0 −n, where Hi(X•) denotes the i-th cohomology of X•. Consider
the good truncation σ≥−nP • = · · · → 0 → M → P 1−n → P 2−n → · · · of
P •, which is quasi-isomorphic to P •. Then the cone of the obvious chain map
σ≥−nP • → M [n] is perfect, which becomes an isomorphism in Dsg(A). This
shows that X• ≃ q(M)[n]. We observe that M lies in Ωn0(A-mod). �

Lemma 2.2. Let 0 → M → P 1−n → · · · → P 0 → N → 0 be an exact sequence
with each P i projective. Then we have an isomorphism q(N) ≃ q(M)[n] in
Dsg(A). In particular, for an A-module M , we have a natural isomorphism
q(Ωn(M)) ≃ q(M)[−n].

Proof. The stalk complex N is quasi-isomorphic to · · · → 0 → M → P 1−n →
· · · → P 0 → 0 → · · · . This gives rise to a morphism N →M [n] in Db(A-mod),
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whose cone is · · · → 0 → P 1−n → · · · → P 0 → 0 → · · · with P 0 at degree
−1; it is perfect. Then the morphism N → M [n] becomes an isomorphism in
Dsg(A). �

Consider the composite q′ : A-mod →֒ Db(A-mod)
q
→ Dsg(A); it vanishes on

projective modules. Then it induces uniquely a functor A-mod → Dsg(A),
which is still denoted by q′. Then Lemma 2.2 yields, for each n ≥ 0, the
following commutative diagram

A-mod

q′

��

Ωn

// A-mod

q′

��

Dsg(A)
[−n]

// Dsg(A).

We refer to [3, Lemma 2.2.2] for a similar statement.
The functor q′ induces a natural map

Φ0 : HomA(M,N) → HomDsg(A)(q(M), q(N))

for any modules M,N . Let n ≥ 1. Lemma 2.2 yields a natural isomorphism
θM : q(M)

∼
−→ q(Ωn(M))[n]. Then we have a map

Φn : HomA(Ω
n(M),Ωn(N)) → HomDsg(A)(q(M), q(N))

given by Φn(f) = (θnN )−1 ◦ (Φ0(f)[n]) ◦ θnM .
Consider the chain of maps

HomA(Ω
n(M),Ωn(N)) → HomA(Ω

n+1(M),Ωn+1(N))

induced by the syzygy functor. It is routine to verify that Φn are compatible
with this chain of maps. Then we have an induced map

Φ: lim
−→

HomA(Ω
n(M),Ωn(N)) −→ HomDsg(A)(q(M), q(N)).

We recall the following basic result.

Proposition 2.3. (Keller-Vossieck) Let M,N be A-modules as above. Then
the map Φ is an isomorphism.

Proof. The statement follows from [12, Exemple 2.3]. We refer to [2, Corollary
3.9(1)] for a detailed proof. �

Recall that an additive category A is idempotent split provided that each idem-

potent e : X → X splits, that is, it admits a factorization X
u
→ Y

v
→ X with

u ◦ v = IdY . For example, a Krull-Schmidt category is idempotent split ([6,
Appendix A]). In particular, for an artin algebra A, the stable category A-mod
is idempotent split.

Corollary 2.4. The singularity category Dsg(A) of an artin algebra A is
idempotent split.
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Proof. By Lemma 2.1 it suffices to show that for each moduleM , an idempotent
e : q(M) → q(M) splits in Dsg(A). The above proposition implies that for
a large n, there is an idempotent en : Ωn(M) → Ωn(M) in A-mod which is

mapped by Φ to e. The idempotent en splits as Ωn(M)
u
→ Y

v
→ Ωn(M) with

u ◦ v = IdY in A-mod. Then the idempotent e splits as q(M)
(q(u)[n])◦θn

M−→

q(Y )[n]
(θn

M )−1◦(q(v)[n])
−→ q(M). �

Let A be an additive category. For a subcategory C, denote by add C the full
subcategory of A formed by direct summands of finite direct sums of objects
in C. For any algebra Γ, denote by proj Γ the category of finitely generated
right projective Γ-modules. We observe that proj Γ = add ΓΓ.
An artin algebra A is called Ω∞-finite provided that there exists a module E
and n ≥ 0 such that Ωn(A-mod) ⊆ add (A ⊕ E). In this case, we call E an
Ω∞-generator of A.

