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ABSTRACT. In this paper we compute the cohomology groups of the
second Voronoi and the perfect cone compactification AY°" and Ai’erf
respectively, of the moduli space of abelian fourfolds in degree < 9.
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1. INTRODUCTION AND PLAN

The moduli space A, of principally polarized abelian varieties of genus g are
much studied objects in algebraic geometry. Although much progress has been
made in understanding the geometry of these spaces, we still know relatively
little about the cohomology or the Chow groups of A, and its compactifica-
tions. These are difficult questions even for low genus. Mumford in his seminal
paper [Mu2] computed the Chow ring of My, or what is the same, of the second
Voronoi compactification AY°". It was also in this paper that he laid the foun-
dations for the study of the Chow ring of M, in general. Lee and Weintraub
[LW] have investigated the cohomology of certain level covers of AY°*. The
cohomology of A3 and of the Satake compactification Agat were determined
by Hain [Ha], while the Chow group of the second Voronoi compactification
AY°T had earlier been computed by van der Geer [vdG1]. The authors of this
paper proved in [HT] that the Chow ring and the cohomology ring of .AXOT are
isomorphic for g = 2, 3.

Very little is known about the topology of A, and its compactifications in
general. A positive exception is given by the subring generated by the Chern
classes A; of the Hodge bundle in the Chow ring or the cohomology ring of A,.
By [vdG2] this subring is known explicitly; in particular, it is generated by the
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odd degree Hodge classes Ag;11. Furthermore, by a classical result by Borel [Bo]
the Hodge classes A2j11 generate the stable cohomology of Ag4, which is defined
in terms of the natural maps Ay — A, for ¢’ < g given by multiplication with
a fixed abelian variety of dimension g — ¢’. Note that by the construction of
Ay as a quotient of Siegel space, the rational cohomology of A, coincides with
the group cohomology of the symplectic group Sp(2g,7Z).

In this paper we investigate the case of genus 4 of whose cohomology very little
is known. There are two reasons why we believe that it is worth the effort
to undertake this study. One is that the spaces A and Ajz are very close to
the moduli spaces My and M3 whose cohomology is rather well understood,
whereas Ay is the first Siegel moduli space where the Torelli map fails to be
birational and thus one might expect new phenomena. The second reason is
that, as our discussion of the boundary strata shows, the complexity of the
structure of A, and its compactifications grows dramatically with g. At the
moment calculations on the cohomology of As, or any of its compactifications,
seems far out of reach and thus A4 is the only remaining low genus case where
the computation of the entire cohomology currently seems within reach.

In this paper we thus investigate the cohomology of toroidal compactifications
of As. In general there are several meaningful compactifications of A,. Besides
the second Voronoi compactification A\g/‘” there is the perfect compactification
Agerf, given by the second Voronoi decomposition and the perfect cone (or first
Voronoi) decomposition respectively, as well as the Igusa compactification A;g“.
It was shown by Alexeev [Al] and Olsson [O]] that (at least up to normalization)
A;’Of represents a geometric functor given by stable semi-abelic varieties. On
the other hand Agerf is, as was proved by Shepherd-Barron [S-B]|, a canonical
model in the sense of Mori theory, i.e. its canonical bundle is ample, if g >
12. Finally, Igusa constructed Algg” as a partial blow-up of Agat and it was
shown by Namikawa [Nam] that Igusa’s model is the toroidal compactification
defined by the central cone decomposition. In genus g < 3 all of the above
toroidal compactifications coincide. In genus 4 the Igusa and the perfect cone
decomposition coincide and the second Voronoi compactification A" is a blow-
up of Ai’erf. However, for general g all three compactifications are different.
The main result of our paper is the determination of the Betti numbers of
AP of degree less than or equal to 9 and of all Betti numbers of AY°" with
the exception of the middle Betti number b1g9. This reduces the problem of
the computation of the cohomology of AY°" to the computation of the Euler
number of A4, which is an independent problem in its own right. Indeed, one
can compute the Euler number of level covers A4(n) for n > 3 by Hirzebruch—
Mumford proportionality. From this one could compute e(A4) if one had a
complete classification of torsion elements in the group Sp(8,7Z). Although this
is not known, it does not seem an impossible task to obtain such a classification.
This is, however, a hard problem which requires different methods from the the
ones used in this paper; therefore, we will not approach it here.
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Our approach involves computing a spectral sequence converging to the coho-
mology of AY°". As a by-product, this spectral sequence determines the long
exact sequence relating the cohomology with compact support of AY°" with
that of A4 and of its boundary. For this reason, a natural application of our
analysis is to obtain evidence on the existence of non-trivial cohomology classes
of A4 in different degrees, by giving lower bounds for the Betti numbers of Ajy.
However, all contributions from the cohomology of A4 to our computation can
be explained using either the Hodge classes or a certain non-algebraic class
related to the one in HY(Aj3; Q) described in [Ha, Thm 1]. This gives rise to
the following question:

QUESTION. Is the rational cohomology of Ay generated by the Hodge classes
A1, A3 and by one non-algebraic cohomology class of Hodge weight 18 arising in
degree 127

The starting point of our investigations is the fact that every toroidal compact-
ification AT admits a map ¢g: AT — A3, We recall that

AP = Ag U A1 UL ..U Ay,

which allows us to construct a stratification of Azor by considering the closed
loci BZ.(g) =3 = go;l(.AS"“-) and their open parts Y = 3; \ Biy1 = <pg_1(Ag_i).

g—1
Each stratum 3? is itself the disjoint union of locally closed substrata that are
quotients of torus bundles over the product of a certain number of copies of
the universal family X;_; over Ay,_; by finite groups. The strategy is then
to compute the cohomology with compact support of each of these substrata
using Leray spectral sequences and then to glue these strata by Gysin spectral
sequences to compute the cohomology with compact support of 3Y. Although
this is a natural approach, we are not aware that it has been used in this form
before apart from [HT] where it was applied to the case of genus 3. The reader
will however notice that the complexity encountered in the present case is of a
very different level: we need a full understanding of the Voronoi decomposition
in genus 4, which in this case can no longer be deduced from the knowledge of
the basic cone alone.

The use of Leray spectral sequences requires to know the cohomology with
compact support of Ag_; not only with constant coefficients, but also with
coefficients in certain symplectic local systems of low weight. In the case of
i = 1,2 we deduce this information from results on the cohomology of moduli
spaces of pointed curves. Passing from the moduli space of curves to the
moduli space of abelian varieties produces a small ambiguity, which does not
influence our final result, mainly because it disappears at the level of Euler
characteristics. Up to this ambiguity, we are able to obtain complete results for
the cohomology with compact support of all strata contained in the boundary
as well as of the closure J4 of the Jacobian locus in A4 and we believe that
this is of some independent interest.

In the case of the cohomology of Ay itself, there are two facts which help us. The
first is that the complement in Ay of the closure of the locus of jacobians has a
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smooth affine variety as coarse moduli space. This implies that its cohomology
with compact support is trivial if the degree is smaller than 10 and thus that
the cohomology with compact support of A, agrees with that of 7, in degree
< 9. The second is that AY°" is (globally) the quotient of a smooth projective
scheme by a finite group. This implies that its cohomology satisfies Poincaré
duality, and, more specifically, that its cohomology in degree k carries a pure
Hodge structure of weight k.

In the case of AY°", putting the cohomological information from all strata
BY together yields Table 1, from which we can deduce Theorem 1 by using
the Gysin spectral sequence associated to the stratification given by the ;.
A consequence of this spectral sequence is that the cohomology groups with
compact support of Ay in degree < 9 are sufficient to determine all cohomology
groups of AY°" of degree # 10. In turn, the cohomology groups of AY°" in degree
> 11 so obtained can be used to gain information on the cohomology with
compact support of Ay in degree > 11, thus leading (using Poincaré duality) to

the question formulated above. Finally, we obtain the Betti numbers for AR

in Theorem 2 by using the fact that AY°" is a blow-up of Aierf in one point.
The plan of the paper is as follows. In §2 we prove the main results using
cohomological informations on the strata 8Y. The geometrical study of each
of the five strata 3Y is performed in the following five sections. Finally, in the
appendix we collect and prove all results on the cohomology of local systems
on A, and Az used in Section 4 and 5.
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the second author has been partially supported by the programme Wege in die
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NOTATION.

A, moduli stack of principally polarized abelian varieties of
genus g

Xy universal family over A,

Vs, rational local system on A, induced by the Sp(2¢,Q)-
representation indexed by the partition (Aq,...,Aq)

A?at Satake compactification of A,

A;’OY Voronoi compactification of A,

ng or universal family over A;’OT

Agerf perfect cone compactification of A,

Alggu Igusa compactification of A,

Mgn moduli stack of non-singular curves of genus ¢g with n marked
points
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Mg = M910

GF} symmetric group in d letters

SymZ,(RY) space of real positive semidefinite quadratic forms in RY
{p1, o ¢r) convex cone generated by the half rays R>op1, ..., R>opr

For every g, we denote by ¢g: AY" — Ag"“ (respectively, 9, Agerf — A?at)
the natural map from the Voronoi (respectively, perfect cone) to the Satake
compactification. Let mg: X;’ or — A;’OT be the universal family, g, : ng or —
X, gV °r/+1 the quotient map from the universal family to the universal Kummer
family and kg: X"/ £1 — AJ°" the universal Kummer morphism.

For 0 <i < g, we set ) = o (Ag_i) C AY", Bi = o, ' (A5™) €AY and
BP = g (AT) C AP,

We denote the Torelli map in genus g by 7,: My — A, its image, the Jacobian
locus, by J, = 7,(M,) and closure of the image in A, by J,.

Throughout the paper, we work over the field C of complex numbers. All co-
homology groups we consider will have rational coefficients. Since the rational
cohomology of a Deligne-Mumford stack coincides with the rational cohomol-
ogy of its coarse moduli space, we will sometimes abuse notation and denote
stack and coarse moduli space with the same symbol.

In this paper, we make extensive use of mixed Hodge structures, focussing
mainly on their weight filtration. We will denote by Q(—k) the Hodge structure
of Tate of weight 2k. For two mixed Hodge structures A, B we will denote by
A & B their direct sum and by A + B any extension

0—-B—FEF—A—Q0.

Furthermore, we will denote Tate twists of mixed Hodge structures by A(—k) =

AR Q(—k).

2. MAIN THEOREMS

THEOREM 1. The cohomology of AY°" vanishes in odd degree and is algebraic
in all even degrees, with the only possible exception of degree 10. The Betti
numbers are given by

ilo 2 4 6 8 10 12 14 16 18 20
bi|1 3 5 11 17 10+e(Ay) 17 11 5 3 1

where e(A4) denotes the Fuler number of Ay.

The only missing information needed to compute all Betti numbers of AY°" is
the Euler number. As we shall see, we are able to compute the Euler numbers
of all strata 8Y for i > 1, and thus, as already mentioned, it would suffice
to compute the Euler number of the space Ay itself (see the introduction for
comments on this).
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THEOREM 2. The Betti numbers of Ai’erf in degree < 9 are given by

i]0 1 234567 8 9
b1 0 2 0 3 0 8 0 14 0

Moreover, all cohomology classes of degree < 9 are algebraic.

COROLLARY 3. The rational cohomology of Ay vanishes in degree 1,11 and all
degrees > 13. Furthermore one has H°(A4; Q) = Q(—10), H?(A4; Q) = Q(-9)
and H'2(A4;Q) = Q(—6) + Q(—9). For the remaining Betti numbers a lower
bound is given in the table

i|012 3 4 5 6 7 8 9 10 11 12 >13
bi|101202120222021202102 0

Note that the vanishing of b; also follows independently from simple connect-
edness of A4 [HR, Theorem 4.1] and that by = 1 corresponds to the fact that
the Picard group is generated by the Hodge line bundle (over Q).

Proof of Theorem 1. To compute the cohomology of AY°", we study the
Gysin spectral sequence EP'? = HPTI(AY°"; Q) associated with the filtration
{T}i=1,...,6 such that

(] Ti:ﬂg,,i,l.: 1,...,4;

o Ts=Jy UTy;

o T = A}for.
The E; term of this spectral sequence has the form EV'? = HPT4(T,\ T,—1; Q).
For p = 1,...,4 the strata T}, \ T coincide with the strata of AY°" of semi-
abelic varieties of torus rank 5 — p; their cohomology with compact support
is computed in the next sections by combining combinatorial information on
the toroidal compactification with the geometry of fibrations on moduli spaces
of abelian varieties (see Propositions 7, 8, 24 and Theorem 26). The stratum
Ts \ Ty is the closure inside A4 of the locus of jacobians. Its cohomology with
compact support is computed in Lemma 6.
The only remaining stratum is the open stratum T \ T5. Let J5* be the
closure of J; in A$2. Since this contains the entire boundary of A5 it follows
that

To\Ts = Ay \ T4 = Ao\ J520

The latter set is affine since it is the complement of an ample hypersurface on
A3 (see [HaHul). In particular, its cohomology with compact support can be
non-trivial only if the degree lies between 10 and 20.

From this it follows that the F; term of the Gysin spectral sequence associated
with the filtration {7} is as given in Table 1. For the sake of simplicity, in that
table we have denoted H2(A2;Va2) and H2(Asz;Va o) with the same symbol
H, even though a priori they are only isomorphic after passing to the associated
graded piece with respect to the weight filtration. (Furthermore, the results in
in [T4] imply H =0.)
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TABLE 1. FE; term of the Gysin spectral sequence associated
with the filtration T;.
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TABLE 2. EZP:? in the range p+¢ < 9.

q

8 0

7| Q(—4)®7 0

6 0 Q(—4)®4 0

5| Q(—3)%° 0 Q(—4)%3 0

z 0 Q(-3)®2 0 Q(—4)%? 0

3| Q(—2)®2 0 Q(—3)®2 0 Q(—4) 0

2 0 Q(-2) 0 Q(-3) 0 0

1| Q(—1)%2 0 Q(-2) 0 0 0

0 0 Q(-1) 0 0 0 0
—1 Q 0 0 0 0 0

1 2 3 4 5 6 p

Since the terms in the sixth column are only known for ¢ < 3, in the following
we will only deal with the terms of the spectral sequence that are independent
of them, that is, the EP-? terms with p 4+ ¢ <8.

