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ABSTRACT.

The K-theory of inner twisted forms of homogeneous varieties G/H
with connected reductive algebraic groups H C G of the same rank is
computed. We provide an explicit isomorphism with the K-theory of
certain central simple algebras associated to the considered variety, as
a consequence one has that Ko(G/H) is a free abelian group of rank
[W(G) : W(H)]. The result is used for the computation of the K-
theory of some affine homogeneous varieties including an octonionic
projective plane and quaternionic projective spaces.
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1 INTRODUCTION.

It is known that the K-theory of homogeneous projective varieties could be
expressed by means of the K-theory of central simple algebras. The most
fundamental result concerns the case of a projective space and states that
there is an isomorphism

K. (k)[]/t7H —= K, (P).

The case of Severi-Brauer varieties was treated by Quillen [Q, §8], and one has

D K.(4%) — K. (BY),
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where A is a central simple algebra defined by the cocycle . Swan [Sw]| com-
puted the K-theory of a smooth projective quadric and showed that there is
an analogous isomorphism involving some Clifford algebras. It was shown by
Panin [Panl] that one has an analogous isomorphism for every homogeneous
projective variety and one can express its K-theory in the terms of the K-
theory of certain separable algebras. In the present paper we provide a unified
approach to the K-theory of homogeneous varieties and compute it for inner
forms of G/H with connected reductive H C G of the same rank. The main
result is theorem 4 which claims that there is an isomorphism

K, (G/H),) —= @ K.(AM),),

i=1

with r = [W(G) : W(H)] and central simple algebras A();), associated to
(G/H), in some canonical way. In the last section of the present paper it is
shown that the known results concerning the homogeneous projective varieties
could be derived from this theorem, although it deals with the affine varieties.
An essential role in our computations plays a well-known fact that the choice
of a rational point on a homogeneous variety induces an equivalence between
the category of equivariant vector bundles over the homogeneous variety and
the category of finite dimensional representations of the stabilizer of the chosen
point. Another important ingredient is the spectral sequence constructed by
Merkurjev [Mer] that allows to pass from the equivariant K-theory to the
ordinary one. It turns out that when the groups have the same rank the
spectral sequence degenerates and provides a very explicit answer. In order to
show that the sequence degenerates we use a theorem proved by Steinberg [St]
which states that in our case the representation ring R(H) is a free module
over R(G). We give a new proof of the last theorem which provides us a good
basis consisting of the irreducible representations such that we can handle it in
the twisted case.

Note that there is a decent classification of the connected reductive subgroups
containing the maximal torus [BT, § 3]. They correspond to quasi-closed
(for chark = 0 one can say closed) symmetric subsets in the root system
of the group G, so one can explicitly write down the varieties covered by the-
orem 4. For example we can compute by hand the K-theory for the variety
G(Es)/G(Az + Az + As) with the inclusion provided by 342 C Eg. The Ky in
this case is a free abelian group of rank 240.

In the article everything is settled over a field k of an arbitrary characteristic.
Algebraic groups are supposed to be smooth algebraic varieties over the field
k. The text is organized as follows. In the second section we recall some well-
known facts on the representation theory of reductive groups, including the
combinatorics concerning roots, weights and the Weyl group.

In the next section we introduce some useful combinatorics arising from a
reductive subgroup of maximal rank. We define a linear order on the dominant
weights and prove key lemmas providing the technical tool for the new approach
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to the Steinberg theorem.

In section 4 we show that with the given order one can choose some set resem-
bling the Grébner basis and could carry out the division relative to the chosen
elements. Using the above idea we construct a basis for the representation ring
in theorem 2 and show that there is a natural freedom in the choice of the
basis. The introduced division algorithm provides an explicit method for the
calculation of the multiplicative structure on the obtained free module.

The fifth section contains some examples, from a vivid two-dimensional case
involving G5 to the non-obvious series of C,, root systems.

In section 6 we recall basic notions from the equivariant K-theory and present
the spectral sequence constructed by Merkurjev. The following section deals
with a split case of the homogeneous varieties, a degeneration of the spectral
sequence is demonstrated and the isomorphism for the K-theory is constructed.
Section 8 deals with the twisted forms, separable algebras are introduced and
the main result is proved by means of the splitting principle [Pan2].

In the last section we use the developed technique towards concrete examples.
First of all the relations with the known results are presented and the K-theory
for twisted flags is computed. Then we turn to the case of the characteristic
zero and show that the K-theory for any homogeneous variety with the stabi-
lizer connected and having the maximal rank could be computed without the
assumption on reductiveness. Also some affine homogeneous examples are con-
sidered, including an octonionic projective plane and quaternionic projective
spaces.

Acknowledgement. The author wishes to express his sincere gratitude to
I. Panin for numerous discussions and useful suggestions concerning the sub-
ject of this paper. Also the author acknowledges support of the RFFI-project
10-01-00551-a.

2 REPRESENTATIONS OF REDUCTIVE ALGEBRAIC GROUPS.

In this section we fix the notations and recall some well-known facts concerning
the representation theory of split reductive algebraic groups. A comprehensive
survey of this theme could be found in [Jan], and a classic reference for the
semisimple case is [Hum?2].

Let G be a connected split reductive algebraic group and let 7' C G be a split
maximal torus of G. Let W(G,T) = Ng(T)/Zc(T) be the Weyl group of G.
Since all split maximal tori are conjugate, W(G,T) does not depend on the
choice of torus T' so we will as usual denote it by W(G). Let

X*(T) = Hom(T, Gp,) = 2™ Ch = Hom(Z(Q), G,n)

be the character groups of torus 7' and center Z(G) respectively. Recall that
the Weyl group W(G) acts faithfully on X*(T") and that there is a natural
Weyl-equivariant Ch grading on X*(7T).

Let Repr(G) be the category of finite dimensional k-rational representations of
G and let R(G) = Ko(Repr(G)) be the representation ring of G. Recall that as
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an additive group R(G) is a free abelian group generated by the isomorphism
classes of irreducible representations. The following result is well-known (for
example, see [Se, Théoreme 4]).

THEOREM 1. Let G be a connected split reductive algebraic group and let T C G
be a split maximal torus of G. Then there is a ring isomorphism R(T) =
Z[X*(T)] where the last one denotes a group ring. Moreover, the restriction of

representations induces R(G) = Z[X*(T)]W(G)_

We need some more combinatorial data on the connection between representa-
tions and characters group ring.

