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1 Introduction

Given compact connected Lie groupsK ⊂ G of equal rank, it is well-known that
the K-action on the homogeneous space G/K is equivariantly formal because
the odd de Rham cohomology groups of G/K vanish. (See for example [7] for
an investigation of the equivariant cohomology of such spaces.) If however the
rank of K is strictly smaller than the rank of G, then the isotropy action is not
necessarily equivariantly formal, and in general it is unclear when this is the
case.1 Restricting our attention to symmetric spaces of compact type, we will
prove the following theorem.

Theorem. Let (G,K) be a symmetric pair of compact type, where G and K
are compact connected Lie groups. Then the K-action on the symmetric space
M = G/K by left translations is equivariantly formal.

For symmetric spaces of type II, i.e., compact Lie groups, this result is already
known, see Section 4.3. More generally, in the case of symmetric spaces of split
rank (rankG = rankK + rankG/K), the fact that all K-isotropy groups have
maximal rank implies equivariant formality, see Section 4.5. However, for the
general case we have to rely on an explicit calculation of the dimension of the

1A sufficient condition for equivariant formality of the isotropy action was introduced in
[17], see Remark 4.2 below. If K belongs to a certain class of subtori of G this condition is
in fact an equivalence, see [18].
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cohomology of the T -fixed point set MT , where T ⊂ K is a maximal torus,
in order to use the characterization of equivariant formality via the condition
dimH∗(MT ) = dimH∗(M). With the help of the notion of compartments
introduced in [1] and several results proven therein we will find in Section 4.1
a calculable expression for this dimension, and after reducing to the case of
an irreducible simply-connected symmetic space in Section 4.2 we can invoke
the classification of such spaces to show equivariant formality in each of the
remaining cases by hand. On the way we obtain a formula for the number of
compartments in a fixed K-Weyl chamber, see Proposition 4.14.

Acknowledgements. The author wishes to express his gratitude to
Augustin-Liviu Mare for interesting discussions on a previous version of the
paper.

2 Symmetric spaces

Let G be a connected Lie group and K ⊂ G a closed subgroup. Then K is
said to be a symmetric subgroup of G if there is an involutive automorphism
σ : G → G such that K is an open subgroup of the fixed point subgroup Gσ.
We will refer to the pair (G,K) as a symmetric pair, and G/K is a symmetric
space.
Given a symmetric pair (G,K) with corresponding involution σ : G → G, then
the Lie algebra g decomposes into the (±1)-eigenspaces of σ: g = k ⊕ p, and
the usual commutation relations hold: [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. The
rank of G/K is by definition the maximal dimension of an abelian subalgebra
of p. Then clearly rankG− rankK ≤ rankG/K, and if equality holds, then we
say that G/K is of split rank.
A symmetric pair (G,K) is called (almost) effective ifG acts (almost) effectively
on G/K. Given a symmetric pair (G,K), then the kernel N ⊂ G of the G-
action on G/K is contained in K, and (G/N,K/N) is an effective symmetric
pair with (G/N)/(K/N) = G/K. An almost effective symmetric pair (G,K)
(and the corresponding symmetric space G/K) will be called of compact type
if G is a compact semisimple Lie group. In this paper only symmetric spaces
of compact type will occur. If (G,K) is effective, then G can be regarded
as a subgroup of the isometry group of G/K with respect to any G-invariant
Riemannian metric on G/K. If (G,K) is additionally of compact type, then
this inclusion is in fact an isomorphism between G and the identity component
of the isometry group.

3 Equivariant formality

The equivariant cohomology of an action of a compact connected Lie group
K on a compact manifold M is by definition the cohomology of the Borel
construction

H∗
K(M) = H∗(EK ×K M);
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we use real coefficients throughout the paper. The projection EK ×K M →
EK/K = BK to the classifying space BK of K induces on H∗

K(M) the struc-
ture of an H∗(BK)-algebra.

An action of a compact connected Lie group K on a compact manifold M is
called equivariantly formal in the sense of [3] if H∗

K(M) is a free H∗(BK)-
module. If the K-action on M is equivariantly formal then automatically

H∗
K(M) = H∗(M)⊗H∗(BK) (1)

as graded H∗(BK)-modules, see [2, Proposition 2.3]. In the following proposi-
tion we collect some known equivalent characterizations of equivariant formal-
ity.

