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ABSTRACT. Consider a crystallographic root system together with
its Weyl group W acting on the weight lattice A. Let Z[A]" and
S(A)W be the W-invariant subrings of the integral group ring Z[A]
and the symmetric algebra S(A) respectively. A celebrated result by
Chevalley says that Z[A]" is a polynomial ring in classes of funda-
mental representations py, ..., p, and S(A)" ® Q is a polynomial ring
in basic polynomial invariants qi, ..., ¢,. In the present paper we es-
tablish and investigate the relationship between p;’s and ¢;’s over the
integers. As an application we provide estimates for the torsion of the
Grothendieck ~-filtration and the Chow groups of some twisted flag
varieties up to codimension 4.
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INTRODUCTION

Consider a crystallographic root system ® together with its Weyl group W act-
ing on the weight lattice A of ®. Let Z[A]" and S*(A)" be the W-invariant
subrings of the integral group ring Z[A] and the symmetric algebra S*(A). A
celebrated theorem of Chevalley says that Z[A]" is a polynomial ring over Z in
classes of fundamental representations pi,. .., p, and S*(A)" ® Q is a polyno-
mial ring over Q in basic polynomial invariants qi, ..., g,, where n = rank(®).
Another classical result due to Demazure says that the kernels of character-
istic maps Z[A] — Ky(X) and S*(A) — CH*(X), where X is the variety of
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Borel subgroups of the associated linear algebraic group, are generated by non-
constant W-invariants. This fact provides a link between combinatorics of the
W-action on Z[A] and S*(A) and the respective cohomology rings.

In the present paper we establish and investigate the relationship between p;’s
and ¢;’s. To do this we introduce an equivariant analogue of the Chern class
map ¢; that provides an isomorphism between the truncated rings Z[A]/IJ, and
S*(A)/I7 modulo powers of the respective augmentation ideals. This allows us
to express basic polynomial invariants in terms of fundamental representations
and vice versa, hence, relating the representation theory of the respective Lie
algebra g with the geometry of the variety of Borel subgroups X.

A multiple of ¢; restricted to the respective cohomology (Ko and CH") of X
gives the classical Chern class map ¢;: Ko(X) — CH'(X). This geomeric inter-
pretation provides a powerful tool to compute the annihilators of the torsion
of the Grothendieck ~-filtration on Ky of twisted forms of X as well as a tool
to estimate the torsion part of its Chow groups in small codimensions.

The paper is organized as follows. In the first section we introduce the I-
adic filtrations on Z[A] and S*(A) together with an isomorphism ¢; on their
truncations. Then we study the subrings of invariants and introduce the key
notion of an exponent 7; of a W-action on a free abelian group A. Roughly
speaking, the integers 7; measure how far is the ring S*(A)" from being a
polynomial ring in ¢;’s. In section 5 we estimate all the exponents up to degree 4
and show that they all divide the Dynkin index of the Lie algebra g. We would
like to stress that the procedure of estimating 7;-s has an algorithmic nature,
i.e. given a group and an integer ¢ one can estimate 7; for this group just
using the explicit formulas for W-invariant polynomials. Finally, we apply the
obtained results to estimate the torsion in Grothendieck v-filtration of some
twisted flag varieties.
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8836-20121. The last author has been supported by the NSERC Discovery
grant 385795-2010, Accelerator Supplement 396100-2010 and an Early Re-
searcher Award (Ontario).

1. TWO FILTRATIONS

Consider the two covariant functors S*(—) and Z[—] from the category of
abelian groups to the category of commutative rings

S*(=): A S*(A) and Z[]: A — Z[A]

given by taking the symmetric algebra of an abelian group A and the integral
group ring of A respectively. The ith graded component S%(A) is additively
generated by monomials A Az ... \; with A; € A and the ring Z[A] is additively
generated by exponents e, A € A.
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Basic POLYNOMIAL INVARIANTS, ... 137

