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1 INTRODUCTION

One of the well-known complexes in mathematics is the Chevalley-Eilenberg
complex of a Lie algebra g with coefficients in a g-module V' [2].

C*(g,V) : VL5 v o g R g A2yt 2L (1.1)

Through examples, we can see that when the coefficients space V' is equipped
with more structures, then the complex (C*(g,V), dcg), together with another
operator dg : C*(g,V) — C* 1(g,V), called Koszul boundary, turns into a
mixed complex. That is dcg + dk defines a coboundary on the total complex

we= @ c* (g, V).

e>p>0
Among examples, one observes that,

e the well-known (truncated) Weil complex is achieved by V' := S(g")j2q
the (truncated) polynomial algebra of g,

e the Weil algebra with generalized coefficients defined by Alekseev-
Meinrenken in [I] is obtained by V := £’(g*), the convolution algebra
of compactly supported distributions on g*,

o finally it was shown by Kumar-Vergne that if V' is a module over the Weyl
algebra D(g) then (W*, dcg + dk) is a complex which is called perturbed
Koszul complex [14].

In this paper we prove that (W?®, dcg + dk) is a complex if and only if V is
a unimodular stable module over the Lie algebra g, where g := g* > g is the
semidirect product Lie algebra g* and g. Here g* := Hom(g, C) is thought of
as an abelian Lie algebra acted upon by the Lie algebra g via the coadjoint
representation.

Next, we show that any Yetter-Drinfeld module over the enveloping Hopf alge-
bra U(g) yields a module over g and conversely any locally conilpotent module
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CycLic COHOMOLOGY OF LIE ALGEBRAS 485

over g amounts to a Yetter-Drinfeld module over the Hopf algebra U(g). This
correspondence is accompanied with a quasi-isomorphism which reduces to the
antisymmetrization map if the module V' is merely a g-module. The isomor-
phism generalizes the computation of the Hopf cyclic cohomology of U(g) in
terms of the Lie algebra homology of g carried out by Connes-Moscovici in [4].

Throughout the paper, g denotes a finite dimensional Lie algebra over C, the
field of complex numbers. We denote by X1,..., Xy and 8',...,0" adual basis
for g and g* respectively, and by & € g* the trace of the adjoint representation
of g on itself. All tensor products are over C.

B. R. would like to thank Alexander Gorokhovsky for the useful discussions on
the G-differential algebras, and is also grateful to the organizers of NCGOA
2011 at Vanderbilt University, where these discussions took place.

2 THE MODEL COMPLEX FOR GG-DIFFERENTIAL ALGEBRAS

In this section we first recall G-differential algebras and their basic properties.
Then we introduce our model complex which is the main motivation of this
paper. The model complex includes as examples Weil algebra and their trun-
cations, perturbed Koszul complex introduced by Kumar- Vergne in [14], and
WEeil algebra with generalized coefficients introduced by Alekseev-Meinrenken

.

2.1 G-DIFFERENTIAL ALGEBRAS

Let g = g1 ® go ® g1 be a graded Lie algebra, where g_; and go are N-
dimensional vector spaces with bases ¢y, - ,¢n, and Ly, -+, Ly respectively,
and g; is generated by d.

We let C’;k denote the structure constants of the Lie algebra go and assume
that the graded-bracket on g is defined as follows.

[tp: gl =0, (2.1)
[Lp,tq) = ngLTa (2.2)
[‘Cpa ﬂq] = C;q£7'7 (2.3)
[d, tk] = Lk, (2.4)
[d,d] =0 (2.6)

Now let G be a (connected) Lie group with Lie algebra g. We assume g be as
above with go =2 g as Lie algebras.

A graded algebra A is called a G-differential algebra if there exists a represen-
tation p : G — Aut(A) of the group G and a graded Lie algebra homomorphism

DOCUMENTA MATHEMATICA 17 (2012) 483-515



486 BAHRAM RANGIPOUR AND SERKAN SUTLU

p: g — End(A) compatible in the following way:

L1 plenn(tx)) = () (2.7)
pa)p(X)p(a™?) = p(Ad,X) (2.8)
pla)xp(a™) = vaa,x (2.9)
pla)dp(a~) = d (2.10)

for any a € G and any X € g. For further discussion on G-differential algebras
we refer the reader to [8, chapter 2] and [I].

The exterior algebra A g* and the Weil algebra are examples of G-differential
algebras.

Here we recall W(g), the Weil algebra of a finite dimensional Lie algebra g, by

W(g) = \o" @ 5(g"),
with the grading

W(g) = P W (), (2.11)
1>0
where
Whg) = @ wre,  Wr=APgt @ S(g"). (2.12)
p+2q=l

It is equipped with two degree +1 differentials as follows. The first one is
di : NPg* @ S(g*) — AP~ 1g* @ S7T1(g*)
PR Y ix,(p) ® RY (2.13)

J

and it is called the Koszul coboundary. The second one is the Chevalley-
Eilenberg coboundary (Lie algebra cohomology coboundary)

dcg : APg* @ S9(g*) — APTlg* @ S9(g*). (2.14)
Then dcg + dx : Wi(g) — W!tl(g) equips W (g) with a differential graded

algebra structure. It is known that via coadjoint representation W(g) is a
G-differential algebra.

A G-differential algebra is called locally free if there exists an element
@:ZX’L®9’L c (g@AOdd)G

called the algebraic connection form.

We assume that © € (g ® A)“, and we have
(0) = Xi, and Lp(0°) = —C},0".
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2.2 THE MODEL COMPLEX

Let (A, ©) be alocally free G-differential algebra with dim(G) = N. We assume
that V is a vector space with elements Ly and L* in End(V),1 <k <N.

We consider the graded space A ® V' with the grading induced from that of
A. Using all information of the G-differential algebra structure of A and the
connection form © € (g ® A')Y, we introduce the map

D(z®v) :=d(x) ®@v + 0%z @ Lp(v) + () @ L (v) (2.15)
as a sum of a degree +1 map and a degree —1 map.

PROPOSITION 2.1. Let (A, ©) be a locally free G-differential algebra. Then the
map
di(z @ v) = () @ L*(v) (2.16)

is a differential, that is d% = 0, if and only if V is a CN-module via L¥s, i.e.,
[LP, L] =0, 1<p,q<N.
Proof. Assume that [L7, L‘] = 0. Then
di o di(z ®v) = yu(z) @ L'L*(v) =0 (2.17)
by the commutativity of Lis and the anti-commutativity of ¢xs.

Conversely, if di has the property dik o dx = 0, then by using x(67) = 5% we
have

di o di (007 ®@v) = dk (¢’ ® L'(v) — 0" ® L/ (v)) = 1 ® [L?, L"](v) =0 (2.18)
which implies [L7, L] = 0. O
DEFINITION 2.2. [8]. For a commutative locally free G-differential algebra A,
the element Q =3, Q' @ X; € (A2 ® g)%, satisfying

. 1 . i
d(6*) = —50;(10”9‘1 + Q°, (2.19)

is called the curvature of the connection © =Y, 0" ® X;.