There is a root system ® in X*(7T') and one could construct a positive definite
bilinear form (—,—) on

V = X*(T) @z R = R™E)

such that the Weyl group is generated by the reflections {w,,a € ®}. If G
is semisimple then there is a canonical choice of this bilinear form. In general
case we proceed as follows. For the root datum (X*(T'), ®, X,.(T),®") and the
pairing (—,—): X*(T) x X,.(T) — Z the Weyl group W(G) is generated by
the reflections

sad=A— (N, a")a, a € .

Set
Xo(T) ={X € X*(T)| (\,a") =0 Va € ®}.

Then V = R® & Xo(T) ®z R. The space R® possesses a canonical bilinear
form. Choose an arbitrary positive definite bilinear form on Xo(7") ®z R. The
required form (—,—) is an orthogonal sum of these two forms.

The hyperplanes H, orthogonal to the roots o € ® divide V into chambers
which are the fundamental domains for the Weyl group action. The hyperplanes
adjacent to the chamber are called walls of this chamber. Fix a set of simple

roots II C ® and positive roots ®T. Let
C(G)={veV|v,a) >0,acll}

be the fundamental Weyl chamber. Walls of the fundamental Weyl chamber
C(QG) coincide with the hyperplanes orthogonal to the simple roots. Let

AL =C(G)NX*(T)

be a cone of the dominant weights. Note that in the semisimple case G is
simply connected iff there is an isomorphism of semigroups AJCS &~ (Nar)Tk(G),
where N stands for the additive semigroup of non-negative integers.

Let X € Ag be a dominant weight. Theorem 1 states that there is a bijection
between such weights and irreducible G-modules, so we will denote by V()
the corresponding G-module.

At last, recall that there is a partial order on X*(T") which is defined by the
choice of simple roots II: p =g A if and only if A — p is a sum of positive
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roots. The interaction between this order and Weyl action is stated in the next
lemma.

LEMMA 1. Let )\ € Ag, w € W(Q) then w(\) = A.

Proof. If G is semisimple we can use [Huml, Lemma 13.2A]. In general case
consider the inclusion of the derived group DG C G with maximal torus 73 C T
[Jan, 1.18]. It induces an orthogonal projection

m: X' (T)®zR - RO = X*(T1) @z R

mapping simple roots to simple roots and Ag to A;SG. We have A = A\ + 1
for some \g € Xo(T) ® R and Ay € R® such that Ay = w(\1) € A;SG. Then

)\7’[1)()\) = )\0 +>\1 7’[1)()\0) 710()\1) = )\1 710()\1) € RO

and
)\1 - w()\l) = 7T()\1 — w()\l)) = 7T()\1) — ’w(ﬂ'()\l))

Using the semisimple case we conclude that 7(A1) —w(m(A1)) is a sum of positive
roots of DG which coincide with the positive roots of G.
O

3  SUBGROUP COMBINATORICS.

In this section we introduce the necessary combinatorics that we need in order
to prove theorem 2. The main goal is to order dominant weights of the subgroup
and show that there are several weights with good properties relative to the
order.

Let G be a connected split semisimple simply connected group of rank r, let
T C G be a split maximal torus of G and let T C H C G be a connected
split reductive subgroup of maximal rank. Evidently, in this setting there is an
inclusion of the Weyl groups W(H) C W(G). Hence we have the corresponding
combinatorial data introduced in the previous section: the lattice X*(T) C V
in the euclidean space, the root system ® C X*(T') and the actions of the Weyl
groups W(H) C W(G) on the V. The following lemma shows that we can
choose compatible fundamental Weyl chambers and the corresponding cones of
dominant weights

C(GY——=C(H)

I

R A
Let r = [W(G) : W(H)] be the Weyl group index.

LEMMA 2. Any Weyl chamber of H is a union of r Weyl chambers of G.
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Proof. Tt is clear that any wall for the W (H) action is a wall for the W(QG)
action, so in order to get the chambers of G we need to subdivide the H
chambers. The number of G subchambers is independent on a H chamber since
W (H) rearranges the G chambers and acts transitively on the H chambers.
Since the number of the chambers coincides with the order of Weyl group, the
number of subchambers equals to the index 7. O

So we choose some chambers C(G) C C(H) and elements
e =wi,ws,....w, € W(Q),

such that
CH)= |J wc(@), A= | wd

1<i<r 1<i<r

Let wy, ...,ws be the fundamental weights corresponding to C(G) and let II, II
be the sets of simple roots for G, H respectively.

DEFINITION 1. Let u € X*(T) be some weight. Define
H(p) ={Ha,a € " [Fi: (n,0) - (wi; @) <0} = {Hq, o € 2T (1, ) < 0}

to be the set of walls which separate p from C(G). Let H(wC(G)) = H(u) for
some interior weight u € wC(G)°.

Remark 1. The set H (1) somehow measures a combinatorial spherical distance
from p to C(G), the furthest weights are separated by the most hyperplanes.
Also note that #H (wC(G)) = l(w), the usual length of an element of a Weyl
group, which is defined to be the number of simple reflections in the shortest
word representing w.

LEMMA 3. Let p € A}; be a dominant weight. Then there exists such i that
p € wiAf and H(w;C(G)) = H(p).

Proof. If u belongs to the interior of some chamber we should take that cham-
ber. Otherwise we can choose an arbitrary v € C(G)° and draw a segment con-
necting the points corresponding to p and v. Since v is interior for C(G) this
segment does not belong to hyperplanes H, and we should take the chamber
w;C(G) which interior it crosses first, starting from p. There are no hyperplanes
separating the chosen chamber from p so H(w;C(G)) = H (). O

LEMMA 4. Let pu, A € w;AL for some i and w € W(G). Suppose that there
exists a hyperplane H,, separating A and wp, i.e. such that (\, ) (wu,a) < 0.
Then (wp, A) < (p, A).
Proof. First of all we multiply the weights by w;” 1 and consider

1

/ — / — / — / —
Wo=w; e, N =w A, w = w  wwg, o = w;
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It follows that p/, N € A} and
(Vo) - (o) = (w7 A w ) - () wp, w a) = (A, a) - (wp, ),
and by the same vein
(W', N) = (wp, A), (W, N) = (1, A).

So from now on we suppose w; = e.

