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1 Introduction

The purpose with the present paper is to present a complete description and
classification of the simple C∗-algebras which arise from the generalised crossed
product construction of Renault, Deaconu and Anantharaman-Delaroche when
it is applied to affine maps on tori of dimension ≤ 3. The paper is written in
the conviction that progress on our understanding of the relationship between
dynamical systems and operator algebras can benefit both areas and that it is
improved by having rich classes of examples where the dynamical systems and
the associated C∗-algebras are equally tractable. The affine maps of tori consti-
tute a class of dynamical systems that are well studied and whose structures are
relatively transparent when compared to other systems. As the present paper
will demonstrate our knowledge of C∗-algebras is now comprehensive enough
to allow a complete identification and classification of the corresponding C∗-
algebras, provided the affine maps are strongly transitive and the dimension of
the torus does not exceed 3.
There are many other compact abelian groups for which it would be desirable to
have a better understanding of the C∗-algebras associated to affine maps which
are local homeomorphisms. For this reason we maintain a high level of gener-
ality before we specialise to tori of low dimension. Specifically we first describe
the general construction of Renault, Deaconu and Anantharaman-Delaroche
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from [Re], [De] and [An], which produces a locally compact étale groupoid and
hence a C∗-algebra out of a local homeomorphism. We develop a bit of the
structure theory that we need when we specialise to affine maps. In particular,
we show that the KK-equivalence class of the C∗-algebra is preserved by an
appropriate notion of homotopy. It follows from this that the C∗-algebra of
a locally homeomorphic and surjective affine map on a path-connected com-
pact group is KK-equivalent, in a unit-preserving way, to the C∗-algebra of
its linear part. This means that as far as the calculation of the K-groups is
concerned it suffices to consider group endomorphisms. Furthermore, it follows
from the classification theorem of Kirchberg and Phillips that the C∗-algebras
of two strongly transitive affine maps on the same compact metrizable path-
connected group are isomorphic provided they are purely infinite and the maps
have the same linear parts. Thanks to a recent result from [CT] we know that
the C∗-algebra of a locally injective surjection on a compact finite dimensional
metric space is purely infinite if it is simple, provided only that the map is
not injective. All in all this means that for the C∗-algebras of non-injective
strongly transitive locally homeomorphic affine maps on a compact metrizable
path-connected group it is not only the K-theory, but also the algebra itself
which is completely determined by the K-theory of the C∗-algebra coming from
the linear part of the map. Before we apply this to tori we first show that the
C∗-algebra of a locally homeomorphic affine map on a compact abelian group
is the universal C∗-algebra generated by a unitary representation of the dual
group and an isometry subject to two relations, cf. Theorem 3.2. This result
is motivated by a recent paper by Cuntz and Vershik ([CV]) where this is done
for exact endomorphisms.

Turning the attention to tori we first give necessary and sufficient conditions
for an affine surjection on a torus to be strongly transitive, cf. Theorem 4.3.
It remains then to calculate the K-theory, and in order to obtain a complete
calculation, covering all strongly transitive locally homeomorphic affine maps,
we restrict to tori of dimension ≤ 3. When all the eigenvalues of the integer
matrix which defines the endomorphism are strictly larger than one in absolute
value the endomorphism is expanding, and in this case the calculation was
performed in dimension 1 and 2 in [EHR]. The calculations in [EHR] were
based on a six-terms exact sequence which in the commutative case is the same
as the Deaconu-Muhly sequence from [DM] and [Th2]. We state here what this
sequence becomes in the general two and three dimensional cases and complete
in this way the calculation in these dimensions.

It remains then to handle the injective case which means that we must deter-
mine the C∗-algebras arising from minimal affine homeomorphisms. On the
circle these are just the irrational rotation algebras and they are well under-
stood. On the two-torus the minimal affine homeomorphisms are all conjugate
to one of the Furstenberg transformations whose C∗-algebras have been char-
acterised through the work of Lin and Phillips, [LP], [Ph2]. We show that both
the methods and the results of Lin and Phillips carry over with little effort to
the three-dimensional case. This part of the paper has some overlap with recent
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work of Reihani, [Rei], where the K-theory of the C∗-algebras of Furstenberg
transformations is studied.
Finally, we summarise our results in the three Sections 6.1, 6.2 and 6.3. They
contain a description of the orderedK-theory groups, together with the position
of the distinguished element of the K0-group represented by the unit, for all
the simple C∗-algebras one can obtain from the transformation groupoid of an
affine local homeomorphism on a torus of dimension ≤ 3. This characterises
these C∗-algebras since they are all classified by K-theory.

2 Algebras from local homeomorphisms

In this section we describe the construction of an étale groupoid and a C∗-
algebra from a local homeomorphism. It was introduced in increasing gener-
ality by J. Renault [Re], V. Deaconu [De] and Anantharaman-Delaroche [An].
Although the focus in this paper is on cases where the space is compact it will
be crucial to have access to statements and results from the locally compact
case.

2.1 The definition

Let X be a second countable locally compact Hausdorff space and ϕ : X → X
a local homeomorphism. Set

Γϕ = {(x, k, y) ∈ X × Z×X : ∃n,m ∈ N, k = n−m, ϕn(x) = ϕm(y)} .

This is a groupoid with the set of composable pairs being

Γ(2)
ϕ = {((x, k, y), (x′, k′, y′)) ∈ Γϕ × Γϕ : y = x′} .

The multiplication and inversion are given by

(x, k, y)(y, k′, y′) = (x, k + k′, y′) and (x, k, y)−1 = (y,−k, x).

Note that the unit space of Γϕ can be identified with X via the map x 7→
(x, 0, x). Under this identification the range map r : Γϕ → X is the projection
r(x, k, y) = x and the source map the projection s(x, k, y) = y.
To turn Γϕ into a locally compact topological groupoid, fix k ∈ Z. For each
n ∈ N such that n+ k ≥ 0, set

Γϕ(k, n) =
{
(x, l, y) ∈ X × Z×X : l = k, ϕk+n(x) = ϕn(y)

}
.

This is a closed subset of the topological product X×Z×X and hence a locally
compact Hausdorff space in the relative topology. Since ϕ is locally injective,
Γϕ(k, n) is an open subset of Γϕ(k, n+ 1) and hence the union

Γϕ(k) =
⋃

n≥−k
Γϕ(k, n)
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is a locally compact Hausdorff space in the inductive limit topology. The
disjoint union

Γϕ =
⋃

k∈Z

Γϕ(k)

is then a locally compact Hausdorff space in the topology where each Γϕ(k) is
an open and closed set. In fact, as is easily verified, Γϕ is a locally compact
groupoid in the sense of [Re] and an étale groupoid, i.e. the range and source
maps are local homeomorphisms.
To obtain a C∗-algebra, consider the space Cc (Γϕ) of continuous compactly
supported functions on Γϕ. They form a ∗-algebra with respect to the
convolution-like product

fg(x, k, y) =
∑

z,n+m=k

f(x, n, z)g(z,m, y)

and the involution
f∗(x, k, y) = f(y,−k, x).

To obtain a C∗-algebra, let x ∈ X and consider the Hilbert space Hx of square
summable functions on s−1(x) = {(x′, k, y′) ∈ Γϕ : y′ = x} which carries a
representation πx of the ∗-algebra Cc (Γϕ) defined such that

(πx(f)ψ) (x
′, k, x) =

∑

z,n+m=k

f(x′, n, z)ψ(z,m, x)

when ψ ∈ Hx. One can then define a C∗-algebra C∗
r (Γϕ) as the completion of

Cc (Γϕ) with respect to the norm

‖f‖ = sup
x∈X

‖πx(f)‖ .

Since we assume that X is second countable it follows that C∗
r (Γϕ) is separable.

It is this C∗-algebra we study in the present paper when ϕ is an affine map.
Note that the C∗-algebra can be constructed from any locally compact étale
groupoid in the place of Γϕ, see e.g. [Re], [An]. Note also that C∗

r (Γϕ) is noth-
ing but the classical crossed product C0(X)×ϕZ when ϕ is a homeomorphism.

