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Abstract.

We determine the ground state energy of the translation invariant
Pauli-Fierz model for an electron with spin, to subleading orderO(α2)
with respect to powers of the finestructure constant α and prove rig-
orous error bounds of order O(α3). A main objective of our argument
is its brevity.
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1. Introduction

We continue the study of the translation invariant Pauli-Fierz model [2], de-
scribing a nonrelativistic free electron interacting with the quantized electro-
magnetic field. In contrast with [2], we study now electron with spin. We are
interested in quantitative properties of the ground state energy (Theorem 2.1)
and its associated eigenfunctions (Theorem 2.2). In particular, we determine
the subleading terms of the ground state energy up to order α2, where α denotes
the finestructure constant, and rigorously bound the error by a term of order
α3. In comparison with [2], the ground state energy is an order of magnitude
larger in powers of α, due to the presence of electron spin.
Following the technique developed in [2] (see also [4]), our method is based
on perturbations around the true ground state of the translation invariant
operator, together with a bound on the expected photon number for this ground
state, obtained by Chen and Fröhlich [8]. In particular, an important ingredient
of the proof is the improvement of photon number estimates for different parts
of the ground state.
A well-known difficulty connected to this problem arises from the fact that the
ground state energy is not an isolated eigenvalue of the Hamiltonian, and that
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the form factor in the interaction term of the Hamiltonian contains a critical
frequency space singularity (the infrared problem of Quantum Electrodynamics
(QED)).
Estimates on the ground state energy play an important role, for instance, in
binding problems, e.g., the determination of the Hydrogen binding energy [3].
The systematic study of Pauli-Fierz Hamiltonian was initiated in [1]. The first
estimate for the translation invariant operator for spinless electron was obtained
by [12]. Later on in [6], the model for electron with spin was considered, and
the bound was obtained up to the order α2 with an error term of the order

α
5

2 logα. Such estimates are not sufficient to compute the correction to the
binding energy due to the interaction with the radiation field. In [2] a new
effective method was developed to obtain the self energy in the spinless case
up to the order α3 with an error O(α4). This result was later improved in
[5] with computing the term O(α4) with error term O(α5). These last two
results [2, 5] were crucial for proving that the binding energy in the case of the
Hydrogen atom with spinless electron contained an α5 logα term and that this
term comes from the ground state energy of the Hydrogen atom and does not
exist in the translation invariant case [3].
In the work at hand, we are starting to implement the same program for the
model of a Hydrogen atom with spin 1/2 electron interacting with the quantized
radiation field. The first step of this program is, as in [2], computing the self-
energy, for the electron with spin, up to the order O(α3).
The Pauli-Fierz Hamiltonian H for a free electron coupled to the quantized
electromagnetic field is defined by

H = :
(

i∇x ⊗ If −
√
αA(x)

)2
: +

√
ασ ·B(x) + Iel ⊗Hf .(1)

where : · · · : denotes normal ordering, corresponding to the subtraction of
a normal ordering constant proportional to α. The operator H acts on the
Hilbert space H := Hel ⊗ F , where Hel = L2(R3,C2), is the Hilbert space of
one non-relativistic electron, R3 is the configuration space of the electron, and
C2 accomodates its spin.
We describe the quantized electromagnetic field by use of the Coulomb gauge
condition. Accordingly, the one-photon Hilbert space is given by L2(R3) ⊗
C2, where R3 denotes the photon momentum and C2 accounts for the two
independent transversal polarizations of the photon. The photon Fock space is
then defined by

F =
⊕

n∈N

F (n)
s ,

where the n-photons space F (n)
s =

⊗n
s

(

L2(R3)⊗ C2
)

is the symmetric tensor

product of n copies of L2(R3)⊗ C2.
We use units such that ~ = c = 1, and where the mass of the electron equals
m = 1/2. The electron charge is then given by e =

√
α, with α ≈ 1/137 denot-

ing the fine structure constant. As usual, we will consider α as a parameter.

Documenta Mathematica 17 (2012) 401–415



Self-energy of an Electron in NRQED 403

The operator that couples an electron to the quantized vector potential is given
by

A(x) =
∑

λ=1,2

∫

R3

ζ(|k|)
2π|k|1/2 ελ(k)

[

eikx ⊗ aλ(k) + e−ikx ⊗ a∗λ(k)
]

dk ,

where by the Coulomb gauge condition, divA = 0. The operators aλ, a
∗
λ satisfy

the usual commutation relations

[aν(k), a
∗
λ(k

′)] = δ(k − k′)δλ,ν , [aν(k), aλ(k
′)] = 0,

and there exists a unique unit ray Ωf ∈ F , the Fock vacuum, which satisfies
aλ(k)Ωf = 0 for all k ∈ R3 and λ ∈ {1, 2}. The vectors ελ(k) ∈ R3 are the
following two orthonormal polarization vectors perpendicular to k,

ε1(k) =
(k2,−k1, 0)
√

k21 + k22
and ε2(k) =

k

|k| ∧ ε1(k).

The function ζ(|k|) describes the ultraviolet cutoff on the wavenumbers k. We
assume ζ to be of class C1, with compact support.
The operator that couples the electron to the magnetic field is

B(x) =
∑

λ=1,2

∫

R3

ζ(|k|)
2π|k|1/2 k × iελ(k)

[

eikx ⊗ aλ(k)− e−ikx ⊗ a∗λ(k)
]

dk .