Note that by lemma 1 y—wp equals to a sum of positive roots and A is a sum of
fundamental weights with nonnegative coefficients, so in general (wu—pu, A) <0,
and we need to show that the difference wyu — p is not orthogonal to A. First of
all wu & AL (i.e. not equals p1) since there are no hyperplanes crossing C(G).
We can find a sequence a1, s, ...,a, € ®1 such that the following conditions
hold, where s; = wq,Wq,;_, ... Wq, and so = e.

a. W= 8y = Wa,Wa, ;- Way-

b. For every 1 < ¢ < n the hyperplane H,, is a wall of s;_1C(G) and
separates it and C(G) from s,C(G)

This presentations divides w into the sequence of flips, and every flip drives the
chamber further from C(G).

We claim that the roots «; should be the roots corresponding to hyperplanes in
H(wC(@)) written in an appropriate order. Indeed, there exists a hyperplane
H,, € H(wC(G)) which is the wall of C(G), otherwise wC(G) = C(G) and
w = e, contradicting p # wp. Note that

H(51C(G)) = {Ha, } € H(wC(G)),

and whenever s; # w we can find H,, € H(wC(G)) \ H(s1C(G)) satistying the
condition (b), i.e. it should be a wall of $1C(G), the separating part is valid
since we look at the separating hyperplanes. Now one has

H(s5C(Q)) = {Ha,, Ha,} C HwC(Q)).

If s9 # w we can find ag € H(wC(Q)) \ H(s2C(G)) and so on.
For the above roots «; one has

(wi =, 2) = (O sipe— sicap A) = Y eilai, A),
i=1 i=1
where ¢; = —28=189%)  Byom the condition (b) it follows that Ha, does not

A,
separate si_iC(G() fr01)rn C(@), so (sj—1p, ;) > 0, hence ¢; is nonpositive.
In general (a;, \) > 0 so it is sufficient to show that there exists some «; such
that (a;,A) # 0 and (s;—14, ;) # 0 simultaneously. The first condition is
equivalent to A € H,, and the second means that s;u # s,—1u. Now suppose
that there is no such oy, then we can get from p to wu by reflections wq,
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such that A € H,,. Then wp and A lie in the same chamber and there are
no hyperplanes separating them. So by contradiction we can find such ¢ that
¢i(a;, A) < 0 and this finishes the proof.

O

Now we are ready to introduce a good order on A}, which uses W(G) action
and hence somehow connects W(G) orbits with H weights.

DEFINITION 2. Let pu1, 2 € Aj;, we say that pg <’ o if and only if one of the
following conditions holds:

1. p1 = po

2. (1, 1) < (p2, p2)

3. (1, 1) = (p2, p2) and H(pa) 2 H(p2)

Remark 2. The meaning of the above definition is that a dominant weight is
smaller if the vector is shorter or the combinatorial spherical distance to C(G)
is greater.

LEMMA 5.

. +
1. =’ defines a partial order on AF.

/

2. For any u € AE there are only finitely many p' such that u A’ i'.

8. Let py, puo € AJIQ and py < p2. Then py < po.

Proof.
1. is checked by hand.

2. Follows from the fact that there are finitely many weights p’ such that
(W' 1) < (s ).

3. There exists € X*(T) such that 8 equals to a sum of positive roots and
piz = p1 + B. Then (uz, p2) = (pa, p1) + (8, 8) + 2(p1, 8). The last term
is nonnegative since the scalar product of a simple root and a dominant
weight is nonnegative and so is the scalar product of a positive root and
a dominant weight. So p; =’ ps follows from the examining of their
lengths.

O

DEFINITION 3. Let < be an arbitrary linear extension of the order =<’ on AE,
i.e. such a linear order that from pu; =<’ ps it follows that uy < ps.

Remark 3. Part (3) of the previous lemma is valid for < too and the part (2)
transforms into the property that there are only finitely many u' such that

p= g
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The next lemma introduces basic and in some sense minimal and indecompos-
able elements \; € A};, one for the each chamber w;C(G).

LEMMA 6. For every i there exists an element \; € wiAJé such that
1. H(\;) = Hw;C(G)).
2. For every p € wiAg, H(p) = H(w;C(G)) one has i1 — \; € wiAd,.

3. For every p € wiAE one has \; + iji_lu =N\ + u.

Proof. The set of weights {u € w; AL | H(u) # H(w;C(G))} is just an intersec-
tion of wiAg with the union of chamber w;C(G) walls which separate it from
the C(G). Indeed, the only chance for the weight to have the lesser number
of walls separating it from C(G) is to belong to a such wall, and every weight
lying on this wall has the lesser number of separating hyperplanes.

Now we use the fact that G is simply connected so w; A, 2 (N§)*. The walls
of the chamber correspond to the hyperplanes where some coordinate equals
0, so the weights, which have the same H(u) as the chamber, correspond to
the points with certain coordinates, say 1,...,[, strictly greater then 0. Let \;
be the element corresponding to the point with first [ coordinates equal 1 and
others equal 0. From the above it follows that we get (1) and (2), so we turn
to (3).

First of all note that all weights really lie in the AJ{I, so we can try to compare
them. Examine their lengths:

(N 4+ wjw; i, N Fwiw; ) = (A, M) 2Ny wjw; )+ (wiw; i, wiwg ) =
Applying lemma 1 to w; ' \;,w; 'y € A, and w; 'w; € W(G) we have
Niywjw; ) = (wi Ay, w7 wjw; ) < (wi i wi i) = (A )
and, consequently,
(N + wjw; N+ wjw; ) < (N + N+ p).

Now look at H(A;). Observe that H(\;) = H(X; + p). Indeed, A\; + p €
w; AL and from the first part of the lemma it follows that H(X;) D H(\; + ).
The opposite inclusion follows from the fact that since p and A; lie in the
same chamber there are no hyperplanes H, separating them, i.e. one has
(Aiya) - (p, ) > 0. For every H, € H()\;) one has (A, ) < 0, so (p, ) <0
and (\; + p, ) <0, then H, € H(\; + p).

First suppose that there exists some H, € H()\;) such that (w;w; ', a) > 0.
Since H, € H(A;) one has (A, ) < 0 and

(i, @) - (wjw; @) < 0.
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Then we are in the setting of lemma 4 with a slight change of notation, so
(Ai,ijflu) < (N, ) hence \; + ijjlu =\ + p.

Otherwise for all H, € H()\;) one has (w;w; *i,a) < 0 and since (\;,a) < 0
one has (\; +wjw; 'y, a) < 0, s0 H(N\;) C H(wjw;  pu+ );) and

H()\l + ,u) C H(ijfl,u + )‘z)

The last two sets coincide only if wjw; L+ € wiAg and the second part
of the lemma in this case yields ijflu € wiAg that means p = ijjlu. In
any case one has \; + iji_l,u =X\ + .