Let us recall that A}Y°" is a smooth Deligne-Mumford stack which is globally
the quotient of a smooth proper variety by a finite group. From this it follows
that the cohomology groups of AY°" carry pure Hodge structures of weight
equal to the degree. Therefore, the Hodge structures on EZ:¢ have to be pure
of weight p+ ¢. This means that for all p, q, the graded pieces of ET"? of weight
different from p—+ q are killed by differentials. In particular, if we restrict to the
range p+q < 9, this gives that the F, terms are as given in Table 2. Of course,
this does not describe precisely at which F, the spectral sequence degenerates,
or what exactly is the rank of the differentials. For instance, if one assumes
H = 0 (which in view of the results in [T4] is indeed the case), a natural thing
to expect is that the d;-differentials E11’5 — Ef’5, Ef’5 — Ef’5, Ef’4 — Ef’4
and Ef’s — Ei”s, as well as the dy-differential E22’3 — ES’Q have rank 1, but
this is not the only possibility. The claim on the cohomology of AY°" in degree
< 9 follows from the E., term in Table 2. The claim on the cohomology in
degree > 11 follows by Poincaré duality. Finally, the computation relating the
middle Betti number b1g to the Euler number e(.Ay4) follows from the additivity
of the Betti numbers of the stratification {T,}. O

Remark 4. The fact that the mixed Hodge structures on the E}"? in Table 1
are compatible with obtaining EP:? terms that carry pure Hodge stuctures
of the correct weight provide an important check on the correctness of our
computations.

Proof of Theorem 2. The proof is analogous to that of Theorem 1. Rather
than working with the filtration {T;}, we will consider the stratification {7}
defined analogously by TP = ﬁgif for 1 < i < 4 and TP" = 7, U TP,
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TP = AP The closed stratum T} is the the locus 8" of torus rank 4

inside A", Hence E}*? = H7T1(32°'f; Q) can be obtained from Theorem 25.

Since the exceptional divisor of the blow-up map q: AY°" — Ai’erf is contained

in Ty, we have (AP \ ¢(T1)) = (AY°" \ T3). In particular, the Gysin spectral
sequence associated with the stratification of A" has EP*? terms that coincide
with those of Table 1 for p > 2. Moreover, also the rank of all differentials
EP4 — EPtma=m+l coincide with those for the filtration {7;} as long as no
EY9-terms are involved. This already implies the claim for all degrees different
from 6. In degree 6, it is necessary to decide whether the class of Hodge weight
2 in Ei’ 1 is killed by differentials of the spectral sequence or not. If we consider
the map AY°r 5 8, — BT ¢ AP we have that the weight 2 class on 8P
lies in the image of the weight 2 class in the cohomology of 34, which was killed
by differentials for purity reasons on .Ay°". This implies that this must be the
case also on AY™". From this the claim follows. ]

Proof of Corollary 8. The lower bounds in the claim are those given by the
dimension of the subring generated by A; and A3. The vanishing of the coho-
mology of A4 in all degrees i > 13 and in degree 11, as well as H'?(A4; Q) =
Q(—6)+Q(—9) follow directly from the last two columns of Table 1 by Poincaré
duality. O

Remark 5. Comparing Table 1 with the cohomology of AY°" of degree > 11
suggests that the cohomology of the open stratum A4 \ J4 could vanish in all
positive degrees, with the exception of degree 10 on which Poincaré duality
yields no information.

The reason is the following. One can reinterpret the first 4 columns of Table 1
as the F4 terms of a Gysin spectral sequence converging to the cohomology of
the boundary 9.AY°" = AY°" \ A4. Then the remaining information from that
Table is equivalent to the study of the long exact sequence

(2.1) HY(A4;Q) = HY(A)";Q) — H*(0AY;Q) — HY ' (A4;Q)

associated with the closed inclusion of the boundary in AY°*. One can compare
the information on the cohomology of the boundary coming from Table 1 with
the Betti numbers of AY°" in degree > 11 from Theorem 1. Then one sees that
even in this range the results are compatible with the vanishing of the coho-
mology of Ay \ J4, or, equivalently, with the hypothesis that the cohomology of
Ay is the minimal possible, i.e. generated by A1, A3 and o € H?(H2(A4;Q))
from Corollary 3. This would imply that the cohomology of A4 coincides with
the stable cohomology in degree < 10, while a priori this is known only in
degree < g —2=2.

Furthermore, (2.1) gives strong restrictions on the possible existence of co-
homology classes on A4 that are not in the subring generated by the Hodge
classes. This follows from the purity of the cohomology of AY°" combined with
Table 1, which ensures that the cohomology of d.A)°" is very close to be pure
itself. Practically, this forces non-trivial cohomology classes from Ay \ J4 to
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appear in pairs of isomorphic Hodge structures, occurring as graded pieces of
H¥(As\ T4;Q) and HF 1AL\ T3 Q). .
One could also use Table 1 to prove the vanishing of H*(A \ J4;Q). Then
one needs to prove that all (algebraic) classes of weight 10 — k that occur in
EY? with p+q = 10—k give rise to cohomology classes in H°~*(AY°": Q) that
are linearly independent. This is known for divisors (ensuring the vanishing
of H*(A4\ J4;Q) for k = 1,2). It would be interesting to investigate it for
classes of higher codimension.
Note that, if one knew that H*(A \ J4;Q) vanishes for all 1 < k < 9, then
this would yield the following result for the Betti numbers of AP in degree
> 11:

i |12 14 16 18 20

bi[14 9 4 2 1

as well as the vanishing of all odd Betti numbers of AP®™.

3. TORUS RANK 0

We start by considering 75 \ T4, which is the Zariski closure J4 of the locus of
jacobians Jy = 74(My) inside Ay.

LEMMA 6. The only non-zero Betti numbers with compact support of J4 are
as follows:

i |18 16 14 12 10 8

bi| 11 2 1 1 2

In particular, all odd Betti numbers vanish.
Furthermore, all cohomology groups with compact support are generated by al-
gebraic classes, with the only exception of HS(J4;Q), which is an extension of

Q(—4) by Q(-1).

Proof. We compute the cohomology with compact support of J4 by recalling
that the Zariski closure of the locus of jacobians in A4 is the union of the
image of the Torelli map and the locus of abelian fourfolds that are products
of abelian varieties of dimension < 3. This allows to cover Jy by the following
locally closed disjoint strata:

Sl = Sym4 .Al, SQ = Tg(./\/lg) X Sym2 .Al, S3 = Sym2 T(Mg),
54 = Tg(Mg) X .Al, 55 = T4(./\/l4).

Furthermore, the Torelli map in all genera induces an isomorphism in cohomol-
ogy with rational coefficients between M, and its image 7,(M,). This allows
to compute the cohomology with compact support of all strata from previously
known results on the cohomology of M, with g < 4 ([Mu2],[Lo],[T1]). These
yield that the Eq term EYY = HPT9(S,: Q) of the Gysin exact sequence of the
filtration associated with the stratification S; is as in Table 3.

In view of Table 3, to calculate the cohomology with compact support of J; it
is sufficient to know the rank of the differential

—red

d: H?*(T, ;Q) =2 Q(-6)" — H*(J1;Q) = Q(-6)
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TABLE 3. FE; term of the Gysin spectral sequence converging
to the cohomology with compact support of the closure of the
locus of jacobians in Ay

q
13 0 0 0 0 Q(-9)
12 0 0 0 0 0
11| o 0 0 0 Q(-8)
0] 0 0 0 Q-7 0
9| o 0 Q-6 0 Q-7
8] 0 Q-5 0 Q(-6) Q6
71Q(=4) 0 0 0 0
6| o0 0 0 0 0
5/ 0 0 0 0 0
41 0 0 0 Q1) 0
1 2 3 4 5 p

in the Gysin long exact sequence associated with the closed inclusion of the

locus 729(1 = T4\ Js = S3U S, C Ay of reducible abelian fourfolds in the
Zariski closure in Ay of the locus of jacobians Jy = 14(My).

We observe that H, ;2(726[1; Q) is generated by two 6-dimensional algebraic cy-
cles C and C5, where C is the fundamental class of S5 and Cy the fundamental
class of 7(H3) x Ay, where Hs is the hyperelliptic locus. Therefore, the sur-
jectivity of d is equivalent to the existence of a relation between C; and Cy
viewed as elements of the Chow group of T4

Let us denote by M$' the moduli space of stable genus 4 curves of compact
type, i.e. such that that their generalized Jacobian is compact. Then the Torelli
map extends to a proper morphism

7 M — T4

From the geometric description of the map 7¢ it follows that the image under
7 of the Chow group of dimension 6 cycles supported on the boundary M§'\
My coincides with (C7, C3). Indeed, let D; be the closure of the locus of stable
curves consisting of two genus 2 curves intersecting in a Weierstrass point and
let Dy be the closure of the locus of stable curves consisting of elliptic curves
intersecting a hyperelliptic genus 3 curve in a Weierstrass point. Then D; and
Dy map to C; and C5 respectively. It is known that the dimension 6 classes
in Mt fulfill a relation, given by the restriction of the relation on My of [Y,
Prop. 2]. When pushed forward via 7¢%, this relation gives a non-trivial relation
between C7 and C5. Thus the differential d has to be surjective and the claim
follows. O
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TABLE 4. FE, term of the Leray spectral sequence converging

to H2(5Y; Q).

q

6| 0 Q-6)+Q-3) 0 Q-7 0 Q(-8) 0 Q-9
5 0 0 0 0 0 0 0 0
41Q(-2) Q(-5+Q(-2) 0 Q(-6)%") Q(-6)* Q(-7) 0 Q(-8)

3 0 0 0 0 0 0 0 0

2| Q(-1) Q(-4)+Q(-1) 0 Q5% Q(-5)* Q(-6) 0 Q(-7)

1 0 0 0 0 0 0 0 0

0] o Q-3+Q 0  Q(-4) 0 Q(=5 0 Q(-6)

5 6 7 8 9 10 11 12 P

€ =rank HJ(As;Vi1,0) € {0,1}.

4. TORUS RANK 1
Next, we deal with the locus 3} of semi-abelic varieties of torus rank 1.

PROPOSITION 7. The rational cohomology with compact support of Y is as
follows: the non-zero Betti numbers are

i|6 7 8 9 10 11 12 13 14 16 18
bi|21314+ee5+ee 3 2 1

where ¢ = rank H?(A3;V1.10). The cohomology groups of even degree 2k are
algebraic for k > 7; for k < 6 they are extensions of pure Hodge structures of
the form H?*(89; Q) = Q(—k)®®2+=Y 1 Q(k —3). The Hodge structures in odd
degree are given by H*+1(39;Q) = Q(2 — k) for k =17,9 and H***1(3;:Q) =
Q(—k)®¢ for k =11,13.

Proof. To compute the cohomology with compact support of 3 we will use the
map k3z: B9 — Aj realizing 89 as the universal Kummer variety over Az. The
fibre of 3{ over a point parametrizing an abelian surface S is K := S/ 4 1.
Note that the cohomology of K vanishes in odd degree because of the Kum-
mer involution. The cohomology of K is one-dimensional in degree 0 and 6
and induces trivial local systems on As. The cohomology group H?(K;Q) =
N> H'(S; Q) is 15-dimensional and induces the local system V; 1 o & Q(—1) on
As. By Poincaré duality we have H*(K;Q) = H?*(K;Q) ® Q(-1), inducing
the local system Vi1 9(—1) & Q(—2) on As.

The cohomology with compact support of A3 in the local system Vi ¢ is
calculated in Lemma 35. We refer to Theorem 31 for the cohomology with
compact support of Az with constant coefficients, which was calculated by
Hain in [Ha]. These results allow to compute F5? = H?(As; Rlks.(Q)) for the
Leray spectral sequence E3? = HPTI(); Q) associated with ks3: 5 — As.
This E5 term is given in Table 4.

Note that all differentials of this Leray spectral sequence vanish for Hodge-
theoretic reasons, so that Fo = F,. Specifically, all differentials must involve
one EY'? term with p + ¢ odd, but there are only two such terms, namely E25 -2
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and Eg’ 4 Tt follows from Table 4 that for both these terms, any differential dy,
with k& > 2 which involves one of them will map either to 0 or to a Fy term that

carries a pure Hodge structure of different weight. In both cases the differential
has to be 0. (]

5. TORUS RANK 2

In this section we compute the cohomology with compact support of the stra-
tum (9 of AY°" of rank 2 degenerations of abelian fourfolds. For this purpose we
recall first the known global construction of 42 as the quotient of a P!-bundle
of a fibre product of the universal family over As.

Furthermore, let us recall that the restriction of the Voronoi fan in genus g to
Sym?2 (R for genus g > ¢’ coincides with the Voronoi fan in genus ¢/. This
implies that the geometric constructions of the fibrations 8y — Ay and B —
A; we give in this section and in the following one, respectively, are actually
independent of the choice of g = 4 but extend to analogous descriptions of the
fibres of fibrations 8§ — A,_s and 8 — A,_3 that exist for 83,9 C A;/‘”
independently of g. In particular, the geometric construction of 39 explained
in this section coincides with the construction used in [HT, §4] to compute the
cohomology with compact support of the corresponding locus in AY°".

PROPOSITION 8. The rational cohomology with compact support of B9 is as
follows: the non-zero Betti numbers are

il4 6 7 8 9 10 11 12 14 16
bi|1 2 14r 44r 14r 54+4r 1 5 3 1

where v = rank H3(A2; Vo 2). If we assume v = 0, then all cohomology groups
of even degree are algebraic, with the exception of H3(39;Q) = Q(—4)%3 +
Q(—2) which is an extension of Hodge structures of Tate type. The Hodge
structure in odd degree 2k + 1 with k = 3,4,5 is pure of Tate type of weight
2k — 4.

Remark 9. It follows from [T4] that r = 0.

The proof of this Proposition will given in §5.4 after some preliminary steps.

In the previous section, we calculated the cohomology with compact support of
B using the map k3: 5y — Ajs given by the universal Kummer variety. This
map extends to the stratum S of degenerations of abelian fourfolds of torus
rank 2, giving a map ks: (81 \ B3) — AY°". Under this map, the elements of
AYer with torus rank 2 are mapped to elements of AY°" of torus rank 1. If
we denote by 520 the stratum of AY°" of semi-abelian varieties of torus rank
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exactly t, we get a commutative diagram
A}{OY Aé/or A;/or

b b w L

39 10 Az

12/

w5 (L") X

The map 73 is the restriction of the universal family over AY°". In particular,
the fibres of 73 over points of ﬁ{o are rank 1 degenerations of abelian threefolds,
i.e. compactified C*-bundles over abelian surfaces. A geometric description of
these compactified C*-bundles is given in [Mul]. They are obtained by taking
the Pl-bundle associated to the C*-bundle and then gluing the 0- and the
oo-section with a shift, defined by a point of the underlying abelian surface
that is uniquely determined by the line bundle associated to the C*-bundle.
In particular, this shift is O for the fibres of the w3 over the 0-section of the

Kummer fibration 3]° = (X,/ +1) LR Aj, which are thus products of a nodal
curve and an abelian surface.

