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Abstract. In this paper we compute the cohomology groups of the

second Voronoi and the perfect cone compactification AVor
4 and Aperf

4

respectively, of the moduli space of abelian fourfolds in degree ≤ 9.
The main tool is the investigation of the strata of AVor

4 corresponding
to semi-abelic varieties with constant torus rank.
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1. Introduction and plan

The moduli space Ag of principally polarized abelian varieties of genus g are
much studied objects in algebraic geometry. Although much progress has been
made in understanding the geometry of these spaces, we still know relatively
little about the cohomology or the Chow groups of Ag and its compactifica-
tions. These are difficult questions even for low genus. Mumford in his seminal
paper [Mu2] computed the Chow ring of M2, or what is the same, of the second
Voronoi compactification AVor

2 . It was also in this paper that he laid the foun-
dations for the study of the Chow ring of Mg in general. Lee and Weintraub
[LW] have investigated the cohomology of certain level covers of AVor

2 . The
cohomology of A3 and of the Satake compactification ASat

3 were determined
by Hain [Ha], while the Chow group of the second Voronoi compactification
AVor

3 had earlier been computed by van der Geer [vdG1]. The authors of this
paper proved in [HT] that the Chow ring and the cohomology ring of AVor

g are
isomorphic for g = 2, 3.
Very little is known about the topology of Ag and its compactifications in
general. A positive exception is given by the subring generated by the Chern
classes λi of the Hodge bundle in the Chow ring or the cohomology ring of Ag.
By [vdG2] this subring is known explicitly; in particular, it is generated by the
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odd degree Hodge classes λ2i+1. Furthermore, by a classical result by Borel [Bo]
the Hodge classes λ2i+1 generate the stable cohomology of Ag, which is defined
in terms of the natural maps Ag′ →֒ Ag for g′ < g given by multiplication with
a fixed abelian variety of dimension g − g′. Note that by the construction of
Ag as a quotient of Siegel space, the rational cohomology of Ag coincides with
the group cohomology of the symplectic group Sp(2g,Z).
In this paper we investigate the case of genus 4 of whose cohomology very little
is known. There are two reasons why we believe that it is worth the effort
to undertake this study. One is that the spaces A2 and A3 are very close to
the moduli spaces M2 and M3 whose cohomology is rather well understood,
whereas A4 is the first Siegel moduli space where the Torelli map fails to be
birational and thus one might expect new phenomena. The second reason is
that, as our discussion of the boundary strata shows, the complexity of the
structure of Ag and its compactifications grows dramatically with g. At the
moment calculations on the cohomology of A5, or any of its compactifications,
seems far out of reach and thus A4 is the only remaining low genus case where
the computation of the entire cohomology currently seems within reach.
In this paper we thus investigate the cohomology of toroidal compactifications
of A4. In general there are several meaningful compactifications of Ag. Besides
the second Voronoi compactification AVor

g there is the perfect compactification

Aperf
g , given by the second Voronoi decomposition and the perfect cone (or first

Voronoi) decomposition respectively, as well as the Igusa compactificationAIgu
g .

It was shown by Alexeev [Al] and Olsson [Ol] that (at least up to normalization)
AVor

g represents a geometric functor given by stable semi-abelic varieties. On

the other hand Aperf
g is, as was proved by Shepherd-Barron [S-B], a canonical

model in the sense of Mori theory, i.e. its canonical bundle is ample, if g ≥
12. Finally, Igusa constructed AIgu

g as a partial blow-up of ASat
g and it was

shown by Namikawa [Nam] that Igusa’s model is the toroidal compactification
defined by the central cone decomposition. In genus g ≤ 3 all of the above
toroidal compactifications coincide. In genus 4 the Igusa and the perfect cone
decomposition coincide and the second Voronoi compactificationAVor

4 is a blow-

up of Aperf
4 . However, for general g all three compactifications are different.

The main result of our paper is the determination of the Betti numbers of

Aperf
4 of degree less than or equal to 9 and of all Betti numbers of AVor

4 with
the exception of the middle Betti number b10. This reduces the problem of
the computation of the cohomology of AVor

4 to the computation of the Euler
number of A4, which is an independent problem in its own right. Indeed, one
can compute the Euler number of level covers A4(n) for n ≥ 3 by Hirzebruch–
Mumford proportionality. From this one could compute e(A4) if one had a
complete classification of torsion elements in the group Sp(8,Z). Although this
is not known, it does not seem an impossible task to obtain such a classification.
This is, however, a hard problem which requires different methods from the the
ones used in this paper; therefore, we will not approach it here.
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Our approach involves computing a spectral sequence converging to the coho-
mology of AVor

4 . As a by-product, this spectral sequence determines the long
exact sequence relating the cohomology with compact support of AVor

4 with
that of A4 and of its boundary. For this reason, a natural application of our
analysis is to obtain evidence on the existence of non-trivial cohomology classes
of A4 in different degrees, by giving lower bounds for the Betti numbers of A4.
However, all contributions from the cohomology of A4 to our computation can
be explained using either the Hodge classes or a certain non-algebraic class
related to the one in H6(A3;Q) described in [Ha, Thm 1]. This gives rise to
the following question:

Question. Is the rational cohomology of A4 generated by the Hodge classes
λ1, λ3 and by one non-algebraic cohomology class of Hodge weight 18 arising in
degree 12?

The starting point of our investigations is the fact that every toroidal compact-
ification Ator

g admits a map ϕg : Ator
g −→ ASat

g . We recall that

ASat
g = Ag ⊔ Ag−1 ⊔ . . . ⊔ A0,

which allows us to construct a stratification of Ator
g by considering the closed

loci β
(g)
i = βi = ϕ−1

g (ASat
g−i) and their open parts β0

i = βi \ βi+1 = ϕ−1
g (Ag−i).

Each stratum β0
i is itself the disjoint union of locally closed substrata that are

quotients of torus bundles over the product of a certain number of copies of
the universal family Xg−i over Ag−i by finite groups. The strategy is then
to compute the cohomology with compact support of each of these substrata
using Leray spectral sequences and then to glue these strata by Gysin spectral
sequences to compute the cohomology with compact support of β0

i . Although
this is a natural approach, we are not aware that it has been used in this form
before apart from [HT] where it was applied to the case of genus 3. The reader
will however notice that the complexity encountered in the present case is of a
very different level: we need a full understanding of the Voronoi decomposition
in genus 4, which in this case can no longer be deduced from the knowledge of
the basic cone alone.
The use of Leray spectral sequences requires to know the cohomology with
compact support of Ag−i not only with constant coefficients, but also with
coefficients in certain symplectic local systems of low weight. In the case of
i = 1, 2 we deduce this information from results on the cohomology of moduli
spaces of pointed curves. Passing from the moduli space of curves to the
moduli space of abelian varieties produces a small ambiguity, which does not
influence our final result, mainly because it disappears at the level of Euler
characteristics. Up to this ambiguity, we are able to obtain complete results for
the cohomology with compact support of all strata contained in the boundary
as well as of the closure J 4 of the Jacobian locus in A4 and we believe that
this is of some independent interest.
In the case of the cohomology ofA4 itself, there are two facts which help us. The
first is that the complement in A4 of the closure of the locus of jacobians has a
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smooth affine variety as coarse moduli space. This implies that its cohomology
with compact support is trivial if the degree is smaller than 10 and thus that
the cohomology with compact support of A4 agrees with that of J 4 in degree
≤ 9. The second is that AVor

4 is (globally) the quotient of a smooth projective
scheme by a finite group. This implies that its cohomology satisfies Poincaré
duality, and, more specifically, that its cohomology in degree k carries a pure
Hodge structure of weight k.
In the case of AVor

4 , putting the cohomological information from all strata
β0
i together yields Table 1, from which we can deduce Theorem 1 by using

the Gysin spectral sequence associated to the stratification given by the βi.
A consequence of this spectral sequence is that the cohomology groups with
compact support of A4 in degree ≤ 9 are sufficient to determine all cohomology
groups ofAVor

4 of degree 6= 10. In turn, the cohomology groups ofAVor
4 in degree

≥ 11 so obtained can be used to gain information on the cohomology with
compact support of A4 in degree ≥ 11, thus leading (using Poincaré duality) to

the question formulated above. Finally, we obtain the Betti numbers for Aperf
4

in Theorem 2 by using the fact that AVor
4 is a blow-up of Aperf

4 in one point.
The plan of the paper is as follows. In §2 we prove the main results using
cohomological informations on the strata β0

i . The geometrical study of each
of the five strata β0

i is performed in the following five sections. Finally, in the
appendix we collect and prove all results on the cohomology of local systems
on A2 and A3 used in Section 4 and 5.

Acknowledgments. Partial support from DFG under grants Hu 337/6-1 and
Hu 337/6-2 is gratefully acknowledged. During the preparation of this paper,
the second author has been partially supported by the programme Wege in die
Forschung II of Leibniz Universität Hannover. We would like to thank MSRI
for hospitality during the first part of the preparation of this paper. Finally, we
thank Frank Vallentin for untiringly answering our questions about the second
Voronoi decomposition.

Notation.

Ag moduli stack of principally polarized abelian varieties of
genus g

Xg universal family over Ag

Vλ1,...,λg
rational local system on Ag induced by the Sp(2g,Q)-
representation indexed by the partition (λ1, . . . , λg)

ASat
g Satake compactification of Ag

AVor
g Voronoi compactification of Ag

XVor
g universal family over AVor

g

Aperf
g perfect cone compactification of Ag

AIgu
g Igusa compactification of Ag

Mg,n moduli stack of non-singular curves of genus g with n marked
points
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Mg := Mg,0

Sd symmetric group in d letters

Sym2
≥0(R

g) space of real positive semidefinite quadratic forms in Rg

〈ϕ1, . . . , ϕr〉 convex cone generated by the half rays R≥0ϕ1, . . . , R≥0ϕr

For every g, we denote by ϕg : AVor
g → ASat

g (respectively, ψg : Aperf
g → ASat

g )
the natural map from the Voronoi (respectively, perfect cone) to the Satake
compactification. Let πg : XVor

g → AVor
g be the universal family, qg : XVor

g →

XVor
g /±1 the quotient map from the universal family to the universal Kummer

family and kg : XVor
g /± 1 → AVor

g the universal Kummer morphism.

For 0 ≤ i ≤ g, we set β0
i = ϕ−1

g (Ag−i) ⊂ AVor
g , βi = ϕ−1

g (ASat
g−i) ⊂ AVor

g and

βperf
i = ψ−1

g (ASat
g−i) ⊂ Aperf

g .
We denote the Torelli map in genus g by τg : Mg → Ag its image, the Jacobian

locus, by Jg = τg(Mg) and closure of the image in Ag by Jg.
Throughout the paper, we work over the field C of complex numbers. All co-
homology groups we consider will have rational coefficients. Since the rational
cohomology of a Deligne–Mumford stack coincides with the rational cohomol-
ogy of its coarse moduli space, we will sometimes abuse notation and denote
stack and coarse moduli space with the same symbol.
In this paper, we make extensive use of mixed Hodge structures, focussing
mainly on their weight filtration. We will denote by Q(−k) the Hodge structure
of Tate of weight 2k. For two mixed Hodge structures A,B we will denote by
A⊕B their direct sum and by A+B any extension

0 → B → E → A→ 0.

Furthermore, we will denote Tate twists of mixed Hodge structures by A(−k) =
A⊗Q(−k).

2. Main theorems

Theorem 1. The cohomology of AVor
4 vanishes in odd degree and is algebraic

in all even degrees, with the only possible exception of degree 10. The Betti
numbers are given by

i 0 2 4 6 8 10 12 14 16 18 20
bi 1 3 5 11 17 10 + e(A4) 17 11 5 3 1

where e(A4) denotes the Euler number of A4.

The only missing information needed to compute all Betti numbers of AVor
4 is

the Euler number. As we shall see, we are able to compute the Euler numbers
of all strata β0

i for i ≥ 1, and thus, as already mentioned, it would suffice
to compute the Euler number of the space A4 itself (see the introduction for
comments on this).
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Theorem 2. The Betti numbers of Aperf
4 in degree ≤ 9 are given by

i 0 1 2 3 4 5 6 7 8 9
bi 1 0 2 0 3 0 8 0 14 0

Moreover, all cohomology classes of degree ≤ 9 are algebraic.

Corollary 3. The rational cohomology of A4 vanishes in degree 1, 11 and all
degrees ≥ 13. Furthermore one has H0(A4;Q) = Q(−10), H2(A4;Q) = Q(−9)
and H12(A4;Q) = Q(−6) + Q(−9). For the remaining Betti numbers a lower
bound is given in the table

i 0 1 2 3 4 5 6 7 8 9 10 11 12 ≥ 13
bi 1 0 1 ≥ 0 ≥ 1 ≥ 0 ≥ 2 ≥ 0 ≥ 1 ≥ 0 ≥ 1 0 2 0

Note that the vanishing of b1 also follows independently from simple connect-
edness of A4 [HR, Theorem 4.1] and that b2 = 1 corresponds to the fact that
the Picard group is generated by the Hodge line bundle (over Q).

Proof of Theorem 1. To compute the cohomology of AVor
4 , we study the

Gysin spectral sequence Ep,q
r ⇒ Hp+q(AVor

4 ;Q) associated with the filtration
{Ti}i=1,...,6 such that

• Ti = β5−i, i = 1, . . . , 4;
• T5 = J4 ∪ T4;
• T6 = AVor

4 .

The E1 term of this spectral sequence has the form Ep,q
1 = Hp+q

c (Tp \Tp−1;Q).
For p = 1, . . . , 4 the strata Tp \ Tp−1 coincide with the strata of AVor

4 of semi-
abelic varieties of torus rank 5 − p; their cohomology with compact support
is computed in the next sections by combining combinatorial information on
the toroidal compactification with the geometry of fibrations on moduli spaces
of abelian varieties (see Propositions 7, 8, 24 and Theorem 26). The stratum
T5 \ T4 is the closure inside A4 of the locus of jacobians. Its cohomology with
compact support is computed in Lemma 6.
The only remaining stratum is the open stratum T6 \ T5. Let J Sat

4 be the
closure of J4 in ASat

4 . Since this contains the entire boundary of ASat
4 it follows

that

T6 \ T5 = A4 \ J 4 = ASat
4 \ J Sat

4 .

The latter set is affine since it is the complement of an ample hypersurface on
ASat

4 (see [HaHu]). In particular, its cohomology with compact support can be
non-trivial only if the degree lies between 10 and 20.
From this it follows that the E1 term of the Gysin spectral sequence associated
with the filtration {Ti} is as given in Table 1. For the sake of simplicity, in that
table we have denoted H3

c (A2;V2,2) and H4
c (A2;V2,2) with the same symbol

H , even though a priori they are only isomorphic after passing to the associated
graded piece with respect to the weight filtration. (Furthermore, the results in
in [T4] imply H = 0.)
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13 Q(−7)⊕2 0 Q(−8) 0 Q(−9) ?
12 0 Q(−7) 0 Q(−8)⊕2 0 ?
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Table 2. Ep,q
∞ in the range p+ q ≤ 9.

q

8 0
7 Q(−4)⊕7 0
6 0 Q(−4)⊕4 0
5 Q(−3)⊕6 0 Q(−4)⊕3 0
4 0 Q(−3)⊕2 0 Q(−4)⊕2 0
3 Q(−2)⊕3 0 Q(−3)⊕2 0 Q(−4) 0
2 0 Q(−2) 0 Q(−3) 0 0
1 Q(−1)⊕2 0 Q(−2) 0 0 0
0 0 Q(−1) 0 0 0 0

−1 Q 0 0 0 0 0
1 2 3 4 5 6 p

Since the terms in the sixth column are only known for q ≤ 3, in the following
we will only deal with the terms of the spectral sequence that are independent
of them, that is, the Ep,q

r terms with p+ q ≤ 8.
Let us recall that AVor

4 is a smooth Deligne–Mumford stack which is globally
the quotient of a smooth proper variety by a finite group. From this it follows
that the cohomology groups of AVor

4 carry pure Hodge structures of weight
equal to the degree. Therefore, the Hodge structures on Ep,q

∞ have to be pure
of weight p+ q. This means that for all p, q, the graded pieces of Ep,q

1 of weight
different from p+q are killed by differentials. In particular, if we restrict to the
range p+q ≤ 9, this gives that the E∞ terms are as given in Table 2. Of course,
this does not describe precisely at which Er the spectral sequence degenerates,
or what exactly is the rank of the differentials. For instance, if one assumes
H = 0 (which in view of the results in [T4] is indeed the case), a natural thing

to expect is that the d1-differentials E
1,5
1 → E2,5

1 , E3,5
1 → E4,5

1 , E3,4
1 → E4,4

1

and E4,3
1 → E5,3

1 , as well as the d2-differential E
2,3
2 → E4,2

2 have rank 1, but
this is not the only possibility. The claim on the cohomology of AVor

4 in degree
≤ 9 follows from the E∞ term in Table 2. The claim on the cohomology in
degree ≥ 11 follows by Poincaré duality. Finally, the computation relating the
middle Betti number b10 to the Euler number e(A4) follows from the additivity
of the Betti numbers of the stratification {T•}. �

Remark 4. The fact that the mixed Hodge structures on the Ep,q
1 in Table 1

are compatible with obtaining Ep,q
∞ terms that carry pure Hodge stuctures

of the correct weight provide an important check on the correctness of our
computations.