O

Remark 4. Note that from the above construction one gets A\ =0 € X*(T).

4  RESTRICTION OF REPRESENTATIONS.

In this section we study the representation restriction homomorphism on the
representation rings and prove theorem 2.

Let T'C H C G be the same groups as in the previous section. From theorem
1 we get the following commutative diagram.

R(G) > R(H)——— R(T)

ZX* (T)W( s Z[X*(T)W ) ZX*(T)

Recall that Z(G) C T, hence all the rings above are Ch = X*(Z(G))-graded.
We are interested in the R(G)-module structure on R(H) and its connection
with the grading.

We need the following easy lemma from commutative algebra.

LEMMA 7. Let S C R be integral domains and let A1, ..., A\, € R generate R as
S-module. Set Q(R) and Q(S) to be the fraction fields of R and S respectively
and let [Q(R) : Q(S)] = r. Then R is a free S-module with basis A1, ..., Ar.

Proof. R is finitely generated as an S-module hence it is integral over S. Then
R ®s Q(S) is an integral domain integral over the field S ®s Q(S) = Q(S5),
hence itself is a field [AM, Proposition 5.7] so R ®g Q(S) = Q(R).

We have the following short exact sequence induced by A1, ..., A,

N—> Gk — R,

hence
N @5 Q(S)——=Q(S)F —== R®s Q(9) .

The last term is isomorphic to Q(R) and comparing dimensions one can see
that N ®s Q(S) = 0 hence N = 0 and we get the claim of the lemma. O
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We consider X*(T') as an additive group, so we will write the element of
Z[X*(T)] corresponding to weight u in a such way: x*.

DEFINITION 4. For p € X*(T) we will denote by (2#)V ) the sum in the
Z[X*(T)] of all elements corresponding to the weights in a W (H)-orbit of y
and for any monomial az* € Z[X*(T)] by (az*)VH) = q(2#)" ) we denote
the similar orbit but with a coefficient.

With the above notation one has the unique decomposition of
f= Z(aujxw)W(H) € ZIX*(T)VH
into the sum of monomial orbits with distinct p1; € Af;. Recall that we have a

linear order =< on p; introduced in the previous section.

DEFINITION 5. Let f = > (a,,x" YWH) | then define the degree deg(f) =
max (; to be the maximal 41, in the decomposition and the leading orbit lo(f) =
J

(@geg(pyz2°8)WH) to be the orbit of the maximal monomial.
We will use an analogous notation for the group G.

LEMMA 8. For uy, e € AE we have
lo ((zul)W(H) (xm)W(H)) _ (z#1+#2)W(H) _
Proof. Expanding the orbits we obtain
(zm)W(H) (xm)W(H) _ Z Sz
51€851,52€852

for some sets S; C W (H) of representatives of cosets W (H)/Stabyy (g (1s). We
can choose S; such that e € §1,55. By lemma 1 we have

S1p1 I M1, Sopie =TI e,

and for nontrivial s; the relation is strict. Hence sy + sape <m p1 + p2 and
applying lemma 5 we get s1p1 + sopo < p1 + pa- O

THEOREM 2. Let G be a split semisimple simply connected group and let H
be a connected split reductive subgroup of the mazximal rank (i.e. H contains
a split mazimal torus T of G). Then R(H) is a free R(G)-module of rank
[W(G) : W(H)| and there is a Ch-homogeneous basis.

Proof. First of all we will deal with the weight realization of the rings of rep-
resentations, i.e. with the following sequence.

ZIX* (T)W( s Z[X(T)W ) ZX*(T)

In the previous section in lemma 6 we have constructed some \; and we claim
that the orbits (z*)" () form a homogeneous basis of Z[X*(T)]|" ) over
Z[X*(T)|W(©,
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a. Homogeneity. It is the easiest part since it follows at once from the

equivariance of the W(H) action.

(A)WUH) generate Z[X*(T)|WH) as a Z[X*(T)]W()-module. We will
show by induction on deg(f) that f € Z[X*(T)]" ) could be expressed
as a linear combination of (z* )W) with Z[X*(T)]W(“) coefficients.
Note that Ay =0 € X*(T) and

(@)W = 1 € Z{x*(T)V

3

so we have the constants. Now suppose that we can express as linear
combinations all f € Z[X*(T)]"W#) such that deg(f) < o and we need
to write down such an expression for (z#0)W(H),

By lemma 3 we have some chamber w;C(G) such that ug € wlAg and
H(po) = H(w,C(G)), hence, by lemma 6 v = pp — A; € w;Af. Choose a
subset {w;} of {w;} such that we have all the distinct wjw; “v. Then by
subdividing the W(G)-orbit into the W (H)-orbits we have the following
equality.

lo ((zU)W(G) (zAl)W(H)) R Z <(ijwlly)W(H) (x/\z)W(H)>

J

Looking only at the leading orbits of the summands in the last expression
and applying lemma 8 we get

W(H)
lo ((zu)W(G) (z)‘l)W(H)) — 1o wajwflu-i-/n 7
J
and finally, by lemma 6, we have
W(H)
lo wajwf1V+Al = (:c”Jr)‘l)W(H) = (:C‘““)W(H) .
J

Hence
deg (($“°)W(H) — (@)@ (xkl)W(H)) < Ho

and we can use the induction.

c. (:I:Ai)W(H ) are linearly independent. >From the sequence

2 (D) V(O Z[ X (1) VD > Z[X* (7))

)
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one gets a sequence of the fraction fields

QZIX™ (T — Q(Z[X*(T)]W ) —— Q(Z[X*(T)))
QUZIX (T D ——= QZ[X*(T))" "N — Q(Z[X*(T)]

)

with a degree of field extension
QX )" Qax ()" V] = WG wim).
Hence, by lemma 7 one gets the claim of the theorem.

O

COROLLARY 1. In the notation of theorem 2 one has a basis of R(H) over
R(G) consisting of the classes of irreducible representations of H.

Proof. One can take Vi (A;) and since their leading orbits coincide with the
basis constructed in the theorem one gets the claim. o

Remark 5. We can choose various chambers C(G) and the different choices
produce different bases. Also the proof of the theorem gives an explicit algo-
rithm for the calculation of the coefficients of decomposition with respect to the
chosen basis, so, for example, in every particular case one can write down the
multiplication table for the basis, yet it seems that there is no elegant general
formula.