Proposition 3.1. Consider an action of a compact connected Lie group K on
a compact manifold M , and let T ⊂ K be a maximal torus. Then the following
conditions are equivalent:

1. The K-action on M is equivariantly formal.

2. The T -action on M is equivariantly formal.

3. The cohomology spectral sequence associated to the fibration ET ×T M →
BT collapses at the E2-term.

4. We have dimH∗(M) = dimH∗(MT ).

5. The natural map H∗
T (M) → H∗(M) is surjective.

Proof. For the equivalence of (1) and (2) see [5, Proposition C.26]. The Borel
localization theorem implies that the rank of H∗

T (M) as an H∗(BT )-module
always equals dimH∗(MT ). Then [5, Lemma C.24] implies the equivalence
of (2), (3), and (4); see also [10, p. 46]. For the equivalence to (5), see [13,
p. 148].

Note that by [10, p. 46] the inequality dimH∗(MT ) ≤ dimH∗(M) holds for
any T -action on M . Condition (5) in the proposition shows that

Corollary 3.2. If a compact connected Lie group K acts equivariantly for-
mally on a compact manifold M , then so does every connected closed subgroup
of K.

Applying the gap method to the spectral sequence in Item (3) of Proposition
3.1 we obtain the following well-known sufficient condition for equivariant for-
mality.

Proposition 3.3. Any action of a compact Lie group K on a compact manifold
M with Hodd(M) = 0 is equivariantly formal.
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4 Isotropy actions on symmetric spaces of compact type

Let G be a compact connected Lie group and K ⊂ G a compact connected sub-
group. Because an equivariantly formal torus action always has fixed points,
the only tori T ⊂ G that can act equivariantly formally on G/K by left trans-
lations are those that are conjugate to a subtorus of K. On the other hand,
if a maximal torus T of K acts equivariantly formally on G/K, then we know
by Corollary 3.2 that all these tori do in fact act equivariantly formally. In
the following, we will prove that this indeed happens for symmetric spaces of
compact type. More precisely:

Theorem 4.1. Let (G,K) be a symmetric pair of compact type, where G and
K are compact connected Lie groups. Then the K-action on the symmetric
space G/K by left translations is equivariantly formal.

Remark 4.2. The pair (G,K) is a Cartan pair in the sense of [4], see [4, p. 448].
Therefore, [17, Theorem A] shows that a sufficient condition for the K-action
on G/K to be equivariantly formal is that the map H∗(G/K)NG(K) → H∗(G)
induced by the projection G → G/K, where NG(K) acts on G/K from the
right, is injective. It would be interesting to know whether a symmetric pair
always satisfies this condition.

4.1 The fixed point set of a maximal torus in K

Let (G,K) be a symmetric pair of compact type, where G and K are compact
connected Lie groups. Denote by σ : G → G the corresponding involutive
automorphism. Then M = G/K is a symmetric space of compact type. We
fix maximal tori TK ⊂ K and TG ⊂ G such that TK ⊂ TG. Let g = k ⊕ p be
the decomposition of the Lie algebra g into eigenspaces of σ.
In order to prove Theorem 4.1 we can without loss of generality assume that
the symmetric pair (G,K) is effective: if N ⊂ K is the kernel of the G-action
on G/K, then clearly the K-action on G/K = (G/N)/(K/N) is equivariantly
formal if and only if the K/N -action is equivariantly formal. (This follows
for example from Proposition 3.1 because the fixed point sets of appropriately
chosen maximal tori in K and K/N coincide.)

Lemma 4.3. The TK-fixed point set in M is NG(TK)/NK(TK).

Proof. An element gK ∈ M is fixed by TK if and only if g−1TKg ⊂ K (i.e.,
g−1TKg is a maximal torus in the compact Lie group K), which is the case if
and only if there is some k ∈ K with k−1g−1TKgk = TK . Thus, (G/K)TK =
NG(TK)/NG(TK) ∩K = NG(TK)/NK(TK).

Lemma 4.4 ([15, Proposition VII.3.2]). TG is the unique maximal torus in G
containing TK .

Lemma 4.4 implies that the Lie algebra tg of TG decomposes according to the
decomposition g = k⊕ p as tg = tk⊕ tp. (In fact, this statement is the first part
of the proof of [15, Proposition VII.3.2].)
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Proposition 4.5. Each connected component of MTK is a torus of dimension
rankG− rankK.