We call a commutative locally free G-differential algebra (4, ©) flat if Q = 0,
or equivalently

1
d(o*) = —Eq’;qepeq. (2.20)

PROPOSITION 2.3. Let (A4, 0©) be a commutative locally free flat G-differential
algebra. Then the map

deg(r ®@v) = d(z) @ v + 0%z @ Li(v) (2.21)

is a differential, that is dig = 0, if and only if V is a g-module via Ly, that is
[Lt, L)) = CE Ly.
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488 BAHRAM RANGIPOUR AND SERKAN SUTLU

Proof. Using the commutativity of A we see that

dep 0 dop(1 ® v) = ZdCE ® Li(v))

= Zd (0%) @ Li(v) + Y 0'6" @ Ly Ly(v)
k.t

- Z CEO0' @ Ly (v )+;%9tﬁl®[Lt,Ll](v),

(2.22)

which proves the claim. O

One notes that we use the commutativity of the differential graded algebra in
the above proposition. It would be interesting if one finds an argument for a
similar proposition to cover the noncommutative and twisted noncommutative
Weil algebra as discussed in [I] and [3] respectively.

Considering the dual g* of the Lie algebra g as a commutative Lie algebra, we
can define the Lie bracket on g := g* > g by

e X, BaY]| = (Lx(B) — Ly(a) & [X, Y] (2.23)

Accordingly, the next proposition determines the necessary and sufficient con-
ditions on V for (A ® V,dcg + dk) to be a differential complex.

PROPOSITION 2.4. Let A be a commutative locally free flat G-differential algebra
and V a g-module via Lys and a CN-module via L*s. Then, (A® V,D) is a
differential complex if and only if V is

unimodular stable Z L*L;, =0, (2.24)

and
g-module Z kLk (2.25)

Proof. Once we have d2g = 0 = dx, then (A ® V,dcg + dk) is a differential
complex 1i.e.,
OZdCEOdK+dKOdCE
=L, @LF + 0, ® [Li, L] + Id ®L* Ly,

if and only if (Z24) and (225) hold. O

(2.26)

3 LIE ALGEBRA COHOMOLOGY AND PERTURBED KOSZUL COMPLEX

In this section we specialize the model complex (A® V, D) defined in (ZI5]) for
A = Ag*. We show that the perturbed Koszul complex defined in [14] is an
example of the model complex. As another example of the model complex, we
cover the Weil algebra with generalized coefficients introduced in [IJ.
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3.1 LIE ALGEBRA COHOMOLOGY

Let g be a finite dimensional Lie algebra and V be a right g-module. Let also
{6%} and {X;} be dual bases for g* and g. The Chevalley-Eilenberg complex
C(g, M) is defined by
dce 1 dce 2 dce |
V——=0CV)—=CgV)—""" (3.1)
where C(g,V) = Hom(A%g,V) is the vector space of all alternating linear
maps on g€ with values in V. If o € C%(g, V), then

~

dCE(Oé)(XQ, cee ,Xq) = Z(—l)i+j0é([Xi,Xj],X0 .. .5(:1', cee ,Xj, N ,Xq)+
i<J
Z(—1)i+1a(X0, o Xy X)X
i

(3.2)

Alternatively, we may identify C%(g, V) with A?g* ® V and the coboundary
dog with the following one

dCE('U) = _9i®’U'Xi,
dep(B®@v) =dar(B) @ v — 0" AB@v- X

where dgr : APg* — APT1lg* is the de Rham derivation defined by dgr(0?) =
5-CL.070%. We denote the cohomology of (C*(g,V),dcr) by H*(g,V) and
refer to it as the Lie algebra cohomology of g with coefficients in V.

(3.3)

3.2 PERTURBED K0SZUL COMPLEX

With the same assumptions on g and V in the previous subsection, we spe-
cialize the model complex A ® V defined in 2I5) for A = A g*. Indeed we
have W™(g,V) := A"g* ® V, for n > 0, with differentials dcg : W"(g,V) —
Wntl(g, V) defined in (33)) and

dg : W™(g,V) = W" (g, V)

a®v»—>Zin(a)®v<9i. (3.4)

An immediate example is the (truncated) Weil algebra.

EXAMPLE 3.1 (Weil algebra). Let g be a (finite dimensional) Lie algebra and set
V = 5(g*) - the polynomial algebra on g. Then V is a unimodular stable right
g-module via the (co)adjoint action of g on g* and the initial multiplication of
the symmetric algebra as the action of g*.

EXAMPLE 3.2 (Truncated Weil algebra). Let V = S(g*)(2n) be the truncated
polynomial algebra on g. With the same structure as it is defined in Example
B.1 one obtains the differential complex W (g, S(g")12n))-
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490 BAHRAM RANGIPOUR AND SERKAN SUTLU

To be able to interpret the coefficient space further, we introduce the crossed
product algebra B
D(g) := S(g") >1 U(g). (3.5)

In the next proposition, by g we mean g* > g with the Lie bracket defined in
e23).
PROPOSITION 3.3. The algebras 5(9) and U(g* >a g) are isomorphic.

Proof. 1t is a simple case of [15, Theorem 7.2.3], that is
U(g* > g) = U(g") > U(g) = S(g") > U(g) = D(g) (3.6)
O

Next, we recall the compatibility for a module over a crossed product algebra,
for a proof see [16, Lemma 3.6].

LEMMA 3.4. Let H be a Hopf algebra, and A an H-module algebra. Then V
18 a right module on the crossed product algebra A >a H if and only if V is a
right module on A and a right module on H such that

(’U . h) ca = (’U . (h(l) > a)) - hez) (37)
Finally we restate Proposition [Z4]in the case of A = A g*.

PROPOSITION 3.5. The graded space (W*(g,V),dcE + dk) is a complex if and
only if V is a unimodular stable right g-module.

EXAMPLE 3.6 (Weil algebra with generalized coefficients [I]). Let £'(g*) be the
convolution algebra of compactly supported distributions on g*. The symmet-
ric algebra S(g*) is canonically identified with the subalgebra of distributions
supported at the origin. This immediately results with a natural S(g*)-module
structure on £'(g*) via its own multiplication.

Regarding the coordinate functions p;, 1 < ¢ < N as multiplication operators,
we also have [u;, 07] = &5

The Lie derivative is described as follows.
Li=CE®pup, 1<i<N. (3.8)
Therefore,

rig o End(€(g"),  Xir» Chundl = ~Ly,

7 i

e (3.9)

is a map of Lie algebras, and hence equips £'(g*) with a right g-module struc-
ture.

We first observe that

D (v Xi) 96 = Chout’d" =0, (3.10)

3
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by the commutativity of S(g*) and the anti-commutativity of the lower indices
of the structure coefficients.

Secondly we observe

(v-X;) <6 = Chopt’6" =

Lo e t t (3.11)

Chvd ut? + Chv8? = (v < 0") - X +v < (X; > 6),
i.e., £'(g") is a right module over S(g*) >1 U(g). Hence we have the complex
W(g,&'(g7)).

