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Abstract. Let K be an arbitrary field of characteristic not equal to
2. Let m,n ∈ N and V be an m dimensional orthogonal space over K.
There is a right action of the Brauer algebra Bn(m) on the n-tensor
space V ⊗n which centralizes the left action of the orthogonal group
O(V ). Recently G.I. Lehrer and R.B. Zhang defined certain quasi-
idempotents Ei in Bn(m) (see (1.1)) and proved that the annihilator
of V ⊗n in Bn(m) is always equal to the two-sided ideal generated by
E[(m+1)/2] if charK = 0 or charK > 2(m+1). In this paper we extend
this theorem to arbitrary field K with charK 6= 2 as conjectured
by Lehrer and Zhang. As a byproduct, we discover a combinatorial
identity which relates to the dimensions of Specht modules over the
symmetric groups of different sizes and a new integral basis for the
annihilator of V ⊗m+1 in Bm+1(m).
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1 Introduction

Let N be the set of non-negative integers. Let x be an indeterminate over Z and
0 < n ∈ N. The Brauer algebra Bn(x) over Z[x] was introduced by Richard
Brauer (see [1]) when he studied how the n-tensor space V ⊗n decomposes into
irreducible modules over the orthogonal group O(V ) or the symplectic group
Sp(V ), where V is an orthogonal vector space or a symplectic vector space. It
was defined as the free Z[x]-module on the basis of the set Bdn of all Brauer
n-diagrams, graphs on 2n vertices, and n edges with the property that every
vertex is incident to precisely one edge. The multiplication of two Brauer n-
diagrams is defined using natural concatenation of diagrams. Precisely, we
compose two diagrams D1, D2 by identifying the bottom row of vertices in
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D1 with the top row of vertices in D2. The result is a graph, with a certain
number, n(D1, D2), of interior loops. After removing the interior loops and
the identified vertices, retaining the edges and remaining vertices, we obtain
a new Brauer n-diagram D1 ◦ D2, the composite diagram. Then we define
D1 · D2 = xn(D1,D2)D1 ◦ D2. For example, let d be the following Brauer 5-
diagram.
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Figure 1.1
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Let d′ be the following Brauer 5-diagram.
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Then dd′ is equal to
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In general, the multiplication of two elements in Bn(x) is given by the linear
extension of a product defined on diagrams. For each integer i with 1 ≤ i ≤ 2n,
we define i− := 2n + 1 − i. The Brauer algebra Bn(x) is a free Z[x]-module
with rank (2n− 1) · (2n− 3) · · · 3 · 1. For any Z[x]-algebra R with x specialized
to δ ∈ R, we define Bn(δ)R := R⊗Z[x] Bn(x).

Now let K be an arbitrary field of characteristic not equal to 2. Let m,n be
two positive integers and V an m dimensional orthogonal space over K. Let
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Bn(m) be the specialized Brauer algebra with parameter m · 1K . There is a
right action of Bn(m) on the n-tensor space V ⊗n which commutes with the left
action of the orthogonal group O(V ). If K = C, then by a well-known result
of Brauer [1], the canonical homomorphism ϕ : Bn(m) → EndO(V )(V

⊗n) is
surjective. In general, as long as K is an infinite field of characteristic not
equal to 2, the surjection still holds and we actually have a characteristic-free
version of the Schur–Weyl duality between Bn(m) and KO(V ) on V ⊗n. For
the proof as well as the symplectic version of these results, we refer the readers
to [7], [10] and [11].

The above Schur–Weyl duality is closely related to the second fundamental
theorem in invariant theory for O(V ). By [12] and [27], Bn(m) is semisimple
if and only if m ≥ n − 1. From the representation theoretic point of view, it
is desirable to describe the radical of Bn(m) in the non-semisimple case. By
[16], the kernel of ϕ is closely related to the radical of Bn(m). Therefore, it is
important to understand the kernel of ϕ. Note that ϕ is not injective if and
only if n ≥ m+ 1. In [16, Theorem 4.8], using the invariant theory for O(V ),
Gavarini showed that the kernel of ϕ is spanned by some diagrammatic minors
of order m+1 (which are certain alternating sum of some Brauer n-diagrams).
Note that, however, those diagrammatic minors are not necessarily K-linearly
independent. In [11, Theorem 1.4, Theorem 6.9], an integral basis for the kernel
of ϕ was obtained. The Brauer algebra Bn(m) can be endowed with a right
S2n-module structure in a way such that Kerϕ is an S2n-submodule (cf. [11]
and [15]). So far, to the best of our knowledge, it remains an open question on
whether or not there exists a characteristic-free basis for Kerϕ which consists
of some diagrammatic minors of order m+ 1.

In [20, Corollary 5.9], we proved in the symplectic case that Kerϕ is always
generated by one specific diagrammatic Pfaffian of order 2m+ 2. In the quan-
tized type C case, we proved (in [20, Proposition 5.6]) a similar statement
under the assumption that the quantum parameter q is generic. Recently, G.I.
Lehrer and R.B. Zhang have studied extensively the orthogonal case in [22] by
connecting it with the second fundamental theorem of invariant theory for the
orthogonal group. For each Brauer n-diagram D ∈ Bdn, the vertices of D are
arranged in two rows: the top and bottom rows. The vertices in top row are
labeled by the indices 1, 2, · · · , n from left to right; while the vertices in bottom
row are labeled by the indices 1−, · · · , n− from left to right. The following key
definitions are due to them.

Definition 1.1. ([22, Definition 4.2]) Let a, b ∈ N such that 1 ≤ a + b ≤ n.
Let Bd(a, b) be the set of all Brauer n-diagrams D such that:

(1) for each integer s with a + b + 1 ≤ s ≤ n, D connects the vertex labeled
by s with the vertex labeled by s−; and

(2) for each integer s with s ∈ {1, 2, · · · , a, (a+ 1)−, (a+ 2)−, · · · , (a+ b)−},
D connects the vertex labeled by s with the vertex labeled by t for t ∈
{1−, 2−, · · · , a−, a+ 1, a+ 2, · · · , a+ b}.
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We define

Ea,b :=
∑

D∈Bd(a,b)

sign(D)D, Ei := Ei,m+1−i, ∀ 0 ≤ i ≤ m+ 1.

We refer the reader to Definition 2.2 for the definition of sign(D).1 Lehrer
and Zhang have proved a number of important properties about those Ei. In
particular, they have proved the following theorem in [22].

Theorem 1.2. ([22, Proposition 4.4, Theorems 4.3, 9.4]) Assume that m < n.
Then for each integer i with 0 ≤ i ≤ [(m + 1)/2], Ei ∈ Kerϕ. Furthermore, if
charK = 0 or charK > 2(m+ 1) then Kerϕ is the two-sided ideal of Bn(m)
generated by E[(m+1)/2].

Furthermore, Lehrer and Zhang have conjectured in [22, Remark 9.5] that
the second statement of the above theorem is true for arbitrary field K with
charK 6= 2. The main result in this paper is a proof of this conjecture. In
other words, we extend Lehrer and Zhang’s theorem to arbitrary field K with
charK 6= 2. That is,

Theorem 1.3. Let K be an arbitrary field of characteristic other than two.
Then Kerϕ is always equal to the two-sided ideal generated by E[(m+1)/2].

As a byproduct, we discover (in Theorem 4.15 and Corollary 4.17) a combina-
torial identity which connects to the dimensions of some Specht modules over
the symmetric groupS2m+2 and the symmetric groupSm+1. We get (in Corol-
lary 4.19) a new integral basis for the annihilator of V ⊗m+1 in Bm+1(m). The
content is organized as follows. In Section 2 we recall some basic knowledge
about the structure and representation theory of the Brauer algebras as well as
some related combinatorics which are needed later. In Section 3 we prove that
the annihilator of V ⊗n in Bn(m) is equal to the two-sided ideal generated by
E0, E1, . . . , E[(m+1)/2]. The proof makes essential use of the integral basis of
Kerϕ obtained in [11]. In Section 4 we prove our main result Theorem 1.3. The
proof will proceed in three steps. The main strategy to prove Theorem 1.3 is
to transform it into a statement about identification between certain two-sided
ideals in the symmetric group algebra KSn. For the latter, we make use of the
Young seminormal basis and the Murphy basis theory of the symmetric group
algebras as well as the first main result obtained in Section 3.