In Equation (1), σ = (σ1, σ2, σ3) is the 3-component vector of Pauli matrices.
The photon field energy operator Hf is given by

Hf =
∑

λ=1,2

∫

R3

|k|a∗λ(k)aλ(k)dk.

For convenience, in the following, we shall denote

A(x) = A−(x) +A+(x) and B(x) = B−(x) +B+(x)

where

A−(x) :=
∑

λ=1,2

∫

R3

ζ(|k|)
2π|k|1/2 ελ(k)e

ikx ⊗ aλ(k)dk ,

A+(x) := (A−(x))∗,

B−(x) :=
∑

λ=1,2

∫

R3

ζ(|k|)
2π|k|1/2 k × iελ(k)e

ikx ⊗ aλ(k)dk ,

and B+(x) := (B−(x))∗.
The system is translationally invariant, and H commutes with the operator of
total momentum

Ptot = i∇x ⊗ If + Iel ⊗ Pf ,

where i∇x and Pf =
∑

λ=1,2

∫

ka∗λ(k)aλ(k)dk denote respectively the electron
and the photon momentum operators.
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Therefore, if Hp
∼= C2 ⊗ F denotes the fibre Hilbert space corresponding to

conserved total momentum p, for any fixed value p of the total momentum, the
restriction of H to the fibre space Hp is given by (see e.g. [7])

(2) H(p) =: (p− Pf −
√
αA(0))2 : +

√
ασ · B(0) +Hf .

Henceforth, we will write A± := A±(0) and B± = B±(0).
It is known that inf spec(H) = inf spec(H(0)) for small α [9]. Moreover, the
ground state energy of the one electron self-energy operator with total momen-
tum p = 0 is an eigenvalue of multiplicity two [7]. The case of spinless electron,
without restriction on α, was investigated earlier in [10].
In the sequel, we shall study the operator H(p = 0).

2. Statements of the main results

Consider

(3) Ω0 := λΩf , with λ ∈ C
2 such that |λ| = 1 ,

and define

(4) Γ1 := −(Hf + P 2
f )

−1σ.B+Ω0

(5) Γ2 = −(Hf + P 2
f )

−1
[

σ · B+Γ1 + 2A+ · PfΓ1 +A+ · A+Ω0

]

.

On C2 ⊗F , we define the positive bilinear form

(6) 〈v, w〉∗ := 〈v, (Hf + P 2
f )w〉 ,

and its associated semi-norm ‖v‖∗ = 〈v, v〉∗.
Theorem 2.1 (Ground state energy of H(0)). We have

inf spec(H(0)) = −α‖Γ1‖2∗
+ α2

(

2‖A−Γ1‖2 − ‖Γ2‖2∗ + ‖Γ1‖2∗ ‖Γ1‖2
)

+O(α3) .
(7)

The proof of the Theorem consists in proving an upper bound obtained with
a trial state (see inequality (12) in Section 3), and a lower bound obtained by
variational estimates (see (59) in Section 6).

Remark 2.1. Recall that the ground state of H(0) is twice degenerate [7]. The

result in Theorem 2.1 does not depend on the choice of Ω0.

According to Lemma 7.2, the term of order α is nonzero.

In the remainder, we will need the following notations. For n ∈ N, let Pn be
the orthogonal projection onto the subspace C2 ⊗Fn of the space C2 ⊗F , and

P≥n be the orthogonal projection onto the space C2 ⊗
(

⊕

k≥n Fk

)

.

Let Φ0 be a ground state of H(0) with the condition P0Φ0 = Ω0. Taking
the 〈 . , . 〉∗-orthonormal projections of Φ0 along the vectors Γ1 and Γ2, and
denoting by R the component in the 〈 . , . 〉∗-orthogonal complement of their
span, we get

(8) Φ0 = Ω0 + α
1

2 γ1Γ1 + αγ2Γ2 +R
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where for i = 1, 2 we assume

(9) 〈Γi, R〉∗ = 0 and P0R = 0 .

Theorem 2.2. For Φ0 defined by (8) and (9), we have

|γ1 − 1| = O(α) |γ2 − 1| = O(α
1

2 )(10)

‖R‖∗ = O(α
3

2 ) ‖R‖ = O(α) .(11)

The statement of this theorem follows immediately from the proof of Theo-
rem 2.1.

3. Upper bound to the ground state energy

In this section, we prove the upper bound for the ground state energy

inf spec(H(0))

≤ −α‖Γ1‖2∗ + α2
(

2‖A−Γ1‖2 − ‖Γ2‖2∗ + ‖Γ1‖2∗ ‖Γ1‖2
)

+O(α3) .
(12)

Let us define the following trial state

Θ = Ωf +
√
αΓ1 + αΓ2 .