Proof. Because of Lemma 4.4, the abelian subalgebra tp ⊂ p is the space of ele-
ments in p that commute with tk. Thus, Lemma 4.3 implies that the component
of MTK containing eK is TG/(TG ∩K) = TG/TK (note that the centralizer of
TK in K is exactly TK), i.e., a rankG− rankK-dimensional torus. Because the
fixed set MTK is a homogeneous space, all components are diffeomorphic.

We therefore understand the structure of the TK-fixed point set MTK if we
know its number of connected components, which we denote by r. In view of
condition (4) in Proposition 3.1, we are mostly interested in the dimension of
its cohomology. Proposition 4.5 implies immediately:

Proposition 4.6. We have dimH∗(MTK ) = 2rankG−rankK · r.

In order to get a calculable expression for r we will use several results from
[1, Sections 5 and 6] which we now collect. Denote by ∆G = ∆g the root
system of G with respect to the maximal torus TG, i.e., the set of nonzero
elements α ∈ t∗g such that the corresponding eigenspace gα = {X ∈ gC |
[W,X ] = iα(W )X for all W ∈ tg} is nonzero. Then we have the root space
decomposition

gC = tCg ⊕
⊕

α∈∆g

gα. (2)

The g-Weyl chambers are the connected components of the set tg\
⋃

α∈∆g
kerα.

Because of Lemma 4.4, tk contains g-regular elements, hence no root in ∆g van-
ishes on tk. Therefore some of the g-Weyl chambers intersect tk nontrivially, and
following [1] we will refer to these intersections as compartments. Considering
as in [1] the decomposition of ∆g into complementary subsets ∆g = ∆′ ∪∆′′,
where

∆′ = {α ∈ ∆g | gα 6⊂ pC}, ∆′′ = {α ∈ ∆g | gα ⊂ pC}, (3)

we have by [1, Lemma 9] that the root system ∆K = ∆k of K with respect to
TK is given by

∆k = {α|tk | α ∈ ∆′}. (4)

In particular, g-regular elements in tk are also k-regular, and hence each com-
partment is contained in a k-Weyl chamber.
Because of Lemma 4.4, the group NG(TK) is a subgroup of NG(TG). Both
groups have the same identity component TG, so we may regard the quotient
group NG(TK)/TG as a subgroup of the Weyl group W (G) of G. The free
action of W (G) on the g-Weyl chambers induces an action of NG(TK)/TG on
the set of compartments. Because any two compartments are G-conjugate [1,
Theorem 10], this action is simply transitive on the set of compartments, and
it follows that the number of connected components of NG(TK) equals the
total number of compartments in tk. On the other hand no connected com-
ponent of NG(TK) contains more than one connected component of NK(TK).

Documenta Mathematica 17 (2012) 79–94



84 Oliver Goertsches

(It is sufficient to check this for the identity component TG of NG(TK). An
element in NK(TK) ∩ TG is an element in K centralizing TK , hence already
contained in TK .) Because the number of connected components of NK(TK)
equals the number of k-Weyl chambers, and each k-Weyl chamber contains the
same number of compartments [1, Theorem 10], we have shown the following
lemma.

Lemma 4.7. The number r of connected components of MTK =
NG(TK)/NK(TK) is the number of compartments in a fixed k-Weyl cham-
ber. In particular it only depends on the Lie algebra pair (g, k).

Let C be a g-Weyl chamber that intersects tk nontrivially. By [1, Lemma
8] the compartment C ∩ tk can be described explicitly: The involution σ :
G → G permutes the g-Weyl chambers and fixes tk, hence it fixes C. Let
B = {α1, . . . , αrankG} be the corresponding simple roots such that C is exactly
the set of points where the elements of B take positive values. The involution σ
acts as a permutation group on B because for any i the linear form αi◦σ is again
positive on C. Note that for every root α ∈ ∆g the linear form 1

