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INTRODUCTION

An important class of singularities over fields of characteristic zero are the
rational singularities. For example, quotient singularities and log terminal sin-
gularities are rational singularities (see e.g. [KM98]). Over fields with positive
characteristic the situation is more subtle. The definition of rational singulari-
ties requires resolution of singularities which is not yet available in all dimen-
sions. Moreover, quotient singularities are only rational singularities under a
further tameness condition, but in general fail to be rational singularities.
The purpose of this paper is to define a broader class of singularities in positive
characteristic, which we call Witt-rational singularities. The main idea is that
we replace the structure sheaf Ox and the canonical sheaf wx by the Witt
sheaves WOx g and Wwx,g. One important difference is that multiplication
with p is invertible in WOx g and Wwx q. Instead of resolution of singularities
we can use alterations.
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Witt-rational singularities have been first introduced by Blickle and Esnault
[BEO§]. In this paper we use a slightly different and more restrictive definition,
which seems to be more accessible. Conjecturally, our definition agrees with the
one of Blickle-Esnault by using a Grauert-Riemenschneider vanishing theorem
for the Witt canonical sheaf Wwx g. We hope to say more about this in the
future.

0.1. Let k be a perfect field of positive characteristic. We denote by W =
W (k) the ring of Witt vectors and by Ky = Frac(W) the field of fractions. For
a smooth proper k-scheme the crystalline cohomology HC*TyS(X /W) has, by the
work of Bloch and Deligne-Illusie, a natural interpretation as hypercohomology
of the de Rham-Witt complex WQ¥,

Heys(X/W) = HY (X, WQY).

After inverting p, the slope spectral sequence degenerates which yields a de-
composition

H"(X/Ko) = @ H/(X,WQY) @w Ko.

i+j=n

The de Rham-Witt complex is the limit of a pro-complex (W,Q2%)», and for
us W,,0x and Wywyx = WnQ%mX will be most important. The sheaf W,,Ox
is the sheaf of Witt vectors of length n, and defines a scheme structure W, X
on the topological space X. The structure map 7 : X — Spec (k) induces a
morphism W, (7) : W, X — Spec W, (k), but W, (7) is almost never flat. By
the work of Ekedahl (see [Eke84]) W,wx equals W, (7)' W, [~ dim X], hence
Wyhwx is a dualizing sheaf for W, X.
The main technical problem in order to define Witt-rational singularities is to
prove the independence of the chosen alteration. Our approach is to use the
action of algebraic cycles in a similar way as in [CR09]. For this, we have to
extend the work of Gros [Gro85] on the de Rham-Witt complex in Theorem [I]
below.
For a k-scheme S we denote by Cs the category whose objects are S-schemes
which are smooth and quasi-projective over k. For two objects f : X — S
and g : Y — S in Cg, the morphisms Homs(f : X — S,g : Y — S) are
defined by h_ng Z CH(Z), where the limit is taken over all proper correspondences
over S between X and Y, i.e. closed subschemes Z C X xg Y such that the
projection to Y is proper (CH(Z) = @& mZCH;(Z) denotes the Chow group).
The composition of two morphisms is defined using Fulton’s refined intersection
product. The following theorem on the action of proper correspondences on
relative Hodge-Witt cohomology is the main technical tool of the article.

THEOREM 1 (cf. Proposition B54). There is a functor
H(?/S) : Cs — (WOg — modules),
H(f: X = 5/8)=EPR W,
4,J
with the following properties.
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If h : X = Y is an S-morphism between two smooth k-schemes and T C
Y x5 X denotes the transpose of its graph, then H([[']/S) is the natural pull-
back. If in addition h is projective then H([T']/S) is the pushforward defined
by Gros in [Gro85] using Ekedahl’s duality theory [Eke84].

For a morphism o € Home(X/S,Y/S) in Cs, the map H(c/S) is compatible
with Frobenius, Verschiebung and the differential.

0.2. We say that an integral normal k-scheme X is a finite quotient if there
exists a finite and surjective morphism from a smooth k-scheme ¥ — X (e.g.
X =Y/G for some finite group G acting on Y.) We say that a normal integral
scheme X is a topological finite quotient if there exists a finite, surjective and
purely inseparable morphism v : X — X’, where X' is a finite quotient. The
morphism u is in fact a universal homeomorphism. Finally we say that a
morphism f : X — Y between two integral k-schemes is a quasi-resolution
of Y if X is a topologically finite quotient and the morphism f is surjective,
projective, generically finite and purely inseparable. (In characteristic zero
these conditions imply that X is a finite quotient and f is projective and
birational.) By a result of de Jong (see [dJ96], [dJ97]) quasi-resolutions always
exist. When working with Q-coeflicients the notion of quasi-resolutions suffices
to define an analog of rational singularities. This follows from the following
theorem.

THEOREM 2 (Theorem 33)). Let Y be a topological finite quotient and f :
X =Y a quasi-resolution. Then

Rf.WOxq = WOyyg.

If X and Y are smooth and f is birational, this is a direct consequence of
Theorem [[] and the vanishing LemmasB.6.1land B:6.21 Indeed, in CH(X xy X)
the diagonal Ax C X xy X can be written as [I'}] o [['s] + E, where E is a
cycle whose projections to X have at least codimension > 1. Thus E acts as
zero on the WO part and hence [I';] o [I'y] acts as the identity on R f.WOx g,
but it factors over 0 for ¢ > 0; this will prove the theorem in case X and Y is
smooth. Because the Frobenius is invertible when working with Q-coefficients
we can neglect all purely inseparable phenomena. Therefore the main point in
the general case is to realize the higher direct images of R’ f.WOx ¢ (and also
for Y') as certain direct factors in the relative cohomology of smooth schemes,
which is possible since X and Y are topological finite quotients.

0.3. Before explaining our definition of Witt-rational singularities we need to
introduce some notations. If X is a k-scheme of pure dimension d and with
structure map m : X — Speck, then we define the Witt canonical sheaf of
length n by

Wawyx = H™ (W, (7)'W,,).

It follows from the duality theory developed by Ekedahl in [Eke84], that these
sheaves form a projective system Wewyx with Frobenius, Verschiebung and
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Cartier morphisms. Further properties are (the first two are due to Ekedahl,
see [Eke84] and Proposition [L.1.4)
(1) If X is smooth, then Wewx = W.Q‘)l(.
(2) If X is Cohen-Macaulay, then W,wx|[d] = W,(7)'W,, in particular
Whwx is dualizing.
(3) If f : X — Y is a proper morphism between k-schemes of the same
pure dimension, then there is a W,y -linear morphism

f* : f*WowX — W.(UY,

which is compatible with composition and localization.
We define Wwyx := @W.wx.
We say that an integral k-scheme S has Witt-rational singularities (Defini-

tion [44) if for any quasi-resolution f : X — S the following conditions are
satisfied:

(1) f*: W0Osq = f.WOx,g is an isomorphism,

(2) Rif.WOx,q =0, for all i > 1,

(3) Rif.Wwxg =0, for all i > 1.
In case only the first two properties are satisfied we say that S has W O-rational
singularities. Condition (1) is satisfied provided that S is normal.
Our main example for varieties with Witt-rational singularities are topologi-

cally finite quotients, because the vanishing property in Theorem [2] also holds
for Ww.

THEOREM 3 (Corollary EELT). Topological finite quotient have Witt-rational
singularities.

A particular case are normalizations of smooth schemes X in a purely in-
separable finite field extension of the function field of X. More generally, if
u Y — X is a universal homeomorphism between normal schemes then Y
has Witt-rational singularities if and only if X has Witt-rational singularities
(Proposition [Z4.9).

Every scheme with rational singularities has Witt-rational singularities, but
varieties with Witt-rational singularities form a broader class. For example,
finite quotients may fail to be Cohen-Macaulay and thus are in general not
rational singularities.

A different definition of Witt-rational singularities has been introduced by
Blickle and Esnault as follows. Let S be an integral k-scheme and f: X — S
a generically étale alteration with X a smooth k-scheme. We say that S has
BE-Witt-rational singularities if the natural morphism

WOS,Q — Rf* WOXyQ

admits a splitting in the derived category of sheaves of abelian groups on X.
A scheme with Witt-rational singularities in our sense has BE-Witt-rational
singularities (Proposition 24.17T). We conjecture that the converse is also true.
The existence of quasi-resolutions implies the following corollary.
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COROLLARY 1 (Corollary [LATT). Let S be a k-scheme and X and Y two
integral S-schemes. Suppose that there exists a commutative diagram

Z
7TX/ \vry
X Y
AL

with mx and Ty quasi-resolutions. Suppose that X,Y have Witt-rational sin-
gularities. Then we get induced isomorphisms in D*(WOg)

(1) Rf.WOx = Rg.WOyg, RfWuwxg= Rg.Wwy.g.

The isomorphisms are compatible with the action of the Frobenius and the Ver-
schiebung.

If f: X — Sandg:Y — S are quasi-resolutions then the isomorphisms in
(@) are independent of the choice of Z (Corollary E5]). In this way we obtain
natural complexes

WSo,s := Rf -WOx 9, WSdim(s),s := Rf-Wws g,
(Definition 5.2).

0.4. By using the work of Berthelot-Bloch-Esnault Corollary [ yields congru-
ences for the number of rational points over finite fields.

COROLLARY 2 (Corollary 4T6). Let S = Speck be a finite field. Let X and
Y be as in Corollary [, and suppose that X,Y are proper. Then for any finite
field extension k' of k we have

(XKD = Y (E)] mod |K'].