Since

H(0) =Hf + P 2
f + 4

√
αRePf ·A− + 2αReA+ ·A+

+ 2αA+ · A− + 2
√
αRe σ ·B−

(13)

we obtain

〈H(0)Θ, Θ〉 = α‖Γ1‖2∗ + α2‖Γ2‖2∗ + 2α2Re〈A+ ·A+Ωf , Γ2〉
+ 2αRe〈σ ·B−Γ1, Ωf 〉+ 2α2‖A−Γ1‖2 + 4α2Re〈Pf ·A−Γ2, Γ1〉
+ 2α2Re〈σ ·B−Γ2, Γ1〉+ 2α3‖A−Γ2‖2

= −α2‖Γ1‖2∗ − α2‖Γ2‖2∗ + 2α2‖A−Γ1‖2 + 2α3‖A−Γ2‖2

(14)

where in the last equality, we used

α2Re〈A+ ·A+Ωf , Γ2〉+2α2Re〈Pf ·A−Γ2, Γ1〉+α2Re〈σ ·B−Γ2, Γ1〉
= −α2‖Γ2‖2∗ ,

and

2αRe〈σ · B−Γ1, Ωf 〉 = −2α‖Γ1‖2∗ .
The identity ‖Θ‖2 = 1 + α‖Γ1‖2 + α2‖Γ2‖2 together with (14) yields

inf spec(H(0)) ≤ 〈H(0)Θ, Θ 〉
‖Θ‖2

= −α2‖Γ1‖2∗ − α2‖Γ2‖2∗ + 2α2‖A−Γ1‖2 + α2‖Γ1‖2∗‖Γ1‖2 +O(α3) .

which concludes the proof of the upper bound (12).
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4. A priori estimates

Let Φ0 denote the ground state of H(0) with the normalization condition
P0Φ0 = Ω0, where Ω0 is defined by (3).
For Γ1 defined by (4), we decompose Φ0 as

(15) Φ0 = Ω0 + (γ1Γ1 +R1) + P≥2Φ0 with 〈Γ1, R1〉∗ = 0 , γ1 ∈ C .

Proposition 4.1. The following estimate holds

(16) ‖Φ0‖∗ = O(α) .

Proof.

〈H(0)Φ0, Φ0〉 = 〈(Hf + P 2
f )Φ0, Φ0〉+ 4

√
αRe〈Pf ·A−Φ0 Φ0〉

+ 2
√
αRe〈σ ·B−Φ0, Φ0〉+ 2αRe〈A− · A−Φ0 Φ0〉+ 2α‖A−Φ0‖2

≥ 〈(Hf + P 2
f )Φ0, Φ0〉 − c

√
α‖H

1

2

f Φ0‖ ‖PfΦ0‖

− c
√
α‖H

1

2

f Φ0‖ ‖Φ0‖ − cα‖H
1

2

f Φ0‖ (‖H
1

2

f ψ‖+ ‖ψ‖)

≥ 〈(Hf + P 2
f )Φ0, Φ0〉 − (c

√
α+

1

4
)‖H

1

2

f Φ0‖2

− c
√
α‖PfΦ0‖2 − cα‖Φ0‖2

≥ 1

2
〈(Hf + P 2

f )Φ0, Φ0〉 − cα =
1

2
‖Φ0‖2∗ − cα

(17)

using in the second inequality of (17) that for all ψ ∈ C2 ⊗ F we have

‖A−ψ‖ ≤ c‖H
1

2

f ψ‖, ‖B−ψ‖ ≤ c‖H
1

2

f ψ‖ and ‖A+ψ‖ ≤ c(‖H
1

2

f ψ‖ + ‖ψ‖) (see

e.g. [11, Lemma A4]). The proof of (16) follows from (17) and the fact that
〈H(0)Φ0, Φ0〉 ≤ 〈H(0)Ω0, Ω0〉 = 0. �

Proposition 4.2. There exists c > 0 such that for all φ ∈ C2 ⊗F ,

〈H(0)φ, φ〉 − 1

2
‖φ‖2∗ ≥ −cα‖φ‖2 .(18)

Proof. The proof is done by repeating all steps in (17), replacing Φ0 by φ. �

The next result is a consequence of an a priori photon number bound for
the ground state obtained in [8, Proposition 5.1], whose statement is given
in Lemma 7.3 for total momentum p = 0.

Proposition 4.3. The following holds

(19) ‖P≥1Φ0‖2 = O(α) .

Proof. Applying Lemma 7.3, we obtain

‖P≥1Φ0‖2 ≤ 〈P≥1Φ0, Nf P≥1Φ0〉 =
∑

λ=1,2

∫

‖aλ(k)Φ0‖2dk

≤ c

∫

α

|k|2 ζ(|k|)
2dk ≤ cα ,

where Nf is the photon number operator. �
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Corollary 4.1. There exists α0 > 0 such that γ1 is uniformly bounded in

α ∈ [0, α0].

Proof. Since 〈R1, Γ1〉∗ = 0, then from Proposition 4.1, we have that there
exists α0 and c such that for all α smaller than α0,

(20) α〈(Hf + P 2
f )γ1Γ1, Γ1〉 ≤ cα

which implies |γ1|2 ≤ c (〈(Hf + P 2
f )Γ1, Γ1〉)−1. We conclude the proof by

applying Lemma 7.2. �

Corollary 4.2. We have

(21) ‖R1‖2∗ = O(α) and ‖R1‖2 = O(α) .

