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Abstract. Let F be a locally compact nonarchimedean local field. In
this article, we extend to any inner form of GLn over F, with n > 1, the
notion of endo-class introduced by Bushnell and Henniart for GLn(F).
We investigate the intertwining relations of simple characters of these
groups, in particular their preservation properties under transfer. This
allows us to associate to any discrete series representation of an inner
form of GLn(F) an endo-class over F. We conjecture that this endo-
class is invariant under the local Jacquet-Langlands correspondence.
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Introduction

This is the fifth in a series of articles whose objective is a complete description
of the category of smooth complex representations of GLr(D), with r a positive
integer and D a division algebra over a locally compact nonarchimedean local
field. The longer term aim is an explicit description, in terms of types, of
the local Jacquet-Langlands correspondence [14, 1], as begun by Bushnell and
Henniart [18, 7, 9], and by Silberger and Zink [26, 27].

The main object of study in this paper is the notion of endo-equivalence class,
or endo-class, of simple characters. This notion has been introduced by Bush-
nell and Henniart [6] for the group GLn(F), with n a positive integer and F
a locally compact nonarchimedean local field: an endo-class is an invariant
associated to an irreducible cuspidal representation of GLn(F), constructed by
explicit methods related to the description of this representation as compactly
induced from an irreducible representation of a compact-mod-centre subgroup
of GLn(F) (see [10, 6]). The arithmetic significance of this invariant has been
described in [8], in the case where F is of characteristic zero: if we denote by WF

the Weil group of F (relative to an algebraic closure) and by PF its wild inertia
subgroup, there is a bijection between the set E(F) of endo-classes over F and
the set of WF-conjugacy classes of irreducible representations of PF, which is
compatible with the local Langlands correspondence.

In this article, we extend the notion of endo-class to any inner form of GLn(F),
n > 1, that is, to any group of the form GLr(D), with r a positive integer and D
an F-central division algebra of dimension d2 over F, with n = rd. For this we
develop a Shintani lift, or base change, for simple characters, which is also of
independent interest (see below). If G is an inner form of H = GLn(F), and
if D(G) denotes the discrete series of G (that is, the set of isomorphism classes
of essentially square-integrable irreducible representations of G), we define a
map:

ΘG : D(G) → E(F)

(see paragraph 9.2) which associates an endo-class over F to any discrete series
representation of G. This map should play an important role in an explicit
description of the local Jacquet–Langlands correspondence:

JL : D(G) → D(H).

In particular, we expect that JL preserves the endo-class (see Conjecture 9.5),
that is:

ΘH ◦ JL = ΘG.
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Endo-Classes for GLm(D) 25

This conjectural property can be seen as a generalization of the fact that the
correspondence JL preserves the representations of level zero (see [26]). The
notion of endo-class also plays a central role in:

– the construction of semisimple types, which leads to a complete descrip-
tion of the structure of the category of smooth complex representations of G
(see [25]);

– the study of smooth representations of G with coefficients in a field of
non-zero characteristic different from the residue characteristic of F (see [19]).

Before giving more details, let us mention that there are roughly speaking two
main obstacles to overcome: First, one has to compare simple characters in
GLr(D) with simple characters in GLr′(D

′) where GLr(D) and GLr′(D
′) are

two inner forms of GLn(F) with D and D′ not necessarily isomorphic. It is
to overcome this that we need to develop a Shintani lift, or base change, for
simple characters. This process is of independent interest and may be used
to define a Shintani lift for irreducible representations of GLr(D). The second
problem is due to the notion of embedding type, a phenomenon first discovered
by Fröhlich [15]; this problem, and its resolution, will be discussed in more
detail below.

One of the objectives of [20], completed in [24], is the construction of simple
characters, which are certain special characters of particular compact open sub-
groups of G. These simple characters are attached to data called simple strata,
and are a fundamental part of the construction of more elaborate objects called
simple types (see [21, 22]). One knows from [22, 24] that every irreducible
discrete series representation π of G contains a simple character θ attached
to a simple stratum. Neither the simple stratum nor the simple character are
unique, but every other simple character θ′ contained in π intertwines θ, that is,
there is an element g ∈ G such that θ′ and the conjugate character θg coincide
on the intersection of the compact open subgroups where they are defined. It
is this observation which leads to the notion of endo-class.

An endo-class is an equivalence class of objects called potential simple char-
acters (or ps-characters for short), for a relation called endo-equivalence. A
ps-character Θ is characterized by giving a simple stratum [Λ, n,m, β] in an F-
central simple algebra A and a simple character θ attached to this simple stra-
tum. The pair ([Λ, n,m, β], θ) is called a realization of Θ. Another simple
stratum [Λ′, n′,m′, β] in another F-central simple algebra A′ (note that β is
unchanged) and a simple character θ′ for this stratum define the same ps-
character precisely when θ and θ′ are linked by the transfer map defined in [20]
(see paragraph 1.2 below). Two ps-characters Θ1 and Θ2 are said to be endo-
equivalent (see Definition 1.10) if they can be characterized by giving realiza-
tions ([Λ, ni,mi, βi], θi) in an F-central simple algebra A, for i = 1, 2 (note that
A and Λ do not depend on i), of the same degree and normalized level, and
such that the simple characters θ1 and θ2 intertwine in A×.
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The properties of endo-equivalence depend on important intertwining prop-
erties of simple characters, notably the preservation of these properties un-
der the transfer map. This article centres on two important technical results:
the property of “preservation of intertwining” (Theorem 1.11) and the “inter-
twining implies conjugacy” property (Theorem 1.12). Partial results on these
questions were already given by Grabitz [17], notably a proof of “intertwining
implies conjugacy”, but these results are proved under unnecessarily restrictive
hypotheses: that the simple strata underlying the construction are sound in the
sense of Definition 1.14. We have sought to develop the notion of endo-class in
as general a situation as possible, emphasizing the functorial properties of the
objects involved. However, rather than starting again from scratch, we decided
to use the work of Grabitz as much as possible. We note that, as well as [17],
our proofs rely heavily on the results of Bushnell, Henniart and Kutzko [10, 6]
in the split case.

Let us now describe in more detail the results, and the techniques used, in
this article. For i = 1, 2, let Θi be a ps-character defined by a simple stra-
tum [Λ, ni,mi, βi] in an F-central simple algebra A and a simple character θi
in C(Λ,mi, βi) attached to this stratum (see paragraph 1.1 for the notation).
Suppose from now on that the ps-characters Θ1 and Θ2 are endo-equivalent so
that, in particular, we may assume the characters θ1 and θ2 intertwine in A×.
The “preservation of intertwining” property can be stated as follows:

Theorem (see Theorem 1.11). — For i = 1, 2, let [Λ′, n′
i,m

′
i, βi] be a simple

stratum in a simple central F-algebra A′ and θ′i ∈ C(Λ′,m′
i, βi) defining the

ps-character Θi, that is, θ
′
i is the transfer of θi. Then the characters θ′1 and θ′2

intertwine in A′×.

This means that the property that two simple characters intertwine is invariant
under transfer. The statement above is the same as its analogue [6, Theorem
8.7] in the case that A is split and Λ is strict. However, we will see that the
proof requires new ideas.

One of the important results in [10] is the “intertwining implies conjugacy”
property for simple characters, which expresses the fact that intertwining of
simple characters is a very stringent relation. It is this property which allows
a classification “up to conjugacy” of the irreducible cuspidal representations
of GLn(F). This property no longer holds in the general case, as was already
observed in [5] for simple strata. To remedy the situation, we introduce the
notion of embedding type of a simple stratum (see Definition 1.8): two simple
strata [Λ, ni,mi, βi] have the same embedding type if the maximal unramified
subextensions of F(βi)/F are conjugate under the normalizer of Λ in A×. With
the same notation and hypotheses as above, we prove the following:

Theorem (see Theorem 1.12). — Suppose that n1 = n2, m1 = m2, and the
simple strata [Λ, ni,mi, βi] have the same embedding type. Write Ki for the
maximal unramified extension of F contained in F(βi) ⊆ A. Then there is
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Endo-Classes for GLm(D) 27

an element of the normalizer of Λ in A× which simultaneously conjugates K1

to K2 and θ1 to θ2.

This result was proved by Grabitz [17, Corollary 10.15] with the additional
assumption that the simple strata [Λ, n,m, βi] are sound. We prove it here
without this hypothesis.

Once one has proved that endo-equivalence preserves certain numerical invari-
ants (see Lemma 4.7), it is not hard to see that the proofs of these two Theorems
can be reduced to the following:

Theorem (see Theorem 1.13). — For i = 1, 2, let [Λ′, n′,m′, βi] be a simple
stratum in a simple central F-algebra A′ and θ′i ∈ C(Λ′,m′, βi) defining the
ps-character Θi, that is, θ

′
i is the transfer of θi. Assume the simple strata have

the same embedding type and write Ki for the maximal unramified extension of
F contained in F(βi) ⊆ A′. Then there is an element of the normalizer of Λ′

in A′× which simultaneously conjugates K1 to K2 and θ′1 to θ′2.

Now let us describe the scheme of the proof. We begin with our endo-equivalent
ps-characters Θ1 and Θ2, together with realizations ([Λ, ni,mi, βi], θi) in A such
that the simple characters θ1 and θ2 intertwine in A×. In order to use the results
of Grabitz, we need first to produce sound realizations of the ps-characters
Θi with the same embedding type, which intertwine. For sound strata, the
embedding type is determined by a single integer, the Fröhlich invariant, which
can also be defined for arbitrary strata (see Definition 4.1). One can then realize
Θi on the lattice sequence Λ ⊕ Λ in such a way that the Fröhlich invariant is
1 and the simple characters still intertwine (see Lemma 4.4). In particular,
replacing our original realizations of Θ1 and Θ2 with these new ones, we can
assume the simple strata [Λ, ni,mi, βi] have the same Fröhlich invariant. Now
we define a process:

([Λ, n,m, β], θ) 7→ ([Λ‡, n,m, β], θ‡)

from arbitrary realizations to sound realizations, with θ‡ the transfer of θ,
which preserves intertwining and the Fröhlich invariant (see paragraph 2.7). In

particular, from θ1 and θ2 one obtains simple characters θ‡1 and θ‡2 on sound
simple strata with the same Fröhlich invariant (so same embedding type) which
intertwine. Thus we can apply Grabitz’s results, together with a reduction to

the casem1 = m2, to deduce that θ‡1 and θ‡2 are conjugate under A
‡× (where A‡

is the simple central F-algebra with respect to which the stratum [Λ‡, n,m, β]
is defined). Changing again our realizations of Θ1 and Θ2 we can suppose we
have an equality θ1 = θ2 of simple characters. This is given in Proposition 4.9,
the culmination of the first stage of the proof.

To show that other realizations θ′1 and θ′2 on simple strata in A′ with the same
embedding type are conjugate, we would like to reduce to the split case so
that we can use results from [10, 6]. For this we define an interior lifting (see
section 5):

([Λ, n,m, β], θ) 7→ ([Γ, n,m, β], θK)
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relative to the extension K/F, the maximal unramified subextension of F(β)/F,
where [Γ, n,m, β] is a simple stratum in the centralizer C of K in the simple
central F-algebra A with respect to which [Λ, n,m, β] is defined. Then we make
a base change (see section 7):

([Γ, n,m, β], θK) 7→ ([Γ, n,m, β], θK)

relative to L/K, a finite unramified extension which is sufficiently large so
that the algebra C ⊗K L is split. The definition of the base change used here
is somewhat subtle: indeed, it is not clear how to make a good definition
which will preserve intertwining and, when applied to our characters θi, will
be independent of i. Moreover, it is necessary to begin with the interior lift or
else the base change process would produce quasi-simple characters (see [20]),
rather than simple characters.

In order to apply these processes, we note that the maximal unramified subex-
tension K of F(βi)/F in A can be assumed to be independent of i since the
simple strata have the same embedding type. Combining now interior lifting
and base change, we get a process:

([Λ, n,m, β], θ) 7→ ([Γ, n,m, β], θK)

denoted here θ 7→ θ̃ for simplicity, which is both injective and equivariant,

so it is enough to show that θ̃′1 and θ̃′2 are conjugate under A′×. Now the

hypothesis θ1 = θ2 implies θ̃1 = θ̃2 (see Propositions 6.11 and 7.5), so that the

ps-characters Θ̃1 and Θ̃2 defined by θ̃1 and θ̃2 are endo-equivalent. Moreover,

for each i, the simple character θ̃′i is the transfer of θ̃i (see Theorem 6.7), so

it is another realization of the ps-character Θ̃i. We are now in the split case
so, modulo a finesse in the case that we do not have strict lattice sequences,

we deduce from endo-equivalence [6] that the characters θ̃′i intertwine. Thus,

from the “intertwining implies conjugacy” property [10], the characters θ̃′1 and

θ̃′2 are conjugate under (C′ ⊗K L)×, where C′ denotes the centralizer of K in
A′. Thanks to the invariance property of the base change under the action of
the Galois group Gal(L/K) (see Proposition 7.7), a cohomological argument
(see Lemma 8.1) allows us to show that they are actually conjugate under C′×.
This completes the proof.

Notation

Let F be a nonarchimedean locally compact field. All F-algebras are supposed
to be finite-dimensional with a unit. By an F-division algebra we mean a central
F-algebra which is a division algebra.
For K a finite extension of F, or more generally a division algebra over a finite
extension of F, we denote by OK its ring of integers, by pK the maximal ideal
of OK and by kK its residue field.
For A a simple central algebra over a finite extension K of F, we denote by
NA/K and trA/K respectively the reduced norm and trace of A over K.
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Endo-Classes for GLm(D) 29

For u a real number, we denote by ⌈u⌉ the smallest integer which is greater
than or equal to u, and by ⌊u⌋ the greatest integer which is smaller than or
equal to u, that is, its integer part.
A character of a topological group G is a continuous homomorphism from G
to the group C× of non-zero complex numbers.
All representations are supposed to be smooth with complex coefficients.

1. Statement of the main results

In this section, we recall some well known facts about lattice sequences, simple
strata and simple characters in a simple central F-algebra (see [4, 10, 12, 20,
24] for more details), and we state the main results of this article.

1.1. Let A be a simple central F-algebra, and let V be a simple left A-module.
The algebra EndA(V) is an F-division algebra, the opposite of which we denote
by D. Considering V as a right D-vector space, we have a canonical isomor-
phism of F-algebras between A and EndD(V).

Definition 1.1. — An OD-lattice sequence on V is a sequence Λ = (Λk)k∈Z of
OD-lattices of V such that Λk ⊇ Λk+1 for all k ∈ Z, and such that there exists
a positive integer e satisfying Λk+e = ΛkpD for all k ∈ Z. This integer is called
the period of Λ over OD.

If Λk ) Λk+1 for all k ∈ Z, then the lattice sequence Λ is said to be strict.

Associated with an OD-lattice sequence Λ on V, we have an OF-lattice sequence
on A defined by:

Pk(Λ) = {a ∈ A | aΛi ⊆ Λi+k, i ∈ Z}, k ∈ Z.

The lattice A(Λ) = P0(Λ) is a hereditary OF-order in A, and P(Λ) = P1(Λ)
is its Jacobson radical. They depend only on the set {Λk | k ∈ Z}.

We denote by K(Λ) the A×-normalizer of Λ, that is the subgroup of A× made of
all elements g ∈ A× for which there is an integer n ∈ Z such that g(Λk) = Λk+n

for all k ∈ Z. Given g ∈ K(Λ), such an integer is unique: it is denoted υΛ(g)
and called the Λ-valuation of g. This defines a group homomorphism υΛ from
K(Λ) to Z. Its kernel, denoted U(Λ), is the group of invertible elements of
A(Λ). We set U0(Λ) = U(Λ) and, for k > 1, we set Uk(Λ) = 1 +Pk(Λ).

Let F′ be a finite extension of F contained in A. An OD-lattice sequence Λ
on V is said to be F′-pure if it is normalized by F′×. The centralizer of F′ in
A, denoted A′, is a simple central F′-algebra. We fix a simple left A′-module
V′ and write D′ for the algebra opposite to EndA′(V′). By [24, Théorème 1.4]
(see also [4, Theorem 1.3]), given an F′-pure OD-lattice sequence on V, there
is an OD′-lattice sequence Λ′ on V′ such that:

(1.1) Pk(Λ) ∩ A′ = Pk(Λ
′), k ∈ Z.

It is unique up to translation of indices, and its A′×-normalizer is K(Λ) ∩A′×.
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Definition 1.2. — A stratum in A is a quadruple [Λ, n,m, β] made of an OD-
lattice sequence Λ on V, two integers m,n such that 0 6 m 6 n − 1 and an
element β ∈ P−m(Λ).

For i = 1, 2, let [Λ, n,m, βi] be a stratum in A. We say these two strata are
equivalent if β2 − β1 ∈ P−m(Λ).

Given a stratum [Λ, n,m, β] in A, we denote by E the F-algebra generated by β.
This stratum is said to be pure if E is a field, if Λ is E-pure and if υΛ(β) = −n.
In this situation, we denote by:

eβ(Λ)

the period of Λ as an OE-lattice sequence. Given a pure stratum [Λ, n,m, β],
we denote by B the centralizer of E in A. For k ∈ Z, we set:

nk(β,Λ) = {x ∈ A(Λ) | βx− xβ ∈ Pk(Λ)}.

The smallest integer k > υΛ(β) such that nk+1(β,Λ) is contained in A(Λ) ∩
B + P(Λ) is called the critical exponent of the stratum [Λ, n,m, β], denoted
k0(β,Λ).

Definition 1.3. — The stratum [Λ, n,m, β] is said to be simple if it is pure and
if we have m 6 −k0(β,Λ)− 1.

Let [Λ, n,m, β] be a simple stratum in A. In [24] (see paragraph 2.4), one
attaches to this simple stratum a compact open subgroup Hm+1(β,Λ) of A×

and a finite set C(Λ,m, β) of characters of Hm+1(β,Λ), called simple characters
of level m, depending on the choice of an additive character:

(1.2) Ψ : F → C×

which is trivial on pF but not on OF, and which will be fixed once and for all
throughout this paper. If ⌊n/2⌋ 6 m, then Hm+1(β,Λ) = Um+1(Λ), and the
set C(Λ,m, β) reduces to a single character ΨA

β of Um+1(Λ) defined by:

(1.3) ΨA
β : x 7→ Ψ ◦ trA/F(β(x − 1)),

which depends only on the equivalence class of [Λ, n,m, β]. More generally,
for any possible value of m, the subgroup Hm+1(β,Λ) and the set C(Λ,m, β)
depend only on the equivalence class of [Λ, n,m, β].

