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ABSTRACT. Let p be a positive prime number and X be a Severi-
Brauer variety of a central division algebra D of degree p”, withn > 1.
We describe all shifts of the motive of X in the complete motivic de-
composition of a variety Y, which splits over the function field of X
and satisfies the nilpotence principle. In particular, we prove the mo-
tivic decomposability of generalized Severi-Brauer varieties X (p™, D)
of right ideals in D of reduced dimension p™, m = 0,1,...,n — 1,
except the cases p = 2, m = 1 and m = 0 (for any prime p), where
motivic indecomposability was proven by Nikita Karpenko.
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152 MAKSIM ZHYKHOVICH

1. INTRODUCTION

Let F' be an arbitrary field and p be a prime numbre. For any integer [, we
write v,(l) for the exponent of the highest power of p dividing I.

Let D be a central division F-algebra of degree p", with n > 1. We write
X (p™, D) for the generalized Severi-Brauer variety of right ideals in D of re-
duced dimension p™ for m = 0,1,...,n. In particular, X (p™, D) = Spec F' and
X (1, D) is the usual Severi-Brauer variety of D. The generalized Severi-Brauer
varieties are twisted forms of grassmannians (see [[LT, §1.1.C]).

For each integer m = 0, ...,n we define an upper motive M,, p in the category
of Chow motives with coefficients in F;,. This is the summand of the complete
motivic decomposition of the variety X (p™, D) such that the 0-codimensional
Chow group of My, p is non-zero.

Let A be a central simple F-algebra, such that the p-primary component of
A is Brauer equivalent to D. Let X4 be the class of finite direct products of
projective (Aut A)-homogeneous F-varieties (the class X4 includes the gener-
alized Severi-Brauer varieties of the algebra A). Nikita Karpenko proved the
following theorem @, Theorem 3.8]. Any variety X from X4 decomposes into
a sum of shifts of the motives M,, p with m < v,(ind Ap(x)). This theorem
shows that the motivic indecomposable summands M,, p of the generalized
Severi-Brauer varieties X (p™, D) are some kind of “basic material” to constuct
the motives of more general class of varieties. This gives us a motivation to un-
derstand the structure of the upper motives My, p themselves. It was known
that in the cases m = 0 (Severi-Brauer case, see Corollary @) and m = 1,
p =2 ( [B, Theorem 4.2]) the motive M,, p coincides with the whole motive
of the variety X (p™, D) (that is, the motive of this variety is indecomposable).
Taking into account these cases and the fact that any generalized Severi-Brauer
variety X (p™, D) is p-incompressible [E, Theorem 4.3] (this condition is weaker
than motivic indecomposability), one probably expected that the Chow motive
with coeflicients in F), of any variety X (p™, D) is indecomposable. But, except
the two already mentioned cases, the motivic decomposability of generalized
Severi-Brauer variety X (p™, D) was proven in [@]

This article is an extended version of [@] To show that the motive of the vari-
ety X (p™, D) is decomposable, we prove in [@] that some shifts of My p are the
motivic summands of X (p™, D). Let Y be a F-variety satisfying the nilpotence
principle and such that it splits over the function field of X (1, D). For exam-
ple, one can take for Y any generalized Severi-Brauer variety X (p™, D) and,
more generally, any variety from X4. The main result of the present article
(Theorem B.4) find all shifts of Mo p in the complete motivic decomposition of
the variety Y in terms of some subgroups of rational cycles. These subgroups
can be described in the case of generalized Severi-Brauer variety X (p™, D)
(see Proposition @) As consequence, we prove the motivic decomposability
of these varieties in CorollaryE. With Theorem E in hand, we find in §E
more examples (comparing to [[L4]) of complete motivic decompositions of gen-
eralized Severi-Brauer varieties X (p™, D) and therefore we describe the upper
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motives M,, p in that cases. Theorem @ also permits to prove differently (see
Corollary , [E, Corollary 5]) a particular case of the following conjecture.

CONJECTURE 1.1. Let D be a central division F-algebra. Let K/F be a field
extension such that Dy s still division. Then (Mm,D)K 1s still indecomposable.

ACKNOWLEDGEMENTS. I would like to express particular gratitude to Nikita
Karpenko, my Ph.D. thesis adviser, for introducing me to the subject, raising
the question studied here, and guiding me during this work. I am also very
grateful to Olivier Haution, Sergey Tikhonov and Skip Garibaldi for very useful
discussions.