We want to describe the situation in more detail. For this, consider the uni-
versal Poincaré bundle P — &5 X 4, ?82, normalized so that the restriction to
the zero section Xo — Xy X 4, Xy is trivial. Let U = P(P @ OszAzfz) be
the associated P'-bundle. Using the principal polarization we can naturally
identify X, and Xo, which we will do from now on. We denote by A the union
of the 0-section and the oo-section of this bundle. Set U = U \ A, which is sim-
ply the C*-bundle given by the universal Poincaré bundle P with the 0-section
removed and denote the bundle map by f: U — Xy x4, A2. Then there is
amap p: U — B9 with finite fibres. Note that the two components of A are
identified under the map p. The restriction of p to both U and to A is given
by a finite group action, although the group is not the same in the two cases
(see the discussion below).

5.1. GEOMETRY OF THE C*-BUNDLE. We now consider the situation over a
fixed point [S] € A;. For a fixed degree 0 line bundle £y on S the preimage
F71(S x {Lo}) is a semi-abelian threefold, namely the C*-bundle given by
the extension corresponding to Ly € S. This semi-abelian threefold admits a
Kummer involution ¢ which acts as  — —z on the base S and by ¢ — 1/t on
the fibre over the zero section. The Kummer involution ¢ is defined universally
onU.

Consider the two involutions i1,io on Xo X 4, A2 defined by

il(Svpaq) = (Sv s 7q) and i?(Sapv Q) = (Saqvp)
for every abelian surface S and every p,q € S. These two involutions lift to

involutions j; and js on U that act trivially on the fibre of f: U — A x 4, &>
over the zero section.
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The following lemma can also be proved directly from the toroidal construction
of AY°" using the approach of [S-B, Lemma 2.4].

LEMMA 10. The diagram

g

//\

(51) U4f>X2 X As XQ

T

BN\ p(A) — Sym?, (Xz/ £ 1)

A

where p't Xy X 4, Xo — Sym?> (Xa/ £ 1) is the natural map, is commutative.
Moreover ply: U — p(U) = B9\ p(A) is the quotient of U by the subgroup of
the automorphism group of U generated by t,j1 and js.

Proof. Since the map p’ in the diagram (5.1) has degree 8 and ¢, j1, jo generate
a subgroup of order 8 of the automorphism group of U, it suffices to show that
the map p|y factors through each of the involutions ¢ and j, jo.

Recall that the elements of 39 correspond to rank 2 degenerations of abelian
fourfolds. More precisely, every point of p(U) corresponds to a degenerate
abelian fourfold X whose normalization is a P! x P'-bundle, namely the com-
pactification of a product of two C*-bundles on the abelian surface S given
by ki o k2([X]). The degenerate abelian threefold itself is given by identify-
ing the O-sections and the co-sections of the P! x Pl-bundle. This identifica-
tion is determined by a complex parameter, namely the point on a fibre of
f: U‘)XQ X_AZXQ.

Since a degree 0 line bundle £y and its inverse define isomorphic semi-abelian
threefolds and since the role of the two line bundles is symmetric, the map p|u
factors through ¢ and j,. Since j; is the commutator of ¢ and ja the map ply
also factors through j;. 0

We will compute the cohomology with compact support of 59 by considering
the Leray spectral sequence associated with the fibration kg o k3: 39 — As.
This requires to compute the cohomology with compact support of the fibre
(k2oks3)~1([S]) over a point [S] € Az. To this end, we decompose (k20ks)~*([S])
into an open part given by its intersection with p(U) and a closed part given
by its complement.

5.2. COHOMOLOGY OF THE OPEN PART OF THE FIBRE. The fibration g: U —
Ay obtained by composing the C*-bundle f: U — X3 X 4, X2 with the natural
map Xy X 4, Ao — As plays an important role in the study of the restriction
of ky o k3 to p(U). Namely, the fibre of (ks o k3)|,r) over [S] € As coincides
with the quotient of the fibre of g under the automorphism group generated by
J1,j2 and ¢. Therefore, the cohomology of the fibre of kg o k3 restricted to p(U)
is the part of the cohomology of g~1([S]) that is invariant under ji, jo and ¢.

We start by computing the actions of i1, io and of the involution x : (p,q) —
(—p, q) induced by the Kummer involution of semi-abelian threefolds of torus
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E HF(S x §;Q)lir-2) k-invariant k-alternating
8 Q(;‘l) @(;4> 0 ,
6 (A" A)(=2)®2 (A" A)(=2) (A" A)(=2)
4 Q(-2)® A% (-1)@Sym*(A\*A) Q(—2) & Sym*(A\*A) A®2(-1)
2 AZA®2 A A A’ A
0 Q Q 0
TABLE 5. Cohomology of S x S/(i1,1i2)

q
110 0 A’*A(=1) 0 A®2(-2) 0 (A*A)(=3) 0 0
0/Q 0 (A’ 0 Q=2eSym’(A°A) 0 (A*A)(=2) 0 Q(-4)

[0 1 2 3 4 5 6 7 8 p

TABLE 6. Fy term of the spectral sequence converging to

H*(g=1([S]); @) (=)

rank 1 on the cohomology of S x S. Recall that the cohomology of S
is isomorphic to the exterior algebra generated by the 6-dimensional space
A = H'(S;Q) and that H*(S x S;Q) = H*(S;Q)®? by the Kiinneth formula.
Using this description, one can calculate the part of the cohomology of S x .S
which is invariant under ¢; and 4. In particular, since all cohomology in odd
degree is alternating under the involution ¢1, the only non-trivial invariant co-
homology groups are in even degree. We give the description of the invariant
cohomology groups in the second column of Table 5. One then proceeds to
investigate their structure with respect to . For instance one can use the iso-
morphism H*(S x §;Q)(:%2%) = k(S x §/(iy,iq,x); Q), together with the
fact that the quotient of S x S by the subgroup generated by 1,42 and & is the
second symmetric product of S/ +1. In this way one proves that the behaviour
of the cohomology with respect to k is as given in the last two columns of
Table 5.

LEMMA 11. The (i1,i2,t)-invariant part of the Leray spectral sequence asso-
ciated with the C*-bundle g=*([S]) — S x S gives rise to a spectral sequence
E3Y = HPT((kg o ksl o)) ~H([S]); Q) which behaves as follows:

- EP? wanishes for q #0,1;

- E;*O is the part of H*(S x S;Q) which is invariant under iy, iz and x;

- ERYis the part of H*(S x S; Q) which is invariant under i1, is and

alternating under k, tensored with the Tate Hodge structure Q(—1).

Furthermore, the Eo term of this spectral sequence, together with its structure
as Sp(4, Q)-representation, is as given in Table 7.
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q

110 0 0 0 Vao(—2) 0 Vii(=3) 0 0

0/Q 0 Q-)®Vis 0 Q(-2)*2aVyy 0 0 0 0
0 1 D 3 1 5 6 7 8 p

TABLE 7. E, term of the spectral sequence converging to

H g~ (S] Q)

Proof. Let us consider the C*-bundle fs := f|,~1sp: g7 ([S]) = S x S. The
Leray spectral sequence in cohomology associated with fg converges to the
cohomology of g~1([S]) and has F term E5? = HP(S x S;Q) @ HY(C*; Q).
However, we are only interested in the part of the cohomology of g~*([S]) which
is invariant under j1, jo and ¢. Since the actions of j1, jo and ¢ respect the map
g 1([S]) — S x S, they act also on the terms of the Leray spectral sequence
associated with fg. In particular, the spectral sequence whose F,. terms are the
(41,72, t)-invariant part of the terms of the Leray spectral sequence associated
with fg converges to H*(g~1([S]); Q)"*’*".
In particular, the F5 term of this spectral sequence is given by the (j1,j2,¢)-
invariant part of H?(S x S;Q) ® H4(C*; Q). We have already determined the
behaviour of the projection of these involutions to S x S in Table 5, so it
remains only to determine their action on the fibre C*. Since j; and j» both
fix the fibre of f over the origin, they act trivially on the cohomology of C*.
Instead, the Kummer involution ¢ acts as the identity on H(C*;Q) and as
the alternating representation on H!(C*;Q). From this the first part of the
claim follows. For the convenience of the reader, we have written the Fo term
of the spectral sequence in Table 6. Notice that this spectral sequence has
only two non-trivial rows. Therefore, it could be written equivalently as a long
exact sequence. In particular, the only differentials one needs to study are the
do-differentials.
These differentials are given by restriction of the differentials of the Leray spec-
tral sequence associated with the C*-bundle fg. Recall that fg is the C*-bundle
obtaining by subtracting the 0-section from the Poincaré bundle over S x S.
Therefore (see e.g. [Hu, XVI.7.5]) the dq-differentials are given by taking the
intersection product with the first Chern class of the Poincaré bundle, which
is known to be equal to [diag(S)] — [S x {0}] — [{0} x S], where [-] denotes
the fundamental class and diag: S — S x S is the diagonal map. An explicit
computation of the intersections of this class with the x-alternating classes in
H*(S x §;Q)™"* yields the description of F3 = E., given in Table 7. Here
we have used the fact that Sym?® A is the irreducible Sp(4, Q) -representation
V2,0, whereas /\2A decomposes into irreducible Sp(4, Q)-representations as
Q(—=1) @ Vi, and Sym?(A>A) decomposes as Q(—2)%2 & V;1(—1) & V.
In the notation, Tate twists are only relevant for the Hodge structure.

a
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5.3. GEOMETRY OF p(A). The map p identifies the two components of A,
each of which is isomorphic to Xs X 4, X>. In particular, the space p(A) can
be realized as a finite quotient of X5 x 4, X2. This can be read off from the
construction of the toroidal compactification, as in [S-B, Lemma 2.4]. See also
[HS1, Section I] for an outline of this construction. Also note that the stratum
A corresponds to the stratum in the partial compactification in the direction
of the 2-dimensional cusp associated with a maximal-dimensional cone in the
second Voronoi decomposition for g = 4. A detailed description can be found
in [HKW, Part I, Chapter 3].

Specifically, the stratum p(A) corresponds to the GL(2,Z)-orbit of the cone
(22,22, (71 — x2)?). Hence, the map Xa X 4, X> — p(A) is the quotient map
with respect to the stabilizer G' of the cone (23,23, (1 — z2)?) in Sym?(Z?).
This is generated by three involutions: the multiplication map by —1, the
involution interchanging x; and x2 and the involution z; — z1, z2 — 1 — 3.
These generators of G act on X5 x 4, A2 by the following three involutions:
the involution 4; which acts by (z,y) — (—z, —y) on each fibre S x S, the
involution i3 which interchanges the two factors of Xy x 4, A2 and finally the
involution i3 which acts by (z,y) — (x +y, —y).

From this description, it follows that there is a fibration ¢’: p(A) — Az whose
fibre over [S] € Ay is isomorphic to the quotient of S x S by the subgroup of
Aut(S x S) generated by the three involutions i1, iz and i3 introduced above.
If we write A := H'(Sx{0}; Q) and A’ := H' ({0} x S; Q), then the cohomology
of S x § is the exterior algebra of H'(S x S;Q) = A @ A’. If we denote by
fiy---y fa, resp. fs,..., fs the generators of A, resp. A’, the three involutions
act of H*(S x S;Q) as follows:

(5'2) fim—fi,i=1,...,8,
(5.3) fie fiva, i=1,...,4,
(5.4) firr fi, fivar> fi— fiza, i=1,...,4.

Then one proceeds to determine the invariant part of the exterior algebra of A®
A’ under these involution. Moreover, to determine the local systems R ¢/, (Q)
that appear in the Leray spectral sequence associated with ¢’: p(A) — As, one
needs to investigate the structure of the invariant subspaces as representations
of Sp(4,Q). An explicit calculation of the invariant classes yields the results
which we summarize in the following lemma.
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LEMMA 12. The rational cohomology groups the fibre of ¢': p(A) — As over
a point [S] € As, with their mized Hodge structures and structure as Sp(4,Q)-
representations, are given by

Q k=0,
N’ Vl,g; Q(-1)®Vy, k=2,
ke =1 . _ Q(-2)** @ V1,1(*1> @ Vo, k=4,
H D=1 (A29, 0)(-2) = Q(-3) 0 Via(-2) k=6,
Q(—4) k=8,

0 otherwise.

5.4. PROOF OF PROPOSITION 8. We will prove Proposition 8 by investigating
the Leray spectral sequence associated with the fibration kg o k3: 39 — As.
As explained at the beginning of this section, the fibre of ks o k3 over a point
[S] € Ay is the disjoint union of an open part, which is (k2 o ks|,@)) " ([S]),
and a closed part, which is the fibre of ¢’: p(A) — As. The cohomology of the
fibre of kg o k3|, was determined in Lemma 11, whereas the cohomology of
the fibre of g’ was computed in Lemma 12. Notice that (k2 o ks|,)) ™' ([S]) =
g 1([S])/(j1, Ja,¢) is the finite quotient of a smooth quasi-projective variety,
so that we can use Poincaré duality to obtain its cohomology with compact
support from its cohomology. Furthermore, since ¢'~*([S]) = S?/(i1, ia,i3) is
compact, its cohomology with compact support coincides with its cohomology.
To compute the cohomology with compact support of the fibre of kyoks one can
use the Gysin long exact sequence associated with the inclusion ¢'~*([S]) —

(k> o k3)~ (1))
(5:5) o= B IS1: @ — HE (ko o ke) (5] Q) —
Hf(S X S;Q)(h,iz,is) 5_k> Héc—i—l(g—l([s]);Q)(jl,jz,b) N

Notice that all differentials ) in (5.5) have to respect the structure of the
cohomology groups as representations of Sp(4,@Q). In this specific case, this
implies that all §; with k& # 2 vanish, whereas

d2: Q1) Vi1 — Vi,

is surjective by Lemma 13 below.