Proof of Theorem 2. The proof is analogous to that of Theorem 1. Rather

than working with the filtration {Ti}, we will consider the stratification {T perf
i }

defined analogously by T perf
i = βperf

5−i for 1 ≤ i ≤ 4 and T perf
5 = J 4 ∪ T perf

4 ,
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T perf
6 = Aperf

4 . The closed stratum T1 is the the locus βperf
4 of torus rank 4

inside Aperf
4 . Hence E1,q

1 = Hq+1(βperf
4 ;Q) can be obtained from Theorem 25.

Since the exceptional divisor of the blow-up map q : AVor
4 → Aperf

4 is contained

in T1, we have (Aperf
4 \ q(T1)) ∼= (AVor

4 \ T1). In particular, the Gysin spectral

sequence associated with the stratification of Aperf
4 has Ep,q

1 terms that coincide
with those of Table 1 for p ≥ 2. Moreover, also the rank of all differentials
Ep,q

r → Ep+r,q−r+1
r coincide with those for the filtration {Ti} as long as no

E1,q
r -terms are involved. This already implies the claim for all degrees different

from 6. In degree 6, it is necessary to decide whether the class of Hodge weight
2 in E5,1

1 is killed by differentials of the spectral sequence or not. If we consider

the map AVor
4 ⊃ β4 → βperf

4 ⊂ Aperf
4 , we have that the weight 2 class on βperf

4

lies in the image of the weight 2 class in the cohomology of β4, which was killed
by differentials for purity reasons on AVor

4 . This implies that this must be the

case also on Aperf
4 . From this the claim follows. �

Proof of Corollary 3. The lower bounds in the claim are those given by the
dimension of the subring generated by λ1 and λ3. The vanishing of the coho-
mology of A4 in all degrees i ≥ 13 and in degree 11, as well as H12(A4;Q) =
Q(−6)+Q(−9) follow directly from the last two columns of Table 1 by Poincaré
duality. �

Remark 5. Comparing Table 1 with the cohomology of AVor
4 of degree ≥ 11

suggests that the cohomology of the open stratum A4 \ J 4 could vanish in all
positive degrees, with the exception of degree 10 on which Poincaré duality
yields no information.
The reason is the following. One can reinterpret the first 4 columns of Table 1
as the E1 terms of a Gysin spectral sequence converging to the cohomology of
the boundary ∂AVor

4 = AVor
4 \ A4. Then the remaining information from that

Table is equivalent to the study of the long exact sequence

(2.1) Hk
c (A4;Q) → Hk(AVor

4 ;Q) → Hk(∂AVor
4 ;Q) → Hk+1

c (A4;Q)

associated with the closed inclusion of the boundary in AVor
4 . One can compare

the information on the cohomology of the boundary coming from Table 1 with
the Betti numbers of AVor

4 in degree ≥ 11 from Theorem 1. Then one sees that
even in this range the results are compatible with the vanishing of the coho-
mology of A4 \J 4, or, equivalently, with the hypothesis that the cohomology of
A4 is the minimal possible, i.e. generated by λ1, λ3 and α ∈ H9,9(H12(A4;Q))
from Corollary 3. This would imply that the cohomology of A4 coincides with
the stable cohomology in degree ≤ 10, while a priori this is known only in
degree ≤ g − 2 = 2.
Furthermore, (2.1) gives strong restrictions on the possible existence of co-
homology classes on A4 that are not in the subring generated by the Hodge
classes. This follows from the purity of the cohomology of AVor

4 combined with
Table 1, which ensures that the cohomology of ∂AVor

4 is very close to be pure
itself. Practically, this forces non-trivial cohomology classes from A4 \ J 4 to
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appear in pairs of isomorphic Hodge structures, occurring as graded pieces of
Hk(A4 \ J 4;Q) and Hk+1(A4 \ J 4;Q).
One could also use Table 1 to prove the vanishing of Hk(A4 \ J 4;Q). Then
one needs to prove that all (algebraic) classes of weight 10 − k that occur in
Ep,q

1 with p+q = 10−k give rise to cohomology classes in H10−k
c (AVor

4 ;Q) that
are linearly independent. This is known for divisors (ensuring the vanishing
of Hk(A4 \ J 4;Q) for k = 1, 2). It would be interesting to investigate it for
classes of higher codimension.
Note that, if one knew that Hk(A4 \ J 4;Q) vanishes for all 1 ≤ k ≤ 9, then

this would yield the following result for the Betti numbers of Aperf
4 in degree

≥ 11:
i 12 14 16 18 20
bi 14 9 4 2 1

as well as the vanishing of all odd Betti numbers of Aperf
4 .

3. Torus rank 0

We start by considering T5 \ T4, which is the Zariski closure J 4 of the locus of
jacobians J4 = τ4(M4) inside A4.

Lemma 6. The only non-zero Betti numbers with compact support of J 4 are
as follows:

i 18 16 14 12 10 8
bi 1 1 2 1 1 2

In particular, all odd Betti numbers vanish.
Furthermore, all cohomology groups with compact support are generated by al-
gebraic classes, with the only exception of H8

c (J 4;Q), which is an extension of
Q(−4) by Q(−1).

Proof. We compute the cohomology with compact support of J 4 by recalling
that the Zariski closure of the locus of jacobians in A4 is the union of the
image of the Torelli map and the locus of abelian fourfolds that are products
of abelian varieties of dimension ≤ 3. This allows to cover J4 by the following
locally closed disjoint strata:

S1 = Sym4 A1, S2 = τ2(M2)× Sym2 A1, S3 = Sym2 τ(M2),
S4 = τ3(M3)×A1, S5 = τ4(M4).

Furthermore, the Torelli map in all genera induces an isomorphism in cohomol-
ogy with rational coefficients between Mg and its image τg(Mg). This allows
to compute the cohomology with compact support of all strata from previously
known results on the cohomology of Mg with g ≤ 4 ([Mu2],[Lo],[T1]). These
yield that the E1 term Ep,q

1 = Hp+q
c (Sp;Q) of the Gysin exact sequence of the

filtration associated with the stratification Sj is as in Table 3.

In view of Table 3, to calculate the cohomology with compact support of J4 it
is sufficient to know the rank of the differential

d : H12
c (J

red

4 ;Q) ∼= Q(−6)⊕2 −→ H13
c (J4;Q) ∼= Q(−6)
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Table 3. E1 term of the Gysin spectral sequence converging
to the cohomology with compact support of the closure of the
locus of jacobians in A4

q

13 0 0 0 0 Q(−9)
12 0 0 0 0 0
11 0 0 0 0 Q(−8)
10 0 0 0 Q(−7) 0
9 0 0 Q(−6) 0 Q(−7)
8 0 Q(−5) 0 Q(−6) Q(−6)
7 Q(−4) 0 0 0 0
6 0 0 0 0 0
5 0 0 0 0 0
4 0 0 0 Q(−1) 0

1 2 3 4 5 p

in the Gysin long exact sequence associated with the closed inclusion of the

locus J
red

4 = J 4 \ J4 = S3 ∪ S4 ⊂ A4 of reducible abelian fourfolds in the
Zariski closure in A4 of the locus of jacobians J4 = τ4(M4).

We observe that H12
c (J

red

4 ;Q) is generated by two 6-dimensional algebraic cy-
cles C1 and C2, where C1 is the fundamental class of S3 and C2 the fundamental
class of τ(H3) × A1, where H3 is the hyperelliptic locus. Therefore, the sur-
jectivity of d is equivalent to the existence of a relation between C1 and C2

viewed as elements of the Chow group of J 4.
Let us denote by Mct

4 the moduli space of stable genus 4 curves of compact
type, i.e. such that that their generalized Jacobian is compact. Then the Torelli
map extends to a proper morphism

τct : Mct
4 −→ J 4.

From the geometric description of the map τct it follows that the image under
τct of the Chow group of dimension 6 cycles supported on the boundary Mct

4 \
M4 coincides with 〈C1, C2〉. Indeed, let D1 be the closure of the locus of stable
curves consisting of two genus 2 curves intersecting in a Weierstrass point and
let D2 be the closure of the locus of stable curves consisting of elliptic curves
intersecting a hyperelliptic genus 3 curve in a Weierstrass point. Then D1 and
D2 map to C1 and C2 respectively. It is known that the dimension 6 classes
in Mct

4 fulfill a relation, given by the restriction of the relation on M4 of [Y,
Prop. 2]. When pushed forward via τct, this relation gives a non-trivial relation
between C1 and C2. Thus the differential d has to be surjective and the claim
follows. �
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Table 4. E2 term of the Leray spectral sequence converging
to H•

c (β
0
1 ;Q).

q

6 0 Q(−6) +Q(−3) 0 Q(−7) 0 Q(−8) 0 Q(−9)
5 0 0 0 0 0 0 0 0

4 Q(−2) Q(−5) +Q(−2) 0 Q(−6)⊕(1+ǫ) Q(−6)⊕ǫ Q(−7) 0 Q(−8)
3 0 0 0 0 0 0 0 0

2 Q(−1) Q(−4) +Q(−1) 0 Q(−5)⊕(1+ǫ) Q(−5)⊕ǫ Q(−6) 0 Q(−7)
1 0 0 0 0 0 0 0 0
0 0 Q(−3) +Q 0 Q(−4) 0 Q(−5) 0 Q(−6)

5 6 7 8 9 10 11 12 p

ǫ = rankH9
c (A3;V1,1,0) ∈ {0, 1}.

4. Torus rank 1

Next, we deal with the locus β1
0 of semi-abelic varieties of torus rank 1.

Proposition 7. The rational cohomology with compact support of β0
1 is as

follows: the non-zero Betti numbers are

i 6 7 8 9 10 11 12 13 14 16 18
bi 2 1 3 1 4 + ǫ ǫ 5 + ǫ ǫ 3 2 1

where ǫ = rankH9
c (A3;V1,1,0). The cohomology groups of even degree 2k are

algebraic for k ≥ 7; for k ≤ 6 they are extensions of pure Hodge structures of
the form H2k

c (β0
2 ;Q) = Q(−k)⊕(b2k−1)+Q(k−3). The Hodge structures in odd

degree are given by H2k+1
c (β0

2 ;Q) = Q(2− k) for k = 7, 9 and H2k+1
c (β0

2 ;Q) =
Q(−k)⊕ǫ for k = 11, 13.

Proof. To compute the cohomology with compact support of β0
1 we will use the

map k3 : β
0
1 → A3 realizing β0

1 as the universal Kummer variety over A3. The
fibre of β0

1 over a point parametrizing an abelian surface S is K := S/± 1.
Note that the cohomology of K vanishes in odd degree because of the Kum-
mer involution. The cohomology of K is one-dimensional in degree 0 and 6
and induces trivial local systems on A3. The cohomology group H2(K;Q) ∼=
∧2

H1(S;Q) is 15-dimensional and induces the local system V1,1,0 ⊕Q(−1) on
A3. By Poincaré duality we have H4(K;Q) ∼= H2(K;Q) ⊗ Q(−1), inducing
the local system V1,1,0(−1)⊕ Q(−2) on A3.
The cohomology with compact support of A3 in the local system V1,1,0 is
calculated in Lemma 35. We refer to Theorem 31 for the cohomology with
compact support of A3 with constant coefficients, which was calculated by
Hain in [Ha]. These results allow to compute Ep,q

2 = Hp
c (A3;R

q
! k3∗(Q)) for the

Leray spectral sequence Ep,q
• ⇒ Hp+q

c (β0
1 ;Q) associated with k3 : β

0
1 → A3.

This E2 term is given in Table 4.
Note that all differentials of this Leray spectral sequence vanish for Hodge-
theoretic reasons, so that E2 = E∞. Specifically, all differentials must involve
one Ep,q

2 term with p+ q odd, but there are only two such terms, namely E5,2
2
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and E5,4
2 . It follows from Table 4 that for both these terms, any differential dk

with k ≥ 2 which involves one of them will map either to 0 or to a E2 term that
carries a pure Hodge structure of different weight. In both cases the differential
has to be 0. �

5. Torus rank 2

In this section we compute the cohomology with compact support of the stra-
tum β0

2 ofAVor
4 of rank 2 degenerations of abelian fourfolds. For this purpose we

recall first the known global construction of β2
0 as the quotient of a P1-bundle

of a fibre product of the universal family over A2.
Furthermore, let us recall that the restriction of the Voronoi fan in genus g to
Sym2

≥0(R
g′

) for genus g ≥ g′ coincides with the Voronoi fan in genus g′. This

implies that the geometric constructions of the fibrations β0
2 → A2 and β0

3 →
A1 we give in this section and in the following one, respectively, are actually
independent of the choice of g = 4 but extend to analogous descriptions of the
fibres of fibrations β0

2 → Ag−2 and β0
3 → Ag−3 that exist for β0

2 , β
0
3 ⊂ AVor

g

independently of g. In particular, the geometric construction of β0
2 explained

in this section coincides with the construction used in [HT, §4] to compute the
cohomology with compact support of the corresponding locus in AVor

3 .

Proposition 8. The rational cohomology with compact support of β0
2 is as

follows: the non-zero Betti numbers are

i 4 6 7 8 9 10 11 12 14 16
bi 1 2 1 + r 4 + r 1 + r 5 + r 1 5 3 1

where r = rankH3
c (A2;V2,2). If we assume r = 0, then all cohomology groups

of even degree are algebraic, with the exception of H8
c (β

0
2 ;Q) = Q(−4)⊕3 +

Q(−2) which is an extension of Hodge structures of Tate type. The Hodge
structure in odd degree 2k + 1 with k = 3, 4, 5 is pure of Tate type of weight
2k − 4.

Remark 9. It follows from [T4] that r = 0.

The proof of this Proposition will given in §5.4 after some preliminary steps.
In the previous section, we calculated the cohomology with compact support of
β0
1 using the map k3 : β

0
1 → A3 given by the universal Kummer variety. This

map extends to the stratum β0
2 of degenerations of abelian fourfolds of torus

rank 2, giving a map k3 : (β1 \ β3) → AVor
3 . Under this map, the elements of

AVor
4 with torus rank 2 are mapped to elements of AVor

3 of torus rank 1. If

we denote by β′
t
0
the stratum of AVor

3 of semi-abelian varieties of torus rank
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exactly t, we get a commutative diagram

AVor
4OO
� ?

AVor
3OO
� ?

AVor
2OO
� ?

β0
2

k3 // β′
1
0 k2 // A2

π−1
3 (β′

1
0
)

q3

OO

π3

<<
y

y
y

y
y

y
y

y
y

X2

q2

OO

π2

??
�

�
�

�
�

�
�

�
�

The map π3 is the restriction of the universal family over AVor
3 . In particular,

the fibres of π3 over points of β
′
1
0
are rank 1 degenerations of abelian threefolds,

i.e. compactified C∗-bundles over abelian surfaces. A geometric description of
these compactified C∗-bundles is given in [Mu1]. They are obtained by taking
the P1-bundle associated to the C∗-bundle and then gluing the 0- and the
∞-section with a shift, defined by a point of the underlying abelian surface
that is uniquely determined by the line bundle associated to the C∗-bundle.
In particular, this shift is 0 for the fibres of the π3 over the 0-section of the

Kummer fibration β′
1
0 ∼= (X2/± 1)

k2−→ A2, which are thus products of a nodal
curve and an abelian surface.
We want to describe the situation in more detail. For this, consider the uni-
versal Poincaré bundle P → X2 ×A2 X̂2, normalized so that the restriction to

the zero section X̂2 → X2 ×A2 X̂2 is trivial. Let U = P(P ⊕ OX2×A2 X̂2
) be

the associated P1-bundle. Using the principal polarization we can naturally
identify X̂2 and X2, which we will do from now on. We denote by ∆ the union
of the 0-section and the ∞-section of this bundle. Set U = U \∆, which is sim-
ply the C∗-bundle given by the universal Poincaré bundle P with the 0-section
removed and denote the bundle map by f : U → X2 ×A2 X2. Then there is
a map ρ : U → β0

2 with finite fibres. Note that the two components of ∆ are
identified under the map ρ. The restriction of ρ to both U and to ∆ is given
by a finite group action, although the group is not the same in the two cases
(see the discussion below).