5 EXAMPLES: A1+ A1 € Go, B4 C Fy AND C; + Cp,_1 C C,.

In this section we compute several examples of bases. Every reductive subgroup
containing the maximal torus is defined by some quasi-closed root subset [BT,
§ 3], so we use the root system notation. Every maximal root subsystem of full
rank corresponds to a node in the Dynkin diagram and the subsystem diagram
is just an extended Dynkin diagram with the chosen node removed. We label
simple roots in a way of [Bou].

51 A1+ A CGe

In this example we take the subsystem in G5 defined by the short simple root
and the maximal one. The corresponding Dynkin diagram is the next one, with
the white node removed.

———e

aq Q2 —Omax
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We label the roots in a way shown above and a0 = 31 + 2a2. The funda-
mental chamber C(G2) is a chamber spanned by the fundamental weights

W1 = Qaz = 301 + 202, w2 = 2a1 + ao.

The fundamental chamber C(A; + A;) should contain C(G2) so it is the quarter
of the plane bounded by a7 and aunq:. Note, by the way, that the considered
group G(A; + A1) is not simply connected since there are no weights %al and

%amaz in our lattice and one can see that

G(Al + Al) = (SLQ X SLQ)/‘LLQ

with e embedded diagonally.
The chamber C(A; + A;) subdivides into the G5 chambers in the following way:

C(Al + Al) = C(Gg) U ’LUQQC(GQ) U wa1+a2wQZC(G2)

So theorem 2 tells us that we should take in each subchamber the shortest of
the furthest by spherical distance weights, i.e. the generator for the furthest
wall, hence one has

0€C(G), 31+ az € we,C(G), a1 € Way+tasWa,C(G2)

and the corresponding sums over W(A; + A;) would form a basis. The basis
from the theorem is the following one:

1 $3a1+a2+xa2+lﬁa2 +$73a17a2, O 4 T,

One could compute the corresponding basis consisting of irreducible modules
from corollary 1 having the following weight subspaces:

V(0) -1

V(Sal + a2) — x2041+0t2 + :L-Ot1+042 + g1z 4 $—2a1—o¢2+
+$30t1+0t2 +xa2 _|’_:C—042 +x—3a1—a2

V(o) = 14z g

In fact after identifying G(Ay + Ay) = (SLa x SLa)/pe one can write down
the above representations in more natural way, denoting by Wy, W5 the regular
representations of the factors one has

V(O) = SOW1®SOW2, V(3a1 +a2) = S3W1®W2, V(Oq) = SQW1 ®SOW2.

5.2 By CFy

In this case we remove the a4 node from the extended Dynkin diagram of type
F,. One can show that it corresponds to Sping C G(Fy).

e—e o —9 O

—Omazr A1 Q2 Q3 Qg
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With the above labelling one has
Qmax = 20 + 3as + 4dag + 2a4.

We will shorten the above notation to (2,3,4,2). The fundamental weights
defining C(Fy) are

w1 =1(2,3,4,2), w2 =(3,6,8,4), ws=1(2,4,6,3), ws=(1,2,3,2).
Choose the simple roots for By in the following way:
a] = Woy (—maz) = (0,1,2,2), a3 =1, az=az, «af=as,
hence we have the fundamental weights defining C(By) ~ {w],w}, wh,w) }:
w; =(1,2,3,2) =wy, wh=1(2,3,4,2) = wy,

wy =(2,4,5,2), wy=(1,2,31).

Since these weights belong to the considered lattice the chosen G(By) is simply
connected, so it really is Sping. Now we compute the subdividing of C(Bjy):

C(B4) = C(F4) U ’LUa4C(F4) U wa3+a4wa4C(F4),

’LUa4C(B4) ~ {w17w27w37wz/1}7 wa3+a4wa4C(B4) ~ {wlvw%wévwz/l}'

Theorem 2 suggests to look at the elements appeared after flips, since they are
the spherically furthest, so the basis would consist of W (By) orbits of 0, w}, wj.
Another basis comes from the corollary 1 that claims V/(0), V(w§), V(w}) to be
a basis. These representations are just the trivial one, A3W for the regular W
and the spin one.

53 C1+C,_1CC,

In this case we remove a; node from the extended Dynkin diagram of type
C, and it corresponds to (Spa X Span—2) C Spa, with the quotient variety
HP" ! = Spy,,/(Spa x Span—2) being a quaternionic projective space in nota-
tion of section 9.3.

—Qmaz Q1 (6%) Qp—2 Qp—1 Qp
One has
Qmax = 200 + 200 + -+ + 201 + i = (2,2,...,2,1).

The fundamental weights for C(C),) are
= (L2 i Ly )
wi= (1,2, = Lt )
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Choosing asg, as, ..., Qpn, Qnaes t0 be the simple roots of C7 + C),_1 one gets the
following C(Cy + Cp—1):

) 1
P (0,1, =i~ C— (1,11, ).
wl (07 ) 77/ ,Z,Z 7/7 2)7 wn ( 3 ) b 72)
The subdivision of C(Cy + C,,—1) is straightforward:

C(C + Cr1) = C(Cr) Uwe, C(Cr) Uway +a,wa, C(Cp) U ...

U (wal‘i’""i’anfl co-Wagay Way )C(Cn)v

(Wayto ooty + - Way s Way )C(Cr) ~ {wy,why ooy Wi Wi 1y« - Wi )

Corollary 1 claims V(0), V(w}),...V(w!,_;) to be a basis and this representa-

X n—1
tions are just A'W for a regular representation W of Spo,_s.

6 REPRESENTATIONS, VECTOR BUNDLES AND EQUIVARIANT K-THEORY.

In this section we recall some results on the equivariant K-theory. An extensive
exposition and further references could be found in [Mer].

Let G be an algebraic group, let H C G be a closed subgroup and let X = G/H
be the corresponding smooth homogeneous G-variety. There is a well-known
tensor equivalence [Mer, Example 2]

Repy(H) ——= Vect%(X)

between the categories Repy(H) of finite dimensional k-rational representations
of H and Vect®(X) of G-equivariant vector bundles over X. The inverse for
the above equivalence is given by the fiber over the distinguished rational point
eH of X. Further we will use the following notation.

DEFINITION 6. Let V() be an irreducible representation of H with the high-
est weight A € A};, then denote by Vyr()\) the corresponding vector bundle over
G/H. For an irreducible representation Vg (u) of G with the highest weight
w e AJCS one can use the restriction of representations, get a representation
of H (not necessary irreducible) and then take the corresponding vector bun-
dle Vg(u). Occasionally we will write Vg(A) and Vg () for A € A}, and it
means that one should find u € Af from a W(G)-orbit of A and then take the
corresponding V(1) and Ve (p).