1.2. Let β be a non-zero element of some finite extension of F. We set E =
F(β) and:

nF(β) = −υE(β),

eF(β) = e(E : F),

fF(β) = f(E : F),

where e(E : F) and f(E : F) stand for the ramification index and the residue
class degree of E over F respectively, and υE for the valuation map of the field E
giving the value 1 to any uniformizer of E. The lattice sequence i 7→ piE, denoted
Λ(E), is the unique (up to translation) E-pure strict OF-lattice sequence on the
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F-vector space E, and its valuation map coincide with υE on E×. To any integer
0 6 k 6 nF(β) − 1 we can attach the pure stratum [Λ(E), nF(β), k, β] of the
split F-algebra A(E) = EndF(E), the critical exponent of which we denote by:

kF(β) = k0(β,Λ(E)).

This is an integer greater than or equal to −nF(β). In the case where this
integer is equal to −nF(β), the element β is said to be minimal over F. Let us
recall the definition of a simple pair over F (see [6, Definition 1.5]).

Definition 1.4. — A simple pair over F is a pair (k, β) consisting of a non-zero
element β of some finite extension of F and an integer 0 6 k 6 −kF(β) − 1.

Given a simple pair (k, β) over F, there is the simple stratum [Λ(E), nF(β), k, β]
in A(E) together with a compact open subgroup of A(E)× and a set of simple
characters:

Hk+1
F (β) = Hk+1(β,Λ(E)), CF(k, β) = C(Λ(E), k, β).

Now let A be a simple central F-algebra and V be a simple left A-module. A
realization of (k, β) in A is a stratum in A of the form [Λ, n,m, ϕ(β)] made of:

(1) a homomorphism ϕ of F-algebra from F(β) to A;
(2) an OD-lattice sequence Λ on V normalized by the image of F(β)× under

ϕ;
(3) an integer m such that

⌊
m/eϕ(β)(Λ)

⌋
= k.

The integer −n is then the Λ-valuation of ϕ(β). By [20, Proposition 2.25] we
have:

(1.4) k0(ϕ(β),Λ) = eϕ(β)(Λ)kF(β),

which implies that any realization of a simple pair is a simple stratum. Ac-
cording to [20] again (ibid., paragraph 3.3), for such a realization there is a
canonical bijective map:

(1.5) τΛ,m,ϕ : CF(k, β) → C(Λ,m, ϕ(β))

called the transfer map. Some of its properties have been studied in [24] and
some further properties will be given in sections 6 and 7 of the present ar-
ticle. Given another realization [Λ′, n′,m′, ϕ′(β)] of the pair (k, β) in some
simple central F-algebra A′, we have a transfer map from C(Λ,m, ϕ(β)) to
C(Λ′,m′, ϕ′(β)) by composing τ−1

Λ,m,ϕ with τΛ′,m′,ϕ′ .

Associated with (k, β) is the set C(k,β) of all pairs ([Λ, n,m, ϕ(β)], θ) made of
a realization [Λ, n,m, ϕ(β)] of (k, β) in a simple central F-algebra and a simple
character θ ∈ C(Λ,m, ϕ(β)). Hence the surjective map:

([Λ, n,m, ϕ(β)], θ) 7→ τ−1
Λ,m,ϕ(θ) ∈ CF(k, β)

is well defined on C(k,β) and induces, by its fibers, an equivalence relation on
it.

Documenta Mathematica 17 (2012) 23–77



32 P. Broussous, V. Sécherre, and S. Stevens

Definition 1.5. — A potential simple character over F (or ps-character for
short) is a triple (Θ, k, β) made of a simple pair (k, β) over F and an equivalence
class Θ in C(k,β).

When the context is clear, we will often denote by Θ the ps-character (Θ, k, β).
Given a realization [Λ, n,m, ϕ(β)] of (k, β), we will denote by Θ(Λ,m, ϕ) the
simple character θ such that the pair ([Λ, n,m, ϕ(β)], θ) belongs to Θ.

1.3. We now state the main results which are proved in this article. Our
first task is to extend the notion of endo-equivalence of simple pairs developed
by Bushnell and Henniart in [6]. More precisely, we extend it to realizations
in non-necessarily split simple central F-algebras with non-necessarily strict
lattice sequences.

Definition 1.6. — For i = 1, 2, let (ki, βi) be a simple pair over F. We say that
these pairs are endo-equivalent, denoted:

(k1, β1) ≈ (k2, β2),

if k1 = k2 and [F(β1) : F] = [F(β2) : F], and if there exists a simple central
F-algebra A together with realizations [Λ, ni,mi, ϕi(βi)] of (ki, βi) in A, with
i = 1, 2, which intertwine in A.

Recall that two strata [Λ, ni,mi, βi] in A, with i ∈ {1, 2}, intertwine in A if
there exists g ∈ A× such that:

(1.6) (β1 +P−m1
(Λ)) ∩ g(β2 +P−m2

(Λ))g−1 6= ∅.

As we will see in paragraph 2.5 (see Corollary 2.9), this definition of endo-
equivalence of simple pairs is equivalent to [6, Definition 1.14], although more
general in appearance.

We now investigate the intertwining relations among various realizations of
given simple pairs, and in particular their preservation properties. Our first
result is the following proposition, which generalizes [6, Proposition 1.10] and
is proved in paragraph 2.6.

Proposition 1.7. — For i = 1, 2, let (k, βi) be a simple pair over F, and suppose
these pairs are endo-equivalent. Let A be a simple central F-algebra and let
[Λ, ni,mi, ϕi(βi)] be a realization of (k, βi) in A, for i = 1, 2. These strata then
intertwine in A.

Broussous and Grabitz remarked in [5] that two simple strata [Λ, n,m, βi],
i = 1, 2, in A which intertwine in A may be not conjugate under A×, unlike the
case where A is split (see [10, Theorem 2.6.1] for the case where A is split and Λ
is strict). In order to remedy this, they introduced the notion of an embedding
type (see also Fröhlich [15]). Here we extend this notion to non-necessarily
strict lattice sequences.

We fix a simple central F-algebra A and a simple left A-module V as in para-
graph 1.1. Associated with it, we have an F-division algebra D. An embedding
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in A is a pair (E,Λ) made of a finite extension E of F contained in A and an
E-pure OD-lattice sequence Λ on V. Given such a pair, we denote by E⋄ the
maximal finite unramified extension of F which is contained in E and whose
degree divides the reduced degree of D over F.

Two embeddings (Ei,Λi), i = 1, 2, in A are said to be equivalent in A if there
exists an element g ∈ A× such that Λ1 is in the translation class of gΛ2 and
E⋄
1 = gE⋄

2g
−1. This defines an equivalence relation on the set of embeddings in

A, and an equivalence class for this relation is called an embedding type in A.

Definition 1.8. — The embedding type of a pure stratum [Λ, n,m, β] is the em-
bedding type of the pair (F(β),Λ) in A.

This allows us to state the following “intertwining implies conjugacy” theorem,
which generalizes [10, Theorem 2.6.1] and [5, Proposition 4.1.2] and is proved
in paragraph 3.3.

Proposition 1.9. — For i = 1, 2, let [Λ, n,m, βi] be a simple stratum in A.
Assume that they intertwine in A and have the same embedding type. Write
Ki for the maximal unramified extension of F contained in F(βi). Then there
is u ∈ K(Λ) such that K1 = uK2u

−1 and β1 − uβ2u
−1 ∈ P−m(Λ).

1.4. We now extend the notion of endo-equivalence of simple characters devel-
oped by Bushnell and Henniart in [6]. As for simple pairs, we extend it to real-
izations in non-necessarily split simple central F-algebras with non-necessarily
strict lattice sequences.

Definition 1.10. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F. We
say that these ps-characters are endo-equivalent, denoted:

Θ1 ≈ Θ2,

if k1 = k2 and [F(β1) : F] = [F(β2) : F], and if there exists a simple central
F-algebra A together with realizations [Λ, ni,mi, ϕi(βi)] of (ki, βi) in A, with
i = 1, 2, such that the simple characters Θ1(Λ,m1, ϕ1) and Θ2(Λ,m2, ϕ2) inter-
twine in A×.

Recall that two simple characters θi ∈ C(Λ,mi, βi), i = 1, 2, intertwine in A×

if there exists g ∈ A× such that:

(1.7) θ2(x) = θ1(gxg
−1), x ∈ Hm2+1(β2,Λ) ∩ g−1Hm1+1(β1,Λ)g.

As we will see at the end of this article (see Corollary 8.2), this definition of
endo-equivalence of simple characters is equivalent to [6, Definition 8.6].

We now state the main results of this article concerning properties of simple
characters with respect to intertwining and conjugacy. The following general-
izes [6, Theorem 8.7].
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Theorem 1.11. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F, and
suppose that Θ1 ≈ Θ2. Let A be a simple central F-algebra and, for i = 1, 2,
let [Λ, ni,mi, ϕi(βi)] be realizations of (ki, βi) in A. Then Θ1(Λ,m1, ϕ1) and
Θ2(Λ,m2, ϕ2) intertwine in A×.

The following “intertwining implies conjugacy” theorem for simple characters
generalizes [10, Theorem 3.5.11] and [17, Corollary 10.15] to simple characters
in non-necessarily split simple central F-algebras with non-necessarily strict
lattice sequences.

Theorem 1.12. — Let A be a simple central F-algebra. For i = 1, 2, let
[Λ, n,m, βi] be a simple stratum in A, and let θi ∈ C(Λ,m, βi) be a simple
character. Write Ki for the maximal unramified extension of F contained in
F(βi). Assume that θ1 and θ2 intertwine in A× and that the strata [Λ, n,m, βi]
have the same embedding type. Then there is an element u ∈ K(Λ) such that:

(1) K1 = uK2u
−1;

(2) C(Λ,m, β1) = C(Λ,m, uβ2u
−1);

(3) θ2(x) = θ1(uxu
−1), for all x ∈ Hm+1(β2,Λ) = u−1Hm+1(β1,Λ)u.

We will see in section 4 (see Corollary 4.8) that the proofs of these two theorems
can be reduced to that of the following statement, which will be proved in
section 8.

Theorem 1.13. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F, and
suppose that we have Θ1 ≈ Θ2. Let A be a simple central F-algebra, and let
[Λ, n,m, ϕi(βi)] be realizations of (ki, βi) in A, for i = 1, 2. Write Ki for the
maximal unramified extension of F contained in F(βi) and θi for the simple
character Θi(Λ,m, ϕi). Assume these strata have the same embedding type.
Then there is an element u ∈ K(Λ) such that:

(1) ϕ1(K1) = uϕ2(K2)u
−1;

(2) C(Λ,m, ϕ1(β1)) = C(Λ,m, uϕ2(β2)u
−1);

(3) Hm+1(ϕ1(β1),Λ) = uHm+1(ϕ2(β2),Λ)u
−1;

(4) θ2(x) = θ1(uxu
−1) for all x ∈ Hm+1(ϕ2(β2),Λ).

The main ingredient in this reduction step is Lemma 4.7, which states that the
endo-equivalence relation preserves certain numerical invariants attached to a
ps-character.

1.5. As has been explained in the introduction, this article makes a large use
of the results of Bushnell, Henniart and Kutzko in the split case [6, 10] (see
paragraphs 1.3 and 1.4), as well as results of Grabitz [17] which are based on
the following definition.

Definition 1.14. — A simple stratum [Λ, n,m, β] in A is sound if Λ is strict,
A∩B is principal and K(A)∩B× = K(A∩B), where A is the hereditary OF-order
defined by Λ.
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More generally, an embedding (E,Λ) in A is sound if the conditions of Definition
1.14 are fulfilled with B the centralizer of E in A.

Remark 1.15. — Note that the condition on A ∩ B forces A to be a principal
OF-order. In the split case, a simple stratum [Λ, n,m, β] is sound if and only if
Λ is strict and A is principal.

When Λ is strict, its translation class is entirely determined by the hereditary
OF-order A = A(Λ). In this case, we will sometimes write (E,A) and [A, n,m, β]
rather than (E,Λ) and [Λ, n,m, β].

In the case where the simple strata [Λ, n,m, βi], i = 1, 2, are sound, Grabitz
has proved in [17] the “intertwining implies conjugacy” theorem for simple
characters (see ibid., Theorem 10.3 and Corollary 10.15). More precisely, he
has proved the following result.

Given K/F an unramified extension contained in A, a sound simple stratum
[Λ, n,m, β] in A is K-special (see [17, Definition 3.1]) if it is K-pure in the sense
of Definition 5.1 and if (K(β),A(Λ) ∩ C) is a sound embedding in C, where C
is the centralizer of K in A.

Theorem 1.16 ([17], Theorem 10.3). — For i = 1, 2, let [Λ, n,m, βi] be a sound
simple stratum in a simple central F-algebra A and let θi ∈ C(Λ,m, βi) be
a simple character. Let f be a multiple of the greatest common divisor of
fF(β1) and fF(β2), and let Ki be an unramified extension of F of degree f
contained in A such that [Λ, n,m, βi] is Ki-special. Assume (K1,Λ) and (K2,Λ)
are equivalent embeddings in A, and that θ1 and θ2 intertwine in A×. Then:

(1) eF(β1) = eF(β2) and fF(β1) = fF(β2);
(2) Ki contains the maximal unramified extension of F contained in F[βi].

Moreover, there exists u ∈ K(Λ) such that:

(3) K1 = uK2u
−1;

(4) C(Λ,m, β1) = C(Λ,m, uβ2u
−1);

(5) θ2(x) = θ1(uxu
−1), for all x ∈ Hm+1(β2,Λ) = u−1Hm+1(β1,Λ)u.

We will also need the following result.

Proposition 1.17 ([17], Propositions 9.1, 9.9). — For i = 1, 2, let [Λ, n,m,βi]
be a sound simple stratum in A. Assume that C(Λ,m, β1) ∩ C(Λ,m, β2) 6= ∅.
Then eF(β1) = eF(β2), fF(β1) = fF(β2), kF(β1) = kF(β2) and C(Λ,m, β1) =
C(Λ,m, β2).

Note that [17, Proposition 9.1] gives us an equality between [F(β1) : F] and
[F(β2) : F], but the two finer equalities between the ramification indexes and
residue class degrees come from Theorem 1.16.

Our proof of Theorem 1.13 in section 8 is decomposed into two steps. The
first step consists of treating the case where the extensions F(βi)/F are totally
ramified, and the second step consists of reducing to the totally ramified case.
In section 5, we develop an interior lifting process for simple strata and simple
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characters with respect to a finite unramified extension K of F, in a way similar
to [6] and [17]. Its compatibility with transfer is explored in section 6. This
interior lifting is enough to reduce to the totally ramified case. The totally
ramified case is more subtle. For this we develop an ‘exterior lifting’ or un-
ramified base change in section 7.

2. Realizations and intertwining for simple strata

In this section, we introduce various constructions which will be used through-
out the paper. More precisely, we describe various processes, preserving inter-
twining, which associate to a realization of a simple pair in some simple central
F-algebra a realization in a (possibly different) simple central F-algebra, with
additional properties. This allows us to prove that Definition 1.6 and the
definition of endo-equivalence of simple pairs given in [6] are equivalent (see
Corollary 2.9), and to prove Proposition 1.7.

2.1. We fix a simple central F-algebra A and a simple left A-module V. We
set:

Ã = EndF(V),

which is a split simple central F-algebra in which the algebra A embeds natu-

rally. To any stratum [Λ, n,m, β] in A we can attach a stratum [Λ̃, n,m, β] in

Ã, where Λ̃ denotes the OF-lattice sequence defined by Λ. By [20, Théorème
2.23], this latter stratum is simple if and only the first one is, and in this case
they are realizations of the same simple pair over F. Moreover, we have the
following result.

Proposition 2.1. — For i = 1, 2, let [Λ, ni,mi, βi] be a simple stratum in A.

Assume they intertwine in A. Then the strata [Λ̃, ni,mi, βi] intertwine in Ã.

Proof. — This follows immediately from the definition of intertwining and the

fact that the OF-module Pk(Λ) is contained in Pk(Λ̃) for all k ∈ Z.

2.2. Let [Λ, n,m, β] be a simple stratum in A, which is a realization of a simple
pair (k, β) over F. The affine class of Λ is the set of all OD-lattice sequences
on V of the form:

(2.1) aΛ + b : k 7→ Λ⌈(k−b)/a⌉,

with a, b ∈ Z and a > 1. The period of (2.1) is a times the period e(Λ) of Λ.
Given an integer l > 1, we set V′ = V⊕ · · · ⊕V (l times) and A′ = EndD(V

′),
and embed A in A′ diagonally. For each j ∈ {1, . . . , l}, we choose a lattice
sequence Λj in the affine class of Λ, and assume the periods of the Λj ’s are
all equal to a common integer ae(Λ) with a > 1. We now form the OD-lattice
sequence Λ′ on V′ defined by:

(2.2) Λ′ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λl,
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and fix a non-negative integer m′ such that:

⌊m′/a⌋ = m.

If we set n′ = an, this gives us a simple stratum [Λ′, n′,m′, β] in A′, which is
a realization of the simple pair (k, β). In the particular case where l = 1, we
have the following result.

Lemma 2.2. — Assume that l = 1, so that Λ′ is in the affine class of Λ. Then
we have Hm′+1(β,Λ′) = Hm+1(β,Λ) and C(Λ′,m′, β) = C(Λ,m, β). Moreover,
the transfer map from C(Λ′,m′, β) to C(Λ,m, β) is the identity map.

Proof. — The first assertion is straightforward by induction on β (that is,
on the integer kF(β) defined in paragraph 1.2). For the second one, see [24,
Théorème 2.13].

2.3. Assume now we are given two simple strata [Λ, ni,mi, βi], i = 1, 2, in A.
For each i, we set n′

i = ani and fix a non-negative integer m′
i such that we have

⌊m′
i/a⌋ = mi, so that we have a simple stratum [Λ′, n′

i,m
′
i, βi] in A′.

Proposition 2.3. — Assume that the strata [Λ, ni,mi, βi], i ∈ {1, 2}, intertwine
in A. Then the strata [Λ′, n′

i,m
′
i, βi], i ∈ {1, 2}, intertwine in A′.

Proof. — We start with an element g ∈ A× which intertwines the two strata
[Λ, ni,mi, βi], that is, which satisfies the condition (1.6), and we let ι denote
the diagonal embedding of A in A′ (which we omit from the notation when
the context is clear). For j ∈ {1, . . . , l}, write Vj for the jth copy of V in
V′ = V⊕ · · · ⊕V. Then for each i, we have:

P−m′
i
(Λ′) ∩ EndD(V

j) = P−m′
i
(Λj), j ∈ {1, . . . , l},

which is equal to P−mi
(Λ) as can be seen by a direct computation in the case

l = 1. This implies that ι induces an OF-module embedding of P−mi
(Λ) in

P−m′
i
(Λ′), from which we deduce that g′ = ι(g) ∈ A′× intertwines the strata

[Λ′, n′
i,m

′
i, βi].