The above determines the cohomology with compact support of the fibre of
ko o k3. In particular, it also determines the local systems R} (ka o k3).(Q)
occurring in the Leray spectral sequence in cohomology with compact support
associated with the fibration ks o k3. These local systems are given in the first
column of Table 8.

Recall that the Fa term of the Leray spectral sequence EP*¢ = HPT4(39;Q)
associated with ks o k3 are of the form ES? = HP(Asg; R (k2 0 k3).(Q)). From
the decomposition into symplectic local systems of the R (k2 o k3).(Q), one
gets the F5 term of the Leray spectral sequence as in Table 8. Here we used
the description of the cohomology with compact support of Ay with coefficients
in the local systems V; 1, V5o and V3 5 from Lemma 34 and 36.
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Ri(k20k3)«(Q) ¢
Q-5 10 0 Q(—7) 0 Q-8
) 0 0 0 0
Q-0®2av; 1(-3) 8 Q(-3) Q(—6)®2 0 Q(-7%
o 7 0 0 0 0
0(-3)%%gv, 1 (~2) 6 | Q(=2)® H(-1) Q-5 @ H(-1) 0 Q-6
BVa 2(—1)
Vao(—=1) O Q(72) 0 0 0
Q-2)®2@v, (1) 4 Q-1)@H Q-1)¥ o H 0 Q(—5)®2
GVa 2
o 3 0 0 0 0
-1 2 0 Q(-3) 0 Q(—4)
o 1 0 0 0 0
o 0 0 Q(-2) 0 Q=3
3 4 5 6 P

TABLE 8. FE» term of the Leray spectral sequence converging
to the cohomology with compact support of 3. We denote
H = HE(AQ;VQ,Q) = Hg(AQ;V272) (U.p to grading).

To prove the claim, it remains to show that the Leray spectral sequence de-
generates at Fo. From the shape of the spectral sequence, it follows that all ds
differentials, and all differentials d,- with r > 4 are necessarily trivial. The only
differentials one needs to investigate are the dsz-differentials Eg”q — Egﬁqﬁ.
These are necessarily 0 by Hodge-theoretic reasons, because morphisms of
Hodge structures between pure Hodge structures of different weights are nec-
essarily trivial. From this the claim follows. O

LEMMA 13. The differential
5y s H2(S x S; @)™ - H3 (g7 ([8]); @)
18 surjective.

Proof. We shall prove the claim by an explicit computation on the generators
of the groups involved. Since in the proofs of Lemma 11 and Lemma 12 we
described the cohomology of the fibres of E rather than those of the cohomology
with compact support, to compute the rank of o we shall compute the rank of
the map induced by d2 on cohomology by Poincaré duality

53+ HO(S x Q)™ @ Q(—1) — H (g7 1(S]); @7,
which can be described explicitly as the composition of the map

HO(S x §;Q) ") HT(g7([9]); Q)
[0 — Q@Oé,
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where Q denotes the image of the generator of H'(C*; Q) inside the cohomology
of g71([S]), and the symmetrization with respect to the group G generated by
jl,jg and ¢.

A direct computation yields that the classes

Vigkd = fi Nfi N figca N Figa N @Fe N fi +2futa A figa + fi A froa + foga A f1)

with {i,4,k,1} = {1,2,3,4} form a basis of H5(S x S;@)(“’Zé’ig’). Here
fi,..., fs denote the basis of fi,..., fs described in Section 5.3. Then we
have

05 (Vijkt) = Q@ fi N fj A fixa A fiza A (fi A fira + frra A fi)
and these classes generate H' (¢~ 1([S]); Q). From this the claim follows. O

6. TORUS RANK 3

In this section we compute the cohomology with compact support of the stra-
tum with torus rank 3. As in the previous section, our strategy is based on a
detailed geometric analysis of the fibration 35 — A; whose toric part is actually
independent of the choice of g = 4.

6.1. DESCRIPTION OF THE GEOMETRY. We first note that the spaces AE"
and AY°" only differ over Ay and hence g5\ g2 = gyer\ g¥er —: 50 In
this section we want to compute H?(S3; Q). For this we first give a geometric
description.

In order to compactify A4 we start with the lattice Z*. The choice of a toroidal
compactification corresponds to the choice of an admissible fan ¥4 in the cone
of semi-positive forms in Sym? (Z*). One possible choice for such a fan is given
by the perfect cone decomposition Ei’erf. A cusp of A4 corresponds to the
choice of an isotropic subspace U C Q*. In our case, for the stratum over
A; we take U = (eq, e9,e3) where the e; (1 < i < 4) are the standard basis
of Z*. This defines an embedding Sym?(Z?) C Sym?*(Z*) and, by restriction
of 2P also a fan in Sym?(Z3) which is nothing but Egerf. The stratum 39
itself consists of different strata which are in 1 : 1-correspondence with the
GL(3, Z)-orbits of the cones o in 2" whose interior contains rank 3 matrices.
Up to the action of GL(3,Z) there is a unique minimal cone with this property,

namely the cone ¢ = (23,22, 23). Beyond that there are (again up to group

action) 4 further cones. In dimension 4 there are two cones, namely o§4) =

(22, 23,23, (v2 — x3)?) and U%) = (23,23, (z2 —x3)?, (x1 — x3)?). In dimensions
5 and 6 there are one cone each, namely 0®) = (22, 23, 23, (29 —23)?, (21 —x3)?)
and 0®) = (22 22, 22, (x2 — 23)?, (21 — 23)?, (1 — 22)?). Note that all cones
are contained in ¢(®). In fact the perfect cone decomposition in genus 3 (where
it coincides with the second Voronoi decomposition) is obtained by taking the
GL(3,Z)-orbit of ¢(®) and all its faces.

To describe the various strata let X; — A; be the universal elliptic curve and

let X1 x4, X1 X4, X1 — A; be the triple product with itself over A;. Let
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T = Sym*(Z?) ® C* be the 6-dimensional torus associated with Sym?(Z?).
Every cone ¢ in derf is basic (i.e. the generators of the rays are part of a
Z-basis of Sym?(Z?)) and defines a subtorus 77 C T of rank dim(c). We can
now give a description of 3.

PROPOSITION 14. The variety 35 admits a stratification into strata as follows:

i) there are 6 strata of B, corresponding to the cones o3, 0(4), 0(4), o®
3 I II

and o(®).
(ii) Fach stratum is the finite quotient of a torus bundle over Xy X 4, X1 X 4,
X1 — Ay with fibre T/TC.

Proof. See [S-B, Lemma 2.4]. O

We shall now compute the cohomology with compact support for each of these
strata and then use a spectral sequence argument to compute the cohomology
with compact support of 39. We denote the substratum of 39 associated with
a cone o by () and the total space of the torus bundle by 7 (o).

Before we state the results we have to give a brief outline of the construction
of the stratum B9(c) with a view towards describing suitable coordinates in
which our calculations can be done. Consider a point in Siegel space of genus
4:

Ti,1 71,2 T1,3 T1,4
- 71,2 72,2 T23 724 € Hy.

T1,3 72,3 733 T34

T1,4 T2,4 T34 T44
Going to the cusp over A; means sending the top left hand 3 x 3 block of
this matrix to ioo. We shall make this more precise. We consider the basis of
Sym?(Z?3) given by Urj = (2= 6;j)zizj. Let t;; (1 < 4,5 < 3) be the dual
basis. Setting

tiy = €™V (1<0,5 < 3)

defines a map
(6.1) Hy — T x C* x Hy

7= ((ti,5), 71,45 T2,4, T3,4, Ta,a).-

This corresponds to taking the partial quotient X (U) = P’(U)\H4 with respect
to the center P'(U) of the unipotent radical of the parabolic subgroup P(U)
associated with the cusp U. We denote P"(U) = P(U)/P’'(U). The partial
quotient X (U) can be considered as an open set of the trivial torus bundle X' (U)
(with fibre T') over C3 x H,. Using the fan $5° one constructs Xpert (U) by
taking a fibrewise toric embedding. Let X sperf (U) be the interior of the closure
of X(U) in ngcrf(U). The action of the group P”(U) on X (U) extends to
an action on ngerf(U) and one obtains the partial compactification in the
direction of the cusp U by Yipert U) = P//(U)\ngcrf(U).
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Every cone o € Egerf defines an affine toric variety X,. Since all cones o are
basic one has X, = C¥ x (C*)%~* where k is the number of generators of o.
Every inclusion o C ¢’ induces an inclusion X, C X, . Note that X 0y = T and,
in particular we obtain an inclusion Xgy =T C X ;) = CS. Let Ty,...,Ts be
the coordinates on X, = C® corresponding to the generators of o(®) which
form a basis of Sym*(Z3). Computing the dual basis of this basis one finds
that this inclusion is given by

T) =t11t1 3812, T = ta ot 31,2, T3 = t33t1,3t2 3,

6.2 o - 2
(6.2) T, = t27§, T = tlé, Ts = tlé.

The relation to the strata 89(c) is then the following. The coordinate 74 4
defines a point in A; and the coordinates 71 4,724,734 define a point in the
fibre of Xy x 4, &1 x4, X1 — Ay over [144] € Ay whichis Er, , x B, , x E., ,,
where E., , = C/(Z + Z74,4) is the elliptic curve defined by 74 4. The fibres of
B9(c) = X1 x 4, X1 x4, X1 are isomorphic to the torus T'/T°.

Finally, we have to make some comments on the structure of the parabolic
subgroup P(U). This group is generated by four types of matrices. The first
type are block matrices of the form

1 0 5 0
g1 = 8 (1) 2 8 , where S = 'S € Sym?(Z3).
0 0 0 1

These matrices generate the center P’(U) of the unipotent radical and act by

Ti,1 T1,2 T1,3 Ti4 71,1 +S11 Ti2+S12 T1,3+S1,3 Ti4
Ti,2 722 723 T24 - Ti,2+S1,2 Te2+ S22 To3+S23 To4
T1,3 T2,3 T3,3 T34 T1,3+ 81,3 T2,3+ 823 T33+5S33 T34
T1,4 72,4 T34 T4,4 T1,4 72,4 73,4 T4,4

giving rise to the partial quotient Hy — 7' x C3 x H; described above.
The second set of generators is of the form

1 0 0 O
0 a O a b

92=10 0 1 0 , where (c d) € SL(2,7Z),
0 ¢ 0 d

resp.
1 M 0 N
10 1 EIN 0 3

B3=10 o 1 0 , where M, N € Z°.

0 0 —tM 1

Note that the elements of type g2, g3 generate a Jacobi group, which, in par-
ticular, acts on the base C3 x H of the partial quotient by P’(U) given by the
map Hy — C3 x H; giving rise to the triple product X} x 4, X} x4, &].
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Finally we have matrices of the form

Q™1 0 0 0
0 1 0 0

g4 = 0o 00 ol where @ € GL(3,2Z).
0 0 0 1

These matrices are of particular importance to us as they operate on the space
Sym*(Z?) by
GL(3,Z)3g: M~—'Q'MQ™".

6.2. THE COHOMOLOGY OF f33(c(®). In this section we will prove

LEMMA 15. The rational cohomology groups with compact support of 39 (0(3))
are given by

Q(—k/2) k=12,14
HEB(®):Q) =4 Q(5-k)/2) k=97

0 otherwise.

We start by giving an explicit description of the torus bundle 7 (c)) defined
by the cone o3,

LEMMA 16. Let q ) : T(a(3)) — X1 X 4, X1 X4, X1 be the rank 3 torus bundle
associated with o . Then over each fibtre EX E X E of X1 X 4, X1 X4, X1 we
have

T(U(s)”ExExE = PE,B(PO) @Pf,s(PO) @Pf,z(PO)
where PO is the Poincaré bundle over the product E x E with the 0-section
removed, and p;j: B x Ex E — E x I is the projection to the ith and jth
factor.

Proof. We first recall the following description of the Poincaré bundle over
E x E where E = C/(Z + Zt). Consider the action of the group Z* on the
trivial rank-1 bundle on C x C given by

(63) (n1’n23m1;m2): (21,22,'11}) —

(21 4 Ny + maT, 22 + ng 4+ moT, we ™ 2TIMaZzEM2zIFMIM2T))

(where the z; are the coordinates on the base and w is the fibre coordinate).
We claim that the quotient line bundle on F x F is the Poincaré bundle. For
this it is enough to see that this line bundle is trivial on E x {0} and {0} x E
(which is obvious) and that it is isomorphic to Og(O — P) on E x {P}. The
latter can be checked by comparing the transformation behaviour of (6.3) to
the transformation behaviour of the theta function ¥(z,7) in one variable (see
e.g. [La, 15.1.3.]).

We have to compare this to our situation. In this case we have an action of
the group generated by the matrices g3 with M, N € Z3. For N = (ny,n2,n3)
we have 7,4 — 7,4 + n; and for M = (m1,mg, m3) we have 7,; — 7 ; +
m;Ti4 + m;iTj .4 + i ;jT4.4 for 1 S Z,j S 3 and Ti4 — Ti,4 + m;T4.4. Recall
that the entries 7; 4 for ¢ = 1,2, 3 are coordinates on the factors of £ x E x E
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and that it follows from (6.2) that we can choose t; | with t; ; = €27 for
(i,7) = (1,2),(1,3),(2,3) as coordinates on the torus T (c(®)). Comparing this
to the transformation (6.3) gives the claim. O

Proof of Lemma 15. Recall that the stratum B9(c(®) is a finite quotient of the
rank 3 torus bundle g, : T(0®) — Xy x4, X1 x4, X1. This enables us to
calculate its rational cohomology by exploiting Leray spectral sequences.
Notice that the base of ¢, is the total space of the fibration p: X; x 4, X1 X 4,
X; — Ay. Over a point [E] € Ay, the fibre of p is p~1([E]) @ E x E x E and
the fibre of p o ¢, over [E] is the total space of the rank 3 torus bundle
Qo |Exexe : T(@®)|pxpxe — F x E x E described in Lemma 16. The
cohomology of (pogq,s)) "1 ([E]) can be computed by the Leray spectral sequence
associated with this rank 3 torus bundle:

(6.4) EPUq,s)=HYT/T);Q)® H’(E x E x E;Q)
— H"((po ¢,) " ([E]); Q).