The trivial group homomorphism induces the ring homomorphisms
€qa: S(A) = Z and €,,: Z[A] = Z
called the augmentation maps. By definition ¢, sends every element of positive
degree to 0 and ¢, sends every e* to 1. Let I, and I,, denote the kernels
of €, and €, respectively. Observe that I, = S”9(A) consists of elements of
positive degree and I,,, is generated by differences (1 —e~*), A € A. Consider
the respective I-adic filtrations:
S* M) =121, 2172 ... and Z[A] = I}, 2 1,, 2 I}, 2 ...
and let o o
gra(&) =PI/ 1 and gy, (A) = P L, /I
i>0 i>0
denote the associated graded rings. Observe that gr’(A) = S*(A).
1.1. EXAMPLE. If A ~ Z, then the ring S*(A) can be identified with the poly-
nomial ring in one variable Z[w], where w is a generator of A and the ring Z[A]
can be identified with the Laurent polynomial ring Z[z,2~!] where z = e*.
The augmentations €, and €, are given by

€e:wr—0and €,,: x— 1.

We have I, = (w) and I,,, is additively generated by differences (1 —2"), n € Z.
Note that the rings Z[w] and Z[z,x~!] are not isomorphic, however they be-
come isomorphic after the truncation. Namely for every ¢ > 0 there is ring
isomorphism

b Zlw,a )1 S Tl I
defined by ¢;: 7 +— (1 —w)™! =14+ w+ ...+ w® with the inverse defined by
qﬁ;l: w1 — 271 Tt is useful to keep the following picture in mind

Zlw,z7 ] =——— Z[]

e

Zlw, o )/ 2 ZL /I
observing that the inverse ¢; ! can be lifted to the map Z[w] — Z[z, ] but
¢; can’t.
The example can be generalized as follows:

1.2. LEMMA. [GZ10, 2.1] Assume that A is a free abelian group of finite rank
n. The rings Z[A] and S*(A) become isomorphic after truncation. Namely, if
{wi,...,wn} is a Z-basis of A, then for every i > 0 there is a ring isomorphism

¢i: ZIN]/I S ST (0 /1
defined by ¢;(1) =1 and

n

du(e ) = T (1 =)™

Jj=1
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with the inverse defined by d)i—l(wj) =1—e v,

Note that the map ¢; preserves the [-adic filtrations. Indeed, by definition
¢i(I3,) C IJ for every 0 < j < i. Moreover, we have the following

1.3. LEMMA. (c¢f. [CPZ, 4.2]) The isomorphism ¢; restricted to the subsequent
quotients I, /TSFY doesn’t depend on the choice of a basis of A. Hence, there is
an induced canonical isomorphism of graded rings

G = Diz00i : gri,(A) —> gri(A) = S*(A).

Proof. Indeed, in this case we can define the inverse ¢; ': I /Ii+1 — i /Ti+1
by

G (MA2 o N) =L —e M) (L—e ) (1—e ).
It is well-defined since (1 —e ) = (1 —e )+ (1 —e ) modulo I2,. O

Consider the composite of the map ¢; with the projections
601 ZIN] = ZIN] /T 25 §7 (M) /T = ST(A).

The map ¢, and therefore ¢;, can be computed on generators e, A € A as
follows:

Let f(z) = [[;(1 —w;z)~%, where A =}, a;jw;. Then

; o 1d f(2)
(7) Zj ajw;y —
¢ (6 ) il dzt =0
To compute the derivatives of f(z) we observe that f'(z) = f(2)g(z), where

_ pe ilajwitt . .
9(2) = 32, ajwi(1l — w;z) ! and %(f) =3 W Hence, starting with

go = 1 we obtain the following recursive formulas

TIE) _ 1) u(2), where 0i2) = (2)i1(2) + i (2).

1.4. EXAMPLE. For small values of ¢ we obtain
i| il g (et) =
A
A4+ A(2)
A3 4+ 3A(2)X + 2A(3)
A+ 6A(4) + 6A(2)A2 + 8A(3)A + 3A(2)2
where given a presentation A = 2?21 aj \wj, ajx € Z in terms of the basis
{wi,wa, ... wy} we set A(m) =377 aj w! for m > 1.