If X,Y are smooth this is a theorem due to Ekedahl [Eke83].

For a normal integral scheme .S with an isolated singularity s € S we can give a
criterion for the W O-rationality of .S, provided that a resolution of singularities
f: X — S exists such that f : f~1(S\{s}) — S\{s} is an isomorphism; we
denote by E := f~!(s) the fibre over s. Then S has WO-rational singularities
if and only if

(2) HY (E,WOgg) =0 foralli>0,

(Corollary L6.4). This implies that a normal surface has W O-rational singu-
larities if and only if the exceptional divisor is a tree of smooth rational curves.
For cones C of smooth projective schemes X, we obtain that C' has W O-rational
singularities if and only if H(X,WOx,g) = 0 for i > 0. We can show that
C has Witt-rational singularities provided that Kodaira vanishing holds for X
(Section 7). We expect that this assumption can be dropped; in general, a
Grauert-Riemenschneider type vanishing theorem for Ww should imply that
W O-rationality is equivalent to Witt-rationality.
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Over a finite field k we use a weight argument to refine the criterion @) if £
is a strict normal crossing divisor. Let E; be the irreducible components of F,
via the restriction maps we obtain for all ¢ > 0 a complex C;(E):

P H(E\,. WOg, o) = P H'(E\NE,, WOE, ap., 0) = -

20 20<?1

deg=0

THEOREM 4 (Theorem [L6.7). Let k be a finite field. In the above situation, S
has W O-rational singularities if and only if

HY(Cy(E)) =0 for all (i,t) # (0,0).

Theorem [ is inspired by the results of Kerz-Saito [Sail0l Theorem 8.2] on the
weight homology of the exceptional divisor.

For morphisms with generically smooth fibre with trivial Chow group of zero
cycles we can show the following vanishing theorem.

THEOREM 5 (Theorem [8T)). Let X be an integral scheme with Witt-rational
singularities. Let f : X — Y be a projective morphism to an integral, normal
and quasi-projective scheme Y. We denote by n the generic point of Y, and
X, denotes the generic fibre of f. Suppose that X, is smooth and for every
field extension L D k(n) the degree map

CHo(Xy) Xpp) L) ®2Q — Q
is an isomorphism. Then, for all i > 0,
R [WOxq = HWSoy), R fWuwxg=H WSdimy)y)-
In particular, if Y has Witt-rational singularities then
RfWOxq=0, R fWwxg=0, foralli>D0.

0.5. For smooth schemes we can show the following result which takes the
torsion into account.

THEOREM 6 (Theorem BITT0). Let S be a k-scheme. Let f : X — S and
g:Y — S be two S-schemes which are integral and smooth over k and have
dimension N. Assume X andY are properly birational over S, i.e. there exists
a closed integral subscheme Z C X xgY, such that the projections Z — X and
Z —'Y are proper and birational. There are isomorphisms in D®(S, W (k)):

Rf.WOx = Rg, WOy, Rf.WOX = RgWQY.

Taking cohomology we obtain isomorphisms of WQOg-modules which are com-
patible with Frobenius and Verschiebung:

R fWOx = R'g. WOy, RfWOX=RgWQY, foralli>Do.

If X and Y are tame finite quotients and there exists a proper and birational
morphism & : X — Y then a similar statement holds (see Theorem [B.T.13).
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If X and Y are two smooth and proper k-schemes, which are birational and of
pure dimension N. Then we obtain isomorphisms of W (k)[F, V]-modules

HY(X,WOx) = H(Y,WOy), H'(X,WQY)=H(Y,WQy), foralli>D0.

Modulo torsion the statement for WO is a theorem due to Ekedahl (see
|[Eke83)).

0.6. We give a brief overview of the content of each section. In Section 1
we introduce the category dRW x of de Rham-Witt systems on a k-scheme X.
In the language of Ekedahl [Eke84] an object in dRW x is both, a direct and
an inverse de Rham-Witt system at the same time. Furthermore, we intro-
duce the derived pushforward, derived cohomology with supports and R I&n on

DP(dRWx). We recall the definition of Witt-dualizing systems from [Eke84]
in [[.6l and some facts about residual complexes in [[.7. In particular, we ob-
serve that if f : X — Y is a morphism between k-schemes, which is proper
along a family of supports ® on X, then for any residual complex K on Y the
trace morphism f, fAK — K, which always exists as a map of graded sheaves,
induces a morphism of complexes f,I'sf2K — K. In we show that for
any m : X — Speck the residual complexes W, m2W, (k) form a projective
system Kx, which is term-wise a Witt-dualizing system. In we define the
functor Dx = Hom(—, Kx) on D(dRW x ¢¢)°. (It is only defined on complexes
of quasi-coherent de Rham-Witt systems.) In we recall the results of
Ekedahl in the smooth case relating Kx to WoQ&m X and in [T we calculate
the trace morphism for a regular closed immersion. A similar description is
given in [Gro85], but it refers to work in progress by Ekedahl, which we could
not find in the literature, therefore we give another argument.

In Section 2 we introduce relative Hodge-Witt cohomology with supports on
smooth and quasi-projective k-schemes, which are defined over some base
scheme S. We define a pullback for arbitrary morphisms and using the trace
map from Section 1 also a pushforward for morphisms which are proper along
a family of supports. Then in 2.4 we give an explicit description of the push-
forward in the case of a regular closed immersion and also for the projection
P% — X, where X is a smooth scheme X. From this description we deduce
the expected compatibility between pushforward and pullback with respect to
maps in a certain cartesian diagram.

In Section 3 we collect and prove the remaining facts, which we need to show
that (X, ®) — &, ;HL(X, WQ%) is a weak cohomology theory with supports
in the sense of [CR09]. In particular, we need the cycle class constructed by
Gros in [Gro85]. ;From this we deduce Theorem [l above. In [3.6] we prove the
two vanishing Lemmas, which give a criterion for certain correspondences to
act as zero on certain parts of the Hodge-Witt cohomology. In[3.7 we introduce
the notation dRW x @, which is the Q-linearization of dRWx. In general, for
M € dRW x the notation Mg means the image of M in dRWx g (which is not
the same as M ®@z Q).
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In Section 4 we introduce the Witt canonical system Wewx for a pure-
dimensional k-scheme X and prove some of its properties. Moreover we show
in that the cohomology of WO and Ww for a topological finite quotient is
a direct summand of the Hodge-Witt cohomology of a certain smooth scheme.
Then we prove Theorem [2] and define Witt rational singularities. It follows
some elaboration on this notion, in particular the Theorems [3] 4]

Finally in Section 5 we prove some results on torsion, as in Theorem[Gl In order
to do this, we show that a correspondence actually gives rise to a morphism in
the derived category of modules over the Cartier-Dieudonné-Raynaud ring and
then use Ekedahl’s Nakayama Lemma to deduce the statement from [CR09).
We advise the reader who is mostly interested in the geometric application
to start for a first time reading with Section 1] and to get some basic
notations and then jump directly to Section 4.

0.7. NOTATION AND GENERAL CONVENTIONS. We are working over a perfect
ground field k of characteristic p > 0. We denote by W,, = W, (k) the ring of
Witt vectors of length n over k and by W = W (k) the ring of infinite Witt
vectors. By a k-scheme we always mean a scheme X, which is separated and
of finite type over k. If X and Y are k-schemes, then a morphism X — Y is
always assumed to be a k-morphism.

1. DE RHAM-WITT SYSTEMS AFTER EKEDAHL

1.1. WITT SCHEMES. For the following facts see e.g. [II79] 0.1.5], [LZ04], Ap-
pendix A]. Let X be a k-scheme. For n > 1, we denote

W,X = (|X|],W,0x) = Spec W,,Ox,

where W, Ox is the sheaf of rings of Witt vectors of length n. This construction
yields a functor from the category of k-schemes to the category of separated,
finite type W,,-schemes. If f: X — Y is a separated (resp. finite type, proper
or étale) morphism of k-schemes, then W, f : W,, X — W, Y is a separated
(resp. finite type, proper or étale) morphism of W,-schemes. If f is an open
(resp. closed) immersion, so is W, f. We denote by i, : W,,_1 X — W, X
(or sometimes by ip,x) the nilimmersion induced by the restriction W,,Ox —
W,—10x. We will write 7 : W,,Ox — i, W,,_1Ox instead of i},. The absolute
Frobenius on X is denoted by Fx : X — X. The morphism W,,(Fx) : W, X —
W, X is finite for all n. With this notation the Frobenius and Verschiebung
morphisms on the Witt vectors become morphisms of W,, O x-modules

F=W,(Fx) om: W,Ox = (Wyp(Fx)in)«Wn_10x,
V. (Wh(Fx)in)«Wn-10x — W, Ox.
Further “lift and multiply by p ” induces a morphism of W, Ox-modules
p: InsWn-10x — W, Ox.
If f: X — Y is a morphism of k-schemes, then we have W, (f)in x =
inyWa_1(f) and W, (/)W (Fx) = Wa(Fy)W,(f). If f : X — Y is étale,
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then the following diagrams are cartesian:

(1.1.1) Wy X W, X w, xSy x
wnlfl anf anl le,f
in Wy (Fy)
W, Y ey, W,y =Xy,

1.2. DE RHAM-WITT SYSTEMS.

DEFINITION 1.2.1. For an integer n > 1 we denote by C,, the category of Z-
graded W,,Ox-modules on X. We define

CN = H Cn.

nezZ,n>1

For an object M € Cy and n > 1 we denote by M,, the n-th component. An
object M in Cy is (quasi-)coherent, if all M, are (quasi-)coherent W, (Ox)-
modules. We denote by Cngqc (resp. Cnc) the full subcategory of (quasi-
)Jcoherent objects of Cy. There are two natural endo-functors:

Ty : CN — CN
. in*Mn—l lf n > 17
M), =

(i 2M)n {0 ifn =1,
0:Cy — Cn

(0x M)y := Wy (Fx)« M,

The two functors commute
(1.2.1) Oxly = 140,
since Wy (Fx ) wins = insWhn—1(Fx )«
We will also need the following functor:

DIM CN — CN

(M), := Wy (Fx)y M,.