Finally we remark that in [I] the authors consider compact groups and their
Lie algebras, which are unimodular and hence § = 0. So, their and our actions
of g coincide.

3.3 WEYL ALGEBRA

Following [17] Appendix 1, let V' be a (finite dimensional) vector space with
dual V*. Let Z(V) be the algebra of all polynomials on V and S(V) the
symmetric algebra on V. Let us use the notation D(V') for the algebra of
differential operators on V' with polynomial coefficients - the Weyl algebra on
V. For any v € V we introduce the operator

ou(f)w) = 5

flw + tv). (3.12)
As a result, we get an injective algebra map v — 9, € D(V'). As a differential
operator on V, 0, is identified with the derivative with respect to v* € V*.

Using the bijective linear map Z(V) ® S(V) — D(V) defined as f @ v — fuv,
and the fact that Z(V) = S(V*), we conclude that D(V) = S(V*) ® S(V) as
vector spaces.

Following [7], the standard representation of D(V) is as follows. Let
{v1*, -+ ,v,*} be a basis of V*. Then, forming E = C[v1*, -+ ,v,*], we con-
sider the operators P; € End(E) as 9/0v;* and Q° € End(E) as multiplication
by v;*. Then the relations are

[P, P]=0, [Q,Q]

It is observed that if V' is a module over D(g) then (W*(g,V),dcr + dk) is a
differential complex [14]. We now briefly remark the relation of this result with
our interpretation of the coefficient space (ZI8). To this end, we first notice
that if V' is a right module over the Weyl algebra D(g), then it is module over
the Lie algebra g via the Lie algebra map

—0, i4j
#J (3.13)
—0, Vij

7:9— D(g), X~ CLPQ" (3.14)
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Explicitly, we define the action of the Lie algebra as
v X = o1 (Xg). (3.15)
On the other hand, V is also a module over the symmetric algebra S(g*) via
v < 0% =vQ". (3.16)
LEMMA 3.7. Let V be a right module over D(g). Then V is unimodular stable.
Proof. We immediately observe that

> (w-Xi) < = Zv H(T(X)Q) = v (CEPQ'QY) =0 (3.17)

i 3,0k

by the commutativity of (Js and the anti-commutativity of the lower indices of
the structure coefficients. O

Let us now introduce the map
®: D(g) = D(g), 0 >1X;— Q7(X;) = CLQIPQF. (3.18)
LEMMA 3.8. The map ® : D(g) — D(g) is well-defined.

Proof. Tt is enough to prove ®(X;)®(67) = ®(X;q) > 607)®(X;»)). To this, we
observe

RHS = &(Xia) > 09)®(X0)) = —~C4Q* + C1,Q' PQ" (3.19)
= CLPQIQ" = CLPQ Q) = &(X,)®(¢7) = LHS. '

O
COROLLARY 3.9. If V is a right module over D(g), then V is a right module
over D(g) = S(g*) > U(g).

4 LIE ALGEBRA HOMOLOGY AND POINCARE DUALITY

In this section, for any Lie algebra g and any stable g-module V' we define a
complex dual to the model complex and we establish a Poincaré duality between
these two complexes. The need for this new complex will be justified in the
next sections.

4.1 LIE ALGEBRA HOMOLOGY

Let g be a Lie algebra and V' be a right g-module. We recall the Lie algebra
homology complex Cy(g,V) = Alg® V by

OcE IcE

2B Oy(g, V) LB Oy (g, V) 2 (4.1)
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where

dor(Xo A+ ANXg1 @v) = (~1)'Xg A~ AX; A AXg 1 @0 Xit
SN HXL XA XA AX A AKX A A X ®
i<j

(4.2)

We call the homology of the complex (Co(g, V), dcr) the Lie algebra homology
of g with coefficients in V' and denote it by He(g, V).

4.2 POINCARE DUALITY

Let V to be a right g-module and right S(g*)-module. We consider the graded
vector space Cy,(g,V) := A"g® V with two differentials dcg : Crny1(g,V) —
Cyr(g,V) defined in [@2)), and

Ok : Cn(g,V) = Copa(g,V), YiA---AY,@v Y XiAVIA-AY, @v<’

(4.3)
Let us first justify that dk is a differential.

LEMMA 4.1. We have 0k o 9k = 0.

Proof. We observe that by the commutativity of S(g*) and the anti-
commutativity of the wedge product we have

Ok o OK(Yi A ANY,@v) =Y Ok(X; AVIA--AY, ®v<0")

o (4.4)
:ZXJ»/\Xi/\Yl/\---/\YnQ?UQOzH] =0.
4,J
O
We say that a right g-module V is stable if
> (w<a)-X; =0. (4.5)

i

PROPOSITION 4.2. The space (Co(g,V),0ck + Ok) is a differential complex if
and only if V is stable right g-module.
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Proof. On the one hand we have
QCE((?K(YO AN NY,® v))
=> der(Xi AYo A AY, ®v<0')

:ZYO A ANY, @ (w<ab)- X

17+ X, AV A .Y
+Z XiAYgA--AY; A AY, @ (0<6)-Y;
+Z )X, Y AY A AY A AY, Qv <6

+Z DR Vi AXi AYo A AV A AV A AY, @0 <6,

(4.6)
and on the other hand
OK(Oce(YoN---NY, ®v))
—Z ok(Yo A AY; A AY, ®v-Y)

+Z R0 ([, YR AYo A - AY; A~ AV A A Y, @)

+Z LY YA X A Yo Ao ATy A AT A A Y, @u <6,
.7,k

(4.7)
Therefore, the complex is a mixed complex if and only if
(Ocg 00k + Ok 0dcr) Yo A~ AY, @v) =
S VoA AY,® (v<ab) - X+
i

DX AYG A AY A AY, @ [(0<8) Y — (v-Y;) <0+
4,J
S XLYIAY A AT A AY, @u <6’ =0.
,J
(4.8)
Now, if we assume that (C*(g,V),dck + 0k) is a differential complex, then

we obtain the stability condition (LX) evaluating (£8) on 1 ® v. Similarly we
observe that V is a g-module by evaluating (£8) on ¥ ® v.

The converse argument is obvious. o
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PROPOSITION 4.3. A wector space V is a unimodular stable right g-module, if
and only if V@ Cs is a stable right g-module.

Proof. Indeed, if V is unimodular stable right g-module, that is }, (v<1X;)-0° =
0, for any v € V, then
D w@le)-0) <X = (v-0) X; @ 1c +v6(X;) ® 1c

' . ' (4.9)
= (v X)) <0 ®@1c =0,

which proves that V ® Cs is stable. Similarly we observe that for 1 <i,7 < N,
(v@1le) - X;) <0 =(v-X; ®@1c+v8(X;)®@1c) <6 =
(v-X;) <0 +05(X;) 6" @ 1c =
(v<(X; >0+ (<) X;+0v5(X;)<0) @ 1c =
(

(4.10)
v 1e) < (X >0+ (vele) <6 - X;
i.e., V ®Cs is a right g-module.
The converse argument is similar. O
Let us now briefly recall the Poincaré isomorphism by
Dp:Agr = AN TR s (), (4.11)

where @ = X; A -+ A Xy is the covolume element of g. By definition +(6?) :
A®g — A*"lgis given by

(L(OVE 07 N NPT = (EONPTT A NG e g (4.12)

Finally, for = 6% A--- A 0% the interior multiplication () : A®g — A®*g is
defined by _ _
t(n) == 1(@*)o---0u(0"). (4.13)

PROPOSITION 4.4. Let V be a stable right g-module. Then the Poincaré iso-
morphism induces a map of complexes between the complex W(g,V @ C_s) and
the complex C(g, V).