Remark 6. Note that after forgetting about the G-action the last bundle be-
comes trivial, i.e. the composition

Repi(G) B . Repr (H) ——= Vect®(X) — Vect(X)
takes G representations to trivial bundles.
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Set
Kn(G;X) = K,(Vect®(X)).
The above equivalence yields
Ky (G; X) =2 Kn(Rep(H)),

in particular

Ko(G; X) = R(H).

Note that R(H) is a R(G)-module, hence every K, (G, X) also is. The fol-
lowing proposition, being a straightforward consequence of [Mer, Theorem 10|,
compares K, (G; X) with K, (X).

PROPOSITION 1. Let G be a split simply connected semisimple group. Then
there is a spectral sequence

Ez,q = Torf(G)(Z, Kq(G; X)) = Kpiqg(X).

7 K-THEORY OF A HOMOGENEOUS VARIETY.

In this section we calculate the K-theory of a homogeneous variety X = G/H
with connected split reductive algebraic groups H C G of the same rank.
LEMMA 9. K, (Repi(H)) = R(H) @z K, (k) as R(H)-modules.

Proof. Note that char k not necessary equals 0, so the reductive group H is
not necessary geometrically reductive, i.e. the category Repy(H) may be not
semisimple. But, nevertheless, all objects of Repi(H) have finite length and,
thanks to Devissage property of the K-theory, one has

Kn(Repk(H)) = Kn(Repk(H)ss)7

where Repy(H)ss stands for the subcategory of semisimple representations. By
Shur’s Lemma we can pass to a sum of the abelian categories of modules over
the endomorphism rings of irreducible representations

Ku(Repi(H)ss) = K | @@ M (Endrey (Vi) [Vi]
Vil

with [V;] being the isomorphism classes of irreducible representations. Since
Endge,(V;) = k, the last one equals to

Ko | @M (0) V] | = @ K0 [Vi] 2 ROF) 2 K ().
[Vi]
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PROPOSITION 2. Let G be a connected split simply connected semisimple alge-
braic group and let H C G be a connected split reductive subgroup of the same
rank. Then the spectral sequence in proposition 1 degenerates, i.e.

TOI'R(G)(Z,Kn(G,X)) _ Kn(X)a pr =0;
P 0, if p> 0.

Proof. Due to lemma 9 it is sufficient to show that for p > 1 one has
Tor“N(Z, R(H) @z Kn(k)) = 0.

Replace K, (k) with an arbitrary abelian group M. Since Tor commutes with
the direct limits we can reduce the problem to the finitely generated abelian
groups, and, moreover, to M =Z or M = Z/mZ.

In the first case we at once get the claim from theorem 2,

Tor9)(Z, R(H)) = 0,

since R(H) is a free R(G)-module.

In the second case we can write a resolution

0 R(H) —~ R(H) R(H) ®2,Z/mZ —=0 ,

which is exact since R(H) is a domain of a zero characteristic. Denoting the
rank of R(H) over R(G) by r, after tensoring with Z one still gets an exact
sequence

m

0 z"

7T (Z/mZ)" ——0 .
So, we conclude
Tor“)(Z, R(H) ® Z/mZ) = 0,
finishing the proof. O

In order to remove the annoying restriction that G should be simply connected
we need the following lemma.

LEMMA 10. Let H C G be a pair of connected split reductive groups of the same
rank. Then there exists a connected split simply connected semisimple group
G and a connected split reductive subgroup H C G of the same rank such that
G/H 2G/H.

Proof. Let G be a simply connected covering of the derived group DG. There
exists a covering

Z = (Gn)xG—=G
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with a finite kernel Z. Since H contains the maximal torus the preimage of
H under this projection contains the factor (G,,)!, so we have the following
diagram.

(Gp)! x G—> G
(Gt % H—»Jq

The above consideration yields
G/H = (G x G/(G)' x H= G/H,
so we need to show that H is connected. One has

Z = (Gpn) ' x H—>=H

with finite central Z and connected H. The identity component of (Gy,)! x H
contains the maximal torus, hence it contains Z and the connectedness of H
yields that the identity component coincides with the whole group. The group
H is connected as the quotient of the connected group. O

THEOREM 3. Let H C G be a pair of connected split reductive groups of
the same rank. Denote r = [W(G) : W(H)]. Then there exist V1,...,V, €
Vect(G/H) such that

K.(G/H) = @ K. (k)[Vi].

Proof. By lemma 10 we can pass to a simply connected semisimple group G
and from the proof one has that [W(G) : W(H)| remains the same. Due
to proposition 2, the spectral sequence in proposition 1 degenerates, so using
lemma 9 one has

Ko(X) 2 Torf'“N(Z, R(H) @7, Kn (k) =
=72 ®pr(q) R(H) @z Kn(k) = 2" @7 K, (k).

The above isomorphism is induced by the elements of the basis R(H) over R(G)

constructed in theorem 2, so we can take as V; the corresponding elements of
Vect(G/H). O

Remark 7. In remark 5 we noted that there is an explicit algorithm to write

down the multiplication for the basis elements and now it describes the ring
structure on the Ko(G/H).
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8 THE K-THEORY OF TWISTED FORMS.

In this section we deal with certain twisted forms of homogeneous varieties
X = G/H with connected split reductive groups H C G of the same rank.
From now on we suppose G to be simply connected semisimple, lemma 10
shows that in fact it is not a restriction. Denote as before r = [W(G) : W (H)].
One has an obvious left action of G on G/H and since H contains the maximal
torus hence the center of G, this action extends to the action of

G=G/Z(G).

Now fix a 1-cocycle v : Gal(k*®P /k) — G(k*P). Twisting the variety with this
cocycle we obtain
Xy =(G/H),.

The following lemma provides a splitting variety for this cocycle.

LEMMA 11. For the above cocycle = there exists a variety Y such that the
following conditions hold:

1. 'Y is a smooth projective variety.
2. The Euler characteristic x(Y) equals to 1.

3. For every point (not necessary closed) y € Y the cocycle () is a
coboundary.

Proof. Note that G is a split semisimple group and we can twist it with v as
well. The last condition is equivalent to the condition that for every point
y € Y the group (6V)k(y) is split. Set B to be a Borel subgroup of G and
consider

Y = (G/B),.