Remark 2.4. — Note that ι induces a group homomorphism of K(Λ) into K(Λ′).
Therefore, if g ∈ K(Λ) intertwines two simple strata [Λ, n,m, βi], i = 1, 2, that
is, if we have:

β2 − gβ1g
−1 ∈ P−m(Λ),

and if we set n′ = an and fix a non-negative integer m′ such that ⌊m′/a⌋ = m,
then the element ι(g) ∈ K(Λ′) intertwines the strata [Λ′, n′,m′, βi].

Proposition 2.5. — Assume that the strata [Λ, ni,mi, βi], for i ∈ {1, 2}, have
the same embedding type. Then the strata [Λ′, n′

i,m
′
i, βi], i ∈ {1, 2}, have the

same embedding type.

Proof. — Given g ∈ K(Λ) which conjugates the unramified extensions F(βi)
⋄,

i ∈ {1, 2}, then ι(g) ∈ K(Λ′) conjugates the extensions F(ι(βi))
⋄, i ∈ {1, 2}.
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2.4. For i = 1, 2, let θi be a simple character in C(Λ,mi, βi), and let θ′i be its
transfer in C(Λ′,m′

i, βi). The following result is an analogue of Proposition 2.3
for simple characters.

Proposition 2.6. — Assume that θ1 and θ2 intertwine in A×. Then θ′1 and θ′2
intertwine in A′×.

Proof. — The decomposition of V′ into a sum of copies of V defines a Levi
subgroup:

(2.3) M = A× × · · · ×A×

of A′×. We fix a parabolic subgroup P of A× with Levi factor M and unipotent
radical N, and we write N− for the unipotent radical of the parabolic subgroup
of A× opposite to P with respect to M. According to [24, Théorème 2.17], we
have an Iwahori decomposition:

Hm′
i+1(βi,Λ

′) =
(
Hm′

i+1(βi,Λ
′)∩N−

)(
Hm′

i+1(βi,Λ
′)∩M

)(
Hm′

i+1(βi,Λ
′)∩N

)
,

Hm′
i+1(βi,Λ

′) ∩M = Hmi+1(βi,Λ)× · · · ×Hmi+1(βi,Λ)

for each integer i = 1, 2. We have the following result.

Lemma 2.7. — The simple character θ′i is trivial on Hm′
i+1(βi,Λ

′) ∩ N and

Hm′
i+1(βi,Λ

′) ∩ N−, and we have:

θ′i | H
m′

i+1(βi,Λ
′) ∩M = θi ⊗ · · · ⊗ θi.

Proof. — This derives from [24, Théorème 2.17]. Indeed, for j ∈ {1, . . . , l}, the

restriction of θ′i to H
m′

i+1(βi,Λ
′)∩AutD(V

j) is the transfer of θ′i to C(Λ
j ,m′

i, βi),
which is equal to θi by Lemma 2.2.

Now let g ∈ A× intertwine θ1 and θ2 as in (1.7), and set g′ = ι(g) ∈ M. If we

write Hi = Hmi+1(βi,Λ) and H′
i = Hm′

i+1(βi,Λ
′) for each integer i ∈ {1, 2}, we

get an Iwahori decomposition:

H′
2 ∩g′−1H′

1g
′ =

(
H′

2∩g′−1H′
1g

′∩N−
)(
H′

2∩g′−1H′
1g

′∩M
)(
H′

2∩g′−1H′
1g

′∩N
)
,

H′
2 ∩ g′−1H′

1g
′ ∩M =

(
H2 ∩ g−1H1g

)
× · · · ×

(
H2 ∩ g−1H1g

)
.

According to Lemma 2.7, the simple characters θ′1 and θ′2 are trivial on the two
subgroups H′

2 ∩ g′−1H′
1g

′ ∩ N and H′
2 ∩ g′−1H′

1g
′ ∩ N−, and we have:

θ′i | H
′
2 ∩ g′−1H′

1g
′ ∩M =

(
θi | H2 ∩ g−1H1g

)
⊗ · · · ⊗

(
θi | H2 ∩ g−1H1g

)

for each i ∈ {1, 2}. This ensures that g′ intertwines the simple characters θ′1
and θ′2.
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2.5. We give here an example which will be of particular interest for us. Let
[Λ, n,m, β] be a simple stratum in A, which is a realization of a simple pair
(k, β) over F, and let e denote the period of Λ over OD. We set:

(2.4) Λ† : k 7→ Λk ⊕ Λk+1 ⊕ · · · ⊕ Λk+e−1,

which is a strict OD-lattice sequence on V† = V⊕ · · ·⊕V (e times) of the form
(2.2). Thus we can form the simple stratum [Λ†, n,m, β] in A† = EndD(V

†),
which is a realization of (k, β). Moreover, the hereditary OF-order A

† defined
by Λ† is principal, and we have the following result, which derives from Propo-
sitions 2.3 and 2.5.

Proposition 2.8. — For i = 1, 2, let [Λ, ni,mi, βi] be a simple stratum in A.
Assume they intertwine in A (resp. have the same embedding type). Then the
strata [Λ†, ni,mi, βi] intertwine in A† (resp. have the same embedding type).

Note that the operations Λ 7→ Λ̃ (see paragraph 2.1) and Λ 7→ Λ† commute,

so that there is no ambiguity in writing Λ̃† for the strict OF-lattice sequence
defined by Λ†.

Corollary 2.9. — Definition 1.6 is equivalent to Definition [6, 1.14].

Proof. — Assume we are given two simple pairs (k, βi), i = 1, 2, which are endo-
equivalent in the sense of Definition 1.6. Then we have [F(β1) : F] = [F(β2) : F],
and there exists a simple central F-algebra A together with two realizations
[Λ, ni,mi, ϕi(βi)] of (k, βi) in A, with i = 1, 2, which intertwine in A. By

replacing A and Λ by Ã† and Λ̃†, we have realizations [Λ̃†, ni,mi, ϕi(βi)] of

(k, βi) in Ã†, with i = 1, 2, and these realizations intertwine in Ã† according to
Propositions 2.1 and 2.8. Thus the simple pairs (k, β1) and (k, β2) are endo-
equivalent in the sense of [6, Definition 1.14]. Conversely, two simple pairs
which are endo-equivalent in this sense are clearly endo-equivalent in the sense
of Definition 1.6.

2.6. We now prove the preservation property of intertwining for simple strata,
that is, Proposition 1.7. We first prove that the endo-equivalence relation pre-
serves certain numerical invariants attached to simple pairs. Compare the
following proposition with [6], Property (1.15). See paragraph 1.2 for the no-
tation.

Proposition 2.10. — For i = 1, 2, let (k, βi) be a simple pair over F, and sup-
pose that (k, β1) and (k, β2) are endo-equivalent. Then we have nF(β1) =
nF(β2), eF(β1) = eF(β2), fF(β1) = fF(β2) and kF(β1) = kF(β2).

Proof. — By Corollary 2.9, we may assume that the pairs (k, βi) are endo-
equivalent in the sense of [6]. The result follows from [6, Proposition 1.10].

For i = 1, 2, let (k, βi) be a simple pair over F, and suppose that (k, β1) ≈

(k, β2).
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Let A be a simple central F-algebra and, for i = 1, 2, let [Λ, ni,mi, ϕi(βi)] be a
realization of (k, βi) in A. Let V denote the simple left A-module on which Λ
is a lattice sequence and write D for the F-algebra opposite to EndA(V). For
i = 1, 2, let Ei denote the F-algebra F(βi). We fix a simple right E1 ⊗F D-
module S and set A(S) = EndD(S), and we denote by ρ1 the natural F-algebra
homomorphism E1 → A(S). Let S denote the unique (up to translation) E1-
pure strict OD-lattice sequence on S.

Lemma 2.11. — There is a homomorphism of F-algebras ρ2 : E2 → A(S) such
that S is ρ2(E2)-pure, and such that the pairs (ρ1(E1),S) and (ρ2(E2),S) have
the same embedding type in A(S) (see paragraph 1.3).

Proof. — As (k, β1) and (k, β2) are endo-equivalent, Proposition 2.10 gives us
the equalities eF(β1) = eF(β2) and fF(β1) = fF(β2). The result follows from
[5, Corollary 3.16].

Remark 2.12. — We actually have a stronger result: for any F-algebra homo-
morphism ρ2 such that S is ρ2(E2)-pure, the pairs (ρ1(E1),S) and (ρ2(E2),S)
have the same embedding type in A(S). Indeed, if ρ2 is such a homomorphism
and if η2 is an F-algebra homomorphism as in Lemma 2.11, the Skolem-Noether
theorem gives us g ∈ A(S)× which conjugates these F-algebra homomorphisms
ρ2 and η2. As E1 and E2 have the same degree over F, the lattice sequence
S is the unique (up to translation) ρ2(E2)-pure strict OD-lattice sequence —
and also the unique (up to translation) η2(E2)-pure strict OD-lattice sequence
— on S. It follows that g normalizes the lattice sequence S and that the pairs
(ρ2(E2),S) and (η2(E2),S) have the same embedding type in A(S).

Let us fix an F-algebra homomorphism ρ2 as in Lemma 2.11. As (k, β1) and
(k, β2) are endo-equivalent, we have nF(β1) = nF(β2) and eF(β1) = eF(β2), so
that the S-valuation of ρi(βi), denoted n0, and the period eρi(βi)(S) do not
depend on i ∈ {1, 2}. We set:

m0 = eρi(βi)(S)k.

For each i ∈ {1, 2}, we have a stratum [S, n0,m0, ρi(βi)], which is a realization

of (k, βi) in A(S). By paragraph 2.1, we have a realization [S̃, n0,m0, ρi(βi)]
of (k, βi) in the split simple central F-algebra EndF(S), and the OF-lattice se-

quence S̃ is strict. Hence we can apply [6, Proposition 1.10], which implies
that these realizations, for i = 1, 2, intertwine in EndF(S). By our assumption
(see Lemma 2.11), the strata [S, n0,m0, ρi(βi)], for i = 1, 2, have the same em-
bedding type. Here we need to recall the following statement, due to Broussous
and Grabitz.

Proposition 2.13 ([5], Proposition 4.1.3). — For i = 1, 2, let [Σ, n,m, γi] be a
simple stratum in a simple central F-algebra U, where Σ is strict. Assume that

they have the same embedding type, and that the strata [Σ̃, n,m, γi] intertwine

in Ũ. Then there exists an element u ∈ K(Σ) such that γ1−uγ2u
−1 ∈ P−m(Σ).
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Moreover, u can be chosen such that the maximal unramified extension of F
contained in F(γ1) is equal to that of F(uγ2u

−1).

We deduce from Proposition 2.13 that there exists an element g ∈ K(S) such
that:

(2.5) ρ1(β1)− gρ2(β2)g
−1 ∈ P−m0

(S).

We now fix a decomposition:

V = V1 ⊕ · · · ⊕Vl

of V into simple right E1 ⊗F D-modules (which all are copies of S) such that
the lattice sequence Λ decomposes into the direct sum of the Λj = Λ ∩Vj , for
j ∈ {1, . . . , l}.

Lemma 2.14. — There are isomorphisms of E1 ⊗F D-modules Vj → S, j ∈
{1, . . . , l}, such that the resulting F-algebra homomorphism ι : A(S) → A sat-
isfies ι ◦ ρ1 = ϕ1.

Proof. — Since each Vj , for j ∈ {1, . . . , l}, is an E1-vector subspace of V, the
F-algebra homomorphism ϕ1 has the form x 7→ (ω1(x), . . . , ωl(x)), where ωj is
an F-algebra homomorphism from E1 to EndD(V

j). By the Skolem-Noether
theorem, one can choose, for each integer j, a suitable E1⊗FD-module isomor-
phism between Vj and S such that the resulting F-algebra homomorphism πj

between EndD(V
j) and A(S) satisfies the condition πj ◦ ωj = ρ1. Then the F-

algebra homomorphism ι defined by ι(x) = (π−1
1 (x), . . . , π−1

l (x)) for x ∈ A(S)
satisfies the required condition.

We now fix isomorphisms of E1 ⊗F D-modules Vj → S, j ∈ {1, . . . , l}, as in
Lemma 2.14. Then each Λj is in the affine class of S (see (2.1) and also [22,
§1.4.8]), and these lattice sequences all have the same period, equal to that of
Λ. Therefore, we are in the situation of paragraph 2.2. We set:

n = ni, m = eϕi(βi)(Λ)k,

which both do not depend on i ∈ {1, 2}. By (2.5) and Remark 2.4, the ele-
ment ι(g) normalizes Λ and conjugates [Λ, n,m, ι(ρ2(β2))] into a simple stratum
in A which is equivalent to [Λ, n,m, ϕ1(β1)]. By the Skolem-Noether theo-
rem, there is an element x ∈ A× which conjugates the F-algebra homomor-
phisms ι ◦ ρ2 and ϕ2, and thus intertwines the simple strata [Λ, n,m, ι(ρ2(β2))]
and [Λ, n,m, ϕ2(β2)]. Therefore the strata [Λ, n,m, ϕi(βi)] intertwine. As
m 6 m1,m2, the strata [Λ, ni,mi, ϕi(βi)] intertwine, which ends the proof
of Proposition 1.7.

Remark 2.15. — There is a gap in the proof of the existence of the transfer map
given in [20, Théorème 3.53], in the case where Λ is a strict lattice sequence.
To complete this proof, one has to prove that, given a non-minimal simple pair
(k, β) over F together with a realization [Λ, n,m, ϕ(β)] of this pair in a simple
central F-algebra A, there is a simple pair (k′, γ) over F having realizations
in A(E) and A which are approximations of β and ϕ(β), respectively. More
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precisely, set q = −k0(β,Λ), and start with a stratum [Λ, n, q, γ] in A which is
simple and equivalent to [Λ, n, q, ϕ(β)]. If we denote by (k′, γ) the simple pair of
which this stratum is a realization, and if we set n0 = nF(β) and q0 = −kF(β),
then we search for a realization [Λ(E), n0, q0, ϕ0(γ)] of (k

′, γ) in A(E) which
is equivalent to the pure stratum [Λ(E), n0, q0, β] (see paragraph 1.2). Let us

remark that, when passing to Ã (see paragraph 2.1), we get a stratum [Λ̃, n, q, γ]

which is simple and equivalent to [Λ̃, n, q, ϕ(β)]. Now let [Λ(E), n0, q0, δ] be a
stratum in A(E) which is simple and equivalent to [Λ(E), n0, q0, β]. By choosing
a suitable decomposition of the F-vector space V into a direct sum of copies of
E, we get an F-embedding:

ι : A(E) → Ã,

thus a stratum [Λ̃, n, q, ι(δ)] in Ã which is simple and equivalent to [Λ̃, n, q, ι(β)].

By the Skolem-Noether theorem, there is an element g ∈ Ã× which conjugates

ι(β) and ϕ(β), thus intertwines the strata [Λ̃, n, q, γ] and [Λ̃, n, q, ι(δ)]. The sim-
ple pairs (k′, γ) and (k′, δ) are thus endo-equivalent. Now let [Λ(E), n0, q0, (γ)]
be a realization of (k′, γ) in A(E) which intertwines with [Λ(E), n0, q0, δ]. By
the “intertwining implies conjugacy” theorem [10, Theorem 3.5.11] in the split
simple central F-algebra A(E), there is g ∈ U(Λ(E)) such that g(γ)g−1 − δ ∈
P(Λ(E))−q0 . The homomorphism of F-algebras ϕ0 : x 7→ g(x)g−1 has the
required property.

2.7. Before closing this section, we give a more elaborate example than that
of paragraph 2.5, which will be very useful in the sequel. As in paragraph
2.5, let [Λ, n,m, β] be a simple stratum in A, which is a realization of a simple
pair (k, β) over F, and let e denote the period of Λ over OD. Write B for the
centralizer of the field E = F(β) in A, fix a simple left B-module Vβ and write
Dβ for the E-algebra opposite to the algebra of B-endomorphisms of Vβ . Let
Σ denote an ODβ

-lattice sequence on Vβ corresponding to Λ by (1.1), and let
e′ denote its period over ODβ

. We fix an integer l which is a multiple of e and
e′ and set:

(2.6) Λ‡ : k 7→ Λk ⊕ Λk+1 ⊕ · · · ⊕ Λk+l−1,

which is a strict OD-lattice sequence on V‡ = V⊕ · · · ⊕V (l times) of the form
(2.2). Thus we can form the simple stratum [Λ‡, n,m, β] in A‡ = EndD(V

‡),
which is a realization of (k, β). Moreover, the hereditary OF-order A

‡ defined
by Λ‡ is principal, and we have the following result.

Lemma 2.16. — The stratum [Λ‡, n,m, β] is sound (see Definition 1.14).

Proof. — Write B‡ for the centralizer of E in A‡ and Σ‡ for the ODβ
-lattice

sequence on Vβ × · · · ×Vβ (l times) defined by:

Σ‡ : k 7→ Σk ⊕ Σk+1 ⊕ · · · ⊕ Σk+l−1.
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This is a strict lattice sequence, which defines a principal order of B‡. By direct
computation of each block, we get for all k ∈ Z:

(2.7) Pk(Λ
‡) ∩ B‡ = Pk(Σ

‡),

which amounts to saying that Σ‡ is an ODβ
-lattice sequence which corresponds

to Λ‡ by (1.1). In particular, its B‡×-normalizer is K(Λ‡)∩B‡×. As Λ‡ is strict,
its normalizer is equal to K(A‡), and a similar statement holds for the lattice
sequence Σ‡, so that we have K(A‡) ∩ B‡× = K(A‡ ∩ B‡). Finally, if we choose
k = 0 in (2.7), we deduce that A‡ ∩ B‡ is principal.

Note that, unlike (2.4), the process defined by (2.6) depends on E and l, and
not only on the lattice sequence Λ.

Now let [Λ, ni,mi, βi], for i = 1, 2, be simple strata in A. Let e denote the
period of Λ over OD, and write e′i for the period of the ODβi

-lattice sequence
associated with Λ as above.

Proposition 2.17. — Let l > 1 be a multiple of e′1, e
′
2 and e, and assume that

the simple strata [Λ, ni,mi, βi], i = 1, 2, intertwine in A (resp. have the same
embedding type). Then the simple strata [Λ‡, ni,mi, βi], i = 1, 2, are sound,
and intertwine in A‡ (resp. have the same embedding type).

Proof. — This derives from Propositions 2.3 and 2.5, and Lemma 2.16.

3. Intertwining implies conjugacy for simple strata

In this section, we prove the “intertwining implies conjugacy” property for
simple strata, that is Proposition 1.9. We fix a simple central F-algebra A and
a simple left A-module V as in paragraph 1.1. Associated with it, we have an
F-division algebra D.

3.1. We will need the following general lemma on embedding types. Let B

be a D-basis of V, and let L be a maximal unramified extension of F contained
in D. The choice of B defines an isomorphism of F-algebras between A and
Mr(D) for some integer r > 1, which allows us to identify these F-algebras. In
particular, we will consider L as an extension of F contained in A. We write Ir
for the identity matrix.