5.1. Geometry of the C∗-bundle. We now consider the situation over a
fixed point [S] ∈ A2. For a fixed degree 0 line bundle L0 on S the preimage
f−1(S × {L0}) is a semi-abelian threefold, namely the C∗-bundle given by

the extension corresponding to L0 ∈ Ŝ. This semi-abelian threefold admits a
Kummer involution ι which acts as x 7→ −x on the base S and by t 7→ 1/t on
the fibre over the zero section. The Kummer involution ι is defined universally
on U .
Consider the two involutions i1, i2 on X2 ×A2 X2 defined by

i1(S, p, q) = (S,−p,−q) and i2(S, p, q) = (S, q, p)

for every abelian surface S and every p, q ∈ S. These two involutions lift to
involutions j1 and j2 on U that act trivially on the fibre of f : U → X2 ×A2 X2

over the zero section.
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The following lemma can also be proved directly from the toroidal construction
of AVor

4 using the approach of [S-B, Lemma 2.4].

Lemma 10. The diagram

(5.1) U
f

//

g

++

ρ|U
��

X2 ×A2 X2

ρ′

��

// A2

β0
2 \ ρ(∆) // Sym2

A2
(X2/± 1)

88qqqqqqqqqqq

where ρ′ : X2 ×A2 X2 → Sym2
A2

(X2/± 1) is the natural map, is commutative.

Moreover ρ|U : U → ρ(U) = β0
2 \ ρ(∆) is the quotient of U by the subgroup of

the automorphism group of U generated by ι, j1 and j2.

Proof. Since the map ρ′ in the diagram (5.1) has degree 8 and ι, j1, j2 generate
a subgroup of order 8 of the automorphism group of U , it suffices to show that
the map ρ|U factors through each of the involutions ι and j1, j2.
Recall that the elements of β0

2 correspond to rank 2 degenerations of abelian
fourfolds. More precisely, every point of ρ(U) corresponds to a degenerate
abelian fourfold X whose normalization is a P1 × P1-bundle, namely the com-
pactification of a product of two C∗-bundles on the abelian surface S given
by k1 ◦ k2([X ]). The degenerate abelian threefold itself is given by identify-
ing the 0-sections and the ∞-sections of the P1 × P1-bundle. This identifica-
tion is determined by a complex parameter, namely the point on a fibre of
f : U → X2 ×A2 X2.
Since a degree 0 line bundle L0 and its inverse define isomorphic semi-abelian
threefolds and since the role of the two line bundles is symmetric, the map ρ|U
factors through ι and j2. Since j1 is the commutator of ι and j2 the map ρ|U
also factors through j1. �

We will compute the cohomology with compact support of β0
2 by considering

the Leray spectral sequence associated with the fibration k2 ◦ k3 : β
0
2 → A2.

This requires to compute the cohomology with compact support of the fibre
(k2◦k3)

−1([S]) over a point [S] ∈ A2. To this end, we decompose (k2◦k3)
−1([S])

into an open part given by its intersection with ρ(U) and a closed part given
by its complement.

5.2. Cohomology of the open part of the fibre. The fibration g : U →
A2 obtained by composing the C∗-bundle f : U → X2 ×A2 X2 with the natural
map X2 ×A2 X2 → A2 plays an important role in the study of the restriction
of k2 ◦ k3 to ρ(U). Namely, the fibre of (k2 ◦ k3)|ρ(U) over [S] ∈ A2 coincides
with the quotient of the fibre of g under the automorphism group generated by
j1, j2 and ι. Therefore, the cohomology of the fibre of k2 ◦k3 restricted to ρ(U)
is the part of the cohomology of g−1([S]) that is invariant under j1, j2 and ι.
We start by computing the actions of i1, i2 and of the involution κ : (p, q) 7→
(−p, q) induced by the Kummer involution of semi-abelian threefolds of torus
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k Hk(S × S;Q)(i1,i2) κ-invariant κ-alternating
8 Q(−4) Q(−4) 0

6 (
∧2

Λ)(−2)⊕2 (
∧2

Λ)(−2) (
∧2

Λ)(−2)

4 Q(−2)⊕ Λ⊗2(−1)⊕ Sym2(
∧2

Λ) Q(−2)⊕ Sym2(
∧2

Λ) Λ⊗2(−1)

2
∧2

Λ⊕2
∧2

Λ
∧2

Λ
0 Q Q 0

Table 5. Cohomology of S × S/(i1, i2)

q

1 0 0
∧2 Λ(−1) 0 Λ⊗2(−2) 0 (

∧2 Λ)(−3) 0 0

0 Q 0 (
∧2 Λ) 0 Q(−2) ⊕ Sym2(

∧2 Λ) 0 (
∧2 Λ)(−2) 0 Q(−4)

0 1 2 3 4 5 6 7 8 p

Table 6. E2 term of the spectral sequence converging to
Hk(g−1([S]);Q)(i1,i2,ι)

rank 1 on the cohomology of S × S. Recall that the cohomology of S
is isomorphic to the exterior algebra generated by the 6-dimensional space
Λ := H1(S;Q) and that H•(S× S;Q) ∼= H•(S;Q)⊗2 by the Künneth formula.
Using this description, one can calculate the part of the cohomology of S × S
which is invariant under i1 and i2. In particular, since all cohomology in odd
degree is alternating under the involution i1, the only non-trivial invariant co-
homology groups are in even degree. We give the description of the invariant
cohomology groups in the second column of Table 5. One then proceeds to
investigate their structure with respect to κ. For instance one can use the iso-
morphism Hk(S × S;Q)(i1,i2,κ) ∼= Hk(S × S/(i1, i2, κ);Q), together with the
fact that the quotient of S×S by the subgroup generated by i1, i2 and κ is the
second symmetric product of S/±1. In this way one proves that the behaviour
of the cohomology with respect to κ is as given in the last two columns of
Table 5.

Lemma 11. The (i1, i2, ι)-invariant part of the Leray spectral sequence asso-
ciated with the C∗-bundle g−1([S]) → S × S gives rise to a spectral sequence
Ep,q

• ⇒ Hp+q((k2 ◦ k3|ρ(U))
−1([S]);Q) which behaves as follows:

- Ep,q
2 vanishes for q 6= 0, 1;

- Ep,0
2 is the part of Hk(S×S;Q) which is invariant under i1, i2 and κ;

- Ep,1
2 is the part of Hk(S × S;Q) which is invariant under i1, i2 and

alternating under κ, tensored with the Tate Hodge structure Q(−1).

Furthermore, the E∞ term of this spectral sequence, together with its structure
as Sp(4,Q)-representation, is as given in Table 7.
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q

1 0 0 0 0 V2,0(−2) 0 V1,1(−3) 0 0
0 Q 0 Q(−1)⊕ V1,1 0 Q(−2)⊕2 ⊕ V2,2 0 0 0 0

0 1 2 3 4 5 6 7 8 p

Table 7. E∞ term of the spectral sequence converging to
Hk(g−1([S]);Q)(i1,i2,ι)

Proof. Let us consider the C∗-bundle fS := f |g−1([S]) : g
−1([S]) → S × S. The

Leray spectral sequence in cohomology associated with fS converges to the
cohomology of g−1([S]) and has E2 term Ep,q

2
∼= Hp(S × S;Q) ⊗ Hq(C∗;Q).

However, we are only interested in the part of the cohomology of g−1([S]) which
is invariant under j1, j2 and ι. Since the actions of j1, j2 and ι respect the map
g−1([S]) → S × S, they act also on the terms of the Leray spectral sequence
associated with fS . In particular, the spectral sequence whose Er terms are the
(j1, j2, ι)-invariant part of the terms of the Leray spectral sequence associated

with fS converges to Hk(g−1([S]);Q)
j1,j2,ι

.
In particular, the E2 term of this spectral sequence is given by the (j1, j2, ι)-
invariant part of Hp(S × S;Q)⊗Hq(C∗;Q). We have already determined the
behaviour of the projection of these involutions to S × S in Table 5, so it
remains only to determine their action on the fibre C∗. Since j1 and j2 both
fix the fibre of f over the origin, they act trivially on the cohomology of C∗.
Instead, the Kummer involution ι acts as the identity on H0(C∗;Q) and as
the alternating representation on H1(C∗;Q). From this the first part of the
claim follows. For the convenience of the reader, we have written the E2 term
of the spectral sequence in Table 6. Notice that this spectral sequence has
only two non-trivial rows. Therefore, it could be written equivalently as a long
exact sequence. In particular, the only differentials one needs to study are the
d2-differentials.
These differentials are given by restriction of the differentials of the Leray spec-
tral sequence associated with the C∗-bundle fS . Recall that fS is the C∗-bundle
obtaining by subtracting the 0-section from the Poincaré bundle over S × S.
Therefore (see e.g. [Hu, XVI.7.5]) the d2-differentials are given by taking the
intersection product with the first Chern class of the Poincaré bundle, which
is known to be equal to [diag(S)] − [S × {0}] − [{0} × S], where [·] denotes
the fundamental class and diag : S → S × S is the diagonal map. An explicit
computation of the intersections of this class with the κ-alternating classes in

Hk(S × S;Q)
i1,i2

yields the description of E3 = E∞ given in Table 7. Here
we have used the fact that Sym2 Λ is the irreducible Sp(4,Q) -representation

V2,0, whereas
∧2

Λ decomposes into irreducible Sp(4,Q)-representations as

Q(−1) ⊕ V1,1 and Sym2(
∧2

Λ) decomposes as Q(−2)⊕2 ⊕ V1,1(−1) ⊕ V2,2.
In the notation, Tate twists are only relevant for the Hodge structure.

�
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5.3. Geometry of ρ(∆). The map ρ identifies the two components of ∆,
each of which is isomorphic to X2 ×A2 X2. In particular, the space ρ(∆) can
be realized as a finite quotient of X2 ×A2 X2. This can be read off from the
construction of the toroidal compactification, as in [S-B, Lemma 2.4]. See also
[HS1, Section I] for an outline of this construction. Also note that the stratum
∆ corresponds to the stratum in the partial compactification in the direction
of the 2-dimensional cusp associated with a maximal-dimensional cone in the
second Voronoi decomposition for g = 4. A detailed description can be found
in [HKW, Part I, Chapter 3].
Specifically, the stratum ρ(∆) corresponds to the GL(2,Z)-orbit of the cone
〈x21, x

2
2, (x1 − x2)

2〉. Hence, the map X2 ×A2 X2 → ρ(∆) is the quotient map
with respect to the stabilizer G of the cone 〈x21, x

2
2, (x1 − x2)

2〉 in Sym2(Z2).
This is generated by three involutions: the multiplication map by −1, the
involution interchanging x1 and x2 and the involution x1 7→ x1, x2 7→ x1 − x2.
These generators of G act on X2 ×A2 X2 by the following three involutions:
the involution i1 which acts by (x, y) 7→ (−x,−y) on each fibre S × S, the
involution i2 which interchanges the two factors of X2 ×A2 X2 and finally the
involution i3 which acts by (x, y) 7→ (x+ y,−y).
From this description, it follows that there is a fibration g′ : ρ(∆) → A2 whose
fibre over [S] ∈ A2 is isomorphic to the quotient of S × S by the subgroup of
Aut(S × S) generated by the three involutions i1, i2 and i3 introduced above.
If we write Λ := H1(S×{0};Q) and Λ′ := H1({0}×S;Q), then the cohomology
of S × S is the exterior algebra of H1(S × S;Q) = Λ ⊕ Λ′. If we denote by
f1, . . . , f4, resp. f5, . . . , f8 the generators of Λ, resp. Λ′, the three involutions
act of H1(S × S;Q) as follows:

(5.2) fi 7→ −fi, i = 1, . . . , 8,

(5.3) fi ↔ fi+4, i = 1, . . . , 4,

(5.4) fi 7→ fi, fi+4 7→ fi − fi+4, i = 1, . . . , 4.

Then one proceeds to determine the invariant part of the exterior algebra of Λ⊕
Λ′ under these involution. Moreover, to determine the local systems Rq

! g
′
∗(Q)

that appear in the Leray spectral sequence associated with g′ : ρ(∆) → A2, one
needs to investigate the structure of the invariant subspaces as representations
of Sp(4,Q). An explicit calculation of the invariant classes yields the results
which we summarize in the following lemma.
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Lemma 12. The rational cohomology groups the fibre of g′ : ρ(∆) → A2 over
a point [S] ∈ A2, with their mixed Hodge structures and structure as Sp(4,Q)-
representations, are given by

Hk(g′
−1

([S]);Q) =































Q k = 0,
∧2

V1,0 = Q(−1)⊕ V1,1 k = 2,
Q(−2)⊕2 ⊕ V1,1(−1)⊕ V2,2 k = 4,

(
∧2

V1,0)(−2) = Q(−3)⊕ V1,1(−2) k = 6,
Q(−4) k = 8,
0 otherwise.

5.4. Proof of Proposition 8. We will prove Proposition 8 by investigating
the Leray spectral sequence associated with the fibration k2 ◦ k3 : β

0
2 → A2.

As explained at the beginning of this section, the fibre of k2 ◦ k3 over a point
[S] ∈ A2 is the disjoint union of an open part, which is (k2 ◦ k3|ρ(U))

−1([S]),
and a closed part, which is the fibre of g′ : ρ(∆) → A2. The cohomology of the
fibre of k2 ◦ k3|ρ(U) was determined in Lemma 11, whereas the cohomology of

the fibre of g′ was computed in Lemma 12. Notice that (k2 ◦ k3|ρ(U))
−1([S]) =

g−1([S])/(j1, j2, ι) is the finite quotient of a smooth quasi-projective variety,
so that we can use Poincaré duality to obtain its cohomology with compact
support from its cohomology. Furthermore, since g′−1([S]) = S2/(i1, i2, i3) is
compact, its cohomology with compact support coincides with its cohomology.
To compute the cohomology with compact support of the fibre of k2◦k3 one can
use the Gysin long exact sequence associated with the inclusion g′−1([S]) →֒
(k2 ◦ k3)

−1([S]):

(5.5) · · · → Hk
c (g

−1([S]);Q)
(j1,j2,ι)

→ Hk
c ((k2 ◦ k3)

−1([S]);Q) →

Hk
c (S × S;Q)

(i1,i2,i3) δk−→ Hk+1
c (g−1([S]);Q)

(j1,j2,ι)
→ · · ·

Notice that all differentials δk in (5.5) have to respect the structure of the
cohomology groups as representations of Sp(4,Q). In this specific case, this
implies that all δk with k 6= 2 vanish, whereas

δ2 : Q(−1)⊕ V1,1 −→ V1,1

is surjective by Lemma 13 below.
The above determines the cohomology with compact support of the fibre of
k2 ◦ k3. In particular, it also determines the local systems Rq

! (k2 ◦ k3)∗(Q)
occurring in the Leray spectral sequence in cohomology with compact support
associated with the fibration k2 ◦ k3. These local systems are given in the first
column of Table 8.
Recall that the E2 term of the Leray spectral sequence Ep,q

r ⇒ Hp+q
c (β0

2 ;Q)
associated with k2 ◦ k3 are of the form Ep,q

2 = Hp
c (A2;R

q
! (k2 ◦ k3)∗(Q)). From

the decomposition into symplectic local systems of the Rq
! (k2 ◦ k3)∗(Q), one

gets the E2 term of the Leray spectral sequence as in Table 8. Here we used
the description of the cohomology with compact support of A2 with coefficients
in the local systems V1,1, V2,0 and V2,2 from Lemma 34 and 36.
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Rq

! (k2 ◦ k3)∗(Q) q

Q(−5) 10 0 Q(−7) 0 Q(−8)
0 9 0 0 0 0

Q(−4)⊕2
⊕V1,1(−3) 8 Q(−3) Q(−6)⊕2 0 Q(−7)⊕2

0 7 0 0 0 0
Q(−3)⊕3

⊕V1,1(−2) 6 Q(−2)⊕H(−1) Q(−5)⊕3 ⊕H(−1) 0 Q(−6)⊕3

⊕V2,2(−1)

V2,0(−1) 5 Q(−2) 0 0 0
Q(−2)⊕2

⊕V1,1(−1) 4 Q(−1)⊕H Q(−4)⊕2 ⊕H 0 Q(−5)⊕2

⊕V2,2

0 3 0 0 0 0
Q(−1) 2 0 Q(−3) 0 Q(−4)

0 1 0 0 0 0
Q 0 0 Q(−2) 0 Q(−3)

3 4 5 6 p

Table 8. E2 term of the Leray spectral sequence converging
to the cohomology with compact support of β0

2 . We denote
H = H3

c (A2;V2,2) ∼= H4
c (A2;V2,2) (up to grading).