Proposition 2.5. Let A be an Ω∞-finite algebra with an Ω∞-generator E.
Then we have Dsg(A) = add q(E). Consequently, we have an equivalence of
categories

Dsg(A) ≃ proj EndDsg(A)(q(E)),

which sends q(E) to EndDsg(A)(q(E)).

Proof. Observe that Ωn+1(A-mod) ⊆ Ωn(A-mod). Then we may assume that
add (A ⊕ E) ⊇ add Ωn0(A-mod) = add Ωn0+1(A-mod) = · · · for n0 large
enough.
For the first statement, it suffices to show that each object X• in Dsg(A)
belongs to add q(E). By Lemma 2.1, X• ≃ q(M)[n1] for a module M ∈
Ωn0(A-mod) and n1 > 0. Since add Ωn0(A-mod) = add Ωn0+n1(A-mod), we
may assume thatM⊕N ∈ Ωn0+n1(A-mod) for some module N . Take an exact
sequence 0 →M ⊕N → P 1−n1 → · · · → P 0 → L→ 0 with each P i projective
and L ∈ Ωn0(A-mod). By Lemma 2.2, q(L) ≃ q(M ⊕N)[n1] and then X• is a
direct summand of q(L). Observing that L ∈ add (A ⊕ E), we are done with
the first statement.
The second statement follows from the projectivization; see [1, Proposition
II.2.1]. The functor is given by HomDsg(A)(q(E),−). We point out that Corol-
lary 2.4 is needed here. �

3. Algebras with radical square zero

In this section, we study the singularity category of an algebra with radical
square zero, and prove Theorem A and B. An explicit example is given at the
end.
Let A be an artin algebra. Denote by r the Jacobson radical of A. The algebra
A is said to be with radical square zero provided that r2 = 0. In this case, r
has an A/r-A/r-bimodule structure, which is induced from the multiplication
of A.
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Denote by A-ssmod the full subcategory of A-mod formed by semisimple mod-
ules. We observe that r⊗A/rS = 0 for a simple projective module S. Then the
functor r ⊗A/r − : A-ssmod → A-ssmod is well defined. We observe that the
syzygy functor Ω sends semisimple modules to semisimple modules, and then
we have the restricted functor Ω: A-ssmod → A-ssmod.
The following result is implicitly contained in the proof of [1, Lemma X.2.1].

Lemma 3.1. There is a natural isomorphism Ω ≃ r ⊗A/r − of functors on
A-ssmod.

Proof. Let X be a semisimple A-module. Take a projective cover P → X .
Tensoring P with the natural exact sequence of A-A-bimodules 0 → r → A→
A/r → 0 yields Ω(X) ≃ r ⊗A P . Using isomorphisms r ⊗A P ≃ r ⊗A/r P/rP
and P/rP ≃ X , we get an isomorphism Ω(X) ≃ r ⊗A/r X . It is routine to
verify that this isomorphism is natural in X . �

Recall that an algebra Γ is regular in the sense of von Neumann provided that
for each element a there exists a′ such that aa′a = a. For example, a semisimple
algebra is regular. Then a direct limit of semisimple algebras is regular. For
details, we refer to [7, Theorem and Definition 11.24].
Recall that for an artin algebra A with radical square zero, there is a chain of
algebra homomorphisms EndA/r(r

⊗i) → EndA/r(r
⊗i+1) induced by r⊗A/r −.

Here, r⊗0 = A/r and r⊗i+1 = r ⊗A/r (r
⊗i). We set Γ(A) to be the direct

limit of this chain. Since each algebra EndA/r(r
⊗i) is semisimple, the algebra

Γ(A) is regular. It is called the associated regular algebra of A. We refer to [8,
19.26B, Example] for a related construction.
We recall the associated Γ(A)-Γ(A)-bimodules Kn(A) of A, n ∈ Z. For
i ≥ max{0, n}, HomA/r(r

⊗i, r⊗i−n) has a natural EndA/r(r
⊗i−n)-EndA/r(r

⊗i)-

bimodule structure. Consider a chain of maps HomA/r(r
⊗i, r⊗i−n) →

HomA/r(r
⊗i+1, r⊗i+1−n), which are induced by r⊗A/r−, and define Kn(A) to

be its direct limit. Then Kn(A) is naturally a Γ(A)-Γ(A)-bimodule for each
n ∈ Z. Observe that K0(A) = Γ(A)Γ(A)Γ(A) as Γ(A)-Γ(A)-bimodules.