2.2 The structure

By construction C∗
r (Γϕ) carries an action β by the circle group T defined such

that
βλ(f)(x, k, y) = λkf(x, k, y)

when f ∈ Cc (Γϕ). This is the gauge action and it gives us an important
tool for the study of the structure of C∗

r (Γϕ). To describe the fixed point
algebra of the gauge action note that the canonical conditional expectation
P : C∗

r (Γϕ) → C∗
r (Γϕ)

β , given by

P (a) =

∫

T

βλ(a) dλ,
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maps Cc (Γϕ) onto Cc (Γϕ(0)). If we denote the open subgroupoid Γϕ(0) by
Rϕ, it follows that

C∗
r (Γϕ)

β
= C∗

r (Rϕ) .

To unravel the structure of C∗
r (Rϕ) and C

∗
r (Γϕ), consider for n ∈ N the set

R(ϕn) = {(x, y) ∈ X ×X : ϕn(x) = ϕn(y)} .

Since ϕ is a local homeomorphism R (ϕn) is a locally compact étale groupoid
(an equivalence relation, in fact) in the relative topology inherited from X×X ,
and we can consider its (reduced) groupoidC∗-algebraC∗

r (R (ϕn)). NowR(ϕn)
can be identified with an open subgroupoid of Rϕ ⊆ Γϕ via the map (x, y) 7→
(x, 0, y) and when we suppress this identification in the notation we have that

Rϕ =
⋃

n

R (ϕn) .

It follows that the embeddings Cc (R (ϕn)) ⊆ Cc
(
R
(
ϕn+1

))
⊆ Cc (Rϕ) extend

to embeddings C∗
r (R (ϕn)) ⊆ C∗

r

(
R
(
ϕn+1

))
⊆ C∗

r (Rϕ), cf. e.g. Proposition
1.9 in [Ph3], and hence that

C∗
r (Rϕ) =

⋃

n

C∗
r (R (ϕn)). (2.1)

Lemma 2.1. C∗
r (R(ϕ)) is Morita equivalent to C0(ϕ(X)).

Proof. Except for considerations regarding continuity the arguments are the
same as in the proof of Theorem 3.2 in [Th1]. Let

Gϕ = {(y, x) ∈ X ×X : y = ϕ(x)}

be the graph of ϕ. When h ∈ Cc(Gϕ) and f ∈ Cc (R(ϕ)) define hf : Gϕ → C

such that
hf(y, x) =

∑

z∈ϕ−1(y)

h(y, z)f(z, x).

Then hf ∈ Cc(Gϕ) and we have turned Cc(Gϕ) into a right Cc(R(ϕ))-module.
Similarly, when g ∈ Cc(ϕ(X)) we define gh ∈ Cc(Gϕ) such that

gh(y, x) = g(y)h(y, x),

so that Cc(Gϕ) is also a left Cc(ϕ(X))-module. Define a Cc (R(ϕ))-valued
’inner product’ on Cc(Gϕ) such that

〈h, k〉 (x, y) = h(ϕ(x), x)k(ϕ(y), y)

and a Cc(ϕ(X))-valued ’inner product’ such that

(h, k) (y) =
∑

z∈ϕ−1(y)

h(y, z)k(y, z).
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In this way Cc(Gϕ) becomes a Cc(ϕ(X))-Cc(R(ϕ))-pre-imprimitivity bimodule
as defined by Raeburn and Williams in Definition 3.9 of [RW] and then Propo-
sition 3.12 of [RW] shows that the completion of this bimodule is the required
C0(ϕ(X))-C∗

r (R(ϕ))-imprimitivity bimodule.

Let K denote the C∗-algebra of compact operators on a separable, infinite
dimensional Hilbert space. By applying Lemma 2.1 to ϕn and combining with
a well-known result of Brown, Green and Rieffel, [BGR], we conclude that

C∗
r (R (ϕn))⊗K ∼= C0 (ϕ

n(X))⊗K.

In particular, it follows from (2.1) that C∗
r (Rϕ) is an inductive limit of C∗-

algebras stably isomorphic to abelian C∗-algebras. When X is compact and ϕ
is surjective it follows that C∗

r (Rϕ) is the inductive limit of a unital sequence
of homogeneous C∗-algebras with spectrum X .
The next step will be to show that the gauge action is full.

Lemma 2.2. Elements of the form fg∗, where f, g ∈ Cc (Γϕ(1)), span a dense

subspace in C∗
r (Rϕ) = C∗

r (Γϕ)
β
, and the same is true for the elements of the

form hk∗ where h, k ∈ Cc (Γϕ(−1)).

Proof. For each n ∈ N set

R (ϕn) = {(x, 0, y) ∈ Rϕ : ϕn(x) = ϕn(y)} .

Let F ∈ Cc (R (ϕn)) , n ≥ 2. Using a partition of unity we can write F as a sum
of functions in Cc (R (ϕn)) each of which is supported in a subset of R (ϕn) of
the form R (ϕn)∩(U×{0}×V ) where U, V are open subsets of X where ϕn+1 is
injective. We assume therefore that F is supported in R (ϕn)∩ (U ×{0}× V ).
Set U0 = r (R (ϕn) ∩ (U × {0} × V )) and V0 = s (R (ϕn) ∩ (U × {0} × V )),
both open subsets of X . Set K = r (suppF ), a compact subset of U0. Let
h ∈ Cc(X) be such that supph ⊆ U0 and h(x) = 1 for all x ∈ K. Set

A = Γϕ(1, n) ∩ (U0 × {1} × ϕ(U0))

and
B = Γϕ(−1, n) ∩ (ϕ(U0)× {−1} × V0)

which are open in Γϕ(1) and Γϕ(−1), respectively. For every (x, 1, y) ∈ A, set
f(x, 1, y) = h(x) and note that f has compact support in A. When (x,−1, y) ∈
B there is a unique element x′ ∈ U0 such that ϕ(x′) = x and (x′, 0, y) ∈
R (ϕn). We can therefore define g : B → R such that g(x,−1, y) = F (x′, 0, y).
Extending f and g to be zero outside A and B, respectively, we can consider
them as elements of Cc(Γϕ). Then f, g

∗ ∈ Cc (Γϕ(1)). Since fg = f (g∗)∗ = F
this completes the proof of the first assertion because

⋃
n Cc (R (ϕn)) is dense

in C∗
r (Rϕ). The second assertion is proved in the same way.

Theorem 2.3. There is an automorphism α on C∗
r (Rϕ)⊗K such that C∗

r (Γϕ)⊗
K is ∗-isomorphic to the crossed product (C∗

r (Rϕ)⊗K)⋊α Z.
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Proof. It follows from Lemma 2.2 that Theorem 2 of [KT] applies to give an
isomorphism

(C∗
r (Γϕ)⋊β T)⊗K ∼= C∗

r (Rϕ)⊗K. (2.2)

Let α0 be the automorphism of C∗
r (Γϕ) ⋊β T generating the action dual

to β. Then (C∗
r (Γϕ)⋊β T) ⋊α0

Z ∼= C∗
r (Γϕ) ⊗ K by Takai duality, cf.

e.g. Theorem 7.9.3 of [Pe]. Thus, when we let α be the automorphism of
C∗
r (Rϕ)⊗K corresponding to α0⊗ idK under the isomorphism (2.2) we deduce

that (C∗
r (Rϕ)⊗K)⋊α Z ∼= C∗

r (Γϕ)⊗K.

When ϕ is proper and surjective, we can realise C∗
r (Γϕ) as a crossed product

by an endomorphism via the procedure described in [De] and [An], and this
can be used to give an alternative proof of Theorem 2.3. Without properness
such an approach seems impossible.

Corollary 2.4. a) C∗
r (Γϕ) is a separable nuclear C∗-algebra in the boot-

strap category of Rosenberg and Schochet, [RS].

b) Assume that ϕ is surjective and that C0(X) is KK-contractible. It follows
that C∗

r (Γϕ) is KK-contractible.

Proof. a) is an immediate consequence of the preceding and b) follows from a)
since Theorem 2.3 and the Pimsner-Voiculescu exact sequence, [PV], implies
that the K-groups of C∗

r (Γϕ) are both zero when C0(X) is KK-contractible.