We have the equalities
(1.2.2) Oxls Dy = Dglu,  Ox Dy = 2yOx.

Furthermore, since the components of M € Cy are Z-graded we can define for
all ¢ € Z the shift functor

(1.2.3) M(3)y = Mp(0).
The shift functor commutes in an obvious way with ., 0., Xx.

DEFINITION 1.2.2. A graded Witt system (M, F,V,7,p) on X is an object M
in Cy equipped with morphisms in Cy:

F:-M—-oua.M, Vo.M — M, 7:M-—i,M, Q:i*M—>M,
such that
(a) V o F is multiplication with p,
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)
(c) oxin(m)o F =i (F)om,
(d) moV =i (Voou(m)),

) ix(0x(p) o F) = Fop,

) Voouii(p) =poi.(V),

(g) ix(pom) =mop.

Graded Witt systems form in the obvious way a category which we denote by
Wx. It is straightforward to check that W is abelian.

We have an obvious forgetful functor Wx — Cn. We say that (M, F,V,,p) is
(quasi-)coherent if M, is (quasi-)coherent for every n.

Remark 1.2.3. One should memorise (c) as “mro F = Forn”, (d) as “moV =
Vor”, (e)as “poF = Fop”, (f)as “Vop=poV”, and (g) as “pom =mwop”.

DEFINITION 1.2.4. A de Rham-Witt system (M,d) is a graded Witt system M
together with a morphism in Wix:
d:¥.M— X, M),

such that the following conditions are satisfied:

(a) XuF(1)odo X,V = 02i.d (we used [22),

(b) Tum(1) od = 0y4ind o Xy(m) (we used [CZ2),

(c) do E*(]_)) = E(g) o 04i.d (again, we used [[2.2]).

(d) d(1)od=0.
De Rham Witt systems form in the obvious way a category which we de-
note by dRWx. We say that a de Rham-Witt system is (quasi-)coherent
if the underlying graded Witt system is. We denote the category of (quasi-
)coherent de Rham-Witt systems by dRW x qc (resp. dRWx ). It is straight-
forward to check that dRWx, dRWx o and dRWx . are abelian. We denote
by DT (dRWx), DT (dRWx ) and DT (dRWx ) the corresponding derived
categories of bounded below complexes.

Remark 1.2.5. One should memorise (a) as “FodoV = d”, (b) as “rod = don”,
and (c) as “dop=pod”.
DEFINITION 1.2.6. A de Rham-Witt module (M, F,V,d) is a graded WOx-
module M together with morphisms of WO x-modules

F:M— W(Fx)M, V:W(Fx).M-—M
and a morphism of W (k)-modules

d: M — M(1)

such that

(a) F oV is multiplication with p,
(b) V o F' is multiplication with p,
(¢) FodoV =d,

(d) d(1)od =0.
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De Rham-Witt modules form in the obvious way a category which we denote
by dRWx. It is straightforward to check that dRW x is abelian. We denote

by D*(cﬁ{\\V x) the derived category of bounded below complexes of de Rham-
Witt modules.

EXAMPLE 1.2.7. Let X be a k-scheme

(1) The sheaves of Witt vectors of finite length on X define a coherent
graded Witt system

W.OX = ({WnOX}nZIaﬂvFvuﬂ)a

which is concentrated in degree 0. If X = Speck, we simply write W,
instead of Wek.

(2) The de Rham Witt complex of Bloch-Deligne-Illusie W, x is a coher-
ent de Rham-Witt system (see [[II79]) and WQx = m W,y is a de
Rham-Witt module.

(3) Let M be a de Rham-Witt system on X and ¢ € Z. Then we define

M(i) := ({My()}n>1, 71, Far, Vir, (1), p, ) € dRW .

1.3. DIRECT IMAGE, INVERSE IMAGE AND INVERSE LIMIT.

1.3.1. Let f: X — Y be a morphism between k-schemes. We get an induced
functor

feiCnx = Cny, (Mp) = (Wi(f)«My,)

which commutes in the obvious way with i,, 0, X.. We thus obtain a functor

fr : dBWx — dRWy.

1.3.2. Let f: X — Y be an étale morphism between k-schemes. We get an
induced functor
f* 5CN,Y — CN,X, (Mn) — (Wn(f)*Mn)
which by (CI) commutes with 4,0, X.. We thus obtain a functor
f*:dRWy — dRWx.

1.3.3. Let (M, F,V,7n,p,d) be a de Rham Witt system. Then (M,n) forms
naturally a projective system of WOx-modules, F' and V' induce morphisms
of projective systems of WOx-modules F': (M, 7) — (W (Fx)«M, W (Fx).),

V:(W(Fx).M,W(Fx).m) — (M,n) and induces a morphism of projective
systems of W (k)-modules d : (M, 7) — (M(1),7(1)). We thus obtain a functor

Jim : dRW x — dRWy.
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1.4. GLOBAL SECTIONS WITH SUPPORT.

DEFINITION 1.4.1. A family of supports ® on X is a non-empty set of closed
subsets of X such that the following holds:

(i) The union of two elements in ® is contained in P.
(ii) Every closed subset of an element in ® is contained in ®.

Let A be any set of closed subsets of X. The smallest family of supports ® 4
which contains A is given by

1.4.1 by = VARA Z; € A},
(14.1) A {i=U1 2 C Zi€ A}

For a closed subset Z C X we write ®z for ®(z.

NoTATION 1.4.2. Let f : X — Y be a morphism of schemes and ¢ resp. ¥ a
family of supports of X resp. Y.

(1) We denote by f~1(¥) the smallest family of supports on X which
contains {f~1(Z); Z € ¥}.

(2) We say that f | ® is proper if f | Z is proper for every Z € ®. If f |
is proper then f(®) is a family of supports on Y.

(3) If @y, Py are two families of supports then &1 NP5 is a family of sup-
ports.

(4) If @ resp. ¥ is a family of supports of X resp. Y then we denote
by ® x ¥ the smallest family of supports on X X Y which contains
{Z1 x Zs;Z1 € ,Z5 € U}

1.4.3. Let ® be a family of supports on X. We consider the sections-with-
support-in-® functor (see e.g. [Har66, IV, §1])

Ly :Cnx = Cnx,  (My) = (Lg(Mn)).
Since 'y commutes in the obvious way with i,, 0, X, we obtain
I's :dRWx — dRWx.

For a closed subset Z C X we also write ', instead of L'y, , -
If f: X —Y is a morphism and ¥ a family of supports on Y, then

(1.4.2) Ly fe= filf-100)-

If f: X — Y is a morphism and & is a family of supports on X, then we define
(1.4.3) fo = fiolgs: dRWx — dRWy,

(1.4.4) fo =1limofe : dARWx — dRWy.

Notice that if ® = &z, with Z a closed subset of X, then

(1.4.5) fo, = f.oTa, olim.

This relation does not hold for arbitrary families of support on X.
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1.5. DERIVED FUNCTORS.

LEMMA 1.5.1. Let (X,Ox) be a ringed space and E = (E,,) a projective system
of Ox-modules (indexed by integers n > 1). Let B be a basis of the topology of
X. We consider the following two conditions:
a) For allU € B, H(U,E,) =0 for all i,n > 1.
b) For all U € B, the projective system (H(U,E,))n>1 satisfies the
Mittag-Leffler condition.
Then
(1) If E satisfies condition a), then R' ILnn E, =0, for alli > 2.
(2) If E satisfies the conditions a) and b), then R' ]&nn E, =0, for all
i>1,4e Eis ]'ﬂl-acyclic.

Proof. 1t is a basic fact that there are sufficiently many injective O x-modules.
Notice that a projective system of Ox-modules I = (I,) is injective if and only
if each I, is an injective Ox-module and the transition maps I,11 — I, are
split surjective. (The “if” direction is easy, as well as I injective implies each I,
is injective. If I is injective, let J be the projective system with J,, = I;&.. .81,
and projections as transition maps. We have an obvious inclusion of projective
systems I — J, hence a surjection Hom(J,I) — Hom(I,I). Now a lift of the
identity on I together with the split surjectivity of the transition maps of J
gives the splitting of the transition maps of I.)

Now let E — I® be an injective resolution (which always exist). The transition
maps of the projective system (of abelian groups) (I'(U, 1)), are surjective
(since split) for all ¢ > 0 and all open subsets U C X. Hence they satisfy the
Mittag-Leffler condition and are lim-acyclic.