Proposition 3.2. Let A be an artin algebra with radical square zero. Then
there is a natural isomorphism

Kn(A) ≃ HomDsg(A)(q(A/r), q(A/r)[n])

for each n ∈ Z.

Proof. Consider the case n ≤ 0 first. In this case, by Lemmas 2.2 and 3.1
we have q(A/r)[n] ≃ q(Ω−n(A/r)) ≃ q(r⊗−n). Then Proposition 2.3 yields an
isomorphism HomDsg(A)(q(A/r), q(A/r)[n]) ≃ lim

−→
HomA(Ω

i(A/r),Ωi(r⊗−n)).

By Lemma 3.1 again we have Ωi(A/r) ≃ r⊗i and Ωi(r⊗−n) = r⊗i−n. Then
we have a surjective map ψ : Kn(A) → HomDsg(A)(q(A/r), q(A/r)[n]). On the

other hand, every morphism f : r⊗i → r⊗i−n that is zero in A-mod necessarily
factors through a semisimple projective module. However, the functor r⊗A/r−
vanishes on semisimple projective modules. Then r⊗A/r f is zero. This forces
that ψ is injective. We are done in this case.
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For the case n > 0, we observe that HomDsg(A)(q(A/r), q(A/r)[n]) is isomorphic
to HomDsg(A)(q(A/r)[−n], q(A/r)), and by the same argument as above, it is

isomorphic to lim
−→

HomA/r(r
⊗i+n, r⊗i). Then we get a surjective mapKn(A) →

HomDsg(A)(q(A/r), q(A/r)[n]). Similarly as above, we have that this map is
injective. �

Remark 3.3. In the case n = 0, the above isomorphism is an isomorphism
K0(A) = Γ(A) ≃ EndDsg(A)(q(A/r)) of algebras. Then for an arbitrary n, the
above isomorphism becomes an isomorphism of Γ(A)-Γ(A)-bimodules.

Recall that an abelian category A is semisimple provided that each short exact
sequence splits. For example, for a regular algebra Γ, the category proj Γ of
finitely generated right projective Γ-modules is a semisimple abelian category.
Here, we use the fact that all finitely presented Γ-modules are projective; see
[7, Theorem and Definition 11.24(a)].
The following observation is well known.

Lemma 3.4. Let A be a semisimple abelian category, and let Σ be an auto-
equivalence on A. Then there is a unique triangulated structure on A with Σ
the shift functor.

The obtained triangulated category in this lemma will be denoted by (A,Σ).

Proof. We use the fact that each morphism in A is isomorphic to a direct sum of

morphisms of the forms K → 0, I
IdI→ I and 0 → C. Then all possible triangles

are a direct sum of the following trivial triangles K → 0 → Σ(K)
IdΣ(K)
→ Σ(K),

I
IdI→ I → 0 → Σ(I) and 0 → C

IdC→ C → Σ(0). �

Proposition 3.5. Let A be an artin algebra with radical square zero, and let
Γ(A) be its associated regular algebra. Then there is a triangle equivalence

Ψ: Dsg(A) ≃ (proj Γ(A),Σ)

for some auto-equivalence Σ on proj Γ(A), which sends q(A/r) to Γ(A).

Proof. We observe that for any A-module M , its syzygy Ω(M) is semisimple.
Hence we have Ω1(A-mod) ⊆ add (A ⊕ A/r). We apply Proposition 2.5 to
obtain an equivalence of categories Dsg(A) ≃ proj EndDsg(A)(q(A/r)). By
Proposition 3.2 this yields an equivalence of categories Dsg(A) ≃ proj Γ(A).
By transport of structures, the shift functor [1] on Dsg(A) corresponds to an
auto-equivalence Σ on proj Γ(A), and then proj Γ(A) becomes a triangulated
category. However, by Lemma 3.4 the semisimple abelian category proj Γ(A)
has a unique triangulated structure with Σ the shift functor. Then this struc-
ture necessarily coincides with the transported one. Then we are done. �

We are interested in the auto-equivalence Σ above. The following result char-
acterizes it using the bimodules Kn(A).