2.3 Homotopy of local homeomorphisms

Let Y be a compact metric space. A path σt : Y → Y, t ∈ [0, 1], of surjective
local homeomorphisms is called a homotopy of local homeomorphisms when the
map Σ : [0, 1]× Y → [0, 1]× Y defined by

Σ(t, y) = (t, σt(y)) (2.3)

is a local homeomorphism. We say then that {σt} is a homotopy of local
homeomorphism connecting σ0 and σ1, and that σ0 and σ1 are homotopic as
local homeomorphisms.

Lemma 2.5. Let σ0 : Y → Y and σ1 : Y → Y be surjective local homeomor-
phisms. Assume that σ0 and σ1 are homotopic as local homeomorphisms. Then
there is a KK-equivalence λ ∈ KK (C∗

r (Γσ0
) , C∗

r (Γσ1
)) such that the induced

isomorphism λ∗ : K0 (C
∗
r (Γσ0

)) → K0 (C
∗
r (Γσ1

)) takes the element represented
by the unit in C∗

r (Γσ0
) to the one represented by the unit in C∗

r (Γσ1
).

Proof. Consider a homotopy {σt} of local homeomorphisms connecting σ0 to
σ1. Define Σ : [0, 1] × Y → [0, 1] × Y by (2.3) and observe that {0} × Y and
{1}×Y are both closed totally Σ-invariant subsets of [0, 1]×Y . By Proposition
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4.6 of [CT] we have therefore surjective ∗-homomorphisms πi : C∗
r (ΓΣ) →

C∗
r (Γσi

) such that

kerπi ∼= C∗
r

(
ΓΣ|Zi

)
,

where
Zi = ([0, 1]\ {i})× Y,

i = 0, 1. Since C0(Zi) is a contractible C∗-algebra it follows from Corollary 2.4

that C∗
r

(
ΓΣ|Zi

)
is KK-contractible.

Let • denote the Kasparov product. Since we deal with separable nuclear
C∗-algebras it follows from Theorem 19.5.7 of [Bl] that

KK (C∗
r (Γσi

) , C∗
r (ΓΣ))

x 7→[πi]•x
KK (C∗

r (Γσi
) , C∗

r (Γσi
)) (2.4)

and

KK (C∗
r (ΓΣ) , C

∗
r (ΓΣ))

x 7→[πi]•x
KK (C∗

r (ΓΣ) , C
∗
r (Γσi

)) (2.5)

are both isomorphisms because kerπi is KK-contractible. It follows from the
surjectivity of (2.4) that there is an element [πi]

−1 ∈ KK (C∗
r (Γσi

) , C∗
r (ΓΣ))

such that [πi] • [πi]
−1 =

[
idC∗

r (Γσi)

]
. Then

[πi] •
(
[πi]

−1 • [πi]
)
=
(
[πi] • [πi]

−1
)
• [πi] = [πi]

by associativity of the Kasparov product so the injectivity of (2.5) implies that

[πi]
−1 • [πi] =

[
idC∗

r (ΓΣ)

]
, i.e. [πi]

−1
is a KK-inverse of [πi]. To finish the proof,

set λ = [π1] • [π0]
−1.

Recall that a continuous map ψ : X → X is strongly transitive when for every
open non-empty subset V of X , there is an N ∈ N such that

⋃N
i=0 ψ

i(V ) = X .
It was shown in [DS] that when φ : X → X is a surjective local homeomorphism
on a compact metric space X , the C∗-algebra C∗

r (Γφ) is simple if and only
if X is not a finite set and φ is strongly transitive. In [CT] it was shown
that the C∗-algebra of a non-injective and surjective strongly transitive local
homeomorphism on a compact metric space of finite covering dimension is
purely infinite. Combined with Lemma 2.5 this leads to the following.

Theorem 2.6. Let X be a finite dimensional compact metric space and
ϕ : X → X, φ : X → X two surjective local homeomorphisms, both non-
injective and strongly transitive. Assume that φ and ϕ are homotopic as local
homeomorphisms. It follows that C∗

r (Γφ)
∼= C∗

r (Γϕ).

Proof. It follows from Corollary 6.6 of [CT] that the classification result of
Kirchberg and Phillips applies, cf. Corollary 4.2.2 of [Ph1]. The conclusion
follows therefore from Lemma 2.5.
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2.4 Strong transitivity and exactness

Let X be a compact metric space which is not a finite set, and φ : X → X a
continuous map. Recall that φ is exact when for every open non-empty subset
V ⊆ X there is an N ∈ N such that φN (V ) = X . Thus exactness implies strong
transitivity while the converse is generally not true. (For example an irrational
rotation of the circle is strongly transitive but not exact.) It was pointed out
in [DS] that a surjective local homeomorphism ϕ : X → X is exact if and only
if C∗

r (Rϕ) is simple. Thus ϕ is exact if and only if C∗
r (Γϕ) and C∗

r (Rϕ) are
both simple while ϕ is strongly transitive and not exact if and only C∗

r (Γϕ) is
simple while C∗

r (Rϕ) is not.
With this section we want to point out that for locally injective and surjective
endomorphisms of compact groups, strong transitivity is equivalent to exact-
ness.

Lemma 2.7. Let φ : X → X be continuous, surjective and open. Then the
following conditions are equivalent:

i) φ is strongly transitive.

ii)
⋃
n,m∈N

φ−m (φn(x)) is dense in X for all x ∈ X.

iii)
⋃
n∈N

φ−n(x) is dense in X for all x ∈ X.

Proof. i) ⇒ iii): If there is a point x ∈ X such that

F =
⋃

n∈N

φ−n(x)

is not all of X , the set U = X\F is open, non-empty and satisfies that x /∈⋃
n φ

n(U), contradicting the strong transitivity of φ.
ii) ⇒ i): Consider an open non-empty subset V of X . For every x ∈ X there
are n,m ∈ N such that φ−m (φn(x)) ∩ V 6= ∅, i.e. x ∈ φ−n (φm(V )). Since
φ is continuous and open, and X is compact, there is an N ∈ N such that
X =

⋃
i,j≤N φ

−i (φj(V )
)
. Then X = φN (X) =

⋃2N
i=0 φ

i(V ).
Since iii) ⇒ ii) is trivial, the proof is complete.

Proposition 2.8. Let H be a compact group and α0 : H → H a continuous
surjective group endomorphism with finite kernel. Then α0 is exact if and only
if α0 is strongly transitive.

Proof. Note that α0 is open since its kernel is finite. Assume that α0 is strongly
transitive, and let 1 ∈ H be the neutral element. Consider an open non-empty
subset U ⊆ H . Set

∆ =
⋃

n

kerαn0 =
⋃

n

α−n
0 (1).

Then ∆ is dense in H by Lemma 2.7. For every x ∈ H ,
⋃

n

α−n
0 (αn0 (x)) = {zx : z ∈ ∆} ,
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and it follows that
⋃
n α

−n
0 (αn0 (x)) is dense in H for every x ∈ H . In particular,

there is for every x an n ∈ N such that x ∈ α−n
0 (αn0 (U)). Since

α−m
0 (αm0 (U)) ⊆ α−m−1

0

(
αm+1
0 (U)

)

for all m the compactness of H implies that H = α−N
0

(
αN0 (U)

)
and therefore

that H = αN0 (U) for some N .

3 The algebra of an affine map on a compact abelian group

Let H be a compact metrizable abelian group and let G = Ĥ be its Pontryagin
dual group. Let α : H → H be a continuous affine map. That is, α is
the composition of a continuous group endomorphism α0 : H → H and the
translation by an element h0 ∈ H , viz.

α(h) = h0α0(h).

We will refer to α0 as the linear part of α. To ensure that the transformation
groupoid of α is a well-behaved étale groupoid it is necessary to assume that α
is a local homeomorphism.
Let 〈·, ·〉 denote the duality between H and G. We can then define an endo-
morphism φ : G→ G such that

〈φ(g), h〉 = 〈g, α0(h)〉 . (3.1)

Lemma 3.1. The following conditions are equivalent.

i) α is a local homeomorphism.

ii) α0 is a local homeomorphism.

iii) kerα0 and cokerα0 are finite.

iv) kerφ and cokerφ are finite.

v) kerα0 and kerφ are finite.

Proof. Straightforward.