2. CHOW MOTIVES WITH FINITE COEFFICIENTS

A variety is a separated scheme of finite type over a field. Our basic reference
for Chow groups and Chow motives (including notations) is [[]l. We fix an
associative unital commutative ring A. Given a variety X over a field F', we
write Ch(X) and CH(X) respectively for its Chow group with coefficients in A
and for its integral Chow group. For a field extension L/F we denote by X,
the respective extension of scalars. An element of Ch(Xp) is called F-rational,
if it lies in the image of the homomorphism Ch(X) — Ch(Xy,).

Our category of motives is the category CM(F, A) of graded Chow motives with
coefficients in A, [E, definition of §64]. By a sum of motives we always mean
the direct sum. We also write A for the motive M (SpecF') € CM(F,A). A
Tate motive is the motive of the form A(¢) with ¢ an integer.

Let X be a smooth complete variety over F' and let M be a motive. We call M
split if it is a finite sum of Tate motives. We call X split, if its integral motive
M(X) € CM(F,Z) (and therefore the motive of X with an arbitrary coefficient
ring A) is split. We call M or X geometrically split, if it splits over a field
extension of F. For a geometrically split variety X over F, we denote by X
the scalar extension of X to a splitting field of its motive and we write Ch(X)
for the subring of F-rational cycles in Ch(X). Note that the rings Ch(X) and
Ch(X) are independent on the choice of a splitting field.

Over an extension of F the geometrically split motive M becomes isomorphic
to a finite sum of Tate motives. We write rk M and rk; M for respectively the
number of all summands and the number of summands A(¢) in this decompo-
sition, where ¢ is an integer. Note that these two numbers do not depend on
the choice of a splitting field extension.

We say that X satisfies the nilpotence principle, if for any field extension E/F
and any coefficient ring A, the kernel of the change of field homomorphism
End(M (X)) — End(M(X)g) consists of nilpotents. Any projective homo-
geneous (under an action of a semisimple affine algebraic group) variety is
geometrically split and satisfies the nilpotence principle, , Theorem 92.4 with
Remark 92.3].
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A complete decomposition of an object in an additive category is a finite direct
sum decomposition with indecomposable summands. We say that the Krull-
Schmidt principle holds for a given object of a given additive category, if every
direct sum decomposition of the object can be refined to a complete one (in
particular, a complete decomposition exists) and there is only one (up to a
permutation of the summands) complete decomposition of the object. We
have the following theorem:

TueEoREM 2.1. ([}, Theorem 3.6 of Chapter 1]). Assume that the coefficient
ring A is finite. The Krull-Schmidt principle holds for any shift of any sum-
mand of the motive of any geometrically split F-variety satisfying the nilpotence
principle.

We will use the following two statements in the next section.

LEMMA 2.2. Assume that the coefficient ring A is a field. Let X be a split
variety. Then the bilinear form b: Ch(X) x Ch(X) — A, b(z,y) = deg(z - y)
18 non-degenerate.

Proof. Since the motive of X decomposes into a finite sum of Tate motives, we
have the following decomposition for the diagonal class A € Chgjm x (X X X):

A:al ><b1+...+an><bn,
where ay,...,a, and by,...,b, are the homogeneous elements in Ch(X), such
that for any ¢,j = 1,...,n the degree deg(a; - b;) € A is 0 for ¢ # j and 1 for
1=].
Note that dimy Ch(X) = rk M(X) = n < oo. Therefore, to prove the lemma

it suffices to show that radb = {0}. Suppose that € radb (this means
b(z,y) =0 for any y € Ch(X)). Then we have

Zdegz a;)b; ibzazbf()
i=1

O

LEMMA 2.3. Assume that the coefficient ring A is finite. Let X be a wvari-
ety satisfying the nilpotence principle. Let f € End(M (X)) and 1g = fg €
End(M(X)g) for some field extension E/F. Then f™ = 1 for some positive
integer n.

Proof. Since X satisfies the nilpotence principle, we have f = 1 + &, where

€ is nilpotent. Let m be a positive integer such that €” = 0 = ne. Then
f*" = (14 &)™ = 1 because the binomial coefficients ("Z) for i < n are
divisible by n. O

3. MAIN RESULTS

Let p be a positive prime integer. The coefficient ring A is F,, in this section.
Let F be a field. Let D be a central division F-algebra of degree p™. We
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write X (p™, D) for the generalized Severi-Brauer variety of right ideals in D
of reduced dimension p™ for m =0,1,...,n.