Lemma 3.6. Use the notation as above. Then for each n ∈ Z, the auto-
equivalence Σn is isomorphic to −⊗Γ(A) K

n(A) : proj Γ(A) → proj Γ(A).
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Proof. Recall that the above equivalence Ψ is given by HomDsg(A)(q(A/r),−),
which sends q(A/r) to Γ(A). The auto-equivalence Σn corresponds, via Ψ, to

[n] onDsg(A). Then by Proposition 3.2 we have an isomorphism φ : Kn(A)
∼
−→

Σn(Γ(A)) of right Γ(A)-modules. Recall that Σn(Γ(A)) has a natural Γ(A)-
Γ(A)-bimodule structure such that Σn is isomorphic to − ⊗Γ(A) Σ

n(Γ(A)).
Thanks to Remark 3.3, the isomorphism φ is an isomorphism of bimodules.
This proves the lemma. �

Recall that for an algebra Γ, a Γ-Γ-bimodule K is invertible provided that the
functor −⊗ΓK induces an auto-equivalence on the category of right Γ-modules.
For details, we refer to [7, Definition and Proposition 12.13].
We recall that for an artin algebra A with radical square zero, the associated
Γ(A)-Γ(A)-bimodules Kn(A) are defined to be lim

−→
HomA/r(r

⊗i, r⊗i−n), where

i ≥ max{0, n}. Then composition of maps between the A/r-modules r⊗j yields
morphisms

φn,m : Kn(A)⊗Γ(A) K
m(A) −→ Kn+m(A)

of Γ(A)-Γ(A)-bimodules, for all n,m ∈ Z. More precisely, let f ∈ Kn(A) and
g ∈ Km(A) be represented by f ′ : r⊗j−m → r⊗j−m−n and g′ : r⊗j → r⊗j−m for
some large j, respectively. Then φn,m(f ⊗ g) is represented by the composite
f ′ ◦ g′.
The following result is Theorem A.

Theorem 3.7. Let A be an artin algebra with radical square zero. Use the
above notation. Then for all n,m ∈ Z, the Γ(A)-Γ(A)-bimodules Kn(A) are
invertible and the morphisms φn,m are isomorphisms.

Proof. By Lemma 3.6 the functor − ⊗Γ(A) K
n(A) : proj Γ(A) → proj Γ(A)

is an auto-equivalence for each n ∈ Z. This functor extends naturally to an
auto-equivalence on the category of all right Γ(A)-modules. Then Kn(A) is
an invertible bimodule. The second statement follows from Lemma 3.6 and
the fact that ΣmΣn is isomorphic to Σn+m. Here, we use [7, Proposition 12.9]
implicitly. �

We now have Theorem B. Denote the functor − ⊗Γ(A) K
1(A) : proj Γ(A) →

proj Γ(A) by ΣA.

Theorem 3.8. Let A be an artin algebra with radical square zero. Use the
above notation. Then we have a triangle equivalence

Dsg(A) ≃ (proj Γ(A),ΣA),

which sends q(A/r) to Γ(A).

Proof. It follows from Proposition 3.5 and Lemma 3.6. �

Let A be an artin algebra with radical square zero. For each n ≥ 1, we consider
the artin algebra Gn = A/r ⊕ r⊗n, which is the trivial extension of the A/r-
A/r-bimodule r⊗n ([1, p.78]). All these algebras Gn have radical square zero.
The following observation seems to be of independent interest.
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Proposition 3.9. Use the above notation. Then for each n ≥ 1, we have a
triangle equivalence

Dsg(G
n) ≃ (proj Γ(A),Σn

A).

In particular, we have a triangle equivalence Dsg(A) ≃ Dsg(G
1).

Proof. Write Gn = A′. Then from the very definition, we have a natural
identification Γ(A′) = Γ(A). Moreover, the Γ(A′)-Γ(A′)-bimodule K1(A′) cor-
responds to the Γ(A)-Γ(A)-bimodule Kn(A). Then by Lemma 3.6 ΣA′ corre-
sponds to Σn

A. Then the result follows from Theorem 3.8 immediately. �

Remark 3.10. We point out that for n ≥ 2, Dsg(G
n) might not be triangle

equivalent to Dsg(A), although the underlying categories are equivalent.