ACKNOWLEDGMENTS. The first author is supported by the Australian Re-
search Council and the National Natural Science Foundation of China (Grant
No. 11171021). The second author is supported by a research foundation of
Huaqiao University (Grant No. 10BS323).

1At a first look, the definition of Ei which we give here seems to be different with [22,
Definition 4.2]. But they are indeed the same. The equivalence between the two definitions
follows from a simple counting by the proof given in the paragraph directly below [22, (4.5)].
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2 The Brauer algebra

The Brauer algebraBn(x) can be alternatively defined as the unital associative
Z[x]-algebra with generators s1, · · · , sn−1, e1, · · · , en−1 and relations (see [13]):

s2i = 1, e2i = xei, eisi = ei = siei, ∀ 1 ≤ i ≤ n− 1,
sisj = sjsi, siej = ejsi, eiej = ejei, ∀ 1 ≤ i < j − 1 ≤ n− 2,

sisi+1si = si+1sisi+1, eiei+1ei = ei, ei+1eiei+1 = ei+1, ∀ 1 ≤ i ≤ n− 2,
siei+1ei = si+1ei, ei+1eisi+1 = ei+1si, ∀ 1 ≤ i ≤ n− 2.

Note that the subalgebra of Bn(x) generated by s1, · · · , sn−1 is isomorphic to
the symmetric group algebra Z[x]Sn of Sn over Z[x] and s1, · · · , sn−1 are the
standard Coxeter generators. Let ℓ : Sn → N be the length function on Sn

so that ℓ(w) = k if k is minimal such that w = si1 . . . sik , for some sij with
1 ≤ ij < n.

For each integer 1 ≤ j < n, the generator sj corresponds to the Brauer n-
diagram with edges connecting the vertices j (respectively, j + 1) on the top
row with (j + 1)− (respectively, j−) on the bottom row, and all other edges
are vertical, connecting the vertices k and k− on the top and bottom rows for
all k 6= i, i + 1; the generator ej corresponds to the Brauer n-diagram with
horizontal edges connecting the vertices j, j + 1 (resp., j−, (j + 1)−) on the
top rows (resp., bottom rows), and all other edges are vertical, connecting the
vertices k and k− on the top and bottom rows for all k 6= j, j + 1.

Let R be a commutative integral domain which is an Z[x]-algebra such that
x is specialized to δ ∈ R. Then both the symmetric group algebra RSn and
the Brauer algebra Bn(δ)R are cellular algebras over R (see [26] and [17]). To
recall their cellular structures we need some combinatorics. A composition of
n is a sequence of nonnegative integer λ = (λ1, λ2, · · · ) with

∑
i≥1 λi = n. A

composition λ = (λ1, λ2, · · · ) of n is said to be a partition if λ1 ≥ λ2 ≥ · · · . In
this case, we write λ ⊢ n and |λ| = n. We use Pn to denote the set of all the
partitions of n. For any composition λ of n, the conjugate of λ is defined to be
a partition λ′ = (λ′1, λ

′
2, · · · ), where λ

′
j := #{i|λi ≥ j} for each j ≥ 1. We use

Sλ to denote the standard Young subgroup of Sn corresponding to λ. That is

Sλ := S{1,2,··· ,λ1} ×S{λ1+1,λ1+2,··· ,λ1+λ2} × · · · .

Let λ be a composition of n. The Young diagram of λ is defined to be the set

[λ] :=
{
(i, j)

∣∣ 1 ≤ j ≤ λi
}
.

The elements of [λ] are called nodes of λ. A λ-tableau is a bijection t : [λ] →
{1, 2, · · · , n}. The symmetric group Sn acts on the set of λ-tableaux from the
right hand side by letter permutations. If λ is a partition, then the conjugate of
t is define to be the λ′-tableau t

′ such that t′(i, j) := t(j, i) for any (i, j) ∈ [λ′].
The λ-tableau t is row standard if t(i, j) ≤ t(i, k) whenever j ≤ k. t is standard
if both t and t

′ are row-standard. Let Std(λ) be the set of standard λ-tableaux.
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We denote by t
λ (respectively, tλ) the standard λ-tableau in which the numbers

1, 2, · · · , n appear in order along successive rows (respectively, columns). If t
is a λ-tableau then let d(t) ∈ Sn such that t

λd(t) = t and we shall write
Shape(t) = λ. Note that Sλ is the row stabilizer of tλ. We use Dλ to denote
the set of distinguished right coset representatives of Sλ in Sn. Then for any
d ∈ Dλ and w ∈ Sλ we have that ℓ(wd) = ℓ(w) + ℓ(d). Let wλ ∈ Sn such that
t
λwλ = tλ. Then wλ ∈ Dλ.

We define

Xλ :=
∑

w∈Sλ

w, Yλ :=
∑

w∈Sλ

(−1)ℓ(w)w.

Let τ be the R-algebra automorphism of RSn which is defined on generators
by τ(si) = −si for any 1 ≤ i < n. It is clear that τ2 = id and τ(Yλ) = Xλ.

Let λ ⊢ n. For any s, t ∈ Std(λ), we define Xst := d(s)−1Xλd(t). By a well-
known result of Murphy [26], the set {Xst|λ ⊢ n, s, t ∈ Std(λ)} is a basis of
RSn. We call it the Murphy basis of RSn. It is a cellular basis of RSn in the
sense of [17]. Note also that the set {Yst := d(s)−1Yλd(t)|λ ⊢ n, s, t ∈ Std(λ)}
is a cellular basis of RSn too. We call it the Y Murphy basis of RSn. For
both cellular bases the cell modules (i.e., Specht modules) of RSn are labeled
by the partitions in Pn.

For any λ, µ ∈ Pn, we write λ☎µ if
∑i

j=1 λj ≥
∑i

j=1 µj for any i ≥ 1. If λ☎µ

and λ 6= µ, then we write λ✄ µ. We use (RSn)
☎λ (respectively, (RSn)

✄λ) to
denote the free R-submodule of RSn spanned by the Murphy basis elements
of the form Xuv with u, v ∈ Std(µ) and µ☎ λ (respectively, µ✄ λ). Then both
(RSn)

☎λ and (RSn)
✄λ are two-sided ideals of RSn.

We now recall the cellular structure of the Brauer algebra Bn(m). Let f be an
integer with 0 ≤ f ≤ [n/2], where [n/2] is the largest non-negative integer not
bigger than n/2. We define

Df :=

{
d ∈ Sn

∣∣∣∣∣

(2j − 1)d < (2j)d for 1 ≤ j ≤ f
(1)d < (3)d < · · · < (2f − 1)d

(2f + 1)d < (2f + 2)d < · · · < (n)d

}
.

For each λ ∈ Pn−2f , we denote by Std2f (λ) the set of all the standard λ-
tableaux with entries in {2f +1, · · · , n}. The initial tableau t

λ
f in this case has

the numbers 2f + 1, · · · , n in order along successive rows. Again, for each t ∈
Std2f (λ), let d(t) be the unique element in S{2f+1,··· ,n} ⊆ Sn with t

λ
fd(t) = t.

Let σ ∈ S{2f+1,··· ,n} and d1, d2 ∈ Df . Then d−1
1 e1e3 · · · e2f−1σd2 corresponds

to the Brauer n-diagram where the top horizontal edges connect (2i − 1)d1
and (2i)d1, the bottom horizontal edges connect

(
(2i − 1)d2

)−
and

(
(2i)d2

)−
,

for i = 1, 2, · · · , f , and the vertical edges connects (j)d1 with
(
(j)d2

)−
for

j = 2f + 1, 2f + 2, · · · , n.
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Lemma 2.1. ([10, Corollary 3.3]) With the above notations, the set

{
d−1
1 e1e3 · · · e2f−1σd2

∣∣∣∣ 0 ≤ f ≤ [n/2], σ ∈ S{2f+1,··· ,n}, d1, d2 ∈ Df

}
.

is a basis of the Brauer algebra Bn(x)R, which coincides with the natural basis
given by Brauer n-diagrams.

