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respondence between Yetter-Drinfeld modules over a Lie algebra and
those over the universal enveloping algebra of the Lie algebra. We as-
sociate a mixed complex to a Lie algebra and a stable-Yetter-Drinfeld
module over it. We show that the (truncated) Weil algebra, the Weil
algebra with generalized coefficients defined by Alekseev-Meinrenken,
and the perturbed Koszul complex introduced by Kumar-Vergne are
examples of such a mixed complex.
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1 Introduction

One of the well-known complexes in mathematics is the Chevalley-Eilenberg
complex of a Lie algebra g with coefficients in a g-module V [2].

C•(g, V ) : V
dCE // V ⊗ g∗

dCE // V ⊗ ∧2g∗
dCE // · · · (1.1)

Through examples, we can see that when the coefficients space V is equipped
with more structures, then the complex (C•(g, V ), dCE), together with another
operator dK : C•(g, V ) → C•−1(g, V ), called Koszul boundary, turns into a
mixed complex. That is dCE + dK defines a coboundary on the total complex

W • =
⊕

•≥p≥0

C2p−•(g, V ).

Among examples, one observes that,

• the well-known (truncated) Weil complex is achieved by V := S(g∗)[2q]
the (truncated) polynomial algebra of g,

• the Weil algebra with generalized coefficients defined by Alekseev-
Meinrenken in [1] is obtained by V := E ′(g∗), the convolution algebra
of compactly supported distributions on g∗,

• finally it was shown by Kumar-Vergne that if V is a module over the Weyl
algebra D(g) then (W •, dCE+dK) is a complex which is called perturbed
Koszul complex [14].

In this paper we prove that (W •, dCE + dK) is a complex if and only if V is
a unimodular stable module over the Lie algebra g̃, where g̃ := g∗ >⊳ g is the
semidirect product Lie algebra g∗ and g. Here g∗ := Hom(g,C) is thought of
as an abelian Lie algebra acted upon by the Lie algebra g via the coadjoint
representation.

Next, we show that any Yetter-Drinfeld module over the enveloping Hopf alge-
bra U(g) yields a module over g̃ and conversely any locally conilpotent module
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over g̃ amounts to a Yetter-Drinfeld module over the Hopf algebra U(g). This
correspondence is accompanied with a quasi-isomorphism which reduces to the
antisymmetrization map if the module V is merely a g-module. The isomor-
phism generalizes the computation of the Hopf cyclic cohomology of U(g) in
terms of the Lie algebra homology of g carried out by Connes-Moscovici in [4].

Throughout the paper, g denotes a finite dimensional Lie algebra over C, the
field of complex numbers. We denote byX1, . . . , XN and θ1, . . . , θN a dual basis
for g and g∗ respectively, and by δ ∈ g∗ the trace of the adjoint representation
of g on itself. All tensor products are over C.

B. R. would like to thank Alexander Gorokhovsky for the useful discussions on
the G-differential algebras, and is also grateful to the organizers of NCGOA
2011 at Vanderbilt University, where these discussions took place.

2 The model complex for G-differential algebras

In this section we first recall G-differential algebras and their basic properties.
Then we introduce our model complex which is the main motivation of this
paper. The model complex includes as examples Weil algebra and their trun-
cations, perturbed Koszul complex introduced by Kumar- Vergne in [14], and
Weil algebra with generalized coefficients introduced by Alekseev-Meinrenken
[1].

2.1 G-differential algebras

Let ĝ = g−1 ⊕ g0 ⊕ g1 be a graded Lie algebra, where g−1 and g0 are N -
dimensional vector spaces with bases ι1, · · · , ιN , and L1, · · · ,LN respectively,
and g1 is generated by d.

We let Ci
jk denote the structure constants of the Lie algebra g0 and assume

that the graded-bracket on ĝ is defined as follows.

[ιp, ιq] = 0, (2.1)

[Lp, ιq] = Cr
pqιr, (2.2)

[Lp,Lq] = Cr
pqLr, (2.3)

[d, ιk] = Lk, (2.4)

[d,Lk] = 0, (2.5)

[d, d] = 0. (2.6)

Now let G be a (connected) Lie group with Lie algebra g. We assume ĝ be as
above with g0 ∼= g as Lie algebras.

A graded algebra A is called a G-differential algebra if there exists a represen-
tation ρ : G → Aut(A) of the group G and a graded Lie algebra homomorphism
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ρ̂ : ĝ → End(A) compatible in the following way:

d

dt

∣∣∣∣
t=0

ρ(exp(tX)) = ρ̂(X) (2.7)

ρ(a)ρ̂(X)ρ(a−1) = ρ̂(AdaX) (2.8)

ρ(a)ιXρ(a−1) = ιAdaX (2.9)

ρ(a)dρ(a−1) = d (2.10)

for any a ∈ G and any X ∈ g. For further discussion on G-differential algebras
we refer the reader to [8, chapter 2] and [1].

The exterior algebra
∧
g∗ and the Weil algebra are examples of G-differential

algebras.

Here we recall W (g), the Weil algebra of a finite dimensional Lie algebra g, by

W (g) =
∧

g∗ ⊗ S(g∗),

with the grading

W (g) =
⊕

l≥0

W l(g), (2.11)

where

W l(g) =
⊕

p+2q=l

W p,q, W p,q := ∧pg∗ ⊗ Sq(g∗). (2.12)

It is equipped with two degree +1 differentials as follows. The first one is

dK : ∧pg∗ ⊗ Sq(g∗) → ∧p−1g∗ ⊗ Sq+1(g∗)

ϕ⊗R 7→
∑

j

ιXj
(ϕ)⊗Rθj (2.13)

and it is called the Koszul coboundary. The second one is the Chevalley-
Eilenberg coboundary (Lie algebra cohomology coboundary)

dCE : ∧pg∗ ⊗ Sq(g∗) → ∧p+1g∗ ⊗ Sq(g∗). (2.14)

Then dCE + dK : W l(g) → W l+1(g) equips W (g) with a differential graded
algebra structure. It is known that via coadjoint representation W (g) is a
G-differential algebra.

A G-differential algebra is called locally free if there exists an element

Θ =
∑

i

Xi ⊗ θi ∈ (g⊗Aodd)G

called the algebraic connection form.

We assume that Θ ∈ (g⊗A1)G, and we have

ιk(Θ) = Xk, and Lk(θ
i) = −Ci

klθ
l.
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2.2 The model complex

Let (A,Θ) be a locally freeG-differential algebra with dim(G) = N . We assume
that V is a vector space with elements Lk and Lk in End(V ), 1 ≤ k ≤ N .

We consider the graded space A ⊗ V with the grading induced from that of
A. Using all information of the G-differential algebra structure of A and the
connection form Θ ∈ (g⊗A1)G, we introduce the map

D(x⊗ v) := d(x) ⊗ v + θkx⊗ Lk(v) + ιk(x)⊗ Lk(v) (2.15)

as a sum of a degree +1 map and a degree −1 map.

Proposition 2.1. Let (A,Θ) be a locally free G-differential algebra. Then the
map

dK(x ⊗ v) = ιk(x) ⊗ Lk(v) (2.16)

is a differential, that is d2K = 0, if and only if V is a CN -module via Lks, i.e.,

[Lp, Lq] = 0, 1 ≤ p, q,≤ N.

Proof. Assume that [Lj, Li] = 0. Then

dK ◦ dK(x⊗ v) = ιlιk(x)⊗ LlLk(v) = 0 (2.17)

by the commutativity of Lks and the anti-commutativity of ιks.

Conversely, if dK has the property dK ◦ dK = 0, then by using ιk(θ
j) = δjk we

have

dK ◦ dK(θ
iθj ⊗ v) = dK(θ

j ⊗ Li(v)− θi ⊗ Lj(v)) = 1⊗ [Lj, Li](v) = 0 (2.18)

which implies [Lj, Li] = 0.

Definition 2.2. [8]. For a commutative locally free G-differential algebra A,
the element Ω =

∑
iΩ

i ⊗Xi ∈ (A2 ⊗ g)G, satisfying

d(θi) = −
1

2
Ci

pqθ
pθq +Ωi, (2.19)

is called the curvature of the connection Θ =
∑

i θ
i ⊗Xi.

We call a commutative locally free G-differential algebra (A,Θ) flat if Ω = 0,
or equivalently

d(θk) = −
1

2
Ck

pqθ
pθq. (2.20)

Proposition 2.3. Let (A,Θ) be a commutative locally free flat G-differential
algebra. Then the map

dCE(x⊗ v) = d(x) ⊗ v + θkx⊗ Lk(v) (2.21)

is a differential, that is d2CE = 0, if and only if V is a g-module via Lk, that is
[Lt, Ll] = Ck

tlLk.
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Proof. Using the commutativity of A we see that

dCE ◦ dCE(1⊗ v) =
∑

k

dCE(θ
k ⊗ Lk(v))

=
∑

k

d(θk)⊗ Lk(v) +
∑

k,t

θtθk ⊗ LtLk(v)

= −
∑

l,t

1

2
Ck

tlθ
tθl ⊗ Lk(v) +

∑

t,l

1

2
θtθl ⊗ [Lt, Ll](v),

(2.22)

which proves the claim.