Proof. Applying Proposition 4.1 and Corollary 4.1 gives

‖R1‖∗ ≤ ‖Π1Φ0‖∗ +
√
α |γ1| ‖Γ1‖∗ ≤ c

√
α .

Similarly, applying Proposition 4.3 and Corollary 4.1 we get

(22) ‖R1‖ ≤ ‖Π1Φ0‖+
√
α |γ1| ‖Γ1‖ ≤ c

√
α .

�

5. Lower bound up to the order α

In the present section, we derive a sharp lower bound for the ground state
energy 〈H(0)Φ0, Φ0〉/‖Φ0‖2, up to the order α, with rest of order α2. The
proof also implies improved estimates on γ1, ‖R1‖∗ and ‖P≥2Φ0‖∗. These
results are stated as follows

Proposition 5.1. The following holds

inf spec(H(0)) = −α‖Γ1‖2∗ +O(α2)(23)

‖R1‖∗ = O(α)(24)

‖P≥2Φ0‖∗ = O(α)(25)

γ1 = 1 +O(
√
α), Imγ1 = O(

√
α)(26)

Proof. Using the decomposition (15) for Φ0, and the identity (13) for H(0), we
get

〈H(0)Φ0, Φ0〉
=α|γ1|2‖Γ1‖2∗+‖R1‖2∗+ ‖P≥2Φ0‖2∗+ 4

√
αRe〈Pf ·A−P≥2Φ0, P≥1Φ0〉

+ 2
√
αRe〈σ ·B−(

√
αγ1Γ1 +R1 + P≥2Φ0), Φ0〉+ 2α‖A−Φ0‖2

+ 2αRe〈A− ·A−Pn≥2Φ0, Φ0〉 .

(27)

Applying [11, Lemma A4], Corollary 4.1 and Corollary 4.2, the fourth term in
the right hand side of (27) is estimated as

4
√
αRe〈Pf ·A−P≥2Φ0, P≥1Φ0〉

≥ −ǫ‖H
1

2

f P≥2Φ0‖2 − c(ǫ)α‖PfP1Φ0‖2 − c(ǫ)α‖PfP≥2Φ0‖2

≥ −ǫ‖P≥2Φ0‖2∗ − cα2 .

(28)
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In (28), as well as in the sequel, we shall omit the ǫ-dependence of the constants
c since ǫ will eventually be given a fixed value independent of α.
Similarly, using in addition 〈σ · B−Γ1, Ω0〉 = −‖Γ1‖2∗ and 〈σ · B−R1, Ω0〉 =
〈R1, Γ1〉∗ = 0, we estimate the fifth term in the right hand side of (27) as

2
√
αRe〈σ · B−(

√
αγ1Γ1 +R1 + P≥2Φ0), Φ0〉

= 2αRe〈σ ·B−γ1Γ1, Ω0〉+ 2
√
αRe〈σ ·B−R1, Ω0〉

+ 2
√
αRe〈σ ·B−P≥2Φ0, P≥1Φ0〉

≥ −2αReγ1‖Γ1‖2∗ − ǫ‖H
1

2

f Pn≥2Φ0‖2 − cα‖P≥1Φ0‖2

≥ −2αReγ1‖Γ1‖2∗ − ǫ‖P≥2Φ0‖2∗ − cα2

(29)

The sixth term in the right hand side of (27) is nonnegative, and with similar
arguments as above, the seventh is bounded by

2αRe〈A− ·A−P≥2Φ0, Φ0〉 ≥ −cα‖A−P≥2Φ0‖ ‖A+Φ0‖
≥ −ǫ‖P≥2Φ0‖2∗ − cα2 .

(30)

Collecting (27)-(30) gives

〈H(0)Φ0, Φ0〉

≥ 1

2
‖P≥2Φ0‖2∗ + α|1 − γ1|2‖Γ1‖2∗ − α‖Γ1‖2∗ + ‖R1‖2∗ − cα2

(31)

To prove (23) we first note that from the decomposition (15) of Φ0 and Propo-
sition 4.3, we have ‖Φ0‖2 = 1+O(α). Therefore, (23) is a consequence of this
equality, the upper bound (12), and the lower bound (31).
The estimates (24)-(26) are direct consequences of (31) and the fact that
〈H(0)Φ0, Φ0〉 ≤ 0. �

6. Lower bound up to the order α2

Equipped with the estimates of Sections 4 and 5, we are now ready to establish
a lower bound up to the order α2, with error term of the order α3 for the
ground state energy.
For Γ1 defined by (4) and for γ1 given by the decomposition (15) of Φ0, we
define

Γ
(γ1)
2 = −(Hf + P 2

f )
−1
(

γ1σ · B+Γ1 + 2γ1A
+ · PfΓ1 +A+ · A+Ω0

)

,(32)

and we define γ2 and R2 (depending on γ1) by

(33) P2Φ0 = αγ2Γ
(γ1)
2 +R2 and 〈R2,Γ

(γ1)
2 〉∗ = 0 .

Thus, we have

(34) Φ0 = Ω0 +
√
αγ1Γ1 +R1 + αγ2Γ

(γ1)
2 +R2 + P≥3Φ0 .

Documenta Mathematica 17 (2012) 401–415



Self-energy of an Electron in NRQED 409

6.1. Preliminary estimates. Before estimating the ground state energy, we
need to prove some estimates for the vectors occurring in the decomposition
(34) for Φ0.