= W N

2. INVARIANTS AND EXPONENTS

Let W be a finite group which acts on a free abelian group A of finite rank by
Z-linear automorphisms. Consider the induced action of W on Z[A] and S*(A).
Observe that it is compatible with the I-adic filtrations, i.e. W(I%) C I’ and
W(I) C I for every i > 0.
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Basic POLYNOMIAL INVARIANTS, ... 139

Note that the isomorphisms ¢; and ¢, 1 are not necessarily W-equivariant.
However, by Lemma 1.3 their restrictions to the subsequent quotients I7, /I
and I¢ /It = S%(A) are W-equivariant and we have

(L /T )Y = (15 /1)
Let I}V denote the ideal of Z[A] generated by W-invariant elements from the
augmentation ideal I,,, i.e., by elements from Z[A]" N I,,,. Similarly, let I}V

denote the ideal of S*(A) generated by W-invariant elements from I, i.e., by
elements from S*(A)" N I,.

For each x € A let p(x) = Xyew(y e* denote the sum over all elements

of the W-orbit of y. Every element in IV can be written as a finite linear
combination with integer coefficients of the elements p(x) = p(x) — em(p(X)),
X € A. Therefore, the ideal IV is generated by the elements p(), i.e.,

LV =(p(x) | x € A).

The image of IV by means of the composite
ZIA] = ZIA/TE 25 S*(A) /T

is an ideal in S*(A) /I generated by the elements ¢;((x)), x € A. Therefore,
the image of I)V in S%(A) is the ith homogeneous component of the ideal
generated by ¢()(p(x)), where 1 < j <1, x € A, i.e.

S (L) =(f- oD (p00)) |1 <5 <i, feSTIA), x€Nz.
We are ready now to introduce the central notion of the present paper:

2.1. DEFINITION. We say that an action of W on A has finite exponent in degree
1 if there exists a non-zero integer N; such that

Ni - (1) € ¢ (1),

where (IYV)@ = W 0 S¥(A). In this case the g.c.d. of all such N;s will be
called the i-th exponent of the W-action and will be denoted by 7;.

Observe that if () (I'V) is a subgroup of finite index in (IV')(® then 7; is simply
the exponent of ¢ (IW) in (IV)®. Note also that by the very definition
T0 = 1.

2.2. EXAMPLE. Consider A = Z-w with the action w — —w of W = Z/2Z. Then
(I'') is generated by w?, w?, - - -, hence (IV)() = 7w if i is even, 0 otherwise.
On the other hand, ¢ (I'V) is generated by ¢() (p(w)) = ¢ (¥ +e9—2) = w'
if ¢ > 2, 0 otherwise. Therefore, we have 7; = 1 for every ¢ > 0.

3. ESSENTIAL ACTIONS

In the present section we study W-actions that have no W-invariant linear
forms, i.e. we assume that A" = 0. In the theory of reflection groups such
actions are called essential (see [B4-6, V, §3.7] or [Hu]). Note that this imme-
diately implies that 7 = 1.
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3.1. LEMMA. For every x € A and m € Ny we have 3,y () A(m) = 0.

Proof. Let wi,ws,....w, be a Z-basis of A. For m € N} we have
DooAmy= Y (D)= (D a)ef
AEW(x) AEW(x) J=1 J=1 XeW(x)

In particular, for m = 1 we obtain

> a-

AEW (x) J

M:

Z aj,,\)wi.

1 AeW(x)

Since wj, 1 < j < n are Z-free, we

Since A" = 0, we have Drew A =
J S O

have 33\ cy(y) @ja = 0 for all 1 <

3.2. COROLLARY. For every x € A we have
¢(2) Z A2,
AeW (x)
In particular, the quadratic form ¢ (p(x)) is W-invariant, i.e.
¢ (p(x)) € S* (M)
Proof. By the formula for ¢(® in Example 1.4 and by Lemma 3.1 we obtain

that
I O ETID SIC RS RE s

AEW (x) AEW (x) )\EW(X)

3.3. COROLLARY. If S2(A)V = (q) for some q, then ¢ (I)V) is a subgroup of
finite index in (I)V)?).

Proof. The image of the ideal IV is generated by ¢(!)(p(x)) and ¢ (p(x)).
Since A =0, oM (p(x)) = > xew(y A = 0 and by Corollary 3.2, (I is
generated only by the W-invariant quadratic forms ¢ (p(x)). For every y € A
let

(1) 6@ (p(x)) = Ny - ¢, Ny €N.
Then the subgroup ¢ (IW) is a subgroup of (IV')) of exponent

To = ged N,. O
XEA

We now investigate the invariants of degree 3 and 4.