On the other hand, 1im I? is an injective Ox-module for every ¢. Indeed,
since the transition maps I? 11 — I are surjective and split, we may write
IT >~ @ | I] for I/ = ker(I] — I ;). The Ox-modules I/, are injective for all
n, and the transition maps

n+1/ q q ~ n /
gl S Ii=er 1

are the obvious projections. Thus lim [ = [L;>1 1), is injective.
By using m o'y =Tyo m we obtain a spectral sequence

R'im H’(U, E,) = H™ (U, Rlim E,),

where R@ e~ %_n * If U € B, condition a) implies R’ hmH (U, E,) =

HY(U,RlImE,) = H’(@I'(U)) We know that R’mHO(U E,) is zero for

(—
all i > 2 (see e.g. [Weil, Cor. 3.5.4]) and - in case condition b) is satisfied - also

for all 4 > 1. Now the assertion follows from

lim H%U,R@En): lim H’(LI' qu_E

UeB,Usz veB,Usx

for all z € X. O

DOCUMENTA MATHEMATICA 17 (2012) 663-781



HoDGE-WITT COHOMOLOGY ... 677

LEMMA 1.5.2. Let A be a sheaf of abelian groups on a noetherian topological
space X . If A is flasque, so is T (A) for all families of supports ® on X.

Proof. Let Y and Z be two closed subsets of X. Since I';(I) is injective if I is
([SGA2| Exp. I, Cor. 1.4]), there exists a spectral sequence H{ (X, H%,(4)) =
H;'—twjz (X, A). Now assume A is flasque, then H%(A) = 0 for j # 0. In particular
Hy(X,L;(A)) = Hy~,(X,A) = 0. Thus [ ,(A) is flasque. The space X is
noetherian and therefore I'y (A) =lim _ I'(A) is also flasque. O

DEFINITION 1.5.3. We say that a de Rham-Witt system M on a k-scheme X
is flasque, if for all n

0= K, > M, M,_1—0

is an exact sequence of flasque abelian sheaves on X, where K, = Ker(r :
M, — Mn—l)-

LEMMA 1.5.4. Let X be a k-scheme.

(1) Let 0 > M" — M — M"” — 0 be a short exact sequence of de Rham-
Witt systems on X and assume that M’ is flasque. Then M is flasque
iff M is.

(2) Let © be a family of supports on X. Then Ly restricts to an exact
endo-functor on the full subcategory of flasque de Rham-Witt systems.

(3) Let f: X =Y be a morphism. Then f. restricts to an exact functor
between the full subcategories of flasque de Rham-Witt systems on X
and Y . -

(4) The functor lim : dRWx — dRW x restricts to an exact functor from
the full subcategory of flasque de Rham-Witt systems to the full subcat-
egory of flasque de Rham-Witt modules (i.e. de Rham-Witt modules,
which are flasque as abelian sheaves on X ).

Proof. The proof of (1) is straightforward. (2) follows from Lemma (3)
is clear. Finally (4). It follows directly from the definition, that the transition
maps on the sections over any open U C X of a flasque de Rham-Witt systems
are surjective. The exactness of I&n on the category of flasque de Rham-Witt
systems, thus follows from Lemma [[L51] (2). Now let M be a flasque de
Rham-Witt system. It remains to show that lim M is flasque again. For this
let U C X be open and define L,, = Ker(I'(X, M,,) — I'(U, M,,)). Thus we
have an exact sequence

(1.5.1) Im (X, M) — ImT(U, M) — Rll'&nLn.
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Consider the following diagram:

0
|
'X,K,) ——TI(U,K,) —=0

!

0—L,——T(X,M,)——T(U,M,) —=0

e

0 - Lnfl - F(Xa

- O

}
n-1) —=T(U, Mp_1) —0
}
0.

All rows and columns are exact, since M is flasque. Now it follows from an
easy diagram chase that a is surjective. Therefore R! @n L, = 0 and the
flasqueness of lim M follows from 0. O

§<—

O =<—

LEMMA 1.5.5. The categories dRW x and cﬁ{\\VX have enough flasque objects,
i.e. any M in dRWx (or in dRWx ) admits an injection into a flasque object.

Proof. For the de Rham-Witt modules this is just the usual Godement con-
struction. For the de Rham-Witt systems this has to be refined as follows: Let
M be a de Rham-Witt system. Denote by G(M,,) the W,,Ox-module given by

G(M,)(U) = H M, -, U C X open,
zeU
with the restriction maps given by projection. These sheaves fit together to
form a de Rham-Witt system G(M) = {G(M,)}n>1, such that the natural
map M — G(M) is a morphism of de Rham-Witt systems.

For m < n we denote by im, n : Wy, X — W, X the closed immersion induced
by the restriction W,,Ox — W,,,Ox, in particular i,,—1 , = i,. We set

én(M) = ’L'l,n*G(Ml) D...D in—l,n*G(Mn—l) (&) G(Mn)
~n(M) is a graded W,,Ox-module. We define W,, O x-linear maps 7, F,

Then G
d, V, p, as follows
7 Gy = G, (m1,...,mn) — (M1,...,mMp_1),
F:Gn = (Wr(Fx)in)« G 1, (mi,...,mn) — (Fma,..., Fmy,),
d: Wr(F¥)« Gn — W (F ) G (1), (mi,...,mpn)— (dmi,...,dms),
V. (W (Fx)ln) G —1 — Gn, (ml,...,mn 1) (0 ley,,,7an71)7
P ins +Gno1 — G, (m1,...,mp-1) = (0,pma,...,pMn—1).

It is straightforward to check that G(M) = ({Gn(M)}n>1,7, F,d, V,p) be-
comes a de Rham-Witt system and it is flasque by its definition. Also, the
inclusion M — G(M) induces an inclusion

M, — Gn.(M), mw— (x" " (m),...,7(m),m).
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By definition this yields an inclusion of de Rham-Witt systems M — G(M)
and we are done. g

ProproSITION 1.5.6. Let f: X — Y be a morphism between k-schemes and ®
a family of supports on X. Then the right derived functors

Rlg : DT (ARWx) — DT (dRWy),
Rf.: D" (dRWx) — DT (dRWy),
Rlim : D¥(dRWx) — D* (dRW x)
Rfgs : DY (ARWx) — DT (dRWy),
Rfs : DY (dRWy) — D+ (dRWy),
exist. Furthermore there are the following natural isomorphisms:
(1) Let f : X =Y and g: Y — Z morphisms, then Rg.Rf. = R(go f)«.
(2) Let @ and U be two families of supports on X, then RL4RLy =
Rlgny -
(3) Let f: X = Y be a morphism and U a family of supports on'Y, then
RDyRf, = Rf.RL ;-1 ).
(4) Let f : X =Y be a morphism, then R@Rf* = Rf*R@.
(5) Let f: X =Y be a morphism and ® a family of supports on X. Then
Rfs = Rf.RLl'y and Rfs = R@R‘f‘p. If Z is a closed subset of X
md@:@btmnmmRﬁZ:Rﬁm;R@g

Proof. The existence follows from [Har66l I, Cor. 5.3, 8] (take P there to be the
flasque objects) together with the Lemmas and [[L54l The compatibility
isomorphisms follow from [Har66) I, Cor 5.5] and Lemma [[L5:4] (2)-(4). a

Remark 1.5.7. Let f : X — Y be an étale morphism between k-schemes. Then
W, (f) is étale and thus W, (f)* is exact on the category of W, (Oy )-modules.
Therefore f*: dRWy — dRWx is exact and thus extends to

f*: DT (dRWy) — DT (dRWx).
In case j : U < X is an open immersion we write M|y instead of j*M for

M € D*(dRWy).

1.5.8. Cousin-complex for de Rham-Witt systems. Let X be a k-scheme and
Z*® the codimension filtration of X, i.e. Z? is the family of supports on X
consisting of all closed subsets of X whose codimension is at least q. Let M
be a de Rham-Witt system on X. Take a complex of flasque de Rham-Witt
systems G on X, which is a resolution of M, i.e. there is a quasi-isomorphism
M]I0] — G. The filtration of complexes of de Rham-Witt systems

GOILu(G)D...DL,(G)D...
defines a spectral sequence of de Rham-Witt systems

B = 1y (M) = 1 (M),
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where we put Hizt]/'ZHl(M) = H"(L,:(G)/L4i+1(G)). We define the Cousin
complex of M (with respect to the codimension filtration) E(M) to be the
complex Ej -0 coming from this spectral sequence, i.e. it is the complex of de
Rham-Witt systems
400 a0 ) qi0
E(M) : Hyo 70 (M) == Hiy1yzo(M) == ... = Hiyi jzi01 (M) = ...
It satisfies the following properties:

(1) (E(M)), = E(M,,) is the usual Cousin complex associated to M, (see
e.g. [Har66l, IV, §2] or [Con00, p. 107-109]).

(2)
BA(M) = Hye s (M) = @) i L),
e X (1)
where H: (M) = (ling,,_ H%HU(U, M,,))n, which is a de Rham-Witt

system on Spec Ox , supported in the closed point z, i, : Spec Ox , —
X is the natural map and X () is the set of points = of codimension i
in X (ie. dimOx , =1).
(3) The natural augmentation M — E(M) is a resolution of M if and only

if Hi(M,) =0 for all z € XU) with j # i and for all n > 1.

((1) holds since each G,, is a flasque resolution of M,; (2) follows from (1) and

[Har66l IV, §1, Var. 8, Motif F]; (3) follows from (1) and [Har66, IV, Prop.

2.6, (iii)<=(iv)] and [Har66l IV, §1, Var. 8, Motif F].)

LEMMA 1.5.9. Let X be a smooth k-scheme. Then E(W,x) is a flasque
resolution of quasi-coherent de Rham-Witt systems of the coherent de Rham-
Witt system WeSdx .