Note that the cohomology of E x E x E (respectively, the torus T/T("(s))) is
an exterior algebra generated by H'(E x E x E;Q) (resp. Hl(T/T(U(S));@)).
We denote by @1, Q2 and Q3, respectively, the generators of Hl(T/TU(S) Q) &
HY((C*)3;,Q) = Q? defined by integrating along the loop around 0 defined,
respectively, by [t 5] =1, [t75] =1 or t73] = 1.

We can write each copy of E as a quotient E = C/(Zeg;—1 + Zes;); i = 1,2, 3.
Then ey, ...,eq give rise to a basis of the first homology group of £ X E x E.
We will denote by f1,. .., fs the elements of the basis of H*(E x E x E; Q) dual
to e1,...,es. Notice that the transformation behaviour of the fs;_1 and of the
foi for 1 <4 < 3 agrees with the transformation behaviour of the coordinates
{ria] 1 < i < 3} of C® = (Zey + Zes + -+ + Zeg) ®z C (and that of the
differentials dr; 4 which give rise to classes in cohomology).

As we are interested in the quotient of 7 (c(®)) by the finite group G(c®)), we
shall compute the invariant cohomology with respect to this group. This is
done in Lemma 17 for the invariant cohomology of the fibre T(a(3))|ExExE =
(p o g, ) *([E]) using a Leray spectral sequence argument. It remains to
determine the local systems R{(p o g, )«(Q) over A; defined by the fibration
poq,m: BIc®) = T(@®) - A;. This is quite straightforward, since the
cohomology with compact support of the fibre is constant in degrees 12 and
10, and since Sym?* H 1(E;Q) induces the symplectic local system V3 on A;.
Recall that the cohomology with compact support of A; with constant coef-
ficients is concentrated in degree 2, and that the only non-trivial cohomology
group of A; with coefficients in Vy is H!(A1;V2) = Q (see e.g. [G1, Thm. 5.3]).
In particular, it then follows from Lemma 17 that the Leray spectral sequence
associated with poq,) has only two columns containing non-trivial Fy terms,
so it has to degenerate at Fo. From this the claim follows. O
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LEMMA 17. For every [E] € A;, the rational cohomology with compact support
of the fibre of BY(c®) — Ay, with its Hodge structures, coincides with the
G(U(?’))—invariant part of the cohomology with compact support of the rank 3
torus bundle T(U(3)>|E><E><E and 1s given by

Q(-6) k=12,
G(c®) Q(75) k= 10,
(HETEDpepm@) =4 Sym(H(E;Q) ©Q(-2) k=3,
Sym?(H'(E;Q)) @ Q(-1) k=6,
0 otherwise.

Proof. The stabilizer G(¢®®) of 03 in GL(3,Z) is an extension of the sym-
metric group &3 (permuting the coordinates x1,z2, z3) by (Z/27Z)3 (acting by
involutions (z1, xe, x3,x4) — (Lx1, T22, 23, 24)).

The interchange of two coordinates (say, z; and z;) acts on H'(E x E x E;Q)
by interchanging f2; 1 with fo;_1, fo; with fo; and leaving all other generators
invariant. The action on H 1(T/T("(B')); Q) interchanges @; and @Q; and leaves
the third generator invariant.

The automorphism mapping x; to —z; acts on H*(E x E x E;Q) as multipli-
cation by —1 on the generators fo;_1, fo; and on Hl(T/T("(S)); Q) as multipli-
cation by —1 on Qj with k # 4. All other generators are invariant.

We can compute the G(U(3))—invariant part of the rational cohomology
of the rank 3 torus bundle 7(0®)|gxpxr by restricting to the G(o®)-
invariant part of the Leray spectral sequence (6.4) associated with g, . This
yields a spectral sequence E5? converging to the G(o())-invariant part of
Hp+q(T(U(3))|E><E><E§Q)-

A computation of the part of the tensor product A\* HY(E x E x E;Q) ®
A° HY(T/T©™): Q) which is invariant under G(c®) yields that E2? is non-
zero only for (p,q) € {(2,0),(2,1),(4,0),((2,2),(4,1),(6,0)}. A precise de-
scription of the generators of the non-trivial Es terms is given in Table 9.
Note that the spaces for p = ¢ = 2 and p = 4,q = 2 are both isomorphic to
Sym? H'(E; Q) as Sp(2, Q)-representations.

Next, one investigates the differentials of the spectral sequence. As differentials
have to occur between E5'? terms such that the two p+ ¢ have different parity,
an inspection of the spectral sequence quickly reveals that all differentials have
to be trivial, with the possible exception of

(6.5) ' B2t — EY°
and
(6.6) dy': Byt — ES°.

We can determine their rank by exploiting the description of the restriction to
E x E x E of the torus bundle 7(¢() given in Lemma 16 as a direct sum of
pull-backs of the Poincaré bundle with the 0-section removed. This description
implies that one can employ the usual description of dy differentials of C*-
bundles to investigate dg’l and dg’l. In particular, each of these differentials is
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p ¢ dim. generators

0 0 1 1

2 0 1 3 faciAfu

2 1 1 > Qe ® (faic1 A fo; — fai A faj—1)
1<j,k#1,j

2.2 3 S QiAQi oW ™, m=1,23
i< kti,g

40 1 Y ifaiAfau A faj-1 A fo
4 1 1 Yo Qi ® (faim1 A fa; — fai A faj—1) A far—1 A for

1<j,k#1,]
4 2 3 > Qi/\Qj®W;§m)/\f2k—1/\f2k,m=1,2,3
1<j,k#1,]
6 0 1  fiNfaoASsANfaNSs A fo.
All indices i,j,k are between 1 and 3. For indices i < j we set W,il) =
fai—1 A faj + fai A faj-1, WIEQ) = fai—1 A f2;-1 and WIES) = fai A faj for k #1, 5.

TABLE 9. Description of the generators of the Ey terms of the
G (0(3))—invariant part of the spectral sequence associated with

qs(3) -

given by formally replacing each generator Q of H*(T/ 7o ;Q) by the first

Chern class of the bundle p} ;(P), where 1 <4 < j < 3 are chosen such that
{i,7,k} = {1,2,3}. Recall that on the product E x E the Poincaré bundle
P = Opxe(E x {0} + {0} x E— A), where A is the diagonal. From this one
concludes that c; (7)) = finNfot+fsNfa— (f1 + fg) N (f2 -‘rf4) = foANfs—fi N\ f4.
It is then a straightforward calculation to prove that both differentials are
isomorphisms.

It remains to pass from cohomology to cohomology with compact support,
which we can do by Poincaré duality, using the fact that T(o(?’))| ExExE 1S
smooth of complex dimension 6. Finally, we can identify the G(c(®))-invariant
part of the cohomology with compact support of T(0(®)| px px g with the coho-
mology with compact support of its finite quotient (7 (0®)|pxrxr) /G(0™®),
which coincides with the fibre of 59(c®) — A; over [E]. O

6.3. THE COHOMOLOGY OF ﬂg(o§4)). In this section we will prove
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LEMMA 18. The rational cohomology groups with compact support of 39 (054))

are given by

Q(-6 k=12
@ Q(—5)%2 k=10
HEBY(07);Q) = Q(—4)+Q(-2) k=38
Q k=5
0 otherwise.

Proof. We shall make again use of the twofold fibre structure of this stra-
tum. The stratum ﬂg(ayl)) is a finite quotient of a rank 2 torus bundle

q @ : T(O'§4)) — X xa, X1 x4, X1 with fibres isomorphic to T/T(”YL)).
91

Note that the generators of 054) correspond to the first four generators of

the cone o(®). Comparing this to the embedding described in (6.2) we find

that we can choose tl_,é, tl_é as coordinates on T/T("YL)). As before we denote
p: Xl X Ap Xl X Aq X1*>./41.

As we are interested in the quotient of T(o§4)) by the finite group G (054)), we
shall compute the invariant cohomology with respect to this group. Thus we
first have to describe the automorphism group G(O‘Yl)) of the cone 054), ie.
all elements of the form g3 € GL(3,Z) which fix this cone. We have already
discussed this in [HT, Section 3]. The result is that the automorphism group
is generated by the following four transformations:

(6.7) T1 > Ty, Totr Tg— T3, T3> —T3
(6.8) Ty —T1,  T2,T3 > T2, T3
(6.9) Ty~ T1, Tg > T3

(6.10) T —xy; 1=1,2,3.

Note that these automorphisms act trivially on the base of the fibration X} x 4,

Xl X Aq Xl — A1.

Again we shall determine the invariant cohomology of the fibre (g_w) op) ™" ([E])
I

using the Leray spectral sequence with terms EY? = H4Y (T/T(‘TYL)), Q)®HP(Ex

E x E,Q). The result is given by:

LEMMA 19. For every [E] € A, the rational cohomology with compact support
of the fibre of ﬁg(a§4)) — Ay, with its Hodge structures, is given by

Q(-5) k = 10,
) Q(-4)* k=38
G(014 ) 2 1 . . _
(I—LiC (T(a§4))|E><E><E; Q)) = %?ilggl’f (£;Q) @ Q(—2) Z - g,
Sym?(H'(E;Q)) k=4,
0 otherwise.
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Proof. We denote the generators of Hl(T/T(‘T§4));@) ~ HI((C)?%Q) =2 Q?
corresponding to tié, tl_é by Q2,Qs. The f;,i=1,...,6 are, as before, a basis
of the cohomology of the triple product £ x E x E.

We must now compute the action on (co)homology of the automorphisms of
054). As a non-trivial example we shall do this in detail in the case of the trans-
formation given in (6.7), the computations in the other cases are analogous.
The action of this transformation on Siegel space is given by:

1 0 0 0 Ti,1 T1,2 T1,3 T1,4 1 0 0 0
0 1 0 0 T1,2 72,2 72,3 724 01 -1 0 _
0O -1 -1 0 71,3 72,3 73,3 T34 00 -1 0 -
0 0 0 1 T1,4 72,4 T34 T4,4 0 0 0 1
T1,1 T1,2 —T1,2 —T1,3 T1,4
_ 71,2 72,2 —T22 — 723 72,4
| —Ti2—T13 —Teo—Te3 Too+2To3+T33 —Toa— T34
T1,4 72,4 —T24 — T34 T4,4
From this we conclude that under this transformation:
(6.11) Q2 —Q2 —Q3; Q3+ Q3;

fim fi, 1=1,...,4 fi—=—fice—fi; i=5,6,
Note that the latter coincides with the transformation behaviour of the differ-
entials d7; 4,7 = 1,2,3, and the former with the transformation behaviour of
—T71,3, —T1,2-
An analogous computation for the other automorphisms gives the following
results:

(6.12) Q2,Q3 = —Q2, —Qs;
Jufa—= —fi,—f2s fir> fi, i=3,...,6.
(6.13) Q2, Q3 — U3, Q2;
fi,fa= i, fos 3o fs, oo fo,
(6.14) Q2,Q3 — Q2,Qs3;

fi'_>_fia 1=1,...,6.

Now we must compute the invariant cohomology with respect to G (0‘§4)). This
can either be done by a (lengthy) computation by hand or a standard computer
algebra system.

The ES’O terms of the spectral sequence can be computed as follows. The

invariant part E5"° of the cohomology group H° (T/T"Yl) ;Q)@H?(ExEXE;Q)
is two-dimensional and generated by the tensors

L= finfo, =2(fsN fa+ fs N fo) + (fa A fo+ f5 A fa).
The term Eg Y5 also two-dimensional, with generators I1 A Is and I3 A Is. The
terms B = HO(T/T°1"; Q)@ HY(E x E x B; Q) and ES° =~ HO(T/T°!": Q)®
H(E x E x E;Q) are one-dimensional and generated by fundamental classes.
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TABLE 10. FEs term of the spectral sequence converging to
the cohomology of 89(ct")

q

210 0 Va(-2) 0 Va(-3) 0 0

110 0 Vao(=1)@dQ(-2) 0 Vy(=2)®aQ(-3) 0 0

0/]Q o Q(—1)®? 0 Q(—2)%®? 0 Q(=3)
[0 1 2 3 4 5 6 D

The term E2", which is the invariant part of H'(T/T°! ; Q)@ H2(Ex Ex E; Q)
is 4-dimensional, with generators

Gij = ((Q2 +2Q3) ® fjt2 + (2Q2 4+ Q3) @ fiqa) N fi, 1,5 =1,2.

In particular, it is isomorphic to H'(E;Q) ® H'(F;Q) = Sym*(H'(E;Q)) @
A° H'(E;Q). The term Ej'" is also four-dimensional and generated by (g j A
I). All other Eg’l vanish.

Finally, the only non-trivial terms of the form FE¥ 2 are those with p=2and
p = 4. The subspace E3* C HQ(T/T"YL) ;Q)® H*(E x E x F;Q) is isomorphic
to Sme(Hl(E; Q)) and is generated by the invariant tensors

Q2NQ3® faNfs, QeNANQ3® (f3N fo+ fafs), Qa2 NQ3® fa A fe.

Finally, the subspace E;l 2 is 4-dimensional and equal to ES’Q AN,

In terms of local systems this gives rise to the Table 10. We claim that that
the differentials d5? : ELY — EET297! for (p,q) = (2,1),(2,2) and (4,1) are
of maximal rank. Indeed, by Schur’s lemma it is enough to prove that they
are non-zero. To check this it is enough to recall that the torus bundle is
isomorphic to p} 3(P°) @ p}o(P°). In particular, for every class a € EP! we
obtain d5' (o) by replacing Qo with ¢; (01 3(P)) = —(fiAfo+ fs A f2) and Q3
with e1(p] 3(P)) = —(f1 A fa+ f3 A f2) in the expression of a. Analogously, for
every class 8 € E3? we get d>*(8) by replacing Q2 AQs with Qa®¢; (P71 2(P))—
Q3®ci1(p7 3(P)). Then the claim follows from a straightforward calculation. [

To complete the proof of Lemma 18 is now an easy consequence of the Leray

spectral sequence of the fibration po g _«) : 7'(054)) — A;. Looking at the
I

weights of the Hodge structures, we see immediately that all differentials must
vanish and thus the result follows. O

6.4. THE COHOMOLOGY OF Bg(aﬁ)). Before we can describe the cohomology

of this stratum we must identify the toric bundle ’T(J%)).

LEMMA 20. Let p12 : Ex Ex E — E x E be the projection onto the first
two factors and let ¢ : E x Ex E — E x E be the map given by q(z,y,z) =
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(x+y+22). Then
T\ pxpxn = pio(P°) ® ¢ (P1)°).

where PO is the Poincaré bundle over the product E x E with the 0-section
removed.