To prove the claim, it remains to show that the Leray spectral sequence de-
generates at E2. From the shape of the spectral sequence, it follows that all d2
differentials, and all differentials dr with r ≥ 4 are necessarily trivial. The only
differentials one needs to investigate are the d3-differentials E

3
3,q → E3

6,q−2.
These are necessarily 0 by Hodge-theoretic reasons, because morphisms of
Hodge structures between pure Hodge structures of different weights are nec-
essarily trivial. From this the claim follows. �

Lemma 13. The differential

δ2 : H2
c (S × S;Q)

(i1,i2,i3)
→ H3

c (g
−1([S]);Q)

(j1,j2,ι)

is surjective.

Proof. We shall prove the claim by an explicit computation on the generators
of the groups involved. Since in the proofs of Lemma 11 and Lemma 12 we
described the cohomology of the fibres of E rather than those of the cohomology
with compact support, to compute the rank of δ2 we shall compute the rank of
the map induced by δ2 on cohomology by Poincaré duality

δ∗2 : H6(S × S;Q)
(i1,i2,i3)

⊗Q(−1) −→ H7(g−1([S]);Q)
(j1,j2,ι)

,

which can be described explicitly as the composition of the map

H6(S × S;Q)
(i1,i2,i3) −→ H7(g−1([S]);Q)

α 7−→ Q⊗ α,
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whereQ denotes the image of the generator ofH1(C∗;Q) inside the cohomology
of g−1([S]), and the symmetrization with respect to the group G generated by
j1, j2 and ι.
A direct computation yields that the classes

vi,j,k,l = fi ∧ fj ∧ fi+4 ∧ fj+4 ∧ (2fk ∧ fl +2fk+4 ∧ fl+4 + fk ∧ fl+4 + fk+4 ∧ fl)

with {i, j, k, l} = {1, 2, 3, 4} form a basis of H6(S × S;Q)
(i1,i2,i3). Here

f1, . . . , f8 denote the basis of f1, . . . , f8 described in Section 5.3. Then we
have

δ∗2(vi,j,k,l) = Q ⊗ fi ∧ fj ∧ fi+4 ∧ fj+4 ∧ (fk ∧ fl+4 + fk+4 ∧ fl)

and these classes generate H7(g−1([S]);Q). From this the claim follows. �

6. Torus rank 3

In this section we compute the cohomology with compact support of the stra-
tum with torus rank 3. As in the previous section, our strategy is based on a
detailed geometric analysis of the fibration β0

3 → A1 whose toric part is actually
independent of the choice of g = 4.

6.1. Description of the geometry. We first note that the spaces AIgu
4

and AVor
4 only differ over A0 and hence βperf

3 \ βperf
4 = βVor

3 \ βVor
4 =: β0

3 . In
this section we want to compute H•

c (β
3
0 ;Q). For this we first give a geometric

description.
In order to compactify A4 we start with the lattice Z4. The choice of a toroidal
compactification corresponds to the choice of an admissible fan Σ4 in the cone
of semi-positive forms in Sym2(Z4). One possible choice for such a fan is given

by the perfect cone decomposition Σperf
4 . A cusp of A4 corresponds to the

choice of an isotropic subspace U ⊂ Q4. In our case, for the stratum over
A1 we take U = 〈e1, e2, e3〉 where the ei (1 ≤ i ≤ 4) are the standard basis
of Z4. This defines an embedding Sym2(Z3) ⊂ Sym2(Z4) and, by restriction

of Σperf
4 , also a fan in Sym2(Z3) which is nothing but Σperf

3 . The stratum β0
3

itself consists of different strata which are in 1 : 1-correspondence with the

GL(3,Z)-orbits of the cones σ in Σperf
3 whose interior contains rank 3 matrices.

Up to the action of GL(3,Z) there is a unique minimal cone with this property,
namely the cone σ(3) = 〈x21, x

2
2, x

2
3〉. Beyond that there are (again up to group

action) 4 further cones. In dimension 4 there are two cones, namely σ
(4)
I =

〈x21, x
2
2, x

2
3, (x2−x3)

2〉 and σ
(4)
II = 〈x21, x

2
2, (x2−x3)

2, (x1−x3)
2〉. In dimensions

5 and 6 there are one cone each, namely σ(5) = 〈x21, x
2
2, x

2
3, (x2−x3)

2, (x1−x3)
2〉

and σ(6) = 〈x21, x
2
2, x

2
3, (x2 − x3)

2, (x1 − x3)
2, (x1 − x2)

2〉. Note that all cones
are contained in σ(6). In fact the perfect cone decomposition in genus 3 (where
it coincides with the second Voronoi decomposition) is obtained by taking the
GL(3,Z)-orbit of σ(6) and all its faces.
To describe the various strata let X1 → A1 be the universal elliptic curve and
let X1 ×A1 X1 ×A1 X1 → A1 be the triple product with itself over A1. Let
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T = Sym2(Z3) ⊗ C∗ be the 6-dimensional torus associated with Sym2(Z3).

Every cone σ in Σperf
3 is basic (i.e. the generators of the rays are part of a

Z-basis of Sym2(Z3)) and defines a subtorus T σ ⊂ T of rank dim(σ). We can
now give a description of β0

3 .

Proposition 14. The variety β0
3 admits a stratification into strata as follows:

(i) there are 6 strata of β0
3 , corresponding to the cones σ(3), σ

(4)
I , σ

(4)
II , σ

(5)

and σ(6).
(ii) Each stratum is the finite quotient of a torus bundle over X1×A1X1×A1

X1 → A1 with fibre T/T σ.

Proof. See [S-B, Lemma 2.4]. �

We shall now compute the cohomology with compact support for each of these
strata and then use a spectral sequence argument to compute the cohomology
with compact support of β0

3 . We denote the substratum of β0
3 associated with

a cone σ by β0
3(σ) and the total space of the torus bundle by T (σ).

Before we state the results we have to give a brief outline of the construction
of the stratum β0

3(σ) with a view towards describing suitable coordinates in
which our calculations can be done. Consider a point in Siegel space of genus
4:

τ =









τ1,1 τ1,2 τ1,3 τ1,4
τ1,2 τ2,2 τ2,3 τ2,4
τ1,3 τ2,3 τ3,3 τ3,4
τ1,4 τ2,4 τ3,4 τ4,4









∈ H4.

Going to the cusp over A1 means sending the top left hand 3 × 3 block of
this matrix to i∞. We shall make this more precise. We consider the basis of
Sym2(Z3) given by U∗

i,j = (2 − δi,j)xixj . Let ti,j (1 ≤ i, j ≤ 3) be the dual
basis. Setting

ti,j = e2π
√
−1τi,j (1 ≤ i, j ≤ 3)

defines a map

(6.1) H4 → T × C3 ×H1

τ 7→ ((ti,j), τ1,4, τ2,4, τ3,4, τ4,4).

This corresponds to taking the partial quotient X(U) = P ′(U)\H4 with respect
to the center P ′(U) of the unipotent radical of the parabolic subgroup P (U)
associated with the cusp U . We denote P ′′(U) = P (U)/P ′(U). The partial
quotientX(U) can be considered as an open set of the trivial torus bundle X (U)

(with fibre T ) over C3 × H1. Using the fan Σperf
3 one constructs XΣperf

3
(U) by

taking a fibrewise toric embedding. Let XΣperf
3

(U) be the interior of the closure

of X(U) in XΣperf
3

(U). The action of the group P ′′(U) on X(U) extends to

an action on XΣperf
3

(U) and one obtains the partial compactification in the

direction of the cusp U by YΣperf
3

(U) = P ′′(U)\XΣperf
3

(U).
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Every cone σ ∈ Σperf
3 defines an affine toric variety Xσ. Since all cones σ are

basic one has Xσ = Ck × (C∗)6−k where k is the number of generators of σ.
Every inclusion σ ⊂ σ′ induces an inclusionXσ ⊂ Xσ′ . Note thatX(0) = T and,

in particular we obtain an inclusion X(0) = T ⊂ Xσ(6)
∼= C6. Let T1, . . . , T6 be

the coordinates on Xσ(6)
∼= C6 corresponding to the generators of σ(6) which

form a basis of Sym2(Z3). Computing the dual basis of this basis one finds
that this inclusion is given by

(6.2)
T1 = t1,1t1,3t1,2, T2 = t2,2t2,3t1,2, T3 = t3,3t1,3t2,3,
T4 = t−1

2,3, T5 = t−1
1,3, T6 = t−1

1,2.

The relation to the strata β0
3(σ) is then the following. The coordinate τ4,4

defines a point in A1 and the coordinates τ1,4, τ2,4, τ3,4 define a point in the
fibre of X1 ×A1 X1 ×A1 X1 → A1 over [τ4,4] ∈ A1 which is Eτ4,4 ×Eτ4,4 ×Eτ4,4 ,
where Eτ4,4 = C/(Z+ Zτ4,4) is the elliptic curve defined by τ4,4. The fibres of

β0
3(σ) → X1 ×A1 X1 ×A1 X1 are isomorphic to the torus T/T σ.

Finally, we have to make some comments on the structure of the parabolic
subgroup P (U). This group is generated by four types of matrices. The first
type are block matrices of the form

g1 =









1 0 S 0
0 1 0 0
0 0 1 0
0 0 0 1









, where S = tS ∈ Sym2(Z3).

These matrices generate the center P ′(U) of the unipotent radical and act by








τ1,1 τ1,2 τ1,3 τ1,4
τ1,2 τ2,2 τ2,3 τ2,4
τ1,3 τ2,3 τ3,3 τ3,4
τ1,4 τ2,4 τ3,4 τ4,4









→









τ1,1 + s1,1 τ1,2 + s1,2 τ1,3 + s1,3 τ1,4
τ1,2 + s1,2 τ2,2 + s2,2 τ2,3 + s2,3 τ2,4
τ1,3 + s1,3 τ2,3 + s2,3 τ3,3 + s3,3 τ3,4

τ1,4 τ2,4 τ3,4 τ4,4









giving rise to the partial quotient H4 → T × C3 ×H1 described above.
The second set of generators is of the form

g2 =









1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d









,where

(

a b
c d

)

∈ SL(2,Z),

resp.

g3 =









1 M 0 N
0 1 tN 0
0 0 1 0
0 0 −tM 1









, where M,N ∈ Z3.

Note that the elements of type g2, g3 generate a Jacobi group, which, in par-
ticular, acts on the base C3 ×H1 of the partial quotient by P ′(U) given by the
map H4 → C3 ×H1 giving rise to the triple product X1 ×A1 X1 ×A1 X1.
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Finally we have matrices of the form

g4 =









tQ−1 0 0 0
0 1 0 0
0 0 Q 0
0 0 0 1









, where Q ∈ GL(3,Z).

These matrices are of particular importance to us as they operate on the space
Sym2(Z3) by

GL(3,Z) ∋ g : M 7→ tQ−1MQ−1.

6.2. The cohomology of β0
3(σ

(3)). In this section we will prove

Lemma 15. The rational cohomology groups with compact support of β0
3(σ

(3))
are given by

Hk
c (β

0
3(σ

(3));Q) =







Q(−k/2) k = 12, 14
Q((5− k)/2) k = 9, 7
0 otherwise.

We start by giving an explicit description of the torus bundle T (σ(3)) defined
by the cone σ(3).

Lemma 16. Let qσ(3) : T (σ(3)) → X1×A1 X1×A1 X1 be the rank 3 torus bundle
associated with σ(3). Then over each fibre E ×E ×E of X1 ×A1 X1 ×A1 X1 we
have

T (σ(3))|E×E×E
∼= p∗2,3(P

0)⊕ p∗1,3(P
0)⊕ p∗1,2(P

0)

where P0 is the Poincaré bundle over the product E × E with the 0-section
removed, and pi,j : E × E × E → E × E is the projection to the ith and jth
factor.

Proof. We first recall the following description of the Poincaré bundle over
E × E where E = C/(Z + Zτ). Consider the action of the group Z4 on the
trivial rank-1 bundle on C× C given by

(6.3) (n1, n2,m1,m2) : (z1, z2, w) 7→

(z1 + n1 +m1τ, z2 + n2 +m2τ, we
−2πi(m1z2+m2z1+m1m2τ))

(where the zi are the coordinates on the base and w is the fibre coordinate).
We claim that the quotient line bundle on E × E is the Poincaré bundle. For
this it is enough to see that this line bundle is trivial on E × {0} and {0} × E
(which is obvious) and that it is isomorphic to OE(O − P ) on E × {P}. The
latter can be checked by comparing the transformation behaviour of (6.3) to
the transformation behaviour of the theta function ϑ(z, τ) in one variable (see
e.g. [La, 15.1.3.]).
We have to compare this to our situation. In this case we have an action of
the group generated by the matrices g3 with M,N ∈ Z3. For N = (n1, n2, n3)
we have τi,4 7→ τi,4 + ni and for M = (m1,m2,m3) we have τi,j 7→ τi,j +
mjτi,4 + miτj,4 + mimjτ4,4 for 1 ≤ i, j ≤ 3 and τi,4 7→ τi,4 + miτ4,4. Recall
that the entries τi,4 for i = 1, 2, 3 are coordinates on the factors of E × E × E
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and that it follows from (6.2) that we can choose t−1
i,j with ti,j = e2πiτi,j for

(i, j) = (1, 2), (1, 3), (2, 3) as coordinates on the torus T (σ(3)). Comparing this
to the transformation (6.3) gives the claim. �

Proof of Lemma 15. Recall that the stratum β0
3(σ

(3)) is a finite quotient of the
rank 3 torus bundle qσ(3) : T (σ(3)) → X1 ×A1 X1 ×A1 X1. This enables us to
calculate its rational cohomology by exploiting Leray spectral sequences.
Notice that the base of qσ(3) is the total space of the fibration p : X1×A1X1×A1

X1 → A1. Over a point [E] ∈ A1, the fibre of p is p−1([E]) ∼= E × E × E and
the fibre of p ◦ qσ(3) over [E] is the total space of the rank 3 torus bundle
qσ(3) |E×E×E : T (σ(3))|E×E×E → E × E × E described in Lemma 16. The
cohomology of (p◦qσ(3))−1([E]) can be computed by the Leray spectral sequence
associated with this rank 3 torus bundle:

(6.4) Ep,q
2 (qσ(3)) = Hq(T/T (σ(3));Q)⊗Hp(E × E × E;Q)

=⇒ Hp+q((p ◦ qσ(3))−1([E]);Q).

Note that the cohomology of E × E × E (respectively, the torus T/T (σ(3))) is

an exterior algebra generated by H1(E × E × E;Q) (resp. H1(T/T (σ(3));Q)).

We denote by Q1, Q2 and Q3, respectively, the generators of H
1(T/T σ(3)

;Q) ∼=
H1((C∗)3;Q) ∼= Q3 defined by integrating along the loop around 0 defined,
respectively, by |t−1

2,3| = 1, |t−1
1,3| = 1 or |t−1

1,2| = 1.

We can write each copy of E as a quotient E = C/(Ze2i−1 + Ze2i); i = 1, 2, 3.
Then e1, . . . , e6 give rise to a basis of the first homology group of E × E × E.
We will denote by f1, . . . , f6 the elements of the basis of H1(E×E×E;Q) dual
to e1, . . . , e6. Notice that the transformation behaviour of the f2i−1 and of the
f2i for 1 ≤ i ≤ 3 agrees with the transformation behaviour of the coordinates
{τi,4| 1 ≤ i ≤ 3} of C3 ∼= (Ze1 + Ze2 + · · · + Ze6) ⊗Z C (and that of the
differentials dτi,4 which give rise to classes in cohomology).