Proof. Let us first introduce the notation Vi=V® C_s. We can identify 1%
with V as a vector space, but with the right g-module structure deformed as
v X i=v-X —0vd(X).

We prove the commutativity of the (co)boundaries via the (inverse) Poincaré
isomorphism, i.e.,

DL APgRV » AN TP V

4.14
(v DR (ER W), (4.14)
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496 BAHRAM RANGIPOUR AND SERKAN SUTLU

where for an arbitrary n € AN Pg

(1,95 (€ ®v)) = (€, w")v. (4.15)
Here, w* € ANg* is the volume form.

The commutativity of the diagram

NgoV —2E o ar-lggV
ggll lgpl
N=rg @V —= AN rHlg g V

follows from the Poincaré duality in Lie algebra homology - cohomology, [13|
Chapter VI, Section 3]. For the commutativity of the diagram

O
ANPGRV ———s NPHlg gV

@Pll l@,,l

/\N—pg* ® ‘7 TK /\N—p—lg* Q ‘7

we take an arbitrary ¢ € APg, n € AN"P~lgand v € V. Then

DOk (E®v))(n) = (NXi€,w v <0 =

. 4.16
(DN PN Xang, w v 28 = ()N P (DR (E @ 0)) (). (110

O

5 LIE ALGEBRA COACTION AND SAYD COEFFICIENTS

In this section we identify the coefficients we discussed in the previous sec-
tions of this paper with stable-anti-Yetter-Drinfeld module over the universal
enveloping algebra of the Lie algebra in question. To this end, we introduce
the notion of comodule over a Lie algebra.

5.1 SAYD MODULES AND CYCLIC COHOMOLOGY OF HOPF ALGEBRAS

Let H be a Hopf algebra. By definition, a character 6 : H — C is an algebra
map. A group-like o € H is the dual object of the character, i.e., A(c) = o®o0.
The pair (d,0) is called a modular pair in involution [6] if

§(c) =1, and Sf= Ad,, (5.1)
where Ad,(h) = cho~! and S is defined by
Sg(h) = 5(h(1) )S(h(z) ). (5.2)
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We recall from [I0] the definition of a right-left stable-anti-Yetter-Drinfeld mod-
ule over a Hopf algebra H. Let V be a right module and left comodule over a
Hopf algebra H. We say that it is stable-anti-Yetter-Drinfeld (SAYD) module
over H if

Y(v-h)= S(h(s))’l)<71>h(1) Qu,., - he), vV, =, (5.3)

(0) (0) (=1)

for any v € V and h € H. It is shown in [10] that any MPI defines a one
dimensional SAYD module and all one dimensional SAYD modules come this
way.

Let V' be a right-left SAYD module over a Hopf algebra H. Let
CUH, V)=V @H®, ¢>0. (5.4)
We recall
face operators 0; : CU(H,V) — CITH(H, V), 0<i<qg+1
degeneracy operators o : CU(H,V) — CI™Y(H, V), 0<j<q-1
cyclic operators 7 : CYH,V) — CI(H,V),
by

D ®..9h) =001~ ®...®h,

(vl ®...ehl) =veht®...0h W @hiny @...0 hI,

Ogr1(v@M ®...@hY) =v, QR @...0h'Qv_,, (5.5)
civeht®.. o) =@weht®.. @) ®...h),

Tweh' ®...@ht) =v, h'a @S(h'e) (BP...0hv_,),

where H acts on H®? diagonally.

The graded module C*(H, V) endowed with the above operators is then a co-
cyclic module [9], which means that 0;, o; and T satisfy the following identities

0;0; = 0;0;—1, if 1 <7,

00 = 0;0j41, if 1< 7,
dioj_y, if i<

0;0; = ¢ 1d if i': j-or 1=7+1 (5.6)
0i—10; if i>7+1,

TO; = 0;—1T, 1<i<q

70y = Og+1, TO; = 01T, 1<i<yq

TO0 = 0T, 79 =1d.
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We use the face operators to define the Hochschild coboundary
q+1 4
b:CUH, V) — CT (M, V), b= (-1)'0; (5.7)
i=0
It is known that b?> = 0. As a result, one obtains the Hochschild complex of the

coalgebra H with coefficients in the bicomodule V. Here, the right comodule
defined trivially. The cohomology of (C*(H,V),b) is denoted by HZ, . (H, V).

We use the rest of the operators to define the Connes boundary operator,

B:CYH, V)= CT"'(H,V), B:= (zq:(—nqiri) Og—1T. (5.8)

=0

It is shown in [5] that for any cocyclic module we have b* = B2 = (b+ B)? = 0.
As a result, we define the cyclic cohomology of ‘H with coeflicients in the SAYD
module V', which is denoted by HC®*(H,V), as the total cohomology of the
bicomplex

VeoH®IP, if 0<p<yq,
CPIH, V) = (5.9)

0, otherwise.

We can also define the periodic cyclic cohomology of H with coefficients in V,
which is denoted by HP*(H,V), as the total cohomology of direct sum total
of the bicomplex

VeH®r,if p<gq,
CPI(H,V) = (5.10)
0, otherwise.

It can be seen that the periodic cyclic complex and hence the cohomology is
Zo graded.

5.2 SAYD MODULES OVER LIE ALGEBRAS

We need to define the notion of comodule over a Lie algebra g to be able to
make a passage from the stable g-modules we already defined in the previous
sections to SAYD modules over the universal enveloping algebra U(g).

DEFINITION 5.1. We say a vector space V is a left comodule over the Lie algebra
g if there is a map Vg :V — g®V such that

V=21 AV—11 ® Vo) = 0, (5.11)
where ¥g(v) = vi-1] ® vy, and

V2] @ V-1] & Vo = V[-1] & (U[OJ )[—1] & (U[OJ )[0]-
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PROPOSITION 5.2. Let g be a Lie algebra and V' be a vector space. Then, V is
a right S(g*)-module if and only if it is a left g-comodule.

Proof. Assume that V is a right module over the symmetric algebra S(g*).
Then for any v € V there is an element v—1 ® vp0) € g"* @V = g® V such that
for any 6 € g*

v <16 =uv-q (9)1)[0] = 9(1)[—1] )’U[o]. (5.12)

Hence define the linear map ¥4 :V = g® V by
V= V-1 @ Vo] . (5.13)

The compatibility needed for V' to be a right module over S(g*),which is (v <
0) <in— (v<an) <0 =0 translates directly into

a(v[_z] A 1)[—1]) & Vo) = (U[_2] & V-1 — V-1 K ’U[_z]) ® v = 0, (5.14)

where a : A%g — U(g)®? is the anti-symmetrization map. Since the anti-
symmetrization is injective, we have

V=21 A V=1 ® vy = 0. (5.15)

Hence, V is a left g-comodule.