One notes that we use the commutativity of the differential graded algebra in
the above proposition. It would be interesting if one finds an argument for a
similar proposition to cover the noncommutative and twisted noncommutative
Weil algebra as discussed in [1] and [3] respectively.

Considering the dual g∗ of the Lie algebra g as a commutative Lie algebra, we
can define the Lie bracket on g̃ := g∗ >⊳ g by

[
α⊕X , β ⊕ Y

]
:=

(
LX(β) − LY (α)

)
⊕
[
X , Y

]
. (2.23)

Accordingly, the next proposition determines the necessary and sufficient con-
ditions on V for (A⊗ V, dCE + dK) to be a differential complex.

Proposition 2.4. Let A be a commutative locally free flat G-differential algebra
and V a g-module via Lks and a CN -module via Lks. Then, (A ⊗ V,D) is a
differential complex if and only if V is

unimodular stable
∑

k

LkLk = 0, (2.24)

and
g̃-module [Li, Lj ] =

∑

k

Ci
jkL

k. (2.25)

Proof. Once we have d2CE = 0 = dK, then (A ⊗ V, dCE + dK) is a differential
complex i.e.,

0 = dCE ◦ dK + dK ◦ dCE

= Lk ⊗ Lk + θkιt ⊗ [Lk, L
t] + Id⊗LkLk,

(2.26)

if and only if (2.24) and (2.25) hold.

3 Lie algebra cohomology and Perturbed Koszul complex

In this section we specialize the model complex (A⊗V,D) defined in (2.15) for
A =

∧
g∗. We show that the perturbed Koszul complex defined in [14] is an

example of the model complex. As another example of the model complex, we
cover the Weil algebra with generalized coefficients introduced in [1].
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3.1 Lie algebra cohomology

Let g be a finite dimensional Lie algebra and V be a right g-module. Let also
{θi} and {Xi} be dual bases for g∗ and g. The Chevalley-Eilenberg complex
C(g,M) is defined by

V
dCE // C1(g, V )

dCE // C2(g, V )
dCE // · · · , (3.1)

where Cq(g, V ) = Hom(∧qg, V ) is the vector space of all alternating linear
maps on g⊗q with values in V . If α ∈ Cq(g, V ), then

dCE(α)(X0, . . . , Xq) =
∑

i<j

(−1)i+jα([Xi, Xj ], X0 . . . X̂i, . . . , X̂j , . . . , Xq)+

∑

i

(−1)i+1α(X0, . . . , X̂i, . . .Xq)Xi.

(3.2)

Alternatively, we may identify Cq(g, V ) with ∧qg∗ ⊗ V and the coboundary
dCE with the following one

dCE(v) = −θi ⊗ v ·Xi,

dCE(β ⊗ v) = ddR(β)⊗ v − θi ∧ β ⊗ v ·Xi.
(3.3)

where ddR : ∧pg∗ → ∧p+1g∗ is the de Rham derivation defined by ddR(θ
i) =

−1
2 Ci

jkθ
jθk. We denote the cohomology of (C•(g, V ), dCE) by H•(g, V ) and

refer to it as the Lie algebra cohomology of g with coefficients in V .

3.2 Perturbed Koszul complex

With the same assumptions on g and V in the previous subsection, we spe-
cialize the model complex A ⊗ V defined in (2.15) for A =

∧
g∗. Indeed we

have Wn(g, V ) := ∧ng∗ ⊗ V , for n ≥ 0, with differentials dCE : Wn(g, V ) →
Wn+1(g, V ) defined in (3.3) and

dK : Wn(g, V ) → Wn−1(g, V )

α⊗ v 7→
∑

i

ιXi
(α)⊗ v � θi. (3.4)

An immediate example is the (truncated) Weil algebra.

Example 3.1 (Weil algebra). Let g be a (finite dimensional) Lie algebra and set
V = S(g∗) - the polynomial algebra on g. Then V is a unimodular stable right
g-module via the (co)adjoint action of g on g∗ and the initial multiplication of
the symmetric algebra as the action of g∗.

Example 3.2 (Truncated Weil algebra). Let V = S(g∗)[2n] be the truncated
polynomial algebra on g. With the same structure as it is defined in Example
3.1 one obtains the differential complex W (g, S(g∗)[2n]).

Documenta Mathematica 17 (2012) 483–515



490 Bahram Rangipour and Serkan Sütlü

To be able to interpret the coefficient space further, we introduce the crossed
product algebra

D̃(g) := S(g∗) >⊳ U(g). (3.5)

In the next proposition, by g̃ we mean g∗ >⊳ g with the Lie bracket defined in
(2.23).

Proposition 3.3. The algebras D̃(g) and U(g∗ >⊳ g) are isomorphic.

Proof. It is a simple case of [15, Theorem 7.2.3], that is

U(g∗ >⊳ g) = U(g∗) >⊳ U(g) = S(g∗) >⊳ U(g) = D̃(g) (3.6)

Next, we recall the compatibility for a module over a crossed product algebra,
for a proof see [16, Lemma 3.6].

Lemma 3.4. Let H be a Hopf algebra, and A an H-module algebra. Then V
is a right module on the crossed product algebra A >⊳ H if and only if V is a
right module on A and a right module on H such that

(v · h) · a = (v · (h(1) � a)) · h(2) (3.7)

Finally we restate Proposition 2.4 in the case of A =
∧
g∗.

Proposition 3.5. The graded space (W •(g, V ), dCE + dK) is a complex if and
only if V is a unimodular stable right g̃-module.

Example 3.6 (Weil algebra with generalized coefficients [1]). Let E ′(g∗) be the
convolution algebra of compactly supported distributions on g∗. The symmet-
ric algebra S(g∗) is canonically identified with the subalgebra of distributions
supported at the origin. This immediately results with a natural S(g∗)-module
structure on E ′(g∗) via its own multiplication.

Regarding the coordinate functions µi, 1 ≤ i ≤ N as multiplication operators,
we also have [µi, θ

j ] = δij .

The Lie derivative is described as follows.

Li = Ck
ijθ

jµk, 1 ≤ i ≤ N. (3.8)

Therefore,

τ : g → End(E ′(g∗)), Xi 7→ Ck
jiµkθ

j = −LXi
− δ(Xi)I (3.9)

is a map of Lie algebras, and hence equips E ′(g∗) with a right g-module struc-
ture.

We first observe that
∑

i

(v ·Xi)� θi = Ck
jivµkθ

jθi = 0, (3.10)
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by the commutativity of S(g∗) and the anti-commutativity of the lower indices
of the structure coefficients.

Secondly we observe

(v ·Xi)� θt = Ck
jivµkθ

jθt =

Ck
jivθ

tµkθ
j + Ct

jivθ
j = (v � θt) ·Xi + v � (Xi � θt),

(3.11)

i.e., E ′(g∗) is a right module over S(g∗) >⊳ U(g). Hence we have the complex
W (g, E ′(g∗)).

Finally we remark that in [1] the authors consider compact groups and their
Lie algebras, which are unimodular and hence δ = 0. So, their and our actions
of g coincide.

3.3 Weyl algebra

Following [17] Appendix 1, let V be a (finite dimensional) vector space with
dual V ∗. Let P(V ) be the algebra of all polynomials on V and S(V ) the
symmetric algebra on V . Let us use the notation D(V ) for the algebra of
differential operators on V with polynomial coefficients - the Weyl algebra on
V . For any v ∈ V we introduce the operator

∂v(f)(w) :=
d

dt

∣∣∣∣
t=0

f(w + tv). (3.12)

As a result, we get an injective algebra map v 7→ ∂v ∈ D(V ). As a differential
operator on V , ∂v is identified with the derivative with respect to v∗ ∈ V ∗.

Using the bijective linear map P(V ) ⊗ S(V ) → D(V ) defined as f ⊗ v 7→ fv,
and the fact that P(V ) ∼= S(V ∗), we conclude that D(V ) ∼= S(V ∗)⊗ S(V ) as
vector spaces.