We claim that the variety Yr = ((G/B),)r has a rational point if and only if
@7 splits over F'. The existence of a rational point on this variety is equivalent
to the existence of a Borel subgroup defined over F', which is the stabilizer of
this point in (@7) . The existence of a Borel subgroup means that the group
is quasi-split and in our case it is equivalent to be split, since we work with an
inner form.

Y = (G/B), is clearly a smooth projective variety. In order to compute the
Euler characteristic x(G/B) it can be shown [Jan, Proposition 4.5] that

0, ifi>o0;

"'(Og/m) = {1 iti=0.

so we get the claim. O
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The idea lying behind the calculation of the K-theory of a twisted form is
quite simple: one needs to construct some candidate for the K-theory and a
morphism such that they will produce a correct answer and an isomorphism
in the split case. The isomorphism in the split case is written by means of
some vector bundles V;, so in general we want to twist them. And here is the
problem — there is no action of G on these bundles since the center could act
non-trivially. In order to get over that we should tensor V; with some bundles
to trivialize the center action, and then for the cancellation of this tensoring we
should look at the modules over endomorphism algebras of the excessive factors.
Twisting these endomorphism algebras we get separable algebras which produce
the answer.

DEFINITION 7. Let Viz(A) be a representation of G then we denote
A(A) = Endi(Va(N) = Va(A) @ Va(A)*

the endomorphism algebra of the underlying vector space. There is an obvious
diagonal G action on A()\) which extends to the G action, so we can twist
this algebra and get a separable algebra A(\),. Also one can pass to the
corresponding trivial sheaf of algebras A(\), over X,.

Now we fix \; from theorem 2 and the corresponding A()\;). Denote
W) =Va(h) @ Ve(M)F,

and the corresponding vector bundle W(A;). Note that W (\;) is a right module
over A()\;) through the second factor and so W(J;) is. Recall that

Z(G)CcTCH

and the weights \; are Ch-homogeneous. The center Z(G) acts on the Vi (\;)
and Vg (A;)* through the opposite characters hence it acts trivially on W (\;)
and W(\;) so we can obtain a twisted form W(\;),.

All the considered above structures are agreed, so now we have trivial sheaves
of separable algebras A()\;), and vector bundles W();), that are right A(\;)~-
modules.

DEFINITION 8. For a variety Z and a separable algebra A let P(Z, A) be the
category of coherent Oz ® A-modules which are locally free Oz-modules. Then

we denote
K.(Z,A) = K.(P(Z,A)).
There is a corresponding notion of K (Z, A) and it satisfies all the usual prop-

erties of the K-theory [Mer].

PROPOSITION 3. Let Z be a variety such that every point z € Z (not necessary
closed) splits 7y, i.e. Yy(z) is a coboundary. Then in the above notation one has
an isomorphism

T

S 0 D KUZ AN)y) — KL(X, % 2),

=1 i=1
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where

¢i(U) = px (W(Xi)y) @an, Pz(U)-

Proof. This is proved by induction on the variety dimension.
Suppose first that dim Z = 0, i.e. Z is a point, then we are in fact in the split
case. Let F = k(Z), so we have

XyxZ=Xp, (ANi)y)r=AN)r =Endp(Va(\) @ F),
(W()\i)»y)p = W()\i)p = VHO\z) & VE;()\Z) ® F.
Since every module over Endr (Vg (\;) ® F) is isomorphic to Vi (\;) ® F™ and
Ve (X)) ® F ®Endp(veer) Va(Xi) @ F = F,
one has
¢i(Va (M) @ F™) = Vi (\) @ VE(Ni) @ F ®@kndp(ve(n)er) Ya(hi) @ F" =
=Vu(\i) @ F".

The above considerations show that we are in the setting of theorem 3 claiming
>~ ¢; to be an isomorphism.

For the dimension greater then 0 we can write the localization sequence for
all subvarieties Z’ C Z of the codimension one, so for the generic point n =
Speck(Z) one has

lig @ K2, AO\)y) — @ KL(Z, A(N)y) —— @ KL(7, A\)5)

z'cz =1 i=1 i=1

l > b

lim K(X, x Z)

zicy = K (Xy x Z) ——— K, (X, xn)

This sequence extends to the right and to the left with the shifts in the K-
theory, and both the side vertical morphisms in each triple are isomorphisms

by induction, so using the five lemma one concludes that the middle one is an
isomorphism. O

COROLLARY 2. In the notation of proposition 8 for a smooth Z one has

>0 @ K(ZAMN)) — K.(X, x 2),

Proof. One has K,.(Z,A) = K/(Z,A) and K.(X, x Z) = K[(X, x Z). O
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THEOREM 4. In the above notation there is an isomorphism

T T

Z Y : @ K (A(Xi)y) —— K. (X,),

where
Yi(U) = W(Ai)y ®any), U

Proof. We can insert two copies of our morphism into the following diagram
with the middle arrow from corollary 2 and Y being the splitting variety con-
structed in lemma 11.

D K.(A(N),) E v Ka(Xy)
() D K.Y, AN),) =5 KL (X, X V) (V)
@ K.(A(N),) Z K.(X,)

A direct verification shows that the diagram is commutative. The vertical
morphisms are just multiplications by x(Y) = 1 since they are equal to the
composition p,p* with p being a projection from Y to a point. The above
yields that our morphism > 1); is a retraction of an isomorphism > ¢; hence
is an isomorphism itself. O

Remark 8. It can be shown [Panl] that K, (A();)) depends only on the Z(G)
action on Vi(A;). The explicit description of the arising algebras could be
found in [Ti].

9 EXAMPLES.

9.1 TWISTED FLAG VARIETY.

The K-theory of twisted flag varieties was computed in [Panl] and our com-
putation gives the same description for the inner forms. Flag variety is a
homogeneous variety G/P with a split semisimple G and a parabolic P C G,
and this definition includes projective spaces, flag varieties in usual sense (for
G = SL,,), split projective quadrics, etc.

There is a decomposition P = LU into a semidirect product of a Levi subgroup
and the unipotent radical of P hence there is a morphism

G/L—-=G/P
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with the fiber U. Over the distinguished point eP the group P acts on U by
lpup -u = lpupulgl,

so one has a representation of P on the Lie algebra of U, and G/L is the
corresponding vector bundle.

Levi subgroup is a reductive subgroup of maximal rank hence theorem 4 gives
an explicit answer for the K,(G/L) and by the homotopy invariance of the K-
theory this is an answer for K.(G/P). Note that the center Z(G) acts trivially
on the above bundle so one can twist it and get a new vector bundle

(G/L>'y - (G/P)'Ya

hence the K-theory for an inner form of a flag variety could be computed by
our method as well.