Proof. By [I79, I, Cor. 3.9] the graded pieces of the standard filtration on
Wan( are extensions of locally free Ox-modules. Thus

1.5.2 H!(W,Q%) =0 forallze XY, with j+#4, and all ¢,n > 1.
x X

Thus E(W,Qx) is a quasi-coherent resolution of WeQx. Next we claim, that
the transition morphisms

(1.5.3) Hy(Wa Q%) = Hy(Wn1 Q%)

are surjective for all z € X® and n > 2. Indeed, for 2 € X we can always
find an open affine neighborhood U = Spec A of x and sections t1,...,t; such
that {x}NU =V (t1,...,t;). This also implies for all n > 1, W,,({z}) "W, U =
V([t1], .., [t:]) € W,U, where [t] € W, A is the Teichmiiller lift of ¢ € A. Then
by [SGA2 Exp. II, Prop. 5]

i o (U, W)
Hignu (U Wallx) = i e 0 T R0, Wi )

In particular the transition maps (L53) are surjective. If we denote the kernel
of the restriction morphism W, Qx — W,,_1Qx by K, then this and ([L5:2)
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implies, that the sequence
0— E'"(K,) = E'(W,Qx) = E'(W,_1Qx) = 0

is an exact sequence of flasque abelian sheaves on X and this proves the lemma.
|

1.6. WITT-DUALIZING SYSTEMS.

1.6.1. Let f : X — Y be a finite morphism between two finite dimensional
noetherian schemes. Using the notation from [Har66, III, §6] we denote by
f?: D*(Oy) — D*(Ox), the functor which sends a complex C to

2(C) = f ' RHomo, (f:0x,C) @s-17.0, Ox.

Evaluation by 1 induces the finite trace morphism on D (Oy) (see [Har66, III,
Prop. 6.5])

(1.6.1) Tof : fof” = idps 0y

and composition with the natural map

(1.6.2) ef : foRHomx (=, —) = RHomy (f.(—), f+(—))
induces an isomorphism for any A € D (Ox), B € D}.(Oy)

(1.6.3) 05 = Trf; o e : fuRHomy (A, f*B) = RHomy (f. A, B).

In particular, we see that for any morphism ¢ : fA — B in Dy (Oy) , with A
bounded above and B bounded below there exists a morphism *p : A — f°B
in Dqc(Ox), such that ¢ equals the composition

foAlle y pp i p
We call ¢ the adjoint of .
1.6.2. Let X be a k-scheme and denote by D(Cnx) = [[,51 D(Cn,x) the
derived category of Cy. Since the morphisms 4, and W,,(Fx) are finite for all
n, the functors i, 0., X, are exact and extend to functors on D(Cy), which

still satisfy the identities (LZT), (L22). On D{,.(Cx) we define i*, o”, 3" as
follows:

(I"M)y == M1, (0" M)y = Wy (Fx)" M, (X°M), = W, (F%)' M,

There is an obvious way to define Trf;, Trf,, Trfy, €;, €5, €x such that the
compositions

i, RHom(M,i* N) < RHom(i, M, i,i’ N) - RHom(i, M, N),

o RHom(M, 0" N) <% RHom(o, M, 0,0"N) 222 RHom(a, M, N),
Trfs

Y. RHom(M, ¥’ N) = RHom(3, M, £, 5" N) —2 RHom(%, M, N)
are isomorphisms for M € D_(Cx) and N € D (Cn).
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DEFINITION 1.6.3 (|[Eke84) III, Def. 2.2]). A Witt quasi-dualizing system on X
is a collection (@, p,C, V) where @ is an object in Cy,qc and
pri@Q—Q, C:3.0—0Q, V:0:,.Q—Q

are morphisms in Cy such that the following holds:

(a) Voo.inC = CoX,p,

(b) poiV =V oo.i.p.
A Witt dualizing system is a Witt quasi-dualizing system, which has the addi-
tional property, that the adjoints
(1.6.4) Q= i'Q, C:QSYXQ, V:Qid’Q

are quasi-isomorphisms.
A morphism ¢ between Witt (quasi-) dualizing systems is a morphism in Cy
commuting with p, V, and C.

A Witt (quasi-) dualizing system (Q,p,C, V) on X is called coherent if Q,, is
coherent for all n > 1.

EXAMPLE 1.6.4. (1) The system
Wew i= (Wbt pr C = {Wa(Fspecr) ™}, V i= {Wo (Fspecr)~'p})

is a Witt dualizing system on Spec k, where p is the usual map “lift and
multiply by p”, which is concentrated degree 0. For this, first notice
that W, is an injective W,-module for all n > 1. Then one easily
checks that the following maps are isomorphisms and adjoint to p, C
and V respectively: -

We = "We = Homy, (i.We, W), a > (b pab),

We = W, = Homw, (Z.W), Ws), a s (b Cab),

We = i°0" Wy = Homw, (040, We, Ws), a— (b Vab).
(2) Let X be a smooth k-scheme of pure dimension N. Then

W.CUX = ({WnQ%}nZI; Ba Ca V)

is a Witt dualizing system which by definition is concentrated in degree
N. Here p is “lift and multiply by p” and V' is the Verschiebung. On
the n-th level C' is defined as the composition:

O (SN, = (B W QY /d(Wa Q1)) S w 0¥,

where C~" : W, QY = W, (F2).W,, QY /d(W, Q% ~1) is the inverse
Cartier isomorphism from [[R83] III, Prop. (1.4).]. One easily checks
that p, C™ and V satisfy the relations (a), (b) in Definition (LE.3). The
condition on the adjoints (LG4 is harder and follows from Ekedahl’s
result W, Q¥ = W, (f)'W,, with f : X — Speck the structure map,
see [Eke84| T and II, Ex. 2.2.1.]. Notice that Wewspecr = Wew.
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1.6.5. Let (Q,p,C,V) be a Witt dualizing system on X. We may express the
equalities in (L6.4) as

H(“¢): Q = H(f°Q) and H°(f'Q)[0] = f°Q,
where (f,¢) € {(i,p),(0,V),(¥,C)}. Therefore by the definition of the ad-
joints, p, C"and V factor as follows:

~ HO“® O (Trf,
piiQ s L HYPQ) T Q,
~ 0(a 0Ty
C:32.Q 25D v, mo(rQ) L @,
~ O/ra 0 o
V:0.1.Q L(V)> U*i*HO(ibabQ) w) Q.

Furthermore it follows from [[L6.2], that the natural transformations
poe; :ivHome, ((—), Q) — Home, (ix(—), Q),
Coey: X Home, ((—), Q) = Home, (X.(—), Q),
V o€yt osisHome, ((—), Q) = Home, (04i(—), Q)
are isomorphisms when restricted to the category Cy qc.
1.6.6. Let M be a quasi-coherent de Rham-Witt system and @ a Witt du-

alizing system on X. Then we may define maps w, F', V, d and p on
Home,, (M, Q) € Cy as follows:

7 Hom(M, Q) BN Hom(i M, Q) % ixHom(M, Q),

F : Hom(M, Q) v, Hom(o.ix M, Q) Vo), ot Hom(M, Q),

L2, Hom(owin M, Q) <5 Hom(M, Q),

p i Hom(M, Q) LN Hom(i, M, Q) =5 Hom(M, Q),

Vo Hom(M, Q)

d: X Hom(M,Q) (Coem), Hom(X. M, Q) o, Hom(X. M(-1),Q)

=22 Ao (2.0, Q)(1) L2 L. Hom(M. Q)(1),

where the isomorphism o : Hom(X,M(—1),Q) = Hom(X,M,Q)(1) is given

by multiplication with (—1)?*! in degree q.

PROPOSITION 1.6.7 ([Eke84l ITI, 2.]). The above construction yields a functor
Hom(—, Q) : (ARWx 4.)° — dRWx,

which has the following properties

(1) A morphism of Witt dualizing systems Q — Q' induces a natural trans-
formation of functors Hom(—, Q) — Hom(—,Q’).

(2) The functor Hom(—, Q) restricts to a functor (ARW x ¢)° — dRWx 4c
and if Q is coherent, then also to (ARWx ¢)® — dRW x ..
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(3) For all M € dRWx o and all m € Z there is a natural isomorphism

HOHI(M(’ITL), Q) = HOHI(M, Q)(_m)a
giwen by multiplication with (—1)9™F == degree q and a natural
isomorphism

Hom(M, Q(m)) ~ Hom(M, Q)(m)

given by the identity in each degree. (There is some freedom in defining
these isomorphisms; our choice is compatible with the sign convention
for complexes in [Con00].)

Proof. Tt is straightforward to check the relations in Definition [[.2.4 a

1.7. RESIDUAL COMPLEXES AND TRACES. In this section A will always be a
regular local ring, all schemes are of finite type over A and all morphisms will
be A-morphisms. The results of this section will be applied in the next sections
in the case A = W and schemes of finite type over W,,, some n.

1.7.1. Review of residual complexes. The general references for residual com-
plexes are [Har66, VI], [Con00, 3.2]. Let X be an A-scheme. A residual complex
on X is a bounded complex K of quasi-coherent and injective Ox-modules,
which has coherent cohomology and such that there exists an isomorphism of
Ox-modules @qez K9 = @, x izsd(x), where i, : SpecOx, < X is the
inclusion and J(x) is an injective hull of k(z) in Ox , (i.e. it is an injective
Ox z-module which contains k(x) and such that, for any 0 # a € J(x) ex-
ists a b € Ox , with 0 # ba € k(x)). It follows that ig..J(z) is supported in
{x}. The codimension function on X associated to K is the unique function
dic : | X[ = Z such that K = @, _, ()=, s/ (2) for all g. If 2o is an imme-

diate specialization of x € X (i.e. z is a point of codimension 1 in {z}), then
d(x0) = dgc(x) + 1. The filtration ... C ZL C ZL ' C ... C X associated to
K is defined by Z% := {z € X |dk(z) > ¢q}. On each irreducible component
of X this filtration equals the shifted codimension filtration.