An embedding (K,Λ) in A is said to be standard with respect to the pair (B,L)
if K is a subfield of L and if Λ is split by the basis B in the sense of [3].

Lemma 3.1. — Let (B,L) be a pair as above.

(1) Any embedding in A is equivalent to an embedding which is standard
with respect to the pair (B,L).

(2) Let (K,Λ) be standard with respect to (B,L), and let ̟ be a uniformizer
of D normalizing L. Then conjugation by the diagonal matrix ̟ · Ir normalizes
K and Λ, and any element of Gal(K/F) is induced by conjugation by a power
of ̟ · Ir.
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Proof. — Assertion (2) follows from the fact that the map x 7→ ̟x̟−1, for
x ∈ L, is a generator of the group Gal(L/F). To prove (1), let (E,Λ) be an
embedding in A, and set K = E⋄ (see paragraph 1.3 for the notation). One
first notices that one can conjugate the pair (K,Λ) so that K ⊆ L, which we
will assume. Let I be the non-enlarged Bruhat-Tits building of A× and I

′

be that of the centralizer C× of K× in A×. Since the group C× identifies with
GLr(D

′), where D′ is the centralizer of K in D, the two buildings I and I ′

have same dimension r − 1. Recall (see [3, Théorème II.1.1]) that there exists
a unique mapping:

j = jK/F : I
′ → I

which is affine and C×-equivariant. Its image is the set of K×-fixed points in
I . The basis B gives rise to an apartment A of I (see e.g. [3, §0]), and points
in that apartment are fixed by diagonal matrices of A× of the form x · Ir, with
x ∈ D×. In particular, they are fixed by K×. It easily follows that there is
some apartment A

′ in I
′ such that we have A = j(A ′).

The affine class of Λ determines a point y of the building I (see [3, I.7]). Since
K× normalizes Λ, this point writes j(x), for some x ∈ I ′. Since C× acts
transitively on the set of all apartments of I ′, and since any point of I ′ is
contained in some apartment, there is an element h ∈ C× such that h ·x ∈ A ′.
Its follows that h·y = j(h·x) lies in A . By [3, Proposition I.2.7], this means that
the lattice sequence hΛ is split by the basis B, i.e. that (hKh−1, hΛ) = (K, hΛ)
is standard with respect to the pair (B,L), as required.

Remark 3.2. — We can rephrase Assertion (1) of the above lemma by saying
that, for any embedding (E,Λ) in A, there is g ∈ A× such that (E⋄,Λ) is
standard with respect to the pair (gB, gLg−1).
If one writes NA×(K) for the normalizer of K in A×, Assertion (2) can also be
rephrased by saying that conjugation induces a surjective group homomorphism
from the intersection K(Λ)∩NA×(K) onto Gal(K/F). With the notation of the
proof of Lemma 3.1, the kernel of this homomorphism is K(Λ) ∩ C×.

3.2. We will also need the following result, which generalizes [6, Lemma 1.6].

Proposition 3.3. — Let Λ be an OD-lattice sequence on V and E/F a finite ex-
tension. Suppose that there are two homomorphisms ϕi : E → A of F-algebras,
i = 1, 2, such that the pairs (ϕ1(E),Λ) and (ϕ2(E),Λ) are two equivalent em-
beddings in A. Then there is an element u ∈ K(Λ) such that:

(3.1) ϕ1(x) = uϕ2(x)u
−1, x ∈ E.

Remark 3.4. — In particular, if K denotes the maximal unramified extension
of F contained in E, then u conjugates ϕ2(K) to ϕ1(K).

Proof. — Since the embeddings (ϕ1(E),Λ) and (ϕ2(E),Λ) are equivalent, there
exists an element g ∈ K(Λ) such that ϕ1(E

⋄) = gϕ2(E
⋄)g−1. Then the mapping:

(3.2) x 7→ gϕ2(ϕ
−1
1 (x))g−1
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is an F-automorphism of ϕ1(E
⋄). By Lemma 3.1(2), there is h ∈ K(Λ) such

that this F-automorphism is x 7→ hxh−1. We thus have ϕ1(x) = wϕ2(x)w
−1,

for all x ∈ E⋄, where w = h−1g. So replacing ϕ2 by a K(Λ)-conjugate, one may
reduce to the case where ϕ1 and ϕ2 coincide on E⋄. Assume now that we are
is this case, and put K = ϕ2(E

⋄). Let C be the centralizer of K in A, and write
C for the intersection of A = A(Λ) with C.

Lemma 3.5. — There is u ∈ U(C) such that (3.1) holds.

Proof. — We fix an unramified extension L of K such that the degree of L/F is
equal to the reduced degree of D over F, denoted d. The L-algebra C = C⊗KL
is thus split and, as E/K has residue class degree prime to d, the L-algebra
E ⊗K L is an extension of L, denoted E. For each i, the K-algebra homo-
morphism ϕi extends to a homomorphism of L-algebras E → C, still denoted
ϕi. By applying [6, Lemma 1.6] with the OL-order C = C ⊗OK

OL and the
homomorphisms of L-algebras ϕ1 and ϕ2, we get u ∈ U(C) satisfying (3.1). If
we write B for the centralizer of ϕ2(E) in C, then the 1-cocycle σ 7→ u−1σ(u)
defines a class in the Galois cohomology set:

H1(Gal(L/K),U(C) ∩ B×).

This cohomology set is trivial by a standard filtration argument. (For more
detail, see e.g. [5, §6].) Hence we actually may choose u in U(C), which ends
the proof of the lemma.

Proposition 3.3 follows immediately from Lemma 3.5.

Remark 3.6. — The conclusion of Proposition 3.3 does not hold if the pairs
(ϕ1(E),Λ) and (ϕ2(E),Λ) are not assumed to be equivalent in A. For instance,
take A = M2(D) where D is a quaternionic algebra over F, and let E/F be
an unramified quadratic extension. One may embed E in M2(F) so that the
multiplicative group of the image normalizes the order M2(OF). This gives an
embedding ϕ1 of E in A = M2(D) = M2(F)⊗FD, such that ϕ1(E

×) normalizes
M2(OD) = M2(OF) ⊗OF

OD. One also may embed E in D. The diagonal
embedding of D in A gives rise to a second embedding ϕ2 such that ϕ2(E

×)
normalizes M2(OD). Take Λ to be a strict lattice sequence in D × D defining
the order A = M2(OD), so that:

K(Λ) = K(A) = 〈̟〉 · U(A),

where ̟ denotes a uniformizer of D and 〈̟〉 the subgroup generated by ̟.
One can check that the pairs (ϕi(E),Λ), i = 1, 2, are inequivalent. Assume for a
contradiction that there is an element u ∈ K(A) such that ϕ1(E) = uϕ2(E)u

−1,
and write P for the radical of A. For i = 1, 2, the map ϕi induces an embedding
of the residue field kE in the kF-algebra A/P, which is isomorphic to M2(kD),
and the images ϕi(kE), i = 1, 2, are conjugate under the action of u on the
quotient A/P. But this action stabilizes the centre of M2(kD) and ϕ2(kE) lies
in this centre. This implies that ϕ1(kE) is central: a contradiction.
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3.3. We now prove the “intertwining implies conjugacy” property for simple
strata, that is, Proposition 1.9. For i = 1, 2, let [Λ, n,m, βi] a simple stratum in
A. Assume that they intertwine in A and have the same embedding type, and
write Ki for the maximal unramified extension of F contained in Ei = F(βi).
By Remark 3.4, we may replace β2 by some K(Λ)-conjugate and assume that
K1 and K2 are equal to a common extension K of F. We write NA×(K) for the
normalizer of K in A×. Therefore, we are reduced to proving that there is an
element u ∈ K(Λ) ∩ NA×(K) such that we have β1 − uβ2u

−1 ∈ P−m(Λ).

We proceed as in the proof of proposition 1.7 (see paragraph 2.6). Let us fix
a simple right E1 ⊗F D-module S and set A(S) = EndD(S). Let us denote
by ρ1 the natural F-algebra homomorphism E1 → A(S). We write S for the
unique (up to translation) E1-pure strict OD-lattice sequence on S and fix an
F-algebra homomorphism ρ2 : E2 → A(S) such that S is ρ2(E2)-pure, and such
that (ρ1(E1),S) and (ρ2(E2),S) have the same embedding type in A(S) (see
Lemma 2.11). We also fix a decomposition:

(3.3) V = V1 ⊕ · · · ⊕Vl

of V into simple right K(β)⊗F D-modules (which all are copies of S) such that
Λ is decomposed by (3.3) in the sense of [22, Définition 1.13], that is, Λ is
the direct sum of the lattice sequences Λj = Λ ∩ Vj , for j ∈ {1, . . . , l}. By
choosing, for each j, an isomorphism of K(β)⊗FD-modules between S and Vj ,
this decomposition gives us an F-algebra homomorphism:

ι : A(S) → A.

Using Lemma 2.14, we may assume that it satisfies ι(ρ1(β1)) = β1.

For i ∈ {1, 2}, let (k, βi) be the simple pair of which the stratum [Λ, n,m, βi]
is a realization. By putting n0 = nF(βi) and m0 = eρi(βi)(S)k, which do not
depend on i by Proposition 2.10, we get a simple stratum [S, n0,m0, ρi(βi)]
which is a realization of (k, βi) in A(S). The proof of [5, Theorem 4.1.2] (see also
[17, Lemma 10.5]) gives us an element v ∈ K(S) such that ρ1(K) = vρ2(K)v−1

and β1 − vβ2v
−1 ∈ P−m0

(S). By Proposition 3.3, there is w ∈ K(Λ) such that
ι(ρ2(x)) = wxw−1 for all x ∈ E2, and, by Remark 3.4, this element satisfies
wKw−1 = ι(ρ2(K)). Thus the element u = ι(v)w normalizes K and Λ and
satisfies the required condition:

β1 − uβ2u
−1 ∈ P−eβi

(Λ)k(Λ) ⊆ P−m(Λ),

which ends the proof of Proposition 1.9.

4. Realizations and intertwining for simple characters

The two main results of this section are Propositions 4.9 and 4.11. The first
one asserts that two endo-equivalent ps-characters have realizations with very
special properties, allowing us to use the results of [17]. The second one leads
to the rigidity theorem 4.16, and will also give us an important property of the
base change map in paragraph 7.2.

Documenta Mathematica 17 (2012) 23–77



Endo-Classes for GLm(D) 47

4.1. In this paragraph, we generalize the construction given in paragraph 2.7
by incorporating the notion of embedding type. For this, we will need the
following definition.

Let [Λ, n,m, β] be a simple stratum in A, which is a realization of a simple pair
(k, β) over F, and set E = F(β). The containment of OE in A(Λ) allows us
to identify the residue field k = kE⋄ with its canonical image in the kF-algebra
A = A(Λ)/P(Λ).

Definition 4.1. — The Fröhlich invariant of [Λ, n,m, β] is the degree over kF
of the intersection of k with the centre of A.

Recall that this invariant has been introduced by Fröhlich (see [15]) for sound
strata. In this case, we have the following important property.

Theorem 4.2 ([15], Theorem 2). — For i = 1, 2, let (Ki,Λ) be a sound em-
bedding in A where Ki/F is an unramified extension contained in A. These
embeddings are equivalent if and only if [K⋄

1 : F] = [K⋄
2 : F] and they have the

same Fröhlich invariant.

We will need the two following lemmas.

Lemma 4.3. — Let us fix an integer l > 1, an OD-lattice sequence Λ′ and an
integer m′ as in paragraph 2.2, and let us form the simple stratum [Λ′, n′,m′, β]
in A′. The simple strata [Λ, n,m, β] and [Λ′, n′,m′, β] have the same Fröhlich
invariant.

Proof. — Let us identify A′ with the matrix algebra Ml(A), and write j for the
kF-algebra homomorphism k → A′ = A(Λ′)/P(Λ′) induced by the embedding
of OE in A(Λ′) (which is the restriction to OE of the diagonal embedding of E
in A′). By a direct computation, we see that the diagonal blocks of A(Λ′) are
equal to A(Λ), and that of its radical P(Λ′) are equal to P(Λ). This is enough
to prove that j(x) is central in A′ if and only if x is central in A. Thus the
strata [Λ, n,m, β] and [Λ′, n′,m′, β] have the same Fröhlich invariant.

Lemma 4.4. — We set Λ′ = Λ ⊕ Λ and m′ = m (thus l = 2). There exists
an element u ∈ A′× such that Λ′ is uF(β)u−1-pure and the simple stratum
[Λ′, n,m, uβu−1] in A′ has Fröhlich invariant 1.

Proof. — We fix a D-basis B of V, a maximal unramified extension L of F
contained in D and a uniformizer ̟ of D normalizing L (see paragraph 3.1).
According to Lemma 3.1, we may identify A with Mr(D) and assume that
the embedding (E⋄,Λ) is in standard form with respect to (B,L). The map
ϕ : x 7→ ̟x̟−1 defines a generator of Gal(E⋄/F), and thus induces on the
residue field k = kE⋄ a generator of Gal(k/kF), denoted σ. We write j for the
kF-algebra homomorphism from k to A induced by ϕ, which is the composite
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of σ with the canonical embedding of k in A. Thus, one has j(x) = x if and
only if x ∈ kF. We now set:

u =

(
Ir 0
0 ̟ · Ir

)
∈ M2(A) = A′.

If one identifies the kF-algebra A′ = A(Λ′)/P(Λ′) with M2(A), then the kF-
algebra homomorphism j′ from k to A′ induced by x 7→ uxu−1 is given by:

x 7→

(
x 0
0 j(x)

)
.

Therefore, j′(x) is central in A′ if and only if x = j(x) is central in A, that is,
if and only if x ∈ kF.

This leads us to the following result. For i = 1, 2, let (k, βi) be a simple pair
over F, let [Λ, ni,mi, ϕi(βi)] be a realization of (k, βi) in A and let θi be a
simple character in C(Λ,mi, ϕi(βi)).

Proposition 4.5. — Assume θ1 and θ2 intertwine in A×. Then there is a simple
central F-algebra A′ together with realizations [Λ′, ni,mi, ϕ

′
i(βi)] of (k, βi) in

A′ (with the same ni and mi), with i = 1, 2, which are sound and have the
same embedding type, and such that θ′1 and θ′2 intertwine in A′×, where θ′i ∈
C(Λ′,mi, ϕ

′
i(βi)) denotes the transfer of θi.

Proof. — First, we reduce to the case where the strata [Λ, ni,mi, ϕi(βi)] have
Fröhlich invariant 1. Let g ∈ A× intertwine the characters θ1 and θ2 as in (1.7).
We set Λ′ = Λ⊕Λ and A′ = M2(A) and, for each i, we fix an element ui ∈ A′× as
in Lemma 4.4 so that the simple stratum [Λ′, ni,mi, uiϕi(βi)u

−1
i ] has Fröhlich

invariant 1. For each i, let θ′i be the transfer of θi in C(Λ′,mi, ϕi(βi)), and let θ′′i
be that of θi in C(Λ′,mi, uiϕi(βi)u

−1
i ), which is equal to the conjugate character

x 7→ θ′i(u
−1
i xui). By the proof of Proposition 2.6, the element g′ = ι(g) ∈ A′×

intertwines θ′1 and θ′2, where ι denotes the diagonal embedding of A in A′,
and it follows that g′′ = u−1

1 g′u2 intertwines θ′′1 and θ′′2 . Thus we can assume
that the strata [Λ, ni,mi, ϕi(βi)] have Fröhlich invariant 1. Using Proposition
2.17 (with some suitable integer l > 1) and Lemma 4.3 together, we see that
the simple strata [Λ‡, ni,mi, ϕi(βi)] are sound with Fröhlich invariant 1. By

Theorem 4.2, they have the same embedding type. Let θ‡i be the transfer of

θi in C(Λ‡,mi, ϕi(βi)). The fact that θ‡1 and θ‡2 intertwine in A‡× follows from
Proposition 2.6.

Remark 4.6. — The assumption [F(β1) : F] = [F(β2) : F] is not needed in the
proof.

4.2. Before proving the first main result of this section, that is Proposition
4.9, we will need the following lemmas. Compare the first one with Proposition
2.10.
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Lemma 4.7. — For i = 1, 2, let (Θi, k, βi) be a ps-character over F, and sup-
pose that Θ1 and Θ2 are endo-equivalent. Then nF(β1) = nF(β2), eF(β1) =
eF(β2), fF(β1) = fF(β2) and kF(β1) = kF(β2).

Proof. — By assumption, we have [F(β1) : F] = [F(β2) : F] and there is a
simple central F-algebra A together with realizations [Λ, ni,mi, βi] of (k, βi),
for i = 1, 2, such that the corresponding simple characters θ1 and θ2 intertwine
in A×. By Proposition 4.5, we can assume that these realizations are sound and
have the same embedding type. We now follow the proof of [6, Proposition 8.4].
An argument similar to the first part of this proof (which we do not reproduce)
gives us n1 = n2, denoted n. Now consider the integers m1,m2. By symmetry,
we can assume that m1 > m2. Let us choose a simple stratum [Λ, n,m1, γ] in
A which is equivalent to [Λ, n,m1, β2] and let θ0 denote the restriction of θ2 to
Hm1+1(γ,Λ). The characters θ0 and θ1 still intertwine, which implies, by the
“intertwining implies conjugacy” theorem [17, Corollary 10.15], the existence
of u ∈ K(Λ) such that C(Λ,m1, β1) = C(Λ,m1, uγu

−1). By Proposition 1.17,
we get:

(4.1) kF(β1) = kF(γ), [F(β1) : F] = [F(γ) : F].

By [5, Theorem 5.1(ii)], the equality [F(β2) : F] = [F(γ) : F] implies that
[Λ, n,m1, β2] is a simple stratum in A. By Theorem 1.16, we get eF(β1) =
eF(β2) and fF(β1) = fF(β2), and (4.1) gives us kF(β1) = kF(β2). The remaining
equality is a consequence of the identity ni = eβi

(Λ)nF(βi).

Corollary 4.8. — Theorem 1.13 implies Theorems 1.11 and 1.12.

Proof. — For i = 1, 2, let (Θi, k, βi) be a ps-character over F, and suppose that
Θ1 and Θ2 are endo-equivalent. Let A be a simple central F-algebra. For each i,
let [Λ, ni,mi, ϕi(βi)] be a realization of (k, βi) in A, and put θi = Θi(Λ,mi, ϕi).
Write n = ni and:

m = eϕi(βi)(Λ)k,

which do not depend on i by Lemma 4.7. As m1,m2 > m, we may assume
without loss of generality that m1 = m2 = m. Let us fix an F-algebra ho-
momorphism ϕ3 : F(β2) → A such that the simple strata [Λ, n,m, ϕ1(β1)]
and [Λ, n,m, ϕ3(β2)] have the same embedding type, and let θ3 denote the
transfer of θ2 in C(Λ,m, ϕ3(β2)). According to Theorem 1.13, there is an el-
ement u ∈ K(Λ) such that θ3(x) = θ1(uxu

−1) for all x ∈ Hm+1(ϕ3(β2),Λ)
and, by the Skolem-Noether theorem, there is an element g ∈ A× such that
ϕ3(x) = gϕ2(x)g

−1. Thus g intertwines θ3 and θ2, which proves that θ1 and θ2
intertwine in A× and ends the proof of Theorem 1.11.
Assume now that the strata [Λ, n,m, ϕi(βi)], i = 1, 2 have the same embedding
type. Then applying Theorem 1.13 gives immediately Theorem 1.12.