We conclude this section with an example.

Example 3.11. Let k be a field and let n ≥ 1. Consider the algebra A =
k[x1, x2, · · · , xn]/(xixj , 1 ≤ i, j ≤ n), which is with radical square zero. We
identify A/r with k, and r with the n-dimensional k-space V = kx1 ⊕ kx2 ⊕
· · ·⊕kxn. Consequently, for each i ≥ 0, the algebra EndA/r(r

⊗i) is isomorphic

to Endk(V
⊗i), which is identified with the ni×ni total matrix algebra Mni(k).

Then the associated regular algebra Γ(A) is isomorphic to the direct limit of the
following chain of algebra embeddings

k −→ Mn(k) −→Mn2(k) −→Mn3(k) −→ · · ·

Here, for each algebra B, B → Mn(B) is the algebra embedding sending b to
bIn with In the n× n identity matrix.
We observe that Γ(A) is a simple algebra. We point out that this construction
is classical; see [8, 19.26 B, Example]. The algebra A is non-noetherian for
n ≥ 2, while for n = 1, it is isomorphic to k.
Let 1 ≤ r, s ≤ n. Define Ers : V → V to be the linear map such that Ers(xi) =
δi,sxr, where δ is the Kronecker symbol. Consider, for all i ≥ 0, the linear
maps − ⊗k Ers : Endk(V

⊗i) → Endk(V
⊗i+1). Taking the limit, we have the

induced linear map − ⊗k Ers : Γ(A) → Γ(A) for each pair of r, s. Then we
have an isomorphism σ : Mn(Γ(A)) → Γ(A) of algebras, which sends an n× n
matrix (aij) to

∑

1≤i,j≤n aij ⊗k Eij .

The associated Γ(A)-Γ(A)-bimodule K1(A) is described as follows. As a k-
space, K1(A) = Γ(A) ⊕ Γ(A) ⊕ · · · ⊕ Γ(A) with n copies of Γ(A). The left
action is given by a(a1, a2, · · · , an) = (aa1, aa2, · · · , aan), while the right action
is given by (a1, a2, · · · , an)a = (a1, a2, · · · , an)σ

−1(a).
We remark that the regular algebra Γ(A) is related to a quotient abelian category
studied in [16], which might relate to the singularity category Dsg(A) via a
version of Koszul duality.

4. One-point (co)extensions and cyclicizations of algebras

In this section, we prove that one-point extensions and coextensions of algebras
preserve their singularity categories. We then introduce the notion of cycliciza-
tion of an algebra, which is a repeated operation to remove sources and sinks
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on the valued quiver. The obtained results will be used in the proof of Theorem
C.
Let A be an artin algebra. Let D be a simple artin algebra, and let AMD be an
A-D-bimodule, on which R acts centrally. The one-point extension of A by M

is the upper triangular matrix algebra A[M ] =

(

A M
0 D

)

. A left A[M ]-module

is denoted by a column vector

(

X
V

)

φ

, where X and V are a left A-module and

D-module, respectively, and that φ : M⊗DV → X is a morphism of A-modules.
We sometimes suppress the morphism φ, when it is clearly understood. For
details, we refer to [1, III.2].
Recall from [1, III.1] the notion of valued quiver QA for an artin algebra A.
We observe that for the unique simple D-module S, the corresponding A[M ]-

module

(

0
S

)

is simple injective, which corresponds to a source in the valued

quiver QA[M ] of the one-point extension A[M ]. Indeed, this valued quiver is
obtained from QA by adding this source together with some valued arrows
starting at it.
One-point extensions of algebras preserve singularity categories. Observe the
natural exact embedding i : A-mod → A[M ]-mod, which sends AX to i(X) =
(

X
0

)

.

Proposition 4.1. Let A[M ] be the one-point extension of A as above. Then
the exact embedding i : A-mod → A[M ]-mod induces a triangle equivalence

Dsg(A) ≃ Dsg(A[M ]).