If R € D%(X) is a dualizing complex with associated codimension filtration
Z* (see [Con00l 3.1] for these notions), then the Cousin complex Ezs(R) of
R with respect to Z* is a residual complex with associated filtration also Z°.
In DY(X) we have R = Ez.(R) (since a dualizing complex is Gorenstein).
Particular examples of dualizing complexes are W,, on X = Spec W,,, Ox[0] in
case X is regular, wx[N] = Q%/A [N] in case X is smooth of pure dimension N

and more general f'R € D%(X’), where f : X’ — X is a finite type morphism
and R is a dualizing complex on X.

On the other hand any residual complex on X is a dualizing complex when
viewed as a complex in D%(X). Furthermore, if K is a residual complex on Y’
with filtration Z°, then we have an equality of complexes Ez, (K) = K.
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1.7.2. (=)' for residual complezes. Let f : X — Y be a finite type morphism
between A-schemes and K a residual complex on Y with associated filtration

Ly =

Z* (which exists by the above). Then there is a functor f2 from

the category of residual complexes with filtration Z°® on Y to the category of
residual complexes on X with a fixed filtration denoted by f»Z°, having the
following properties:

(1)

(2)

For two finite type morphisms f : X — Y and g : Y — Z of A-schemes,
there is an isomorphism ¢y, : (gf)2 =5 f2¢2, which is compatible
with triple compositions and such that ciq,f = id = ¢y ia.

If f: X — Y is smooth and separated of relative dimension r, then
there is an isomorphism

P fAK = Ef*lz-[r](ﬂg(/y[r] ® f7K).
Here Ef-1zep, (Q’)}/Y[r] ® f*K) is the Cousin complex associated to
the complex Q' [r] ® f*K and the filtration f71Z°%[r]. If we have
two smooth separated maps of some fixed relative dimension f and g

as in (1), then ¢y 4 is compatible with the natural map on the right.
If f: X — Y is finite, then there is an isomorphism

: fAK = Ef-1z4(f*RHomo, (f.0x, K)) = f*Homo, (f.Ox, K),

where we set f*(—) := f71(—=) ® j-17,0, Ox (which is an exact func-
tor). If we have two finite maps f and g as in (1), then cy,4 is compatible
with the natural map on the right of the above isomorphism.

Let

XULX

NN
U——>Y
be a cartesian diagram of A-schemes with u étale. Then there is an
isomorphism
du gt [0 Sl fA,
which is compatible with compositions in v and f and with the iso-
morphisms in (2) and (3). Furthermore, by (2) we have u* = u® and

¥ oy u/A

U and the following diagram commutes

f’Au* L u/*fA

)

Cyr Cy!
A fhu whf A
f/ ’U,A < hA —= fA-

(To prove this commutativity one may assume that f factors as X AN
P 5 Y, with i a closed immersion and 7 smooth and then use (2)
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and (3), cf. [Con00, (3.3.34)].) Finally if f and g are étale, then cy g :

(gf)2 = fAg” corresponds to the natural isomorphism (gf)* = f*g*.
In fact f2 is defined by locally factoring f : X — Y into a closed immersion
followed by a smooth morphism and then use (2) and (3) and glue (and then
show that what you obtain is independent of all the choices). In D%(X) we
have fAK = f'K. For details, as well as more compatibilities, see [Har66l, VI]
and [Con00, 3.2].

1.7.3. The Trace for residual compleres. The reference for this section is
[Har66l VI, 4,5, VII, 2] and [Con00, 3.4]. Let f : X — Y be a finite type
morphism between A-schemes. Let K be a residual complex on Y. Then there
exists a morphism of graded sheaves (in general not of complexes, which we
indicate by the dotted arrow)

Try: fofAK > K,

which satisfies the following properties (and is also uniquely determined by the
first three of them):
(1) Try is functorial with respect to maps between residual complexes with
same associated filtration and Tr;q = id.
(2) If g : Y — Z is another morphism of finite type between A-schemes,
then
Trgr = Trg 0 g« (Try) o (gf)scy.g-
(3) If f is finite, then Tr; is a morphism of complexes and equals the
composition

Try: fufAK 220 Homo, (£.0x, K) <20 K.

rr 18 compatible with étale base change (using the maps d, r from
4) Try i ible with étale b h i h dy, 5
LT3, (4)).
(5) If f: X — Y is proper, then Try : f+fAK — K is a morphism of
complexes.
: — X 1s the projection, then 1r¢ is the composition (in
6) If f: Py — Xisth jecti hen Try is th iti 'DQX

Try: fufAK =5 RE(Qp x[n]) @ K ~ K,

where for the first isomorphism we used [[7.2, (2) and the projection
formula, the second isomorphism is induced by base change from the
isomorphism
7L(n2+1) dtl VAN dtn
ty-- -ty ’
where 3 = {Uy, ..., U,} is the standard covering of P% and the ¢;’s are
the coordinate functions on U.
(7) (Grothendieck-Serre duality, special case) If f : X — Y is proper, then
for any C' € D (X) the composition

Z = HMB Oy ) = HMW, ), 1 (—1)

Rf.RHomx (C, fAK) <L RHomy (Rf.C, f. fAK) —L5 RHomy (Rf.C, K)
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is an isomorphism. It is compatible with étale base change.

DEeFINITION 1.7.4. We denote by Schy . the category with objects given by
pairs (X, ®), where X is a scheme of finite type over A and ® is a family of
supports on X, and the morphisms f : (X, ®) — (Y, ¥) are given by separated
A-morphisms f : X — Y, whose restriction to ® is proper and which satisfy
f(®) C .

Remark 1.7.5. Let (X, ®) be an object in Scha . and K a residual complex on
X. Then '3 K is a direct summand of K and is a complex of quasi-coherent
and injective O x-modules. Indeed the isomorphism @ ., K = €D, x izxJ (2)

(see [LTT) implies @ ey Lo K9 = @meq) iz ().
COROLLARY 1.7.6. Let f: (X,®) — (Y, T) be a morphism in Scha . and K a
residual complex on'Y, then there exists a morphism of complexes
Try : fof2K — Ly(K),
where we set fo 1= f. oLy, which satisfies the following properties:

(1) Try is functorial with respect to maps between residual complezes with
same associated filtration and Trig = id.
(2) The following diagram commutes

faf A K —1> Ty (K)
F MK A K,

where the vertical maps are the natural ones and the lower horizontal
map is the trace from[I.7.3, which is only a map of graded sheaves (vi-
sualized by the dotted arrow). By abuse of notation we write f for both,
the morphism (X, ®) — (Y, ¥) in Scha . and the underlying morphism
of schemes X =Y.

(3) If g : (Y, V) — (Z,E) is another morphism in Scha ., then

Trgr = Trg 0 g«(Try) o (gf)ucrg:
c Tr Try
(9)o(9f)* K % go fa f2 g K —5 gug™ K —% T (K).

(4) Try is compatible with étale base change in the following sense: Let
XU u—/> X
vl lf
U—2->Yv

be a cartesian square of finite type A-schemes with u étale; let ®, U,
@' and V' be families of supports on X, Y, Xy and U, such that
f:(X,®) - (Y,0) and f' : (Xy,®') — (U, V) are in Scha . and
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additionally w=(¥) C W', o' " (®) C ®'. Then v*K ~ uK is a
residual complex and the following diagram commutes:

u™* (Tr
u*fq,fAK—>( W Ty K

| |

A Trf’ *
f&),f’ U*KQE\I//U K.

Here the wvertical maps are given as follows: First, the composition
I'y = Dyusu® ~ u*£u71(‘1,)u* — u.Lgu™ gives by adjunction a map
w*' L'y — Lg/u*, yielding the vertical map on the right in the diagram;
similar we have a map u'*Tg — Lgu'™ inducing a map u* fo — fru'™;
the vertical map on the left in the diagram is then given by the compo-

d;
sition u* fo f& — o' fA L f[I,,f'Au*, where dy,, 5 is the map from

[L7.2 (4).

(5) Let j : U — X be an open immersion such that ® is contained in U.
Then j : (U, ®) < (X, ®) is a morphism in Scha . and Tr; : jojAK —
L' K is the excision isomorphism, more precisely: Tr; is given by the
composition

(1.7.1) Try : joj K = L(x.0)Jed “ K ~ Lx 0)iei K F Lix a) K.

Proof. We define Tr; : fafAK — L'y K to be the following composition

C73
(1.7.2) fof2K = fLp o [OK ~ Dy fofAK =55 ~T K .

A priori this is only a map of graded sheaves. But we already observe, that the
properties 1)- 4) follow immediately from the definition and the corresponding
properties in 73 If j : (U, ®) — (X, ®) is an open immersion as in (5),
we may apply the excision identity I' x ¢y = L' x ¢)J«J" to the map of graded

sheaves Tr;j : j,jo(—) > (—) to obtain a commutative diagram
L. Tr;
Jjo] KZE(X,@)]*] Koo 2 F(X<I>)K
. Hk . Jx3" (Try) ‘ .
E(X,<I>)]*] (j*]AK) .............. J>£(X,<I>)j*c7 K

Now using the compatibility with base change as in (4) (in the situation j =
u = f) implies that going around the diagram from the top left corner to the
top right corner counterclockwise is the isomorphism (of complexes) (LZT]).
This gives (5) and in particular Tr; is a morphism of complexes.