LEMMA 3.1. Let E/F be a splitting field extension for X = X (1, D). Then the
subgroup of F-rational cycles in Chaimx (Xg X Xg) is generated by the diagonal
class.

Proof. By [[, Proposition 2.1.1], we have Ch'(X) = 0 for i > 0. Since the
(say, first) projection X? — X is a projective bundle, we have a (natural with
respect to the base field change) isomorphism Chgim x (X?) ~ Ch(X). Passing
to Ch, we get an isomorphism Chgjm x (X?) ~ Ch(X) = Ch’ (X) showing that
dimedhdimX(X2) = 1. Since the diagonal class in Chgjy, x(X?) is non-zero,
it generates all the group. 0

COROLLARY 3.2. (cf. [[l, Theorem 2.2.1]). The motive with coefficients in F,,
of the Severi-Brauer variety X = X (1, D) is indecomposable.

Proof. To prove that our motive is indecomposable it is enough to show that
End(M(X))= Chgimx(X x X) does not contain nontrivial projectors. Let
7 € Chgimx (X x X) be a projector. By Lemma @, TE is zero or equal to 1g.
Since X satisfies the nilpotence principle, 7 is nilpotent in the first case, but
also idempotent, therefore 7 is zero. Lemma E gives us m = 1 in the second
case. O

Nikita Karpenko proved the motivic indecomposability of generalized Severi-
Brauer varieties also in the case p =2, m = 1.

THEOREM 3.3. (cf. [, Theorem 4.2]). Let D be a central division F-algebra
of degree 2™ with n > 1. Then the motive with coefficients in Fo of the variety
X (2, D) is indecomposable.

Corollary of the following main theorem will show that Corollary @ and
Theorem B.q give us the only cases when the motive of generalized Severi-Brauer
variety is indecomposable.

THEOREM 3.4. Let D be a central division F-algebra of degree p™ with n > 1.
Let X be the Severi-Brauer variety X (1, D) and'Y be a variety satisfying nilpo-
tence principle, such that'Y is split over the function field of X. Then for any
integer k the number of copies M (X)(k) in the complete motivic decomposition
of Y is equal to dimg, f Chaimy —x(X x Y), where f is a projection onto the
second factor.

Proof. We fix an integer k and we note the motive M (X)(k) simply by M. Let
r be the number of copies of M in the complete motivic decomposition of Y.
We note V := f. Chaimy (X x Y) and 7' := dimp, V. We want to show that
r=r'.

Let Aq,..., A, and By, ..., B, be the motives. We recall that a morphism be-
tween the motives ;" , A; and @}_, B; is given by an n x m-matrix of mor-
phisms A; — B;. The composition of morphisms is the matrix multiplication.
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The motive M®" is a summand of the motive M(Y). Therefore there exist
two morphisms « = (ay,...,,)! € Hom(M®" M (Y)) and 8 = (f1,....3-) €
Hom(M (Y'), M®"), such that

foa=(fjoa)icij<r = (0ij)i<ij<r
where (8; j)1<i,j<r is the identity morphism in Hom(M®", M®") (that is §; ; is
zero if ¢ # j and §; ; is the diagonal class A in Corro(X, X) if ¢ = j).
Let E = F(X), then E/F is a splitting field extension for the varieties X and Y’
(here we use the condition of the theorem) and X ~ P, where d = p" —1. We

know that Ap = Z?:o R x h%~% where h is the hyperplane class in Ch'(Xp).
For any 1 < i < r we have

(Bi)go(ai)g = (0ii)p = A =

d d
=h0 x b+ x b = [Xpg] x [pt] + Y B x BT
i=1 i=1
where [pt] is the class of a rational point in Ch(Xg). Therefore the correspon-
dences f3; € Chgimy—k(Ye X Xg) and a; € Chyqi(Xg X Yg) have to be of the
following form:

(3.5) Bi)e=bi x[pt]+ ...,

where b; € Ch* (YEg) is non-zero and where “...” stands for a linear combination
of only those terms whose first factor has codimension > k,

(3.6) (ai)p =[Xg] xbf +...,

where b € Chy(YEg) is such that deg(b; - b}) = 1 and where “...” stands for a

linear combination of only those terms whose second factor has dimension > k.
For any i # j we have (3;) o (i) = 0, this implies that deg(b; - by) = 0.
Therefore the system of vectors {b3,...,b%} from the vector space Ch(Yg) is
dual to the system of vectors {b1,...,b,.} with respect to the bilinear form b :
Ch(Yg) x Ch(Yg) — Fp, b(x1,22) = deg(z1 - x2). It follows that the vectors
b, ...,b, are linearly independent. Since b; = f.((8!)E), then b; € V for any
1 <4 <. Therefore r < r’.