Observe that when H is connected, cokerα0 is finite if and only if α0 is surjec-
tive.
Assume that α : H → H is an affine local homeomorphism. For each g ∈ G
we define a unitary U ′

g in C(H) ⊆ C∗
r (Γα) in the usual way: U ′

g(x) = 〈g, x〉.
Then U ′ is a representation of G by unitaries in C∗

r (Γα). Set N = #kerα0

and define an isometry Vα ∈ Cc (Γα) such that

Vα(x, k, y) =

{
1√
N

when k = 1, y = α(x)

0 otherwise.
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It is straightforward to check that VαU
′
g = 〈g, h0〉U ′

φ(g)Vα and that

∑

g∈G/φ(G)

U ′
gVαV

∗
αU

′
g
∗
= 1.

It follows that we can consider the universal C∗-algebra A[α] generated by
unitaries Ug, g ∈ G, and an isometry S such that

UgUh = Ug+h SUg = 〈g, h0〉Uφ(g)S
∑

g∈G/φ(G)

UgSS
∗U∗

g = 1. (3.2)

Furthermore, there is a ∗-homomorphism ν : A[α] → C∗
r (Γα) such that ν(Ug) =

U ′
g and ν(S) = Vα. Note that the existence of ν implies that the canonical map

C(H) → A[α] coming from the generators Ug, g ∈ G, is injective.

Theorem 3.2. Let H be a compact metrizable abelian group and α : H → H an
affine map. Assume that α is a local homeomorphism. Then C∗

r (Γα)
∼= A[α].

Proof. To construct the desired isomorphism we will show that the isomorphism
ρ : OE → C∗

r (Γα) from Proposition 3.2 in [Th2] factorises through ν, i.e. that
there is a ∗-homomorphism µ : OE → A[α] such that

OE
ρ

µ

C∗
r (Γα)

A[α]

ν

(3.3)

commutes. Since ρ is an isomorphism this will complete the proof if we also
show that µ is surjective. Let gi, i = 1, 2, . . . , N , be elements in G representing
the distinct elements of G/φ(G). Notice that it follows from the third of the
three relations in (3.2) that

S∗U∗
giUgjS =

{
1 when i = j

0 when i 6= j.

Combined with the second relation this implies that

S∗UgS =

{
0 when g /∈ φ(G)

〈k, h0〉Uk when g = φ(k), k ∈ G.

In particular, it follows that the closure of C(H)S in A[α] is a Hilbert
C(H)-module with the ’inner product’ (a, b) = a∗b. The existence of the ∗-
homomorphism ν, or a simple direct calculation shows that

V ∗
αU

′
gVα =

{
0 when g /∈ φ(G)

〈k, h0〉U ′
k when g = φ(k), k ∈ G.

.
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Since the C∗-correspondence E is the closure of C(H)Vα in C∗
r (Γα) it follows

that we can define an isometry t : E → A[α] such that t(fVα) = fS for all
f ∈ C(H). Together with the inclusion π : C(H) → A[α] this isometry t
gives us a representation of the C∗-correspondence E in the sense of Katsura,
cf. Definition 2.1 of [Ka]. To show that this representation is covariant in
the sense of [Ka] it suffices by Proposition 3.3 in [Ka] to show, in Katsura’s
notation, that C(H) ⊆ ψt (K(E)). This follows from the observation that

Uk =
∑

j

UkUgjSS
∗U∗

gj =
∑

j

ψt

(
θU ′

k
U ′

gj
Vα, U ′

gj
Vα

)

for all k. Thus (π, t) is covariant and by Definition 3.5 in [Ka] there is therefore
a ∗-homomorphism µ : OE → A[α] whose range is generated by π(C(H)) and
t(E). But this is all of A[α], i.e. µ is surjective.
It remains now only to show that ρ = ν ◦ µ. To this end observe that the two
∗-homomorphisms agree on the canonical copies of C(H) and E inside OE . As
OE is generated by these subsets the proof is complete.

3.1 Affine maps with the same linear part

The following result follows immediately from Lemma 2.5 and Theorem 2.6.

Theorem 3.3. Let H be a compact abelian path-connected second countable
group and α0 : H → H a continuous group endomorphism with finite non-trivial
kernel. Let hi ∈ H, i = 1, 2, and define αi : H → H such that αi(h) = hiα0(h).
a) It follows that C∗

r (Γα1
) and C∗

r (Γα2
) are KK-equivalent.

b) Assume in addition that α1 and α2 are both strongly transitive, and that H
is of finite covering dimension. It follows that

C∗
r (Γα1

) ∼= C∗
r (Γα2

) .

Corollary 3.4. Let H be a compact abelian path-connected second countable
group of finite covering dimension. Let α : H → H be an affine map whose lin-
ear part α0 is a continuous group endomorphism with finite non-trivial kernel.
Assume that α is exact. Then α0 is exact and

C∗
r (Γα)

∼= C∗
r (Γα0

) .

Proof. It is easy to see that α is exact if and only of α0 is. Apply then Theorem
3.3.

Theorem 3.3 a) is generally not true when H is not connected, but it may
be that b) of Theorem 3.3 and Corollary 3.4 remain true also when H is not
connected; at least we do not know of a counterexample.

Example 3.5. Let A be a finite abelian group of order N ≥ 2. On the infinite
product AN the shift α0, given by α0((an)) = (an+1), is a surjective exact
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endomorphism with finite kernel. Fix an element x = (xn) ∈ AN and consider
the affine map α : AN → AN defined by

α((an)) = (xnan+1).

The dual group is ⊕k∈NA and the dual endomorphism φ of α0 is given by

φ((an)) = (0, a0, a1, a2, . . . )

Consider the C∗-algebraA[α] generated by unitaries and an isometry satisfying
(3.2). For a ∈ A, set ga = (a, 0, 0, 0, . . . ). Then Va = UgaS, a ∈ A, is a
collection of isometries in A[α] and

∑
a∈A VaV

∗
a = 1. Since

Ugb =
∑

a∈A
Vb+aV

∗
a

and
Uφk(ga)VbV

∗
b ∈ CVbUφk−1(ga)V

∗
b

for all k ≥ 1 and all a, b, we conclude that the Va’s generate A[α]. It follows
that A[α] is a copy of the Cuntz algebra ON . In particular, A[α] is independent
of the translation part of α.

4 Strongly transitive affine surjections on tori

A continuous map T : Tn → Tn on the n-torus is affine when it is the composi-
tion of a group endomorphism φ : Tn → Tn and the translation by an element
λ ∈ Tn, i.e.

Tx = λφ(x).

Being a continuous group endomorphism φ is determined by an integer matrix
A = (aij) ∈Mn(Z). Specifically, φ = φA where φA is given by the formula

φA (t1, t2, . . . , tn) = (ta111 ta122 · · · ta1nn , ta211 ta222 · · · ta2nn , · · · · · · , tan1

1 tan2

2 · · · tann
n )
(4.1)

for all (t1, t2, . . . , tn) ∈ Tn. It follows from Lemma 3.1 that T is a local home-
omorphism if and only if it is surjective and finite-to-one. In fact, since surjec-
tivity of φA is equivalent to non-singularity of A, and hence implies that T is
finite-to-one we conclude that T is a local homeomorphism if and only if A is
non-singular, i.e. DetA 6= 0. We call A the matrix of the linear part of T .
In [Kr] Krzyzewski has given an algebraic characterisation of which surjec-
tive group endomorphisms of tori are strongly transitive and we will here use
his results to obtain a similar characterisation of which affine surjections are
strongly transitive. To formulate Krzyzewski’s result recall that a non-constant
polynomial

akx
k + ak−1x

k−1 + · · ·+ a0

is called unimodular when ai ∈ Z for all i, ak = 1, and a0 ∈ {−1, 1}.
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Theorem 4.1. (Krzyzewski, [Kr]) Let A ∈ Mn(Z) be non-singular, i.e.
DetA 6= 0, and let fA(x) = Det(x1 − A) be the characteristic polynomial of
A. The group endomorphism φA of Tn is strongly transitive if and only if no
unimodular polynomial divides fA.