2 (α + α ◦ σ)
vanishes on tp and coincides with α|tk on tk. The set B|tk = {αi|tk | i =
1, . . . , rankG} is a basis of t∗k (in particular it consists of dim tk elements) and
the compartment C ∩ tk is exactly the set of points in tk where all αi|tk take
positive values. It is a simplicial cone bounded by the hyperplanes ker αi|tk .
Any such hyperplane is either a wall of a k-Weyl chamber or the kernel of a
g-root αi with αi ◦σ = αi, see (4). In any case, reflection along the hyperplane
defines an element ofNG(TK)/TG and takes C∩tk to an adjacent compartment.
(This argument is taken from the proof of [1, Theorem 10].)
It follows that the action of NG(TK)/TG on the set of compartments described
above is generated by the reflections along all hyperplanes ker α|tk , where α ∈
∆g. Let 〈·, ·〉 be the Killing form on g. The decomposition g = k⊕p is orthogonal
with respect to 〈·, ·〉. We identify t∗g with tg and t∗k with tk via 〈·, ·〉. For α ∈ ∆g,
let Hα ∈ tg be the element such that α(H) = 〈H,Hα〉 for all H ∈ tg. Given
X ∈ tg, we write X

k and Xp for the k- and p-parts of X respectively. Then Hk
α

corresponds to α|tk under the isomorphism tk ∼= t∗k .

Lemma 4.8. Let α ∈ ∆g be a root with α ◦ σ 6= α. Then either

1. 〈Hα, Hα◦σ〉 = 0 and |Hp
α|

2 = |Hk
α|

2 or

2. 2 · 〈Hα,Hα◦σ〉
|Hα|2 = −1, |Hp

α|
2 = 3|Hk

α|
2 and α+ α ◦ σ ∈ ∆g.

Proof. We have Hα◦σ = Hk
α −Hp

α, and because ∆g is a root system it follows
that

2 ·
〈Hα, Hα◦σ〉

|Hα|2
= 2 ·

|Hk
α|

2 − |Hp
α|

2

|Hk
α|

2 + |Hp
α|2

∈ Z.

Because α and α ◦ σ are roots of equal length, this integer can only equal 0
or ±1 [12, Proposition 2.48.(d)]. Further, because α − α ◦ σ is not a root (by
Lemma 4.4 no root vanishes on tk) and not 0, only the possibilities 0 and −1
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remain, and in the latter case we also have that α+α◦σ ∈ ∆g [12, Proposition
2.48.(e)].

Proposition 4.9. The set ∆g|tk = {α|tk | α ∈ ∆g} is a root system in t∗k .

Proof. It is clear that ∆g|tk spans t∗k . We have to check that for all α, β ∈ ∆g,
the quantity

2 ·
〈Hk

α, H
k
β〉

|Hk
α|

2
(5)

is an integer. With respect to the decomposition ∆g = ∆′ ∪∆′′ (see (3)) there
are four cases:

If both α and β are elements of ∆′, then (5) is an integer because α|tk and β|tk
are k-roots, see (4). In case α and β are elements of ∆′′, then the corresponding
vectorsHα andHβ are already elements of tk, soH

k
α = Hα andHk

β = Hβ , hence
(5) is an integer.

Consider the case that α ∈ ∆′′ and β ∈ ∆′. Then Hα = Hk
α ∈ tk, hence

2 ·
〈Hk

α, H
k
β〉

|Hk
α|

2
= 2 ·

〈Hα, Hβ〉

|Hα|2
∈ Z.

The last case to be considered is that α ∈ ∆′ and β ∈ ∆′′. In this case
Hβ = Hk

β ∈ tk. It may happen that Hα ∈ tk, but then the claim would follow
as before, so we may assume that Hα /∈ tk. It follows that α ◦ σ is a root
different from α. By Lemma 4.8 we have |Hp

α|
2 = c|Hk

α|
2 with c = 1 or c = 3.

We know that

2 ·
〈Hα, Hβ〉

|Hα|2
= 2 ·

〈Hk
α, H

k
β〉

|Hk
α|

2 + |Hp
α|2

=
2

1 + c
·
〈Hk

α, H
k
β〉

|Hk
α|

2

is an integer, hence multiplying with the integer 1 + c shows that (5) is an
integer in this case as well.

Next we have to check that for each α ∈ ∆g the reflection sα|
tk

: tk → tk along

ker α|tk defined by

X 7→ X − 2 ·
〈Hk

α, X〉

|Hk
α|

2
Hk

α (6)

sends {Hk
β | β ∈ ∆g} to itself. If Hα ∈ tk (this includes the case α ∈ ∆′′), then

the reflection sα : tg → tg along kerα leaves invariant tk, and (6) is nothing but
the restriction of this reflection to tk. Thus, {H

k
β | β ∈ ∆g} is sent to itself.