Following [7], the standard representation of D(V ) is as follows. Let
{v1

∗, · · · , vn
∗} be a basis of V ∗. Then, forming E = C[v1

∗, · · · , vn
∗], we con-

sider the operators Pi ∈ End(E) as ∂/∂vi
∗ and Qi ∈ End(E) as multiplication

by vi
∗. Then the relations are

[Pi, Q
i] = I, [Pi, Q

j ] = 0, i 6= j

[Pi, Pj ] = 0, [Qi, Qj] = 0, ∀ i, j
(3.13)

It is observed that if V is a module over D(g) then (W •(g, V ), dCE + dK) is a
differential complex [14]. We now briefly remark the relation of this result with
our interpretation of the coefficient space (2.15). To this end, we first notice
that if V is a right module over the Weyl algebra D(g), then it is module over
the Lie algebra g via the Lie algebra map

τ : g → D(g), Xi 7→ Cl
kiPlQ

k. (3.14)

Documenta Mathematica 17 (2012) 483–515



492 Bahram Rangipour and Serkan Sütlü

Explicitly, we define the action of the Lie algebra as

v ·Xk = vτ(Xk). (3.15)

On the other hand, V is also a module over the symmetric algebra S(g∗) via

v � θk = vQk. (3.16)

Lemma 3.7. Let V be a right module over D(g). Then V is unimodular stable.

Proof. We immediately observe that

∑

i

(v ·Xi)� θi =
∑

i

v · (τ(Xi)Q
i) =

∑

i,l,k

v · (Ck
liPkQ

lQi) = 0 (3.17)

by the commutativity of Qs and the anti-commutativity of the lower indices of
the structure coefficients.

Let us now introduce the map

Φ : D̃(g) → D(g), θj >⊳ Xi 7→ Qjτ(Xi) = Cl
kiQ

jPlQ
k. (3.18)

Lemma 3.8. The map Φ : D̃(g) → D(g) is well-defined.

Proof. It is enough to prove Φ(Xi)Φ(θ
j) = Φ(Xi(1) � θj)Φ(Xi(2)). To this, we

observe

RHS = Φ(Xi(1) � θj)Φ(Xi(2)) = −Cj
ikQ

k + Cl
kiQ

jPlQ
k

= Cl
kiPlQ

jQk = Cl
kiPlQ

kQj = Φ(Xi)Φ(θ
j) = LHS.

(3.19)

Corollary 3.9. If V is a right module over D(g), then V is a right module

over D̃(g) = S(g∗) >⊳ U(g).

4 Lie algebra homology and Poincaré duality

In this section, for any Lie algebra g and any stable g̃-module V we define a
complex dual to the model complex and we establish a Poincaré duality between
these two complexes. The need for this new complex will be justified in the
next sections.

4.1 Lie algebra homology

Let g be a Lie algebra and V be a right g-module. We recall the Lie algebra
homology complex Cq(g, V ) = ∧qg⊗ V by

· · ·
∂CE // C2(g, V )

∂CE // C1(g, V )
∂CE // V (4.1)
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where

∂CE(X0 ∧ · · · ∧Xq−1 ⊗ v) =
∑

i

(−1)iX0 ∧ · · · ∧ X̂i ∧ · · · ∧Xq−1 ⊗ v ·Xi+

∑

i<j

(−1)i+j [Xi, Xj ] ∧X0 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xq−1 ⊗ v

(4.2)

We call the homology of the complex (C•(g, V ), ∂CE) the Lie algebra homology
of g with coefficients in V and denote it by H•(g, V ).

4.2 Poincaré duality

Let V to be a right g-module and right S(g∗)-module. We consider the graded
vector space Cn(g, V ) := ∧ng ⊗ V with two differentials ∂CE : Cn+1(g, V ) →
Cn(g, V ) defined in (4.2), and

∂K : Cn(g, V ) → Cn+1(g, V ), Y1∧· · ·∧Yn⊗v 7→
∑

i

Xi∧Y1∧· · ·∧Yn⊗v�θi

(4.3)

Let us first justify that ∂K is a differential.

Lemma 4.1. We have ∂K ◦ ∂K = 0.

Proof. We observe that by the commutativity of S(g∗) and the anti-
commutativity of the wedge product we have

∂K ◦ ∂K(Y1 ∧ · · · ∧ Yn ⊗ v) =
∑

i

∂K(Xi ∧ Y1 ∧ · · · ∧ Yn ⊗ v � θi)

=
∑

i,j

Xj ∧Xi ∧ Y1 ∧ · · · ∧ Yn ⊗ v � θiθj = 0.
(4.4)

We say that a right g̃-module V is stable if

∑

i

(v � θi) ·Xi = 0. (4.5)

Proposition 4.2. The space (C•(g, V ), ∂CE + ∂K) is a differential complex if
and only if V is stable right g̃-module.
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Proof. On the one hand we have

∂CE(∂K(Y0 ∧ · · · ∧ Yn ⊗ v))

=
∑

i

∂CE(Xi ∧ Y0 ∧ · · · ∧ Yn ⊗ v � θi)

=
∑

i

Y0 ∧ · · · ∧ Yn ⊗ (v � θi) ·Xi

+
∑

i,j

(−1)j+1Xi ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yn ⊗ (v � θi) · Yj

+
∑

i,j

(−1)j+1[Xi, Yj ] ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yn ⊗ v � θi

+
∑

i,j

(−1)j+k[Yj , Yk] ∧Xi ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Ŷk ∧ · · · ∧ Yn ⊗ v � θi,

(4.6)

and on the other hand

∂K(∂CE(Y0 ∧ · · · ∧ Yn ⊗ v))

=
∑

j

(−1)j∂K(Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yn ⊗ v · Yj)

+
∑

j,k

(−1)j+k∂K([Yj , Yk] ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Ŷk ∧ · · · ∧ Yn ⊗ v)

=
∑

i,j

(−1)jXi ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yn ⊗ (v ∧ Yj)� θi

+
∑

i,j,k

(−1)j+k+1[Yj , Yk] ∧Xi ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Ŷk ∧ · · · ∧ Yn ⊗ v � θi.

(4.7)

Therefore, the complex is a mixed complex if and only if

(∂CE ◦ ∂K + ∂K ◦ ∂CE)(Y0 ∧ · · · ∧ Yn ⊗ v) =
∑

i

Y0 ∧ · · · ∧ Yn ⊗ (v � θi) ·Xi+

∑

i,j

(−1)j+1Xi ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yn ⊗ [(v � θi) · Yj − (v · Yj)� θi]+

∑

i,j

(−1)j+1[Xi, Yj ] ∧ Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yn ⊗ v � θi = 0.

(4.8)

Now, if we assume that (C•(g, V ), ∂CE + ∂K) is a differential complex, then
we obtain the stability condition (4.5) evaluating (4.8) on 1⊗ v. Similarly we
observe that V is a g̃-module by evaluating (4.8) on Y ⊗ v.

The converse argument is obvious.
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Proposition 4.3. A vector space V is a unimodular stable right g̃-module, if
and only if V ⊗ Cδ is a stable right g̃-module.

Proof. Indeed, if V is unimodular stable right g̃-module, that is
∑

i(v�Xi)·θ
i =

0, for any v ∈ V , then

∑

i

((v ⊗ 1C) · θ
i)�X i =

∑

i

(v · θi) ·Xi ⊗ 1C + vδ(Xi)⊗ 1C

=
∑

i

(v ·Xi)� θi ⊗ 1C = 0,
(4.9)

which proves that V ⊗Cδ is stable. Similarly we observe that for 1 ≤ i, j ≤ N ,

((v ⊗ 1C) ·Xj)� θi = (v ·Xj ⊗ 1C + vδ(Xj)⊗ 1C)� θi =

((v ·Xj)� θi + vδ(Xj)� θi)⊗ 1C =

(v � (Xj � θi) + (v � θi) ·Xj + vδ(Xj)� θi)⊗ 1C =

(v ⊗ 1C)� (Xj � θi) + ((v ⊗ 1C)� θi) ·Xj

(4.10)

i.e., V ⊗ Cδ is a right g̃-module.

The converse argument is similar.

Let us now briefly recall the Poincaré isomorphism by

DP : ∧kg∗ → ∧N−kg, η 7→ ι(η)̟, (4.11)

where ̟ = X1 ∧ · · · ∧ XN is the covolume element of g. By definition ι(θi) :
∧•g → ∧•−1g is given by

〈ι(θi)ξ, θj1 ∧ · · · ∧ θjr−1 〉 := 〈ξ, θi ∧ θj1 ∧ · · · ∧ θjr−1 〉, ξ ∈ ∧rg. (4.12)

Finally, for η = θi1 ∧ · · · ∧ θik , the interior multiplication ι(η) : ∧•g → ∧•−kg is
defined by

ι(η) := ι(θik ) ◦ · · · ◦ ι(θi1 ). (4.13)

Proposition 4.4. Let V be a stable right g̃-module. Then the Poincaré iso-
morphism induces a map of complexes between the complex W (g, V ⊗C−δ) and
the complex C(g, V ).