Lemma 4.2. Let φ : Tn → Tn be a surjective affine endomorphism and A ∈
Mn(Z) the matrix of its linear part. Assume that 1 is not an eigenvalue of A.
There is then a translation τ on Tn such that τφτ−1 = φA.

Proof. Let λ ∈ Rn be a vector such that Rn ∋ x 7→ Ax + λ is a lift of φ, i.e.
φ(p(x)) = p (Ax + λ) where p : Rn → Tn is the canonical surjection. Since
A − 1 is surjective on Rn by assumption there is a vector µ ∈ Rn such that
λ = (A− 1)µ. Define τ such that τt = p(µ)t and note that τφτ−1 = φA.

Theorem 4.3. Let A ∈Mn(Z) be an integral matrix with non-zero determinant
and let fA(x) = Det(x1 −A) be the characteristic polynomial of A. Write

fA(x) = (1− x)kg(x)

where k ∈ {0, 1, 2, . . . , n} is the algebraic multiplicity of 1 as a root of fA.

1) If no unimodular polynomial divides fA, every affine local homeomor-
phism of Tn with φA as linear part is exact and conjugate to φA.

2) If k ≥ 1 but no unimodular polynomial divides g, let S be the set of ele-
ments µ ∈ Tn with the property that the closed subgroup of Tn generated
by µ and {

x−1φA(x) : x ∈ Tn
}

(4.2)

is all of Tn. Then S is a dense proper subset of Tn such that an affine
map

Tx = λφA(x) (4.3)

is strongly transitive if and only if λ ∈ S. In this case no affine local
homeomorphism with φA as linear part is exact.

3) If there is a unimodular polynomial which divides g, then no affine local
homeomorphism of Tn with φA as linear part is strongly transitive.

Proof. 1) In this case 1 is not an eigenvalue of A and hence every affine local
homeomorphism with φA as linear part is conjugate to φA by Lemma 4.2. It
follows from Theorem 4.1 and Proposition 2.8 that φA is exact.
2) Note that an affine map is exact if and only if its linear part is. Moreover it
follows from Theorem 4.1 and Proposition 2.8 that φA is not exact; hence no
affine map with φA as linear part is exact. This justifies the last assertion in 2)
and shows that the set S is proper since it does not contain the neutral element.
It is dense because it contains all topological group generators of Tn. To prove
the remaining assertions in 2), consider first the affine map (4.3) and assume
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that it is strongly transitive. Let H be the closed subgroup of Tn generated by
λ and the set (4.2). It is easy to check that T−1(H) ⊆ H and then condition
iii) of Lemma 2.7 shows that H = Tn, i.e. λ ∈ S. Conversely, assume that
λ ∈ S. We use now Theorem III.12. on page 50 of [N] to get W ∈ Gln(Z) and
matrices B11 ∈Mn−k(Z), B22 ∈Mk(Z) and a (n− k)× k integral matrix B12

such that

WAW−1 =

(
B11 B12

0 B22

)
(4.4)

and such that B22 is an upper triangular matrix of the form

B22 =




1 b12 b13 . . . b1k
0 1 b23 . . . b2k
0 0 1 . . . b3k
...

...
...

. . .
...

0 0 0 . . . 1




and g is the characteristic polynomial of B11. By exchanging λ with φW (λ) and
A with WAW−1 we may assume that A is the matrix on the right-hand side of
(4.4). Let V and U be open non-empty subsets of Rn−k and Rk, respectively. It
follows from Theorem 4.1 and Proposition 2.8 that φB11

is exact which implies
that there is a N ∈ N such that

Bj11V + Zn−k = Rn−k (4.5)

for all j ≥ N . Let α ∈ Rn−k, β ∈ Rk be vectors such that p((α, β)) = λ
where p : Rn → Tn is the canonical surjection. Let ρ ∈ Tk be the image of β
and note that the affine map z 7→ ρφB22

(z) is an affine homeomorphism of Tk

which, thanks to the block diagonal form (4.4) is a factor of T . Since λ ∈ S it
follows that ρ and the set

{
z−1φB22

(z) : z ∈ Tk
}
generate Tk as a topological

group. It follows then from Theorem 4 in [HP] that x 7→ ρφB22
(x) is a minimal

homeomorphism of Tk. There is therefore an M ∈ N such that

N+M⋃

j=N

(
Bj22U +

j−1∑

l=0

Bl22β

)
+ Zk = Rk. (4.6)

Let L : Rn → Rn be the affine map Lx = Ax + (α, β). Thanks to the block
form of A it follows from (4.5) and (4.6) that

N+M⋃

j=N

Lj(V × U) + Zn = Rn,

proving that x 7→ λφA(x) is strongly transitive.
3) It follows from Theorem III.12 on page 50 of [N] that there areW1 ∈ Gln(Z),
matrices A11 ∈Mk(Z), A22 ∈Mn−k(Z) and a k × (n− k) integral matrix A12

such that

W1AW
−1
1 =

(
A11 A12

0 A22

)
(4.7)
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and the characteristic polynomials of A11 and A22 are (1 − x)k and g, respec-
tively. We may therefore assume that A is the matrix on the right-hand side
of (4.7). Let T be an affine local homeomorphism with φA as linear part. The
projection q : Tn → Tn−k to the last coordinates gives then a factor map to an
affine local homeomorphism R : Tn−k → Tn−k whose linear part is φA22

. Since
1 is not an eigenvalue of A22 it follows from Lemma 4.2 that R is conjugate to
φA22

which by Theorem 4.1 is not strongly transitive. Since strong transitivity
is inherited by factors it follows that T is not strongly transitive either.

4.1 Local homeomorphisms of the circle

In this section we want to point out that for the torus of lowest dimension
the group endomorphisms comprise all strongly transitive non-invertible local
homeomorphisms, up to conjugacy.
Let T be the unit circle in the complex plane. For any continuous map φ : T →
T there is a unique continuous map g : [0, 1] → R such that g(0) ∈ [0, 1[ and
φ
(
e2πit

)
= e2πig(t) for all t ∈ [0, 1]. The value g(1) − g(0) ∈ Z is the degree

of φ and we denote it by dφ. For maps of positive degree the following can be
deduced from the work of Boyland in [B].

Theorem 4.4. Let φ : T → T be a local homeomorphism such |dφ| ≥ 2. Assume
that φ is strongly transitive. Then φ is conjugate to the endomorphism z 7→ zdφ.

Proof. The proof is essentially the same which is standard for expanding maps.
Let p : R → T be the covering p(t) = e2πit and choose a continuous function
g : R → R such that φ ◦ p = p ◦ g. Note that g(x+ 1) = g(x) + dφ and that g
is strictly increasing when dφ ≥ 2 and strictly decreasing when dφ ≤ −2. Let
M denote the set of non-decreasing continuous functions f : R → R with the
property that f(t+ 1) = f(t) + 1 for all t. Then M is a complete metric space
in the metric D defined by

D(f1, f2) = sup
t∈R

|f1(t)− f2(t)| .

Define Tg :M →M such that

Tg(f) = d−1
φ f ◦ g.

Then D (Tg(f1), Tg(f2)) ≤
1

|dφ|D(f1, f2) ≤ 2−1D(f1, f2), and there is therefore

a function h ∈M such that Tg(h) = h. Define α : T → T such that α◦p = p◦h
and observe that α ◦ φ = βdφ ◦ α, where βdφ(z) = zdφ . We claim that h
is strictly increasing. Indeed, if not there is a non-empty open interval in R

on which h is constant, and hence also a non-empty open interval I ⊆ T on
which α is constant. Since φ is strongly transitive there is an N ∈ N such
that T =

⋃N
j=0 φ

j(I). Since α ◦ φj = βjdφ ◦ α for all j ∈ N it follows that α

is constant on φj(I) for all j, whence α is constant because T is connected.
This is impossible since h ∈ M and hence h is strictly increasing as claimed.
It follows that α is a conjugacy.
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5 K-theory calculations