3.4. LEMMA. For every x € A we have

dP ) =15 D (AP +3A2)N).

AEW (x)

DOCUMENTA MATHEMATICA 17 (2012) 135-150



Basic POLYNOMIAL INVARIANTS, ... 141

Proof. By the formula for ¢®) in Example 1.4 and by Lemma 3.1 we obtain
that

dV () =12 D> WP+3A@A+22@3)=F Y (WP +3M2)N). O

AEW () AEW (x)
3.5. LEMMA. For every x € A we have

oW () =55 > [N +6AM2)A +8AB)A +3A(2)°].
AEW (x)

Proof. 1t follows from Example 1.4 and Lemma 3.1. g

4. THE DYNKIN INDEX

In the present section we show that the action of the Weyl group W of a
crystallographic root system ® on the weight lattice A has finite exponent in
degree 2 which coincides with the Dynkin index of the respective Lie algebra.

Let W be the Weyl group of a crystallographic root system ® and let A be
its weight lattice as defined in [Hu, §2.9]. Let {wi,...,w,} be a basis of A
consisting of fundamental weights (here n is the rank of ®).

The Weyl group W acts on A € A by means of simple reflections
si(A)=A—{(a],\) -y, j=1...n

where aJV is the j-th simple coroot and (—, —) is the usual pairing. Note that

(af ,wi) = d;5, where §;; is the Kronecker symbol.

The subring of invariants Z[A]" is the representation ring of the respective Lie
algebra g. By a theorem of Chevalley it is the polynomial ring in classes of
fundamental representations ch(V;) € Z[A]Y, i.e.

Z[N)W ~ Z[ch(V}), ..., ch(V},)].
Note that every ch(V}) is a sum of W-orbits p(x) with some multiplicities.
Therefore, the image ¢ (IV) is the i-th homogeneous component of the ideal
generated by ¢\ (ch(V})), 1 <j <i,l=1...n.
4.1. LEMMA. We have AW = 0 and hence also
SV@AY) = 6O (1) = 0.
Proof. Let n € AW. Since n = sq,(n) = n— (n,af)a; we have (n,a)) =

2(0‘1177)
(ajvaj)

= 0 for all simple roots a;; which implies that 7 = 0. O

4.2. LEMMA. We have S?*(A)W = (q).

Proof. By [GNO04, Prop. 4] there exists an integer valued W-invariant quadratic
form on A which has value 1 on short coroots. As the group S?(A)" is identical
to the group of all integral W-invariant quadratic forms on 7, ® R, the result
follows. O

4.3. COROLLARY. The image ¢®)(IW) is a subgroup of (I)V)(?) of finite index.
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Proof. This follows from Corollary 3.3 and Lemma 4.1. 0

We recall briefly the notion of indices of representations introduced by Dynkin
[Dy57, §2] (See also [Broi]).

Let f: g — ¢’ be a morphism between simple Lie algebras. Then there exists
a unique number j; € C, called the Dynkin index of f, satisfying

(f(‘r)af(y)) = ]’f(w,y),

for all z,y € g, where (—,—) is the Killing form on g and g’ normalized such
that (o, @) = 2 for any long root . In particular, if f: g — sl(V) is a linear
representation, js is a positive integer, called the Dynkin index of the linear
representation f, defined by

tr(f(2), f(y)) = js(2,y).

The Dynkin index of g is defined to be the greatest common divisor of all the
Dynkin indices of all linear representations of g. By [Dy57, (2.24) and (2.25)],
the Dynkin index of g is the greatest common divisor of the Dynkin indexes j;
of its fundamental representations V;, [ = 1...m. All the Dynkin indexes j
were calculated in [Dy57, Table 5]. We provide below the list of Dynkin indexes
taken from [LS97, Prop. 2.6]:

type of g AorC| B, (n>3),D, (n>4), Gy | Fyor Eg | E7 | Eg
Dynkin index 1 2 6 12 | 60

Using the sly-representation theory, the Dynkin index of a linear representation
f g — sl(V) can be described as follows. Let a be a long root. For the formal
character ch(V) = 3_, nye?, one has (see [LS97, Lemma 2.4] or [KNR, 5.1 and
Lemma 5.2])

1 .
Jf = §ZHA<)\a0¢ 2.
A

4.4. THEOREM. The second exponent equals the Dynkin indez of g.

Proof. As explained at the beginning of this section, the image ¢ (IW) is
spanned by ¢ (ch(V})), where V; is the I-th fundamental representation. It
follows that 75 is the greatest common divisor of the integers N; defined by
#?(ch(V;)) = N; - q as in Corollary 3.3.