Proof. Let us first introduce the notation Ṽ := V ⊗ C−δ. We can identify Ṽ
with V as a vector space, but with the right g-module structure deformed as
v �X := v ·X − vδ(X).

We prove the commutativity of the (co)boundaries via the (inverse) Poincaré
isomorphism, i.e.,

D−1
P : ∧pg⊗ V → ∧N−pg∗ ⊗ Ṽ

ξ ⊗ v 7→ D−1
P (ξ ⊗ v),

(4.14)
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where for an arbitrary η ∈ ∧N−pg

〈η,D−1
P (ξ ⊗ v)〉 := 〈ηξ, ω∗〉v. (4.15)

Here, ω∗ ∈ ∧Ng∗ is the volume form.

The commutativity of the diagram

∧pg⊗ V

D
−1
P

��

∂CE // ∧p−1g⊗ V

D
−1
P

��

∧N−pg∗ ⊗ Ṽ
dCE

// ∧N−p+1g∗ ⊗ Ṽ

follows from the Poincaré duality in Lie algebra homology - cohomology, [13,
Chapter VI, Section 3]. For the commutativity of the diagram

∧pg⊗ V

D
−1
P

��

∂K // ∧p+1g⊗ V

D
−1
P

��

∧N−pg∗ ⊗ Ṽ
dK

// ∧N−p−1g∗ ⊗ Ṽ

we take an arbitrary ξ ∈ ∧pg, η ∈ ∧N−p−1g and v ∈ V . Then

D−1
P (∂K(ξ ⊗ v))(η) = 〈ηXiξ, ω

∗〉v � θi =

(−1)N−p−1〈Xiηξ, ω
∗〉v � θi = (−1)N−p−1dK(D

−1
P (ξ ⊗ v))(η).

(4.16)

5 Lie algebra coaction and SAYD coefficients

In this section we identify the coefficients we discussed in the previous sec-
tions of this paper with stable-anti-Yetter-Drinfeld module over the universal
enveloping algebra of the Lie algebra in question. To this end, we introduce
the notion of comodule over a Lie algebra.

5.1 SAYD modules and cyclic cohomology of Hopf algebras

Let H be a Hopf algebra. By definition, a character δ : H → C is an algebra
map. A group-like σ ∈ H is the dual object of the character, i.e., ∆(σ) = σ⊗σ.
The pair (δ, σ) is called a modular pair in involution [6] if

δ(σ) = 1, and S2
δ = Adσ, (5.1)

where Adσ(h) = σhσ−1 and Sδ is defined by

Sδ(h) = δ(h(1))S(h(2)). (5.2)
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We recall from [10] the definition of a right-left stable-anti-Yetter-Drinfeld mod-
ule over a Hopf algebra H. Let V be a right module and left comodule over a
Hopf algebra H. We say that it is stable-anti-Yetter-Drinfeld (SAYD) module
over H if

H(v · h) = S(h(3))v〈−1〉
h(1) ⊗ v

〈0〉
· h(2) , v

〈0〉
· v

〈−1〉
= v, (5.3)

for any v ∈ V and h ∈ H. It is shown in [10] that any MPI defines a one
dimensional SAYD module and all one dimensional SAYD modules come this
way.

Let V be a right-left SAYD module over a Hopf algebra H. Let

Cq(H, V ) := V ⊗H⊗q, q ≥ 0. (5.4)

We recall

face operators ∂i : C
q(H, V ) → Cq+1(H, V ), 0 ≤ i ≤ q + 1

degeneracy operators σj : C
q(H, V ) → Cq−1(H, V ), 0 ≤ j ≤ q − 1

cyclic operators τ : Cq(H, V ) → Cq(H, V ),

by

∂0(v ⊗ h1 ⊗ . . .⊗ hq) = v ⊗ 1⊗ h1 ⊗ . . .⊗ hq,

∂i(v ⊗ h1 ⊗ . . .⊗ hq) = v ⊗ h1 ⊗ . . .⊗ hi
(1) ⊗ hi

(2) ⊗ . . .⊗ hq,

∂q+1(v ⊗ h1 ⊗ . . .⊗ hq) = v
〈0〉

⊗ h1 ⊗ . . .⊗ hq ⊗ v
〈−1〉

,

σj(v ⊗ h1 ⊗ . . .⊗ hq) = (v ⊗ h1 ⊗ . . .⊗ ε(hj+1)⊗ . . .⊗ hq),

τ(v ⊗ h1 ⊗ . . .⊗ hq) = v
〈0〉

h1
(1) ⊗ S(h1

(2)) · (h2 ⊗ . . .⊗ hq ⊗ v
〈−1〉

),

(5.5)

where H acts on H⊗q diagonally.

The graded module C•(H, V ) endowed with the above operators is then a co-
cyclic module [9], which means that ∂i, σj and τ satisfy the following identities

∂j∂i = ∂i∂j−1, if i < j,

σjσi = σiσj+1, if i ≤ j,

σj∂i =





∂iσj−1, if i < j

Id if i = j or i = j + 1

∂i−1σj if i > j + 1,

τ∂i = ∂i−1τ, 1 ≤ i ≤ q

τ∂0 = ∂q+1, τσi = σi−1τ, 1 ≤ i ≤ q

τσ0 = σnτ
2, τq+1 = Id .

(5.6)
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We use the face operators to define the Hochschild coboundary

b : Cq(H, V ) → Cq+1(H, V ), b :=

q+1∑

i=0

(−1)i∂i (5.7)

It is known that b2 = 0. As a result, one obtains the Hochschild complex of the
coalgebra H with coefficients in the bicomodule V . Here, the right comodule
defined trivially. The cohomology of (C•(H, V ), b) is denoted by H•

coalg(H, V ).

We use the rest of the operators to define the Connes boundary operator,

B : Cq(H, V ) → Cq−1(H, V ), B :=

(
q∑

i=0

(−1)qiτ i

)
σq−1τ. (5.8)

It is shown in [5] that for any cocyclic module we have b2 = B2 = (b+B)2 = 0.
As a result, we define the cyclic cohomology of H with coefficients in the SAYD
module V , which is denoted by HC•(H, V ), as the total cohomology of the
bicomplex

Cp,q(H, V ) =




V ⊗H⊗q−p, if 0 ≤ p ≤ q,

0, otherwise.
(5.9)

We can also define the periodic cyclic cohomology of H with coefficients in V ,
which is denoted by HP ∗(H, V ), as the total cohomology of direct sum total
of the bicomplex

Cp,q(H, V ) =





V ⊗H⊗q−p, if p ≤ q,

0, otherwise.
(5.10)

It can be seen that the periodic cyclic complex and hence the cohomology is
Z2 graded.

5.2 SAYD modules over Lie algebras

We need to define the notion of comodule over a Lie algebra g to be able to
make a passage from the stable g̃-modules we already defined in the previous
sections to SAYD modules over the universal enveloping algebra U(g).

Definition 5.1. We say a vector space V is a left comodule over the Lie algebra
g if there is a map Hg : V → g⊗ V such that

v[−2] ∧ v[−1] ⊗ v[0] = 0, (5.11)

where Hg(v) = v[−1] ⊗ v[0] , and

v[−2] ⊗ v[−1] ⊗ v[0] = v[−1] ⊗ (v[0])[−1] ⊗ (v[0])[0] .
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Proposition 5.2. Let g be a Lie algebra and V be a vector space. Then, V is
a right S(g∗)-module if and only if it is a left g-comodule.

Proof. Assume that V is a right module over the symmetric algebra S(g∗).
Then for any v ∈ V there is an element v[−1] ⊗ v[0] ∈ g∗∗ ⊗V ∼= g⊗V such that
for any θ ∈ g∗

v � θ = v[−1](θ)v[0] = θ(v[−1])v[0] . (5.12)

Hence define the linear map Hg : V → g⊗ V by

v 7→ v[−1] ⊗ v[0] . (5.13)

The compatibility needed for V to be a right module over S(g∗),which is (v �
θ)� η − (v � η)� θ = 0 translates directly into

α(v[−2] ∧ v[−1])⊗ v[0] = (v[−2] ⊗ v[−1] − v[−1] ⊗ v[−2])⊗ v[0] = 0, (5.14)

where α : ∧2g → U(g)⊗ 2 is the anti-symmetrization map. Since the anti-
symmetrization is injective, we have

v[−2] ∧ v[−1] ⊗ v[0] = 0. (5.15)

Hence, V is a left g-comodule.