Proposition 6.1. There exits α1 > 0 and c > 0 such that for all α ∈ (0, α1)
and all γ1 ∈ (12 ,

3
2 ), we have

|γ2| < c .

Proof. From (25) of Proposition 5.1 we have

(35) ‖P2Φ0‖∗ = α2|γ2|2‖Γ(γ1)
2 ‖2∗ + ‖R2‖2∗ < cα2 .

Together with Lemma 7.1, this yields the result. �

Proposition 6.2. There exists α2 > 0 and c > 0 such that for all α ∈ (0, α2),
for all ǫ > 0, and for all γ1 ∈ (12 ,

3
2 )

‖R1‖2 ≤ c ǫ−1α2 + ǫα−1‖H
1

2

f R1‖2 ,

‖R2‖2 ≤ c ǫ−1α2 + ǫα−1‖H
1

2

f R2‖2 ,

‖P≥3Φ0‖2 ≤ c ǫ−1α2 + ǫα−1‖H
1

2

f P≥3Φ0‖2 .

(36)

Proof. We have, applying lemma 7.3

(37) ‖aλ(k)R2‖ ≤ ‖aλ(k)P2Φ0‖+ α |γ2| ‖aλ(k)Γ(γ1)
2 ‖ ≤ c

√
α/|k| .

Therefore, given ǫ > 0, we have

‖R2‖2 ≤
∑

λ=1,2

∫

‖aλ(k)R2‖2dk

=
∑

λ=1,2

∫

ǫ|k|<α

‖aλ(k)R2‖2dk +
∑

λ=1,2

∫

ǫ|k|≥α

‖aλ(k)R2‖2dk

≤
∫

ǫ|k|<α

∣

∣

∣

∣

c
√
α

|k|

∣

∣

∣

∣

2

dk +

∫

ǫ|k|≥α

ǫ|k|
α

‖aλ(k)R2‖2dk

≤ c2ǫ−1α2 + ǫα−1‖H
1

2

f R2‖2 .

The bounds for ‖R1‖ and ‖P≥3Φ0‖ can be derived similarly. �

To estimate 〈H(0)Φ0, Φ0〉 we use the above decomposition (34) of Φ0 and the
identity (13).

6.2. Terms involving P1Φ0 but not P≥2Φ0. Denoting by (I) the terms in
〈H(0)Φ0, Φ0〉 involving P1Φ0 but not P≥2Φ0 we have

(I) =α|γ1|2 ‖Γ1‖2∗ + ‖R1‖2∗ + 2
√
αRe〈σ · B−(

√
αγ1Γ1 +R1), Ω0〉

+ 2α‖A−(
√
αγ1Γ1 +R1)‖2 .

(38)
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Using the definition of Γ1 and 〈Γ1, R1〉∗ = 0, we get that the third term in
the right hand side equals −2αReγ1‖Γ1‖2∗. Using the bound (26) on γ1, we get
that the fourth term in the right hand side of (38) is estimated as

2α2|γ1|2‖A−Γ1‖2 + 4α
3

2Re〈A−γ1Γ1, A
−R1〉+ 2α‖A−R1‖2

≥ 2α2|γ1|2‖A−R1‖2 − ǫ‖H
1

2

f R1‖2 +O(α3) .
(39)

The above thus implies

(I) ≥ α‖Γ1‖2∗(|γ1|2−2Reγ1) + (1−ǫ)‖R1‖2∗
+ 2α2|γ1|2‖A−Γ1‖2+O(α3)

=−α2‖Γ1‖2∗ + α|1− γ1|2‖Γ1‖2∗ + 2α2(|γ1|2 − 1)‖A−Γ1‖2

+ 2α2‖A−Γ1‖2 + (1− ǫ)‖R1‖2∗ +O(α3)

This yields

(I) ≥ −α2‖Γ1‖2∗ + 2α2‖A−Γ1‖2 +
1

2
α|1−γ1|2‖Γ1‖2∗

+
1

2
α|1−γ1|2‖Γ1‖2∗ − cα2

∣

∣|γ1|2 − 1
∣

∣ ‖Γ1‖2∗ + (1− ǫ)‖R1‖2∗ +O(α3)

≥ −α2‖Γ1‖2∗ + 2α2‖A−Γ1‖2 +
1

2
α|1 − γ1|2‖Γ1‖2∗

+α‖Γ1‖2∗
(

1

2
(1−Reγ1)2 +

1

2
(Imγ1)2 − cα |Reγ1−1|− cα(Imγ1)2

)

+ (1− ǫ)‖R1‖2∗ +O(α3)

≥ −α2‖Γ1‖2∗ + 2α2‖A−Γ1‖2 +
1

2
α|1 − γ1|2‖Γ1‖2∗

+ (1− ǫ)‖R1‖2∗ +O(α3) ,

(40)

using 1
2 (1−Reγ1)2−cα |Reγ1 − 1| ≥ −c′α2 and 1

2 (Imγ1)2−cαImγ1 ≥ −c′α2.