Proof. Since the generators of the cone J%)

_ . )

take Tg = tlé and T3 = 13 3t1,3l2,3 as coordinates on the torus T/T("Ii ). In
Lemma 17 we had seen that the action of the group generated by the matrices
gs with M, N € Z3 is as follows. For N = (ny,n2,n3) we have 7; 4 — 7i4 + n;
and for M = (m1, ma, m3) we have 7 j — 7; j +m;T; 4 +mM;Tj 4 +m;m;Taq for
1<i4,5 <3 and 754 — T34 + m;Ts,4. In particular

correspond to T4, Ts, Ty, Ts we can

T1,2 = T1,2 + MaT1 4 + M1T2 4 + M1 M2T4 4

whereas
(11,3 + 72,3 +73,3) = (T1,3 + 72,3 + 73,3)+

m3(7'1,4 + 704+ T34) + (my +ma + ms)Ts.4 + ma(my +ma + mM3)Ta 4.

A comparison with the transformation behaviour for the Poincaré bundle de-
scribed in Lemma 17 gives the claim. O

LEMMA 21. The rational cohomology groups with compact support of (39 (0%))

are given by
HF(BY(0\);Q) = Q(=k/2), k=10,12.

Proof. As in the previous case we first have to describe the automorphism
G (0%)) of the cone U%). This group is the symmetric group S4 permuting the
generators of the cone together with the map x; — —z;. Hence we can work
with the following generators:

(6.15) 2 —xi, i=1,...,6

(6.16) T1 4> To, X3 > T+ To — T3

(6.17) T1 > T1 — T3, To > —To, T3> —T3
(6.18) T1 > T3 — To, To > —Ta, X3+ T1— Ta.

We now have to compute the induced action of these automorphisms on the
cohomology groups H'(T/T(‘Tﬁ));@) ® H*(E x E x E;Q). To this end, we
denote by Q3 (respectively, R) the generator of H'(T'/ T(”Y?); Q) corresponding
to the parameter Ty = tl_é (respectively, to Ts = t 3t2,3ts.3).

It is immediately clear that in the case of (6.15) the action is given by

(619) Q35R = Ql’nR;
fi'_>_fia ’L'Zl,...,G.
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We note that this implies that there can be no non-trivial invariant cohomology
classes involving terms of odd degree in H*(E x E x E). Next we claim that
the action on cohomology of (6.16) is given by

(620) Qg — Qg —R R— —R

Jir> fivet fiva, =12 fir ficotfiye, i=3,4 fir> —fi, 1=75,6.
To see this we compute

0 1 1 0 T171 T172 7'113 7'114 0 1 0 0
1 0 1 0 T1,2 72,2 723 724 1 0 0 0 o
00 -1 0 T1,3 72,3 733 T34 1 1 -1 0 B
0 0 0 1 Ti,4 72,4 T34 T4,4 0 0 0 1

* Ti2+Te3+ T3+ 733 —T23—733 Tod4a+ T34
I * —T1,3 =T33 Ti,4+ T34

* * T373 77’374

* * * 7'414

This immediately gives the claim for the f;. For @3, R we observe that
the action induced on the homology is dual to the action on the subspace
(—71,2,71,3 + T2,3 + 73,3. Since cohomology is dual to homology, the action on
Qs, R agrees with that on —71 2,713 + 72,3 + 73,3

A similar calculation gives the following results in the remaining cases:

(6.21) Q3 — —Q3, R— —Q3 + R;
fifo, =12 fim—fi, i=3,4 fi— —fiia—fi, i=56.
(6.22) Qs < R:

firr fixa, =12y fim —fico—fi—fire, =34 [fi— fica, i=5,6.
It is now straightforward to compute the invariants under G(o%)). In the
cohomology group H° (T/T("Y;)); Q)®@ H*(E x E x E;Q) we find one invariant
tensor, namely
I =3(fiNfa+ fs A fa) + 20+,
where we denoted ¢ = (f1 + f3 + f5) A fo + f5 A (fa + fa + fo) and ¢ =
4

Jinfa+f3ANfo. In Hl(T/T(‘TL));Q) ® H?(E x E x E;Q) we also obtain one
invariant tensor, namely

Iy=—-R®(2¢+v)+Q® (¢+2v).

The invariant class in HY(T/T©17);,Q) @ HYE x E x E;Q) is I; A Iy
and in HY(T/TC7);Q) ® HY(E x E x E;Q) it is I A I;. This together
with the fundamental classes in HO(T/T(‘TY;));Q) ® H°(E x E x E;Q) and

H(T/T@17);Q) @ HY(E x E x E;Q) are the only invariants.

As before we now look at the Leray spectral sequence in cohomology associated

with pog_) : T(a%)) — Aj. Since all representations are trivial we thus obtain
II

Table 11. Hence, we have two differentials which could be non-zero, namely
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TABLE 11. FEs term of the spectral sequence converging to

the cohomology of 83 (o %))

q
2100 0o 0 0 0 0
1[0 0 Q=2 0 Q=3 0 0
0/]Q 0 Q1) 0 Q(-2) 0 Q(=3)
[0 1 2 3 4 5 6 p

(4) (4)
&2 HY(T/TC); Q)@ HA(E x E x E;Q) — H(T/T“11),Q)® H*(E x E x E;Q),
resp.

(4) (4)
4 HY(T/TC); Q)@ HA(E x E x E;Q) — H(T/T“11),Q)® HY(E x E x E; Q).

Indeed we claim that they do not vanish. For this we use the description of
T(a%)ﬂ ExExE given in Lemma 20. It follows from this description that this
bundle splits into the product of two factors with Euler classes —p and . The
claim that the first differential is non-zero is now equivalent to

OA 20 +Y)+ A (p+2¢) #0.

For the second differential we must check that

(e ANRe+Y)+ P A(p+2¢)) NI #0.

This can be checked by direct calculation. At the same time this proves that
the first differential does not vanish. The claim of the lemma now follows
immediately after converting to cohomology with compact support. O

6.5. THE COHOMOLOGY OF $9(c(®).
LEMMA 22. The rational cohomology groups with compact support of (39 (0(5))
are given by
Q(—k/2) k=6,10
HE(B3(0);Q) = ¢ Q(—k/2)%* k=38

0 otherwise.

Proof. We first have to compute the automorphism group G(c(®)). It is not
hard to see that this group is generated by the transformations

(6.23) v~y i=1,2,3

(6.24) T1 4> T, T3> T3

(6.25) T1 > T] — T3, Ta > To — T3, T3> —T3
(6.26) T1 > T1 — T3, To > —Ta, T3> —T3.
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TABLE 12. FEs term of the spectral sequence converging to
the cohomology of 89(c(®))

A computation analogous to that in Lemma 18 shows that this results in the
following action on cohomology, where again we denoted by f; the generators
of the cohomology of £ x F x E and by )3 the generator of the cohomology
of the fibre of the torus bundle:

(6.27) fim—fii=1,...,6; Q3 Q3
(6.28) i< fire,i=1,2; fi— f;,7=5,6; Q3 Q3
(6.29) fir fi,i=1,....4 fo—= —foea— fr—2 — [,k =5,6; Q3+— Q3

fe = —fr—a— fr k=56, Q33— —Qs.

Next, we compute the invariant cohomology in H°(C*;Q) ® H?*(E x E x
E;Q). Clearly this is 1-dimensional for k = 0,6. By duality it is enough to do
the computation for k£ = 2. Here we find a 2-dimensional invariant subspace
generated by iy := fi A fo+ f3 A faand iz == fi A fa+ fs A fo +2(f1 + f3 +
fs) N fo+2fs AN(fat fa+ f5).

In this situation we also have invariant cohomology in H!(C*; Q) ® H?(E x E x
E;Q). This is 1-dimensional and generated by Q3®(f1Afa+ f3Af2). By duality
we also have a 1-dimensional invariant subspace in H(C*)®@ H*(Ex Ex E). A
standard calculation shows that this is generated by Qs A (f1 A fa+ f3 A f2) Ada.
In this case the differentials in the Leray spectral sequence are not automatically
0. The situation is described in Table 12. here are two differentials which we
have to consider. These are:

2! HY(C* Q) ® H*(E x E x E;Q) — H(C*;Q) @ HY(E x E x E;Q),

(6.30)

resp.
dy' : H{(C*;Q)® H*(E x E x E;Q) — H(C*;Q) ® HS(E x E x E;Q).

We claim that both differentials are non-zero, i.e. they have rank 1. We first
treat dé’2. The differential is given by taking the cup-product with the first
Chern class of the vector bundle spanned by the torus bundle T(0(5))| EXEXE-
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As in previous cases on can see that T(0®)|gxpxr = piy(P°). This shows
that

dy?: Q3@ (fi A fat fa A fo) v
(FAiNfat fasNf) N(fLAfat faNfa) =2f1 A fa A fa A fa#0.
The argument for d;’4 is analogous. Finally we use the duality
HF(BY(0®);Q) = HYOF(BY(c®);Q)* @ Q(—5) (which holds on finite
smooth covers) to obtain the claim.
O

6.6. THE COHOMOLOGY OF j33(c(®)).

LEMMA 23. The rational cohomology groups with compact support of 39 (0(6))
are given by

CHCTRITE I

0 otherwise.

Proof. The proof of this lemma is analogous to the other cases. We first note
that the automorphism group of G(c(®)) is generated by the symmetric group
in three variables permuting the coordinates x; (i = 1,2, 3) and the transforma-
tions (6.23) and (6.25) already considered in the previous section. In this case
the torus rank is 0 and hence it suffices to compute the action on the cohomol-
ogy of the triple product E x E x E. In view of the transformation (6.23) there
is no invariant in odd degree. By duality it is enough to compute the invariant
cohomology in H2(Ex E x E;Q). A straightforward calculation shows that this
is 1-dimensional with generator 2v; +vo+wvs, with v1 = f1A fo+ f3A fa+ f5 A fs,
vo=fiANfa+ fsNfe+ fsAfaandvs = fi A fo+ f3 A fat f5s A fa O
6.7. THE COHOMOLOGY OF Y. In this section, we will use the computations
on the strata of 5 to prove the following result.
PROPOSITION 24. The rational cohomology with compact support of BY is as
follows: the non-zero Betti numbers are

i|2 45 6 7 8 10 12 14

b; | 111 2 1 4 4 3 1

One has HY(39;Q) = Q(—1) and H?(B9; Q) = Q. Furthermore all cohomology

groups of even degree are algebraic.

Proof. We consider the Gysin spectral sequence associated with the stratifica-
tion of BY given by the locally closed strata Wy = 89(c(®)), Wy = pI(c®)),
Ws = B(o) U Bl and Wy = B9(6®). We set Y, = W,. This is the
spectral sequence ED? = Hg”‘q(ﬁéo);@) with EV? = HPT(Y, \ Y,_1;Q) =
HP*9(W,; Q). The cohomology with compact support of the strata W, was
computed in the Lemmas 15, 18, 21, 22 and 23. In view of these results, the F;
term of the Gysin spectral sequence is as given in Table 13. We consider the
differentials d?9: EP9 — EPT™4=7+1 Ingpection of Table 13 shows that the

only possible non-zero differential is d>*°: E>® = H3(8Y(c\"); Q) — B =
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TABLE 13. Gysin spectral sequence converging to the coho-
mology with compact support of 39

q
10 0 0 Q(=7)
9 0 0 Q(—6)®2 0
8| 0 Q(-5) 0 Q(—6)
7| Q(—4) 0 Q(—5)®3 0
6] 0 Q(—4)%2 0 0
51 Q(-3) 0 Q(—4)+Q(-2) Q(-2)
41 0 Q(-3) 0 0
3| Q(=2) 0 0 Q(-1)
21 0 0 Q 0
1] Q(-1) 0 0 0
1 2 3 i p

H(BY(0®); Q). We can interpret this differential as arising from the Gysin

long exact sequence associated with the inclusion of 39 (054) in the partial com-

pactification 8(c(®)) U ﬂg(ayl)) of (™). Let us denote by ¥ the fibre of
the fibration 59(c®) U Bg(ayl)) — A; over a point [E] € A;. Thanks to the
Leray spectral sequence associated with that fibration, all we need to know is
that the cohomology with compact support of ¥ vanishes in degree 7. This
requires to prove that the differential

dr: Hl((poq,w)  ([E]); Q) = H((p o go) " ([E]); Q)

in the Gysin long exact sequence associated with (po g )~ ' ([E]) C ¥g is an
I

isomorphism.

Since in the proofs of Lemma 17 and Lemma 19 we described the generators
of the cohomology of the fibres of E rather than those of the cohomology with
compact support, we shall analyze the map induced by d7 on cohomology by
Poincaré duality, whose rank coincides with that of d7. Let us recall that the
inclusion of {0} x (C*)? in C x (C*)? induces a Gysin long exact sequence whose
differentials define the maps

HY(C)%Q ®Q(-1) — H'((C)%Q)

As a consequence, the differential H?((poq ) ' ([E]); Q)@ Q(—1) — H*((po
I

4o») ' ([E]); Q) maps each of the generators g;; described in the proof of
Lemma 19 to the class obtained by replacing 75 by T> A T} in the expression,
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and then symmetrizing for the action of the group G(o®)). This yields:

2
9ij v 3 Z Qi1 N Qi1 @ farti A farey,
0<k,1<2

hence in particular the differential is surjective. From this the claim follows.
|

7. TORUS RANK 4

In this section we compute the cohomology of the closed strata 8, C AY°*
and BP°T ¢ AP of torus rank 4 in the second Voronoi and the perfect cone
compactification, respectively.

We shall first state the main results:

THEOREM 25. The cohomology groups with rational coefficients of the closed
stratum ﬂierf C Aierf of the perfect cone compactification of the moduli space
of abelian varieties of dimension 4 are non-zero only in even degree. The only
non-zero Betti numbers are by = by = by =1, bg = bg = 4, bjg = 3 and by = 1.
The cohomology is algebraic in all degrees different from 6, whereas
HY( fferf;(@) is an extension of Q(—3)®3 by Q(—1).

The closed stratum B4 C A}(OT has two irreducible components: a nine-dimen-
sional component F, which is the exceptional divisor of the blow-up ¢q: AY°" —
Aierf, and a six-dimensional component, which is the proper transform of ﬂfferf

under gq.