To find the precise value of 75 we use the explicit formula for ¢(® (p(x)) given
in Corollary 3.2, that is

s (p)) =3 >, N
AEW (x)

Recall that ch(V}) is a sum of W-orbits p(x) of some x € A with some multiplic-
ities. Evaluating ¢ (ch(V})) (considered as a linear combination of ¢(® (p(x)))
at «, where « is long, we obtain that j; = Njg(a¥) = N;. Therefore,
gcd(jl,...,jn):gcd(Nl,...,Nn):TQ. D

We note that Theorem 4.4 was shown in [GZ10, §2] with a different proof.
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5. EXPONENTS OF DEGREES 3 AND 4
In the present section we show that 7, = N3 = Ny for all crystallographic root
systems, i.e. that the exponents 73 and 74 divide the Dynkin index of G.

Let S = {\1,..., A} be a finite set of weights. We denote by —S the set of
opposite weights {—A1,...,—A.}, by Sy the set of sums {\; + Aj}icj, by S—
the set of differences {\; — \;}i<; and by St the disjoint union S II.S_. By
definition we have |54 | = [S_| = (}).

Using the fact that (A+X)(m) = A(m)+ X (m) for every A\, A € A and m > 0 we
obtain the following lemma which will be extensively used in the computations

5.1. LEMMA. (i) For every integer my,mo,z,y > 0 and a finite subset S C A
we have

Y Amy)TA(ma)? = (14 (=1)") 3 Ama)"Ama)".

AeSII-S AES
In particular, Y\ g g M2)A* = 0.

(i1) For every subset S C A with |S| = r and for every my, ma > 0 we have

Z A(mi)A(mz) = (r—1) Z A(my)A(m2) + Z Ai(m1)A;(me) and

AES \eS i#]
D7 Ama)A(ma) = (r—1) Y Ama)A(ma) = Y Ai(ma)A;(ma).
AES_ \ES i#£j

In particular, this implies that
Z A(my)A(m2) =2(r — 1) Z A(m1)A(mz).
AESy AES

A,-CASE. Let ® be of type A, for n > 3. We denote the canonical basis
of R"*! by e; with 1 < i < n + 1. According to [Hu, §3.5 and §3.12] the
basic polynomial invariants of the W-action on A (algebraically independent
homogeneous generators of S*(A)" as a Q-algebra) are given by the symmetric
power sums

Qi!=€§+"'+€;+1, 2<i:<n+1.

Let s; denote the ith elementary symmetric function in eq, ..., e,+1. Using the
classical identities

@ =51, ¢=s1gi-1—52qi—2+. ..+ (1) si1q+(=1)" s, 1<i<n+l
and the fact that s; = 0, we obtain that
q2/2 = —s2, q3/3 = s3, and q4/2 = 53 — 254.

generate (with integral coefficients) the ideal IV up to degree 4.

The fundamental weights of ® can be expressed as follows

wi=e¢€1, wp=¢€+e2 ... ,Wn-1=¢€+...+€x_1, Wp = —€nyi,
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where e; + e3 + ...+ €41 = 0. The orbits of wy, w1 + wy, wy, and wa, wy—1
under the action of the Weyl group W = S,,11 are given by

W(wl) = {61, e ,€n+1} = *W(wn), W(W1 + wn) = {61' — ej}#]— and

W(w2> = {61' + ej}i<j = 7W(wn,1).
Therefore, W(wy + wy,) = S— 11 —S_ and W(ws) = S, where S = W(wy).
Applying Lemma 3.5 and Lemma 5.1 we obtain that

¢ (pwi) + plwn)) = 5 Y (A +8AB)A+3A(2)%) and
AES

S (p(wr +wn) + plwa) +plwn-1)) =35 >, (A +8AB)A+3A2)) =
AESLIT-S4

=3 Y. MY BABIA+3M2)).