It remains to show that Try as defined in (I7.2) is in fact a morphism of

complexes. For this we factor f: X — Y into an open immersion j : X — X
followed by a proper A-morphism f : X — Y (Nagata compactification). Since
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the restriction of f to ® is proper, it follows that ® also defines a family of
supports on X. We consider the following diagram

Tr
fofAK —— Ty fofAK oo -f-->£\1,(K)
Nl/ TTjOCfTJ-

v
fofPK —= Ly f.[2K,

Trf

where the vertical isomorphism on the left is a morphism of complexes, which
is given by

. . iz Az, T5) & .
f*E(x,@)fAK = f*E(X,@)J*fAK L, f*E(X,é)J*]AfAK — f*E(X,@)fAIf
Further Trf is a morphism of complexes by (LT3l (5)). The diagram is

commutative by [L73 2) and hence Try as defined in (IZ2) is a morphism of
complexes. O

1.7.7. Let X be a finite type A-scheme and () = Z" C ... c Z¢*! Cc 79 C

. C Z® = X be a filtration with » > s € Z and such that Z9 is stable
under specialization and any y € Z9\ Z97! is not a specialization of any
other point in Z9. Recall that a Cousin complex on X with respect to Z* is
a complex C* of quasi-coherent Ox-modules, such that for all ¢ the terms C?
are supported in the Z%/Z9 1 skeleton, i.e. C9 = @xezq\zqﬂ 1o« My, where
iy : SpecOx , — X is the inclusion and M, is a quasi-coherent sheaf on
Spec Ox , supported only in the closed point x. Notice that ..M, is the
extension by zero of the constant sheaf M, on m Any residual complex with
associated filtration Z* is in particular a Cousin complex with respect to Z°.
If G is any complex of quasi-coherent Ox-modules, then Ez«(G) is a Cousin
complex with respect to Z°.

LEMMA 1.78. If f : X — Y is finite and D is a Cousin complex on X with
respect to f~1Z* (Z* as above), then f.D is a Cousin complex on Y with
respect to Z°.

Proof. Write D1 = @xef—lzq\fflztfrl 1.+ N, as above, in particular N, is sup-
ported in . Then

£DV= @ ipM,, with My:=fix, . € ios1Na
yE€ZN\Za+! z€f=1(y)
where iy t-1(,) : Spec Ox » — X(,) = X Xy Spec Oy, is the inclusion. M, is
supported in y and this gives the claim. ]

COROLLARY 1.7.9. Let f : X — Y be a finite morphism between finite-type
A-schemes and K a residual complex on'Y with filtration Z* and C' a Cousin
complex on X with respect to f~*Z*. Then the isomorphism of [I.7.3, (7)
induces an isomorphism

Homy (C, fAK) = Homy (f.C, K).
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This isomorphism is compatible with étale base change and is concretely in-

duced by sending a morphism of complezes ¢ : C — f2K to the composition
[ReERINY Y iy g

Proof. Since K and f2K are complexes of injectives and f is finite, LT3, (7)
immediately gives (for all C')

Homy (C, f2K)/homotopy = Homy (f.C, K')/homotopy.

By Lemma above f,C? is supported in the Z9/Z%" 1 skeleton, which by
definition also holds for K9, for all ¢. Thus there is only the trivial homotopy
between f,C*® and K. Similar with f2K and C. g

LEMMA 1.7.10. Let f : X — Y be a finite morphism between finite type A-
schemes and K a residual complex on Y with associated filtration Z®. Then
for all g € Z the following equality holds in DZC(X)

(FAK)? = F*Homy (f.0x, K) = f*(K9) = ) o d (@),
zef~Y(Z\f~1(Zat1)

where f*(=) = [71(=) ®s-11,05 Ox, iz : Spec Ox 5 — X is the inclusion
and J(y') is an injective hull of k(y') in Oy 4.

Proof. The first isomorphism follows from [[L7.2] (3), the second holds since K¢
is injective and the third is [Har66, VI, Lem. 4.1]. O

1.8. WITT RESIDUAL COMPLEXES. Let X be a k-scheme.

1.8.1. Let C'(Cn) be the category of complexes of Cy. Recall that it is equipped
with endo-functors iy, oy, Xx.

NOTATION 1.8.2. We say that a complex K in C(Cy) is a residual complez if
K, is a residual complex on W, (X) for all n and the associated filtrations on
|X| = |W,,(X)] are all the same.

We say that a complex C in C(Cy) is a Cousin complex if C,, is a Cousin
complex for all n with respect to the same filtration.

For a residual complex K € C(Cy) we define
(IPK)p =51 Knt1
(0°K), == Wi (Fx)* K,
(B2K), = Wo(F)AK,.

This yields endo-functors on the full subcategory of residual complexes with
some fixed filtration of C'(Cy).
In view of Corollary [[.7.9] we get

Homg(cy) (i+C, K) = Homg (e, (C, i2 K)
(1.8.1) Homg ¢, (0.0, K) = Homg (e, (C, 02 K)
Homg (e, (5.C, K) = Homg(c,) (C, 24 K)

if C'is a Cousin complex with respect to the filtration of K.
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DEeFINITION 1.8.3. Let X be a k-scheme. A Witt residual complex on X is a
collection (K, p, C,V) where K € C(Cy) is a complex and
prisK = K, C:3.K - K, V:0..K — K,
are morphisms of complexes such that:
(a) K a residual complex,
(b) the morphisms p, C, V, satisfy the relations
VoosinC=CoXip, poi,V=Voo.i.p,
and the adjoints of p, C' and V under (L8.T])
“p: K = i%K,°C: K = 8K,V K = i®c®K
are isomorphisms of complexes.

A morphism between Witt residual complexes is a morphism in C'(Cy) which
is compatible with p, C, V' in the obvious sense.

Remark 1.8.4. One should memorise the relations in (b) above as VC' = Cp
and Vp =pV.

Remark 1.8.5. It follows from Lemma [L7I0, that if (K,p,C,V) is a Witt
residual complex on X , then for all ¢ € Z the systems ({K1},>1,p?, C9, V1)
are Witt dualizing systems. Furthermore, if Z* is the filtration of K, then

Ki= @@ iw,@puala),
zeZ\zat1

where iy, (o) : Spec W,,0x , < Wy, X is the inclusion and .J, () is an injective
hull of k(x) in W,,Ox 5.

1.8.6. By extending the notions from and Corollary [L7.6] term by term
to C(Cy) we obtain: For any finite-type morphism f : X — Y between k-
schemes a functor f2 of residual complexes in C (Cn,y) with associated filtra-
tion Z* to residual complexes in C(Cy, x) with filtration f2Z®. For g:Y — Z
another morphism a canonical isomorphism cs, : (go f)2 = f2g” of nat-
ural transformations on the category of residual complexes on C(Cy,z). For
[ (X,®) = (Y,¥) a morphism in Schy . (see Definition [L74) a natural
transformation Try : fs 2 — Iy on the category of residual complexes with
fixed filtration in C'(Cn,y). And these data satisfies the compatibilities from
and Corollary

1.8.7. Let f: X — Y be a finite-type morphism between k-schemes. Let K
be a Witt residual complex. We use (L&) to define morphisms of complexes

prifOK — fAK, C:S.f2K — fAK, V:oi.f°K — f°K,
as adjoints of the compositions

AP,
FAR B PR A PR
Aqr SRCOCK) 2 LAGA -~ 2A A

fAR LTI pATA R o A pA R
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2(“Vi), , ,
fAK 2 (Vi) fAZAO_AK%J,LAO_AfAK.
Here P> Ck and Vi denote the corresponding morphisms for K and the
isomorphisms on the right are induced by the isomorphisms cy,, 74, , etc. from

C72 (1).

PropPOSITION 1.88. Let f : X — Y be a finite-type morphism between k-
schemes and K a Witt residual complexr on Y. Then the system

(f2K,p,C,V)

defined above is a Witt residual complex on X. Furthermore, if g 1Y — Z
is another finite-type morphism of k-schemes, then the isomorphism csq :
(go f)AK = fA¢2K from L84 defines an isomorphism of Witt residual com-
plexes, which is compatible with triple compositions.

If f : X =Y is étale, then f*K is isomorphic to fAK. If f : X = Y and
g:Y — Z are étale, then the isomorphism (gf)> = f2g» is induced by the
isomorphisms (gf)* = f*g*.

Proof. First notice that if K and L are two residual complexes, then their
associated filtrations are the same iff their associated codimension functions
(see [L7I]) are the same. Since the codimension functions of the K,,’s are the
same by assumption we obtain (using the formula of [Con00, (3.2.4)]) for any
z € |X| = |W,X]

dw,pak, (@) = dix,(Waf(z)) - trdeg(k(z)/k(Wy f(2)))
= di,(f(2)) — trdeg(k(x)/k(f(x)))
= deKl(lL')

Thus the (W,,f)*K,, are residual complexes and all have the same associated
filtration. The condition on the adjoints of p, C' and V holds by definition. It
remains to check the relations VC = Cp and Vp = pV, which are equivalent
to ¢V eC = 2C % and *V %p = *p*V. To prove the first equality consider the
following diagram B B

a

fAKi>fAiAK42>Z’AfAK

acKl lacK lacK

FAnA g Y pAATAR  E A pAT)AR

|k )

EAfAK &) EAfAiAUAK = iAEAfAK.