Conversely, assume that V is a left g-comodule via the map Hg : V → g ⊗ V
defined by v 7→ v[−1] ⊗ v[0] . We define the right action

V ⊗ S(g∗) → V, v ⊗ θ 7→ v � θ := θ(v[−1])v[0] , (5.16)

for any θ ∈ g∗ and any v ∈ V . Thus,

(v� θ)� η− (v� η)� θ = (v[−2] ⊗ v[−1] − v[−1] ⊗ v[−2])(θ⊗ η)⊗ v[0] = 0, (5.17)

proving that V is a right module over S(g∗).

Having understood the relation between the left g-coaction and right S(g∗)-
action, it is natural to investigate the relation with left U(g)-coaction.

Let H : V → U(g) ⊗ V be a left U(g)-comodule structure on the linear space
V . Then composing via the canonical projection π : U(g) → g, we get a linear
map Hg : V → g⊗ V .

V

Hg

##H

H

H

H

H

H

H

H

H

H

H // U(g)⊗ V

π⊗id

��

g⊗ V

Lemma 5.3. If H : V → U(g)⊗ V is a coaction, then so is Hg : V → g⊗ V .
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Proof. If we write H(v) = v
[−1]

⊗ v
[0]

then

v[−2] ∧ v[−1] ⊗ v[0] = π(v
[−2]

) ∧ π(v
[−1]

)⊗ v
[0]

=

π(v
[−1]

(1)) ∧ π(v
[−1]

(2))⊗ v
[0]

= 0
(5.18)

by the cocommutativity of U(g).

For the reverse process which is to obtain a U(g)-comodule out of a g-comodule,
we will need the following concept.

Definition 5.4. Let V be a g-comodule via Hg : V → g⊗V . Then we call the
coaction locally conilpotent if it is conilpotent on any one dimensional subspace.
In other words, Hg : V → g ⊗ V is locally conilpotent if and only if for any
v ∈ V there exists n ∈ N such that Hn

g(v) = 0.

Example 5.5. If V is an SAYD module on U(g), then by [11, Lemma 6.2] we
have the filtration V = ∪p∈ZFpV defined as F0V = V coU(g) and inductively

Fp+1V/FpV = (V/FpV )coU(g) (5.19)

Then the induced g-comodule V is locally conilpotent.

Example 5.6. Let g be a Lie algebra and S(g∗) be the symmetric algebra on
g∗. For V = S(g∗), consider the coaction

S(g∗) → g⊗ S(g∗), α 7→ Xi ⊗ αθi, (5.20)

called the Koszul coaction. The corresponding S(g∗)-action on V coincides
with the multiplication of S(g∗). Therefore, the Koszul coaction is not locally
conilpotent.

One notes that the Koszul coaction is locally conilpotent on any truncation of
the symmetric algebra.

Let {Uk(g)}k≥0 be the canonical filtration of U(g), i.e.,

U0(g) = C · 1, U1(g) = C · 1⊕ g, Up(g) · Uq(g) ⊆ Up+q(g) (5.21)

Let us call an element in U(g) as symmetric homogeneous of degree k if it is
the canonical image of a symmetric homogeneous tensor of degree k over g.
Let Uk(g) be the set of all symmetric elements of degree n in U(g).

We recall from [7, Proposition 2.4.4] that

Uk(g) = Uk−1(g)⊕ Uk(g). (5.22)

In other words, there is a (canonical) projection

θk : Uk(g) → Uk(g) ∼= Uk(g)/Uk−1(g)

X1 · · ·Xk 7→
∑

σ∈Sk

Xσ(1) · · ·Xσ(k).
(5.23)
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So, fixing an ordered basis of the Lie algebra g, we can say that the above map
is bijective on the PBW-basis elements.

Let us consider the unique derivation of U(g) extending the adjoint action of
the Lie algebra g on itself, and call it ad(X) : U(g) → U(g) for any X ∈ g.
By [7, Proposition 2.4.9], ad(X)(Uk(g)) ⊆ Uk(g) and ad(X)(Uk(g)) ⊆ Uk(g).
So by applying ad(X) to both sides of (5.22), we observe that the preimage of
ad(Y )(

∑
σ∈Sk

Xσ(1) · · ·Xσ(k)) is ad(Y )(X1 · · ·Xk).

Proposition 5.7. For a locally conilpotent g-comodule V , the linear map

H : V → U(g)⊗ V

v 7→ 1⊗ v +
∑

k≥1

θ−1
k (v[−k] · · · v[−1])⊗ v[0]

(5.24)

defines a U(g)-comodule structure.

Proof. For an arbitrary basis element vi ∈ V , let us write

vi[−1] ⊗ vi[0] = αij
k Xj ⊗ vk (5.25)

where αij
k ∈ C. Then, by the coaction compatibility v[−2] ∧ v[−1] ⊗ v[0] = 0 we

have

vi[−2] ⊗ vi[−1] ⊗ vi[0] =
∑

j1,j2

αij1j2
l2

Xj1 ⊗Xj2 ⊗ vl2 , (5.26)

such that αij1j2
l2

:= αij1
l1

αl1j2
l2

and αij1j2
l2

= αij2j1
l2

.

We have

H(vi) = 1⊗ vi +
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk ⊗ vlk , (5.27)

because for k ≥ 1

vi[−k] ⊗ · · · ⊗ vi[−1] ⊗ vi[0] =
∑

j1,··· ,jk

αij1···jk
lk

Xj1 ⊗ · · · ⊗Xjk ⊗ vlk , (5.28)

where αij1···jk
lk

:= αij1
l1

· · ·α
lk−1jk
lk

, and for any σ ∈ Sk we have

αij1···jk
lk

= α
ijσ(1) ···jσ(k)

lk
. (5.29)

At this point, the counitality is immediate,

(ε⊗ id) ◦ H(vi) = vi. (5.30)
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On the other hand, to prove the coassociativity we first observe that

(id⊗ H) ◦ H(vi) = 1⊗ H(vi) +
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk ⊗ H(vlk)

= 1⊗ 1⊗ vi +
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

1⊗Xj1 · · ·Xjk ⊗ vlk+

∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk ⊗ 1⊗ vlk+

∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk ⊗ (
∑

t≥1

∑

r1≤···≤rt

αlkr1···rt
st

Xr1 · · ·Xrt ⊗ vst),

(5.31)

where αlkr1···rt
st

:= αlkr1
s1

· · ·α
st−1rt
st . Then we notice that

∆(
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk)⊗ vlk

=
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

1⊗Xj1 · · ·Xjk ⊗ vlk

+
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk ⊗ 1⊗ vlk

+
∑

k≥2

∑

j1≤···≤r1≤···≤rp≤···≤jk

αij1···jk
lk

Xr1 · · ·Xrp ⊗Xj1 · · · X̂r1 · · · X̂rp · · ·Xjk ⊗ vlk

=
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

1⊗Xj1 · · ·Xjk ⊗ vlk

+
∑

k≥1

∑

j1≤···≤jk

αij1···jk
lk

Xj1 · · ·Xjk ⊗ 1⊗ vlk

+
∑

p≥1

∑

k−p≥1∑

q1≤···≤qk−p

∑

r1≤···≤rp

α
ir1···rp
lp

α
lpq1···qk−p

lk
Xr1 · · ·Xrp ⊗Xq1 · · ·Xqk−p

⊗ vlk ,

(5.32)

where for the last equality we write the complement of r1 ≤ · · · ≤ rp in j1 ≤
· · · ≤ jk as q1 ≤ · · · ≤ qk−p. Then (5.29) implies that

αij1···jk
lk

= α
ir1···rpq1···qk−p

lk
= α

ir1···rp
lp

α
lpq1···qk−p

lk
. (5.33)

As a result,

(id⊗ H) ◦ H(vi) = (∆⊗ id) ◦ H(vi). (5.34)

This is the coassociativity and the proof is now complete.
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Let us denote by gconilM the subcategory of locally conilpotent left g-
comodules of the category of left g-comodules gM with colinear maps.

Assigning a g-comodule Hg : V → g⊗V to a U(g)-comodule H : V → U(g)⊗V
determines a functor

U(g)M
P // gconilM (5.35)

Similarly, constructing a U(g)-comodule from a g-comodule determines a func-
tor

gconilM
E // U(g)M (5.36)

As a result, we can express the following proposition.

Proposition 5.8. The categories U(g)M and gconilM are isomorphic.

Proof. We show that the functors

U(g)M
P // gconilM
E

oo

are inverses to each other.