Let now by, ...,b,» be a basis of V. We want to show that M®"" is a motivic
summand of Y. By the definition of V', there exist correspondences Sy, ..., B, €
Chgim y—& (Y x X) of the form (B.5), such that b; = f.((8!)g). Since the variety
Y is split, then by Lemma the bilinear form b is non-degenerate. It follows
that there exists a system of vectors {b7, ..., b% } from the vector space Ch(Yg),
which is dual to the system of vectors {bi,...,b+}. For any 1 < i < r’ we
construct the correspondence a; € Chgyr(X X Y), such that (o) is of the
form @), by the following way. The pull-back homomorphism

qg: Ch(X X Y) — Ch(YF(X)) = Ch(YE)

with respect to the morphism Yp(x) = (Spec F(X)) x Y — X x Y given
by the generic point of X is surjective by , Corollary 57.11]. We define
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a; € Ch(X x Y) as a cycle whose image in Ch(Yg) under the surjection g is
bi. We have (a;)p = [Xp] x bf + ..., 50 (a;) 5 is of the form (B.4).

The r'-tuples (a1, ..., )t and (B4, ..., B) give us respectively two morphisms
o € Hom(M®™', M(Y)) and 8 € Hom(M(Y), M®""). By the construction of
a and 3, the matrix (mult((3;); o () g))1<i,j<r is an identity matrix. Then,
by Lemma @, Broar = ((8)E o (ai)g)i<ij<r = 1g, where we note simply
by 1 the identity morphism ((8;;))1<i j<r in Hom(M®" M®"). Let X be a
disjoint union of r’ copies of X, then Hom(M (%), M (%)) = Hom(M®"™', M),
According to [, Theorem 92.4] the variety X satisfies the nilpotence principle.
By Lemma .3, there exist a positive integer n, such that (8 o a)” = 1 (we apply
Lemma P.3 to the variety X and to the morphism 8o« € Hom(M (X), M(X))).
The morphisms « and (3 o 04)"_1 o 3 give the isomorphism between the motive
M®" and a direct summand of M(Y). Therefore v/ > 7 and then finally
' =r. O

PROPOSITION 3.7. Let D be a central division F-algebra of degree p™ with
n > 1. Let X and Y be respectively the varieties X (1,D) and X (p™, D),
0 <m < n. Let E/F be a splitting field extension for the variety X, let T1 and
Tpm be the tautological bundles of rank 1 and p™ on Xg and Yg respectively.
Then the subring of F-rational cycles in Ch(X g xYg) is generated by the Chern
classes of the vector bundle Ty K (—T,m )Y (we lift the bundles Th and Tym on
Xg X Yg and then take a product).

Proof. Let Tav be the tautological vector bundle on X. The product X x Y
considered over X (via the first projection) is isomorphic (as a scheme over X
to the Grassmann bundle G, (Tav) of r-dimensional subspaces in Tav (cf. [f,
Proposition 4.3]), where r = p™ — p™. Let T be the tautological r-dimensional
vector bundle on G,.(T'av). By [fl, Example 14.6.6], the Chow ring Ch(G, (T'av))
as an algebra over Ch(X) is generated by Chern classes ¢o(T"), c1(T), ..., e (T).
By [, Proposition 2.1.1], we have Ch(X) = ch’ (X)=7Z-[XEg]. Therefore the
Chow ring Ch(X xY)) ~ Ch(G,.(Tav)) is generated (as a ring) by Chern classes
co(Tg), ..., cr(Tg). Since there exists an isomorphism (cf. [f, Proposition 4.3]):
Tp ~Ty X (=T,m)Y, we are done.

O

COROLLARY 3.8. The motive with coefficients in IF,, of the variety X (p™, D) is
decomposable forp =2, 1 <m <n and for p > 2, 0 < m < n. In these cases
M(X(1,D))(k) is a summand of M(X (p™, D)) for 2 <k < p™ —p™.