Let α ∈ ∆′ with Hα /∈ tk. We treat the two cases that can arise by Lemma 4.8
separately: assume first that 〈Hα, Hα◦σ〉 = 0. In this case the two reflections
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sα and sα◦σ commute and we have, recalling that Hα◦σ = Hk
α −Hp

α,

sα◦σ◦sα(X) = X − 2 ·
〈Hα, X〉

|Hα|2
Hα − 2 ·

〈Hα◦σ , X〉

|Hα◦σ|2
Hα◦σ

= X − 2 ·
〈Hα, X〉+ 〈Hα◦σ, X〉

2|Hk
α|

2
Hk

α − 2 ·
〈Hα, X〉 − 〈Hα◦σ, X〉

2|Hp
α|2

Hp
α

= X − 2 ·
〈Hk

α, X〉

|Hk
α|

2
Hk

α + 2 ·
〈Hp

α, X〉

|Hp
α|2

Hp
α.

In particular for each β ∈ ∆g the vector Hk
β − 2 ·

〈Hk
α,Hk

β〉

|Hk
α|2

Hk
α is the k-part of

some vector Hγ , which shows that (6) sends {Hk
β | β ∈ ∆g} to itself.

In the second case of Lemma 4.8 we have that α + α ◦ σ ∈ ∆g, with ker(α +
α ◦ σ) = ker α|tk ⊕ tp. Thus, the reflection sα|

tk

is nothing but the restriction

of sα+α◦σ to tk; in particular it sends {Hk
β | β ∈ ∆g} to itself.

Remark 4.10. The root system ∆g|tk is not necessarily reduced: if there exists
a root α ∈ ∆g with α ◦ σ 6= α for which the second case of Lemma 4.8 holds,
then it contains α|tk as well as 2 · α|tk . This happens for instance for SU(2m+
1)/ SO(2m+ 1).

Because B is the set of simple roots of ∆g every root α ∈ ∆g can be written
as a linear combination of elements in B with integer coefficients of the same
sign. It follows that every restriction α|tk ∈ ∆|tk is a linear combination of
elements in B|tk of the same kind. We thus have proven the following lemma.

Lemma 4.11. The ∆g|tk-Weyl chambers are exactly the compartments. If C
is a g-Weyl chamber that intersects tk nontrivially, with corresponding set of
simple roots B ⊂ ∆g, then B|tk is the set of simple roots of the root system
∆g|tk corresponding to C ∩ tk.

Recall that the NG(TK)/TG-action on the set of compartments was shown to
be generated by the reflections along all hyperplanes ker α|tk , where α ∈ ∆g.
Thus, we obtain

Corollary 4.12. The NG(TK)/TG-action on the set of compartments is the
same as the action of the Weyl group W (∆g|tk). In particular, it is generated

by the reflections along the hyperplanes ker αi|tk . Furthermore, r =
|W (∆g|tk

)|

|W (k)| .

Recall that whereas a reduced root system is determined by its simple roots
[12, Proposition 2.66], this is no longer true for nonreduced root systems such
as ∆g|tk , see [12, II.8]. However, the reduced elements in a nonreduced root
system always form a reduced root system [12, Lemma 2.91] with the same
simple roots and the same Weyl group. Using the following proposition taken
from [15] we will identify this reduced root system contained in ∆g|tk with the
root system of a second symmetric subalgebra k′ ⊂ g.
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Proposition 4.13 ([15, Proposition VII.3.4]). There is an extension of σ :
tg → tg to an involutive automorphism σ′ : g → g such that its C-linear
extension σ′ : gC → gC satisfies σ′|gα

= id for every root α ∈ B with α = α◦σ.

The root system of the fixed point algebra k′ = gσ
′

relative to the maximal
abelian subalgebra tk has B|tk as simple roots.

The roots of k′ relative to tk are restrictions of certain (not necessarily all)
elements in ∆g to tk; the restrictions of all elements in B occur. See [15,
p. 129] for the root space decomposition of k′ with respect to kk. Because the
sub-root system of reduced elements in ∆g|tk and the root system of k′ have
the same simple roots, these reduced root systems coincide. In particular we
obtain the following formula for r:

Proposition 4.14. We have r = |W (k′)|
|W (k)| .