6.3. Terms involving P2Φ0 but not P≥3Φ0. Denoting by (II) the terms in
〈H(0)Φ0, Φ0〉 involving P2Φ0 but not P≥3Φ0 we have

(II) = α2|γ2|2‖Γ(γ1)
2 ‖2∗ + ‖R2‖2∗

+ 4α2Reγ2γ1〈Pf ·A−Γ
(γ1)
2 , Γ1〉+ 4α

3

2Reγ2〈Pf · A−Γ
(γ1)
2 , R1〉

+ 4αReγ1〈Pf · A−R2, Γ1〉+ 4
√
αRe〈Pf · A−R2, R1〉

+ 2α2Reγ2γ1〈σ ·B−Γ
(γ1)
2 , Γ1〉+ 2α

3

2Reγ2〈σ · B−Γ
(γ1)
2 , R1〉

+ 2αReγ1〈σ · B−R2, Γ1〉+ 2
√
αRe〈σ · B−R2, R1〉

+ 2α2Reγ2〈A− ·A−Γ
(γ1)
2 ,Ω0〉+ 2αRe〈A− · A−R2, Ω0〉

+ 2α3|γ2|2‖A−Γ
(γ1)
2 ‖2 + 2α‖A−R2‖+ 4α2Reγ2〈A+ ·A−Γ

(γ1)
2 , R2〉 .

(41)

The sum of the fifth, the ninth and the twelfth terms in the right hand side

of (41) is equal to −2α〈R2, Γ
(γ1)
2 〉∗ = 0; the sum of the third, seventh and
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eleventh terms is equal to −2α2γ2‖Γ(γ1)
2 ‖2∗; the sum of the fourth and the sixth

terms is bounded below by

−c
√
α‖H

1

2

f P2Φ0‖ ‖H
1

2

f R1‖ ≥ −ǫ‖R1‖2∗ − c(ǫ)α‖P2Φ0‖2∗
≥ −ǫ‖R1‖2∗ − cα3 ,

according to (25) of Proposition 5.1. Applying Proposition 6.2, yields

2
√
αRe〈σ ·B−R2, R1〉 ≥ −ǫ‖R2‖2∗ − cα‖R1‖2

≥ −ǫ‖R2‖2∗ − ǫ‖R1‖2∗ − cα3 .

The term 2α
3

2Reγ2〈σ · B−Γ
(γ1)
2 , R1〉 in (41) is estimated by

2α
3

2Reγ2〈σ ·B−Γ
(γ1)
2 , R1〉 = 2α

3

2Reγ2〈H− 1

2

f σ · B−Γ
(γ1)
2 , H

1

2

f R1〉
≥ −ǫ‖R1‖2∗ − cα3 ,

(42)

since the norm of H
− 1

2

f σ ·B−Γ
(γ1)
2 is uniformly bounded in γ1 ∈ (12 ,

3
2 ). Finally

we have

(43) 4α2Reγ2〈A+ · A−Γ
(γ1)
2 , R2〉 ≥ −ǫ‖R2‖2∗ − cα4 .

Collecting all the above estimates in (41) thus gives

(II) ≥ α2‖Γ(γ1)
2 ‖2∗(|γ2|2 − 2γ2) + (1− ǫ)‖R2‖2∗ − ǫ‖R1‖2∗ − cα3

≥ −α2‖Γ(γ1)
2 ‖2∗ + (1 − ǫ)‖R2‖2∗ − ǫ‖R1‖2∗ − cα3 .

(44)

6.4. Remaining terms. We collect in (III) all the terms in 〈H(0)Φ0, Φ0〉 that
have not been treated in subsections 6.2 and 6.3. This yields

(III) = 〈H(0)P≥3Φ0, Φ0〉
= 〈H(0)P≥3Φ0, P≥3Φ0〉+ 〈H(0)P≥3Φ0, (1− P≥3)Φ0〉

(45)

Applying Proposition 6.2, the first term in the right hand side of (45) is
bounded below using the following estimate

〈H(0)P≥3Φ0, P≥3Φ0〉 −
1

2
‖P≥3Φ0‖2∗ ≥ −cα‖P≥3Φ0‖2

≥ −cǫ−1α3 − ǫ‖P≥3Φ0‖2∗ .
(46)

The second term in the right hand side of (45) is

〈H(0)P≥3Φ0, (1−P≥3)Φ0〉= 2
√
αRe〈σ ·B−P3Φ0, P2Φ0〉

+ 4
√
αRe〈Pf · A−P3Φ0, P2Φ0〉+ 2αRe〈A− ·A−P3Φ0, P1Φ0〉

+ 2αRe〈A− ·A−P4Φ0, P2Φ0〉
(47)

We have

2αRe〈A− ·A−P3Φ0, P1Φ0〉 ≥ −ǫ‖H
1

2

f P3Φ0‖2∗ − cα2‖A+P1Φ0‖2

≥ −ǫ‖H
1

2

f P3Φ0‖2∗ − cα2‖P1Φ0‖2 ≥ −ǫ‖H
1

2

f P3Φ0‖2∗ − cα3 ,
(48)

where in the last inequality, we used Proposition 4.3.
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Similarly, we get