Proof. We use the notations: X = X(1,D), ¥ = X(p™m D), d =
dim(X(1,D)) =p" —1,r =p" —p™. Let E = F(X), then E/F is a splitting
field extension for the variety X (and also for Y'). Over the field F the algebra
D becomes isomorphic to Endg (V') for some E-vector space V' of dimension
d+1=p". We have Xg ~P4V) and Yg ~ Gpm (V). Let T3 and Tpm be the
tautological bundles of rank 1 and p™ on Xg and Yg respectively. We note by
T the r-dimensional vector bundle T} X (—Tpm)v on Xp X Yg. By Proposition

DOCUMENTA MATHEMATICA 17 (2012) 151-165



158 MAKSIM ZHYKHOVICH

B.7, the ring Ch(X x Y) is generated by Chern classes of the vector bundle 7.
Let h = ¢1(Ty) € Ch'(Xp) (then —h is the hyperplane class in Ch'(Xg)) and
ci = ci((=Tpm)") € Ch'(Yg), 0 < i < r. Then by [f, Remark 3.2.3(b)]

(3.9  lT) = (TR (=Tpm)¥) =Y (1+ (hx 1)t) 7 (L x et .
i=0
It follows from the conditions of the corollary that the binomial coefficients

n

(pn;pm), (ppmff:b) are divisible by p and (pnpjfjgl) = (=1)?"~2 mod p. There-
fore
al)=0@"—p")hx1l4+1xec=1x%xecq,

CQ(T):(p —2]? )h2><1+(p"—pm—1)h><cl+1><02:—h><cl+1><02,

no__ m . n_pm_1q .
ey (T) = (I;mpl)hp —1><1+(p pmp72 )hp 2o 4. =
= (=P 2R 2 e 4

where stands for a linear combination of only those terms whose second
factor has codimension > 1. For the top Chern class we have:

e (T) = ih’”’i X ¢ .
i=0

« ”

For any integer k > 2 we define 8y, = ¢, (T)cpm_1(T)ca(T)e1 (T)*=2 = (—h)? x
... =[pt] x ¥ 4+ ..., where “...” stands for a linear combination of only
those terms whose second factor has codimension > k and where [pt] is the
class of a rational point in Ch(Xg). Let f : X x Y — X be a projection
onto the first factor. The cycle By is F-rational and f.(3x) = c}. By [ﬂ,
Example 14.6.6], the cycle ¢} is non-zero for 2 < k < p™ — p™. Therefore
dimg, f. Chaimy k(X xY) > 1 for 2 < k < p™ — p™. The statement follows
from Theorem @ ]

REMARK 3.10. The Corollary also gives us some information about the
integral motive of the variety X (p™, D). Indeed, according to [@, Corollary
2.7] the decomposition of M (X (p™, D)) with coefficients in F), lifts (and in a
unique way) to the coefficients Z/pNZ for any N > 2. Then by [@, Theorem
2.16] it lifts to Z (uniquely for p = 2 and p = 3 and non-uniquely for p > 3).
See also Remark @

REMARK 3.11. Let [ be an integer such that 0 < I < p™ and ged(l,p) = 1.
The complete decomposition of the motive M (X (I, D)) with coefficients in F,,
is described in [fl, Proposition 2.4].

COROLLARY 3.12. Let D be a central division F-algebra of p-primary indez.
Let K/F be a field extension, such that Dk is still division. Then the motive
(M1,p) is still indecomposable.
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Proof. We note by X and Y respectively the varieties X (1, D) and X(p, D).
We note by M the motive M(X). By [E, Theorem 3.8] the complete motivic
decomposition of the variety Y consists of the motive M; p and of the sum
of motives M (we neglect the shifts in this proof). Suppose that the motive
(M1,p) is decomposable, then by the same theorem, My is a summand of
(M1,p) - Therefore, the number of motives Mg in the complete motivic de-
composition of Y is greater then the number of motives M in the complete
motivic decomposition of Y. Let E/K be a splitting field extension for the al-
gebra D. By Proposition @, the subspace of K-rational cycles in Ch(Xg x Yg)
coincides with the subspace of F-rational cycles in Ch(Xg x Yg). Therefore
the Theorem @ gives a contradiction. 0

4. COMPLETE MOTIVIC DECOMPOSITIONS

In the Corollary @ we proved that the motive of the variety X (p™, D) is
decomposable for p =2, 1 < m < n and for p > 2, 0 < m < n. Moreover, in
these cases the Corollary @ gives us a list of some motivic summands of the
variety X (p™, D). By duality, we can extend this list. It happens, that in two
small-dimensional cases p =3, m =1, n =2 and p = 2, m = 2, n = 3 this
is already a complete list of indecomposable motivic summands of the variety
X(p™, D). Note that in general it is not true (see Example [£§).