Definition 2.2. Let D = d−1
1 e1e3 · · · e2f−1σd2 ∈ Bdn, where 0 ≤ f ≤ [n/2],

σ ∈ S{2f+1,··· ,n}, d1, d2 ∈ Df . Then we define ℓ(D) := ℓ(d1)+ ℓ(d2)+ ℓ(σ) and

sign(D) := (−1)f (−1)ℓ(D).

Remark 2.3. 1) We can always draw the Brauer diagram as a “nice diagram”
(i.e., in a way such that two edges intersect at most once and there are no
self-intersections and no three edges intersect at one point, etc, see [14, 1.1]).
If D is represented by a “nice diagram” with f horizontal edges in each row
and n(D) is the number of crossings of edges, then sign(D) = (−1)f+n(D).
Moreover, if D ∈ Sn then n(D) coincides with the length function on Sn

which we introduced before.
2) For any D1, D2 ∈ Bdn, note that in general

sign(D1D2) 6= sign(D1) sign(D2).

3) Our definition of sign(D) coincides with that of ε(D) in [16, 1.4].

Note that, however, the above basis is not a cellular basis for Bn(x). But if we
replace the σ in the above basis by a Murphy basis element of RS{2f+1,··· ,n}

then we will get a cellular basis of Bn(x). Precisely, the set

{
d−1
1 e1e3 · · · e2f−1

(
d(s)−1X

(f)
λ d(t)

)
d2

∣∣∣∣∣
0 ≤ f ≤ [n/2], λ ∈ Pn−2f

s, t ∈ Std2f (λ),d1, d2 ∈ Df

}
,

where X
(f)
λ :=

∑
w∈S

(f)
λ

w and

S
(f)
λ := S{2f+1,··· ,2f+λ1} ×S{2f+λ1+1,··· ,2f+λ1+λ2} × · · · ,

is a cellular basis of the Brauer algebra Bn(x)R. The cell modules of Bn(x)R
are labeled by the set of pairs (f, λ), where 0 ≤ f ≤ [n/2] and λ ⊢ n− 2f . For
any two pairs (f, λ), (g, µ) with 0 ≤ f, g ≤ [n/2] and λ ∈ Pn−2f , µ ∈ Pn−2g, we
define (f, λ) ☎ (g, µ) if either f > g or f = g and λ ☎ µ. If (f, λ) ☎ (g, µ) and
(f, λ) 6= (g, µ), then we write (f, λ)✄(g, µ). We use (Bn(x))

☎(f,λ) (respectively,
(Bn(x))

✄(f,λ)) to denote the freeR-submodule ofBn(x) spanned by the cellular
basis elements corresponding to those (g, µ, d1, d2, s, t) with µ ∈ Pn−2g, d1, d2 ∈
Dg, s, t ∈ Std(µ) and (g, µ) ☎ (f, λ) (respectively, (g, µ) ✄ (f, λ)). Then both
(Bn(x))

☎(f,λ) and (Bn(x))
✄(f,λ) are two-sided ideals ofBn(x). In particular, if

Documenta Mathematica 17 (2012) 245–270



252 J. Hu, Z. Xiao

we denote byBn(x)
(f) the two-sided ideal ofBn(x) generated by e1e3 · · · e2f−1,

then
Bn(x)

(f) =
∑

λ⊢n−2f

(Bn(x))
☎(f,λ)

is spanned by the cellular basis elements which it contains. Henceforth, we

shall write B
(f)
n instead of Bn(x)

(f) for simplicity.

The Brauer algebra Bn(x) and its specialized version have been studied in
a number of references, e.g., [1], [2], [3], [4], [5], [6], [7], [10], [12], [14], [15],
[16], [19], [20], [25], [27] and [28]. In the set up of Schur–Weyl duality for
orthogonal groups, we only need certain specialized Brauer algebras. Let K be
a field of characteristic not equal to 2. Let m ∈ N and V an m-dimensional
orthogonal space over K. Let Bn(m)Z := Z ⊗Z[x] Bn(x), where Z is regarded
as Z[x]-algebra by specifying x to m. Let Bn(m) := K ⊗Z Bn(m)Z, where K
is regarded as Z-algebra in the natural way. Then there is a right action of
Bn(m) on the n-tensor space V ⊗n which commutes with the natural left action
of O(V ). We recall the definition of this action. Let δi,j denote the value of
the usual Kronecker delta. We fix an ordered basis

{
v1, v2, · · · , vm

}
of V such

that
(vi, vj) = δi,m+1−j , ∀ 1 ≤ i, j ≤ m.

The right action of Bn(m) on V ⊗n is defined on generators by

(vi1 ⊗ · · · ⊗ vin)sj := vi1 ⊗ · · · ⊗ vij−1 ⊗ vij+1 ⊗ vij ⊗ vij+2 ⊗ · · · ⊗ vin ,

(vi1 ⊗ · · · ⊗ vin)ej := δij ,m+1−ij+1vi1 ⊗ · · · ⊗ vij−1 ⊗

( m∑

k=1

vk ⊗ vm+1−k

)

⊗ vij+2 ⊗ · · · ⊗ vin .

Let K be the algebraic closure of K. Set VK := K ⊗K V . Then by the main
results in [1], [2], [3], [7], [11] and [29], we know that there is a Schur–Weyl
duality between Bn(m)K and O(VK) on V ⊗n

K
. In particular, we have two

surjective homomorphisms as follows:

ϕK : Bn(m)K → EndO(VK)(V
⊗n

K
), ψK : KO(VK) → EndBn(m)K

(V ⊗n

K
).

Furthermore, ϕK is injective if and only if m ≥ n. If m < n then dimKerϕK

is independent of the characteristic of the field K (as long as charK 6= 2).

From now on until the end of this section, we assume that m < n. The main
results in [11] actually implies that dimK KerϕK = dimK Kerϕ and KerϕK =
K ⊗K Kerϕ because [11, Theorem 1.4, Theorem 6.9] gave an integral basis for
KerϕK . In particular, dimKerϕ is independent of the characteristic of the field
K (as long as charK 6= 2). In the following sections we shall sometimes use
AnnBn(m)

(
V ⊗n

)
to denote the annihilator of V ⊗n in Bn(m). By definition,

AnnBn(m)(V
⊗n) = Kerϕ.
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3 The annihilator of n-tensor space

In this section, we shall prove that the annihilator of V ⊗n in Bn(m) is equal
to the two-sided ideal generated by E0, E1, . . . , E[(m+1)/2]. This generalizes the
early result (for the case charK = 0) of Lehrer–Zhang [22, Theorem 6.1].

We first recall a definition and a result given in [22].

Definition 3.1. ([22, Lemma 4.1]) Let S = (i1, · · · , iN ), S′ = (j1, · · · , jN ) be
two N -tuples of integers such that {i1, · · · , iN}, {j1, · · · , jN} are two disjoint
subsets of {1, 2, · · · , 2n}. Let β be any pairing of the vertices

{
1, 2, · · · , 2n

}
\

{i1, · · · , iN , j1, · · · , jN}. For w ∈ SN , let Dw(S, S
′, β) be the Brauer diagram

with edges
{
(ik, jπ(k))

∣∣ k = 1, 2, · · · , N
}
⊔ β. We define

b(S, S′, β) :=
∑

w∈SN

sign(w)Dw(S, S
′, β) ∈ Bn(m).

Lemma 3.2. ([22, (4.5)]) Let Sa,b := (1, 2, · · · , a, (a+1)−, (a+2)−, · · · , (a+b)−),
S′
a,b := (a + 1, a + 2, · · · , a + b, 1−, 2−, · · · , a−), βa+b be the pairing (a + b +

1, (a+ b+ 1)−), (a+ b+ 2, (a+ b+ 2)−), · · · , (n, n−). Then we have that

Ea,b = b(Sa,b, S
′
a,b, βa+b).

The advantage of the above alternative description of Ea,b lies in that the
sign sign(w) before Dw(S, S

′, β) depends only on w which is more easier to
be handled than the sign sign(Dw(S, S

′, β)). More precisely, up to a sign,
b(S, S′, β) depends only on β and the two subsets {i1, · · · , iN}, {j1, · · · , jN}
but not on the orderings on these two subsets.