Proof. The exact functor i extends naturally to a triangle functor
i∗ : D

b(A-mod) → Db(A[M ]-mod). We observe that i(A) is projective,
and then i∗ sends perfect complexes to perfect complexes. Then it induces a
triangle functor ī∗ : Dsg(A) → Dsg(A[M ]). We claim that ī∗ is an equivalence.
For the claim, recall that the functor i admits a left adjoint j : A[M ]-mod →

A-mod which sends

(

X
V

)

φ

to X/Imφ. Observe that the corresponding counit

ji
∼
−→ IdA-mod is an isomorphism. One checks that the cohomological di-

mension ([11, p.57]) of the functor j is at most one. In particular, the
left derived functor Lbj : Db(A[M ]-mod) → Db(A-mod) is defined. More-
over, we have the adjoint pair (Lbj, i∗), and that the counit is an isomor-
phism. Since the functor j sends projective modules to projective modules,
the functor Lbj preserves perfect complexes. Then it induces a triangle func-
tor Lbj̄ : Dsg(A[M ]) → Dsg(A). Moreover, we have the induced adjoint pair

(Lbj̄, ī∗), whose counit (L
bj̄)ī∗

∼
−→ IdDsg(A) is an isomorphism; see [14, Lemma

1.2]. In particular, the functor ī∗ is fully faithful.
It remains to show the denseness of ī∗. We now view the essential image Im ī∗
of ī∗ as a full triangulated subcategory of Dsg(A[M ]). It suffices to show that
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for each A[M ]-module

(

X
V

)

, its image in Dsg(A[M ]) lies in Im ī∗; see Lemma

2.1. Observe that Ω(

(

0
V

)

) lies in Im i, and then by Lemma 2.2, q(

(

0
V

)

) lies in

Im ī∗. The following natural exact sequence induces a triangle in Dsg(A[M ])

0 −→ i(X) −→

(

X
V

)

−→

(

0
V

)

−→ 0.

This triangle implies that q(

(

X
V

)

) lies in Im ī∗. Then we are done. �

Let D be a simple artin algebra, and let DNA be a D-A-bimodule, on which
R acts centrally. The one-point coextension of A by N is the upper triangular

matrix algebra [N ]A =

(

D N
0 A

)

. A left [N ]A-module is written as

(

V
X

)

φ

,

where V and X are a left D-module and A-module, respectively, and that
φ : M ⊗A X → V is a morphism of D-modules. The valued quiver Q[N ]A is
obtained from QA by adding a sink together with some valued arrows ending

at it, where the sink corresponds to the simple projective [N ]A-module

(

S
0

)

for a simple D-module S.
For the one-point coextension [N ]A, we have an exact embedding i : A-mod →

[N ]A-mod, which sends AX to i(X) =

(

0
X

)

.

The following result is similar to Proposition 4.1, while the proof is simpler.
This result is closely related to [4, Theorem 4.1(1)].

Proposition 4.2. Let [N ]A be the one-point coextension as above. Then the
embedding i : A-mod → [N ]A-mod induces a triangle equivalence

Dsg(A) ≃ Dsg([N ]A).

Proof. We observe that i(A) has projective dimension at most one. Then the
obviously induced functor i∗ : D

b(A-mod) → Db([N ]A-mod) preserves perfect
complexes, and it induces the required functor ī∗ : Dsg(A) → Dsg([N ]A).
The functor i admits an exact left adjoint j : [N ]A-mod → A-mod, which

sends

(

V
X

)

to X ; moreover, j preserves projective modules. Then it induces a

triangle functor j̄∗ : Dsg([N ]A) → Dsg(A), which is left adjoint to ī∗. Then as
in the proof of Proposition 4.1, we have that ī∗ is fully faithful. The denseness
of ī∗ follows from the natural exact sequence

0 −→

(

V
0

)

−→

(

V
X

)

−→ i(X) −→ 0,

for each [N ]A-module

(

V
X

)

, and that the [N ]A-module

(

V
0

)

is projective. We

omit the details. �

Documenta Mathematica 16 (2011) 921–936



The Singularity Category of an . . . 933

We use the above two propositions to reduce the study of the singularity cate-
gory of arbitrary artin algebras to cyclic-like ones.
Let A be an artin algebra. Consider the valued quiver QA. A vertex e is
called cyclic provided that there is an oriented cycle containing it, and the
corresponding simple A-module is called cyclic. More generally, a vertex e is
called cyclic-like provided that there is a path through e, which starts with a
cyclic vertex and ends at a cyclic vertex, while the corresponding simple A-
module is called cyclic-like. An artin algebra A is called cyclic-like provided
that its valued quiver QA is cyclic-like. This is equivalent to that A has neither
simple projective nor simple injective modules.
For an artin algebra A, its cyclicization is an artin algebra Ac which is either
simple or cyclic-like, such that there is a sequence Ac = A0, A1, · · · , Ar = A
satisfying that each Ai+1 is a one-point (co)extension of Ai.
The following is an immediate consequence of the definition.