Let T : Tn → Tn be a continuous affine map which is also a local homeo-
morphism. It follows from Lemma 2.5 that the K-theory groups of C∗

r (ΓT )
are unchanged when we replace T by its linear part. We focus therefore in
this section on the calculation of the K-groups of C∗

r (Γφ) when φ is a group
endomorphism of Tn. The main tool will be the six-terms exact sequence from
Theorem 3.7 in [EHR]. Note that it applies to our case since C∗

r (Γφ) is an Exel
system in the sense of [EHR] by Theorem 9.1 of [EV], and that it is the same
as the Deaconu-Muhly six-terms exact sequence considered in [Th2].
Let φA : Tn → Tn be a group endomorphism given by the integral non-
singular matrix A, i.e. φA is defined by (4.1). Set D = |DetA| and let (φA)∗ :
K∗ (C (Tn)) → K∗ (C (Tn)) , ∗ = 0, 1, be the homomorphism induced by the
endomorphism of C (Tn) sending f to f ◦ φA and let ι : C(Tn) → C∗

r (ΓφA
)

be the canonical embedding. It follows from Lemma 4.3 in [EHR] that the
six terms exact sequence from Theorem 3.7 of [EHR], or from Theorem 3.3 in
[Th2], takes the form

K0 (C (Tn))
id−D(φA)

0

−1

K0 (C (Tn))
ι∗

K0 (C
∗
r (ΓφA

))

K1 (C
∗
r (ΓφA

)) K1 (C (Tn))ι∗
K1 (C (Tn))

id−D(φA)
1

−1

(5.1)

Consequently

K0 (C
∗
r (ΓφA

)) ∼= coker
(
id−D(φA)0

−1
)
⊕ ker

(
id−D(φA)1

−1
)

(5.2)

and

K1 (C
∗
r (ΓφA

)) ∼= coker
(
id−D(φA)1

−1
)
⊕ ker

(
id−D(φA)0

−1
)
. (5.3)

For classification purposes it is important to keep track of the distinguished
element of K0 (C

∗
r (ΓφA

)) represented by the unit in C∗
r (ΓφA

). This is always
quite easy because the unit of C∗

r (ΓφA
) is the image of the unit in C(Tn) under

the embedding ι. In particular, the unit represents always an element in the

direct summand coker
(
id−D(φA)0

−1
)
.

In general, for n large, it is not easy to give explicit descriptions of the maps
(φA)0 and (φA)1. When n ≤ 3 the calculations are not too complicated and
can be based either on the realization of K∗ (C(Tn)) as an exterior algebra,
cf. [EHR], or more simply on a repeated use of the Künneth theorem, [S]. In
the following sections we combine the resulting six-terms exact sequences with
Theorem 4.3 to obtain a complete list of the simple C∗-algebras which arise
from strongly transitive affine maps on a torus Tn when n ≤ 3.
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5.1 The circle

As pointed out in [EHR] the calculation of the K-theory groups of the C∗-
algebra of an endomorphism of the circle of positive degree has been carried
out by several mathematicians, and [EHR] contains the calculation for endo-
morphisms of negative degree.
Let a ∈ Z\{0} and define φa : T → T such that φa(t) = ta. Then

1) K0 (C
∗
r (Γφa

)) = Za−1 ⊕ Z and K1 (C
∗
r (Γφa

)) = Z when a ≥ 2,

2) K0 (C
∗
r (Γφ1

)) = Z2 = K1 (C
∗
r (Γφ1

)),

3) K0

(
C∗
r

(
Γφ−1

))
= Z and K1

(
C∗
r

(
Γφ−1

))
= Z⊕ Z2 and

4) K0 (C
∗
r (Γφa

)) = Z|a|−1 and K1 (C
∗
r (Γφa

)) = Z2 when a ≤ −2.

5.2 The two-torus

In this case the diagram (5.1) takes the form

Z2

(

1−|DetA| 0
0 1−ǫ(A)

)

Z2 K0 (C
∗
r (ΓφA

))

K1 (C
∗
r (ΓφA

)) Z2 Z2
1−ǫ(A)A

where ǫ(A) denotes the sign of DetA. This gives us the following conclusions.

1) K0 (C
∗
r (ΓφA

)) ∼= Z ⊕ ZDetA−1 ⊕ ker(1 − A) with the unit [1] ∈
K0 (C

∗
r (ΓφA

)) represented by 1 ∈ ZDetA−1 and K1 (C
∗
r (ΓφA

)) ∼= Z ⊕
coker(1−A), when DetA ≥ 2.

2) K0 (C
∗
r (ΓφA

)) ∼= Z2 ⊕ ker(1 − A) with the unit [1] ∈ K0 (C
∗
r (ΓφA

)) rep-
resented by (1, 0) ∈ Z2 and K1 (C

∗
r (ΓφA

)) ∼= Z2 ⊕ coker(1 − A), when
DetA = 1.

3) K0 (C
∗
r (ΓφA

)) ∼= Z ⊕ Z2 ⊕ ker(1 + A) with the unit [1] ∈ K0 (C
∗
r (ΓφA

))
represented by 1 ∈ Z andK1 (C

∗
r (ΓφA

)) ∼= Z⊕coker(1+A), when DetA =
−1.

4) K0 (C
∗
r (ΓφA

)) ∼= Z2 ⊕ Z|DetA|−1 ⊕ ker(1 + A) with the unit [1] ∈
K0 (C

∗
r (ΓφA

)) represented by 1 ∈ Z|DetA|−1 and K1 (C
∗
r (ΓφA

)) ∼=
coker(1 +A), when DetA ≤ −2.

When we specialise to the cases where all eigenvalues of A have modulus greater
than 1 we recover Corollary 4.12 from [EHR].
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5.3 The three-dimensional torus

In this case the exact sequence (5.1) takes the form

Z4

(

1−|DetA| 0
0 1−ǫ(A)A

)

Z4 K0 (C
∗
r (ΓφA

))

K1 (C
∗
r (ΓφA

)) Z4 Z4
(

1−ǫ(A) 0
0 1−ǫ(A) cof(A)

)

where cof(A) = DetA
(
A−1

)t
is the cofactor matrix of A. It follows that

1) K0 (C
∗
r (ΓφA

)) ∼= Z⊕ker(1−cof(A))⊕ZDetA−1⊕coker(1−A) with the unit
[1] ∈ K0 (C

∗
r (ΓφA

)) represented by 1 ∈ ZDetA−1 and K1 (C
∗
r (ΓφA

)) ∼=
Z⊕ ker(1 −A)⊕ coker (1− cof(A)), when DetA ≥ 2.

2) K0 (C
∗
r (ΓφA

)) ∼= K1 (C
∗
r (ΓφA

)) ∼= Z2 ⊕ ker(1 − A) ⊕ coker(1 − A) with
the unit [1] ∈ K0 (C

∗
r (ΓφA

)) represented by (1, 0) ∈ Z2, when DetA = 1.

3) K0 (C
∗
r (ΓφA

)) ∼= Z ⊕ ker(1 − A) ⊕ coker(1 + A) with the unit [1] ∈
K0 (C

∗
r (ΓφA

)) represented by 1 ∈ Z and K1 (C
∗
r (ΓφA

)) ∼= Z ⊕ ker(1 +
A)⊕ coker (1−A)⊕ Z2, when DetA = −1.

4) K0 (C
∗
r (ΓφA

)) ∼= ker(1+cof(A))⊕Z|DetA|−1⊕coker(1+A) with the unit
[1] ∈ K0 (C

∗
r (ΓφA

)) represented by 1 ∈ Z|DetA|−1 and K1 (C
∗
r (ΓφA

)) ∼=
ker(1 +A)⊕ coker(1 + cof(A))⊕ Z2, when Det ≤ −2.

6 The C∗-algebras of strongly transitive affine surjections on

an n-torus, n ≤ 3

6.1 The C∗-algebra of a strongly transitive local homeomor-

phism on the circle

A continuous affine map T of the circle has the form

T t = e2πiαta

for some α ∈ R and some a ∈ Z. By combining the results of Section 4 with the
K-theory calculations listed in Section 5.1 we obtain the following conclusion.

A) When a ≥ 2 the C∗-algebra C∗
r (ΓT ) is the same for all α ∈ R, it is purely

infinite and simple with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z⊕ Za−1, K1 (C
∗
r (ΓT ))

∼= Z.