As we are interested in the quotient of T (σ(3)) by the finite group G(σ(3)), we
shall compute the invariant cohomology with respect to this group. This is
done in Lemma 17 for the invariant cohomology of the fibre T (σ(3))|E×E×E =
(p ◦ qσ(3) )−1([E]) using a Leray spectral sequence argument. It remains to
determine the local systems Ri

! (p ◦ qσ(3))∗(Q) over A1 defined by the fibration

p ◦ qσ(3) : β0
3(σ

(3)) = T (σ(3)) → A1. This is quite straightforward, since the
cohomology with compact support of the fibre is constant in degrees 12 and
10, and since Sym2H1(E;Q) induces the symplectic local system V2 on A1.
Recall that the cohomology with compact support of A1 with constant coef-
ficients is concentrated in degree 2, and that the only non-trivial cohomology
group of A1 with coefficients in V2 is H

1
c (A1;V2) = Q (see e.g. [G1, Thm. 5.3]).

In particular, it then follows from Lemma 17 that the Leray spectral sequence
associated with p ◦ qσ(3) has only two columns containing non-trivial E2 terms,
so it has to degenerate at E2. From this the claim follows. �
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Lemma 17. For every [E] ∈ A1, the rational cohomology with compact support
of the fibre of β0

3(σ
(3)) → A1, with its Hodge structures, coincides with the

G(σ(3))-invariant part of the cohomology with compact support of the rank 3
torus bundle T (σ(3))|E×E×E and is given by

(

Hk
c (T (σ(3))|E×E×E ;Q)

)G(σ(3))

=























Q(−6) k = 12,
Q(−5) k = 10,

Sym2(H1(E;Q))⊗Q(−2) k = 8,
Sym2(H1(E;Q))⊗Q(−1) k = 6,
0 otherwise.

Proof. The stabilizer G(σ(3)) of σ(3) in GL(3,Z) is an extension of the sym-
metric group S3 (permuting the coordinates x1, x2, x3) by (Z/2Z)3 (acting by
involutions (x1, x2, x3, x4) 7→ (±x1,±x2,±x3, x4)).
The interchange of two coordinates (say, xi and xj) acts on H

1(E ×E ×E;Q)
by interchanging f2i−1 with f2j−1, f2i with f2j and leaving all other generators

invariant. The action on H1(T/T (σ(3));Q) interchanges Qi and Qj and leaves
the third generator invariant.
The automorphism mapping xi to −xi acts on H

1(E × E × E;Q) as multipli-

cation by −1 on the generators f2i−1, f2i and on H1(T/T (σ(3));Q) as multipli-
cation by −1 on Qk with k 6= i. All other generators are invariant.
We can compute the G(σ(3))-invariant part of the rational cohomology
of the rank 3 torus bundle T (σ(3))|E×E×E by restricting to the G(σ(3))-
invariant part of the Leray spectral sequence (6.4) associated with qσ(3) . This
yields a spectral sequence Ep,q

2 converging to the G(σ(3))-invariant part of

Hp+q(T (σ(3))|E×E×E ;Q).
A computation of the part of the tensor product

∧•H1(E × E × E;Q) ⊗
∧•

H1(T/T (σ(3));Q) which is invariant under G(σ(3)) yields that Ep,q
2 is non-

zero only for (p, q) ∈ {(2, 0), (2, 1), (4, 0), ((2, 2), (4, 1), (6, 0)}. A precise de-
scription of the generators of the non-trivial E2 terms is given in Table 9.
Note that the spaces for p = q = 2 and p = 4, q = 2 are both isomorphic to
Sym2H1(E;Q) as Sp(2,Q)-representations.
Next, one investigates the differentials of the spectral sequence. As differentials
have to occur between Ep,q

2 terms such that the two p+ q have different parity,
an inspection of the spectral sequence quickly reveals that all differentials have
to be trivial, with the possible exception of

(6.5) d2,12 : E2,1
2 → E4,0

2

and

(6.6) d4,12 : E4,1
2 → E6,0

2 .

We can determine their rank by exploiting the description of the restriction to
E × E × E of the torus bundle T (σ(3)) given in Lemma 16 as a direct sum of
pull-backs of the Poincaré bundle with the 0-section removed. This description
implies that one can employ the usual description of d2 differentials of C∗-
bundles to investigate d2,12 and d4,12 . In particular, each of these differentials is
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p q dim. generators

0 0 1 1

2 0 1
∑

i f2i−1 ∧ f2i

2 1 1
∑

i<j,k 6=i,j

Qk ⊗ (f2i−1 ∧ f2j − f2i ∧ f2j−1)

2 2 3
∑

i<j,k 6=i,j

Qi ∧Qj ⊗W
(m)
k , m = 1, 2, 3

4 0 1
∑

i<j f2i−1 ∧ f2i ∧ f2j−1 ∧ f2j

4 1 1
∑

i<j,k 6=i,j

Qk ⊗ (f2i−1 ∧ f2j − f2i ∧ f2j−1) ∧ f2k−1 ∧ f2k

4 2 3
∑

i<j,k 6=i,j

Qi ∧Qj ⊗W
(m)
k ∧ f2k−1 ∧ f2k, m = 1, 2, 3

6 0 1 f1 ∧ f2 ∧ f3 ∧ f4 ∧ f5 ∧ f6.

All indices i, j, k are between 1 and 3. For indices i < j we set W
(1)
k =

f2i−1 ∧f2j +f2i∧f2j−1, W
(2)
k = f2i−1 ∧f2j−1 and W

(3)
k = f2i∧f2j for k 6= i, j.

Table 9. Description of the generators of the E2 terms of the
G(σ(3))-invariant part of the spectral sequence associated with
qσ(3) .

given by formally replacing each generator Qk of H1(T/T σ(3)

;Q) by the first
Chern class of the bundle p∗i,j(P), where 1 ≤ i < j ≤ 3 are chosen such that

{i, j, k} = {1, 2, 3}. Recall that on the product E × E the Poincaré bundle
P ∼= OE×E(E × {0}+ {0} × E −∆), where ∆ is the diagonal. From this one
concludes that c1(P) = f1∧f2+f3∧f4−(f1+f3)∧(f2+f4) = f2∧f3−f1∧f4.
It is then a straightforward calculation to prove that both differentials are
isomorphisms.
It remains to pass from cohomology to cohomology with compact support,
which we can do by Poincaré duality, using the fact that T (σ(3))|E×E×E is
smooth of complex dimension 6. Finally, we can identify the G(σ(3))-invariant
part of the cohomology with compact support of T (σ(3))|E×E×E with the coho-
mology with compact support of its finite quotient

(

T (σ(3))|E×E×E

)

/G(σ(3)),

which coincides with the fibre of β0
3(σ

(3)) → A1 over [E]. �

6.3. The cohomology of β0
3(σ

(4)
I ). In this section we will prove
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Lemma 18. The rational cohomology groups with compact support of β0
3(σ

(4)
I )

are given by

Hk
c (β

0
3(σ

(4)
I );Q) =























Q(−6) k = 12
Q(−5)⊕2 k = 10
Q(−4) +Q(−2) k = 8
Q k = 5
0 otherwise.

Proof. We shall make again use of the twofold fibre structure of this stra-

tum. The stratum β0
3(σ

(4)
I ) is a finite quotient of a rank 2 torus bundle

q
σ
(4)
I

: T (σ
(4)
I ) → X1 ×A1 X1 ×A1 X1 with fibres isomorphic to T/T (σ

(4)
I

).

Note that the generators of σ
(4)
I correspond to the first four generators of

the cone σ(6). Comparing this to the embedding described in (6.2) we find

that we can choose t−1
1,3, t

−1
1,2 as coordinates on T/T (σ

(4)
I

). As before we denote
p : X1 ×A1 X1 ×A1 X1 → A1.

As we are interested in the quotient of T (σ
(4)
I ) by the finite group G(σ

(4)
I ), we

shall compute the invariant cohomology with respect to this group. Thus we

first have to describe the automorphism group G(σ
(4)
I ) of the cone σ

(4)
I , i.e.

all elements of the form g3 ∈ GL(3,Z) which fix this cone. We have already
discussed this in [HT, Section 3]. The result is that the automorphism group
is generated by the following four transformations:

(6.7) x1 7→ x1, x2 7→ x2 − x3, x3 7→ −x3

(6.8) x1 7→ −x1, x2, x3 7→ x2, x3

(6.9) x1 7→ x1, x2 ↔ x3.

(6.10) xi 7→ −xi; i = 1, 2, 3.

Note that these automorphisms act trivially on the base of the fibration X1×A1

X1 ×A1 X1 → A1.
Again we shall determine the invariant cohomology of the fibre (q

σ
(4)
I

◦p)−1([E])

using the Leray spectral sequence with terms Ep,q
2 = Hq(T/T (σ

(4)
I

),Q)⊗Hp(E×
E × E,Q). The result is given by:

Lemma 19. For every [E] ∈ A1, the rational cohomology with compact support

of the fibre of β0
3(σ

(4)
I ) → A1, with its Hodge structures, is given by

(

Hk
c (T (σ

(4)
I )|E×E×E ;Q)

)G(σ
(4)
I

)

=































Q(−5) k = 10,
Q(−4)⊕2 k = 8

Sym2(H1(E;Q))⊗Q(−2) k = 7,
Q(−3) k = 6

Sym2(H1(E;Q)) k = 4,
0 otherwise.
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Proof. We denote the generators of H1(T/T (σ
(4)
I

);Q) ∼= H1((C∗)2;Q) ∼= Q2

corresponding to t−1
1,3, t

−1
1,2 by Q2, Q3. The fi, i = 1, . . . , 6 are, as before, a basis

of the cohomology of the triple product E × E × E.
We must now compute the action on (co)homology of the automorphisms of

σ
(4)
I . As a non-trivial example we shall do this in detail in the case of the trans-

formation given in (6.7), the computations in the other cases are analogous.
The action of this transformation on Siegel space is given by:









1 0 0 0
0 1 0 0
0 −1 −1 0
0 0 0 1

















τ1,1 τ1,2 τ1,3 τ1,4
τ1,2 τ2,2 τ2,3 τ2,4
τ1,3 τ2,3 τ3,3 τ3,4
τ1,4 τ2,4 τ3,4 τ4,4

















1 0 0 0
0 1 −1 0
0 0 −1 0
0 0 0 1









=

=









τ1,1 τ1,2 −τ1,2 − τ1,3 τ1,4
τ1,2 τ2,2 −τ2,2 − τ2,3 τ2,4

−τ1,2 − τ1,3 −τ2,2 − τ2,3 τ2,2 + 2τ2,3 + τ3,3 −τ2,4 − τ3,4
τ1,4 τ2,4 −τ2,4 − τ3,4 τ4,4









.

From this we conclude that under this transformation:

(6.11) Q2 7→ −Q2 −Q3; Q3 7→ Q3;

fi 7→ fi, i = 1, . . . , 4 fi 7→ −fi−2 − fi; i = 5, 6,

Note that the latter coincides with the transformation behaviour of the differ-
entials dτi,4, i = 1, 2, 3, and the former with the transformation behaviour of
−τ1,3,−τ1,2.
An analogous computation for the other automorphisms gives the following
results:

(6.12) Q2, Q3 7→ −Q2,−Q3;

f1, f2 7→ −f1,−f2, fi 7→ fi, i = 3, . . . , 6.

(6.13) Q2, Q3 7→ Q3, Q2;

f1, f2 7→ f1, f2, f3 ↔ f5, f4 ↔ f6,

(6.14) Q2, Q3 7→ Q2, Q3;

fi 7→ −fi, i = 1, . . . , 6.

Now we must compute the invariant cohomology with respect to G(σ
(4)
I ). This

can either be done by a (lengthy) computation by hand or a standard computer
algebra system.
The Ep,0

2 terms of the spectral sequence can be computed as follows. The

invariant part E2,0
2 of the cohomology groupH0(T/T σ

(4)
I ;Q)⊗H2(E×E×E;Q)

is two-dimensional and generated by the tensors

I1 = f1 ∧ f2, I2 = 2(f3 ∧ f4 + f5 ∧ f6) + (f3 ∧ f6 + f5 ∧ f4).

The term E4,0
2 is also two-dimensional, with generators I1∧I2 and I2∧I2. The

terms E0,0
2

∼= H0(T/T σ
(4)
I ;Q)⊗H0(E×E×E;Q) and E6,0

2
∼= H0(T/T σ

(4)
I ;Q)⊗

H6(E ×E ×E;Q) are one-dimensional and generated by fundamental classes.

Documenta Mathematica 17 (2012) 195–244



224 Klaus Hulek and Orsola Tommasi

Table 10. E2 term of the spectral sequence converging to

the cohomology of β0
3(σ

(4)
I )

q

2 0 0 V2(−2) 0 V2(−3) 0 0
1 0 0 V2(−1)⊕Q(−2) 0 V2(−2)⊕Q(−3) 0 0
0 Q 0 Q(−1)⊕2 0 Q(−2)⊕2 0 Q(−3)

0 1 2 3 4 5 6 p

The term E2,1
2 , which is the invariant part ofH1(T/T σ

(4)
I ;Q)⊗H2(E×E×E;Q)

is 4-dimensional, with generators

gi,j = ((Q2 + 2Q3)⊗ fj+2 + (2Q2 +Q3)⊗ fj+4) ∧ fi, i, j = 1, 2.

In particular, it is isomorphic to H1(E;Q) ⊗ H1(E;Q) = Sym2(H1(E;Q)) ⊕
∧2H1(E;Q). The term E4,1

2 is also four-dimensional and generated by (gi,j ∧

I2). All other E
p,1
2 vanish.

Finally, the only non-trivial terms of the form Ep,2
2 are those with p = 2 and

p = 4. The subspace E2,2
2 ⊂ H2(T/T σ

(4)
I ;Q)⊗H2(E×E×E;Q) is isomorphic

to Sym2(H1(E;Q)) and is generated by the invariant tensors

Q2 ∧Q3 ⊗ f3 ∧ f5, Q2 ∧Q3 ⊗ (f3 ∧ f6 + f4 ∧ f5), Q2 ∧Q3 ⊗ f4 ∧ f6.

Finally, the subspace E4,2
2 is 4-dimensional and equal to E2,2

2 ∧ I1.
In terms of local systems this gives rise to the Table 10. We claim that that
the differentials dp,q2 : Ep,q

2 → Ep+2,q−1
2 for (p, q) = (2, 1), (2, 2) and (4, 1) are

of maximal rank. Indeed, by Schur’s lemma it is enough to prove that they
are non-zero. To check this it is enough to recall that the torus bundle is
isomorphic to p∗1,3(P

0) ⊕ p∗1,2(P
0). In particular, for every class α ∈ Ep,1

2 we

obtain dp,12 (α) by replacing Q2 with c1(p
∗
1,3(P)) = −(f1 ∧ f6 + f5 ∧ f2) and Q3

with c1(p
∗
1,3(P)) = −(f1 ∧ f4+ f3∧ f2) in the expression of α. Analogously, for

every class β ∈ E2,2
2 we get d2,22 (β) by replacing Q2∧Q3 with Q2⊗c1(p

∗
1,2(P))−

Q3⊗c1(p
∗
1,3(P)). Then the claim follows from a straightforward calculation. �

To complete the proof of Lemma 18 is now an easy consequence of the Leray

spectral sequence of the fibration p ◦ q
σ
(4)
I

: T (σ
(4)
I ) → A1. Looking at the

weights of the Hodge structures, we see immediately that all differentials must
vanish and thus the result follows. �

6.4. The cohomology of β0
3(σ

(4)
II ). Before we can describe the cohomology

of this stratum we must identify the toric bundle T (σ
(4)
II ).

Lemma 20. Let p1,2 : E × E × E → E × E be the projection onto the first
two factors and let q : E × E × E → E × E be the map given by q(x, y, z) =
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(x+ y + z, z). Then

T (σ
(4)
II )|E×E×E

∼= p∗1,2(P
0)⊕ q∗((P−1)0).

where P0 is the Poincaré bundle over the product E × E with the 0-section
removed.

Proof. Since the generators of the cone σ
(4)
II correspond to T1, T2, T4, T5 we can

take T6 = t−1
1,2 and T3 = t3,3t1,3t2,3 as coordinates on the torus T/T (σ

(4)
II

). In
Lemma 17 we had seen that the action of the group generated by the matrices
g3 with M,N ∈ Z3 is as follows. For N = (n1, n2, n3) we have τi,4 7→ τi,4 + ni

and for M = (m1,m2,m3) we have τi,j 7→ τi,j +mjτi,4 +miτj,4 +mimjτ4,4 for
1 ≤ i, j ≤ 3 and τi,4 7→ τi,4 +miτ4,4. In particular

τ1,2 7→ τ1,2 +m2τ1,4 +m1τ2,4 +m1m2τ4,4

whereas

(τ1,3 + τ2,3 + τ3,3) 7→ (τ1,3 + τ2,3 + τ3,3)+

m3(τ1,4 + τ2,4 + τ3,4) + (m1 +m2 +m3)τ3,4 +m3(m1 +m2 +m3)τ4,4.