For any h ∈ Bn(m), we use 〈h〉 to denote the two-sided ideal of Bn(m) gener-
ated by h. For any finite set S, we use |S| to denote the cardinality of S.

Lemma 3.3. Let a, b ∈ N such that 1 ≤ a+b ≤ n. Then there exist two elements
w1, w2 ∈ Sa+b such that Eb,a = ±w1Ea,bw2. In particular, 〈Ea,b〉 = 〈Eb,a〉.

Proof. This is clear by Lemma 3.2. In fact, we can take w1 to be the Brauer
n-diagram which has

{1, (a+ 1)−}, {2, (a+ 2)−}, · · · , {b, (a+ b)−},

{b+ 1, 1−}, {b+ 2, 2−}, · · · , {b+ a, a−},

{r, r−}, for all r ∈ {a+ b+ 1, a+ b+ 2, · · · , n},

as its (vertical) edges; and w2 to be the Brauer n-diagram which has

{1, (b+ 1)−}, {2, (b+ 2)−}, · · · , {a, (b+ a)−},

{a+ 1, 1−}, {a+ 2, 2−}, · · · , {a+ b, b−},

{r, r−}, for all r ∈ {a+ b+ 1, a+ b+ 2, · · · , n},

as its vertical edges.
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The proof of the next lemma uses the original definition of Ea,b.

Lemma 3.4. For any positive integers a, b with 1 ≤ a + b ≤ n, we have that
Ea,b ∈ 〈Ea,b−1〉 ∩ 〈Ea−1,b〉.

Proof. For each k ∈ {1, 2, · · · , a, (a + 1)−, · · · , (a + b)−}, we use Bd(k; a, b)
to denote the subset of the Brauer diagrams in Bd(a, b) which have the edge
{k, a+ b}.
If k = i ∈ {1, 2, · · · , a} then we use d to denote the Brauer n-diagram which
has {k, a+ b} and {k−, (a+ b)−} as its only horizontal edges and

{r, r−}, for all r ∈ {1, 2, · · · , n}\{k, a+ b},

as its vertical edges. It is clear that sign(d) = −1. By the concatenation rule
of Brauer diagrams, it is easy to see that

{
D

∣∣ D ∈ Bd(k; a, b)
}
=

{
dD′′

∣∣ D′′ ∈ Bd(a, b− 1)
}
.

We claim that

∑

D∈Bd(k;a,b)

sign(D)D = −dEa,b−1 ∈ 〈Ea,b−1〉.

To prove this claim, it suffices to show that for each D′′ ∈ Bd(a, b− 1),

sign(dD′′) = sign(d) sign(D′′) = − sign(D′′). (3.5)

Note that when concatenating a “nice diagram” for d with a “nice diagram” for
D′′ and transforming it into a “nice diagram” for dD′′, the only transformation
which can possibly change the parity of ℓ(d) + 1 + ℓ(D′′) + f (where 2f is the
number of horizontal edges of D′′) is the following type of edge which was
drawn in red color (where D′′ ∈ Bd(a, b− 1)):

1 k a+ba+b−1

2n       2n+1−a−b

  D"

   d

a

2n+1−k

           Figure 1.4

=

=

That is, we need to eliminate the self-intersection in the following picture.
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           Figure 1.5

However, by eliminating the above self-intersection and making it into an edge
in a “nice diagram” for dD′′ has the effect of removing one horizontal edge
on the top rows of D′′ together with eliminating 2k − 1 crossing on this con-
catenation diagram for some k ∈ N. To be more precise, when we eliminate
the self-intersection in Figure 1.5, the immediate effect is that we will remove
one top horizontal edge of D′′ as well as one crossing from the concatenation
diagram. However, there are possibly some more crossings which will be re-
moved. These are the crossings arising from the vertices inside the area circled
by the edge in Figure 1.5. If a vertex γ inside the area connects with another
vertex which is also inside the circled area then these two interior vertices will
contribute two crossings with the red line which will finally be eliminated; oth-
erwise γ itself will connect with two different vertices outside the circled area
and hence will produce two crossings with the red line which will finally be
eliminated. To sum all, the sign finally remains unchanged. This proves (3.5).

If k = i− ∈ {(a + 1)−, (a + 2)−, · · · , (a + b)−} then we use d′ to denote the
Brauer n-diagram which has

{i, (i+ 1)−}, {i+ 1, (i+ 2)−}, · · · , {a+ b− 1, (a+ b)−}, {a+ b, i−},

{r, r−}, for all r ∈ {1, 2, · · · , i− 1} ⊔ {a+ b+ 1, a+ b+ 2, · · · , n},

as its (vertical) edges. It is clear that sign(D2) = (−1)a+b−i. Then by a similar
argument as in the case k = i, we can deduce that

∑

D∈Bd(k;a,b)

sign(D)D = (−1)a+b−iEa,b−1d
′ ∈ 〈Ea,b−1〉.

Therefore, we have that

Ea,b =
∑

k∈{1,2,··· ,a,(a+1)−,··· ,(a+b)−}

∑

D∈Bd(k;a,b)

sign(D)D ∈ 〈Ea,b−1〉.

This proves Ea,b ∈ 〈Ea,b−1〉. It remains to prove that Ea,b ∈ 〈Ea−1,b〉.
Exchanging the roles of a and b and using Lemma 3.3, we see that

〈Ea,b〉 = 〈Eb,a〉 ⊆ 〈Eb,a−1〉 = 〈Ea−1,b〉.

as required. This completes the proof of the lemma.
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Note that if a ≥ 1 and b = 0 (respectively, if a = 0 and b ≥ 1) then, by
the theory of symmetric group, we have that Ea,0 ∈ 〈Ea−1,0〉 (respectively,
E0,b ∈ 〈E0,b−1〉).

Let A(1), A(2), A(3), A(4) be four subsets of indices such that

(a) A(i) ∩ A(j) = ∅ for any 1 ≤ i 6= j ≤ 4; and

(b) A(1) ⊔A(3) ⊆ {1, 2, · · · , n}, A(2) ⊔ A(4) ⊆ {1−, 2−, · · · , n−}; and

(c) |A(1)|+ |A(2)| = |A(3)|+ |A(4)|.

Recall that i− = 2n+ 1 − i for each 1 ≤ i ≤ 2n. We set n0 := |A(1)| + |A(2)|,
and

{
a1, a2, · · · , a2n−2n0

}
:=

{
1, 2, · · · , 2n

}
\

4⊔

k=1

A(k).

Let (i1, j1, i2, j2, · · · , in−n0 , jn−n0) be a fixed permutation of {a1, · · · , a2n−2n0}.
Set

i := (i1, i2, · · · , in−n0), j := (j1, j2, · · · , jn−n0).

a11 := |A(1)|, a12 := |A(2)|, a21 := |A(3)|, a22 := |A(4)|.

Let βi,j be the pairing (i1, j1), (i2, j2), · · · , (in−n0 , jn−n0). We fix an ordering
on A(1) ⊔A(2) and an ordering on A(3) ⊔A(4) respectively. We define SA, S

′
A to

be the corresponding n0-tuples with respect to the two orderings. As we said
before, for different choices of orderings, b(SA, S

′
A, βi,j) differs only by a sign.

Lemma 3.6. With notations as above, we have that

b(SA, S
′
A, βi,j) ∈ 〈Ea11+k,a12−k〉,

for some integers 0 ≤ k ≤ min{a12, n− a11}.

Proof. Assume that

SA = (q1, · · · , qa11 , p
−
a22+1, · · · , p

−
a22+a12

),

S′
A = (qa11+1, · · · , qa11+a21 , p

−
1 , · · · , p

−
a22

),

{qa11+a21+1, · · · , qn} = {i1, · · · , in−n0 , j1, · · · , jn−n0} ∩ {1, 2, · · · , n},

{p−a12+a22+1, · · · , p
−
n } = {i1, · · · , in−n0 , j1, · · · , jn−n0} ∩ {1−, 2−, · · · , n−},

where a11 + a12 = a21 + a22 = n0. In other words,

A(1) = {q1, · · · , qa11}, A(2) = {p−a22+1, · · · , p
−
a22+a12

},

A(3) = {qa11+1, · · · , qa11+a21}, A(4) = {p−1 , · · · , p
−
a22

}.