We are thus reduced to proving Theorem 1.13, which will be done in section
8. For this we will have to develop base change methods (see sections 5, 6 and
7). We now state and prove the first main result of this section.
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Proposition 4.9. — For i = 1, 2, let (Θi, k, βi) be a ps-character over F, and
suppose that Θ1 and Θ2 are endo-equivalent. Write Ki for the maximal un-
ramified extension of F contained in F(βi). Then there exists a simple central
F-algebra A together with realizations [Λ, n,m, ϕi(βi)] of (k, βi), for i = 1, 2,
which are sound and have the same embedding type, and such that:

(1) m is a multiple of k;
(2) ϕ1(K1) = ϕ2(K2);
(3) Θ1(Λ,m, ϕ1) = Θ2(Λ,m, ϕ2).

Proof. — By Proposition 4.5, there is a simple central F-algebra A together
with realizations [Λ, ni,mi, ϕi(βi)] of (k, βi), for i = 1, 2, sound and having the
same embedding type, such that θ1 = Θ1(Λ,m1, ϕ1) and θ2 = Θ2(Λ,m2, ϕ2)
intertwine in A×. By Lemma 4.7, we have n1 = n2, and the integer m =
eϕi(βi)(Λ)k does not depend on i.

Lemma 4.10. — For each i, there exists a unique ϑi ∈ C(Λ,m, ϕi(βi)) extend-
ing θi, and the characters ϑ1 and ϑ2 intertwine in A×.

Proof. — The proof is similar to that of [10, Lemma 3.6.7] and [6, Lemma 8.5]
together. One just has to replace Corollary 3.3.21 of [10] by Proposition 2.16
of [24], and Theorems 3.5.8, 3.5.9 and 3.5.11 of [10] by Corollary 10.15 and
Propositions 9.9 and 9.10 of [17].

Therefore we can assume that m1,m2 are both equal to m. The result follows
from the “intertwining implies conjugacy” theorem [17, Corollary 10.15].

4.3. We now assume that we are in the situation of paragraph 2.4. Let us
fix two simple strata [Λ, n,m, βi], i = 1, 2, in A. We set n′ = an and fix a
non-negative integer m′ such that ⌊m′/a⌋ = m, so that we have simple strata
[Λ′, n′,m′, βi], i = 1, 2, in A′, where Λ′ is defined by (2.2). We fix a simple
character θi in C(Λ,m, βi) and write θ′i for its transfer in C(Λ′,m′, βi). The
aim of this paragraph is to prove the following proposition, which is the second
main result of this section.

Proposition 4.11. — Assume that θ1 and θ2 are equal. Then θ′1 and θ′2 are
equal.

Proof. — We first prove the following lemma, which generalizes [10, Theo-
rem 3.5.9] and [17, Proposition 9.10] (see also [13, Lemme 7.9], which gives a
similar result in the split case for semisimple characters and whose proof we
follow).

Lemma 4.12. — Assume that m > 1, and that C(Λ,m, β1)∩ C(Λ,m, β2) is not
empty. Then we have Hm(β1,Λ) = Hm(β2,Λ).

Proof. — We put ν = 2m − 1 and, for i = 1, 2, we choose a simple stratum
[Λ, n, ν, γi] equivalent to [Λ, n, ν, βi] in A. Then, for each i = 1, 2, we have
the equality C(Λ, ν, βi) = C(Λ, ν, γi) and, from [24, Proposition 2.15], we have
Hm(βi,Λ) = Hm(γi,Λ). Since the restriction of a simple character to the
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subgroup Hν+1(β1,Λ) = Hν+1(β2,Λ) is still a simple character, the intersection
C(Λ, ν, γ1) ∩ C(Λ, ν, γ2) is not empty. By computing the intertwining of an
element of this intersection via the formula of [24, Théorème 2.23], we get:

Ωq1−ν(γ1,Λ)B
×
γ1
Ωq1−ν(γ1,Λ) = Ωq2−ν(γ2,Λ)B

×
γ2
Ωq2−ν(γ2,Λ)

with the notations of loc. cit. and where, for each i = 1, 2, we write Bγi
for

the centralizer of F(γi) in A and qi = −k0(γi,Λ). Taking the intersection with
Pm(Λ) and then its additive closure, we find that the following set:

(4.2) Qi
m + (Pqi−ν(Λ) ∩ n−ν(γi,Λ))Q

i
m +Qi

mJ⌈qi/2⌉(γi,Λ),

is independent of i, where we have put Qi
m = Pm(Λ) ∩ Bγi

and where the
notations Jk and Hk, for k > 0, are defined in [24, §2.4]. We claim that the set
in (4.2) is contained in Hm(γi,Λ) = Hm(βi,Λ). For then, adding Hm+1(γi,Λ) =
Hm+1(βi,Λ), which is also independent of i, we see that:

Hm(βi,Λ) = Hm(γi,Λ) = Qi
m + Hm+1(γi,Λ)

is independent of i, as required. We now need the following lemma (see [28,
Lemma 3.11(i)]).

Lemma 4.13. — Let [Λ, n,m, β] be a simple stratum in A with q = −k0(β,Λ).
For each integer 1 6 k 6 q − 1, we have:

(n−k(β,Λ) ∩Pq−k(Λ)) J
⌈k/2⌉(β,Λ) ⊆ H⌊k/2⌋+1(β,Λ).

Proof. — We write [Λ̃, n,m, β] for the simple stratum in Ã = EndF(V) associ-
ated with [Λ, n,m, β] (see paragraph 2.1). Then we have:

(
n−k(β, Λ̃) ∩Pq−k(Λ̃)

)
J⌈k/2⌉(β, Λ̃) ⊆ H⌊k/2⌋+1(β, Λ̃)

by [28, Lemma 3.11(i)]. By taking the intersection with A, we get the expected
result.

We now see that:

(Pqi−ν(Λ) ∩ n−ν(γi,Λ))Q
i
m ⊆ (Pqi−ν(Λ) ∩ n−ν(γi,Λ)) J

⌈ν/2⌉(γi,Λ),

which is contained in Hm(γi,Λ). Similarly, we have:

Qi
mJ⌈qi/2⌉(γi,Λ) ⊆

(
Pqi−(qi−m)(Λ) ∩ nm−qi(γi,Λ)

)
J⌈(qi−m)/2⌉(γi,Λ),

which is contained in H⌊(qi−m)/2⌋+1(γi,Λ). Since the left hand side here is
clearly also contained in Pm(Λ), we see that it is contained in Hm(γi,Λ) as
required. This also completes the proof of Lemma 4.12.

For each i, write Θi for the ps-character defined by the pair ([Λ, n,m, βi], θi),
and recall that θ1 and θ2 are equal.

Lemma 4.14. — We have eF(β1) = eF(β2) and fF(β1) = fF(β2).
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Proof. — By Proposition 4.5, there is a simple central F-algebra A together
with realizations [Λ0, n,m, ϕ0

i (βi)] of (k, βi), with i = 1, 2, which are sound and
have the same embedding type, and such that Θ1(Λ

0,m, ϕ0
1) and Θ2(Λ

0,m, ϕ0
2)

intertwine in A0×. Let us write f for the greatest common divisor of fF(β1)
and fF(β2) and Ki for the maximal unramified extension of F contained in
F(ϕ0

i (βi)). Then Theorem 1.16 gives us the expected equality.

Thus the ps-characters Θ1 and Θ2 are endo-equivalent, which allows us to use
Lemma 4.7.

Lemma 4.15. — The characters θ′1 and θ′2 are equal if and only if we have:

(4.3) Hm′+1(β1,Λ
′) = Hm′+1(β2,Λ

′).

Proof. — This follows immediately from Lemma 2.7.

Thus we are reduced to proving equality (4.3), and for this, we claim that it is
enough to prove that:

(4.4) Hq′(β1,Λ
′) = Hq′ (β2,Λ

′),

where q′ = −k0(βi,Λ
′) is independent of i by Lemma 4.7. Indeed, assume that

(4.4) holds, and let t′ be the smallest integer in {m′, . . . , q′ − 1} such that:

(4.5) Ht′+1(β1,Λ
′) = Ht′+1(β2,Λ

′).

Suppose that t′ 6= m′. By Lemma 4.15, the characters θ′1 and θ′2 agree on (4.5),
that is, the intersection C(Λ′, t′, β1)∩C(Λ

′, t′, β2) is not empty. By Lemma 4.12,
we get an equality which contradicts the minimality of t′. Hence t′ = m′ and
we are thus reduced to proving (4.4), which we do by induction on β1. Assume
first that β1 is minimal over F. Then so is β2 by Lemma 4.7, so that we have:

Hq′(β1,Λ
′) = Uq′(Λ

′) = Hq′ (β2,Λ
′).

Assume now that β1 is not minimal over F, set q = −k0(βi,Λ), which is in-
dependent of i by Lemma 4.7, and choose a simple stratum [Λ, n, q, γi] in A
equivalent to the stratum [Λ, n, q, βi], for each i ∈ {1, 2}. We then have:

Hq′ (βi,Λ
′) = Hq′ (γi,Λ

′),

and the restriction ϑi = θi | Hq+1(γi,Λ) belongs to C(Λ, q, γi). As βi − γi ∈
P−q(Λ), the simple characters ϑ1 and ϑ2 are equal. If we write ϑ′

i for the
transfer of ϑi to the set C(Λ′, q′, γi), then the inductive hypothesis implies that
ϑ′
1 = ϑ′

2. Therefore, the intersection C(Λ′, q′, γ1) ∩ C(Λ′, q′, γ2) is not empty,
and Lemma 4.12 gives us the required equality (4.4). This ends the proof of
Proposition 4.11.

Documenta Mathematica 17 (2012) 23–77



Endo-Classes for GLm(D) 53

4.4. Before closing this section, we prove the following rigidity theorem for
simple characters, which generalizes [10, Theorem 3.5.8] and [17, Proposition
9.9] to simple characters in non-necessarily split simple central F-algebras with
non-necessarily strict lattice sequences.

Theorem 4.16. — For i = 1, 2, let [Λ, n,m, βi] be a simple stratum in a simple
central F-algebra A. Assume that the intersection C(Λ,m, β1) ∩ C(Λ,m, β2) is
not empty. Then we have C(Λ,m, β1) = C(Λ,m, β2).

Proof. — For each i ∈ {1, 2}, we fix a simple character θi ∈ C(Λ,m, βi) and
assume that θ1 and θ2 are equal. In particular, we have:

(4.6) Hm+1(β1,Λ) = Hm+1(β2,Λ).

By choosing an integer l as in Proposition 2.17, we have sound simple strata

[Λ‡, n,m, βi], i = 1, 2, in A‡. If we write θ‡i for the transfer of θi to C(Λ‡,m, βi),

then it follows from Proposition 4.11 that the simple characters θ‡1 and θ‡2 are
equal, hence that the intersection C(Λ‡,m, β1)∩ C(Λ‡,m, β2) is not empty. By
Proposition 1.17, the sets C(Λ‡,m, βi), i = 1, 2, are equal. As the transfer map
from C(Λ‡,m, βi) to C(Λ,m, βi) is the restriction map from Hm+1(βi,Λ

‡) to
Hm+1(βi,Λ), the equality (4.6) implies that C(Λ,m, β1) = C(Λ,m, β2).

It is natural to ask whether the simple strata [Λ, n,m, βi] in Theorem 4.16 have
the same embedding type. We have the following conjecture(2).

Conjecture 4.17. — For i = 1, 2, let [Λ, n,m, βi] be a simple stratum in a simple
central F-algebra A. Assume that the intersection C(Λ,m, β1) ∩ C(Λ,m, β2)
is not empty, and that Λ is strict. Then these simple strata have the same
embedding type.

Note that we know from [5, Lemma 5.2] that two equivalent simple strata (with
respect to a strict lattice sequence) have the same embedding type.

In the case where the strata are sound, we will prove below that this conjecture
is true. First we need a series of lemmas.

Lemma 4.18. — Let E/F be a finite extension with ramification index e, con-
tained in a simple central F-algebra A, and let B be a principal OE-order of
period r in the centralizer B of E in A. Write A ≃ Mk(D) for some k > 1 and
some F-division algebra D, and write d for the reduced degree of D over F.

(1) There exists a unique E-pure hereditary OF-order A in A such that B =
A ∩ B and K(B) = K(A) ∩ B×, and such an order is principal.

(2) The period of A is equal to re/(re, d), where (re, d) denotes the greatest
common divisor of re and d.

Proof. — The first part is given by [16, Corollary 1.4(ii)]. Part (2) follows for
instance from the formula given in the proof of [24, Théorème 1.7].

(2)This conjecture — and an even more general statement — is proven in [25, Lemma 3.5].
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In other words, there exists a unique hereditary OF-order A in A such that
A ∩ B = B and that (E,A) is a sound embedding in A.

Lemma 4.19. — For i = 1, 2, let Ei be an extension of F contained in A and
let A be a hereditary OF-order in A such that (Ei,A) is a sound embedding in
A. Write Bi for the intersection of A with the centralizer of Ei in A. Let f be
the greatest common divisor of f(E1 : F) and f(E2 : F), and for each i, let Ki

be the unramified extension of F of degree f contained in Ei. Assume E1 and
E2 have the same ramification order e and B1 and B2 have the same period r.
Then the embeddings (K1,A) and (K2,A) are equivalent in A.

Proof. — Let Ci denote the intersection of A with the centralizer Ci of Ki in
A. If we write Bi for the centralizer of Ei in A, then we have Bi = Ci ∩ Bi

and K(Bi) = K(Ci) ∩ B×
i . Using Lemma 4.18, the period of Ci is equal to

re/(re, di), where di is the reduced degree of the Ki-division algebra Di such
that Ci is isomorphic to Mki

(Di) for some ki > 1. Using for instance [29],
we have di = d/(d, f), which does not depend on i. By the Skolem-Noether
theorem, there is g ∈ A× such that gK1g

−1 = K2. Thus gC1g
−1 and C2 are

two principal OK2
-orders in C2 with the same period, which implies that there

exists h ∈ C×
2 such that gC1g

−1 = hC2h
−1. Let us write u = h−1g. Using the

unicity property (1) of Lemma 4.18, we get A = u−1Au, that is u ∈ K(A).

We now prove Conjecture 4.17 in the case where the strata are sound.

Proposition 4.20. — For i = 1, 2, let [Λ, n,m, βi] be a sound simple stratum
in a simple central F-algebra A. Assume that C(Λ,m, β1) ∩ C(Λ,m, β2) is not
empty. Then these simple strata have the same embedding type.

Proof. — For each i, we fix a simple character θi ∈ C(Λ,m, βi) and assume θ1
and θ2 are equal. Thus we have [F(β1) : F] = [F(β2) : F] by Proposition 1.17.
By Lemma 4.7, we also have eF(β1) = eF(β2) and fF(β1) = fF(β2). If we write
IU(Λ)(θi) for the intertwining of θi in U(Λ), then [20, Théorème 3.50] gives us:

IU(Λ)(θi)U
1(Λ)/U1(Λ) ≃ U(Bi)/U

1(Bi),

where Bi is the intersection of A = A(Λ) with the centralizer of βi in A. As
the stratum [Λ, n,m, βi] is sound, Bi is a principal OF(βi)-order. Thus there
are a finite extension ki of kF and two positive integers ri, si > 1 such that:

U(Bi)/U
1(Bi) ≃ GLsi(ki)

ri .

Since it does not depend on i, we have r1 = r2. Now write Ki for the maximal
unramified extension of F contained in F(βi). Using Lemma 4.19 with Ei =
F(βi), we deduce that the embeddings (K1,A) and (K2,A) are equivalent in
A.
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5. The interior lifting

In this section, we develop an interior lifting process for simple strata and
characters with respect to a finite unramified extension K of F, in a way similar
to [6] and [17]. The situation in [6] is somewhat more general than ours, since
the authors only assume K/F to be tamely ramified, but is only concerned
with simple strata and characters in split simple central F-algebras attached
to strict lattice sequences. The situation in [17] deals with any simple central
F-algebra, but puts an unnecessarily restrictive condition on the simple strata
(they are supposed to be sound).

5.1. Let A be a simple central F-algebra and K/F be a finite unramified exten-
sion contained in A. Let C denote the centralizer of K in A. We fix a simple left
A-module V and a simple left C-module W. The following definition extends
[6, Definition 2.2] to strata with non-necessarily strict lattice sequences.

Definition 5.1. — A stratum [Λ, n,m, β] in A is said to be K-pure if it is pure,
if β centralizes K and if the algebra K[β] is a field such that K[β]× normalizes
Λ.

Given a K-pure stratum [Λ, n,m, β] in A, we can form the pure stratum
[Γ, n,m, β], where Γ is the unique (up to translation) lattice sequence on W
defined by:

(5.1) Pk(Λ) ∩C = Pk(Γ), k ∈ Z.

Note that the C×-normalizer of Γ is equal to K(Λ)∩C×. We then get a process:

(5.2) [Λ, n,m, β] 7→ [Γ, n,m, β]

giving an injection, respecting equivalence, between the set of K-pure strata
of A and the set of pure strata of C. The fact that Γ is defined only up to
translation makes (5.2) not well defined, but this will be of no importance in
the sequel. We now discuss the image of simple K-pure strata of A by (5.2).

Proposition 5.2. — (1) Let [Λ, n,m, β] be a K-pure stratum in A. Then:

(5.3) k0(β,Γ) 6 k0(β,Λ).

(2) Suppose moreover that [Λ, n,m, β] is a simple stratum. Then the stratum
[Γ, n,m, β] given by the map (5.2) is simple.

Proof. — As K is unramified over F, the lattice sequences Λ and Γ have the
same period over OF. By (1.4) it is then enough to prove that kK(β) 6 kF(β).
Let L denote the strict OF-lattice sequence on K(β) defined by i 7→ piK(β). By

[6, Theorem 2.4], we have:

kK(β) 6 k0(β,L).

On the other hand, we have eβ(L) = 1 as K is unramified over F. By (1.4)
again, we get the expected result. Suppose now that the stratum [Λ, n,m, β]
is simple. Then the fact that [Γ, n,m, β] is simple derives immediately from
(5.3).
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Remark 5.3. — For a case where the map (5.2) is not surjective, see [24, Ex-
emple 1.6]. Compare with the split case [6, (2.3)].