Example 4.15. If rankG = rankK, i.e., if TK is also a maximal torus of
G, then the identity on g satisfies the conditions of Proposition 4.13. Hence

k′ = g and the proposition says r = |W (G)|
|W (K)| . This however follows already from

Lemma 4.3.

Example 4.16. If G/K is a symmetric space of split rank, i.e., rankG =
rankK + rankG/K, then σ itself satisfies the conditions of Proposition 4.13.
In fact, let α ∈ B with α = α ◦ σ. In this case α vanishes on tp, which
implies that gα is contained either in kC or in pC. But if it was contained in
pC, then [tp, gα] = 0 and [tp, g−α] = 0, which would contradict the fact that tp
is maximal abelian in p. Thus, we have r = 1 in the split rank case. Note that
r = 1 also follows from [1, Lemma 13], combined with Lemma 4.7.

Example 4.17. The symmetric space G/K ′, where K ′ is the connected sub-
group of G with Lie algebra k′, is not always of split rank. Assume as in Remark
4.10 that there exists a root α ∈ ∆g with α ◦ σ 6= α such that α+ α ◦ σ ∈ ∆g.
Let X ∈ gα be nonzero. Then [X, σ′(X)] is a nonzero element in gα+α◦σ. We
have σ′([X, σ′(X)]) = −[X, σ′(X)], thus [X, σ′(X)] ∈ p′, where p′ is the −1-
eigenspace of σ′. By definition of σ′ we have tp ⊂ p′, but tp is not a maximal
abelian subspace of p′ because it commutes with [X, σ′(X)]. For example, in
the case SU(2m+ 1)/ SO(2m+ 1) we have K ′ = K although the space is not
of split rank, see Subsection 4.6.2 below.

We will use below that the symmetric subalgebra k′ can be determined via the
Dynkin diagram of G: σ defines an automorphism of the Dynkin diagram of
G (because it is a permutation group of B), which is nontrivial if and only if
rank g > rank k. One can calculate the root system of k′ via the fact that by
Proposition 4.13 the simple roots of k′ are given by B|tk = { 1

2 (αi+αi ◦σ) | i =
1, . . . , rankG}.
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4.2 Reduction to the irreducible case

Lemma 4.18. If (G,K) and (G′,K ′) are two effective symmetric pairs of con-
nected compact semisimple Lie groups associated to the same pair of Lie alge-
bras (g, k), then the K-action on G/K is equivariantly formal if and only if the
K ′-action on G′/K ′ is equivariantly formal.

Proof. Because K and K ′ are connected, both H∗(G/K) and H∗(G′/K ′)
are given as the R-algebra of k-invariant elements in Λ∗p, see [20, Theorem
8.5.8]. In particular dimH∗(G/K) = dimH∗(G′/K ′). Choosing maximal
tori T ⊂ K and T ′ ⊂ K ′, we furthermore know from Propositions 4.6 and
4.7 that dimH∗((G/K)T ) = dimH∗((G′/K ′)T

′

) because (G,K) and (G′,K ′)
correspond to the same Lie algebra pair. The statement then follows from
Proposition 3.1.

Lemma 4.19. Given actions of compact connected Lie groups Ki on compact
manifolds Mi (i = 1 . . . n), then the K1 × . . .×Kn-action on M1 × . . .×Mn is
equivariantly formal if and only if all the Ki-actions on Mi are equivariantly
formal.

Proof. Choose maximal tori Ti ⊂ Ki. Then T1× . . .×Tn is a maximal torus in
K1×. . .×Kn. The claim follows from Proposition 3.1 because the T1×. . .×Tn-
fixed point set is exactly the product of the Ti-fixed point sets.

Lemmas 4.18 and 4.19 imply that for proving Theorem 4.1 it suffices to check
it for effective symmetric pairs (G,K) of compact connected Lie groups such
that G/K is an irreducible simply-connected symmetric space of compact type.
Below we will make use of the classification of such spaces, see [8].