We divide the proof into three cases:
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Case 1. a11 = a22 and a12 = a21. In this case, We use σ1 to denote the Brauer
diagram which has the following edges

{k, q−k }, for 1 ≤ k ≤ a11 + a21,

{a11 + a21 + l, q−a11+a21+l}, for 1 ≤ l ≤ n− a11 − a21,

and use σ2 to denote the Brauer diagram which has the following edges

{pk, k
−}, for 1 ≤ k ≤ a12 + a22,

{pa12+a22+l, (a12 + a22 + l)−}, for 1 ≤ l ≤ n− a12 − a22.

Then σ1, σ2 are both elements in the symmetric group Sn.
The pairing βi,j and the elements σ1, σ2 determine a pairing β on the set of
vertices {n0+1, n0+2, · · · , n, (n0+1)−, (n0+2)−, · · · , n−}, and hence a Brauer
(n − n0)-diagram D. Since the number of top horizontal edges of D is the
same as the number of the bottom horizontal edges of D, we can clearly write
D = D1D0D2 such thatD1, D0, D2 ∈ Bdn−n0 andD0 contains only the vertical
edges of the form (k, k−) with n0+1 ≤ k ≤ n. We extend the Brauer diagrams
D1, D2 ∈ Bdn−n0 to be Brauer diagrams D′

1, D
′
2 ∈ Bdn by adding the vertical

edges (k, k−) with 1 ≤ k ≤ n0 to their left-hand sides.
Then it follows directly from the alternative description of Ea,b given in Lemma
3.2 that

σ1b(SA, S
′
A, βi,j)σ2 = D′

1Ea11,a12D
′
2.

It follows (by Lemma 3.3) that

b(SA, S
′
A, βi,j) = σ−1

1 D′
1Ea11,a12D

′
2σ

−1
2 ∈ 〈Ea11,a12〉 = 〈Ea12,a11〉,

as required.

Case 2. a11 > a22 and a12 < a21. We set d := a11 − a22. Then d ∈ N and
d ≥ 1. We use induction on d. It is clear that a11 ≥ 1. In this case, for each
Brauer diagram D′′ involved in b(SA, S

′
A, βi,j), since a11 + a21 > a12 + a22,

there must be some bottom horizontal edges in D′′ of the form {p−a , p
−
b } with

a, b > a12 + a22. In other words, there must exist a pairing (is0 , js0) ∈ βi,j
such that is0 , js0 ∈ {1−, 2−, · · · , n−}. Let D3 be the Brauer diagram which
has the horizontal edges {i−s0 , j

−
s0}, {is0 , js0} and vertical edges {j, j−} for any

j ∈ {1, 2, · · · , n} \ {i−s0 , j
−
s0}. Define

SB := SA, S′
B := (S′

A \ {qa11+a21}) ∪ {is0},

β′ :=
{
(is, js)|1 ≤ s ≤ n− n0, (is, js) 6= (is0 , js0)

}
⊔ {(qa11+a21 , js0)}.

Then it is clear that

b(SA, S
′
A, βi,j) = b(SB, S

′
B, β

′)D3 ∈ 〈b(SB , S
′
B, β

′)〉.

Now we are in a position to apply induction hypothesis to b(SB, S
′
B, β

′). This
proves the lemma in Case 2.
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Case 3. a11 < a22 and a12 > a21. We set d := a22 − a11. Then d ∈ N and
d ≥ 1. We use induction on d. It is clear that a12 ≥ 1. In this case, for
each Brauer diagram D̂ involved in b(SA, S

′
A, βi,j), since a11 + a21 < a12 + a22,

there must be some top horizontal edges in D̂ of the form {qa, qb} with a, b >
a11 + a21. In other words, there must exist a pairing (is0 , js0) ∈ βi,j such that
is0 , js0 ∈ {1, 2, · · · , n}. Let D′

3 be the Brauer diagram which has the horizontal
edges {i−s0 , j

−
s0}, {is0, js0} and vertical edges {j, j−} for any j ∈ {1, 2, · · · , n} \

{is0 , js0}. Define

SB := (SA \ {p−a12+a22
}) ∪ {is0}, S′

B := S′
A,

β′ :=
{
(is, js)|1 ≤ s ≤ n− n0, (is, js) 6= (is0 , js0)

}
⊔ {(js0 , p

−
a12+a22

)}.

Then it is clear that

b(SA, S
′
A, βi,j) = D′

3b(SB, S
′
B, β

′) ∈ 〈b(SB , S
′
B, β

′)〉.

Now we are in a position to apply induction hypothesis to b(SB, S
′
B, β

′). This
proves the lemma in Case 3. Hence we complete the proof of the lemma.

For the sake of simplicity, we shall abbreviate the partition (a, · · · , a︸ ︷︷ ︸
k copies

) as (ak).

Definition 3.7. ([11, Theorem 1.4]) We set

(2Pn)
′ :=

{
λ̃ := (λ1, λ1, λ2, λ2, · · · ) ⊢ 2n

∣∣ λ = (λ1, λ2, · · · ) ∈ Pn

}
,

Tm :=
{
(ν, t)

∣∣ t ∈ Std(ν̃), (m+ 1, 1n−m−1)✂ ν ∈ Pn

}
.

Now we are in a position to state the main result of this section.

Theorem 3.8. Let K be an arbitrary field of characteristic other than two. If
n > m, then

AnnBn(m)

(
V ⊗n

)
=

〈
E0, E1, · · · , E[m+1

2 ]

〉
.

Proof. By [11, Theorem 1.4 and Theorem 6.9], we know that AnnBn(m) (V
⊗n)

has a basis consisting of elements of the form Yν,t, where (ν, t) ∈ Tm. It remains
to show (by the first statement of Theorem 1.2) that each Yν,t belongs the two-
sided ideal generated by E0, E1, · · · , E[m+1

2 ].

Let (ν, t) ∈ Tm. By the definition (see [11, §6])

Yν,t = (−1)ℓ(d(t))Yν ∗ d(t) = (−1)ℓ(d(t))
∑

i,j

(±b(SA, S
′
A, βi,j)),

where “ ∗ ” denotes the permutation action of S2n on Bn(m) (see [11, Section
6]), and

A(1) : = {(i)d(t) | i = 1, 2, 3, · · · , ν1} ∩ {1, 2, · · · , n},

A(2) : = {(i)d(t) | i = 1, 2, 3, · · · , ν1} ∩ {1−, 2−, · · · , n−},

A(3) : = {(i−)d(t) | i = 1, 2, 3, · · · , ν1} ∩ {1, 2, · · · , n},

A(4) : = {(i−)d(t) | i = 1, 2, 3, · · · , ν1} ∩ {1−, 2−, · · · , n−},
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with |A(1)|+ |A(2)| = |A(3)| + |A(4)| = ν1, SA, S
′
A are defined by using certain

prefixed ordering on the sets A(1) ⊔ A(2), A(3) ⊔A(4)respectively, and

i := (i1, i2, · · · , in−ν1), j := (j1, j2, · · · , jn−ν1)

such that (i1, j1, i2, j2, · · · , in−ν1 , jn−ν1) runs over a subset of permutations of

the integers in {1, 2, · · · , 2n} \
⊔4

k=1A
(k).

By Lemma 3.6, we obtain

b(SA, S
′
A, βi,j) ∈

〈
E|A(1)|+k,|A(2)|−k

〉
,

for some integers k with 0 ≤ k ≤ min{|A(2)|, n − |A(1)|}. Note that the con-
dition (ν, t) ∈ Tm implies that |A(1)| + |A(2)| = ν1 ≥ m + 1. It follows from
Lemma 3.4 that b(SA, S

′
A, βi,j) belongs to the two-sided ideal generated by

E0, E1, · · · , Em+1.

On the other hand, it is clear that for any integer [m+1
2 ] + 1 ≤ i ≤ m + 1,

there exists σ′
1, σ

′
2 ∈ Sn, such that Ei = ±σ′

1Em+1−iσ
′
2 ∈ 〈Em+1−i〉. As a

consequence, we get that

b(SA, S
′
A, βi,j) ∈ 〈E0, E1, · · · , E[(m+1)/2]〉,

as required. This completes the proof of the theorem.