Conversely, assume that V is a left g-comodule via the map ¥4 : V = gV
defined by v — vj—1) ® vo). We define the right action

VesSg)—V, v@60—v<96:=0(v-1)vo, (5.16)

for any 6 € g* and any v € V. Thus,
(v<0)<in—(v<in) <0 = (V2 @ V-1 — V-1 @ V-2)(0 ®@N) @ =0, (5.17)
proving that V' is a right module over S(g*). O

Having understood the relation between the left g-coaction and right S(g*)-
action, it is natural to investigate the relation with left U(g)-coaction.

Let v : V — U(g) ® V be a left U(g)-comodule structure on the linear space
V. Then composing via the canonical projection 7 : U(g) — g, we get a linear
map Vg:V =g V.

V—2LU@ eV

lw@id
A

gV

LEMMA 53. If v: V = U(g) @V is a coaction, then so is Vg : V =g V.
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Proof. If we write ¥(v) = v_;, ® v, then

Vi—2) A V=1 @ Vo) = ﬂ'(v[j]) Ar(v— ) ®u, =

A (5.18)
TV ) ATV g ) @ v =0

(=1
by the cocommutativity of U(g). O

For the reverse process which is to obtain a U (g)-comodule out of a g-comodule,
we will need the following concept.

DEFINITION 5.4. Let V be a g-comodule via ¥y : V — g® V. Then we call the
coaction locally conilpotent if it is conilpotent on any one dimensional subspace.
In other words, Vg : V. — g ® V s locally conilpotent if and only if for any
v €V there exists n € N such that Vi (v) = 0.

EXAMPLE 5.5. If V is an SAYD module on U(g), then by [I1, Lemma 6.2] we
have the filtration V = UpezF,V defined as FyV = V°V(®) and inductively

E,1\V/E,V = (V/E, V)V (5.19)
Then the induced g-comodule V is locally conilpotent.

EXAMPLE 5.6. Let g be a Lie algebra and S(g*) be the symmetric algebra on
g*. For V = S(g*), consider the coaction

S(g*) = 6©5(g"), arm X;®ab, (5.20)

called the Koszul coaction. The corresponding S(g*)-action on V' coincides
with the multiplication of S(g*). Therefore, the Koszul coaction is not locally
conilpotent.

One notes that the Koszul coaction is locally conilpotent on any truncation of
the symmetric algebra.

Let {Uk(g)}x>0 be the canonical filtration of U(g), i.e.,

Uo(g) =C-1, Ui(g) =C-1®g, Up(g) Uy() < Uptq(a) (5.21)

Let us call an element in U(g) as symmetric homogeneous of degree k if it is
the canonical image of a symmetric homogeneous tensor of degree k over g.
Let U*(g) be the set of all symmetric elements of degree n in U(g).

We recall from [7, Proposition 2.4.4] that
Uk(9) = Ur-1(g) ® U* (). (5.22)
In other words, there is a (canonical) projection

Or : Ur(g) = U"(g) = Uk(9)/Us—1(g)

D CRERD, (R Z Xoy Xo(h)- (5.23)
€Sk
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So, fixing an ordered basis of the Lie algebra g, we can say that the above map

is bijective on the PBW-basis elements.

Let us consider the unique derivation of U(g) extending the adjoint action of
the Lie algebra g on itself, and call it ad(X) : U(g) — U(g) for any X € g.
By [7, Proposition 2.4.9], ad(X)(U*(g)) C U*(g) and ad(X)(Uk(g)) € Uk(g).
So by applying ad(X) to both sides of (5:22), we observe that the preimage of

ad(Y)(Z(reSk Xo’(l) ce Xa(k)) is ad(Y)(X1 e -Xk).

PROPOSITION 5.7. For a locally conilpotent g-comodule V', the linear map

vV.V-oU@eV

V= 1®U+29;1(U[*k]"-U[711)®’U[o]
k>1

defines a U(g)-comodule structure.
Proof. For an arbitrary basis element v’ € V, let us write

V-1 @ Vo = Oz;cJXj ® oF

(5.24)

(5.25)

where ag € C. Then, by the coaction compatibility vi—2; A vi—1] ® vy = 0 we

have
. . . i .
V-2 @ V-1 ® V') = E X @ Xj, @02,
Ji,J2
such that a;ﬁp — Oé;hailp and a;ﬁ” _ a;pgl.
2 1 2 2 2

We have

v') =1®v + Z Z a}il"'j’“le X, @b

k>1j1<-<jk
because for k > 1

Vi ® -+ @ V' -1 @' = E X @ ® X, ® v'*,
Iy Jk

L g o
where o/t * i= - 1k and for any o € Si we have

G119k o) Jo(k)
Oélk = O[lk .

At this point, the counitality is immediate,
(e ®id) o V(v') = v’
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On the other hand, to prove the coassociativity we first observe that

((doV)oVE) =10V )+ > o "X, X @ V(")

k>151<-<jk

=101®v _;’_Z Z ”1 ]’“1®Xj1---Xjk®Ulk+

k>1j1<-<jk

D > NG X @ le

E>1 gy <---<jp

Z Z ’L]l ]kal . Z Z lkrl . 'Xrt ® ’Ust),

k>1j1<--<ji t>1r<---<r¢
(5.31)

St—1T .
where ali™1 7t =l - a7t Then we notice that

A(Z Z aﬁl ]kal o 'Xjk) ® 'Ulk

k>1 j1<---<jg

72 Z ]k1®X]1"'Xjk®vlk

k>1j1 < <jk
g1 Jk l
D DL AKX @leu

k21 j1<--<jg

+Z Z a;‘jl~..ijT1...er®le...)A(Tl...)?rp..,Xjk(gvzk

k
k>2 j1<---<rl<~~~<rp<~~~<jk

-5 Y aEex, X, o0k

k>1j1<--<jk

1
30N AR X @ 1@

k>1j1<--<jk

22

p>1k—p>1

Z Z 17"1 N p‘ll ‘Ik—PXTI ...er ®Xq1 "'qu_p ®vlk

1< <qp— p'r1< <rp

(5.32)
where for the last equality we write the complement of r; < --- < 7, in j; <
-<jrasq <--- < qg_p. Then (E29) implies that
a;il'“jk _ a;:r“Tp(h"'Qk—p _ Oé;':“'?“paizqy"Qk—p. (533)
As a result,
(id® V) o ¥(v') = (A ®id) o ¥(v'). (5.34)
This is the coassociativity and the proof is now complete. O
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Let us denote by %conilM the subcategory of locally conilpotent left g-
comodules of the category of left g-comodules M with colinear maps.