EXAMPLE 4.1. In this example we describe the complete motivic decomposition
of Y := X(3,D) for a division F-algebra D of degree 9. We note by X the
variety X (1,D) and by M the motive M(X). Note that dimX = 8 and
dimY = 18.

By [E, Theorem 3.8], any indecomposable motivic summand of Y, besides the
upper motive M; p, is some shift of M. By Corollary E, the motives M (2),
M(3), M(4), M(5), M(6) and by duality M(8), M (7) are direct summands of
M(Y). Suppose that there is at least one more motive M (t) (for some integer
t > 0) in the complete motivic decomposition of Y. Since by [H, Theorem 4.3]
the variety Y is 3-incompressible, we have

I‘ko M(Y) = I“ko Ml,D = rkdimy Ml,D = I‘kdimy M(Y) =1.
It follows that rko M (t) = rkaimy M (¢) = 0. We have
1<t<dimY —-dimX —-1=9.

Since the decomposition of any of eight motives M (2), M(3), ..., M(8), M (¢)
into the sum of Tate motives over the splitting field contains a Tate mo-
tive F3(9), then rko M1 p < rko M(Y') — 8. According to [1J, §2.5], we have
rkg M(Y) = 8, therefore rkg M; p = 0.

By [E, Corollary 10.19], we have the following motivic decomposition of Y over
the function field L = F(Y'):

(4.2) MY),= @ MX(,.0)x X(j,C) x X(k,C)),
i+j+k=3
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where C'is a central division L-algebra (of degree 3) Brauer-equivalent to Dy,.
Note that the triples (3,0, 0), (0, 3,0), (0,0, 3) correspond to three Tate motives
Fs, F3(9) and F5(18). Let M = M(X(1,C)), then by [§, Example 10.20],
M, = M@ M(Z}) @ M(G) It follows that the complete decomposition of
M7y, does not contain F3(9). Therefore F3(9) is a direct motivic summand of
(M; p)r, and we have a contradiction with rkg My p = 0.

The complete motivic decomposition of the variety X (3, D) with coefficients in
F3 is the following one:

(4.3)
M(X@3,D)=Mip®eM2)eM3B)eM4)eMGB)®M(6)E M(7)SM(8).

EXAMPLE 4.4. Similarly, as in the previous example, we can find the complete
motivic decomposition of Y := X (4, D) for a division F-algebra D of degree 8.
We note by M the motive M (X (1, D)).

By Corollary B.g, the motives M(2), M(3), M(4) and by duality M(7), M(6),
M (5) are direct summands of M (Y). We have

M(X(4,D)=M2)®..eM(T)e N

for some motive N. Assume that N is decomposable. Then by [E, Theorem
3.8], and Theorems @, @, the motive N has an indecomposable summand
which is some shift of either Mo p = M or M1 p = M(X(2,D)). But the
second case is impossible because

8 8
70 = <4) =1k M) < 6rkM +1kM(X(2,D))=6-8+ (2) =176
(see [, Example 2.18] for the computations of ranks). Therefore M(t) is a
summand of N for some integer ¢.
According to @, Corollary 10.19], we can write the complete decomposition of
N over the function field L = F(Y):

N =TFy & M(1) & M(X(2,C))(4) & M(X(2,0))(8) & M(12) & Fy(16)

where C is a central division L-algebra (of degree 4) Brauer-equivalent to Dr,
and where M = M(X(1,C)). It follows from this decomposition that the mo-
tive M(t);, = M(t) ® M(t + 4) can not be a direct summand of N;,. We have
a contradiction. Therefore the motive N is indecomposable and N ~ M p.
Now we can write the complete motivic decomposition of X (4, D) with coeffi-
cients in Fa:

(45) M(X(4,D)) = Map & M(2) & M(3) & M(4) & M(5) & M(6) & M(7).
Let us consider the following class of generalized Severi-Brauer varieties.