5.2. Given a simple stratum [Γ, n,m, β] in C in the image of (5.2), the K-pure
stratum of A corresponding to it may not be simple. However, we have the
following result, which generalizes [6, Corollary 3.8].

Proposition 5.4. — Let [Λ, n,m, β] be a K-pure stratum in A such that
[Γ, n,m, β] is simple. Then there exists a simple stratum [Γ, n,m, β′] in C
equivalent to [Γ, n,m, β] such that the stratum [Λ, n,m, β′] is simple.
Moreover, β′ can be chosen such that the maximal unramified extension of F
contained in F(β′) is contained in that of F(β).

Proof. — Let (k, β) denote the simple pair over K of which [Γ, n,m, β] is a
realization, fix a simple right K(β) ⊗F D-module S and set A(S) = EndD(S).
Write ρ for the natural K-algebra homomorphism from K(β) to A(S). Let S

denote the unique (up to translation) ρ(K(β))-pure strict OD-lattice sequence
on S and n0 the S-valuation of ρ(β), and set:

m0 = eρ(β)(S)k,

so that [S, n0,m0, ρ(β)] is a K-pure stratum in A(S). Write C(S) for the cent-
ralizer of K in A(S), fix a simple left C(S)-module T and let [T, n0,m0, ρ(β)]
be the stratum in C(S) attached to [S, n0,m0, ρ(β)] by (5.2). This stratum is
a realization of (k, β) in C(S), hence this is a simple stratum. According to [6,
Theorem 3.7], the simple pair (k, β) is endo-equivalent to a simple pair (k, α)
over K which is a K/F-lift of some simple pair over F in the sense of [6] (see
paragraph 3). By [6, Proposition 1.10], the extensions K(α) and K(β) have
the same ramification index and residue class degree over K, which implies by
[5, Corollary 3.16] that there is a realization [T, n0,m0, ϕ(α)] of (k, α) in C(S),
having the same embedding type as [T, n0,m0, ρ(β)].

We now pass to the strata [T̃, n0,m0, ϕ(α)] and [T̃, n0,m0, ρ(β)] in the K-
algebra EndK(T) (see paragraph 2.1). By [24] (see Théorème 1.7 and Remarque

1.8), the lattice sequence T (and thus T̃) is in the affine class of a strict lattice
sequence, so that, up to renormalization, one may consider it as being strict
(see Lemma 2.2). By [6, Proposition 1.10], these strata thus intertwine. Hence,
using Proposition 2.13, we can replace ϕ by some K(T)-conjugate and assume
that the strata [T, n0,m0, ϕ(α)] and [T, n0,m0, ρ(β)] are equivalent, and that
the maximal unramified extension of K contained in K(ϕ(α)) is equal to that
of K(ρ(β)). We check that the stratum [S, n0,m0, ϕ(α)] is simple as in the
proof of [6, Proposition 4.3]. We now fix a decomposition:

(5.4) V = V1 ⊕ · · · ⊕Vl

of V into simple right K(β)⊗F D-modules (which all are copies of S) such that
Λ is decomposed by (5.4) in the sense of [22, Définition 1.13], that is, Λ is
the direct sum of the lattice sequences Λj = Λ ∩ Vj , for j ∈ {1, . . . , l}. By
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choosing, for each j, an isomorphism of K(β)⊗FD-modules between S and Vj ,
this decomposition gives us an F-algebra homomorphism:

ι : A(S) → A.

Using Lemma 2.14, we may assume that this homomorphism satisfies ι(ρ(β)) =
β. If we set β′ = ι(ϕ(α)), then the stratum [Γ, n,m, β′] is simple and satisfies
the conditions of the first part of Proposition 5.4.

In particular, the pure strata [Λ, n,m, β] and [Λ, n,m, β′] are equivalent, and
the second one is simple. By replacing the lattice sequence Λ by Λ† (see para-
graph 2.5), we can apply [5, Theorem 5.1(ii)] and thus get that fF(β

′) divides
fF(β). Moreover, the maximal unramified extension of K contained in K(β′)
is equal to that of K(β), denoted L. As K/F is unramified, the extension
L/F is unramified. Thus the maximal unramified extension of F contained in
F(β′) and that of F(β) are two finite unramified extensions of F contained in
L. According to the condition on their degrees, it follows that the maximal
unramified extension of F contained in F(β′) in contained in that of F(β).

5.3. Let [Λ, n,m, β] be a K-pure simple stratum in A, and let [Γ, n,m, β] be the
stratum in C given by the map (5.2), which is simple by Proposition 5.2. Recall
that one attaches to these simple strata compact open subgroups Hm+1(β,Λ)
of A× and Hm+1(β,Γ) of C×, respectively.

Proposition 5.5. — Let [Λ, n,m, β] be a K-pure simple stratum in A, and let
[Γ, n,m, β] correspond to it by (5.2). Then we have:

Hm+1(β,Λ) ∩ C× = Hm+1(β,Γ).

Proof. — It is enough to prove it when m = 0. The proof is by induction on
β. Let R denote the centralizer of K(β) in A. Assume first that β is minimal
over F, so that:

H1(β,Λ) = (U1(Λ) ∩ B×)U⌊n/2⌋+1(Λ).

According to (5.1), we get:

H1(β,Λ) ∩ C× = (U1(Γ) ∩ R×)U⌊n/2⌋+1(Γ),

which is equal to H1(β,Γ) as β is minimal over K by Proposition 5.2. Now
assume that β is not minimal over F, set q = −k0(β,Λ) and r = ⌊q/2⌋+1, and
choose a simple stratum [Γ, n, q, γ] equivalent to [Γ, n, q, β] such that [Λ, n, q, γ]
is simple and K-pure, which is possible thanks to Proposition 5.4. We then
have:

H1(β,Λ) = (U1(Λ) ∩ B×)Hr(γ,Λ)

and, if we set q1 = −k0(β,Γ) and r1 = ⌊q1/2⌋+ 1, we have:

H1(β,Γ) = (U1(Γ) ∩ R×)Hr1(γ,Γ).

As −k0(γ,Γ) > q1 > q, the group Hr(γ,Γ) is equal to (Ur(Γ) ∩ R×)Hr1(γ,Γ).
It follows from (5.1) that the group H1(β,Γ) is equal to H1(β,Λ) ∩ C×. This
ends the proof of Proposition 5.5.
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5.4. We now want to lift simple characters. For this, given a simple stra-
tum [Λ, n,m, β] in A, we will need a characterization of the set C(Λ,m, β)
by induction on β, generalizing [20, Proposition 3.47] to the case where Λ is
non-necessarily strict.

Lemma 5.6. — Let [Λ, n,m, β] be a simple stratum in A and θ be a character
of the group Hm+1(β,Λ), and set q = −k0(β,Λ) and m′ = max{m, ⌊q/2⌋}.
Then θ ∈ C(Λ,m, β) if and only if it is normalized by K(Λ) ∩ B× and satisfies
the following conditions:

(1) if β is minimal over F, then θ | Um′+1(Λ) = ΨA
β and θ | Um+1(Λ)∩B

× =

χ ◦NB/E for some character χ of 1 + pE (see (1.3) for the definition of ΨA
β );

(2) if β is not minimal over F, and if [Λ, n, q, γ] is simple and equivalent to

[Λ, n, q, β] in A, then θ | Hm′+1(β,Λ) = θ0Ψ
A
β−γ and θ | Hm+1(β,Λ) ∩ B× =

χ ◦ NB/E for some simple character θ0 ∈ C(Λ,m′, γ) and some character χ of
1 + pE.

Proof. — The proof is similar to that of [20, Proposition 3.11], and we do not
repeat it. Note that [17, Lemma 1.9] is actually not needed in the proof, and
that [12, Corollary 5.3] has to be replaced by [24, Proposition 1.20] and [10,
Proposition 3.3.9] by [20, Proposition 3.30].

Let [Λ, n,m, β] be a simple K-pure stratum in A, and let [Γ, n,m, β] correspond
to it by (5.2). We write C(Γ,m, β) for the set of simple characters attached to
[Γ, n,m, β] with respect to the additive character:

(5.5) ΨK = Ψ ◦ trK/F,

which is trivial on pK but not on OK, as K is unramified over F. Compare the
following theorem with [6, Theorem 7.7] and [17, Proposition 7.1].

Theorem 5.7. — Let [Λ, n,m, β] be a simple K-pure stratum in A, and let
[Γ, n,m, β] correspond to it by (5.2). Then, for any θ ∈ C(Λ,m, β), we have:

θ | Hm+1(β,Γ) ∈ C(Γ,m, β).

Proof. — The proof is by induction on β. Let θK denote the restriction of θ to
the group Hm+1(β,Γ) and R the centralizer of K(β) in A. Assume first that β
is minimal over F. By Proposition 5.2, it is also minimal over K. If m > ⌊n/2⌋,
we have C(Λ,m, β) = {ΨA

β } and C(Γ,m, β) = {ΨC
β}, where ΨC

β denotes the

character of Um+1(Γ) defined by:

ΨC
β : x 7→ ΨK ◦ trC/K(β(x − 1)).

So we just need to prove that:

(5.6) ΨA
β | Um+1(Γ) = ΨC

β ,

which is given by [6, Property (7.6)]. If m 6 ⌊n/2⌋, then any θ ∈ C(Λ,m, β)
extends the character ΨA

β | U⌊n/2⌋+1(Λ) and its restriction to Um+1(Λ) ∩ B×

has the form:
θ | Um+1(Λ) ∩ B× = χ ◦NB/E
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for some character χ of 1+pE. Therefore the character θ
K extends the character

ΨC
β | U⌊n/2⌋+1(Γ), and its restriction to Um+1(Γ) ∩ R× has the form:

θK | Um+1(Γ) ∩ R× = χ ◦NK(β)/E ◦NR/K(β).

Finally, the group K(Γ) ∩ R×, which normalizes both θ and Hm+1(β,Γ), nor-
malizes θK. It follows from Lemma 5.6 that θK ∈ C(Γ,m, β).
Now assume that β is not minimal over F. We set q = −k0(β,Λ) and r =
⌊q/2⌋+1, and choose a simple stratum [Γ, n, q, γ] equivalent to [Γ, n, q, β] such
that [Λ, n, q, γ] is simple and K-pure. If m > ⌊q/2⌋, then any θ ∈ C(Λ,m, β)
can be written as θ = θ0Ψ

A
β−γ for some simple character θ0 ∈ C(Λ,m, γ). Now

we claim that:

(5.7) Hm+1(β,Γ) = Hm+1(γ,Γ).

We write q1 = −k0(β,Γ). If q1 = q, then the equality (5.7) follows by defini-
tion. Otherwise, we have q1 > q by Proposition 5.2. The strata [Γ, n, q, β] and
[Γ, n, q, γ] are thus both simple, and (5.7) follows. We now restrict the charac-
ter θ to the group given by (5.7) and get θK = θK0 Ψ

C
β−γ, where θK0 denotes the

restriction θ0 | Hm+1(γ,Γ), and this restriction is in C(Γ,m, γ) by the induc-
tive hypothesis. If q1 = q, then θK is in C(Γ,m, β) by definition. Otherwise,
[Γ, n, q, β] is simple and the result follows from [24, Proposition 2.15]. The case
m 6 ⌊q/2⌋ reduces to the previous one exactly as in the minimal case.

6. Interior lifting and transfer

In this section, we define the interior lift of a ps-character. This amounts to
studying the behaviour of the interior lifting process with respect to transfer.

6.1. As in section 5, we are given in this section a simple central F-algebra A
and a finite unramified extension K/F contained in A. We fix a finite unramified
extension L of K such that the L-algebra:

A = A⊗F L

is split. This L-algebra inherits an action of the Galois group of L/F in the
obvious way, and we consider A as being naturally embedded in A by jA : a 7→
a⊗F 1. We have a decomposition:

(6.1) K⊗F L = K1 ⊕ · · · ⊕Kf

into simple K ⊗F L-modules, where f denotes the degree of K/F. For each
i ∈ {1, . . . , f}, we write ei for the minimal idempotent in K⊗FL corresponding
to Ki. The centralizer of K ⊗F L in A, denoted U, is equal to C ⊗F L. By
identifying it with C⊗K (K ⊗F L) and using (6.1), we get a decomposition:

U = U1 ⊕ · · · ⊕Uf ,

where the Ki-algebra Ui = eiAei identifies with C⊗KKi for each i ∈ {1, . . . , f}.

Documenta Mathematica 17 (2012) 23–77



60 P. Broussous, V. Sécherre, and S. Stevens

In a similar way, we may consider the centralizer C of K in A as being embedded
in the split L-algebra C = C ⊗K L by the K-algebra homomorphism jC : c 7→
c⊗K 1.

Similarly to the case of simple characters (see paragraph 5.4), we will define
the interior lift of a quasi-simple character by restriction from A to C. For this
we need an embedding of C in A satisfying some conditions with respect to jA
and jC (see below), but there is no canonical such embedding. We choose a
set:

(6.2) S = {σ1, . . . , σf} ⊆ Gal(L/F)

of representatives of HomF(K,L) in Gal(L/F), that is a subset of Gal(L/F) such
that the restriction map from L to K induces a bijection from S to HomF(K,L).
For simplicity, we assume that we have ordered the ei’s so that:

K1 and L are isomorphic K⊗ L-modules(6.3)

and σi(e
1) = ei for any i ∈ {1, . . . , f}.

This gives us an F-algebra homomorphism:

(6.4) κ : C
≃
−→ U1 ⊆ U,

and σi ◦ κ is an F-algebra homomorphism from C to Ui for each integer i ∈
{1, . . . , f}. The following lemma gives us a relationship between (6.4) and the
embeddings jA and jC.

Lemma 6.1. — Let jA,C denote the restriction of jA to C, with values in U.

Then the F-algebra homomorphism from C to U defined by:

(6.5) ι = ιS : x 7→ σ1 ◦ κ(x) + · · ·+ σf ◦ κ(x)

satisfies the equality ι ◦ jC = jA,C.

Proof. — We have σi(e
1jA(x)) = eijA(x) for all i ∈ {1, . . . , f} and x ∈ C,

which implies that ι ◦ e1jA,C = jA,C. Note that e
1jA,C = jC, so that we get the

expected equality.

6.2. Let [Λ, n,m, β] be a simple stratum in A, which is a realization of a
simple pair (k, β) over F. In this paragraph, we assume that Λ is a strict lattice
sequence. If we fix a simple left A-module V, then there is a unique (up to
translation) OL-lattice sequence Λ on V such that:

(6.6) Pk(Λ) = Pk(Λ)⊗OF
OL, k ∈ Z

(see [20, §2.2]). This provides us with a stratum [Λ, n,m, β] in A, called the
quasi-simple L/F-lift of the simple stratum [Λ, n,m, β]. This quasi-simple lift
is pure if and only if the residue class degree of E over F is prime to the degree
of L over F, and in this case it is a simple stratum (ibid.).

In [20] (see paragraph 3.2.3), one attaches to the stratum [Λ, n,m, β] a compact
open subgroup Hm+1(β,Λ) of A× and a set Q(Λ,m, β) of characters of the
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group Hm+1(β,Λ), called quasi-simple characters of level m and depending on
an additive character:

(6.7) Ψ : L → C×

extending the additive character (1.2), being trivial on pL but not on OL. Recall
that the restriction map from Hm+1(β,Λ) to Hm+1(β,Λ) induces a surjective
map from Q(Λ,m, β) to C(Λ,m, β).

Let [Λ′, n′,m′, β] be another realization of (k, β) in a simple central F-algebra
A′, with Λ′ strict. We assume that Λ and Λ′ have the same period and that
m = m′ is a multiple of k. We assume that the extension L/F is chosen such
that the L-algebras A and A′ are both split, and we set:

(6.8) V0 = V ⊕V′, Λ0 = Λ⊕ Λ′.

Then Λ0 is a strict OL-lattice sequence on the L-vector space V0. Moreover
A0 = EndL(V

0) is a split simple central L-algebra, in which E = F(β) is natu-
rally embedded. We write M for A× × A′× considered as a Levi subgroup of
A0×. We have the decomposition:

(6.9) Hm+1(β,Λ0) ∩M = Hm+1(β,Λ)×Hm+1(β,Λ′).

We will need the following characterization of the transfer map.

Proposition 6.2. — Let θ ∈ C(Λ,m, β) and θ′ ∈ C(Λ′,m′, β) be two simple
characters. Assume Λ and Λ′ are strict, have the same period and m = m′

is a multiple of k. Then θ′ is the transfer of θ if and only if there exists
θ0 ∈ Q(Λ0,m, β) such that:

(6.10) θ0 | Hm+1(β,Λ)×Hm+1(β,Λ′) = θ ⊗ θ′.

Proof. — Recall (see [20, §3.3]) that θ and θ′ are transfers of each other if
and only if there exist two quasi-simple characters θ ∈ Q(Λ,m, β) and θ

′ ∈
Q(Λ′,m, β), extending θ and θ′ respectively, which are transfers of each other.

Lemma 6.3. — The map from Q(Λ0,m, β) to Q(Λ,m, β) induced by the restric-
tion from Hm+1(β,Λ0) to Hm+1(β,Λ) is the transfer.

Proof. — We have a decomposition of the L-algebra E⊗FL into simple E⊗FL-
modules Ej , for j ∈ {1, . . . , s}, where s denotes the greatest common divisor
of the degree of L/F and the residue class degree of E/F. For each j, we write
1
j for the minimal idempotent in E ⊗F L corresponding to Ej , as well as Λ0,j

for the projection of Λ0 onto V0,j = 1
jV0 and βj for 1

jβ. Thus we get a
simple stratum [Λ0,j, n,m, βj ] in the F-algebra A0,j = 1

jA0
1
j and, similarly,

we get a simple stratum [Λj , n,m, βj ] in Aj . By [20, Corollaire 3.34], there are
bijections:

Q(Λ0,m, β) →

s∏

j=1

C(Λ0,j ,m, βj), Q(Λ,m, β) →

s∏

j=1

C(Λj ,m, βj),
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which are compatible with transfer. Therefore, it is enough to prove that, for
each j, the map from C(Λ0,j,m, βj) to C(Λj ,m, βj) induced by the restriction
from Hm+1(βj ,Λ0,j) to Hm+1(βj ,Λj) is the transfer. This is [24, Théorème
2.17].

Assume first that there is a quasi-simple character θ0 ∈ Q(Λ0,m, β) such that

(6.10) is satisfied, and write θ and θ′ for the restrictions of θ0 to Hm+1(β,Λ) and
Hm+1(β,Λ′), respectively. By Lemma 6.3, these are quasi-simple characters
which are transfers of each other. By (6.10), they extend the simple characters
θ and θ′. It follows that θ and θ′ are transfers of each other.
Conversely, assume θ and θ′ are transfers of each other. Let θ be a quasi-simple
character in Q(Λ,m, β) extending θ, and let θ

0 be its transfer to Q(Λ0,m, β).
By Lemma 6.3, the restriction of θ0 to Hm+1(β,Λ′) is the transfer of θ, and
thus extends θ′. Therefore, the identity (6.10) is satisfied.