Assigning a g-comodule ¥ : V — g®V to a U(g)-comodule ¥ : V — U(g) @V
determines a functor

U(9) M — 9conilM (5.35)

Similarly, constructing a U(g)-comodule from a g-comodule determines a func-
tor

SconilM —— Ula) pf (5.36)
As a result, we can express the following proposition.
PROPOSITION 5.8. The categories V@M and %conilM are isomorphic.

Proof. We show that the functors

P
UM —= —= 9conilM

are inverses to each other.

Ifvy,:V = g®V is alocally conilpotent g-comodule and ¥ : V' — U(g) ®
V' the corresponding U(g)-comodule, by the very definition the g-comodule
corresponding to ¥ : V' — U(g) ® V is exactly ¥y : V — g® V. This proves
that

PoFE = Idsconim - (5.37)

Conversely, let us start with a U(g)-comodule ¥ : V' — U(g) ® V and write the
coaction by using the PBW-basis of U(g) as follows

vien ®vto =1@v' + Y Y X X, @k, (5.38)

k>1j1<---<jk

So, the corresponding g-comodule ¥4 : V' — g® V is given as follows

vy ® ”Ui[o] = W(vi(—m ® v (0) Z’yk]X ® v* (5.39)

Finally, the U(g)-coaction corresponding to this g-coaction is defined on v* € V/
as

Vi l@uE Y Y X X, @ ol (5.40)
k>1 1< <jk

Therefore, we can recover U (g)-coaction we started with if and only if
7;51 Tk ,yllfl,yll;h . ’Yll: 1]k7 vk > 1. (5.41)
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The equation (541)) is a consequence of the coassociativity ¥. Indeed, applying
the coassociativity as

(A1 ®id)ow = wF (5.42)

and comparing the coefficients of X;, ® --- ® X;, we conclude (.41) for any
k > 1. Hence, we proved

FoP = IdU(g)M . (543)

The equation (B.4I]) implies that if ¥ : V — U(g) ® V is a left coaction, then

its associated g-coaction ¥4 : V — g ® V is locally conilpotent. O
For a g-coaction

U = V-1 & Vo], (544)

the associated U(g)-coaction is denoted by
LR JCR (5.45)

DEFINITION 5.9. Let V' be a right module and left comodule over a Lie algebra
g. We call V' a right-left AYD over g if

Vg(v-X) = v-1 Qo - X + [V, X] ® vjo). (5.46)
Moreover, V is called stable if
Vo) - V-1 = 0. (5.47)

PROPOSITION 5.10. Let Vg : V = g® V be a locally conilpotent g-comodule
and ¥ : V. = U(g) @V the corresponding U(g)-comodule structure. Then, V is
a right-left AYD over g if and only if it is a right-left AYD over U(g).

Proof. Let us first assume V' to be a right-left AYD module over g. For X € g
and an element v € V, AYD compatibility implies that

(’U'X)[—k] (ORI (’U'X)[—l] ®(U-X)[o] =Vk @ @ U—1 Vg - X

(5.48)
+ [V, X]® -+ @ V-1 @ Vo + Vi-i) @ -+ @ [v1-11, X]| @ vy
Multiplying in U(g), we get
V- X)mw (v X))y ® (v X)) =
( Jimky -+ ( Ji—1 @ ( Jiol (5.49)

Vi—k] * - V—1] Vo) - X — ad(X)('U[—k] s ’U[—l]) & Vo -
So, for the extension ¥ : V — U(g) ® V we have

0 X)mg, ® (- X)g =1@0v- X+ 07 (v Xy -+ (v X)) © (v X)po)

E>1
=10v- X+ 0 (vw- o) @ve - X = D> 0 (ad(X) (vw -+ v-1))) @ vy
k>1 k>1
= v ®uvg - X =D ad(X) (0" (v - vi-1) @ vyl

k>1
=v_ ®uv_ X — ad(X)(v[j]) Qg = S(X(3))v[j] X ®vg - Xy
(5.50)
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Here on the third equality we used the fact that the operator ad commute
with 6, and on the fourth equality we used

Z ad(X)(G,;l(v[fk] cee -1 )) X V) =
E>1

Zad(X)(@;l(v[fM .. .’U[71])) & Vo] + ad(X)(l) RV = ad(X)(’U[j]) &® U[E]'
k>1
(5.51)

By using the fact that AYD condition is multiplicative, we conclude that ¥ :
M — U(g) ® M satisfies the AYD condition on U(g).

Conversely assume that V' is a right-left AYD over U(g). We first observe that
A®id) o AX)=XR11+10X1+101X (5.52)
Accordingly,
Y - X) =0 X®u; +v— vy - X = Xv_ @ug (5:53)
= —ad(X) (V) @ U + Uy B Y - X

It is known that the projection map = : U(g) — g commutes with the adjoint
representation. So

Vo(v- X) = —m(ad(X)(v=)) ® vg + 7(v=) ®vg - X
—ad(X)ﬂ(v[Tl]) ® Vg + w(v[:]) ®vg - X (5.54)
= [U[—1]7X:| & Vo] + V=1 D vy - X.

That is, V is a right-left AYD over g. O

LEMMA 5.11. Let ¥4 : V — g® V be a locally conilpotent g-comodule and
V:V > U(g)®V be the corresponding U(g)-comodule structure. If V is stable
over g, then it is stable over U(g).

Proof. Writing the g-coaction in terms of basis elements as in (525, the sta-
bility reads o B
Vig vty = vk - X; =0, Vi (5.55)

Therefore, for the corresponding U (g)-coaction we have

(NI VN IS D o
Z ar o, v (X, X)) =

J1<-<Jk
Z aijl ...alk—2jk—1(zalk—ljkvlk X ) . (X e X ) _
A k-1 U J J /= (5.56)
J1< - <Jk—1 Jk
ijk lk—2K—1 le—1J1, 1 ) _ )
E ot (E o v 'X]1) . (ij ...X]k)’
J2s sk Ji
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where on the second equality we used (.29). This immediately implies that

vl vt =l (5.57)

(0] [=1]

That is, the stability over U(g). O

However, the converse is not true.

EXAMPLE 5.12. It is known that U(g), as a left U(g)-comodule via A : U(g) —
U(g) @ U(g) and a right g-module via ad : U(g) ® g — U(g) is stable. However,
the associated g-comodule, is no longer stable. Indeed, for u = X; X2 X3 €
U(g), we have

u—1 @ upoy = X1 Q XoX3+Xo® X1X35+ X380 X1Xs (5.58)
Then,

up) - w1 = [[X1, Xof, X3] + [[X2, X1], X5] + [X1, X3], Xo] = [[X1, X3], Xo]
(5.59)
which is not necessarily zero.

The following is the main result of this section.

PROPOSITION 5.13. Let V' be a vector space, and g be a Lie algebra. Then, V
is a stable right g-module if and only if it is a right-left SAYD module over g.