4 Proof of Theorem 1.3

In this section we shall give the main result of this paper. That is, the proof
of Theorem 1.3.

We shall proceed the proof in three steps. The first step is to prove a statement
(Theorem 4.10) about identification between certain two-sided ideals in the
symmetric group algebra KSn. To this end, we need to recall the seminormal
basis ([18], [9], [24]) of the symmetric group algebra. We shall follow the
approach in [24]. Note that [24] only consider the seminormal basis of the
(cyclotomic) Hecke algebra with q 6= 1. The symmetric group case (i.e., q = 1)
is similar and may be proved using the same arguments. The only real difference
between the cases q 6= 1 and q = 1 is the choice of content function: if q 6= 1 then
contt(k) = ξc−r, when t(r, c) = k, and if q = 1 then, instead, contt(k) = c− r.
Analogous minor ‘logarithmic’ adjustments are required in the argument below
when q = 1.

Set L1 := 0 and define Li+1 := siLisi + si for i = 1, · · · , n− 1. The elements
L1, · · · , Ln are called the Jucys–Murphy operators of the symmetric group Sn.
Let λ ⊢ n and t ∈ Std(λ). For any integer 1 ≤ k ≤ n, we define contt(k) = j− i
if k appears in row i and column j in t. Let

R(k) :=
{
d ∈ Z

∣∣ |d| < k and d 6= 0 if k = 2, 3
}
,
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which is the complete set of possible contents contt(k) as t runs over the set of
standard tableaux.

Definition 4.1. ([24, Definition 2.4]) Let λ ⊢ n and s, t ∈ Std(λ).

(i) Let Ft :=
n∏

k=1

∏
c∈R(k)

contt(k) 6=c

Lk − c

contt(k)− c
.

(ii) Let fst := FsXstFt.

Let λ ⊢ n and t ∈ Std(λ). For each integer 1 ≤ k ≤ n we use tk to denote
the subtableau of t which contains {1, 2, · · · , k}. If γ = (i, j) ∈ [λ] such that
[λ]\{γ} is again the Young diagram of a partition µ. Then we call γ a removable
node of λ and an addable node of µ. For any two nodes γ = (i, j), γ′ = (i′, j′)
we say that γ is below γ′, or γ′ is above γ if i > i′.

Definition 4.2. ([24, (2.8)]2, [21, 3.15]) Let λ ⊢ n and t ∈ Std(λ). For
k = 1, · · · , n, let At(k) be the set of addable nodes of the partition Shape(tk)
which are below t

−1(k). Similarly, let Rt(k) be the set of removable nodes of
Shape(tk) which are below t

−1(k). Now define

γt =

n∏

k=1

∏
α∈At(k)

(
contt(k)− cont(α)

)
∏

ρ∈Rt(k)

(
contt(k)− cont(ρ)

) ∈ Q,

and f̃st := γ−1
t
fst for any s ∈ Std(λ).

Lemma 4.3. ([24, (2.9)]) Let λ ⊢ n. Then

γtλ = [λ]! :=
∏

i≥1

λi! .

Theorem 4.4. ([24, (2.14), (2.15)])

(1)
{
f̃st

∣∣ s, t ∈ Std(λ), λ ⊢ n
}
is a basis of matrix units in QSn.

(2) Let λ ⊢ n and t ∈ Std(λ), then Ft = ftt/γt and Ft is a primitive idempo-
tent in QSn with Sλ ∼= FtQSn.

(3) For any λ ⊢ n let Fλ :=
∑

t∈Std(λ) Ft. Then Fλ is a primitive central
idempotent in QSn.

(4)
{
Fλ

∣∣ λ ⊢ n
}
is a complete set of primitive central idempotent in QSn

and
1 =

∑

λ⊢n

Fλ =
∑

t standard

Ft.

2We remark that there is a typos in [24, Page 704, Line 9], y ≺ x there should be replaced
by y ≻ x, cf. [21, 3.15].
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Lemma 4.5. ([24, Proposition 2.6]) Let λ ⊢ n and s, t ∈ Std(λ). Then

fst ≡ Xst +
∑

u,v∈Std(λ)
u✄s,v✄t

auvXuv (mod (QSn)
✄λ),

where au,v ∈ Q for each u, v ∈ Std(λ).

Definition 4.6. ([8, Section 4]) Let λ ⊢ n. We define

zλ := XλwλYλ′ .

Lemma 4.7. ([8], [26]) Let λ ⊢ n and w ∈ Sn. Then

(1) (ZSn)
✄λYλ′ = 0 = Yλ′(ZSn)

✄λ;

(2) If w 6= wλ and ℓ(w) ≤ ℓ(wλ), then XλwYλ′ = 0 in ZSn.

Proof. (1) follows from [26, Lemma 4.12]. It remains to prove (2). Assume
that w 6= wλ and ℓ(w) ≤ ℓ(wλ). If ℓ(w) < ℓ(wλ), then by [26, Corollary 4.13]
we see that XλwYλ′ = 0. Now assume ℓ(w) = ℓ(wλ). Then by [8, Lemma 1.5]
t
λw 6∈ Std(λ) because w 6= wλ.
For any t ∈ Std(λ) and integer 1 ≤ k < n, it is well-known that

Xλd(t)sk =

{
Xλd(t), if k, k + 1 are in the same row of t;

Xλd(tsk), if tsk ∈ Std(λ),

and if k, k + 1 are in the same column of t, then (by [23, Corollary 3.21])

Xλd(t)sk ≡ −Xλd(t) +
∑

t✁v∈Std(λ)

rvXλd(v) (mod (ZSn)
✄λ),

where rv ∈ Z for each v. By [23, Theorem 3.8], t✁ v ∈ Std(λ) only if ℓ(d(t)) >
ℓ(d(v)). As a result (of the fact tλw 6∈ Std(λ)), we see that

Xλw ≡
∑

t∈Std(λ)
ℓ(d(t))<ℓ(w)=ℓ(wλ)

btXλd(t) (mod (ZSn)
✄λ),

where bt ∈ Z for each t. Now, applying the result (1) (which we have just
proved) and [26, Corollary 4.13] again,

XλwYλ′ =
∑

t∈Std(λ)
ℓ(d(t))<ℓ(w)=ℓ(wλ)

btXλd(t)Yλ′ = 0,

as required. This completes the proof of (2).

Lemma 4.8. ([24, (3.13)]) Let λ ⊢ n. Then

zλ = γ
tλ

′ ftλtλ .
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Note that in the right hand side of the above lemma the coefficient is γ
tλ

′

instead of γ′
tλ

′ because we have specialized q to 1.

The next lemma is a key observation to the proof of Theorem 4.10.

Lemma 4.9. Let λ = (n− k, k) ⊢ n, where k ∈ Z such that 0 ≤ k ≤ n/2. Then

(1) zλ = 2kftλtλ ≡ 2kXtλtλ
(mod (ZSn)

✄λ).

(2) Yλ′wλ′XλwλYλ′ = 2kYλ′wλ′Xλwλ.

Proof. By Lemma 4.8 and Lemma 4.3, we get that zλ = 2kftλtλ . Applying
Lemma 4.5, we get that

zλ = 2kftλtλ ≡ 2kXtλtλ
(mod (QSn)

✄λ).

Since zλ, 2
kXtλtλ

∈ ZSn, we deduce that

zλ = 2kftλtλ ≡ 2kXtλtλ
(mod (ZSn)

✄λ).

This proves (1). Note that w−1
λ = wλ′ . By [8, (4.1)] and applying the anti-

automorphism ∗ we know that Yλ′wλ′(ZSn)
✄λ = 0. Now (2) follows from this

equality and (1).