If Hg : V → g ⊗ V is a locally conilpotent g-comodule and H : V → U(g) ⊗
V the corresponding U(g)-comodule, by the very definition the g-comodule
corresponding to H : V → U(g) ⊗ V is exactly Hg : V → g ⊗ V . This proves
that

P ◦ E = IdgconilM . (5.37)

Conversely, let us start with a U(g)-comodule H : V → U(g)⊗V and write the
coaction by using the PBW-basis of U(g) as follows

vi(−1) ⊗ vi(0) = 1⊗ vi +
∑

k≥1

∑

j1≤···≤jk

γij1···jk
lk

Xj1 · · ·Xjk ⊗ vlk . (5.38)

So, the corresponding g-comodule Hg : V → g⊗ V is given as follows

vi[−1] ⊗ vi[0] = π(vi(−1))⊗ vi(0) =
∑

j

γij
k Xj ⊗ vk. (5.39)

Finally, the U(g)-coaction corresponding to this g-coaction is defined on vi ∈ V
as

vi 7→ 1⊗ v +
∑

k≥1

∑

j1≤···≤jk

γij1
l1

γl1j2
l2

· · · γ
lk−1jk
lk

Xj1 · · ·Xjk ⊗ vlk (5.40)

Therefore, we can recover U(g)-coaction we started with if and only if

γij1···jk
lk

= γij1
l1

γl1j2
l2

· · · γ
lk−1jk
lk

, ∀k ≥ 1. (5.41)
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The equation (5.41) is a consequence of the coassociativity H. Indeed, applying
the coassociativity as

(∆k−1 ⊗ id) ◦ H = H
k (5.42)

and comparing the coefficients of Xj1 ⊗ · · · ⊗ Xjk we conclude (5.41) for any
k ≥ 1. Hence, we proved

E ◦ P = IdU(g)M . (5.43)

The equation (5.41) implies that if H : V → U(g) ⊗ V is a left coaction, then
its associated g-coaction Hg : V → g⊗ V is locally conilpotent.

For a g-coaction
v 7→ v[−1] ⊗ v[0] , (5.44)

the associated U(g)-coaction is denoted by

v 7→ v
[−1]

⊗ v
[0]
. (5.45)

Definition 5.9. Let V be a right module and left comodule over a Lie algebra
g. We call V a right-left AYD over g if

Hg(v ·X) = v[−1] ⊗ v[0] ·X + [v[−1] , X ]⊗ v[0] . (5.46)

Moreover, V is called stable if

v[0] · v[−1] = 0. (5.47)

Proposition 5.10. Let Hg : V → g ⊗ V be a locally conilpotent g-comodule
and H : V → U(g)⊗V the corresponding U(g)-comodule structure. Then, V is
a right-left AYD over g if and only if it is a right-left AYD over U(g).

Proof. Let us first assume V to be a right-left AYD module over g. For X ∈ g

and an element v ∈ V , AYD compatibility implies that

(v ·X)[−k] ⊗ · · · ⊗ (v ·X)[−1] ⊗ (v ·X)[0] = v[−k] ⊗ · · · ⊗ v[−1] ⊗ v[0] ·X

+ [v[−k] , X ]⊗ · · · ⊗ v[−1] ⊗ v[0] + v[−k] ⊗ · · · ⊗ [v[−1] , X ]⊗ v[0] .
(5.48)

Multiplying in U(g), we get

(v ·X)[−k] · · · (v ·X)[−1] ⊗ (v ·X)[0] =

v[−k] · · · v[−1] ⊗ v[0] ·X − ad(X)(v[−k] · · · v[−1])⊗ v[0] .
(5.49)

So, for the extension H : V → U(g)⊗ V we have

(v ·X)
[−1]

⊗ (v ·X)
[0]

= 1⊗ v ·X +
∑

k≥1

θ
−1

k
((v ·X)[−k] · · · (v ·X)[−1] )⊗ (v ·X)[0]

= 1⊗ v ·X +
∑

k≥1

θ
−1

k
(v[−k] · · · v[−1])⊗ v[0] ·X −

∑

k≥1

θ
−1

k
(ad(X)(v[−k] · · · v[−1] ))⊗ v[0]

= v
[−1]

⊗ v
[0]

·X −

∑

k≥1

ad(X)(θ−1

k
(v[−k] · · · v[−1] ))⊗ v[0]

= v
[−1]

⊗ v
[0]

·X − ad(X)(v
[−1]

)⊗ v
[0]

= S(X(3) )v
[−1]

X(1) ⊗ v
[0]

·X(2) .

(5.50)
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Here on the third equality we used the fact that the operator ad commute
with θk, and on the fourth equality we used

∑

k≥1

ad(X)(θ−1
k (v[−k] · · · v[−1]))⊗ v[0] =

∑

k≥1

ad(X)(θ−1
k (v[−k] · · · v[−1]))⊗ v[0] + ad(X)(1)⊗ v = ad(X)(v

[−1]
)⊗ v

[0]
.

(5.51)

By using the fact that AYD condition is multiplicative, we conclude that H :
M → U(g)⊗M satisfies the AYD condition on U(g).

Conversely assume that V is a right-left AYD over U(g). We first observe that

(∆⊗ id) ◦∆(X) = X ⊗ 1⊗ 1 + 1⊗X ⊗ 1 + 1⊗ 1⊗X (5.52)

Accordingly,

H(v ·X) = v
[−1]

X ⊗ v
[0]

+ v
[−1]

⊗ v
[0]

·X −Xv
[−1]

⊗ v
[0]

= −ad(X)(v
[−1]

)⊗ v
[0]

+ v
[−1]

⊗ v
[0]

·X
(5.53)

It is known that the projection map π : U(g) → g commutes with the adjoint
representation. So

Hg(v ·X) = −π(ad(X)(v
[−1]

))⊗ v
[0]

+ π(v
[−1]

)⊗ v
[0]

·X

= −ad(X)π(v
[−1]

)⊗ v
[0]

+ π(v
[−1]

)⊗ v
[0]

·X

= [v[−1] , X ]⊗ v[0] + v[−1] ⊗ v[0] ·X.

(5.54)

That is, V is a right-left AYD over g.

Lemma 5.11. Let Hg : V → g ⊗ V be a locally conilpotent g-comodule and
H : V → U(g)⊗V be the corresponding U(g)-comodule structure. If V is stable
over g, then it is stable over U(g).

Proof. Writing the g-coaction in terms of basis elements as in (5.25), the sta-
bility reads

vi[0]vi[−1] = αij
k v

k ·Xj = 0, ∀i (5.55)

Therefore, for the corresponding U(g)-coaction we have

∑

j1≤···≤jk

αij1
l1

· · ·α
lk−1jk
lk

vlk · (Xj1 · · ·Xjk) =

∑

j1≤···≤jk−1

αij1
l1

· · ·α
lk−2jk−1

lk−1
(
∑

jk

α
lk−1jk
lk

vlk ·Xj1) · (Xj2 · · ·Xjk) =

∑

j2,··· ,jk

αijk
l1

· · ·α
lk−2jk−1

lk−1
(
∑

j1

α
lk−1j1
lk

vlk ·Xj1) · (Xj2 · · ·Xjk),

(5.56)
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where on the second equality we used (5.29). This immediately implies that

vi
[0]

· vi
[−1]

= vi. (5.57)

That is, the stability over U(g).

However, the converse is not true.

Example 5.12. It is known that U(g), as a left U(g)-comodule via ∆ : U(g) →
U(g)⊗U(g) and a right g-module via ad : U(g)⊗g → U(g) is stable. However,
the associated g-comodule, is no longer stable. Indeed, for u = X1X2X3 ∈
U(g), we have

u[−1] ⊗ u[0] = X1 ⊗X2X3 +X2 ⊗X1X3 +X3 ⊗X1X2 (5.58)

Then,

u[0] · u[−1] = [[X1, X2], X3] + [[X2, X1], X3] + [[X1, X3], X2] = [[X1, X3], X2]
(5.59)

which is not necessarily zero.

The following is the main result of this section.

Proposition 5.13. Let V be a vector space, and g be a Lie algebra. Then, V
is a stable right g̃-module if and only if it is a right-left SAYD module over g.

Proof. Let us first assume that V is a stable right g̃-module. Since V is a right
S(g∗)-module it is a left g-comodule by Proposition 5.2. Accordingly

[v[−1] , Xj]⊗ v[0] + v[−1] ⊗ v[0] ·Xj =

[Xl, Xj ]θ
l(v[−1])⊗ v[0] +Xtθ

t(v[−1])⊗ v[0] ·Xj =

XtC
t
ljθ

l(v[−1])⊗ v[0] +Xtθ
t(v[−1])⊗ v[0] ·Xj =

Xt ⊗ [v � (Xj � θt) + (v � θt) ·Xj ] =

Xt ⊗ (v ·Xj)� θt = Xtθ
t((v ·Xj)[−1])⊗ (v ·Xj)[0] =

(v ·Xj)[−1] ⊗ (v ·Xj)[0]

(5.60)

This proves that V is a right-left AYD module over g. On the other hand, for
any v ∈ V ,

v[0] · v[−1] =
∑

i

v[0] ·Xiθ
i(v[−1]) =

∑

i

(v � θi) ·Xi = 0 (5.61)

Hence, V is stable too. As a result, V is SAYD over g.
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Conversely, assume that V is a right-left SAYD module over g. So V is a right
module over S(g∗) and a right module over g. In addition we see that

v � (Xj � θi) + (v � θi) ·Xj = Ci
kjv � θk + (v � θi) ·Xj =

Ci
kjθ

k(v[−1])v[0] + θi(v[−1])v[0] ·Xj =

θi([v[−1] , Xj ])v[0] + θi(v[−1])v[0] ·Xj =

(θi ⊗ id)([v[−1] , Xj ]⊗ v[0] + v[−1] ⊗ v[0] ·Xj) =

θt((v ·Xj)[−1])(v ·Xj)[0] = (v ·Xj)� θi.