6.3. Let [Λ, n,m, β] be a K-pure simple stratum in A, and let [Γ, n,m, β]
denote the simple stratum in C associated with [Λ, n,m, β] by (5.2). In this
paragraph, we assume that Λ and Γ are strict lattice sequences.

If we fix a simple left C-module W, we can form the quasi-simple lift [Γ, n,m, β]
of the simple stratum [Γ, n,m, β] with respect to L/K. One attaches to
this quasi-simple lift a compact open subgroup Hm+1(β,Γ) of C× and a set
Q(Γ,m, β) of characters of Hm+1(β,Γ) with respect to the additive character:

(6.11) ΨK = Ψ ◦ (σ1 + · · ·+ σf )

of L, depending on the choice of the set S fixed in (6.2). It is trivial on pL and,
thanks to the condition on S, it extends the character ΨK defined by (5.5);
hence it is not trivial on OL. This comes with a surjective restriction map from
Q(Γ,m, β) to C(Γ,m, β).

Lemma 6.4. — The image of Hm+1(β,Γ) by ι is contained in Hm+1(β,Λ).

Proof. — First we have to prove that:

κ(Hm+1(β,Γ)) = Hm+1(β,Λ) ∩ U1 = e1Hm+1(β,Λ)e1.

This follows from the definition of the groups Hm+1(β,Γ) and Hm+1(β,Λ) by
induction on β, and from the fact that e1 commutes to β. According to (6.3),
we get:

σi ◦ κ(H
m+1(β,Γ)) = Hm+1(β,Λ) ∩ Ui = eiHm+1(β,Λ)ei

for each i ∈ {1, . . . , f}, and the result follows.

This gives rise to the following result.

Proposition 6.5. — Let θ ∈ C(Λ,m, β) be a simple character, let θ ∈ Q(Λ,m, β)
be a quasi-simple character extending θ, and set:

(6.12) θK(x) = θ(ι(x)), x ∈ Hm+1(β,Γ).
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Then θK is a quasi-simple character in Q(Γ,m, β) extending the character θK =
θ | Hm+1(β,Γ).

Proof. — By Lemmas 6.1 and 6.4, the character θK is well defined and extends
the simple character θK. It thus remains to prove that it is in Q(Γ,m, β). The
proof is by induction on β (see [20, Définition 3.22]). Assume first that β is
minimal over F. Then it is minimal over K by Proposition 5.2. If m > ⌊n/2⌋,

the set Q(Λ,m, β) consists of a single element Ψ
A
β , which is the character of

Um+1(Λ) defined by:

Ψ
A
β (x) = Ψ ◦ trA/L(β(x − 1)), x ∈ Um+1(Λ),

and the set Q(Γ,m, β) consists of a single element ΨC
β , which is the character

of Um+1(Γ) defined by:

Ψ
C
β (x) = Ψ ◦ trC/L(β(x − 1)), x ∈ Um+1(Γ).

So we just need to prove that:

(6.13) Ψ
A
β ◦ ι(x) = Ψ

C
β (x), x ∈ Um+1(Γ),

which follows from the fact that:

trA/L ◦ ι =

f∑

i=1

trA/L ◦ σi ◦ κ

= (σ1 + · · ·+ σf ) ◦ trA/L ◦ κ = (σ1 + · · ·+ σf ) ◦ trC/L.

Ifm 6 ⌊n/2⌋, then θ extends the characterΨA
β | U⌊n/2⌋+1(Λ) and its restriction

to Um+1(Λ) ∩ B
×

has the form:

(6.14) θ | Um+1(Λ) ∩ B
×
= χ ◦NB/E⊗FL

,

where we write B for the centralizer of E in A and where χ denotes some
character of the subgroup 1 + pE ⊗ OL of (E ⊗F L)×. Then, if we write R for

the centralizer of K(β) in A, the character θK extends ΨC
β | U⌊n/2⌋+1(Γ), and

its restriction to Um+1(Γ) ∩ R
×

has the form:

(6.15) θK | Um+1(Γ) ∩ R
×
= χS ◦NR/K(β)⊗KL

where χS is the product of all the χ ◦ σi’s for all i ∈ {1, . . . , f}, as required.
Assume now that β is not minimal over F. We set q = −k0(β,Λ) and
r = ⌊q/2⌋+ 1, and choose a simple stratum [Γ, n, q, γ] equivalent to [Γ, n, q, β]
such that [Λ, n, q, γ] is simple and K-pure. By [5, Theorem 5.1] and Proposition
5.4 together, one may assume that the maximal unramified extension of F con-
tained in F(γ) is contained in that of F(β), which implies that the L-canonical
decomposition of γ is finer than that of β (see paragraph 2.3.4 and the proof of
Lemme 3.16 in [20]). If m > ⌊q/2⌋, then any θ ∈ Q(Λ,m, β) can be written as
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θ = θ0Ψ
A
β−γ for some quasi-simple character θ0 ∈ Q(Λ,m, γ). Now we claim

that:

(6.16) Hm+1(β,Γ) = Hm+1(γ,Γ).

We write q1 = −k0(β,Γ). If q1 = q, then the equality (6.16) follows by defi-
nition. Otherwise, we have q1 > q by Proposition 5.2. The strata [Γ, n, q, β]
and [Γ, n, q, γ] are thus simple, and (6.16) follows. We now form the character

θK = θ ◦ ι | Hm+1(β,Γ) and get the equality θK = θK
0 Ψ

C
β−γ , where θ

K
0 denotes

the character θ0 ◦ ι | Hm+1(γ,Γ), and this character is in Q(Γ,m, γ) by the

inductive hypothesis. If q1 = q, then θK is in Q(Γ,m, β) by definition. Other-
wise, the strata [Γ, n, q, β] and [Γ, n, q, γ] are simple and the result follows from
[24, Proposition 2.15]. The case m 6 ⌊q/2⌋ reduces to the previous one as in
the minimal case.
It remains to prove that the subgroup K(Γ)∩R× normalizes θK. If g ∈ K(Γ)∩
R×, then we have:

ι(g) · Λk =

f⊕

i=1

σi(κ(g)) · e
iΛk =

f⊕

i=1

eiΛk+υ(σi(κ(g)))(6.17)

where υ denotes the valuation map associated with Λ. As all the σi(κ(g))’s have
the same valuation, the equality (6.17) gives us ι(g) ∈ K(Λ)∩B×. Proposition
6.5 now follows from the fact that K(Λ) ∩ B× normalizes θ.

Remark 6.6. — Note that the interior lifting map from Q(Λ,m, β) to Q(Γ,m, β)
defined by Proposition 6.5 depends on the choice of the set S chosen in (6.2).

6.4. Let [Λ, n,m, β] and [Λ′, n′,m′, β] be realizations of a simple pair (k, β)
over F in simple central F-algebras A and A′, respectively. Assume further
that A and A′ contain K, that the strata [Λ, n,m, β] and [Λ′, n′,m′, β] are K-
pure and that the strata [Γ, n,m, β] and [Γ′, n′,m′, β] associated with them by
(5.2) are realizations of the same simple pair over K. (This is equivalent to
saying that the extensions of K generated by β in A and A′ are K-isomorphic.)
We have the following relation between the transfer maps and the interior lifting
maps.

Theorem 6.7. — Let θ ∈ C(Λ,m, β) and θ′ ∈ C(Λ′,m′, β) be transfers of each
other. Then the simple characters:

θ | Hm+1(β,Γ), θ′ | Hm′+1(β,Γ′)

are transfers of each other.

Proof. — One can assume without loss of generality that m and m′ are multi-
ples of k. By rescaling the lattice sequences Λ and Λ′, one can also assume that
they have the same period thanks to Lemma 2.2. Thus m = m′ and n = n′.
The proof decomposes into two parts.
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(1) First we prove the theorem in the case where all the lattice sequences
are strict, so that we can apply the results of paragraphs 6.2 and 6.3. We fix a
quasi-simple character θ in Q(Λ,m, β) extending θ and write θ′ for its transfer
in Q(Λ′,m, β). The restriction of θ′ to Hm+1(β,Λ′) is thus equal to θ′. By Pro-
position 6.2, there exists a quasi-simple character θ0 in Q(Λ0,m, β) extending
θ ⊗ θ′. We write C and U as in paragraph 6.1, and use similar notations C′

and U′. We have:

(6.18) Hm+1(β,Λ0) ∩
(
C× × C′×

)
= Hm+1(β,Γ)×Hm+1(β,Γ′).

We define ι by (6.5) and write θK for the quasi-simple character defined by

(6.12). We also define ι′ and θ′K in a similar way. If we restrict the map x 7→

(ι(x), ι′(x)) to the subgroup (6.18) and then compose it with θ0, then we get the

character θK ⊗ θ′K. This implies that θK and θ′K are transfers of each other.
By Propositions 6.5 and 6.2 together, their restrictions θK | Hm+1(β,Γ) = θK

and θ′K | Hm+1(β,Γ′) = θ′K are transfers of each other.
(2) We now reduce the general case to Case (1). For this we fix a positive

integer l as in Lemma 2.16, and form the sound simple strata [Λ‡, n,m, β] and
[Λ′‡, n,m, β]. Write C‡ for the centralizer of K in A‡ and [Γ‡, n,m, β] for the
simple stratum in C‡ associated with [Λ‡, n,m, β] by (5.2). In a similar way,
we have a K-algebra C′‡ and a simple stratum [Γ′‡, n,m, β]. Then the simple
strata [Γ‡, n,m, β] and [Γ′‡, n,m, β] are realizations of the same simple pair
over K. Write θ‡ for the transfer of θ in C(Λ‡,m, β). In a similar way, we have
a simple character θ′‡. By Case (1), the simple characters:

θ‡ | Hm+1(β,Γ‡), θ′‡ | Hm+1(β,Γ′‡)

are transfers of each other. Thus it remains to prove the following lemma.

Lemma 6.8. — The characters θ | Hm+1(β,Γ) and θ‡ | Hm+1(β,Γ‡) are trans-
fers of each other.

Proof. — Write M for the Levi subgroup of A‡× defined by the decomposition
of V‡ into copies of V. According to Lemma 2.7, the character θ‡ is character-
ized by the identity:

θ‡ | Hm+1(β,Λ‡) ∩M = θ ⊗ · · · ⊗ θ.

Thus its restriction to Hm+1(β,Γ‡) ∩ M = Hm+1(β,Γ) × · · · × Hm+1(β,Γ) is
equal to the tensor product of l copies of θK.

This ends the proof of Theorem 6.7.

Remark 6.9. — In the case where [Λ, n,m, β] and [Λ′, n′,m′, β] are sound, this
theorem implies that Grabitz’s transfer [17] is the same as the transfer defined
in [20].
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6.5. Before closing this section, we prove the following result. Let [Λ, n,m, β]
be a simple K-pure stratum in A, and write [Γ, n,m, β] for the simple stratum in
C which corresponds to it by (5.2). Theorem 5.7 gives us a map from C(Λ,m, β)
to C(Γ,m, β), called the interior lifting map, and denoted lK/F : θ 7→ θK. It
has the following properties.

Proposition 6.10. — The map lK/F is injective and K(Γ)-equivariant.

Proof. — Note that the second assertion is immediate. Let us fix a positive
integer l > 1 as in Lemma 2.16, and form the sound simple stratum [Λ‡, n,m, β].
Write C‡ for the centralizer of K in A‡ and [Γ‡, n,m, β] for the simple stratum
in C‡ associated with the stratum [Λ‡, n,m, β] by (5.2). Now let θ ∈ C(Λ,m, β)
be a simple character and write θ‡ for its transfer in C(Λ‡,m, β). Then, by
Lemma 6.8, the transfer of θK to C(Γ‡,m, β) is equal to θ‡ | Hm+1(β,Γ‡). As
the transfer map from C(Λ,m, β) to C(Λ‡,m, β) is bijective, we may replace
Λ by Λ‡ and assume that the stratum [Λ, n,m, β] is sound. In this case, the
injectivity of the map lK/F follows from [17, Proposition 7.1].

Assume we are given two K-pure simple strata [Λ, n,m, βi], i = 1, 2, in A. For
each i, let θi be a simple character in C(Λ,m, βi).

Proposition 6.11. — Assume θ1 and θ2 are equal. Then lK/F(θ1) and lK/F(θ2)
are equal.

Proof. — It suffices to verify that the groups Hm+1(βi,Γ), i = 1, 2, are equal.
This follows from Proposition 5.5 and the fact that the groups Hm+1(βi,Λ),
i = 1, 2, are equal.

7. The base change

In this section, we develop a base change process for simple strata and charac-
ters with respect to a finite unramified extension K of F, in a way similar to
[6].

7.1. Let K/F be an unramified extension of degree f . Given a simple central
F-algebra A, we set:

Â = A⊗F EndF(K).

Then K embeds naturally in Â, and its centralizer, denoted AK, is canonically
isomorphic to A⊗F K as a K-algebra. Let V be a simple left A-module. Then

V̂ = V ⊗F K is a simple left Â-module and, if we fix an F-basis of K, we have
a decomposition:

(7.1) V̂ = V ⊕ · · · ⊕V

of V̂ into a sum of f copies of V, so that we are in the situation of paragraph
2.2.

Let [Λ, n,m, β] be a simple stratum in A and set E = F(β). Let us form the

simple stratum [Λ̂, n,m, β] in Â, where Λ̂ = Λ ⊕ · · · ⊕ Λ is the direct sum
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of f copies of Λ. This simple stratum is not K-pure in general. We have a
decomposition:

E⊗F K = E1 ⊕ · · · ⊕ Es

into simple E ⊗F K-modules, where s denotes the greatest common divisor of
f and the residue class degree of E over F. For each j ∈ {1, . . . , s}, we write
cj for the minimal idempotent in E⊗F K corresponding to Ej, and we set:

βj = cjβ, j ∈ {1, . . . , s}.

These are the various K/F-lifts of β. If we write Λ̂j for the projection of Λ̂

onto the space V̂j = cjV̂ for each j, we get a simple stratum [Λ̂j , n,m, βj ] in

the F-algebra Âj = cjÂcj , which is K-pure for the natural embedding of K in

Âj . Thus one can form the interior lift [Γ̂j , n,m, βj] in the centralizer of K in

Âj (see paragraph 5.1).

Given a simple character θ ∈ C(Λ,m, β), let θ̂ denote its transfer to C(Λ̂,m, β)

and write θ̂j for the transfer of θ̂ to C(Λ̂j ,m, βj), that is the restriction of θ̂ to

Hm+1(βj , Λ̂j). Let us denote by θjK the restriction of θ̂j to Hm+1(βj , Γ̂j), which

belongs to C(Γ̂j ,m, βj) by Theorem 5.7. We have the following definition.

Definition 7.1. — The process:

bK/F : θ 7→ {θjK, j = 1, . . . , s}

is the K/F-base change for simple characters. For each j, the simple character

θjK is called the K/F-lift of θ corresponding to the K/F-lift βj of β.

Now let (Θ, k, β) be a ps-character over F. Let [Λ, n,m, ϕ(β)] be a realization
of the pair (k, β) in a simple central F-algebra A, and let θ denote the simple
character Θ(Λ,m, ϕ). Let (k, βj), for j ∈ {1, . . . , s}, be the various K/F-lifts
of the pair (k, β), and let ϕj denote the homomorphism of K-algebras from

K(βj) to the centralizer of K in Âj induced by ϕ. Thus the sum of the ϕj ’s is
the K-algebra homomorphism ϕ⊗ idK from E ⊗F K to AK. For each j, let us

denote by (Θj
K, k, β

j) the ps-character defined by ([Γ̂j , n,m, βj ], θjK).

Definition 7.2. — The process:

bK/F : (Θ, k, β) 7→ {(Θj
K, k, β

j), j = 1, . . . , s}

is the K/F-base change for ps-characters, and Θj
K is called the K/F-lift of Θ

corresponding to the K/F-lift βj of β.

This definition does not depend on the choice of the realization [Λ, n,m, ϕ(β)].
Indeed, let [Λ′, n′,m′, ϕ′(β)] be another realization of (k, β) in a simple central
F-algebra A′, and let us write θ′ for the transfer of θ to C(Λ′,m′, ϕ′(β)). Then it

follows from Theorem 6.7 that, for each j, the K/F-lifts θjK and θ′jK are transfers
of each other.
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7.2. In this paragraph, we study in more details the case where s = 1, that
is the case where the residue class degree of F(β)/F is prime to f . In this
case, the simple pair (k, β) has exactly one K/F-lift. If we write ΛK for the

OK-lattice sequence defined by Λ̂, then the base change process gives rise to a
map:

(7.2) bK/F : C(Λ,m, β) → C(ΛK,m, β)

having the following properties.

Proposition 7.3. — The map bK/F is injective and K(Λ)-equivariant.

Proof. — As bK/F is the composite of the transfer map from C(Λ,m, β) to

C(Λ̂,m, β) and the interior lifting from C(Λ̂,m, β) to C(ΛK,m, β), this follows
from Proposition 6.10.

Assume we are given two simple strata [Λ, ni,mi, βi], i = 1, 2, in A, such that
fF(β1) and fF(β2) are prime to f . For each i, let θi be a simple character in
C(Λ,mi, βi).

Proposition 7.4. — Assume θ1 and θ2 intertwine in A×. Then bK/F(θ1) and

bK/F(θ2) intertwine in A×
K.

Proof. — Assume θ1 and θ2 are intertwined by g ∈ A×. By the proof of Propo-

sition 2.6, the characters θ̂1 and θ̂2 are intertwined by ι(g), where ι denotes the

diagonal embedding of A in Â = Mf (A). As ι(g) is actually in A×
K, we deduce

that the characters bK/F(θ1) and bK/F(θ2) intertwine in A×
K.

We now suppose that n1 = n2 and m1 = m2.

Proposition 7.5. — Assume θ1 and θ2 are equal. Then bK/F(θ1) and bK/F(θ2)
are equal.

Proof. — If θ1 and θ2 are equal, then Proposition 4.11 gives us θ̂1 = θ̂2 and
Proposition 6.11 gives us the expected equality.

Let [Λ, n,m, β] and [Λ′, n′,m′, β] be two realizations of the simple pair (k, β),
let θ be a simple character in C(Λ,m, β) and let θ′ be its transfer in C(Λ′,m′, β).
The following proposition is a special case of Theorem 6.7.

Proposition 7.6. — The character bK/F(θ
′) is the transfer of bK/F(θ) in

C(Λ′
K,m

′, β).

Finally, we will need the following result. Note that Gal(K/F) acts naturally
on AK.

Proposition 7.7. — Let θ ∈ C(ΛK,m, β) be a simple character. Then for any
σ ∈ Gal(K/F), we have θ ◦ σ ∈ C(ΛK,m, β).
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Proof. — One checks by induction on β that the image of C(ΛK,m, β) by θ 7→
θ ◦ σ is the set of simple characters attached to the image of [ΛK, n,m, β] by
σ−1 with respect to the additive character ΨK ◦ σ. The result follows from the
fact that this stratum and the additive character ΨK are invariant by σ.