2αRe〈A− ·A−P4Φ0, P2Φ0〉 ≥ −ǫ‖H
1

2

f P4Φ0‖2∗ − cα3(49)

and

2αRe〈σ · B−P3Φ0, P2Φ0〉 ≥ −ǫ‖H
1

2

f P3Φ0‖2∗ − cα‖P2Φ0‖2

≥ −ǫ‖H
1

2

f P3Φ0‖2∗ − cα3|γ2|2‖Γ(γ1)
2 ‖2 − cα‖R2‖2

≥ −ǫ‖H
1

2

f P3Φ0‖2∗ − cα3 − ǫ‖H
1

2

f R2‖2 ,

(50)

where in the last inequality we applied Propositions 6.1 and 6.2.
The last term we have to estimate in (47) is

4
√
αRe〈Pf ·A−P3Φ0, P2Φ0〉 ≥ −c

√
α
(

‖H
1

2

f P3Φ0‖2+‖H
1

2

f P2Φ0‖2
)

.(51)

Collecting (45)-(51) yields

(III) ≥ 1

4
‖P≥3Φ0‖2∗ − ǫ‖P2Φ0‖2∗ − cα3 .(52)

6.5. Proof of the lower bound. The estimates (40), (44) and (52) for (I),
(II) and (III) give

〈H(0)Φ0, Φ0〉 ≥ −α‖Γ1‖2∗ +
1

2
α|1 − γ1|2‖Γ1‖2∗ + 2α2‖A−Γ1‖2

− α2‖Γ(γ1)
2 ‖2∗+

1

4

(

‖R1‖2∗+‖R2‖2∗+‖P≥3Φ0‖2∗
)

− cα3.

(53)

Next, we replace Γ
(γ1)
2 by Γ2 in the above expression and estimate the difference.

For that sake, we estimate
∣

∣

∣
‖Γ(γ1)

2 ‖2 − ‖Γ2‖2
∣

∣

∣
≤ c

∣

∣

∣
‖Γ(γ1)

2 ‖ − ‖Γ2‖
∣

∣

∣
≤ c‖Γ(γ1)

2 − Γ1‖

≤ c|γ − 1|
∥

∥Γ2 + (Hf + P 2
f )

−1A+ · A+Ω0

∥

∥ ≤ c|γ − 1| .
where in the first inequality we applied Lemma 7.1.
Applying this inequality, and Corollary 4.1, we thus can estimate in (53) the
following two terms

(54)
1

2
|1− γ1|2α‖Γ1‖2∗ − α2‖Γ(γ1)

2 ‖2∗ ≥ −α2‖Γ2‖2∗ − cα3 .

Thus, (54) and (53) give

〈H(0)Φ0, Φ0〉 ≥ − α‖Γ1‖2∗ + 2α2‖A−Γ1‖2 − α2‖Γ2‖2∗

+
1

4

(

‖R1‖2∗ + ‖R2‖2∗ + ‖P≥3Φ0‖2∗
)

− cα3 .
(55)

Eventually, we compute

〈H(0)Φ0, Φ0〉
‖Φ0‖2

=
〈H(0)Φ0, Φ0〉

1 + ‖P1Φ0‖2 + ‖P≥2Φ0‖2
≥ 〈H(0)Φ0, Φ0〉

1 + ‖P1Φ0‖2
(56)
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since 〈H(0)Φ0, Φ0〉 ≤ 0. Now using from proposition 4.3 that ‖P≥1Φ0‖2 =
O(α), we obtain, applying (55) and (56)

〈H(0)Φ0, Φ0〉
‖Φ0‖2

= 〈H(0)Φ0, Φ0〉+ ‖P1Φ0‖2α‖Γ1‖2∗ +O(α3) .(57)

Since

‖P1Φ0‖2α‖Γ1‖2∗
= α2‖Γ1‖2‖Γ1‖2∗ + α‖R1‖2‖Γ1‖2∗ + 2α

3

2 ‖Γ1‖2∗Re〈H
− 1

2

f Γ1, H
1

2

f R1〉

≥ α2‖Γ1‖2‖Γ1‖2∗ − cα
3

2 ‖Γ1‖2∗‖H
− 1

2

f Γ1‖ ‖R1‖∗
≥ α2‖Γ1‖2‖Γ1‖2∗ − cα3 − ǫ‖R1‖2∗ ,

(58)

we obtain, together with (55) and (57)

〈H(0)Φ0, Φ0〉
‖Φ0‖2

≥ −α‖Γ1‖2∗ + 2α2‖A−Γ1‖2 − α2‖Γ2‖2∗ + α2‖Γ1‖2‖Γ1‖2∗ +O(α3) .

(59)

7. Appendix

Lemma 7.1. There exists δ1 > 0, δ2 > 0, and α0 > 0 such that for all γ1 ∈
(12 ,

3
2 ) and all α ∈ (0, α0), ‖Γ(γ1)

2 ‖∗ ∈ (δ1, δ2).