A comparison with the transformation behaviour for the Poincaré bundle de-
scribed in Lemma 17 gives the claim. �

Lemma 21. The rational cohomology groups with compact support of β0
3(σ

(4)
II )

are given by

Hk
c (β

0
3(σ

(4)
II );Q) = Q(−k/2), k = 10, 12.

Proof. As in the previous case we first have to describe the automorphism

G(σ
(4)
II ) of the cone σ

(4)
II . This group is the symmetric group S4 permuting the

generators of the cone together with the map xi 7→ −xi. Hence we can work
with the following generators:

(6.15) xi 7→ −xi, i = 1, . . . , 6

(6.16) x1 ↔ x2, x3 7→ x1 + x2 − x3

(6.17) x1 7→ x1 − x3, x2 7→ −x2, x3 7→ −x3

(6.18) x1 7→ x3 − x2, x2 7→ −x2, x3 7→ x1 − x2.

We now have to compute the induced action of these automorphisms on the

cohomology groups H•(T/T (σ
(4)
II

);Q) ⊗ H•(E × E × E;Q). To this end, we

denote by Q3 (respectively, R) the generator ofH
1(T/T (σ

(4)
II

);Q) corresponding
to the parameter T6 = t−1

1,2 (respectively, to T3 = t1,3t2,3t3,3).

It is immediately clear that in the case of (6.15) the action is given by

(6.19) Q3, R 7→ Q3, R;

fi 7→ −fi, i = 1, . . . , 6.
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We note that this implies that there can be no non-trivial invariant cohomology
classes involving terms of odd degree in H•(E × E × E). Next we claim that
the action on cohomology of (6.16) is given by

(6.20) Q3 7→ Q3 −R, R 7→ −R

fi 7→ fi+2+fi+4, i = 1, 2; fi 7→ fi−2+fi+2, i = 3, 4; fi 7→ −fi, i = 5, 6.

To see this we compute








0 1 1 0
1 0 1 0
0 0 −1 0
0 0 0 1

















τ1,1 τ1,2 τ1,3 τ1,4
τ1,2 τ2,2 τ2,3 τ2,4
τ1,3 τ2,3 τ3,3 τ3,4
τ1,4 τ2,4 τ3,4 τ4,4

















0 1 0 0
1 0 0 0
1 1 −1 0
0 0 0 1









=

=









∗ τ1,2 + τ2,3 + τ1,3 + τ3,3 −τ2,3 − τ3,3 τ2,4 + τ3,4
∗ ∗ −τ1,3 − τ3,3 τ1,4 + τ3,4
∗ ∗ τ3,3 −τ3,4
∗ ∗ ∗ τ4,4









.

This immediately gives the claim for the fi. For Q3, R we observe that
the action induced on the homology is dual to the action on the subspace
〈−τ1,2, τ1,3 + τ2,3 + τ3,3. Since cohomology is dual to homology, the action on
Q3, R agrees with that on −τ1,2, τ1,3 + τ2,3 + τ3,3.
A similar calculation gives the following results in the remaining cases:

(6.21) Q3 7→ −Q3, R 7→ −Q3 +R;

fi 7→ fi, i = 1, 2; fi 7→ −fi, i = 3, 4; fi 7→ −fi−4 − fi, i = 5, 6.

(6.22) Q3 ↔ R;

fi 7→ fi+4, i = 1, 2; fi 7→ −fi−2−fi−fi+2, i = 3, 4; fi 7→ fi−4, i = 5, 6.

It is now straightforward to compute the invariants under G(σ
(4)
II ). In the

cohomology group H0(T/T (σ
(4)
II

);Q)⊗H2(E ×E ×E;Q) we find one invariant
tensor, namely

I1 = 3(f1 ∧ f2 + f3 ∧ f4) + 2ϕ+ ψ,

where we denoted ϕ = (f1 + f3 + f5) ∧ f6 + f5 ∧ (f2 + f4 + f6) and ψ =

f1 ∧ f4 + f3 ∧ f2. In H
1(T/T (σ

(4)
II

);Q)⊗H2(E ×E ×E;Q) we also obtain one
invariant tensor, namely

I2 = −R⊗ (2ϕ+ ψ) +Q⊗ (ϕ+ 2ψ).

The invariant class in H0(T/T (σ
(4)
II

);Q) ⊗ H4(E × E × E;Q) is I1 ∧ I1

and in H1(T/T (σ
(4)
II

);Q) ⊗ H4(E × E × E;Q) it is I2 ∧ I1. This together

with the fundamental classes in H0(T/T (σ
(4)
II

);Q) ⊗ H0(E × E × E;Q) and

H0(T/T (σ
(4)
II

);Q)⊗H6(E × E × E;Q) are the only invariants.
As before we now look at the Leray spectral sequence in cohomology associated

with p◦q
σ
(4)
II

: T (σ
(4)
II ) → A1. Since all representations are trivial we thus obtain

Table 11. Hence, we have two differentials which could be non-zero, namely
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Table 11. E2 term of the spectral sequence converging to

the cohomology of β0
3(σ

(4)
II )

q

2 0 0 0 0 0 0 0
1 0 0 Q(−2) 0 Q(−3) 0 0
0 Q 0 Q(−1) 0 Q(−2) 0 Q(−3)

0 1 2 3 4 5 6 p

d2,12 : H1(T/T (σ
(4)
II

);Q)⊗H2(E×E×E;Q) → H0(T/T (σ
(4)
II

);Q)⊗H4(E×E×E;Q),

resp.

d4,12 : H1(T/T (σ
(4)
II

);Q)⊗H4(E×E×E;Q) → H0(T/T (σ
(4)
II

);Q)⊗H6(E×E×E;Q).

Indeed we claim that they do not vanish. For this we use the description of

T (σ
(4)
II )|E×E×E given in Lemma 20. It follows from this description that this

bundle splits into the product of two factors with Euler classes −ϕ and ψ. The
claim that the first differential is non-zero is now equivalent to

ϕ ∧ (2ϕ+ ψ) + ψ ∧ (ϕ+ 2ψ) 6= 0.

For the second differential we must check that

(ϕ ∧ (2ϕ+ ψ) + ψ ∧ (ϕ+ 2ψ)) ∧ I1 6= 0.

This can be checked by direct calculation. At the same time this proves that
the first differential does not vanish. The claim of the lemma now follows
immediately after converting to cohomology with compact support. �

6.5. The cohomology of β0
3(σ

(5)).

Lemma 22. The rational cohomology groups with compact support of β0
3(σ

(5))
are given by

Hk
c (β

0
3(σ

(5));Q) =







Q(−k/2) k = 6, 10
Q(−k/2)⊕2 k = 8
0 otherwise.

Proof. We first have to compute the automorphism group G(σ(5)). It is not
hard to see that this group is generated by the transformations

(6.23) xi 7→ −xi, i = 1, 2, 3

(6.24) x1 ↔ x2, x3 7→ x3

(6.25) x1 7→ x1 − x3, x2 7→ x2 − x3, x3 7→ −x3

(6.26) x1 7→ x1 − x3, x2 7→ −x2, x3 7→ −x3.
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Table 12. E2 term of the spectral sequence converging to
the cohomology of β0

3(σ
(5))

q

1 0 0 Q(−2) 0 Q(−3) 0 0
0 Q 0 Q(−1)⊕2 0 Q(−2)⊕2 0 Q(−3)

0 1 2 3 4 5 6 p

A computation analogous to that in Lemma 18 shows that this results in the
following action on cohomology, where again we denoted by fi the generators
of the cohomology of E × E × E and by Q3 the generator of the cohomology
of the fibre of the torus bundle:

(6.27) fi 7→ −fi, i = 1, . . . , 6; Q3 7→ Q3

(6.28) fi ↔ fi+2, i = 1, 2; fj 7→ fj , j = 5, 6; Q3 7→ Q3

(6.29) fi 7→ fi, i = 1, . . . , 4; fk 7→ −fk−4 − fk−2 − fk, k = 5, 6; Q3 7→ Q3

(6.30)
fi 7→ fi, i = 1, 2; fj 7→ −fj, j = 3, 4;

fk 7→ −fk−4 − fk, k = 5, 6; Q3 7→ −Q3.

Next, we compute the invariant cohomology in H0(C∗;Q) ⊗ H2k(E × E ×
E;Q). Clearly this is 1-dimensional for k = 0, 6. By duality it is enough to do
the computation for k = 2. Here we find a 2-dimensional invariant subspace
generated by i1 := f1 ∧ f2 + f3 ∧ f4 and i2 := f1 ∧ f4 + f3 ∧ f2 + 2(f1 + f3 +
f5) ∧ f6 + 2f5 ∧ (f2 + f4 + f6).
In this situation we also have invariant cohomology in H1(C∗;Q)⊗H2(E×E×
E;Q). This is 1-dimensional and generated by Q3⊗(f1∧f4+f3∧f2). By duality
we also have a 1-dimensional invariant subspace in H1(C∗)⊗H4(E×E×E). A
standard calculation shows that this is generated by Q3∧(f1∧f4+f3∧f2)∧ i2.
In this case the differentials in the Leray spectral sequence are not automatically
0. The situation is described in Table 12. here are two differentials which we
have to consider. These are:

d2,12 : H1(C∗;Q)⊗H2(E × E × E;Q) → H0(C∗;Q)⊗H4(E × E × E;Q),

resp.

d4,12 : H1(C∗;Q)⊗H4(E × E × E;Q) → H0(C∗;Q)⊗H6(E × E × E;Q).

We claim that both differentials are non-zero, i.e. they have rank 1. We first
treat d1,22 . The differential is given by taking the cup-product with the first

Chern class of the vector bundle spanned by the torus bundle T (σ(5))|E×E×E .

Documenta Mathematica 17 (2012) 195–244



Cohomology of the Second Voronoi . . . 229

As in previous cases on can see that T (σ(5))|E×E×E
∼= p∗12(P

0). This shows
that

d1,22 : Q3 ⊗ (f1 ∧ f4 + f3 ∧ f2) 7→

(f1 ∧ f4 + f3 ∧ f2) ∧ (f1 ∧ f4 + f3 ∧ f2) = 2f1 ∧ f2 ∧ f3 ∧ f4 6= 0.

The argument for d1,42 is analogous. Finally we use the duality

Hk
c (β

0
3(σ

(5));Q) = H10−k(β0
3(σ

(5));Q)∗ ⊗ Q(−5) (which holds on finite
smooth covers) to obtain the claim.

�

6.6. The cohomology of β0
3(σ

(6)).

Lemma 23. The rational cohomology groups with compact support of β0
3(σ

(6))
are given by

Hk
c (β

0
3(σ

(6));Q) =

{

Q(−k/2) k = 2, 4, 6, 8
0 otherwise.

Proof. The proof of this lemma is analogous to the other cases. We first note
that the automorphism group of G(σ(6)) is generated by the symmetric group
in three variables permuting the coordinates xi (i = 1, 2, 3) and the transforma-
tions (6.23) and (6.25) already considered in the previous section. In this case
the torus rank is 0 and hence it suffices to compute the action on the cohomol-
ogy of the triple product E×E×E. In view of the transformation (6.23) there
is no invariant in odd degree. By duality it is enough to compute the invariant
cohomology in H2(E×E×E;Q). A straightforward calculation shows that this
is 1-dimensional with generator 2v1+v2+v3, with v1 = f1∧f2+f3∧f4+f5∧f6,
v2 = f1 ∧ f4 + f3 ∧ f6 + f5 ∧ f2 and v3 = f1 ∧ f6 + f3 ∧ f2 + f5 ∧ f4. �

6.7. The cohomology of β0
3 . In this section, we will use the computations

on the strata of β0
3 to prove the following result.

Proposition 24. The rational cohomology with compact support of β0
3 is as

follows: the non-zero Betti numbers are

i 2 4 5 6 7 8 10 12 14
bi 1 1 1 2 1 4 4 3 1

One has H7
c (β

0
3 ;Q) = Q(−1) and H5

c (β
0
3 ;Q) = Q. Furthermore all cohomology

groups of even degree are algebraic.

Proof. We consider the Gysin spectral sequence associated with the stratifica-
tion of β0

3 given by the locally closed strata W1 = β0
3(σ

(6)), W2 = β0
3(σ

(5)),

W3 = β0
3(σ

(4)
I ) ∪ β0

3(σ
(4)
II ) and W4 = β0

3(σ
(3)). We set Yp = W p. This is the

spectral sequence Ep,q
• ⇒ Hp+q

c (β
(0)
3 ;Q) with Ep,q

1 = Hp+q
c (Yp \ Yp−1;Q) =

Hp+q
c (Wp;Q). The cohomology with compact support of the strata Wi was

computed in the Lemmas 15, 18, 21, 22 and 23. In view of these results, the E1

term of the Gysin spectral sequence is as given in Table 13. We consider the
differentials dp,qr : Ep,q

r → Ep+r,q−r+1
r . Inspection of Table 13 shows that the

only possible non-zero differential is d3,51 : E3,5
1 = H8

c (β
0
3(σ

(4)
I );Q) → E4,5

1 =
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Table 13. Gysin spectral sequence converging to the coho-
mology with compact support of β0

3

q

10 0 0 0 Q(−7)
9 0 0 Q(−6)⊕2 0
8 0 Q(−5) 0 Q(−6)
7 Q(−4) 0 Q(−5)⊕3 0
6 0 Q(−4)⊕2 0 0
5 Q(−3) 0 Q(−4) +Q(−2) Q(−2)
4 0 Q(−3) 0 0
3 Q(−2) 0 0 Q(−1)
2 0 0 Q 0
1 Q(−1) 0 0 0

1 2 3 4 p

H9
c (β

0
3(σ

(3));Q). We can interpret this differential as arising from the Gysin

long exact sequence associated with the inclusion of β0
3(σ

(4)
I in the partial com-

pactification β0
3(σ

(3)) ∪ β0
3(σ

(4)
I ) of β0

3(σ
(3)). Let us denote by ΨE the fibre of

the fibration β0
3(σ

(3)) ∪ β0
3(σ

(4)
I ) → A1 over a point [E] ∈ A1. Thanks to the

Leray spectral sequence associated with that fibration, all we need to know is
that the cohomology with compact support of ΨE vanishes in degree 7. This
requires to prove that the differential

d7 : H7
c ((p ◦ qσ(4)

I

)−1([E]);Q) → H8
c ((p ◦ qσ(3))−1([E]);Q)

in the Gysin long exact sequence associated with (p ◦ q
σ
(4)
I

)−1([E]) ⊂ ΨE is an

isomorphism.
Since in the proofs of Lemma 17 and Lemma 19 we described the generators
of the cohomology of the fibres of E rather than those of the cohomology with
compact support, we shall analyze the map induced by d7 on cohomology by
Poincaré duality, whose rank coincides with that of d7. Let us recall that the
inclusion of {0}×(C∗)2 in C×(C∗)2 induces a Gysin long exact sequence whose
differentials define the maps

Hk((C∗)2;Q)⊗Q(−1) −→ Hk+1((C∗)3;Q)
Ti 7−→ Ti ∧ T1 i = 2, 3.

As a consequence, the differential H3((p ◦ q
σ
(4)
I

)−1([E]);Q)⊗Q(−1) → H4((p ◦

qσ(3))−1([E]);Q) maps each of the generators gi,j described in the proof of
Lemma 19 to the class obtained by replacing T2 by T2 ∧ T1 in the expression,
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and then symmetrizing for the action of the group G(σ(3)). This yields:

gi,j 7−→
2

3

∑

0≤k,l≤2

Qk+1 ∧Ql+1 ⊗ f2k+i ∧ f2l+j ,

hence in particular the differential is surjective. From this the claim follows.
�

7. Torus rank 4

In this section we compute the cohomology of the closed strata β4 ⊂ AVor
4

and βperf
4 ⊂ Aperf

4 of torus rank 4 in the second Voronoi and the perfect cone
compactification, respectively.
We shall first state the main results:

Theorem 25. The cohomology groups with rational coefficients of the closed

stratum βperf
4 ⊂ Aperf

4 of the perfect cone compactification of the moduli space
of abelian varieties of dimension 4 are non-zero only in even degree. The only
non-zero Betti numbers are b0 = b2 = b4 = 1, b6 = b8 = 4, b10 = 3 and b12 = 1.
The cohomology is algebraic in all degrees different from 6, whereas

H6(βperf
4 ;Q) is an extension of Q(−3)⊕3 by Q(−1).