7.3. We prove the following theorem, which generalizes [10, Corollary 3.6.3].

Theorem 7.8. — For i = 1, 2, let (ki, βi) be a simple pair over F. Let us fix
two realizations [Λ, n,m, βi] and [Λ′, n′,m′, βi] of (ki, βi). Assume C(Λ,m, βi)
and C(Λ′,m′, βi) do not depend on i. Then the transfer map τ i : C(Λ,m, βi) →
C(Λ′,m′, βi) does not depend on i.

Proof. — The proof decomposes into three steps.

(1) In the first step, we reduce to the case where the strata are all sound.
For this, we fix an integer l as in Proposition 2.17 which is large enough for Λ
and Λ′. Write ai for the transfer map from C(Λ,m, βi) to C(Λ‡,m, βi). There
is also a map a′

i for Λ
′. Thus we have a commutative diagram:

C(Λ‡,m, βi)
τ

‡
i

// C(Λ′‡,m′, βi)

C(Λ,m, βi) τ i

//

ai

OO

C(Λ′,m′, βi)

a
′
i

OO

where τ‡i denotes the transfer map from C(Λ‡,m, βi) to C(Λ′‡,m′, βi). By
Proposition 4.11, the vertical maps ai and a′

i do not depend on i, and Propo-
sition 1.17 implies that the sets C(Λ‡,m, βi) and C(Λ′‡,m′, βi) do not depend

on i. Since a′
i is bijective, the equality τ

‡
1 = τ

‡
2 implies that τ 1 = τ 2. We thus

may replace Λ by Λ‡ and Λ′ by Λ′‡ and assume that all the strata are sound.
(2) We now assume that all the strata are sound, and we reduce to the case

where the extensions F(βi)/F are totally ramified. By Proposition 4.20, for each
i, the simple strata [Λ, n,m, βi] and [Λ′, n′,m′, βi] have the same embedding
type. Write Ki for the maximal unramified extension of F contained in F(βi),
and fix θi ∈ C(Λ,m, βi). Assume that the characters θ1 and θ2 are equal. Using
the “intertwining implies conjugacy” theorem [17, Corollary 10.15], one may
assume that K1 = K2, denoted K. Write li for the interior lifting map from
C(Λ,m, βi) to C(Γ,m, βi). There is also a map l′i for Λ

′. By Theorem 6.7, we
have a commutative diagram:

C(Γ,m, βi)
τ

K

i
// C(Γ′,m′, βi)

C(Λ,m, βi) τ i

//

li

OO

C(Λ′,m′, βi)

l
′
i

OO

where τK
i denotes the transfer map from C(Γ,m, βi) to C(Γ′,m′, βi). By Propo-

sition 6.11, the vertical maps li and l′i do not depend on i, and Theorem 4.16
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implies that the sets C(Γ,m, βi) and C(Γ′,m′, βi) do not depend on i. By the
same argument as above, using that the map l′i is injective (see Proposition
6.10), we may assume that F(βi) is totally ramified over F.

(3) We now assume that fF(β1) = fF(β2) = 1, and reduce to the split case.
Let us fix a finite unramified extension L/F such that the L-algebras A and
A′ are split. Write bi for the base change map from C(Λ,m, βi) to C(Λ,m, βi).
There is also a map b′i for Λ′. By Proposition 7.6, we have a commutative
diagram:

C(Λ,m, βi)
τ i

// C(Λ′,m′, βi)

C(Λ,m, βi) τ i

//

bi

OO

C(Λ′,m′, βi)

b
′
i

OO

where τ i denotes the transfer map from C(Λ,m, βi) to C(Λ′,m′, βi). By Propo-
sition 7.4, the maps bi and b′i do not depend on i. Thus [10, Theorem 3.5.8]
(the rigidity theorem for simple characters in the split case) implies that the
sets of simple characters C(Λ,m, βi) and C(Λ′,m′, βi) do not depend on i. By
the same argument as above, using that the map b′i is injective (see Proposition
7.3), we may assume that A is split and Λ is strict.

The result then follows from [10, Corollary 3.6.3].

8. Endo-equivalence of simple characters

8.1. In this paragraph, we prove Theorem 1.13 in the totally ramified case. For
i = 1, 2, let (Θi, k, βi) be a ps-character over F with fF(βi) = 1, and suppose
that Θ1 and Θ2 are endo-equivalent. Let A be a simple central F-algebra and
let [Λ, n,m, ϕi(βi)] be realizations of (k, βi) in A, with i = 1, 2. Write θi for the
simple character Θi(Λ,m, ϕi). We have to prove that θ1 and θ2 are conjugate
under K(Λ).

For each i, we write Ei for the F-algebra F(βi), which is a totally ramified finite
extension of F. By assumption, we have [E1 : F] = [E2 : F]. Using Proposition
4.9, there exists a simple central F-algebra A′ together with sound realizations
[Λ′, n′,m′, ϕ′

i(βi)] of (k, βi), with i = 1, 2, such that k divides m′ and θ′1 = θ′2,
where we write θ′i = Θi(Λ

′,m′
i, ϕ

′
i).

Now let A be a simple central F-algebra and [Λ, n,m, ϕi(βi)] be realizations of
(k, βi) in A, for i = 1, 2. Let V denote the simple left A-module on which Λ
is a lattice sequence and write D for the F-algebra opposite to EndA(V). Let
us fix a finite unramified extension L of F such that the L-algebra A = A⊗F L
is split and a simple left A-module V. As Ei is totally ramified over F, the
quasi-simple lift [Λ, n,m, βi] is a simple stratum in A (see [20, Théorème 2.30]
and [24, Remarque 2.9]). We denote by C(Λ,m, βi) the set of simple characters
attached to this quasi-simple lift with respect to the character Ψ ◦ trL/F. The
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base change process developed in paragraph 7.2 gives rise to an injective and
K(Λ)-equivariant map:

bL/F : C(Λ,m, βi) → C(Λ,m, βi),

simply denoted b. We use similar notations for A′. For each i, we write θi for
the simple character Θi(Λ,m, ϕi). By Proposition 7.4, we have b(θ′1) = b(θ′2).
By Proposition 7.6, for each i, the lifts b(θi) and b(θ′i) are transfers of each
other. At this point, we cannot apply [6, 10] to deduce that b(θ1) and b(θ2)
are K(Λ)-conjugate, because the lattice sequence Λ is not necessarily strict.

Let us fix a simple right E1 ⊗F D-module S. We set A(S) = EndD(S), and
denote by ρ1 the natural F-algebra homomorphism E1 → A(S). Let S denote
the unique (up to translation) E1-pure strict OD-lattice sequence on S, and let
us fix an F-algebra homomorphism ρ2 : E2 → A(S) such that S is ρ2(E2)-pure.
Write n0 for the S-valuation of ρi(βi) and:

m0 = eρi(βi)(S)k,

which do not depend on i. We thus can form the stratum [S, n0,m0, ρi(βi)],
which is a realization of (k, βi) in A(S). Write ϑi for the simple character
Θi(S,m0, ρi). We now form the simple stratum [S, n0,m0, ρi(βi)] in the split
simple central L-algebra A(S)⊗F L. It is a realization of (k, βi) over L, and the

OL-lattice sequence S is strict. We thus can apply [6, Theorem 8.7] and [10,
Theorem 3.5.11], which imply together that there exists u ∈ K(S) such that:

b(ϑ2)(x) = b(ϑ1)(uxu
−1), x ∈ Hm+1(ρ2(β2),S) = u−1Hm+1(ρ1(β1),S)u.

We need the following lemma.

Lemma 8.1. — We may assume that u ∈ K(S).

Proof. — By Proposition 7.7, the map σ 7→ u−1σ(u) is a 1-cocycle on Gal(L/F)
with values in the U(S)-normalizer of b(ϑ2), which is equal to J(ρ2(β2),S)
according to [10]. This cocycle defines a class in the cohomology set:

H1(Gal(L/F), J(ρ2(β2),S)).

We claim this cohomology set is trivial. According to [20, Proposition 2.39], it
is enough to prove that:

H1(Gal(L/F), J(ρ2(β2),S)/J1(ρ2(β2),S))

is trivial, which is given by a standard filtration argument (see [5, §6]).

Using Proposition 7.3, we thus may replace ρ2 by a K(S)-conjugate and assume
that the characters ϑ1 and ϑ2 are equal. We now fix a decomposition:

V = V1 ⊕ · · · ⊕Vl

of V into simple right E1 ⊗F D-modules (which all are copies of S) such that
the lattice sequence Λ decomposes into the direct sum of the Λj = Λ ∩Vj , for
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j ∈ {1, . . . , l}. By choosing, for each j, an isomorphism of K(β)⊗F D-modules
between S and Vj , this gives us an F-algebra homomorphism:

ι : A(S) → A.

Using Lemma 2.14, we may assume that ι ◦ ρ1 = ϕ1, and, by Lemma 3.5, on
may replace ϕ2 by a K(Λ)-conjugate and assume that ι ◦ ρ2 = ϕ2. We now
remark that, for each i, the map ϑi 7→ θi corresponds to the process described
in paragraph 2.4. The equality θ1 = θ2 thus follows from Proposition 4.11.

8.2. In this paragraph, we reduce the proof of Theorem 1.13 to the totally ra-
mified case, which has been treated in paragraph 8.1. For i = 1, 2, let (Θi, k, βi)
be a ps-character over F, set Ei = F(βi) and write Ki for the maximal unram-
ified extension of F contained in Ei, and suppose that Θ1 ≈ Θ2. Then we
have [E1 : F] = [E2 : F] and, using Proposition 4.9, there is a simple central
F-algebra A together with realizations [Λ, n,m, ϕi(βi)] of (k, βi), with i = 1, 2,
which are sound and have the same embedding type, with k dividing m and
such that ϕ1(K1) = ϕ2(K2), denoted K, and θ1 = θ2, where θi = Θi(Λ,mi, ϕi).
Let C denote the centralizer of K in A and write [Γ, n,m, βi] for the stratum
in C associated with [Λ, n,m, βi] by (5.2). By Proposition 6.11, the K/F-lifts
θK1 and θK2 are equal.

Now let A′ be a simple central F-algebra and [Λ′, n′,m′, ϕ′
i(βi)] be realizations

of (k, βi) in A, with i = 1, 2, having the same embedding type. By Remark 3.4,
we may conjugate ϕ′

2 by K(Λ′) and assume that the maximal unramified ex-
tensions of F contained in ϕ′

1(E1) and ϕ′
2(E2) are equal to a common extension

K′ of F, say. Moreover, by Lemma 3.1, we may conjugate again ϕ′
2 by K(Λ′)

and assume that the F-algebra isomorphisms ϕ′
1 ◦ ϕ

−1
1 and ϕ′

2 ◦ ϕ
−1
2 agree on

K (and thus identify K and K′). Let C′ denote the centralizer of K′ in A′ and
write [Γ′, n′,m′, ϕ′

i(βi)] for the stratum in C associated with [Λ′, n′,m′, ϕ′
i(βi)]

by (5.2). Thus the simple strata [Γ, n,m, ϕi(βi)] and [Γ′, n′,m′, ϕ′
i(βi)] are

realizations of the same simple pair over K. For each i, we write θ′i for the
character Θi(Λ

′,m′, ϕ′
i). By Theorem 6.7, for each i, the K/F-lifts θKi and θ′Ki

are transfers of each other. Therefore, by paragraph 8.1, there exists u ∈ K(Γ′)
such that:

θ′K2 (x) = θ′K1 (uxu−1), x ∈ Hm+1(ϕ′
2(β2),Γ

′) = u−1Hm+1(ϕ′
1(β1),Γ

′)u.

The equality θ′
u
1 = θ′2 follows from Proposition 6.10.

Corollary 8.2. — Definition 1.10 is equivalent to [6, Definition 8.6].

Proof. — Assume we are given two ps-characters (Θi, k, βi), i = 1, 2, which
are endo-equivalent in the sense of Definition 1.10, and let A be a simple cen-
tral split F-algebra together with realizations [Λ, ni,mi, ϕi(βi)] of (k, βi) in A,
with i = 1, 2, such that Λ is strict. By Theorem 1.11, the simple charac-
ters Θi(Λ,mi, ϕi) intertwine in A×, that is, the ps-characters (Θi, k, βi) are
endo-equivalent in the sense of [6, Definition 8.6]. Conversely, two simple pairs
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which are endo-equivalent in this sense are clearly endo-equivalent in the sense
of Definition 1.10.

Corollary 8.3. — The relation ≈ on ps-characters is an equivalence relation.

Proof. — This comes from [6, Corollary 8.10] together with Corollary 8.2.

9. The endo-class of a discrete series representation

9.1. Let A be a simple central F-algebra, and let V be a simple left A-module.
Associated with it, there is an F-division algebra D. We write d for the reduced
degree of D over F and m for the dimension of V as a right D-vector space. We
set G = A×, identified with GLm(D).
Let π be an irreducible smooth representation of G, and assume that its inertial
class (in the sense of Bushnell and Kutzko’s theory of types [11]), denoted s(π),
is homogeneous. Thus there is a positive integer r dividing m, an irreducible
cuspidal representation ρ of the group G0 = GLm/r(D) and unramified char-
acters χi of G0, with i ∈ {1, . . . , r}, such that π is isomorphic to a quotient
of the normalized parabolically induced representation ρχ1 × · · · × ρχr (see for
instance [2] for the notation).
In this section, we associate with π an endo-class Θ(π) over F, and show that
it depends only on the inertial class s = s(π).

9.2. Let π be a representation of G as above, and write s = s(π) for its
inertial class. According to [24, Théorème 5.23], this inertial class possesses
a type in the sense of [11]. Such a type is a pair (J, λ) formed of a compact
open subgroup J of G and of an irreducible smooth representation λ of J such
that an irreducible smooth representation of G has inertial class s if and only
if λ occurs in its restriction to J. More precisely, (J, λ) can be chosen to be a
simple type in the sense of [22]. We won’t give a precise description of simple
types; the only property of interest for us is the following fact, which is a weak
form of [24, Théorème 5.23].

Fact 9.1. — There is a simple stratum [A, n, 0, β] in A together with a simple
character θ ∈ C(A, 0, β) such that the order A ∩ B (with B the centralizer of
F(β) in A) is principal of period r and the character θ occurs in the restriction
of π to H1(β,A).

Neither [A, n, 0, β] nor the character θ are uniquely determined. We let (Θ, 0, β)
be the ps-character defined by the pair ([A, n, 0, β], θ) and we denote by Θ its
endo-class.

Theorem 9.2. — The endo-class Θ depends only on the inertial class s.

Proof. — We have to prove that Θ does not depend on the choice of the simple
stratum [A, n, 0, β] and the simple character θ satisfying the conditions of Fact
9.1. For i = 1, 2, let [Ai, ni, 0, βi] be a simple stratum and θi be a simple
character satisfying the conditions of Fact 9.1, and let (Θi, 0, βi) denote the
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ps-character that it defines. Let A′
i denote the unique principal OF-order in A

such that the pair (Ei,A
′
i) is a sound embedding in A (see Lemma 4.18) and let

θ′i denote the transfer of θi in C(A′
i, 0, βi). By a standard argument using [24,

Théorème 2.13], the character θ′i occurs in the restriction of π to H1(βi,A
′
i).

Therefore, we can assume without changing Θi that (Ei,Ai) is sound.

Lemma 9.3. — The extensions E1/F and E2/F have the same ramification in-
dex.

Proof. — We are going to prove that this ramification index is determined by
the irreducible cuspidal representation ρ of paragraph 9.1. Let n(ρ) denote
the number of unramified characters χ of G0 such that ρχ is equivalent to ρ.
Write q for the cardinality of the residue field of F and | · |F for the absolute
value on F giving the value q−1 to any uniformizer. Let s(ρ) denote the unique
positive real number such that ρ× ρνρ is reducible, where νρ is the unramified

character g 7→ |NA/F(g)|
s(ρ)
F (see section 4 of [23] for more details). By using

[23, Theorem 4.6], the product n(ρ)s(ρ) is equal to the quotient of md by the
ramification index of Ei/F, for any i = 1, 2.

By Lemma 4.18, the principal orders A1 and A2 have the same period (as Ai∩Bi

has period r). Thus one may conjugate ([A1, n1, 0, β1], θ1) by an element of G
and assume that A1 = A2, denoted A. For each i, we have θi ∈ C(A, 0, βi) and
θi occurs in the restriction of π to the subgroup H1(βi,A). Thus the characters
θ1 and θ2 intertwine in A×. To prove that Θ1 and Θ2 are endo-equivalent,
it remains to prove that F(β1) and F(β2) have the same degree over F. By
copying the beginning of the proof of Lemma 4.7, we get n1 = n2. We now
write f for the greatest common divisor of fF(β1) and fF(β2) and Ki for the
maximal unramified extension of F contained in F(βi). Then Theorem 1.16
gives us the expected equality.

We call the class Θ the endo-class of π (or of s). We have actually obtained
more.

Theorem 9.4. — Let π be an irreducible representation with inertial class s as
above, and let [A, n, 0, β] and θ satisfy the conditions of Fact 9.1. Assume more-
over [A, n, 0, β] is sound. The following objects are invariants of the inertial
class s:

(1) the ramification index eF(β) and the residue class degree fF (β);
(2) the G-conjugacy class of the order A;
(3) the embedding type of (F(β),A).

Proof. — Assertions (1) and (2) have already been proved. Assertion (3) fol-
lows immediately from Lemma 4.19.

9.3. Recall that an irreducible smooth representation π of G is essentially
square integrable if there is a character χ of G such that πχ is unitary and has
a non-zero coefficient which is square integrable on G/Z, where Z denotes the
centre of G. We write D(G) for the set of isomorphism classes of essentially
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square integrable representation of G. According to [2, §2.2], any essentially
square integrable representation of G has an inertial class which is homogeneous
in the sense of paragraph 9.1. Thus the construction of paragraph 9.2 gives us
a map:

(9.1) ΘG : D(G) → E(F)

from D(G) to the set of endo-classes of ps-characters over F.

We now write H = GLmd(F), and let JL denote the Jacquet-Langlands corre-
spondence (see [1, 14]) from D(G) to D(H). We have the following conjecture.

Conjecture 9.5. — For any π in D(G), we have:

(9.2) ΘH(JL(π)) = ΘG(π).

This conjecture generalizes the fact that, for any level zero representation π
in D(G), the representation JL(π) has level zero. It allows one to refine the
correspondence JL by fixing the endo-class: given Θ an endo-class over F,
Conjecture 9.5 implies that we have a bijective map:

JLΘ : D(G,Θ) → D(H,Θ)

where we write D(G,Θ) for the set of isomorphism classes of essentially square
integrable representations of G of endo-class Θ.
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