Proof. Let us first assume that V is a stable right g-module. Since V is a right
S(g*)-module it is a left g-comodule by Proposition 5.2l Accordingly

[Vi-11, X;] ® vpoy + V-1 @ vpoy - Xj =

(X1, X0 (vi-1) @ vio) + X0 (v-1) @ vy - X =
XtCltjel(U[—u) ® vior + X0 (V1) ®@ v - Xj =
X;@v<a(X;>0)+(w<abh) X;] =

X, @ v-X;)<0" = X0 ((v- X;)-0) @ (v X)) =
(v Xj)n ® (v Xj)o

(5.60)

This proves that V is a right-left AYD module over g. On the other hand, for
any v € V,

Vo] * V-1 = Z’U[o] : Xi@i(v[—l]) = Z(v < Qi) 'Xi =0 (5.61)

K2

Hence, V is stable too. As a result, V is SAYD over g.
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Conversely, assume that V is a right-left SAYD module over g. So V' is a right
module over S(g*) and a right module over g. In addition we see that

v (X 0) + (v X; =Clu <0t + (v<b) - X; =

Ci;0" (vi-1)vo + 0" (vi-1))vie) - X =

0" ([vi-11, X))oy + 0" (v Jvia) - X = (5.62)
(0" @ id)([v-1, X5] ® vo + vi-1) @ vy - Xj) =

0'((v- X)) (v Xj)o = (v- X;) <"

Thus, V is a right g-module. Finally, we prove the stability by

Z(v Q) X; = Z”M X0 (ven) = vpo) - v-y = 0. (5.63)

K2

O

COROLLARY 5.14. Any right module over the Weyl algebra D(g) is a right-left
SAYD module over the Lie algebra g.

Finally, we state an analogous of Lemma 2.3 [I0] to show that the category of
9 AYD, is monoidal.

PRrROPOSITION 5.15. Let M and N be two right-left AYD modules over g. Then
M ® N is also a right-left AYD over g via the coaction

Vo MON - gMQN, men— m_1 @mu @n+n-1mno (5.64)
and the action

MON®g—-M®N, (men)-X=m-X@n+meon-X (5.65)
Proof. We verify that

[(m ®n)[,1],X] ® (m ® Tl)[o] + (m® n)[fl] ® (m® Tl)[o] - X =
[m[—l],X] X M) @ n + [n[—1]7X] ® m X njo+
mi—1 & (m[o] ® n) X +n-y® (m® n[o]) X =

(5.66)
(m~X)[71] ®(m-X)[o] Qn+n-1y@m-X Qnp+
mi—y @mp ®n-X + (Tl-X)[fu ®m®(n~X)[o] =
Vom-X@n+men-X)=V4((men)-X).
o

5.3 EXAMPLES

This subsection is devoted to examples to illustrate the notion of SAYD module
over a Lie algebra. We consider the representations and corepresentations of a
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Lie algebra g on a finite dimensional vector space V in terms of matrices. We
then investigate the SAYD condition as a relation between these matrices and
the Lie algebra structure of g.

Let also V be a n dimensional g-module with a basis {v!,--- ,v™}. We express
the module structure as

m'- X; = gi,m", B €C. (5.67)

In this way, for any basis element X; € g we obtain a matrix B; € M,,(C) such
that
(By)j i= B (5.68)

Let v4: V — g®V be a coaction. We write the coaction as
v,(v') = X; 0%, o eC. (5.69)
This way we get a matrix A7 € M,,(C) for any basis element X; € g such that
(AD)i = ol (5.70)
LEMMA 5.16. Linear map V4 : M — g® M forms a right g-comodule if and
only if
Alt A = A2 AU (5.71)

Proof. 1t is just the translation of the coaction compatibility Vi AV QUi =
0 in terms of the matrices A". O

LEMMA 5.17. Right g-module left g-comodule V is stable if and only if

> A-B;=0. (5.72)
J

Proof. By the definition of the stability,

Vi -0y = azjvk X = ag flvl =0 (5.73)

Therefore, -
ol Bl = (ADL(B)} = (47 By = . (5.71)
O

We proceed to express the AYD condition.

LEMMA 5.18. The g-module-comodule V' is a right-left AYD if and only if

[By, M) =) A°CY,. (5.75)
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Proof. We first observe

V(" Xg) = 'g(ﬂgkvk) = /ngaijj ® v (5.76)
= (Bq)i(Aj)fXj ®v' = (Bq - Aj)fXj ® . .
On the other hand, writing ¥4(v?) = o’ X; ® ',

[’Up[_1] , Xq] ® P + VP12 @ VP - Xq = Oé;;)S[XS, Xq] X vt + Oéijj (24 vt Xq
A" CI X, ® 0+l X, @0 = (af"Cl, + (4 B)X, @ o
(5.77)

O

Next, considering the Lie algebra sl(2), we determine the SAYD modules over
simple s!(2)-modules.

EXAMPLE 5.19. Let V =< {v!,v?} > be a two dimensional simple sl(2)-
module. Then, by [12], the representation

p:sl(2) = gl(V) (5.78)

is the inclusion p : s1(2) — gl(2). Therefore, we have

B (00) me(00) () %) 6w

We want to find

11 11 1,1

Al = 11 952), A2:(y1 92)7 A?’:(Zl 7«'2)7 5.80
(3 7ol 4 ) O

such that together with the g-coaction Vg2 : V — sl(2) ® V, defined as

vl (A7) X; ® vF, V becomes a right-left SAYD over s[(2). We first express
the stability condition. To this end,

1 0 ) 0 yl Zl 721
Al.g, = [ %2 : A2.B, — 1), A3.Ba = 1 2 ).
=36 =0 o =\ -
(5.81)
and hence, the stability is

. 1 1.1 1
S 49.B; = ( Tata YA > ~0. (5.82)
J

a3+ 27 Y - 23
Next, we consider the AYD condition

[By, A =Y A°CY,. (5.83)
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For j =1=q¢q,

1 1
1_(x O 2_ (0 w3 3 _ 0 0
A_<:c% x%)’ A_<O y%)’ A_<z% 0 ) (5.84)

Similarly, for ¢ =2 and j = 1, we arrive

1_ (00 2 (0 y s_ (0
A(o 0)’ A(o y3 )’ =10

Finally, for j = 1 and ¢ = 2 we conclude

A1<88), A2<88>, A3<88> (5.86)

Thus, the only sl(2)-comodule structure that makes a 2-dimensional simple
s[(2)-module V to be a right-left SAYD over sl(2) is the trivial comodule struc-
ture.

o o

) . (5.85)

ExXAMPLE 5.20. We investigate all possible coactions that make the truncated
symmetric algebra S(s[(2)*);z) an SAYD module over s[(2).