Let λ, µ be two compositions of n. A λ-tableau of type µ is a map S : [λ] →
{1, 2, · · · , d} such that µi = #{γ ∈ [λ]|S(γ) = i} for i ≥ 1. A λ-tableau S of
type µ is row semistandard if the entries in each row of S are non-decreasing
from left to right; S is semistandard if (i) λ is a partition; and (ii) S is row
semistandard and the entries in each column of S are strictly increasing from
top to bottom. If t ∈ Std(λ) then we define µ(t) to be the λ-tableau obtained
from t by replacing each entry i in t by r if i appears in row r of tµ. It is clear
that µ(t) is a row semistandard λ-tableau of type µ. Recall our definition (see
Section 2) of Xλ, Yλ for each composition λ. For each integer i with 0 ≤ i ≤ n,
we set

Xi := X(i,n−i), Yi := Y(i,n−i).

For any h ∈ KSn, we use 〈h〉0 to denote the two-sided ideal of KSn generated
by h. The next theorem is the first step in the direction towards the proof of
Theorem 1.3.

Theorem 4.10. Let K be a field of characteristic other than two. Let a be an
integer with 0 ≤ a ≤ n/2. Then we have that

〈Xn−a〉0 =
(
KSn

)☎(n−a,a)
.

Proof. By the cellular structure of KSn, we see that 〈Xn−a〉0 ⊆(
KSn

)☎(n−a,a)
and

dim
(
KSn

)☎(n−a,a)
= na :=

∑

(n−a,a)✂λ⊢n

(
#Std(λ)

)2

. (4.11)
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To prove the theorem, it suffices to find at least na K-linear independent ele-
ments in the two-sided ideal 〈Xn−a〉0.

Let λ ⊢ n be a partition such that λ☎µ := (n−a, a). Then λ := (n−k, k), where
k ∈ Z with 0 ≤ k ≤ a ≤ n/2. Let Sk be the following (unique) semistandard
λ-tableau of type µ:

Sk :=

n − a copies︷ ︸︸ ︷
1, 1, . . . , 1,

a − k copies︷ ︸︸ ︷
2, . . . , 2,

2, . . . , 2︸ ︷︷ ︸
k copies

We define S0(λ) :=
{
t ∈ Std(λ)

∣∣ µ(t) = Sk

}
. By [26, Section 7],

∑

t∈S0(λ)

Xλd(t) ∈ (KSn)Xn−a ⊆ 〈Xn−a〉0. (4.12)

It is clear that S0(λ) 6= ∅. We divide the remaining proof into three steps:

Step 1. We claim that Yλ′wλ′Xλ

(∑
t∈S0(λ)

d(t)
)
KSn = Yλ′wλ′XλKSn.

Let t0 ∈ S0(λ) such that ℓ(d(t0)) is maximal. Then ℓ(d(s)) ≤ ℓ(d(t0)) for any
s ∈ S0(λ). Furthermore, by [8, Lemma 1.5],

ℓ(wλ) = ℓ(d(t0)) + ℓ(d(t0)
−1wλ).

We set w := d(t0)
−1wλ. By Lemma 4.7, we deduce that Xλd(s)wYλ′ = 0

for any t0 6= s ∈ S0(λ). Now multiplying wYλ′ and applying Lemma 4.7 and
Lemma 4.9, we get that

Yλ′wλ′Xλ

( ∑

t∈S0(λ)

d(t)
)
wYλ′

= Yλ′wλ′XλwλYλ′ = 2kYλ′wλ′Xλwλ.

Since charK 6= 2, 2k is invertible in K. The above equality implies that

Yλ′wλ′Xλ

( ∑

t∈S0(λ)

d(t)
)
KSn = Yλ′wλ′XλwλKSn = Yλ′wλ′XλKSn,

as required. This proves our claim. Furthermore, it is well-known that the
elements in {Yλ′wλ′Xλd(t)|t ∈ Std(λ)} form a K-basis of Yλ′wλ′XλKSn. In
particular, we have that dimYλ′wλ′XλKSn = #Std(λ).

Step 2. We define

Nλ :=

Xλ

( ∑
t∈S0(λ)

d(t)
)
KSn

Xλ

( ∑
t∈S0(λ)

d(t)
)
KSn

⋂
(KSn)✄λ

.
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We claim that nλ := dimNλ ≥ #Std(λ).

In fact, by Lemma 4.7, the left multiplication by Yλ′wλ′ induces a surjective

homomorphism from Nλ onto Yλ′wλ′Xλ

(∑
t∈S0(λ)

d(t)
)
KSn. By the main

result of Step 1, we know that Yλ′wλ′Xλ

(∑
t∈S0(λ)

d(t)
)
KSn = Yλ′wλ′XλKSn

and has dimension #Std(λ). It follows that nλ := dimNλ ≥ #Std(λ), as
required. This proves our claim.

As a consequence, we can find u1, · · · , unλ
∈ Sn such that the natural image

of the following elements

Xλ

( ∑

t∈S0(λ)

d(t)
)
u1, · · · , Xλ

( ∑

t∈S0(λ)

d(t)
)
unλ

in Nλ form a K-basis of Nλ. For each s ∈ Std(λ) and each integer 1 ≤ j ≤ nλ,
we define

vs,j := d(s)−1Xλ

( ∑

t∈S0(λ)

d(t)
)
uj.

By construction, it is clear that vs,j ∈ 〈Xn−a〉0.

Step 3. We claim that the elements in the following set
{
vs,j

∣∣ s ∈ Std(λ), λ ⊢ n, 1 ≤ j ≤ nλ

}
(4.13)

are K-linearly independent.

In fact, assume that

∑

λ⊢n,s∈Std(λ)
1≤j≤nλ

cs,jvs,j =
∑

λ⊢n,s∈Std(λ)
1≤j≤nλ

cs,jd(s)
−1Xλ

( ∑

t∈S0(λ)

d(t)
)
uj = 0, (4.14)

where cs,j ∈ K for each s, j. Set

Σ0 :=
{
(s, j)

∣∣ s ∈ Std(λ), λ ⊢ n, 1 ≤ j ≤ nλ, cs,j 6= 0
}
.

Suppose that Σ0 6= ∅. We choose an s such that (s, j) ∈ Σ0 for some j and
Shape(s) = λ is minimal under the dominance order “✁”. By the property of
the cellular basis {Xs,t} we know that

Xλ

( ∑

t∈S0(λ)

d(t)
)
uj ≡

∑

t∈Std(λ)

rj,tXtλ,t (mod (KSn)
✄λ),

and hence
vs,j ≡

∑

t∈Std(λ)

rj,tXs,t (mod (KSn)
✄λ).

By the main result in Step 2, we know that Xλ

(∑
t∈S0(λ)

d(t)
)
uj 6∈ (KSn)

✄λ.

It follows that at least one of those coefficients rj,t is nonzero. Combing this
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fact and the minimality of λ and (4.14) we can deduce that for each s ∈ Std(λ)
and each 1 ≤ j ≤ nλ,

∑

1≤j≤nλ

cs,jd(s)
−1Xλ

( ∑

t∈S0(λ)

d(t)
)
uj ∈ (KSn)

✄λ.

Now applying the main result of Step 2 again, we deduce that cs,j = 0 for each
1 ≤ j ≤ nλ, a contradiction to the definition of Σ0. This completes the proof
of our claim.

As a consequence, we see that the two-sided ideal 〈Xn−a〉0 contains at least

∑

(n−a,a)✂λ⊢n

nλ(#Std(λ)) ≥
∑

(n−a,a)✂λ⊢n

(#Std(λ))2 = na

K-linearly independent elements. This implies that we must have that

dim〈Xn−a〉0 = na = dim(KSn)
☎(n−a,a)

and hence 〈Xn−a〉0 = (KSn)
☎(n−a,a). This completes the proof of the theorem.

Our second step in the direction towards Theorem 1.3 is the proof of the fol-
lowing purely combinatorial identity.

Theorem 4.15. Let K be a field of arbitrary characteristic. Let S(m+1,m+1)

(respectively, S(m+1−k,k)) be the Specht module of the symmetric group algebra
KS2m+2 (respectively, KSm+1) corresponding to (m+1,m+1) (respectively,
(m+ 1− k, k), where 0 ≤ k ≤ [(m+ 1)/2]. Then we have that

[(m+1)/2]∑

k=0

(
dimK S(m+1−k,k)

)2
= dimK S(m+1,m+1).

Proof. We shall give a representation theoretic argument to prove the above
combinatorial identity. Note that the dimension of each Specht module is
independent of the field. We can assume without loss of generality that K = C.