4.3 Lie groups

Given a compact connected Lie group G, the product G × G acts on G via
(g1, g2) ·g = g1gg

−1
2 . The isotropy group of the identity element is the diagonal

D(G) ⊂ G × G. In the language of Helgason [8], we obtain an irreducible
symmetric pair (G×G,D(G)) of type II. The D(G)-action on (G×G)/D(G)
is nothing but the action of G on itself by conjugation. But for any compact
connected Lie group, the action on itself by conjugation is equivariantly formal.
In fact, if T ⊂ G is a maximal torus, then the fixed point set of the T -action,
GT , is T itself, and thus dimH∗(GT ) = dimH∗(T ) = 2rankG = dimH∗(G).
For other ways to prove that this action is equivariantly formal see [2, Example
4.6]. For instance, equivariant formality would also follow from Proposition
4.23 below as (G×G,D(G)) is of split rank.

4.4 Inner symmetric spaces

Consider the case that the symmetric space G/K of compact type is inner, i.e.,
that the involution σ is inner. By [8, Theorem IX.5.6] this is the case if and
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only if rankG = rankK. Hence, a maximal torus TK ⊂ K is also a maximal
torus in G, and the TK-fixed point set is by Lemma 4.3 a finite set of cardinality
|W (G)|
|W (K)| . Because of the following classical result (see for example [4, Chapter

XI, Theorem VII]), the case of inner symmetric spaces is easy to deal with.

Proposition 4.20. Given any compact connected Lie groups K ⊂ G, the fol-
lowing conditions are equivalent:

1. rankG = rankK.

2. χ(G/K) > 0.

3. Hodd(G/K) = 0.

It follows from Proposition 3.3 that the K-action on a homogeneous space
G/K with rankG = rankK is always equivariantly formal. Alternatively, [2,
Corollary 4.5] implies that the G-action onG/K is equivariantly formal because
all its isotropy groups have rank equal to the rank of G. Then by Corollary 3.2
any closed subgroup of G acts equivariantly formally on G/K.

Proposition 4.21. If rankG = rankK, then the K-action on G/K is equiv-
ariantly formal. If TK ⊂ K is a maximal torus, then the fixed point set of the

induced TK-action consists of exactly dimH∗(G/K) = |W (G)|
|W (K)| points.

Remark 4.22. This is not a new result. For an investigation of the (algebra
structure of the) equivariant cohomology of homogeneous spaces G/K with
rankG = rankK see [7], or [9, Section 5] for an emphasis on other coefficient
rings.

4.5 Spaces of split rank

Also when G/K is of split rank, i.e., rankG = rankK + rankG/K, there is a
general argument that implies equivariant formality of the K-action on G/K.

Proposition 4.23. If G/K is of split rank, then the natural K-action on G/K
is equivariantly formal.

Proof. We will show that everyK-isotropy algebra has maximal rank, i.e., rank
equal to rank k. Then equivariant formality follows from [2, Corollary 3.5].
Consider the decomposition g = k ⊕ p and choose any AdK-invariant scalar
product on p that turns G/K into a Riemannian symmetric space. Then we
have an exponential map exp : p → G/K, and it is known that every orbit of
the K-action on G/K meets exp(a), where a is a maximal abelian subalgebra
of p. Because G/K is of split rank, there is a maximal torus TK ⊂ K such that
tk ⊕ a is abelian. The torus TK acts trivially on exp(a). Thus, the K-isotropy
algebra of any point in exp(a) (and hence of any point in M) has maximal
rank.

In the split-rank case we have r = 1 by Example 4.16. We thus have
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Proposition 4.24. If G/K is of split rank then dimH∗(G/K) = 2rankG/K . If
TK ⊂ K is a maximal torus, then the fixed point set of the induced TK-action
on G/K is a rankG/K-dimensional torus (in particular connected).

4.6 Outer symmetric spaces which are not of split rank

For the remaining cases that are not covered by any of the arguments above,
i.e., irreducible simply-connected symmetric spaces of type I that are neither
of equal nor of split rank, we do not have a general argument for equivariant
formality of the isotropy action. Using the classification of symmetric spaces [8,
p. 518], we calculate for each of these spaces the dimension of the cohomology
of the TK-fixed point set and show that it coincides with the dimension of
the cohomology of G/K (which we take from the literature), upon which we
conclude equivariant formality via Proposition 3.1. Fortunately, there are only
three (series of) such symmetric spaces, namely

SU(n)/ SO(n), SO(2p+ 2q + 2)/ SO(2p+ 1)× SO(2q + 1), and E6/PSp(4),

where n ≥ 4 and p, q ≥ 1. We have shown with Propositions 4.6 and 4.14 that

dimH∗((G/K)TK ) = 2rank g−rank k ·
|W (k′)|

|W (k)|
,

where the symmetric subalgebra k′ ⊂ g was introduced in Proposition 4.13.
Because in this section we are dealing with outer symmetric spaces, we have
rank g > rank k, so k′ 6= g is a symmetric subgroup of g. The orders of the
appearing Weyl groups are listed in [11, p. 66].