The unit of C∗
r (ΓT ) corresponds to 1 ∈ Za−1 ⊆ K0 (C

∗
r (ΓT )).
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B) When a ≤ −2 the C∗-algebra C∗
r (ΓT ) is the same for all α ∈ R, it is

purely infinite and simple with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z|a|−1, K1 (C
∗
r (ΓT ))

∼= Z2.

The unit of C∗
r (ΓT ) corresponds to 1 ∈ Z|a|−1 ⊆ K0 (C

∗
r (ΓT )).

C) When a = ±1, T is a homeomorphism and C∗
r (ΓT ) is finite. When

a = −1, T is not strongly transitive and C∗
r (ΓT ) is not simple. When

a = 1, T is strongly transitive if and only if α is not rational. When
α ∈ R\Q, C∗

r (ΓT ) is an irrational rotation algebra and its structure is
well-known. See [EE].

It is well-known that two irrational rotation algebras are isomorphic if and
only if the two irrational rotations are conjugate. Now combine this with the
observation that the degree a of T can be read off from the K-theory groups of
C∗
r (ΓT ), and the well-known fact that a minimal homeomorphism of the circle

is conjugate to an irrational rotation. Combining with Theorem 4.4 we obtain
then the following result regarding strongly transitive local homeomorphisms
of the circle.

Proposition 6.1. Two strongly transitive local homeomorphisms ϕ and ψ of
the circle are conjugate if and only if the associated C∗-algebras C∗

r (Γϕ) and
C∗
r (Γψ) are isomorphic.

6.2 The C∗-algebra of a strongly transitive affine surjection on

the two-torus

An affine local homeomorphism of T2 has the form

Tx = λφA(x) (6.1)

for some A ∈M2(Z) with DetA 6= 0 and some λ ∈ T2.
Most of the following results summarise the results of Theorem 4.3, Corollary
3.4 and Section 5.2, but the case DetA = 1 uses the calculation of N.C. Phillips
from Example 4.9 of [Ph2] and the classification results of Lin and Phillips from
[LP].
Assuming that neither 1 nor −1 is an eigenvalue of A we have the following:

A) When DetA ≥ 2 the C∗-algebra C∗
r (ΓT ) is isomorphic to C∗

r (ΓφA
), it is

purely infinite and simple with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z⊕ ZDetA−1, K1 (C
∗
r (ΓT ))

∼= Z⊕ coker(1−A).

The unit of C∗
r (ΓT ) corresponds to 1 ∈ ZDetA−1 ⊆ K0 (C

∗
r (ΓT )).

B) When DetA ∈ {−1, 1}, T is not strongly transitive and C∗
r (ΓT ) is not

simple.
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C) When DetA ≤ −2 the C∗-algebra C∗
r (ΓT ) is isomorphic to C∗

r (ΓφA
), it

is purely infinite and simple with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z2 ⊕ Z|DetA|−1, K1 (C
∗
r (ΓT ))

∼= coker(1 +A).

The unit of C∗
r (ΓT ) corresponds to 1 ∈ Z|DetA|−1 ⊆ K0 (C

∗
r (ΓT )).

Note that it follows from Theorem 4.3 that T is not strongly transitive and
C∗
r (ΓT ) not simple when −1 is an eigenvalue while 1 is not.

Assuming that 1 is an eigenvalue of A we have the following:

D) When DetA ≥ 2 the set of λ’s for which T is strongly transitive
is the dense proper subset of T2 consisting of the elements λ ∈ T2

with the property that the closed group generated by λ and the set{
x−1φA(x) : x ∈ T2

}
is all of T2. The correspondingC∗-algebrasC∗

r (ΓT )
are the same simple and purely infinite C∗-algebra with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z2 ⊕ ZDetA−1, K1 (C
∗
r (ΓT ))

∼= Z⊕ coker(1−A).

The unit of C∗
r (ΓT ) corresponds to 1 ∈ ZDetA−1 ⊆ K0 (C

∗
r (ΓT )).

E) When DetA = 1, the set of λ’s for which T is strongly transitive is a
dense proper subset of T2. For each such λ the C∗-algebra C∗

r (ΓT ) is a
simple unital AH-algebra with no dimension growth, a unique trace state
and real rank zero, cf. Example 5.6 of [LP]. The ordered K-theory groups
depend on λ and are calculated in Example 4.9 of [Ph2].

F) When DetA = −1, T is not strongly transitive and C∗
r (ΓT ) is not simple.

G) When DetA ≤ −2 the set of λ’s for which T is strongly transitive is
the dense proper subset of T2 which consists of the elements λ ∈ T2

with the property that the closed group generated by λ and the set{
x−1φA(x) : x ∈ T2

}
is all of T2. The correspondingC∗-algebrasC∗

r (ΓT )
are the same simple and purely infinite C∗-algebra with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z2 ⊕ Z|DetA|−1, K1 (C
∗
r (ΓT ))

∼= coker(1 +A).

The unit of C∗
r (ΓT ) corresponds to 1 ∈ Z|DetA|−1 ⊆ K0 (C

∗
r (ΓT )).

6.3 The C∗-algebra of a strongly transitive affine surjection on

the three-dimensional torus

We consider now an affine map T : T3 → T3 of the form

Tx = λφA(x) (6.2)

where A ∈M3(Z) and DetA 6= 0.
Assume first that none of the numbers 1,−1,DetA and −DetA are an eigen-
value of A.
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A) When DetA ≥ 2 the C∗-algebra C∗
r (ΓT ) is isomorphic to C∗

r (ΓφA
), it is

purely infinite and simple with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z⊕ ZDetA−1 ⊕ coker(1−A),

K1 (C
∗
r (ΓT ))

∼= Z⊕ coker(1− cof(A)).

The unit of C∗
r (ΓT ) corresponds to 1 ∈ ZDetA−1 ⊆ K0 (C

∗
r (ΓT )).

B) When DetA ∈ {−1, 1}, T is not strongly transitive and C∗
r (ΓT ) is not

simple.

C) When DetA ≤ −2 the C∗-algebra C∗
r (ΓT ) is isomorphic to C∗

r (ΓφA
), it

is purely infinite and simple with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z|DetA|−1 ⊕ coker(1 +A),

K1 (C
∗
r (ΓT ))

∼= Z2 ⊕ coker(1 + cof(A))

The unit of C∗
r (ΓT ) corresponds to 1 ∈ Z|DetA|−1 ⊆ K0 (C

∗
r (ΓT )).

It follows from Theorem 4.3 that T is not strongly transitive when one of the
numbers −1, DetA and −DetA is an eigenvalue of A, but 1 is not, and when
both 1 and −1 are eigenvalues of A. It remains therefore only to consider the
case when 1 is an eigenvalue, but −1 is not.

Assume that 1 is an eigenvalue of A and that −1 is not.

D) When DetA ≥ 2 the set of λ’s for which T is strongly transitive is the
dense proper subset of T3 which consists of λ ∈ T3 with the property that
the closed group generated by λ and the set

{
x−1φA(x) : x ∈ T3

}
is all

of T3. The corresponding C∗-algebras C∗
r (ΓT ) are all the same simple

and purely infinite C∗-algebra with K-theory groups

K0 (C
∗
r (ΓT ))

∼= Z⊕ ker(1− cof(A))⊕ ZDetA−1 ⊕ coker(1−A),

K1 (C
∗
r (ΓT ))

∼= Z⊕ ker(1−A)⊕ coker(1− cof(A)).

The unit of C∗
r (ΓT ) corresponds to 1 ∈ ZDetA−1 ⊆ K0 (C

∗
r (ΓT )).

E) When DetA = 1, T is not strongly transitive unless 1 is the only eigen-
value of A in which case the set of λ’s for which T is strongly tran-
sitive is the dense proper subset of T3 which consists of the λ’s in T3

with the property that the closed group generated by λ and the set{
x−1φA(x) : x ∈ T3

}
is all of T3. With λ in this set, the C∗-algebra

C∗
r (ΓT ) is a unital simple AH-algebra with no dimension growth, a unique

trace state and real rank zero. The ordered K-theory of C∗
r (ΓT ) depends

on λ and is calculated in Subsection 6.4 below.