The closed stratum β4 ⊂ AVor
4 has two irreducible components: a nine-dimen-

sional component E, which is the exceptional divisor of the blow-up q : AVor
4 →

Aperf
4 , and a six-dimensional component, which is the proper transform of βperf

4

under q.

Theorem 26. (1) The rational cohomology of E is all algebraic. The only
non-zero Betti numbers are b0 = b2 = b16 = b18 = 1, b4 = b14 = 2 and
b6 = b8 = b10 = b12 = 3.

(2) The rational cohomology of β4 is non-trivial only in even degree. The
non-zero Betti numbers are

i 0 2 4 6 8 10 12 14 16 18
bi 1 2 3 7 7 6 4 2 1 1

All cohomology groups are algebraic, with the exception of H6(β4;Q),
which is an extension of Q(−3)⊕6 by Q(−1).

7.1. Cone decompositions. It is in this section that we require full informa-
tion about the perfect cone or first Voronoi and the second Voronoi decompo-
sition in Sym2

≥0(R
4). Details concerning these decompositions can be found in

[ER1], [ER2], [Val] and [Vor]. We start by recalling the perfect cone decom-
position. The starting point is two 10-dimensional cones, namely the principal
cone Π1(4) and the second perfect cone Π2(4). These cones are given by

Π1(4) = 〈x21, x
2
2, x

2
3, x

2
4, (x1 − x2)

2, (x1 − x3)
2, (x1 − x4)

2, (x2 − x3)
2,

(x2 − x4)
2, (x3 − x4)

2〉

and

Π2(4) = 〈x21, x
2
2, x

2
3, x

2
4, (x1 − x3)

2, (x1 − x4)
2, (x2 − x3)

2, (x2 − x4)
2,

(x3 − x4)
2, (x1 + x2 − x3)

2, (x1 + x2 − x4)
2, (x1 + x2 − x3 − x4)

2〉
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respectively. The perfect cone decomposition consists of all GL(4,Z)-translates
of these cones and their faces. While the cone Π1(4) is basic, the cone Π2(4)

is not, hence it defines a singular point Psing ∈ Aperf
4 . Nevertheless, all 9-

dimensional faces of Π2(4) are basic. Modulo the action of GL(4,Z) these
9-dimensional faces define two orbits. Traditionally these are called RT (red
triangle) and BF (black face) respectively (see [ER2]).
In genus 4 and 5 (but not in general) the second Voronoi decomposition is a
subdivision of the perfect cone decomposition. In our case it is the refinement
of the perfect cone decomposition obtained by adding all cones that arise as
spans of the 9-dimensional faces of Π2(4) with the central ray generated by

(7.1)

e =
1

3

[

x2
1 + x2

2 + x2
3 + x2

4 + (x1 − x3)
2 + (x1 − x4)

2 + (x2 − x3)
2 + (x2 − x4)

2

+(x3 − x4)
2 + (x1 + x2 − x3)

2 + (x1 + x2 − x4)
2 + (x1 + x2 − x3 − x4)

2
]

.

In particular, all perfect cones, with the exception of Π2(4), belong to the
second Voronoi decomposition. Geometrically this means that AVor

4 is a blow-

up of Aperf
4 = AIgu

4 in the singular point Psing. Since all cones on the second
Voronoi decomposition are basic AVor

4 is smooth (as a stack). Moreover, the
exceptional divisor E is irreducible and smooth (again as a stack). (For a
discussion of this see also [HS2].
A description of representatives of all GL(4,Z)-orbits of cones in the second
Voronoi, and hence also the perfect cone decomposition, can be found in [Val,
Chapter 4]. For cones with extremal rays spanned by quadratic forms of rank 1
the list is given in [Val, S.4.4.4]. Note that in this listK5 denotes the cone Π2(4),
and the 9-dimensional cones K5 − 1 and K3,3 correspond to the equivalence
classes BF, respectively, RT of [ER2]. The remaining cones are listed in [Val,
S.4.4.5]. The following list gives the number of GL(4,Z)-orbits of cones in each
dimension for the two decompositions.

dimension 1 2 3 4 5 6 7 8 9 10
#perfect cones 1 1 2 3 4 5 4 2 2 2
# secondVoronoi cones 2 2 4 7 9 11 11 7 4 3

From this we see that the perfect cone decomposition has 26 different cones,
whereas the second Voronoi decomposition has 60 different cones. The lists in
[Val] also allow us to write down generators for the extremal rays of represen-
tatives in all cases.

7.2. Plan for computation. We briefly recall the structure of β4 and βperf
4

which comes from the toroidal construction. More generally, let βΣ
4 be the

stratum of any admissible fan Σ (in our case either the perfect cone or the
second Voronoi fan), then each cone σ ∈ Σ defines a torus orbit Tσ of dimension
10 − k where k is the dimension of σ. Let Gσ ⊂ GL(4,Z) be the stabilizer of
σ with respect to the natural action of GL(4,Z) on Sym2

≥0(R
4). Then Gσ acts

on Tσ and βΣ
4 is the disjoint union of the quotients Zσ = Tσ/Gσ where σ runs

through a set of representatives of all cones in Σ which contain a form of rank
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4 in their interior. We then define a stratification by defining Sp as the union
of all Zσ where dimσ ≥ 10− p. In particular, Sp \ Sp−1 is the union of all Zσ

with dimσ = 10− p.

The Gysin spectral sequence Ep,q
• ⇒ Hp+q

c (βperf
4 ;Q) = Hp+q(βperf

4 ;Q) associ-
ated with the filtration Sp has E1 term given by

Ep,q
1 = Hp+q

c (Sp \ Sp−1;Q).

Since Sp \ Sp−1 is the disjoint union of the Zσ with dimσ = 10 − p it follows
that

H•
c (Sp \ Sp−1;Q) =

⊕

dimσ

H•
c (Zσ;Q).

In our situation we have considerably more information. In particular we know
that, with the exception of Π2(4), all cones in both the perfect cone and the
second Voronoi decomposition, are basic. In particular all strata Sp with p ≤ 9
are locally quotients of a smooth variety by a finite group. Moreover Tσ =
(C∗)10−dimσ and Zσ = (C∗)10−dimσ/Gσ. The torus orbit of Π2(4) is a point.
Thus we have to compute for each cone σ the cohomology of the torus Tσ with
respect to Gσ. Recall that H•((C∗)k;Q) is the exterior algebra generated by
the k-dimensional vector space H1((C∗)k;Q). Moreover, a basis of the vector
space H1((C∗)k;Q) can be obtained by taking the Alexander dual classes of
the fundamental classes of the components

{(y1, . . . , yk)|yi = 0}, i = 1, . . . , k

of the complement of (C∗)k in Ck. This means that, once the generators of the
cone σ and of the group Gσ are known, the computation of the cohomology of
Zσ reduces to a linear algebra problem, which can be solved using computa-
tional tools. In our case, the generators of the stabilizers Gσ were calculated
with Magma ([BCP]) and the invariant part of the algebra

∧•
H1((C∗)k;Q)

with Singular ([GPS]).

7.3. Perfect cones. We shall now perform the programme outlined above
for the perfect cone compactification, which coincides with the Igusa compact-
ification in genus 4. We have already mentioned that a list of representatives
of all cones in the perfect cone decomposition, together with their generators,
can be found in [Val, Ch. 4]. This enables us to compute the stabilizer groups
Gσ as well as the invariant cohomology of the torus orbits Tσ = (C∗)k where
k = 10−dimσ. The results so obtained are listed in Table 14, where the nota-
tion for the cones is the one of [Val, §4]. The information on the cohomology of
the strata is given in the form of Hodge Euler characteristics, i.e. what is given
is the Euler characteristic of H•

c (Zσ;Q) in the Grothendieck group of Hodge
structures. The symbol L denotes the class of the weight 2 Tate Hodge struc-
ture Q(−1) in the Grothendieck group. The relationship between cohomology
and cohomology with compact support is given by Poincaré duality:

H l
c(Zσ;Q) = Hom(H2k−l(Zσ;Q),Q(−k)),

which holds since the Zσ are finite quotients of the smooth varieties Tσ.
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Table 14. GL(4,Z)-orbits of perfect cones

Σ dimΣ eHdg(ZΣ)

K5 = Π1(4) 10 1
Π2(4) 10 1
K5 − 1 9 L

K3,3 9 L− 1
K5 − 2 8 L

2

K5 − 1− 1 8 L
2 − L

K5 − 2− 1 7 L
3 − L

2

C2221 7 L
3

K5 − 3 7 L
3

Σ dimΣ eHdg(ZΣ)

K4 + 1 7 L
3

C222 6 L
4 − L

3

C321 6 L
4 + 1

C221 + 1 6 L
4

C3 + C3 6 L
4

C5 5 L
5 − 1

C4 + 1 5 L
5

C3 + 1 + 1 5 L
5 + L

1 + 1 + 1 + 1 4 L
6

Table 15. E1 term of the spectral sequence converging to H•(βperf
4 ;Q).

q

6 0 0 0 0 0 0 Q(−6)
5 0 0 0 0 0 Q(−5)⊕3 0
4 0 0 0 0 Q(−4)⊕4 0 0
3 0 0 0 Q(−3)⊕4 Q(−3) 0 0
2 0 0 Q(−2)⊕2 Q(−2) 0 0 0
1 0 Q(−1)⊕2 Q(−1) 0 0 Q(−1) 0
0 Q⊕2 Q 0 0 Q Q 0

0 1 2 3 4 5 6 p

In view of the information on the cohomology of the Zσ given in Table 14, this

yields that the E1 terms of the spectral sequence Ep,q
• ⇒ Hp+q(βperf

4 ;Q) are
as shown in Table 15.
To establish Theorem 25, we need to determine the rank of all differentials
in the spectral sequence. As morphisms between pure Hodge structures of
different weights are necessarily trivial, one remains with five differentials to
investigate, all of the form dp,q1 : Ep,q

1 → Ep+1,q
1 . We will denote them by

δ0 : E
0,0
1 −→ E1,0

1 , δ′0 : E
4,0
1 −→ E5,0

1 ,

δ1 : E
1,1
1 −→ E2,1

1 , δ2 : E
2,2
1 −→ E3,2

1 , δ3 : E
3,3
1 −→ E4,3

1 .

Lemma 27. All the differentials δ0, δ
′
0, δ1, δ2 and δ3 have rank 1.

Proof. Since βperf
4 is connected, one has H0(βperf

4 ;Q) = Q. This implies that
δ0 has rank 1.
Next, we consider the differential δ′0 : E

4,0
1

∼= Q −→ E5,0
1

∼= Q. From the

description of the strata given in Table 14, we have E4,0
1 = H4

c (ZC321 ;Q) and

Documenta Mathematica 17 (2012) 195–244



Cohomology of the Second Voronoi . . . 235

E5,0
1 = H5

c (ZC5 ;Q) for the cones

C5 = 〈x21, x
2
2.(x1 − x4)

2, (x2 − x3)
2, (x3 − x4)

2〉,
C321 = 〈x21, x

2
2, x

2
4, (x1 − x4)

2, (x2 − x3)
2, (x3 − x4)

2〉.

The cone C5 is contained in C321, hence ZC321 is contained in the closure of
ZC5 . Furthermore, the rank of δ′0 must coincide with the rank of the differential
η0 : H

4
c (ZC321 ;Q) → H5

c (ZC5 ;Q) of the Gysin long exact sequence associated
with the inclusion of ZC321 in the partial compactification ZC5 ∪ ZC321 of ZC5 .
If one considers the stabilizers, one observes that GC321 is a subgroup of GC5 .
Therefore, one can view η0 as a map from the cohomology of (C∗)4 to the
cohomology of (C∗)5 in the following way:

H4
c (ZC321 ;Q)

η0��

H4
c ((C

∗)4;Q)GC321

η0

**UUUUUUUUU

H5
c (ZC5 ;Q) H5

c ((C
∗)5;Q)GC5 H5

c ((C
∗)5;Q)GC321 ,

where we used the fact that the GC321 -invariant part of H
5
c ((C

∗)5;Q) coincides
with the GC5-invariant part. This new interpretation relates the map η0 to the
differential

(7.2) H4
c ((C

∗)4;Q) ∼= Q −→ H5
c ((C

∗)5;Q) ∼= Q

of the Gysin exact sequence of an inclusion (C∗)4 →֒ C× (C∗)4, with comple-
ment isomorphic to (C∗)5. In particular, since Hk

c (C × (C∗)4;Q) vanishes for
k ≤ 5, the differential (7.2) is an isomorphism, and the same holds for η0.
Let us consider the differential

δ1 : E
1,1
1

∼= H2
c (ZK5−1;Q)⊕H2

c (ZK3,3 ;Q) → E2,1
1

∼= H3
c (ZK5−1−1;Q).

Note that both ZK5−1 and ZK3,3 are contained in the closure of ZK5−1−1 ⊂

βperf
4 . We choose to investigate the inclusion i3,3 of ZK3,3 in the partial com-

pactification ZK3,3 ∪ ZK5−1−1 of ZK5−1−1. Then the rank of δ1 cannot be
smaller than the rank of the differential

η1 : H
2
c (ZK3,3 ;Q) −→ H3

c (ZK5−1−1;Q)

in the Gysin long exact sequence associated with i3,3, even though there is no
canonical isomorphism between the kernel of η1 and that of δ1.
In Vallentin’s notation, the cone K3,3 is given by

K3,3 = 〈x21, x
2
2, x

2
3, x

3
4, (x1 − x3)

2, (x1 − x4)
2, (x2 − x3)

2, (x2 − x4)
2,

(x1 + x2 − x3 − x4)
2〉.

In particular, its subcone

K5 − 1− 1b = 〈x21, x
2
2, x

2
3, x

2
4, (x1 − x3)

2, (x1 − x4)
2, (x2 − x3)

2, (x2 − x4)
2〉

belongs to the same GL(4,Z)-orbit as K5 − 1 − 1, so that ZK5−1−1b ⊂ βperf
4

coincides with ZK5−1−1. The stabilizer GK5−1−1b of the cone K5 − 1 − 1b is
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generated by −IdZ4 and by the two automorphisms














x1 7→ x3
x2 7→ x4
x3 7→ x2
x4 7→ x1

and















x1 7→ x1
x2 7→ x2
x3 7→ x4
x4 7→ x3

.

In particular, one can check that the group GK5−1−1b is contained in the sta-
bilizer GK3,3 of the cone K3,3.
Analogously to the case of η0, we can reduce the study of η1 to the study of the
long exact sequence of an inclusion C∗ →֒ C×C∗ with complement isomorphic
to (C∗)2, by exploiting the diagram

H2
c (ZK3,3 ;Q)

η1��

H2
c (C

∗;Q)GK3,3 H2
c (C

∗;Q)GK5−1−1b

η1��
H3

c (ZK5−1−1b;Q) H3
c ((C

∗)2;Q)GK5−1−1b .

Then the claim follows from the fact that the differentialH2
c (C

∗;Q) ∼= Q(−1) →
H3

c ((C
∗)2;Q) in the Gysin long exact sequence associated with the inclusion

C∗ →֒ C× C∗ has rank 1.
The proof for δ2 and δ3 is completely analogous to that for δ1. In the case
of δ2 one considers the inclusion of the 2-dimensional stratum ZK5−2 in the
3-dimensional stratum ZK5−2−1, given by the inclusion of the cone

K5 − 2− 1b = 〈x21, x
2
2, x

2
3, (x1 − x4)

2, (x2 − x3)
2, (x2 − x4)

2, (x3 − x4)
2〉,

which lies in the same GL(4,Z)-orbit as K5 − 2− 1, in

K5 − 2 = 〈x21, x
2
2, x

2
3, x

2
4, (x1 − x4)

2, (x2 − x3)
2, (x2 − x4)

2, (x3 − x4)
2〉.

In this case, the stabilizers of K5 − 2 and of K5 − 2− 1b coincide as subgroups
of GL(4,Z).
In the case of δ3, one considers the inclusion of the 3-dimensional stratum
ZC2221 in the 4-dimensional stratum ZC222 , given by the inclusion of the cone

C222 = 〈x21, x
2
2, x

2
3, (x1 − x4)

2, (x2 − x4)
2, (x3 − x4)

2〉

in

C2221 = 〈x21, x
2
2, x

2
3, x

2
4, (x1 − x4)

2, (x2 − x4)
2, (x3 − x4)

2〉.