THEOREM 26. (1) The rational cohomology of E is all algebraic. The only
non-zero Betti numbers are by = by = b1g = b1g =1, by = b1y = 2 and
b6:b8:b10:b12:3.

(2) The rational cohomology of B4 is non-trivial only in even degree. The
non-zero Betti numbers are
i|024681012141618
b1 2377 6 4 2 1 1

All cohomology groups are algebraic, with the exception of H°(B4;Q),
which is an extension of Q(—3)%¢ by Q(—1).

7.1. CONE DECOMPOSITIONS. It is in this section that we require full informa-
tion about the perfect cone or first Voronoi and the second Voronoi decompo-
sition in Sym?2,(R*). Details concerning these decompositions can be found in
[ER1], [ER2], [Val] and [Vor]. We start by recalling the perfect cone decom-
position. The starting point is two 10-dimensional cones, namely the principal
cone IT; (4) and the second perfect cone IIp(4). These cones are given by

H1(4) = <$%a z%, z%,:cﬁ, (501 - 502)2a (1'1 - 503)2, (ZE1 - CE4)2, (ZE2 - $3)2,
(22 — 24)?, (23 — 24)?)

and

H2(4) = <$%a x%a x%) ZCi, ('Tl - $3)2’ gl'l - .T4)2, (552 - -T3)25 (552 - 554)2;

(g — 904)2, (x1 4+ 22 — x3)%, (T1 + 22 — £E4)2, (1 + 22 — x5 — £E4)2>
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respectively. The perfect cone decomposition consists of all GL(4, Z)-translates
of these cones and their faces. While the cone II;(4) is basic, the cone II2(4)
is not, hence it defines a singular point Psng € Aierf. Nevertheless, all 9-
dimensional faces of II3(4) are basic. Modulo the action of GL(4,Z) these
9-dimensional faces define two orbits. Traditionally these are called RT (red

triangle) and BF (black face) respectively (see [ER2]).

In genus 4 and 5 (but not in general) the second Voronoi decomposition is a
subdivision of the perfect cone decomposition. In our case it is the refinement
of the perfect cone decomposition obtained by adding all cones that arise as
spans of the 9-dimensional faces of II2(4) with the central ray generated by

(7.1)
1
e=3 [27 + 23 + 23 + 2F + (21 — 23)° + (21 — 24)® + (22 — 23)° + (22 — 24)°
+(ws — $4)2 + (21 + 22 — 303)2 + (21 + 22 — 304)2 + (21 + w2 — 23 — 304)2] .

In particular, all perfect cones, with the exception of II3(4), belong to the

second Voronoi decomposition. Geometrically this means that AY°" is a blow-
up of AP = A" in the singular point Piye. Since all cones on the second
Voronoi decomposition are basic AY°" is smooth (as a stack). Moreover, the
exceptional divisor E is irreducible and smooth (again as a stack). (For a
discussion of this see also [HS2].
A description of representatives of all GL(4, Z)-orbits of cones in the second
Voronoi, and hence also the perfect cone decomposition, can be found in [Val,
Chapter 4]. For cones with extremal rays spanned by quadratic forms of rank 1
the list is given in [Val, S.4.4.4]. Note that in this list K5 denotes the cone IT5(4),
and the 9-dimensional cones K5 — 1 and K33 correspond to the equivalence
classes BF, respectively, RT of [ER2]. The remaining cones are listed in [Val,
S.4.4.5]. The following list gives the number of GL(4, Z)-orbits of cones in each
dimension for the two decompositions.

dimension 1 2 3 45 6 7 9 10
# perfect cones 11 2 3 4 5 4 2 2
# second Voronoicones | 2 2 4 7 9 11 11 7 4 3

From this we see that the perfect cone decomposition has 26 different cones,
whereas the second Voronoi decomposition has 60 different cones. The lists in
[Val] also allow us to write down generators for the extremal rays of represen-
tatives in all cases.

8
2

7.2. PLAN FOR COMPUTATION. We briefly recall the structure of 3, and ﬂfferf
which comes from the toroidal construction. More generally, let 5 be the
stratum of any admissible fan ¥ (in our case either the perfect cone or the
second Voronoi fan), then each cone o € ¥ defines a torus orbit T, of dimension
10 — k where k is the dimension of 0. Let G, C GL(4,Z) be the stabilizer of
o with respect to the natural action of GL(4,Z) on Sym2,(R*). Then G, acts
on T, and 542 is the disjoint union of the quotients Z, = T, /G, where o runs
through a set of representatives of all cones in 3 which contain a form of rank
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4 in their interior. We then define a stratification by defining S, as the union
of all Z, where dimo > 10 — p. In particular, Sp \ Sp—1 is the union of all Z,
with dimo = 10 — p.

The Gysin spectral sequence EY'? = Hg’*q(ﬂfferf; Q) = Herq(ﬂfferf;(@) associ-
ated with the filtration S, has E; term given by

EP = HET(Sp \ Sp-1;Q).

Since Sp, \ Sp—1 is the disjoint union of the Z, with dimo = 10 — p it follows
that
HZ(Sp\ Sp-1;Q) = @ H2(Z5;Q).
dim o

In our situation we have considerably more information. In particular we know
that, with the exception of II5(4), all cones in both the perfect cone and the
second Voronoi decomposition, are basic. In particular all strata S, with p <9
are locally quotients of a smooth variety by a finite group. Moreover T, =
(C*)10-dime and Z, = (C*)10~dime /G . The torus orbit of II5(4) is a point.
Thus we have to compute for each cone o the cohomology of the torus 7, with
respect to G,. Recall that H*((C*)*; Q) is the exterior algebra generated by
the k-dimensional vector space H'((C*)*; Q). Moreover, a basis of the vector
space H((C*)*;Q) can be obtained by taking the Alexander dual classes of
the fundamental classes of the components

{(y1,--ye)|yi =0}, i=1,...,k

of the complement of (C*)* in C*. This means that, once the generators of the
cone o and of the group G, are known, the computation of the cohomology of
Z, reduces to a linear algebra problem, which can be solved using computa-
tional tools. In our case, the generators of the stabilizers GG, were calculated
with Magma ([BCP]) and the invariant part of the algebra A® H'((C*)*;Q)
with Singular ([GPS]).

7.3. PERFECT CONES. We shall now perform the programme outlined above
for the perfect cone compactification, which coincides with the Igusa compact-
ification in genus 4. We have already mentioned that a list of representatives
of all cones in the perfect cone decomposition, together with their generators,
can be found in [Val, Ch. 4]. This enables us to compute the stabilizer groups
G, as well as the invariant cohomology of the torus orbits T, = (C*)¥ where
k =10 —dimo. The results so obtained are listed in Table 14, where the nota-
tion for the cones is the one of [Val, §4]. The information on the cohomology of
the strata is given in the form of Hodge Euler characteristics, i.e. what is given
is the Euler characteristic of H?(Z,;Q) in the Grothendieck group of Hodge
structures. The symbol L denotes the class of the weight 2 Tate Hodge struc-
ture Q(—1) in the Grothendieck group. The relationship between cohomology
and cohomology with compact support is given by Poincaré duality:

Hl(Zy;Q) = Hom(H* " (Z5;Q), Q(—k)),

which holds since the Z, are finite quotients of the smooth varieties T}.
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TABLE 14. GL(4, Z)-orbits of perfect cones

b)) dim ¥ eHdg(Zg) by dim ¥ eHdg(Zg)
K5 = H1(4) 10 1 Ky+1 7 L3

H2(4) 10 1 Co9 6 L*-L3
Ks—1 9 L Csa1 6 LY+1
Ks 3 9 L-1 Cao1 + 1 6 L*
Ks—2 8 L2 C3 + Cs 6 L4
Ks—1—-1 8 L2-L Cs 5 L>-1
Ky—2-1 7 L3 - L2 Ci+1 5 L?
Ca221 7 L3 Cs+1+1 5 L°+L
Ks—-3 7 L3 1+1+1+1 4 LS

TABLE 15. E; term of the spectral sequence converging to H*® (82" Q).

q

6| 0 0 0 0 0 0 Q(—6)
5/ 0 0 0 0 0 Q(-5% 0

41 0 0 0 0 Q(—4)®* 0 0

31 0 0 0 Q(—3)%* Q(-3) 0 0

21 0 0 Q(-2)%% Q(-2) 0 0 0

1| 0 Q1% Q-1 0 0 Q-1 0

0| Q%2 Q 0 0 Q Q 0

0 1 2 3 4 5 6 P

In view of the information on the cohomology of the Z, given in Table 14, this
yields that the Ej terms of the spectral sequence EY'? = HPTY( fferf;@) are
as shown in Table 15.

To establish Theorem 25, we need to determine the rank of all differentials
in the spectral sequence. As morphisms between pure Hodge structures of
different weights are necessarily trivial, one remains with five differentials to
investigate, all of the form d??: EP? — EPTH We will denote them by

6o: EYY — EY o B — B,

61: BEPY — EPY 6y EY? — EP? 6y EDP — B
LEMMA 27. All the differentials do, 6}, 61,92 and d3 have rank 1.
Proof. Since ﬂfferf is connected, one has H( Eerf; ) = Q. This implies that
0o has rank 1.

Next, we consider the differential Jj: Ef’o = Q — Ef’o = Q. From the
description of the strata given in Table 14, we have Ef’o = HX(Zc,,,; Q) and
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EYY = H5(Z¢,; Q) for the cones

Cs = (a1, 25.(21 — 24)?, (22 — x3)°, (23 — 74)?),
CV321 = <1‘%, ZL'%, 1'421, (501 - 1'4)27 (:CQ - 563)2, (1'3 - SC4>2>-

The cone Cj5 is contained in Cg1, hence Z¢,,, is contained in the closure of
Zc,. Furthermore, the rank of 6 must coincide with the rank of the differential
no: HX(Zcyy; Q) — H2(Zc,; Q) of the Gysin long exact sequence associated
with the inclusion of Z¢,,, in the partial compactification Z¢, U Z¢,,, of Zc,.
If one considers the stabilizers, one observes that Gc.,,, is a subgroup of G¢;.
Therefore, one can view 79 as a map from the cohomology of (C*)* to the
cohomology of (C*)% in the following way:

HY(Zs,; Q) = HE((CH)% Q)Con

W(’ &;

HE(ZCS ) Q) - HE((C*)Sv @)GC5 = IJE(((C*)E’7 Q)Gc321 ,

where we used the fact that the G¢,,, -invariant part of H>((C*)%; Q) coincides
with the G¢,-invariant part. This new interpretation relates the map 7o to the
differential

(72) H(C)5Q =Q — HI((C)%Q) =Q
of the Gysin exact sequence of an inclusion (C*)* < C x (C*)*, with comple-
ment isomorphic to (C*)°. In particular, since H*(C x (C*)*; Q) vanishes for

k < 5, the differential (7.2) is an isomorphism, and the same holds for 7.
Let us consider the differential

o Byt = HY(Zky-1;Q) © H2 (Zk, 03 Q) = By 2 HY(Zie-1-13 Q).

Note that both Zg, 1 and Zk,, are contained in the closure of Zk, 11 C
Perf - We choose to investigate the inclusion iz 3 of Z K, in the partial com-
pactification Zg, , U Zx,—1-1 of Zx,_1—1. Then the rank of §; cannot be

smaller than the rank of the differential
n: Hg(ZKS,g.; Q) — H?(ZK5,1,1; Q)

in the Gysin long exact sequence associated with i3 3, even though there is no
canonical isomorphism between the kernel of 7; and that of §;.
In Vallentin’s notation, the cone K3 3 is given by

K33 = <~T%, 9037%%750431, (1'1 - 503)2a (1'1 - 964)27 (502 - 963)27 (502 - 504)27
(x1 + 22 — 3 — ZE4)2>
In particular, its subcone
K5 —1—1b= (a3, 23, 23,23, (x1 — 23)%, (x1 — 24)%, (w2 — 23)%, (w2 — 74)?)
belongs to the same GL(4,7Z)-orbit as K5 — 1 — 1, so that Zx. 1 15 C ﬂfferf
coincides with Zg,_1—1. The stabilizer Gx,_1-1p of the cone K5 — 1 — 1b is
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generated by —Idz+ and by the two automorphisms

T — I3 T — X1
To > T To = T
2 4 and 2 2
T3 — T T3 > Ty
T4 = 21 T4 > T3

In particular, one can check that the group Gx,_1_1p is contained in the sta-
bilizer G, , of the cone K3 3.

Analogously to the case of 19, we can reduce the study of 7; to the study of the
long exact sequence of an inclusion C* < C x C* with complement isomorphic
to (C*)2, by exploiting the diagram

HCQ(ZK::.,S;@) = Ifg((c*7 Q)GKS,s — HCQ((C*’ @)GKS,I,H,
fm |
HCB(ZKS*:lflb;@) Hg(((c*)2;@)GK5flflb.

Then the claim follows from the fact that the differential H2(C*; Q) = Q(—1) —
H2((C*)%,Q) in the Gysin long exact sequence associated with the inclusion
C* — C x C* has rank 1.

The proof for d2 and d3 is completely analogous to that for §;. In the case
of J2 one considers the inclusion of the 2-dimensional stratum Zg,_o in the
3-dimensional stratum Zg,_s_1, given by the inclusion of the cone

K5 —2—1b = (a3, 23,23, (x1 — 1), (32 — 23)%, (w2 — 24)°, (w3 — 74)?),
which lies in the same GL(4,Z)-orbit as K5 —2 — 1, in
Ks—2= <$§, zé, zﬁ, 1'1217 (1 — 964)27 (g — 503)2a (w2 — 504)2a (w3 — $4)2>-

In this case, the stabilizers of K5 — 2 and of K5 — 2 — 1b coincide as subgroups
of GL(4,7Z).

In the case of d3, one considers the inclusion of the 3-dimensional stratum
Z(Cy9e, 10 the 4-dimensional stratum Zc,,,, given by the inclusion of the cone
Ca22 = <ZC%, $§a$§a (w1 — 964)2, (22 — 964)2, (z3 — £E4)2>

in
Ca201 = <ZC%, :E%,wi,wi, (w1 — 964)2, (w2 — 964)2, (z3 — £E4)2>-

Again, the stabilizers of Coao and Caga1 coincide. O
7.4. CONES CONTAINING e. We shall now prove Theorem 26.