F) When DetA = −1, T is not strongly transitive and C∗
r (ΓT ) is not simple.
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G) When DetA ≤ −2 the set of λ’s for which T is strongly transitive is the
dense proper subset of T3 which consists of λ ∈ T3 with the property that
the closed group generated by λ and the set

{
x−1φA(x) : x ∈ T3

}
is all

of T3. The corresponding C∗-algebras C∗
r (ΓT ) are all the same simple

and purely infinite C∗-algebra with K-theory groups

K0 (C
∗
r (ΓT ))

∼= ker(1 + cof(A))⊕ Z|DetA|−1 ⊕ coker(1 +A),

K1 (C
∗
r (ΓT ))

∼= Z2 ⊕ coker(1 + cof(A))

The unit of C∗
r (ΓT ) corresponds to 1 ∈ Z|DetA|−1 ⊆ K0 (C

∗
r (ΓT )).

6.4 Minimal affine homeomorphisms of the three-dimensional

torus and their C∗-algebras

In this section we justify the statements made under E) in the preceding section
concerning the C∗-algebras of a minimal affine homeomorphism of T3. As we
shall show the conclusion concerning the structure of the algebras will follow
from results of Lin and Phillips from [LP] once we have calculated the K-
groups and the action of the traces on K0. To do this we use the method of
Phillips from Example 4.9 of [Ph2]. First of all we note that a minimal affine
homeomorphism of a torus is uniquely ergodic with the Haar measure as the
unique invariant Borel probability measure. This follows from Theorem 4 of
[Pa] and it means that there is only a single trace state to consider.

Let A ∈ M3(Z) be a matrix for which 1 is the only eigenvalue and let λ =
(λ1, λ2, λ3) ∈ T3 be an element such that Tx = λφA(x) is minimal. Since 1
is the only eigenvalue of A minimality of T is equivalent to the condition that
the closed group generated by λ and the set

{
x−1φA(x) : x ∈ T3

}
is all of T3.

This follows from Theorem 4.3, but in the present case this is actually a result
of Hoare and Parry, cf. Theorem 4 in [HP].

It follows from Theorem III.12 on page 50 of [N] that there an element W ∈
Gl3(Z) and integers a, b, c ∈ Z such that

WAW−1 =
(

1 a b
0 1 c
0 0 1

)
.

We will therefore assume that A is equal to the matrix on the right-hand side.

Let αT : C(T3) → C(T3) be the automorphism αT (f) = f ◦ T so that C∗
r (ΓT )

is isomorphic to the crossed product C(T3)×αT
Z, cf. Proposition 1.8 of [Ph3].

Let τ be the trace state of C(T3) ×αT
Z induced by the Haar-measure of T3.

Thanks to the unique ergodicity of T this is the only trace state of C(T3)×αT
Z.

We aim to calculate the map

τ∗ : K0

(
C(T3)×αT

Z
)
→ R.

¿From the six-terms exact sequence of Pimsner and Voiculescu, [PV], we con-
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sider the piece

K0(C(T
3))

id−(αT )
∗

−1

K0(C(T
3))

i∗
K0(C

∗
r (ΓT ))

∂

K1

(
C(T3)

)
K1

(
C(T3)

)
id−(αT )

∗

−1

(6.3)

which gives an isomorphism

K0(C
∗
r (ΓT ))

∼= coker
(
id−(αT )∗

−1
)
⊕ ker

(
id−(αT )∗

−1
)
. (6.4)

¿From the calculations in Section 5.3 we deduce that coker
(
id−(αT )∗

−1
)
∼=

Z⊕ coker(1 −A) and

ker
(
id−(αT )∗

−1
)
∼= Z⊕ ker(1− (At)−1). (6.5)

On K0(C(T
3)) all traces induce the map which takes a projection to its rank

and it follows therefore that τ∗ : Z⊕ coker(1−A) → R is the map which picks
up the first coordinate from Z and annihilates coker(1−A).

The first direct summand Z in ker
(
id−(αT )∗

−1
)
is generated, as a subgroup of

K1

(
C(T3)

)
by the image u of [z]⊗[z]⊗[z] ∈ K1 (C(T))⊗K1 (C(T))⊗K1 (C(T))

under the composed map

K1 (C(T))⊗K1 (C(T))⊗K1 (C(T)) → K1 (C(T))⊗K0

(
C(T2)

)
→ K1

(
C(T3)

)

coming from two applications of the Künneth theorem. (Here z denotes the
identity function on T, considered as a unitary in C(T).) It follows from Theo-
rem V. 12 and Theorem VI. 11 in [Ex] that τ∗ takes this generator u, considered
as an element of K0(C

∗
r (ΓT )), to an integer k ∈ Z. By exchanging u − k[1]

for u we can therefore assume that τ∗ annihilates the first Z-summand from

ker
(
id−(αT )∗

−1
)
.

To get a picture of how τ∗ acts on ker(1− (At)−1) observe that

ker(1− (At)−1) =
{
(x1, x2, x3) ∈ Z3 : ax1 = cx2 + (b − ac)x1 = 0

}
.

The identification of ker(1−(At)−1) with a subgroup ofK1(C(T
3)) coming from

(6.5) will be suppressed in the following; it is given by the map (x1, x2, x3) 7→∑3
i=1 xi[ui] where ui ∈ C(T3) is the unitary ui(z1, z2, z3) = zi. Fix a group

embedding Φ0 : ker(1 − (At)−1) → K0(C
∗
r (ΓT )) such that ∂ ◦ Φ0 = id. Write

λj = e2πiαj for some αj ∈ R, j = 1, 2, 3. It follows then from Theorem IX. 11 of
[Ex] that for any element ξ = (x1, x2, x3) of ker(1− (At)−1) there is an integer
kξ such that

τ∗ ◦ Φ0(ξ) = x1α1 + x2α2 + x3α3 + kξ.
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We can therefore change Φ0 on group generators to obtain another embedding
Φ : ker(1 − (At)−1) → K0(C

∗
r (ΓT )) such that Φ0(ξ) − Φ(ξ) ∈ Z[1] for all

ξ ∈ ker(1− (At)−1) and

τ∗ ◦ Φ(x1, x2, x3) =
3∑

j=1

xjαj

for all x1, x2, x3 ∈ ker(1− (At)−1). It follows that there is an isomorphism

Ψ : Z2 ⊕ ker(1 − (At)−1)⊕ coker(1−A) → K0(C
∗
r (ΓT ))

such that τ∗ ◦Ψ(x, y, u, v) = x+η(u), where x, y ∈ Z, u ∈ ker(1− (At)−1), v ∈
coker(1−A), and η : ker(1− (At)−1) → R is given by

η(x1, x2, x3) = x1α1 + x2α2 + x3α3.

In all cases α3 ∈ τ∗ (K0(C
∗
r (ΓT ))). Since λ and

{
x−1φA(x) : x ∈ T3

}
must

generate T3 in order for T to be minimal we see that α3 must be irrational.
It follows therefore from Corollary 5.3 of [LP] that C∗

r (ΓT ) is a unital simple
AH-algebra with no dimension growth, a unique trace state and real rank zero,
as claimed in E) of Section 6.3. Furthermore, it follows from Theorem 4.5 in
[Ph2] that the positive semi-group of K0(C

∗
r (ΓT )) under the isomorphism Ψ

becomes the set

{0} ∪
{
(x, y, u, v) ∈ Z2 ⊕ ker(1 − (At)−1)⊕ coker(1−A) : x+ η(u) > 0

}
.

In this way we have obtained a complete description of K0(C
∗
r (ΓT )) as a par-

tially ordered group. In this picture the order unit coming from the unit in
C∗
r (ΓT ) is (1, 0, 0, 0).

Remark 6.2. When only one of the λi’s are different from 1 the preceding
description of the order on K0 can be obtained from Theorem 7.2 of [Rei]. On
the other hand it follows from the calculation above that in our setting the
range of the trace on K0 can have rank 3 and 4 which is not possible when the
C∗-algebra comes from a Furstenberg transformation.

The difficulties in extending our approach to tori of higher dimensions come
not only from the increasing complexity of the K-theory calculations, but arises
also from the algebraic conditions for strong transitivity described in Theorem
4.3. Already in dimension 4 they become quite complicated, cf. Corollary 3 in
[Kr], and can no longer be described in a simple way in terms of the eigenvalues
for the matrix of the linear part.
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