9.2 EVEN DIMENSIONAL AFFINE QUADRIC.

This case corresponds to the inclusion SOs,, C SOs,41 and for the root systems
itis D, C By.
First of all we pass to a simply connected group,

Spin2n+1/spin2n = S02n+1/S02n.

One has [W(B,) : W(D,,)] = 2 so there are two elements in a basis. First
element V(A1) as usual corresponds to the trivial representation of Sping, and
as the second we can take one of the half-spin representations V(wy,—1), V(wn),
since the algorithm from theorem 2 suggests one of the fundamental weights
having an orbit consisting of two points.

After twisting with v we get a quadric X(¢q) defined by a quadratic form g,
then the algebra A(A2), = Co(q) is an even Clifford algebra for the form ¢ [Ti|.
Hence one has

K.(X(q) = K.(k) ® K.(Co(q))-

This answer coincides with the one obtained in [Sw].

9.3 QUATERNIONIC PROJECTIVE SPACE.

We consider
HP™ = Spant2/(Sp2 x Span)

as an algebraic model for the quaternionic projective space. The motivation
comes from the fact that HP™(C) is homotopy equivalent to the usual quater-
nionic projective space HIP". An extensive treatment of the quaternionic flag
varieties including the simplest case of projective spaces one can find in [PW].
The root systems in this case are Cy + C,, C C),+1, so the basis consists of

W(Crt1) : (W(C1) x W(Cp))l =n+1
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elements. We have dealt with this case in section 5.3 and the basis consists of
AW for a regular representation W of Spa,. The center acts trivially on the
even degrees and nontrivially on the odd ones, so one has

n+1

KL (HP) = K. (k)5 & K. (A(\),) V5
In the split case it reduces to K.(HP") = K.(k)"*!, and it agrees with the
result obtained in [PW].
9.4 ZERO CHARACTERISTIC.

In this case we can treat non-reductive groups. When char k = 0 one has the
Levi decomposition G = LgUg of group G into a semidirect product of some
reductive subgroup and the unipotent radical [McN], which in general fails in
the positive characteristic. Also in this case the unipotent radical Ug splits,
i.e. it has a filtration with vector factors [KMT] so the underlying variety is
A", which also can fail over nonperfect fields. Hence for the connected split
groups of the same rank H C G one has the following triangle.

G/Ly 2~ G/H
llb
Le/Ly

The fibres of p; and py are isomorphic to Ug and Upg respectively and both
are affine spaces. One can show that both the projections define some vector
bundles with the trivial action of the center Z(L¢), so one can twist with a
L¢/Z(Lg)-cocycle v and from the homotopy invariance obtain that

K*((G/H)v) = K*((LG/LH)’Y)'

The last one could be computed using the methods introduced in this paper.

9.5 OCTONIONIC PROJECTIVE PLAIN.

It could be shown [Ba] that
QP? = G(Fy)/Spin(9),

where G(Fy) stands for the compact form of a simple algebraic group with the
root, system Fy. We consider as an algebraic model

OP? = G(F,)/Sping

with split G(Fy). It corresponds to the root systems By C Fy treated in section
5.2. One has
[W(Fy): W(B4)] =3,
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and the corresponding representations for Sping are k, V(ws), V(ws), i.e. the
trivial one, 84-dimensional A3W and 16-dimensional spinor representation.
Since the center of G(Fy) is trivial the twisting does not produce interesting
algebras, though it changes the variety. Hence one has

K.(OP}) = K.(k) ® K.(k) ® K.(k).

REFERENCES

[AM|
[Bal

[BT]
[Bou

[Hum1]

[Hum?]
[Jan|
[KMT]
[McN]
[Mer]
[Panl|

[Pan2]

[PW]
[Ql

[Se]

M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley Pub. Co., 1969

J. C. Baez, The Octonions, Bull. Amer. Math. Soc. 39 (2002), 145-
205.

A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Etudes Sci. Publ.
Math. 27 (1965), 55-151.

N. Bourbaki, Lie groups and Lie algebras, Elements of Mathematics
(Berlin), Springer-Verlag, Berlin, 2002.

J. E. Humphreys, Introduction to Lie Algebras and Representation

Theory, Second printing, revised. Grad. Texts in Math., 9. Springer-
Verlag, New York, 1978

J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math., 21,
Berlin, New York, 1972

J. C. Jantzen, Representations of algebraic groups, Pure and Applied
Mathematics vol. 131, Academic Press, Orlando, 1987.

T. Kambayashi, M. Miyanishi and M. Takeuchi, Unipotent Algebraic
Groups, Springer Lecture Notes in Math. 414 (1974)

G. McNinch, Levi decompositions of a linear algebraic group, to ap-
pear, Transformation Groups, preprint arXiv:1007.2777.

A. Merkurjev, Equivariant K-theory, J. Handbook of K-theory. Vol.
1, 2 (2005), Springer, Berlin, 925-954.

1. Panin, On the algebraic K -theory of twisted flag varieties, K-Theory
8 (1994), 541-585.

I. Panin, Splitting principle and K-theory of simply connected
semisimple algebraic groups, St. Petersburg Math. J. 10 (1999), 69—
101.

I. Panin and C. Walter, Quaternionic Grassmannians and Pontryagin
classes in algebraic geometry, arXiv:1011.0649.

D. Quillen, Higher algebraic K-theory I, Lect. Notes in Math. 341
(1972), 85-147

J.-P. Serre, Groupe de Grothendieck des schémas en groupes réductifs
déployés, Inst. Hautes Etudes Sci. Publ. Math. (1968), tome 34, 37-52.

DOCUMENTA MATHEMATICA 17 (2012) 167-193



[Sp

[St]
[Sw]

|Ti]

K-THEORY OF HOMOGENEOUS VARIETIES 193

T. Springer, Linear algebraic groups, 2nd ed., Progr. in Math., vol. 9,
Birkhuser, Boston, 1998.

R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173-177.

R. Swan, K -theory of quadric hypersurfaces, Ann. Math., 121 (1985)
113-153.

J. Tits, Représentations linéaires irréductibles d’un groupe réductif
sur un corps quelconque, J. Reine Angew. Meth. 247 (1971), 196-220.

Alexey Ananyevskiy

St. Petersburg State University
Universitetskiy Prospekt 28
St. Petersburg

198504, Russia
alseang@gmail.com

DOCUMENTA MATHEMATICA 17 (2012) 167-193



194

DOCUMENTA MATHEMATICA 17 (2012)