Proof of (1)=(2) in Theorem 26. Assume that the cohomology with compact
support of the exceptional divisor E of the blow-up AY°" — Aierf is as stated
in (1). The Gysin long exact sequence associated with the closed inclusion
E C B4 is as follows:

(7.3) -~ — HFY(E;Q) 25 HE(B\ B;Q) — HF(84;Q) —» HEN(E;Q) — -
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Similarly the Gysin sequence of the pair { Ping} C ﬂfferf reads

e Hfil(Psing#@) - Hf( gerf \ {Psing }; Q) —
— HE(B4P; Q) — HY (Puing; Q) — - -+

Since AYr — AP is an isomorphism outside E, the complement 84 \ E is
isomorphic to ﬂierf\{Psing}. By Theorem 25 the odd cohomology with compact
support of 82" vanishes and hence H¥ (82 \ { Pang}; Q) = HF (B4 \ E; Q) = 0
for odd k > 3. Moreover, H! (8 \ { Pyng }; Q) = H(84\ E; Q) = 0 since Py
is a point and ﬁ}ferf is compact (which implies that cohomology with compact
support and ordinary cohomology coincide).

Furthermore by the description of H?(E;Q) from (1) we know that all odd
cohomology of E vanishes. This ensures that all differentials dy,k > 1 are
zero. This implies that the Betti numbers by of 54 with k£ > 1 are as stated
in Theorem 26. Also the description of the Hodge structures follows from
Theorem 25 and from part (1) in view of the long exact sequence (7.3). Finally,
the fact that H?(B4;Q) is one-dimensional follow from the connectedness of
B4. To complete the proof, recall that 84 is compact, so that cohomology and
cohomology with compact support agree. O

LEMMA 28. For every k, the cohomology group H*(E; Q) carries a pure Hodge
structure of weight k.

Proof. To prove the claim, we consider the second Voronoi compactification
AY°"(n) of the moduli space of principally polarized abelian fourfolds with a
level-n structure (n > 3). Recall that A)°"(n) is a smooth projective scheme
and that the map w(n): AY°"(n) — AY°" is a finite group quotient. The
preimage 7(n) "1 (E) of E is the union of finitely many irreducible components,
all of which are smooth and pairwise disjoint. This follows from the toric
description, since these components are themselves toric varieties given by the
star Star({e)) in the lattice Sym?*(Z*)/Ze.

In particular, this implies that the Hodge structures on the cohomology groups
of m(n)~(E) are pure of weight equal to the degree. As 7(n) is finite, the
pull-back map

() ny-1(m) : H"(E;Q) = H"(x(n)~'(E); Q)

is injective. This implies that each cohomology group H*(E;Q) is a Hodge
substructure of H*(m(n)~!(E); Q), thus yielding the claim. a

Proof of (1) in Theorem 26. In view of Lemma 28, determining the cohomol-
ogy of E is equivalent to computing its Hodge Euler characteristics, i.e.

onag(E) = 3 (- DHN(E: Q).
kEZ

where [-] denotes the class in the Grothendieck group Ky(HSqg) of Hodge struc-
tures. Hodge Euler characteristics are additive, so we are going to work with
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TABLE 16. GL(4, Z)-orbits of cones of dimension > 6 contain-
ing e

o dim o

111+
111—
211+
211—-
311+
311—
221
221+
221—-
411
321+

10
10

©

~ ~J Co 00 00 CO 0O ©

endg(Zs) o dimo enqg(Zs)

1 321— 7  L3—-2L2+L

1 222" 7 L3 —12

L-1 222" 7 L3

L 2224+ 7 L3

L2-L 222— 7 L3

L2 421 6 L —IL3+1L2-L
L2-L 331+ 6 L*+1

L2 331— 6 L-L3-L+1
L2+ L 3224+ 6 Lt —13

L3 — L2 322— 6 L*-L3

L’ -1L2+L-1 322" 6 L*—2L3+4+2L2-2L+1

TABLE 17. GL(4, Z)-orbits of cones of dimension < 5 contain-

ing e
E dnn E eHdg(Za')
4292’ 5 LS+I3—-L2+L
332— 5 L — L4413 -3L2+2L
431 5 L —L*+ L3 —L2+L—-1
422 5 L® —L*
332+ 5 LS —2L4+ 13 —-1L2+4+2L -1
432 4 L6 — 2L° + 2L4 — 413 + 5L2 — 2L
333— 4 LS + 212
441 4 L6 4+ L2
333+ 4 L6 —L° —L3+4+2L2-L
433 3  L7T—LS+L°—L*+4L3 —4L2
442 3 L7 +2L3 — 1?2
443 2 L8 4+ 2L* — 3L3
444 1 | D
TOT. L4+ L84+ 2L7 4+ 3L +3L° +3L* + 3L +2L2 +L +1

a locally closed stratification of E and add up the Hodge Euler characteristics

to get the result.

The toroidal construction of AY°" yields that E is the union of toric strata Z,
for all cones o belonging to the second Voronoi decomposition but not to the
perfect cone decomposition. Note that for such o the variety Z, automatically
maps to Ag under the map AY°" — A$2*. Furthermore, up to the action of
GL(4,Z), one can assume that these cones contain the extremal ray (e) defined

in (7.1) as extremal ray.
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Since cones that lie in the same GL(4,Z)-orbit give the same variety Z,, we
have to work with a list of representatives of all GL(4,Z)-orbits of cones ful-
filling our conditions. Such a list is given in [Val, §4.4.5]. As in the proof of
Theorem 14, we compute for each cone ¢ in Vallentin’s list the generators of its
stabilizer G, in GL(4,7), as well as their action on H!((C*)1°=dme. Q). Then
we use the computer algebra program Singular [GPS] to calculate all positive
Betti numbers of the quotient Z, = (C*)!0~dime /G The results are given in
Tables 16 and 17, where we list all cones and the Hodge Euler characteristics
of the corresponding strata of F.

As already explained, the Hodge Euler characteristic of E is the sum for the
Euler characteristics of all strata Z, and is computed at the bottom of Table 17.
In view of Lemma 28, and recalling that L is the notation of the weight 2 Tate
Hodge structure Q(—1) in the Grothendieck group of rational Hodge structures,
we can conclude that the Betti numbers of E agree with those given in the
statement of Theorem 26. O

Remark 29. Note that the Betti numbers of E satisfy Poincaré duality. Indeed,
this must be the case as E is smooth up to finite group action.

APPENDIX A. COHOMOLOGY OF A3 WITH COEFFICIENTS IN SYMPLECTIC
LOCAL SYSTEMS

In this section, we recollect the information on the cohomology of local systems
on As and As that we used in the course of the paper. Let us recall that the
cohomology of local systems of odd weight on A, vanishes because it is killed
by the abelian involution. Therefore, we only need to deal with local systems
of even rank.

The cohomology of A2 and A3 with constant coefficients is known. The moduli
space As is the disjoint union of the moduli space My of genus 2 curves and
the locus Sym? A; of products. Since it is known that the rational cohomology
of both these spaces vanishes in positive degree, we have

LEMMA 30. The only non-trivial rational cohomology groups with compact sup-

port of Ay are HX(A2; Q) = Q(—2) and H?(A2; Q) = Q(-1).

The rational cohomology of A3 was computed by Hain ([Ha]). We state below
his result in terms of cohomology with compact support.

THEOREM 31 (Hain). The non-trivial Betti numbers with compact support of
As are

i |12 10 8 6
b; | 1 1 1
Furthermore, all cohomology groups are algebraic with the exception of

HS(A3;Q), which is an extension of Q(—3) by Q.

[\

We deduce the results we need on non-trivial symplectic local systems with
weight < 2 from results on moduli spaces of curves ([BT],[T3]). Note that the
result for Vy 1 was already proven in [HT, Lemma 3.1].
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LEMMA 32. The cohomology groups with compact support of the weight 2 sym-
plectic local systems on Ma are as follows: the cohomology of Va o vanishes in
all degrees, whereas the only non-zero cohomology group with compact support
Of V171 18 HE(M%VIJ) = @

LEMMA 33. The rational cohomology of Ms with coefficients in V190 and
V20,0 @ 0 in all degrees. The only non-trivial cohomology group with compact
support of M3 with coefficients in V11,0 is H)(Ms;V11,0) = Q(—5).

Proof of Lemma 33. Following the approach of [G2], we use the forgetful maps
p1: Mz — Mz and pa: M3 o — Ms to obtain information. Note that p; is
the universal curve over M3 and that the fibre of py is the configuration space
of 2 distinct points on a genus 3 curve.

According to [BT, Cor. 1], there is an isomorphism H®(M31;Q) =
H*(M3;Q) ® H*(P*;Q) as vector spaces with mixed Hodge structures. If
we compare this with the Leray spectral sequence in cohomology associated
with p1, we get that the cohomology of M3 with coeflicients in V; g ¢ must
vanish.

Next, we analyze the Leray spectral sequence in cohomology associated with po.
Taking the Gs-action into account, the cohomology of the fibre of py induces
the following local systems on Ms:

local system: local system:
deg. | invariant part | alternating part
0 Q 0
1 V1,0,0 V1,0,0
2 Q(-1)®Vi10 | Q-1)® Va0,
3 0 V1,0,0(—1)

This implies that the cohomology of M3 with coefficients in Va g ¢ (respectively,
in Vi10) is strictly related to the Gq-alternating (resp. Gq-invariant) part of
the cohomology of M3 5. The rational cohomology of M3 5 is described with its
mixed Hodge structures and the action of the symmetric group in [T3, Thm 1.1].
By comparing this with the Es-term of the Leray spectral sequence associated
with pa, one obtains that the cohomology of V3 g o vanishes and that the only
non-trivial cohomology group of Vi 1, is H*(M3;V11,0) = Q(—3). Then the
claim follows from Poincaré duality. i

Proof of Lemma 32. The proof is analogous to that of Lemma 33. In this case,
one needs to compare the Leray spectral sequence associated with py : Mo —
My with the cohomology of Mz 5 computed in [T2, I1,2.2]. Note that in this
case the cohomology of Vi ¢ vanishes because it is killed by the hyperelliptic
involution on the universal curve over Ma. O

Next, we compute the cohomology of the weight 2 local systems on As and
As we are interested in, by using Gysin long exact sequences in cohomology
with compact support and the stratification Az = m(M2) U Sym2 A; of A,
respectively, the stratification Az = m5(M3) U 12(Ma) x Ay U Sym?® A; of As.
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The result on the cohomology with compact support of V; ; was already proved
in [HT, Lemma 3.1].

LEMMA 34. The only non-trivial cohomology groups of Aa with coefficients in
a local system of weight 2 are H3(A2;V11) = Q and H2(A2; Vo) = Q(—1).

Proof. Using branching formulae as in [BvdG, §§7-8], one proves that the re-
striction of Vs o to Sym? A; C A, coincides with the symmetrization of Vo x V
on A; x Aj. Its cohomology with compact support is then Q(—1) in degree
3 and trivial in all other degrees by e.g. [G1l, Thm. 5.3]. Analogously, one
shows that the cohomology of Sym? A; with coefficients in the restriction of
the local system Vi ; is trivial. Then the claim follows from the Gysin long
exact sequence associated with the inclusion Sym? A; C As. O

LEMMA 35. The cohomology with compact support of As in the local system
V11,0 i non-trivial only in degree 5 and possibly in degrees 8 and 9 and
is given in these degrees by H2(A3;Vi10) = Q(—1) and H3(A3;Vi1,0) =
H?(.Ag;VLLo) = Q(—4)®€ with € € {0, 1}.

Proof. Branching formulae yield that the cohomology with compact support
of the restriction of Vi1, to 2(Ms) x Ay is equal to Q(—5) (coming from
the local system Vi1 ® Vo on Ma x A;) in degree 8, to Q(—1) in degree 5
(coming from the local system Vo ® Vo(—1)) and is trivial in all other degrees.
Moreover, the restriction of Vi 1 to Sym?® A, is trivial, as is easy to prove if
one looks at the cohomology of the restriction of the universal abelian variety
over A3 to Sym3 Aj.

It remains to consider the Gysin long exact sequence associated with the closed
inclusion A5 C Az. The only differential which can possibly be non-trivial is
Q(=5) = H3(A¥Y; V1 10) — HI (M35 V110) = Q(=5).

From this the claim follows. (]
In the investigation of the cohomology with compact support of the locus 39 of
semi-abelic varieties of torus rank 2 we also need to consider the cohomology
with compact support of the weight 4 local system V32 on Ag. In the forth-
coming preprint [T4], we will show that the cohomology of V3 o vanishes in all

degrees. For our application, however, we do not need such a complete result.
The following lemma suffices:

LEMMA 36. The cohomology with compact support of As with coefficients in
the local system Va5 is 0 in all degrees different from 3,4. Furthermore, for
every weight k there is an isomorphism

Gry (HZ (A3 Va2)) = Gry (HZ (A3 Vayo))
between the graded pieces of the weight filtration.

Proof. First, we prove that the result holds in the Grothendieck group of ra-
tional Hodge structures. This requires to prove that the Euler characteristic
of H?(As2;Va2) in the Grothendieck group of rational Hodge structures van-
ishes. By branching formulae, the cohomology with compact support of the
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restriction of Vs o to Sym? A, is equal to the cohomology of the local system
Vo ® Vo(—2), which is equal to Q(—4) in degree 4 and trivial otherwise. On
the other hand, the Euler characteristic of H?(Mas; V3 2) was proved in [Ber,
Theorem 11.6] to be equal to —[Q(—4)]. Then the additivity of Euler char-
acteristics ensures that the Euler characteristic of V35 on My vanishes. This
means that the Euler characteristic of each graded piece of the weight filtration
on HJ(AQ;V272) is 0.

More generally, the fact that My and Sym? A; are affine of dimension 3 and
2 respectively, combined with the Gysin long exact sequence associated to
Sym? A; < A, implies that the cohomology of Ay with values in any local
system is trivial in degree greater than 3. Thus, by Poincaré duality, the
cohomology with compact support of Az can be non-trivial only in degree
larger than or equal to 3. Furthermore, for non-trivial irreducible local sys-
tems H° (and hence HY) vanishes, whereas H' (and hence H?) is always zero
by the Raghunathan rigidity theorem [R]. This means that the cohomology
with compact support of Vg2 on Az can be non-zero only in degrees 3 and
4. The cohomology groups in these degrees are then isomorphic when pass-
ing to the associated graded pieces of the weight filtration as a consequence of
the vanishing of the Euler characteristic in the Grothendieck group of Hodge
structures. O
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