Proof. For the sake of simplicity, we shall fix here Ω0 =

(

1
0

)

Ωf . The state-

ment of the Lemma remains true for all Ω0 defined as in (3).
We have

Γ
(γ1)
2 = γ1(Hf + P 2

f )
−1
[

σ · B+(Hf + P 2
f )

−1σ · B+

+ 2A+ · Pf (Hf + P 2
f )

−1σ ·B+
]

Ω0 − (Hf + P 2
f )

−1A+ ·A+Ω0 .
(60)

In order to prove the bound below, it is sufficient to show that there exists
a region J ⊂ R3 × R3 with strictly positive Lebesgue measure, and δ > 0
such that for all α small enough independent of δ , for all γ ∈ (12 ,

3
2 ) and all

(k, k′) ∈ J , and for given λ, µ ∈ {1, 2}, we have |Γ(γ1)
2 (k, λ; k′, µ)| > δ. For

that sake, we shall prove that the third vector in the right hand side of (60)
has a stronger singularity at the origin than the fist two vectors.

For all λ, µ in {1, 2}, we have, for all k and k′ in the region S1 := {(k, k′) | |k′|
2 ≤

|k| ≤ 2|k′|}
∣

∣

(

σ · B+(Hf + P 2
f )

−1Ω0

)

(k, λ; k′, µ)
∣

∣

=
1√
2

∣

∣

∣

∣

σ · ik
′ ∧ ǫµ(k′) ζ(|k|)

2π|k′| 12
1

|k|+ |k|2 σ · ik ∧ ǫµ(k)
2π|k| 12

+ symmetric

∣

∣

∣

∣

≤ c

(

|k′| 12
|k| 12

+
|k| 12
|k′| 12

)

≤ c ,

(61)
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where the symmetric expression is with respect to (k, λ) and (k′, µ), and the
constants c are independent of the variables and of the parameters α and γ1.
On the other hand, we have

∣

∣

(

A+ · Pf (Hf + P 2
f )

−1σ ·B+Ω0

)

(k, λ; k′, µ)
∣

∣

=
1√
2

∣

∣

∣

∣

ǫµ(k
′) · k′

2π|k′| 12
1

|k|+ |k|2 σ · ik ∧ ǫλ(k)
2π|k| 12

+ symmetric

∣

∣

∣

∣

.
(62)

Picking S2 = {(k, k′) | k′

2
k2+k′

1
k1√

k2

1
+k2

2

√
k′

1
2+k′

2
2
}, where For k = (k1, k2, k3) and

k′ = (k′1, k
′
2, k

′
3), we obtain, for λ = µ = 1 and for k and k′ in S2,
∣

∣

(

A+ · Pf (Hf + P 2
f )

−1σ · B+Ω0

)

(k, 1; k′, 1)
∣

∣

≥ c

∣

∣

∣

∣

∣

1

|k′| 12 |k| 12
k′2k2 + k′1k1

√

k21 + k22
√

k′1
2 + k′2

2

∣

∣

∣

∣

∣

≥ c
1

|k′| 12 |k| 12
,

(63)

where again the constants are independent of k, k′, γ1 and α. Therefore, for
any δ > 0 there exists ǫ > 0 such that for S3(ǫ) = {(k, k′) | |k| ≤ ǫ, |k′| ≤ ǫ},
we have, for all α small enough and all γ1 ∈ (12 ,

3
2 ), that for all (k, k′) ∈

S1 ∩ S2 ∩ S3(ǫ), which is of positive Lebesgue measure, |Γ(γ1)
2 (k, 1; k′, 1)| > δ.

This concludes the proof of the existence of the uniform lower bound δ1 for

‖Γ(γ1)
2 ‖∗.

The proof of the upper bound for ‖Γ(γ1)
2 ‖∗ is straightforward. �

Lemma 7.2. We have

‖H
1

2

f Γ1‖ <∞ , 0 < ‖Γ1‖∗ and 0 < ‖Γ1‖ .
Proof. Straightforward computations. �

We end this appendix by recalling a useful result due to Chen and Fröhlich [8],
which we reproduce below in the case of total momentum p = 0, which is the
case of interest for us.

Lemma 7.3. [8, Proposition 5.1] For any normalized state ψ in the eigenspace

associated to the ground state energy of H(0), there exists c > 0 such that

‖aλ(k)ψ‖ ≤ c
√
α

|k| ζ(|k|) .
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[1] V. Bach, J. Fröhlich, I. M. Sigal, Spectral analysis for systems of atoms and
molecules coupled to the quantized radiation field. Comm. Math. Phys. 207
(1999), no.2, 249–290.

Documenta Mathematica 17 (2012) 401–415



Self-energy of an Electron in NRQED 415

[2] J.-M. Barbaroux, T. Chen, V. Vougalter, S.A. Vugalter, On the ground
state energy of the translation invariant Pauli-Fierz model. Proc. Amer.
Math. Soc. 136 (2008), 1057–1064 .

[3] J.-M. Barbaroux, T. Chen, V. Vougalter, S.A. Vugalter, Quantitative esti-
mates on the binding energy for Hydrogen in non-relativistic QED. Ann.
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[10] J. Fröhlich, Existence of dressed one electron states in a class of persistent
models. Fortschritte der Physik 22 (1974), 159–189.

[11] M. Griesemer, E. H. Lieb, M. Loss, Ground states in non-relativistic quan-
tum electrodnamics. Inv. Math 145 (2001), 557-595.

[12] C. Hainzl, V. Vougalter, S.A. Vugalter, Enhanced binding in non-
relativistic QED. Comm. Math. Phys. 233 (2003), 13–26.

Jean-Marie Barbaroux
Centre de Physique Théorique
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