AESLIT-S4 €S

Then the difference

D (p(wr + wn) + p(w2) + p(wn—1)) — 21+ ¢ (p(w1) + p(wn)) =

@) = ). XN-og) M=

AESLIT-S4 AES

is a symmetric function in ey, ..., e,41 and, therefore, it can be always written
as a polynomial in ¢;s. Indeed, since

ST oM =2) (it e) +ei—ep)) =An D> N+ 24 ele?,

AESLII—Sy i<j \ES i<j

the difference (2) equals

=Y e = (a3 —a)/2

i<j
5.2. LEMMA. For a root system of type Ay, n > 2, we have 7o =13 =14 = 1.

Proof. Tt is enough to show that the generators ¢2/2, ¢3/3 and g4/2 are in the
ideal generated by the image of ¢V, i < 4.

By Corollary 3.2 we have ¢ (p(w)) = 3 aes A2 = g2/2. By Lemma 3.4 we
have q3/3 = ¢ (p(w1)) — ¢ (p(wy)) (see also [GZ10, §1C]). If @ is of type
As, then s4 = 0 and, hence, ¢4 = ¢3/2. If ® is of type A,, n > 3, then by
(2) the generator q4/2 belongs to the ideal generated by the images of ¢(?) and
oW, |
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B,,, C,, AND D,, CASES. Let ® be of type B,, or C}, for n > 2 or of type D,
for n > 4. We denote the canonical basis of R" by e; with 1 <i < n. By [Hu,
§3.5 and §3.12] the basic polynomial invariants of the W-action on A are given
by even power sums

QQi2:€?i+"'+€?j7 1§Z§n7
together with p, :=e1---e, if ® is of type D,,.

The first two fundamental weights of ® are given by w; = e1, wy = €1 +e2 and
their W-orbits are

W(w) = {zxe1,...,te,} and W(we) = {£e; L e;}ic-
Hence W(wy) = SII —S and W (ws2) = St 11 -S4, where S = {e1,...,en}.
Applying Lemma 3.5 and Lemma 5.1 we obtain that

D (p(w1) = 5 YA+ 5 DT(BAB)A +3A(2)) and

A€S €S
dDpw)) =24 D M+ (BAB)A+3A(2)Y).
AeSLIT-S¢ AES

Then similar to the A,,-case we obtain

(3) ¢ (p(w2)) = 2(n = 1) (p(w1)) = (65 — aa)/2,
where ¢; = €} + ...+ ¢, and
(4) —0 (p(ws)) + ¢ (p(ws)) = pa,

if ® is of type Dy.

5.3. LEMMA. For a root system of type B, or C,, n > 2 or D,, n > 4 the
exponents T3 and T4 divide the Dynkin index To.

Proof. Since there are no basic polynomial invariants in degree 3 [Hu, §3.7
Table 1] we have 75 | 7o = 2. For Dy, by (4) the invariant p4 is in the ideal
generated by the image of $(*). Hence, to show that 74 | 7o it is enough to
show that g4/2 is in the ideal generated by the image of #® and ¢Y. Indeed,
by Corollary 3.2 we have ¢(® (p(w1)) = >\ cg A? = 2. Therefore, by (3)

01/2 = (42/2) - 9 (p(wn)) = ¢V (p(w2)) +2(n — 1)6™ (p(w1)). O

5.4. THEOREM. For every crystallographic root system ® the exponents 13 and
T4 divide the Dynkin index To.

Proof. If ® is of type A,,, this follows from Lemma 5.2. If ® is of type B, C,
or D,, this follows from Lemma 5.3; for all other types 73 and 74 divide 75 since

there are no basic polynomial invariants of degree 3 and 4 (see [Hu, §3.7 Table
1)). O
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6. TORSION IN THE GROTHENDIECK -FILTRATION

The goal of the present section is to provide geometric interpretation (see (6))
of the map ¢; and the exponents ;.

Let G be a split simple simply-connected group over a field k. We fix a maximal
split torus 7" of G and a Borel subgroup B D T'. Let A be the group of characters
of T'. Since G is simply-connected, A coincides with the weight lattice of G.