Lemma 4.3. Let A be an artin algebra with its cyclicization Ac. Then we have
a triangle equivalence

Dsg(Ac) ≃ Dsg(A).

Proof. Apply Propositions 4.1 and 4.2, repeatedly. �

The following result seems to be well known.

Proposition 4.4. The following statements hold.

(1) Each artin algebra has a cyclicization.
(2) Let Ac and Ac′ be two cyclicizations of A. Then if Ac is simple, so is

Ac′ . Otherwise, we have an isomorphism Ac ≃ Ac′ of algebras.

Proof. (1) It follows from the well-known fact that the existence of a simple
injective (resp. projective) module of A implies that A is a one-point extension
(resp. coextension) of A′. Moreover, the valued quiver QA′ of A′ is obtained
from the one of A by deleting the relevant source (resp. sink).
(2) The first statement follows from the observation that passing from A to A′

in (1), the set of cyclic-like vertices stays the same.
For the isomorphism of algebras, it suffices to observe that Ac-mod is equivalent
to the smallest Serre subcategory ([7, Chapter 15]) of A-mod containing the
cyclic-like simple A-modules S; moreover, the multiplicity of PAc

(S) in the
indecomposable decomposition of Ac equals the multiplicity of P (S) in the one
of A. Here, P (S) and PAc

(S) denote the projective cover of S as an A-module
and Ac-module, respectively. �

5. Hom-finiteness of singularity categories

In this section, we study the Hom-finiteness of the singularity category of an
artin algebra with radical square zero, and prove Theorem C.
Throughout, A is an artin R-algebra such that its Jacobson radical r satisfies
r2 = 0. Recall that in this case, the syzygy Ω(X) of any A-module X is
semisimple.
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Lemma 5.1. Suppose that A is cyclic-like. Then we have

(1) each simple A-module has infinite projective dimension;
(2) for each i ≥ 0, the algebra homomorphism EndA/r(r

⊗i) →

EndA/r(r
⊗i+1) induced by r⊗A/r − is injective.

Proof. (1) Recall that a cyclic-like algebra does not have simple projective
modules. Then the statement follows from the observation that for a simple
module S with finite projective dimension, we have that proj.dim Ω(S) =
proj.dim S − 1.
(2) We recall that A-ssmod is the full subcategory of A-mod consisting of
semisimple modules. Then by (1), A-ssmod is naturally equivalent to A-ssmod,
and the syzygy functor Ω: A-ssmod → A-ssmod is faithful. Now the result
follows from Lemma 3.1. �

Recall that the singularity category Dsg(A) is naturally R-linear. We are inter-
ested in the problem when it is Hom-finite, that is, all the Hom sets are finitely
generated R-modules.

Theorem 5.2. Let A be an artin algebra with radical square zero. Then the
following statements are equivalent:

(1) the singularity category Dsg(A) is Hom-finite;
(2) the associated regular algebra Γ(A) is semisimple;
(3) the cyclicization Ac of A is either simple or isomorphic to a finite

product of self-injective algebras.

We point out that the cyclicization Ac of A is necessarily with radical square
zero. Recall that an indecomposable non-simple artin algebra with radical
square zero is self-injective if and only if its valued quiver is an oriented cycle
with the trivial valuation; see [1, Proposition IV.2.16] or the proof of [5, Corol-
lary 1.3]. Then the statement (3) above is equivalent to the corresponding one
in Theorem C.