Again, the stabilizers of C222 and C2221 coincide. �

7.4. Cones containing e. We shall now prove Theorem 26.

Proof of (1)⇒(2) in Theorem 26. Assume that the cohomology with compact

support of the exceptional divisor E of the blow-up AVor
4 → Aperf

4 is as stated
in (1). The Gysin long exact sequence associated with the closed inclusion
E ⊂ β4 is as follows:

(7.3) · · · → Hk−1
c (E;Q)

dk−→ Hk
c (β4 \ E;Q) → Hk

c (β4;Q) → Hk
c (E;Q) → · · ·
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Similarly the Gysin sequence of the pair {Psing} ⊂ βperf
4 reads

· · · → Hk−1
c (Psing;Q) → Hk

c (β
perf
4 \ {Psing};Q) →

→ Hk
c (β4

perf ;Q) → Hk
c (Psing;Q) → · · ·

Since AVor
4 → Aperf

4 is an isomorphism outside E, the complement β4 \ E is

isomorphic to βperf
4 \{Psing}. By Theorem 25 the odd cohomology with compact

support of βperf
4 vanishes and hence Hk

c (β
perf
4 \{Psing};Q) = Hk

c (β4 \E;Q) = 0

for odd k ≥ 3. Moreover, H1
c (β

perf
4 \{Psing};Q) = H1

c (β4 \E;Q) = 0 since Psing

is a point and βperf
4 is compact (which implies that cohomology with compact

support and ordinary cohomology coincide).
Furthermore by the description of H•

c (E;Q) from (1) we know that all odd
cohomology of E vanishes. This ensures that all differentials dk, k ≥ 1 are
zero. This implies that the Betti numbers bk of β4 with k ≥ 1 are as stated
in Theorem 26. Also the description of the Hodge structures follows from
Theorem 25 and from part (1) in view of the long exact sequence (7.3). Finally,
the fact that H0

c (β4;Q) is one-dimensional follow from the connectedness of
β4. To complete the proof, recall that β4 is compact, so that cohomology and
cohomology with compact support agree. �

Lemma 28. For every k, the cohomology group Hk(E;Q) carries a pure Hodge
structure of weight k.

Proof. To prove the claim, we consider the second Voronoi compactification
AVor

4 (n) of the moduli space of principally polarized abelian fourfolds with a
level-n structure (n ≥ 3). Recall that AVor

4 (n) is a smooth projective scheme
and that the map π(n) : AVor

4 (n) → AVor
4 is a finite group quotient. The

preimage π(n)−1(E) of E is the union of finitely many irreducible components,
all of which are smooth and pairwise disjoint. This follows from the toric
description, since these components are themselves toric varieties given by the
star Star(〈e〉) in the lattice Sym2(Z4)/Ze.
In particular, this implies that the Hodge structures on the cohomology groups
of π(n)−1(E) are pure of weight equal to the degree. As π(n) is finite, the
pull-back map

π(n)|∗π(n)−1(E) : H
k(E;Q) → Hk(π(n)−1(E);Q)

is injective. This implies that each cohomology group Hk(E;Q) is a Hodge
substructure of Hk(π(n)−1(E);Q), thus yielding the claim. �

Proof of (1) in Theorem 26. In view of Lemma 28, determining the cohomol-
ogy of E is equivalent to computing its Hodge Euler characteristics, i.e.

eHdg(E) =
∑

k∈Z

(−1)k[Hk
c (E;Q)],

where [·] denotes the class in the Grothendieck group K0(HSQ) of Hodge struc-
tures. Hodge Euler characteristics are additive, so we are going to work with
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Table 16. GL(4,Z)-orbits of cones of dimension ≥ 6 contain-
ing e

σ dimσ eHdg(Zσ)

111+ 10 1
111− 10 1
211+ 9 L− 1
211− 9 L

311+ 8 L
2 − L

311− 8 L
2

22′1 8 L
2 − L

221+ 8 L
2

221− 8 L
2 + L

411 7 L
3 − L

2

321+ 7 L
3 − L

2 + L− 1

σ dimσ eHdg(Zσ)

321− 7 L
3 − 2L2 + L

222′ 7 L
3 − L

2

22′2′′ 7 L
3

222+ 7 L
3

222− 7 L
3

421 6 L
4 − L

3 + L
2 − L

331+ 6 L
4 + 1

331− 6 L
4 − L

3 − L+ 1
322+ 6 L

4 − L
3

322− 6 L
4 − L

3

322′ 6 L
4 − 2L3 + 2L2 − 2L+ 1

Table 17. GL(4,Z)-orbits of cones of dimension ≤ 5 contain-
ing e

Σ dimΣ eHdg(Zσ)

422′ 5 L
5 + L

3 − L
2 + L

332− 5 L
5 − L

4 + L
3 − 3L2 + 2L

431 5 L
5 − L

4 + L
3 − L

2 + L− 1
422 5 L

5 − L
4

332+ 5 L
5 − 2L4 + L

3 − L
2 + 2L− 1

432 4 L
6 − 2L5 + 2L4 − 4L3 + 5L2 − 2L

333− 4 L
6 + 2L2

441 4 L
6 + L

2

333+ 4 L
6 − L

5 − L
3 + 2L2 − L

433 3 L
7 − L

6 + L
5 − L

4 + 4L3 − 4L2

442 3 L
7 + 2L3 − L

2

443 2 L
8 + 2L4 − 3L3

444 1 L
9 − L

4

TOT. L
9 + L

8 + 2L7 + 3L6 + 3L5 + 3L4 + 3L3 + 2L2 + L+ 1

a locally closed stratification of E and add up the Hodge Euler characteristics
to get the result.
The toroidal construction of AVor

4 yields that E is the union of toric strata Zσ

for all cones σ belonging to the second Voronoi decomposition but not to the
perfect cone decomposition. Note that for such σ the variety Zσ automatically
maps to A0 under the map AVor

4 → ASat
4 . Furthermore, up to the action of

GL(4,Z), one can assume that these cones contain the extremal ray 〈e〉 defined
in (7.1) as extremal ray.
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Since cones that lie in the same GL(4,Z)-orbit give the same variety Zσ, we
have to work with a list of representatives of all GL(4,Z)-orbits of cones ful-
filling our conditions. Such a list is given in [Val, §4.4.5]. As in the proof of
Theorem 14, we compute for each cone σ in Vallentin’s list the generators of its
stabilizer Gσ in GL(4,Z), as well as their action on H1((C∗)10−dimσ;Q). Then
we use the computer algebra program Singular [GPS] to calculate all positive
Betti numbers of the quotient Zσ = (C∗)10−dimσ/Gσ. The results are given in
Tables 16 and 17, where we list all cones and the Hodge Euler characteristics
of the corresponding strata of E.
As already explained, the Hodge Euler characteristic of E is the sum for the
Euler characteristics of all strata Zσ and is computed at the bottom of Table 17.
In view of Lemma 28, and recalling that L is the notation of the weight 2 Tate
Hodge structureQ(−1) in the Grothendieck group of rational Hodge structures,
we can conclude that the Betti numbers of E agree with those given in the
statement of Theorem 26. �

Remark 29. Note that the Betti numbers of E satisfy Poincaré duality. Indeed,
this must be the case as E is smooth up to finite group action.

Appendix A. Cohomology of A3 with coefficients in symplectic

local systems

In this section, we recollect the information on the cohomology of local systems
on A2 and A3 that we used in the course of the paper. Let us recall that the
cohomology of local systems of odd weight on Ag vanishes because it is killed
by the abelian involution. Therefore, we only need to deal with local systems
of even rank.
The cohomology of A2 and A3 with constant coefficients is known. The moduli
space A2 is the disjoint union of the moduli space M2 of genus 2 curves and
the locus Sym2 A1 of products. Since it is known that the rational cohomology
of both these spaces vanishes in positive degree, we have

Lemma 30. The only non-trivial rational cohomology groups with compact sup-
port of A2 are H4

c (A2;Q) = Q(−2) and H2
c (A2;Q) = Q(−1).

The rational cohomology of A3 was computed by Hain ([Ha]). We state below
his result in terms of cohomology with compact support.

Theorem 31 (Hain). The non-trivial Betti numbers with compact support of
A3 are

i 12 10 8 6
bi 1 1 1 2

Furthermore, all cohomology groups are algebraic with the exception of
H6

c (A3;Q), which is an extension of Q(−3) by Q.

We deduce the results we need on non-trivial symplectic local systems with
weight ≤ 2 from results on moduli spaces of curves ([BT],[T3]). Note that the
result for V1,1 was already proven in [HT, Lemma 3.1].
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Lemma 32. The cohomology groups with compact support of the weight 2 sym-
plectic local systems on M2 are as follows: the cohomology of V2,0 vanishes in
all degrees, whereas the only non-zero cohomology group with compact support
of V1,1 is H3

c (M2;V1,1) = Q.

Lemma 33. The rational cohomology of M3 with coefficients in V1,0,0 and
V2,0,0 is 0 in all degrees. The only non-trivial cohomology group with compact
support of M3 with coefficients in V1,1,0 is H9

c (M3;V1,1,0) = Q(−5).

Proof of Lemma 33. Following the approach of [G2], we use the forgetful maps
p1 : M3,1 → M3 and p2 : M3,2 → M3 to obtain information. Note that p1 is
the universal curve over M3 and that the fibre of p2 is the configuration space
of 2 distinct points on a genus 3 curve.
According to [BT, Cor. 1], there is an isomorphism H•(M3,1;Q) ∼=
H•(M3;Q) ⊗ H•(P1;Q) as vector spaces with mixed Hodge structures. If
we compare this with the Leray spectral sequence in cohomology associated
with p1, we get that the cohomology of M3 with coefficients in V1,0,0 must
vanish.
Next, we analyze the Leray spectral sequence in cohomology associated with p2.
Taking the S2-action into account, the cohomology of the fibre of p2 induces
the following local systems on M3:

local system: local system:
deg. invariant part alternating part
0 Q 0
1 V1,0,0 V1,0,0

2 Q(−1)⊕ V1,1,0 Q(−1)⊕ V2,0,0

3 0 V1,0,0(−1)

This implies that the cohomology ofM3 with coefficients in V2,0,0 (respectively,
in V1,1,0) is strictly related to the S2-alternating (resp. S2-invariant) part of
the cohomology ofM3,2. The rational cohomology ofM3,2 is described with its
mixed Hodge structures and the action of the symmetric group in [T3, Thm 1.1].
By comparing this with the E2-term of the Leray spectral sequence associated
with p2, one obtains that the cohomology of V2,0,0 vanishes and that the only
non-trivial cohomology group of V1,1,0 is H3(M3;V1,1,0) = Q(−3). Then the
claim follows from Poincaré duality. �

Proof of Lemma 32. The proof is analogous to that of Lemma 33. In this case,
one needs to compare the Leray spectral sequence associated with p2 : M2,2 →
M2 with the cohomology of M2,2 computed in [T2, II,2.2]. Note that in this
case the cohomology of V1,0 vanishes because it is killed by the hyperelliptic
involution on the universal curve over M2. �

Next, we compute the cohomology of the weight 2 local systems on A2 and
A3 we are interested in, by using Gysin long exact sequences in cohomology
with compact support and the stratification A2 = τ2(M2) ⊔ Sym2 A1 of A2,
respectively, the stratification A3 = τ3(M3) ⊔ τ2(M2) ×A1 ⊔ Sym3 A1 of A3.
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The result on the cohomology with compact support of V1,1 was already proved
in [HT, Lemma 3.1].

Lemma 34. The only non-trivial cohomology groups of A2 with coefficients in
a local system of weight 2 are H3

c (A2;V1,1) = Q and H3
c (A2;V2,0) = Q(−1).

Proof. Using branching formulae as in [BvdG, §§7–8], one proves that the re-
striction of V2,0 to Sym2 A1 ⊂ A2 coincides with the symmetrization of V2×V0

on A1 × A1. Its cohomology with compact support is then Q(−1) in degree
3 and trivial in all other degrees by e.g. [G1, Thm. 5.3]. Analogously, one
shows that the cohomology of Sym2 A1 with coefficients in the restriction of
the local system V1,1 is trivial. Then the claim follows from the Gysin long

exact sequence associated with the inclusion Sym2 A1 ⊂ A2. �

Lemma 35. The cohomology with compact support of A3 in the local system
V1,1,0 is non-trivial only in degree 5 and possibly in degrees 8 and 9 and
is given in these degrees by H5

c (A3;V1,1,0) = Q(−1) and H8
c (A3;V1,1,0) ∼=

H9
c (A3;V1,1,0) = Q(−4)⊕ǫ with ǫ ∈ {0, 1}.

Proof. Branching formulae yield that the cohomology with compact support
of the restriction of V1,1,0 to τ2(M2) × A1 is equal to Q(−5) (coming from
the local system V1,1 ⊗ V0 on M2 × A1) in degree 8, to Q(−1) in degree 5
(coming from the local system V0 ⊗V0(−1)) and is trivial in all other degrees.
Moreover, the restriction of V1,1,0 to Sym3 A1 is trivial, as is easy to prove if
one looks at the cohomology of the restriction of the universal abelian variety
over A3 to Sym3 A1.
It remains to consider the Gysin long exact sequence associated with the closed
inclusion Ared

3 ⊂ A3. The only differential which can possibly be non-trivial is

Q(−5) = H8
c (A

red
3 ;V1,1,0) −→ H9

c (M3;V1,1,0) = Q(−5).

From this the claim follows. �

In the investigation of the cohomology with compact support of the locus β0
2 of

semi-abelic varieties of torus rank 2 we also need to consider the cohomology
with compact support of the weight 4 local system V2,2 on A2. In the forth-
coming preprint [T4], we will show that the cohomology of V2,2 vanishes in all
degrees. For our application, however, we do not need such a complete result.
The following lemma suffices:

Lemma 36. The cohomology with compact support of A2 with coefficients in
the local system V2,2 is 0 in all degrees different from 3, 4. Furthermore, for
every weight k there is an isomorphism

GrWk (H3
c (A2;V2,2)) ∼= GrWk (H4

c (A2;V2,2))

between the graded pieces of the weight filtration.

Proof. First, we prove that the result holds in the Grothendieck group of ra-
tional Hodge structures. This requires to prove that the Euler characteristic
of H•

c (A2;V2,2) in the Grothendieck group of rational Hodge structures van-
ishes. By branching formulae, the cohomology with compact support of the
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restriction of V2,2 to Sym2 A1 is equal to the cohomology of the local system
V0 ⊗ V0(−2), which is equal to Q(−4) in degree 4 and trivial otherwise. On
the other hand, the Euler characteristic of H•

c (M2;V2,2) was proved in [Ber,
Theorem 11.6] to be equal to −[Q(−4)]. Then the additivity of Euler char-
acteristics ensures that the Euler characteristic of V2,2 on M2 vanishes. This
means that the Euler characteristic of each graded piece of the weight filtration
on H•

c (A2;V2,2) is 0.

More generally, the fact that M2 and Sym2 A1 are affine of dimension 3 and
2 respectively, combined with the Gysin long exact sequence associated to
Sym2 A1 →֒ A2 implies that the cohomology of A2 with values in any local
system is trivial in degree greater than 3. Thus, by Poincaré duality, the
cohomology with compact support of A2 can be non-trivial only in degree
larger than or equal to 3. Furthermore, for non-trivial irreducible local sys-
tems H0 (and hence H6

c ) vanishes, whereas H
1 (and hence H5

c ) is always zero
by the Raghunathan rigidity theorem [R]. This means that the cohomology
with compact support of V2,2 on A2 can be non-zero only in degrees 3 and
4. The cohomology groups in these degrees are then isomorphic when pass-
ing to the associated graded pieces of the weight filtration as a consequence of
the vanishing of the Euler characteristic in the Grothendieck group of Hodge
structures. �
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Reine Angew. Math. 136 (1909), 67–178.

[Y] S. Yang, Calculating intersection numbers on moduli spaces of pointed
curves. Preprint arxiv:0808.1974v2, 2010.

Klaus Hulek
Leibniz Universität Hannover
Institut für Algebraische Geometrie
Welfengarten 1
D-30167 Hannover
Germany
hulek@math.uni-hannover.de

Orsola Tommasi
Leibniz Universität Hannover
Institut für Algebraische Geometrie
Welfengarten 1
D-30167 Hannover
Germany
tommasi@math.uni-hannover.de

Documenta Mathematica 17 (2012) 195–244