4.6.1 SU(2m)/ SO(2m)

Let M = SU(2m)/ SO(2m), where m ≥ 2, and T ⊂ SO(2m) be a maximal
torus. The only connected symmetric subgroup of SU(2m) of rank m different
from SO(2m) is Sp(m). The fact that k′ = sp(m) can be visualized via the
Dynkin diagrams: the involution σ fixes only the middle root of the Dynkin
diagram A2m−1 of SU(2m). Hence, after restricting, the middle root becomes
a root which is longer than the other roots, and only in Cm there exists a root
longer than the others, not in Dm.

We thus may calculate

r =
|W (Cm)|

|W (Dm)|
=

2m ·m!

2m−1 ·m!
= 2;
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note that for this example the number of compartments was also calculated in
[1, p. 11]. It is known that dimH∗(M) = 2m (see for example [4, p. 493] or
[14, Theorem III.6.7.(2)]), hence

dimH∗(MT ) = 22m−1−m · r = 2m = dimH∗(M).

Thus, the action is equivariantly formal.

4.6.2 SU(2m+ 1)/ SO(2m+ 1)

Let M = SU(2m + 1)/ SO(2m + 1), where m ≥ 2, and T ⊂ SO(2m + 1) be a
maximal torus. It is known that dimH∗(M) = 2m (see for example [4, p. 493]
or [14, Theorem III.6.7.(2)]), hence

2m · r = dimH∗(MT ) ≤ dimH∗(M) = 2m

for some natural number r. Thus necessarily r = 1 (in fact k′ = so(2m + 1))
and the action is equivariantly formal. Note that this space is also listed as
an exception in [1] as it is the only outer symmetric space which is not of
split rank such that the corresponding involution fixes no root in the Dynkin
diagram (and hence every compartment is a K-Weyl chamber).

4.6.3 SO(2p+ 2q + 2)/ SO(2p+ 1)× SO(2q + 1)

Let M = SO(2p + 2q + 2)/ SO(2p + 1) × SO(2q + 1), where p, q ≥ 1, and
T ⊂ SO(2p+1)×SO(2q+1) be a maximal torus. The only connected symmetric
subgroups of SO(2p+2q+2) of rank p+ q are SO(2p′+1)×SO(2q′+1), where
p′ + q′ = p+ q. The involution σ fixes all roots of the Dynkin diagram Dp+q+1

of SO(2p + 2q + 2) but two; after restricting, these two become a single root
which is shorter than the others. Because Ap+q−1⊕A1 and Dp+q do not appear
as the Dynkin diagram of any of the possible symmetric subgroups, the Dynkin
diagram of k′ is forced to be Bp+q, which means that k′ = so(2p+ 2q + 1).

We thus have

r =
|W (Bp+q)|

|W (Bp)| · |W (Bq)|
=

2p+q · (p+ q)!

2p · p! · 2q · q!
=

(

p+ q

p

)

.

By [4, p. 496] we have dimH∗(M) = 2 ·
(

p+q
p

)

, and it follows that the action is
equivariantly formal because of

dimH∗(MT ) = 2p+q+1−p−q · r = 2 ·

(

p+ q

p

)

= dimH∗(M).
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4.6.4 E6/PSp(4)

Let M = E6/PSp(4) and T ⊂ PSp(4) be a maximal torus. The only symmetric
subalgebra of e6 of rank 4 different from sp(4) is f4.

We obtain

r =
|W (F4)|

|W (C4)|
=

27 · 32

24 · 4!
= 3.

It is shown in [19] that dimH∗(M) = 12. Thus,

dimH∗(MT ) = 26−4 · r = 22 · 3 = 12 = dimH∗(M)

shows that the action is equivariantly formal.
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