Proof. Recall from Proposition 3.2 the isomorphism Γ(A) ≃
EndDsg(A)(q(A/r)). Then we have the implication “(1)⇒(2)”, since an
artin regular algebra is necessarily semisimple.
For “(2)⇒(1)”, consider the cyclicization Ac of A, whose Jacobson radical is
denoted by rc. Then by Lemma 4.3 we have an equivalence Dsg(Ac) ≃ Dsg(A).
Applying Proposition 3.5 we have an equivalence proj Γ(Ac) ≃ proj Γ(A), that
is, Γ(Ac) and Γ(A) are Morita equivalent. Then Γ(Ac) is also semisimple.
Recall that Γ(Ac) = lim

−→
EndAc/rc(r

⊗i
c ). By Lemma 5.1 all the canonical maps

EndAc/rc(r
⊗i
c ) → Γ(Ac) are injective. Recall that for a semisimple algebra, the

number of pairwise orthogonal idempotents is bounded. Then the R-lengths of
the algebras EndAc/rc(r

⊗i
c ) are uniformly bounded. Consequently, the algebra

Γ(A) is an artin R-algebra. By Proposition 3.5 the singularity categoryDsg(Ac)
is Hom-finite. Then we are done by Lemma 4.3.
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Recall from [15, Theorem 2.1] that the singularity category of a self-injective
algebra is equivalent to its stable category. In particular, it is Hom-finite. Then
the implication “(3)⇒(1)” follows from Lemma 4.3.
It remains to show “(1)⇒(3)”. Without loss of generality, we assume that the
algebra A is cyclic-like such that Dsg(A) is Hom-finite. We will show that A is
self-injective.
We claim that the sysygy Ω(S) of any cyclic simple A-module S is simple.
Then there is only one arrow starting at S in QA, which is valued by (1, b) for
some natural number b. Since QA is cyclic-like, this forces that QA is a disjoint
union of oriented cycles. In each oriented cycle, every arrow has valuation
(1, bi) for some bi. Then the symmetrization condition implies that all these
bi’s are necessarily one; compare the proof of [1, Proposition VIII. 6.4]. As we
point out above, this implies that A is self-injective.
We prove the claim. Since by Corollary 2.4 Dsg(A) is idempotent split, we have
that Dsg(A) is a Krull-Schmidt category ([6, Appendix A]). In particular, each
object is uniquely decomposed as a direct sum of finitely many indecomposable
objects. We observe that for each semisimple module X , lX ≤ lΩ(X). Here, l
denotes the composition length. Consider a cyclic simple A-module S, and take
a path S = S1 → S2 → · · · → Sr → Sr+1 = S in QA. Assume on the contrary
that lΩ(S) ≥ 2. Then we have Ω(S) = S2 ⊕ X for some nonzero semisimple
module X . Observe that S is a direct summand of Ωr−1(S2), and then we
have Ωr(S) = S ⊕X ′ for a nonzero semisimple module X ′. Consequently, we
have Ωnr(S) = S ⊕X ′ ⊕ Ωr(X ′)⊕ · · · ⊕ Ω(n−1)r(X ′). Then the lengths of the
semisimple modules Ωnr(S) tend to the infinity, when n goes to the infinity.
By Lemma 5.1(1), q(T ) is not zero for any simple A-module T . Recall from
Lemma 2.2 that q(S) ≃ q(Ωnr(S))[nr], and then q(S) ≃ q(S)[nr]⊕ q(X ′)[nr]⊕
q(Ωr(X ′))[nr] ⊕ · · · ⊕ q(Ω(n−1)r(X ′))[nr] for each n ≥ 1. This contradicts to
the Krull-Schmidt property of Dsg(A), and we are done with the claim. �
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Sci. Paris, t. 305 Série I (1987) 225–228.

[13] H. Krause, The stable derived category of a noetherian scheme, Com-
positio Math. 141 (2005), 1128–1162.

[14] D. Orlov, Triangulated categories of singularities and D-branes in
Landau-Ginzburg models, Trudy Steklov Math. Institute 204 (2004), 240–
262.

[15] J. Rickard, Derived categories and stable equivalence, J. Pure Appl.
Algebra 61 (1989), 303–317.

[16] S.P. Smith, The non-commutative scheme having a free algebra as a ho-
mogeneous coordinate ring, arXiv:1104.3822v1.

Xiao-Wu Chen
Department of Mathematics
University of Science
and Technology of China
Wu Wen-Tsun Key Laboratory
of Mathematics, USTC
Chinese Academy of Sciences
PR China
http://mail.ustc.edu.cn/∼xwchen

Documenta Mathematica 16 (2011) 921–936