(5.62)

Thus, V is a right g̃-module. Finally, we prove the stability by

∑

i

(v � θi) ·Xi =
∑

i

v[0] ·Xiθ
i(v[−1]) = v[0] · v[−1] = 0. (5.63)

Corollary 5.14. Any right module over the Weyl algebra D(g) is a right-left
SAYD module over the Lie algebra g.

Finally, we state an analogous of Lemma 2.3 [10] to show that the category of
gAYDg is monoidal.

Proposition 5.15. Let M and N be two right-left AYD modules over g. Then
M ⊗N is also a right-left AYD over g via the coaction

Hg : M ⊗N → g⊗M ⊗N, m⊗n 7→ m[−1] ⊗m[0] ⊗n+n[−1] ⊗m⊗n[0] (5.64)

and the action

M ⊗N ⊗ g → M ⊗N, (m⊗ n) ·X = m ·X ⊗ n+m⊗ n ·X (5.65)

Proof. We verify that

[(m⊗ n)[−1] , X ]⊗ (m⊗ n)[0] + (m⊗ n)[−1] ⊗ (m⊗ n)[0] ·X =

[m[−1] , X ]⊗m[0] ⊗ n+ [n[−1] , X ]⊗m⊗ n[0]+

m[−1] ⊗ (m[0] ⊗ n) ·X + n[−1] ⊗ (m⊗ n[0]) ·X =

(m ·X)[−1] ⊗ (m ·X)[0] ⊗ n+ n[−1] ⊗m ·X ⊗ n[0]+

m[−1] ⊗m[0] ⊗ n ·X + (n ·X)[−1] ⊗m⊗ (n ·X)[0] =

Hg(m ·X ⊗ n+m⊗ n ·X) = Hg((m⊗ n) ·X).

(5.66)

5.3 Examples

This subsection is devoted to examples to illustrate the notion of SAYD module
over a Lie algebra. We consider the representations and corepresentations of a
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Lie algebra g on a finite dimensional vector space V in terms of matrices. We
then investigate the SAYD condition as a relation between these matrices and
the Lie algebra structure of g.

Let also V be a n dimensional g-module with a basis {v1, · · · , vn}. We express
the module structure as

mi ·Xj = βi
jkm

k, βi
jk ∈ C. (5.67)

In this way, for any basis element Xj ∈ g we obtain a matrix Bj ∈ Mn(C) such
that

(Bj)
i
k := βi

jk. (5.68)

Let Hg : V → g⊗ V be a coaction. We write the coaction as

Hg(v
i) = αij

k Xj ⊗ vk, αij
k ∈ C. (5.69)

This way we get a matrix Aj ∈ Mn(C) for any basis element Xj ∈ g such that

(Aj)ik := αij
k . (5.70)

Lemma 5.16. Linear map Hg : M → g ⊗M forms a right g-comodule if and
only if

Aj1 ·Aj2 = Aj2 · Aj1 . (5.71)

Proof. It is just the translation of the coaction compatibility vi[−2]∧vi[−1]⊗vi[0] =
0 in terms of the matrices Ai.

Lemma 5.17. Right g-module left g-comodule V is stable if and only if

∑

j

Aj ·Bj = 0. (5.72)

Proof. By the definition of the stability,

vi[0] · vi[−1] = αij
k v

k ·Xj = αij
k β

k
jlv

l = 0 (5.73)

Therefore,

αij
k β

k
jl = (Aj)ik(Bj)

k
l = (Aj · Bj)

i
l = 0. (5.74)

We proceed to express the AYD condition.

Lemma 5.18. The g-module-comodule V is a right-left AYD if and only if

[Bq, A
j ] =

∑

s

AsCj
sq . (5.75)
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Proof. We first observe

Hg(v
p ·Xq) = Hg(β

p
qkv

k) = βp
qkα

kj
l Xj ⊗ vl

= (Bq)
p
k(A

j)kl Xj ⊗ vl = (Bq · A
j)plXj ⊗ vl.

(5.76)

On the other hand, writing Hg(v
p) = αpj

l Xj ⊗ vl,

[vp[−1] , Xq]⊗ vp[0] + vp[−1] ⊗ vp[0] ·Xq = αps
l [Xs, Xq]⊗ vl + αpj

t Xj ⊗ vt ·Xq

= αps
l Cj

sqXj ⊗ vl + αpj
t βt

qlXj ⊗ vl = (αps
l Cj

sq + (Aj · Bq)
p
l )Xj ⊗ vl.

(5.77)

Next, considering the Lie algebra sl(2), we determine the SAYD modules over
simple sl(2)-modules.

Example 5.19. Let V =< {v1, v2} > be a two dimensional simple sl(2)-
module. Then, by [12], the representation

ρ : sl(2) → gl(V ) (5.78)

is the inclusion ρ : sl(2) →֒ gl(2). Therefore, we have

B1 =

(
0 0
1 0

)
, B2 =

(
0 1
0 0

)
, B3 =

(
1 0
0 −1

)
. (5.79)

We want to find

A1 =

(
x1
1 x1

2

x2
1 x2

2

)
, A2 =

(
y11 y12
y21 y22

)
, A3 =

(
z11 z12
z21 z22

)
, (5.80)

such that together with the g-coaction Hsl(2) : V → sl(2) ⊗ V , defined as

vi 7→ (Aj)ikXj ⊗ vk, V becomes a right-left SAYD over sl(2). We first express
the stability condition. To this end,

A1 ·B1 =

(
x1
2 0

x2
2 0

)
, A2 ·B2 =

(
0 y11
0 y21

)
, A3 ·B3 =

(
z11 −z12
z21 −z22

)
,

(5.81)
and hence, the stability is

∑

j

Aj ·Bj =

(
x1
2 + z11 y11 − z12

x2
2 + z21 y21 − z22

)
= 0. (5.82)

Next, we consider the AYD condition

[Bq, A
j ] =

∑

s

AsCj
sq . (5.83)
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For j = 1 = q,

A1 =

(
x1
1 0

x2
1 x2

2

)
, A2 =

(
0 y12
0 y22

)
, A3 =

(
0 0
z21 0

)
. (5.84)

Similarly, for q = 2 and j = 1, we arrive

A1 =

(
0 0
0 0

)
, A2 =

(
0 y12
0 y22

)
, A3 =

(
0 0
0 0

)
. (5.85)

Finally, for j = 1 and q = 2 we conclude

A1 =

(
0 0
0 0

)
, A2 =

(
0 0
0 0

)
, A3 =

(
0 0
0 0

)
. (5.86)

Thus, the only sl(2)-comodule structure that makes a 2-dimensional simple
sl(2)-module V to be a right-left SAYD over sl(2) is the trivial comodule struc-
ture.

Example 5.20. We investigate all possible coactions that make the truncated
symmetric algebra S(sl(2)∗)[2] an SAYD module over sl(2).