We use Bm+1(m)C to denote the specialized Brauer algebra over C with pa-
rameter m. In other words, we assume that n = m+ 1 for the moment. Then
by [12], Bm+1(m)C is semisimple. We have a natural surjective homomorphism
ϕC : Bm+1(m)C ։ EndCO(VC)

(
V ⊗m+1
C

)
, where VC is an orthogonal C-vector

space with dimension m. Note that CS2m+2 is semisimple and each Specht
module CS2m+2 over is irreducible. By [11] we see that

dimKerϕC = dimC S
(m+1,m+1)
C

, (4.16)

where we use S
(m+1,m+1)
C

to denote the simple (Specht) module of CS2m+2

corresponding to the partition (m + 1,m + 1). As before, we use B
(1)
m+1 to
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denote the two-sided ideal of Bm+1(m)C generated by e1. Equivalently, B
(1)
m+1

is the subspace of Bm+1(m)C spanned by those Brauer (m+1)-diagrams which

contain horizontal edges. We claim that KerϕC ∩B
(1)
m+1 = {0}.

In fact, by [22, Theorem 4.3], we know that KerϕC is equal to the two-sided

ideal 〈E[(m+1)/2]〉. It suffices to show that 〈E[(m+1)/2]〉 ∩B
(1)
m+1 = {0}. Since

B
(1)
m+1 is a two-sided ideal of the semisimple C-algebra Bm+1(m)C, we have

that Bm+1(m)C = B
(1)
m+1 ⊕ I0 for some two-sided ideal I0 of Bm+1(m)C. In

particular, xI0 = 0 = I0x for any x ∈ B
(1)
m+1. We define

J0 :=
{
y ∈ Bm+1(m)C

∣∣ yx = 0 = xy for any x ∈ B
(1)
m+1

}
.

Then J0 is a two-sided ideal of Bm+1(m)C and I0 ⊆ J0. Thus Bm+1(m)C =

J0+B
(1)
m+1. Since J0x = 0 for any x ∈ B

(1)
m+1, it follows that every right simple

submodule of J0 is a simple module over Bm+1(m)C/B
(1)
m+1

∼= CSm+1. Using
the Wedderburn theorem for semisimple algebras we get that

J0 =
⊕

λ⊢m+1

(
Sλ
C

)⊕aλ ,

where aλ ∈ N such that 0 ≤ aλ ≤ dimSλ
C
for each λ ⊢ m+ 1. As a result, we

deduce that

dim J0 ≤
∑

λ⊢m+1

(dimSλ
C)

2 = dimC CSm+1 = dimC Bm+1(m)C − dimC B
(1)
m+1,

because Bm+1(m)C/B
(1)
m+1

∼= CSm+1. This in turn forces

J0
⊕

B
(1)
m+1 = J0 +B

(1)
m+1 = Bm+1(m)C.

In particular, J0 ∩B
(1)
m+1 = {0}. On the other hand, by [22, Corollary 5.13] we

know that 〈E[(m+1)/2]〉 ⊆ J0, from which our claim follows at once.

We write a0 := m + 1 − [(m + 1)/2]. Then a0 ≥ m + 1 − a0 and hence
(a0,m+ 1− a0) is a partition of m+ 1. Note that (by Lemma 3.3)

〈E[(m+1)/2]〉 = 〈E[(m+1)/2],a0
〉 = 〈Ea0,[(m+1)/2]〉 = 〈Ea0〉,

Ea0 = Ea0,m+1−a0 ≡ Ya0,m+1−a0 ≡ Ya0 (mod B
(1)
m+1).

By Theorem 4.10, we know that 〈Ya0〉0 = (CSm+1)
☎(a0,m+1−a0). Combining

these fact together with the equality

〈E[(m+1)/2]〉 ∩B
(1)
m+1 = KerϕC ∩B

(1)
m+1 = {0}
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which we have just proved, we can deduce that

dimKerϕC = dim〈E[(m+1)/2]〉 = dim(CSm+1)
☎(a0,m+1−a0)

=

[(m+1)/2]∑

k=0

(
dimC S

(m+1−k,k)
C

)2
.

Finally, comparing the above equality with (4.16), we complete the proof of
the theorem.

By the well-known hook formula (cf. [23]) for the dimension of Specht modules,
we get that

dimS(m+1) = 1, dimS(m,1) = m,

and for each 2 ≤ k ≤ [(m+ 1)/2],

dimS(m+1−k,k) =
(m+ 1)!

∏
(i,j)∈[(m+1−k,k)] h

(m+1−k,k)
i,j

=
(m+ 1)m · · · (m− k + 4)(m− k + 3)(m− 2k + 2)

k!
,

where hλi,j := λi + λ′j − i − j + 1 is the (i, j)-hook length of the partition λ.
Similarly,

dimS(m+1,m+1) =
(2m+ 2)!

∏
(i,j)∈[(m+1,m+1)] h

(m+1,m+1)
i,j

=
(2m+ 2)(2m+ 1) · · · (m+ 3)

(m+ 1)!
.

As a result, we have the following corollary.

Corollary 4.17. We have the following identity:

1 +m2 +

[(m+1)/2]∑

k=2

(
(m+ 1)m · · · (m− k + 3)(m+ 2− 2k)

k!

)2

=
(2m+ 2)(2m+ 1) · · · (m+ 3)

(m+ 1)!
.

Proof. This follows directly from Theorem 4.15 and the hook length formulae
for the dimensions of Specht modules over symmetric groups.

Now we are in the final step to prove Theorem 1.3.

Theorem 4.18. Let K be an arbitrary field of characteristic other than two.
Then the annihilator of V ⊗n in Bn(m) is the two-sided ideal generated by
E[(m+1)/2].
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Proof. By Theorem 3.8, it suffices to show that for each integer i with 0 ≤ i <
[(m + 1)/2], Ei lies in the two-sided ideal of Bn(m) generated by E[(m+1)/2].
For simplicity, we write a := [(m + 1)/2]. By Lemma 3.3, we know that
〈Ej〉 = 〈Em+1−j〉 for each 0 ≤ j ≤ m + 1. Therefore, it suffices to show
that for each integer i with 0 ≤ i < a, E(m+1−i,i) lies in the two-sided ideal
of Bn(m) generated by Em+1−a := E(m+1−a,a). Note that for each integer
0 ≤ i ≤ m + 1, Ei ∈ Bm+1(m) ⊆ Bn(m). Without loss of generality, we can
assume that n = m+ 1 henceforth.

We consider the natural homomorphism ϕK : Bm+1(m) → EndK(V ⊗m+1). By
Corollary 4.17, we have that

(m+ 1)a := 1 +m2 +

[(m+1)/2]∑

k=2

(
(m+ 1)m · · · (m− k + 3)(m+ 2− 2k)

k!

)2

=
(2m+ 2)(2m+ 1) · · · (m+ 3)

(m+ 1)!
.

By [11, Lemma 7.1], Theorem 4.15 and Corollary 4.17, we have that

dimK AnnBm+1(m)(V
⊗m+1) = dimK KerϕK = (m+ 1)a.

On the other hand, since Em+1−a ≡ Ym+1−a (mod B
(1)
n ), we deduce (from

Theorem 4.15, Corollary 4.17 and the Y -Murphy basis for KSm+1) that
〈Em+1−a〉 contains at least (m + 1)a K-linearly independent elements. Since
〈Em+1−a〉 ⊆ KerϕK , it follows that 〈Em+1−a〉 = KerϕK and hence for each
integer 0 ≤ i ≤ [(m+1)/2], Ei ∈ 〈Em+1−a〉 = 〈Ea〉 = 〈E[(m+1)/2]〉, as required.
This completes the proof of the Theorem.

The following corollary give a new integral basis for the annihilator of V ⊗m+1

in Bm+1(m).

Corollary 4.19. Let K be a field of characteristic other than two. Then the
elements in the following set

{
d(s)−1E[(m+1)/2]d(t)

∣∣ s, t ∈ Std(m+ 1− k, k), 0 ≤ k ≤ [(m+ 1)/2]
}

form a K-basis of AnnBm+1(m)(V
⊗m+1)

Proof. This follows directly from the proof of Theorem 4.18.
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