Let X denote the variety of Borel subgroups of G (conjugate to B). Consider
the Chow ring CH*(X) of algebraic cycles modulo rational equivalence and the
Grothendieck ring Ko(X). Following [De74, §1] to every character A € A we
may associate the line bundle £(\) over X. It induces the ring homomorphisms
(called the characteristic maps)
o S*(A) = CH*(X) and ¢, : Z[A] = Ko(X)
by sending A + ¢1(£(A)) and e* + [£())] respectively. Note that the map ¢,
is an isomorphism in codimension one, hence, giving
a: SY(A) = A = Pic(X) = CH'(X)
and the map c,, is surjective. Let W be the Weyl group and let IV and I}V
denote the respective W-invariant ideals. Then according to [De73, §4 Cor.2,89]
and [CPZ, §6]
(5) kerc,, = IV
and kerc, is generated by elements of S*(A) such that their multiples are in
v,
Consider the Grothendieck ~-filtration on Ko(X) (see [GZ10, §1]). Its ith term
is an ideal generated by products
Y(X) = (- (LA =[5 (1= 2]
where L1, Lo, ..., L; are line bundles over X. Consider the ith subsequent quo-

tient 7*(X)/7"*(X). The usual Chern class ¢; induces a group homomorphism
cit V(X)) /yTHX) — CHY(X).

6.1. PROPOSITION. For every i > 0 there is a commutative diagram of group
homomorphisms

(=1 (i=1)1¢s

(6) L,/ Ii Si(A)
V(X)) [4HH(X) ——— CH'(X)

Proof. Indeed, the ~-filtration on Ky(X) is the image of the I,,-adic filtration
on Z[A], i.e. 7(X) = ¢, (I%,) for every i > 0. The Proposition then follows
from the identity

Ci((1* [EYDO* [£2v]> e (1* [Ez/])) = (*1)i71(i* 1>!'01(£1)01(£2) ce 01(£i>,
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where L1, Lo, ..., L; are line bundles over X and Eiv denotes the dual of £;. [

6.2. REMARK. Note that Z[A] can be identitfied with the T-equivariant Ky of a
point pt = Spec k and S*(A) with the T-equivariant CH of a point (see [GZ11]).
The maps ¢, and ¢, then can be identified with the pull-backs KT (pt) —
KZI(G) and CHr(pt) — CHr(G) induced by the structure map G — pt.

In view of these identifications the map ¢; can be viewed as an equivariant
analogue of the Chern class map ¢;.

Consider the diagram (6) with Q-coefficients. In this case the Chern class map
¢; will become an isomorphism (by the Riemann-Roch theorem), the charac-
teristic map ¢, will turn into a surjection and the map (—1)"=1(i — 1)! - ¢; will
be an isomorphism as well. In view of (5) we obtain an isomorphism

PV @Q: IV NIL /I NI 9Q — (V) 2Q

on the kernels of ¢, and ¢,. By the very definition of the exponents 7; this
implies that

6.3. COROLLARY. The action of the Weyl group of a crystallograhic root system
has finite exponent T; for every i.

6.4. LEMMA. We have (kerc,)® = (IV)9 for each i < 4 except the case i = 4
and G is of type B, (n > 3) or D, (n > 5) where we have 2(kerc,)® C
(L)

Proof. The statement follows by the same analysis as in [GZ10, §1B]. For the
exception it is enough to show that the polynomial P = ¢ - fo + d - (¢4/2) in
wi-s is not divisible by 4, where d € Z, f> is a polynomial of degree 2, q4/2 is
the basic polynomial invariant of degree 4 and g.c.d.(f2,d) = 1.

Assume that 4 | P, we claim that in this case g.c.d.(f2,d) = 2. Indeed, let
fo = 2?21 aiw? + ZKj aijwiWj, ai,a;; € Z. Take w; and w; corresponding
to adjacent long roots. Set wp = 0 for k # 4,j. Then the congruence P =
0 (mod 4) turns into

(w?fwiwjer?)(aiwaraijwiwj+ajw]2-)+d(wf72w§’wj+3wi2w]2-72wiw§-’+w;¥) =0

which gives a; = a; = —d, a;5j — a; = a;5 — a; = —2d and a; — a;; + a; = 3d.
This implies that 2d = 0, therefore, 2 | d. Finally, since ¢ is indivisible, 2 | fa.
In the Dy-caselet Q = q- fa+d-(qa/2)+e-py with g.c.d.(fo,d,e) = 1. If 4| Q,
then we have d = a; = 0 (mod 2) by the same argument. Hence, 2 | ¢- fa+¢e-py.
Set wy = 0. Then we have

(Wi + w3 + wi) f2 Jup—o +e(wiwi — wiwi) = 0 (mod 2).