A vector space basis of S(sl(2)∗)[2] is {1 = θ0, θ1, θ2, θ3} and the Koszul coaction
is

S(sl(2)∗)[2] → sl(2)⊗ S(sl(2)∗)[2]

θ0 7→ X1 ⊗ θ1 +X2 ⊗ θ2 +X3 ⊗ θ3

θi 7→ 0, i = 1, 2, 3

(5.87)

We first determine the right sl(2) action to find the matrices B1, B2, B3. We
have

θi �Xj(Xq) = θi ·Xj(Xq) = θi([Xj , Xq]). (5.88)

Therefore,

B1 =









0 0 0 0
0 0 0 −2
0 0 0 0
0 0 1 0









, B2 =









0 0 0 0
0 0 0 0
0 0 0 2
0 −1 0 0









, B3 =









0 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 0









(5.89)

Let A1 = (xi
k), A

2 = (yik), A
3 = (zik) represent the g-coaction on V . According

to the above expression of B1, B2, B3, the stability is

∑

j

Aj · Bj =




0 y03 + 2z01 x0
3 − 2z02 −2x0

1 + 2y02
0 y13 + 2z11 x1

3 − 2z12 −2x1
1 + 2y12

0 y23 + 2z21 x2
3 − 2z22 −2x2

1 + 2y22
0 y33 + 2z31 x3

3 − 2z32 −2x3
1 + 2y32


 = 0. (5.90)
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As before, we make the following observations. First,

[B1, A
1] =




0 0 −x0
3 2x0

1

−2x3
0 −2x3

1 −2x3
2 − x1

3 −2x3
3 + 2x1

1

0 0 −x2
3 2x2

1

x2
0 x2

1 x2
2 − x3

3 x2
3 − 2x3

1


 = 2A3 (5.91)

and next

[B2, A
1] =




0 x0
3 0 −2x0

2

0 x1
3 0 −2x1

2

2x3
0 2x3

1 + x2
3 2x3

2 2x3
3 − 2x2

2

−x1
0 −x1

1 + x3
3 −x1

2 −x1
3 − 2x3

2


 = 0 (5.92)

Finally,

[B3, A
1] =




0 −2x0
1 0 0

0 0 0 0
−2x2

0 −4x2
1 0 −2x2

3

0 −2x3
1 0 0


 = −2A1. (5.93)

Hence, together with the stability one gets

A1 =




0 x0
1 0 0

0 0 0 0
x2
0 0 0 0
0 0 0 0


 (5.94)

and

[B1, A
1] =




0 0 0 2x0
1

0 0 0 0
0 0 0 0
x2
0 0 0 0


 = 2A3. (5.95)

Similarly one computes

[B1, A
2] =




0 0 0 2y01
−2y30 −2y31 0 2y11
0 0 0 2y21
y20 y21 0 2y31


 = 0, (5.96)

as well as

[B2, A
2] =




0 0 0 −2y02
0 0 0 0
0 0 0 0

−y10 0 0


 = −2A3, (5.97)

and [B3, A
2] = 2A2. We conclude that

A1 =




0 c 0 0
0 0 0 0
d 0 0 0
0 0 0 0


 , A2 =




0 0 c 0
d 0 0 0
0 0 0 0
0 0 0 0


 , A3 =




0 0 0 c
0 0 0 0
0 0 0 0
1
2d 0 0 0


 .

(5.98)
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One notes that c = 1, d = 0 recovers the Koszul coaction, but obviously it is
not the only choice.

6 Cyclic cohomology of Lie algebras

In this section we show that for V , a SAYD module over a Lie algebra g,
the (periodic) cyclic cohomology of g with coefficients in V and the (periodic)
cyclic cohomology of the enveloping Hopf algebra U(g) with coefficient in the
corresponding SAYD over U(g) are isomorphic.

As a result of Proposition 4.2 and Proposition 5.13, we have the following
definition.

Definition 6.1. Let g be a Lie algebra and V be a right-left SAYD module
over g. We call the cohomology of the total complex of (C•(g, V ), ∂CE+ bK) the
cyclic cohomology of the Lie algebra g with coefficients in the SAYD module V ,
and denote it by HC•(g, V ). Similarly we denote its periodic cyclic cohomology
by HP •(g, V ).

Our main result in this section is an analogous of Proposition 7 of [4].

Theorem 6.2. Let g be a Lie algebra and V be a SAYD module over the
Lie algebra g. Then the periodic cyclic homology of g with coefficients in V
is the same as the periodic cyclic cohomology of U(g) with coefficients in the
corresponding SAYD module V over U(g). In short,

HP •(g, V ) ∼= HP •(U(g), V ). (6.1)

Proof. The total coboundary of C(g, V ) is ∂CE+∂K while the total coboundary
of the complex C(U(g), V ) computing the cyclic cohomology of U(g) is B + b.

Next, we compare the E1 terms of the spectral sequences of the total com-
plexes corresponding to the filtration on the complexes which is induced by
the filtration on V via [11, Lemma 6.2]. To this end, we first show that the
coboundaries respect this filtration.

As it is indicated in the proof of [11, Lemma 6.2], each FpV is a submodule of
V . Thus, the Lie algebra homology boundary ∂CE respects the filtration. As
for ∂K, we notice for v ∈ FpV

∂K(X1 ∧ · · · ∧Xn ⊗ v) = v[−1] ∧X1 ∧ · · · ∧Xn ⊗ v[0] (6.2)

Since

H(v) = v
[−1]

⊗ v
[0]

= 1⊗ v + v[−1] ⊗ v[0] +
∑

k≥2

θ−1
k (v[−k] · · · v[−1])⊗ v[0] (6.3)

we observe that v[−1]∧X1∧· · ·∧Xn⊗v[0] ∈ ∧n+1g⊗Fp−1V . Since Fp−1V ⊆ FpV ,
we conclude that ∂K respects the filtration.
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Since the Hochschild coboundary b : V ⊗ U(g)⊗n → V ⊗ U(g)⊗n+1 is the
alternating sum of cofaces δi, it suffices to check each δi preserve the filtration,
which is obvious for all cofaces except possibly the last one. However, for the
last coface, we take v ∈ FpV and write

v
[−1]

⊗ v
[0]

= 1⊗ v + v
〈−1〉

⊗ v
〈0〉

, v
〈−1〉

⊗ v
〈0〉

∈ g⊗ Fp−1V. (6.4)

We have

δn(v ⊗ u1 ⊗ · · · ⊗ un) = v
[0]

⊗ u1 ⊗ · · · ⊗ un ⊗ v
[−1]

∈ FpV ⊗ U(g)⊗n+1. (6.5)

Hence, we can say that b respects the filtration.

For the cyclic operator, the result again follows from the fact that Fp is a
g-module. Indeed, for v ∈ FpV

τn(v⊗u1⊗· · ·⊗un) = v
[0]
·u1

(1) ⊗S(u1
(2))·(u2⊗· · ·⊗un⊗v

[−1]
) ∈ FpV ⊗U(g)⊗n

(6.6)
Finally we consider the extra degeneracy operator

σ−1(v⊗u1⊗· · ·⊗un) = v ·u1
(1)⊗S(u1

(2))·(u2⊗· · ·⊗un) ∈ FpV ⊗U(g)⊗n (6.7)

which preserves the filtration again by using the fact that Fp is g-module and
the coaction preserve the filtration. As a result now, we can say that the
Connes’ boundary B respects the filtration.

Now, the E1-term of the spectral sequence associated to the filtration (FpV )p≥0

computing the periodic cyclic cohomology of the Lie algebra g is known to be
of the form

Ej, i
1 (g) = Hi+j(Fj+1C(g, V )/FjC(g, V ), [∂CE + ∂K]) (6.8)

where, [∂CE+∂K] is the induced coboundary operator on the quotient complex.
By the obvious identification

Fj+1C(g, V )/FjC(g, V ) ∼= C(g, Fj+1V/FjV ) = C(g, (V/FjV )cog), (6.9)

we observe that

Ej, i
1 (g) = Hi+j(C(g, (V/FjV )coU(g)), [∂CE]), (6.10)

for ∂K(Fj+1C(g, V )) ⊆ FjC(g, V ).

Similarly,

Ej, i
1 (U(g)) = Hi+j(C(U(g), (V/FjV )coU(g)), [b+B]). (6.11)

Finally, considering

Ej, i
1 (g) = Hi+j(C(g, (V/FjV )cog), [0] + [∂CE]) (6.12)

i.e., as a bicomplex with degree +1 differential is zero, the anti-symmetrization
map α : C(g, (V/FjV )cog) → C(U(g), (V/FjV )coU(g)) induces a quasi-

isomorphism [α] : Ej, i
1 (g) → Ej, i

1 (U(g)), ∀i, j by Proposition 7 in [4].
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Remark 6.3. In case the g-module V has a trivial g-comodule structure, the
coboundary ∂K = 0 and

HP •(g, V ) =
⊕

n=•mod 2

Hn(g, V ). (6.13)

In this case, the above theorem becomes [4, Proposition 7].
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Department of Mathematics
and Statistics
University of New Brunswick
Fredericton, NB, Canada
ssutlu@unb.ca

Documenta Mathematica 17 (2012) 483–515



516

Documenta Mathematica 17 (2012)


	Introduction
	The model complex for G-differential algebras
	G-differential algebras
	The model complex

	Lie algebra cohomology and Perturbed Koszul complex
	Lie algebra cohomology
	Perturbed Koszul complex
	Weyl algebra

	Lie algebra homology and Poincaré duality
	Lie algebra homology
	Poincaré duality

	Lie algebra coaction and SAYD coefficients
	SAYD modules and cyclic cohomology of Hopf algebras
	SAYD modules over Lie algebras
	Examples

	Cyclic cohomology of Lie algebras