A vector space basis of S(s[(2)*)jg) is {1 = 6°,6', 62,63} and the Koszul coaction
is
S(s1(2) )1y — sl(2) @ S(sl(2)" )2
00— X1 00"+ Xo® 0%+ X3260° (5.87)
6" — 0, i=1,2,3

We first determine the right s[(2) action to find the matrices By, Ba, Bs. We
have

0" < X;(X,) =0" X;(X,) = 0"([X;, X,]) (5.88)
Therefore,
000 O 0 0 0 0 00 0 O
00 0 -2 0 0 0 0 02 0 0
Bi=lo 00 0o ['P=[0o 0 02 [P |00 =2 0
00 1 O 0 -1 0 0 00 0 O
(5.89)

Let A! = (x1), A% = (yi), A3 = (z}) represent the g-coaction on V. According
to the above expression of By, By, Bs, the stability is

Y9 +229 29 —228 —229 4 249
yé +22 2l —220 221 4+ 244
PSR s R
Y3+ 223 a3 —225 —2a3 + 243

=0.  (5.90)

> AB; =
J

o O OO
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As before, we make the following observations. First,

0 0 —a9 229
—2x3 —22% 223 —xi —223 + 221
1 _ 0 1 2 3 3 1 | — 943
[B1, A7) = 0 0 —x3 217 =24
3 x? r3 — a3 x3 — 223
and next
0 x) 0 -2
0 3 0 -2
17 _ 3 2 _
B2, AT] = 223 2x3 4+ a3 225 223 — 223 | 0
—xy —al+ a3 -l -2l — 223
Finally,
0 —2z9 0 0
0 0 0 0
1 _ _ oyl
[Bs, A7) = —222 —42% 0 223 | 24
0 223 0 0
Hence, together with the stability one gets
0 2 0 0
0 0 0 0
1 _
A= 2 0 0 0
0 0 00
and
0 0 0 229
11 0 00 O o3
[B1,A'] = 0 00 0 2A°.
zZ 0 0 0
Similarly one computes
0 0 0 299
o _ | 206 2 0 2y | _
[Br, A7) = 0 0 o0 2 |0
v o vi 0 2y
as well as
0 0 0 —29
0 0 O 0
27 _ _ o943
BaAT=1"9 90 o |77
-8 0 0
and [Bs, A?] = 2A2%. We conclude that
0 ¢ 00 0 0 ¢ O 0 0
0 0 0 O d 0 0 0 : 0 O
1_ 2 3
A= d 0 0 0 , A= 0 0 0 O , A% = 0 O
0000 0000 id 0
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One notes that ¢ = 1,d = 0 recovers the Koszul coaction, but obviously it is
not the only choice.

6 CYCLIC COHOMOLOGY OF LIE ALGEBRAS

In this section we show that for V', a SAYD module over a Lie algebra g,
the (periodic) cyclic cohomology of g with coefficients in V' and the (periodic)
cyclic cohomology of the enveloping Hopf algebra U(g) with coefficient in the
corresponding SAYD over U(g) are isomorphic.

As a result of Proposition and Proposition (£.I3] we have the following
definition.

DEFINITION 6.1. Let g be a Lie algebra and V be a right-left SAYD module
over g. We call the cohomology of the total complex of (Ce(g, V), OcE +bk) the
cyclic cohomology of the Lie algebra g with coefficients in the SAYD module V,
and denote it by HC®*(g, V). Similarly we denote its periodic cyclic cohomology
by HP*(g,V).

Our main result in this section is an analogous of Proposition 7 of [4].

THEOREM 6.2. Let g be a Lie algebra and V be a SAYD module over the
Lie algebra g. Then the periodic cyclic homology of g with coefficients in V
is the same as the periodic cyclic cohomology of U(g) with coefficients in the
corresponding SAYD module V' over U(g). In short,

HP*(5,V) = HP*(U(g),V). (6.1)
Proof. The total coboundary of C(g, V) is Ocg + 0k while the total coboundary
of the complex C(U(g), V) computing the cyclic cohomology of U(g) is B + b.

Next, we compare the F; terms of the spectral sequences of the total com-
plexes corresponding to the filtration on the complexes which is induced by
the filtration on V' via [I1, Lemma 6.2]. To this end, we first show that the
coboundaries respect this filtration.

As it is indicated in the proof of [I1, Lemma 6.2], each F,V is a submodule of
V. Thus, the Lie algebra homology boundary Ocg respects the filtration. As
for Ok, we notice for v € F,V

8K(X1/\~~-/\Xn®v):v[,1]/\Xl/\---/\Xn®v[o] (62)
Since

V(U) =V, X Vg = 1®v4+v-1y o + Z Ggl(v[—k] . "U[—l]) & Vo) (6.3)
f>2

we observe that y— ) AX1A- - AX,®uo € /\"+lg®Fp,1V. Since F,,_1V C F,V,
we conclude that Ok respects the filtration.

DOCUMENTA MATHEMATICA 17 (2012) 483-515



CycLic COHOMOLOGY OF LIE ALGEBRAS 513

Since the Hochschild coboundary b : V @ U(g)®" — V @ U(g)®"*! is the
alternating sum of cofaces d;, it suffices to check each §; preserve the filtration,
which is obvious for all cofaces except possibly the last one. However, for the
last coface, we take v € F,,V and write

U, ® Vg = 1®v+ U, ®v

We have

(0 Uy BV, EGRFp V. (6.4)

—1)
Spv@u' @ - @ut) =y @ut @ @u" ©u_ € BV U@ . (6.5)
Hence, we can say that b respects the filtration.

For the cyclic operator, the result again follows from the fact that Fj, is a
g-module. Indeed, for v € F,V

Tn(v®u1®- @u't) = U, T ®S(ul<2>)-(u2®- . -®u”®v[j]) € FpV®U(g)®”
(6.6)
Finally we consider the extra degeneracy operator

o 1(v@ut®- - -@u") = v-utn, @S (uly)- (Ve -@u") € F,VoU(g)®" (6.7)

which preserves the filtration again by using the fact that F}, is g-module and
the coaction preserve the filtration. As a result now, we can say that the
Connes’ boundary B respects the filtration.

Now, the E1-term of the spectral sequence associated to the filtration (F,V)p>0
computing the periodic cyclic cohomology of the Lie algebra g is known to be
of the form

E{'(g) = H™ (Fj41C(g,V)/F;C(8, V), [0cm + Ik]) (6.8)

where, [Ocg + k] is the induced coboundary operator on the quotient complex.
By the obvious identification

Fi1C(g,V)/F;C(g,V) = C(g, Fj1V/F;V) = C(g, (V/E;V)°9), (6.9)

we observe that

B} (g) = B (Cla, (V/E V)9, [oce]), (6.10)
for Ok (Fj+1C(g,V)) C F;C(g, V).
Similarly,
Bl (U(g) = H(C(U (), (V/EV)*U@), b+ B).  (6.11)

Finally, considering
E}'(9) = H™(C(g, (V/F;V)™?), [0] + [Ocx)) (6.12)

i.e., as a bicomplex with degree +1 differential is zero, the anti-symmetrization
map «a : C(g, (V/F;V)®°%) — C(U(g),(V/F;V)°U®) induces a quasi-
isomorphism [a] : B{*(g) — EY"(U(g)), Vi, j by Proposition 7 in [4]. O
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REMARK 6.3. In case the g-module V' has a trivial g-comodule structure, the
coboundary dx = 0 and

n=e mod 2

In this case, the above theorem becomes [Jl, Proposition 7].
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