In particular, 2 | a1 + ag + e. As 2 | a;, we have 2 | e, which implies that
2| fo. 0

We are now ready to prove the main result of this section
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6.5. THEOREM. The integer 7; - (i — 1)! annihilates the torsion of the ith sub-
sequent quotient v'(X) /v (X) of the ~v-filtration on Ko(X) for i = 2,3,4
except the case i = 4 and G is of type B, (n > 3) or D,, (n > 5) where the
torsion of Y4(X) /75 (X) is annihilated by 24.

6.6. REMARK. Note that by [SGAG6, Exposé XIV, 4.5] for groups of types A,
and C,, the quotients (X )/ (X) have no torsion.

Proof. Assume that o is a torsion element in v*(X)/y**!(X). Then ¢;(a) =0
since CH'(G/B) has no torsion. Let & be a preimage of « via ¢, in I%, /I C
Z[A])/TEL. By (6) we obtain that

(i —1)! ¢ (@) € (kerc,)®

where (ker ¢, )@ coincides with (IV)® up to a multiple (see Lemma 6.4). By
definition of the index 7; we have

7 (i = 1)1 9i(&) = ¢i(B), where § € L) /I NI
Applying qﬁ;l to the both sides we obtain
n-(i—)-a=pely /I nrl¥
Applying c¢,,, to the both sides and observing that IV = ker c,, we obtain that
Ti-@—1l-a=0. O

Let ¢X be a twisted form of the variety X by means of a cocycle £ € Z!(k, G).
By [Pa94, Thm. 2.2.(2)] the restriction map Ko(¢X) — Ko(X) (here we iden-
tify Ko(X) with the Ko(X X k) over the algebraic closure k) is an isomorphism.
Since the characteristic classes commute with restrictions, this induces an iso-
morphism between the y-filtrations, i.e. v¢(¢X) ~ v%(X) for every i > 0, and
between the respective quotients
V(e X)/THeX) =7 (X) /4" TH(X)  for every i > 0.

In view of this fact Theorem 6.5 implies that

6.7. COROLLARY. Let G be a split simple simply connected group of type
B, (n >3) or D, (n > 4). Then for every ¢ € Z'(k,Q) the torsion in
Y (e X) /75 (¢ X) is annihilated by 24.

Consider the topological filtration on Ky(Y), where Y is a smooth projective
variety, given by the ideals

(YY) = ([Oy] |V = Y, codimyY > i).
It is known (see [FuLa, Ch.V, Thm. 3.9]) that v*(Y') C 7/(Y) for every i > 0.

Given an Abelian group M let e(M) denote the exponent of its torsion sub-
group. The following exact sequences of Abelian groups

(7) ()7 47+ o 74 o 7y and () 749 e g
where 78 = 74(Y), v* = 7*(Y), lead to the recursive divisibility for each i > 1
e(r' /YT [e(y'/4) e(r' /) Le(y' /) - e(r' = /)
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which gives
(8) e(r' /YT ey /) e(y ) o e(r ).
By the Riemann-Roch theorem [Fu, Ex.15.3.6], the composition

CH (YY) — 7'/ 5 CHY(Y)
is the multiplication by (=1)*~*(i — 1)!, therefore, by (7).(ii) the torsion sub-
group of CH'(Y) is annihilated by (i — 1)! - e(7%/7"F1) | (i — 1)! - e(7? /4.
Combining this with the formula (8) and Theorem 6.5 we obtain

6.8. COROLLARY. Let G be a split simple simply connected group. Then for
every £ € Z(k,G) the torsion in CH'(¢X) for i = 2,3,4 is annihilated by the
integer

(i71)!-_]'[7j(j71)!

except for i = 4 and G is of type B, (n > 3) or D, (n > 5) where it is
annihilated by 27.
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