DEFINITION 4.6. We say that the generalized Severi-Brauer variety X (p™, D)
is of type 0, if the complete decomposition of M (X (p™, D)) consists only of

the upper motive M,, p and some (possibly zero) shifts of the motive My p =
M(X(1,D)).
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For example, by [E, Theorem 3.8|, the variety X (p, D) is of this type. Let
Y be a generalized Severi-Brauer X (p™, D) variety of type 0. By Theorem
@, the subspace of F-rational cycles in Ch(Xg x Yg) describes the complete
motivic decomposition of Y, where X = X(1,D), E = F(X). Note that the
structure of the ring Ch(Xg x Yg) = Ch(Xg) x Ch(Yg) is well-known (cf.
[, §14]) and by Proposition B.q we can compute the subring Ch(X x Y) C
Ch(XgxYg). Therefore we can say that the complete motivic decomposition of
any generalized Severi-Brauer variety X (p™, D) of type 0 can be “theoretically”
found in a finite time using computer.

REMARK 4.7. We do not possess a single example of a variety X (p™, D), which
is not of type 0. Therefore, it may happen that the generalized Severi-Brauer
variety X (p™, D) is always of type 0 (for any division F-algebra D of degree p™
and for any integer m, 0 < m < n). Note that if this is true, then Conjecture
[L.1] holds (one can follow the lines of the proof of Corollary B.19).

ExXAMPLE 4.8. Let D be a central division F-algebra of degree 27. In this
example we find complete motivic decomposition of the variety Y = X (3, D),
which is of type 0. We take the same notations as in the proof of Corollary
B8 X = X(1,D), E = F(X), T = Ty K (—T3)", where T} and Tj are the
tautological bundles of rank 1 and 3 on Xg and Yg respectively (the vector
bundle T is of the rank 24). We note also by V, the graded Fs-vector space
f« Chaimy—«(X x Y), where f is a projection onto the second factor.
By Theorem @, for any integer k the number of motives M (k) in the complete
motivic decomposition of Y is equal to dimp, Vi, where M = M(X). By
duality, this number is also equal to the number of motives M (dimY —dim X —
k) = M(46 — k) in the same decomposition. Therefore the vector space V<o
describes the complete motivic decomposition of Y.
Let h = Cl(Tl) S Chl(XE) and ¢; = Ci((—Tg)v) S ChZ(YE), 0 <1< 24.
Using the formula @ we can compute the following Chern classes of the vector
bundle T

cl(T):lxcl, CQ(T):th01+1XCQ,

cr(T)=1xcr, cs(T)=—-hxecr+1Xcs,

CQ4(T) =h%x1 + Z?il R4t x Ci -

We have:

it = fu(caa(T)(c2(T))?) € Vo, crer = fu(caa(T)ea(T)es(T)) € Vi,
& = fu(caa(T)(cs(T))?) € Vi .

Also we have the following property:
(4.9) x€Vi= (xc1 € Vi1 and zcr € Vigr).
Indeed, if 2 € Vi, then 2 = f.(y) for some y € Chgimy—«(Xg x Yg). Therefore

zer = fuly - c1(T)) € Vigr and zer = fo(y - ¢7(T)) € Viyr.
This property gives us the following elements in V;:
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(4.10)
cé if2<i<7, e, M2 if 14 <4 < 20,
i, 0’1_707 if8<i<13, i, 0’1_707, 011_1403, czl_mc? if 21 <4<23.

We also define a sequence b;, i € Z:

0 ifi<?2

1 if2<i<7T
o) 2 ifs<i<13
7Y 3 if14<i<20

4 if21<i<23

bag—; if 4 > 23.

Note that for any ¢ < 23 the number of elements lying in V; from the list
is equal to b;.

We are going to show that all elements from the list are linearly indepen-
dent (to apply then Theorem @) The Fs-vector space V, is a subspace of
Ch*(YEg). We note ¢; = ¢;(Ty), i = 1,2,3, where T3 is the tautological bundle
of rank 3 on Y. According to [}, Example 14.6.6] the graded ring Ch*(Yz) is
generated by Chern classes ¢1, ¢3, ¢3, 1, ..., 24 modulo the homogeneous rela-
tions

(4.11) Cr+Cr_1Cl + Cr_oCa+cr_3é3=0 for r=1,..,27,

where ¢; = 0 for i < 0 or i > 24. It follows that the graded ring Ch*(Yg) is
generated by only three elements ¢, ¢z, ¢3 modulo some homogeneous relations
of degree greater than 23. Therefore we have an isomorphism:

Ch* S23(YE) ~ F3[c1, é2, C3]<2s -

Using relations we can compute that ¢; = —¢; and ¢; = "+ 61453 —
P&+ @’
Now we consider the elements from the list as polynomials in F3[¢y, é2, é3).
To show that all of them are linearly independent, it suffices to check this
for four elements ¢3!, citcr, cic2, ¢ (they are in our list) from Va;. Since the
polynomial ring F3[c1, éa, ¢3] is factorial and ¢ is not divisible by 2, then for
any «a, 3,7, 9 € F3 we have

ac%l—i—ﬁc}‘lw—i—vczc?—i—écgzo = a=0=v7=60=0.
Since all elements from the list are linearly independent, then dimp, V; > b;
for i < 23. Therefore for any integer i the motive M®% (i) is a direct summand
of M(Y). Indeed, the statement follows from Theorem @ for ¢ < 23 and by
duality it is also true for i > 23. We have

(4.12) M(Y) = ®iezM® ()& N

for some motive IV over F'.
Now we want to understand the complete decomposition of N. Let L be a
function field of the variety Y and C be a central division L-algebra (of degree
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9) Brauer-equivalent to Dy,. Using the motivic decomposition similar to the
decomposition @ from Example , we can show that the complete decom-
position of M(Y)y, contains three indecomposable motives: My ¢, My c(27),
Mi,c(54). Moreover any other summand in the complete motivic decomposi-
tion of M (Y')r is a shift of the motive M := M(X(1,C)). We know that M, =
M @ M(9) @ M(18). Tt follows that Ny = My ¢ @ My ¢(27) ® My o(54) & N’
for some motive N’ over L and N is a sum of shifts of the motive M. Note
that if M (k) is direct summand of N for some integer k, then My, (k) is a direct
summand of N’.

Let S be a direct summand of the motive of a geometrically split variety. We
write P(S,t) for the Poincaré polynomial of S:

P(S,;t) =) (tk; S) -t/
i>0
Let us find the Poincaré polynomial of the motive N’. We have
P(N',t) = P(M(Y),t) — (L + 7+ t*)P(My,c,t) = > _bit' P(M, t).
1>0
Using the following formulas

7t27)( t26>(1 t25>
1-—

P(M((Y),t) = a , (according to [B, §2.5]),

=01 =B —0)
1 *t27 26 )
P _ _ i
(M,t) = ——=> 1",
=0
26
P(Mc,t) =t +t"? + Zti , (by Example [.3) ,
i=0

we can compute P(N’,t). Since N’ is a sum of shifts of the motive M then
P(N',t) is divisible by P(M,t) = (1 —t%)/(1 —t) =1+t + ... +t5. Let Q(¢)
be a quotient of these two polynomials. After computations, we have

Q(t) _ t7+t13+t16+t18+t19+t20+t22+t24+t26+t28+t29+t30+t34+t35+
t36+t38+t40+t42+t44+t45+t46+t48+t51 +t57.

Now if M(k) is direct summand of N for some integer k, then
My (k) = M(k) ® M(k+9) ®M(k + 18) is a direct summand of N’. There-
fore in this case the decomposition of Q(t) contains tF 4 th+9 4 ¢h+18 —
P(M(k),t)/P(M,t). Only two values k = 20 and k = 26 satisfy this
condition. Note that if complete decomposition of the motive N contains
M (20) then by duality it contains also M (26). It follows that the question
of the complete motivic decomposition of Y reduces to the question either
dimp, V2o = 3 or dimp, Voo = 47 Let us show that we are in the second case.
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Consider the following cycle e from Vs

_ 11 8 AT~ | A1652 143 1422 1322+ 2124
e= fulca (=T)c5(=T)) = —€1'C3 + &1 — ¢ Cy — &) C3 — C1"C3C3 — €1 Gyt
1135 21123 =105 _ =29
Cl 0203 - Cl Cg - Cl 02 - 0102 5
where ca(=T) = —hé; + é2, c3(=T) = h3 + h?¢; + héa + ¢3. The cycle e as

a polynomial in F3[cy, éa, é3] is not divisible by ¢&. It follows that the cycle e

could not be a linear combination of three cycles ¢3%, ci3c7, c8¢2 from the list

. Therefore dimp, Voo = 4.
Consider a sequence (a;);cz defined by

b;+1 ifi=20o0ri=26
a; =
b; else.

The complete motivic decomposition of the variety Y is the following
(4.13) M(Y) = ®iezM®* & My p.

REMARK 4.14. We have the same decompositions as (.3), (.9) and (f.13)
for the motives with the integral coefficients. To show this one can apply |
Corollary 2.7] and then [[[J, Theorem 2.16].

)
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