Here all arrows labeled by ~ are induced by compositions of the isomorphisms
cf,q and their inverses with f, g appropriate and also in the two arrows labeled
by *Vi there is such an isomorphism involved. (We also need the relation
(T22).) The square in the upper left commutes since K is a Witt residual
complex, all other squares commute because of the functoriality of the cy 4’s
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and their compatibility with compositions. Thus going around the diagram
from the top left corner to the lower right corner clockwise is the same as going
around counter clockwise, which yields “C' “p = *V *C. The other relation is
proved by drawing a similar diagram. Thus f2K is a Witt residual complex.
The second statement amounts to prove that cy s is compatible with p, C"
and V. This follows again from the functoriality of the ¢ _)’s and their
compatibility with compositions by drawing diagrams as above, which we omit.
Finally, the statement about étale morphisms follows from [[L7.2 (4). O

LEMMA 1.8.9. Let (X,®) — (Y, V) be a morphism in Schi. and K o Witt
residual complex on' Y. Then the complex fs 2K, with fo = f.olg, is a
complex of Witt quasi-dualizing systems (see Definition [[L6.3) and each term
(fo fAK), is a bounded complex of quasi-coherent, flasque sheaves. Further-
more

Try: fof2K — Dy K,

s a morphism of complexes of Witt quasi-dualizing systems, which is compatible
with composition and étale base change, as in Corollary [I.7.0, (3) and (4),
and it is functorial with respect to maps between Witt residual complexes with
the same associated filtration (e.g. isomorphisms). Finally, if [ is an open
immersion and V = ®, then Try is the excision isomorphism as in Corollary

(.78, (5)-

Proof. We define the maps p, C' and V on fe fAK to be the following compo-
sitions

P
piinfafAK 2 fai fAK L5 fofAK,
C
C: S fof K = foX, fAK —25, fo fAK,

V.
Vo fofAK 2 fpoi fAK 125 fofAK.

These maps obviously make fef2K into a complex of Witt quasi-dualizing
systems. Also the (f2K), are bounded complexes of quasi-coherent injec-
tive W,,Ox-modules (since the (f2K),, are residual complexes), thus all the
(fa fAK), are complexes of quasi-coherent and flasque sheaves. It remains to
check, that the trace morphism commutes with p, C™ and V. We will prove

(1.8.2) Tryop =poi.(Try).
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For this, we consider the following diagram:

isfo[AK —— fai fAK

Try o N
p p
Ly K i fo fARK — foi, fR0K
x - i}
i Lgi®K foid® oK
Tr; Tr;

Tr
Ly K L fefAK.

The triangle in the upper left (which should be a square) commutes by the func-
toriality of Try (Corollary [I7.0] (1)), the upper square in the middle commutes
by the functoriality of the isomorphism i, fs = fei. and the big square in the
middle commutes by Corollary [L7.8] (3). Thus going around the diagram from
the upper left to the lower left corner clockwise, which is Try o p, is the same as
going around counterclockwise, which is poi,(Try). This gives_(m. Similar
diagrams prove the relations TryoC = C'oX,(Try) and Voo,i,.(Try) = TryoV.
The compatibility of Try with composition and étale base change follows di-
rectly from Corollary [L7.6] (3) and (4). The functoriality statement follows
from the corresponding statement in[[C.6] (1). If f is an open immersion, then
so is W, f for all n and hence the last statement follows from [[7.6 (5). O

1.9. THE DUALIZING FUNCTOR.

1.9.1. Let X be a k-scheme and K a Witt residual complex on X. If M is
a complex of quasi-coherent de Rham-Witt systems on X, then by Proposi-
tion [L6.7 and Remark [L8F] we have de Rham-Witt systems Hom(M? K7) €
dRW x for all 4, j. Thus we obtain a complex of de Rham-Witt systems on X,
Hom(M, K) € C(dRW x) which is defined by

Hom!(M, K) := [ [ Hom(M', K1),
i€L
By (1) 1= (dT 0 f1 4 (1) o dy).
In this way we clearly obtain a functor
Dk : C(dRWx 4c)° = C(dRWx), M — Hom(M,K),

It restricts to a functor Dy : C(dRWx ) — C(dRWx gc). Since K, is a
bounded complex of injective W,,Ox-modules for each n > 1, Hom(M, K) is
acyclic, whenever M is ([Har66, II, Lem. 3.1]). Thus Dg preserves quasi-
isomorphisms and therefore induces functors

Dk : D(ARWx 4c)° = D(dRWx), Dg :D(dRWx )° = D(dRWx qc)-
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A morphism K — L of Witt residual complexes clearly induces a natural
transformation of functors

(191) DK —)DL.

NOTATION 1.9.2. Let X be a k-scheme with structure map px : X — Speck.
Then we denote by Kx the Witt residual complex p)A( Wew and write

DX = DKX = /HOHI(—, Kx).
Notice that Kx is concentrated in degree 0, since W,w is.

Remark 1.9.3. Let X be a scheme, ® a family of supports on X and K a Witt
residual complex. Then we have the following equalities on C(Cy,qgc)

LyDr(—) =LeHom(—, K) = Hom(—, Ly K).

Therefore, if M is a complex of quasi-coherent de Rham-Witt systems on X,
then Hom (M, K) inherits the structure of a complex of de Rham-Witt sys-
tems from Ly Dy (M). Furthermore L'y (K), is a complex of injectives (by

RemarKI 70,
Hom(—, LK) : D(ARW x,4¢)° — D(dRWx).

PROPOSITION 1.9.4. Let f : (X,®) — (Y, ¥) be a morphism in Schy ., K a
Witt residual complex on'Y and M a bounded above complex of quasi-coherent
de Rham-Witt systems on X. Let

Uy foDpag(M) — Ly D (fM)

be the composition

FaHom(M, FAK) 2% Hom(f. M, fo f2K) 2L Hom(f. M, Ty K).

Then ¥y is a morphism of complexes of de Rham-Witt systems on'Y and it has
the following properties:

(1) It defines a mnatural transformation between the bifunctors
foHom(—, f2—) and Hom(f.—,Ly(—)) defined on the product of
the category C~ (ARWx o) with the category of Witt residual com-
plexes with the same associated filtration.

(2) It is compatible with composition, i.e. if g : (Y,¥) — (Z,Z2) is another
morphism in Schy ., then Vg5 = Y940 g.(Jf) 0 cpg.

(3) It is compatible with étale base change as in Corollary [1.7.6, (4).

(4) Let j : U — X be an open immersion, such that © is contained in
U, then 9; : joHom(—,j2K) = Hom(j.(—),LeK) is the excision
isomorphism (cf. Corollary [I.7.6], (5)).

Proof. We have to show, that 1y commutes with 7, ', d, V, p. Recall from [0}
how the de Rham-Witt system structure on Hom(M, Q) is defined, where M
is a de Rham-Witt - and @ a Witt dualizing system. For example the map
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7 is uniquely determined by the property that it makes the following diagram

commutative:
o EM

Hom(M, Q) Hom (i M Q)

| 5
ivHom(M, Q) ——> Hom(i, M, i,Q).

The maps F,d,V,p are defined uniquely by making similar diagrams commu-
tative. Using these diagrams, the second part of and Lemma it is
straightforward to check the compatibility of ¥ with the de Rham-Witt system
structure. (Notice, that ¥, factors over Hom(f. M, fo f2K), which in general
will not be a de Rham-Witt system, since fof>K will not be a complex of
Witt dualizing systems. But it is a complex of Witt quasi-dualizing systems,
which is sufficient to conclude.) Thus ¢ gives a morphism of complexes of de
Rham-Witt systems. The functoriality of ¥y in M is clear and in K follows
from the functoriality of Try : fof2 — id (see Lemma [[L89). The properties
(2)-(4) follow from the corresponding properties of Tr¢, see Lemma

|

1.10. EKEDAHL’S RESULTS.

THEOREM 1.10.1 ([Eke84) II, Thm 2.2 and III, Prop. 2.4]). Let X be a smooth
k-scheme of pure dimension N. Then the morphism induced by multiplication

WaQx — Hom(WoQx, Wewx), o~ (8 af).
s an isomorphism of de Rham-Witt systems. Furthermore
Ext’wnox (WoQx,Whwx) =0, forallin>1.
Proof. This is all due to Ekedahl. Let us just point out that Wewx sits in degree

N, hence the multiplication map is a graded morphism; and that C"d = 0 gives
the equality

C™(xdy) = (—1)TF1C™(d(z)y), for all z € W, Q%, y € W, Q% ¢
and this together with the sign « introduced in the definition of d in
(which is missing in [Eke84]) gives the compatibility with d. O

LEMMA 1.10.2 (IBER10, Prop. 8.4, (ii)]). Let X' be a smooth W,,-scheme and
denote by X its reduction modulo p. Let ¢ : Wy Qx —» oMy (X' /W), with
0 = Wy(Fspeck), be the canonical isomorphism of graded W, -algebras from
[IR83, ITI, (1.5)]. Then ¢ is the unique morphism, which makes the following
diagram commutative

Woi1Qx jw, —— ZQx0w,

| |

Wy —= H R (X! /W).
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Here Wy 11Qx:/w, is the relative de Rham-Witt complex defined in [LZ04] and
the vertical maps are the natural surjections. In particular we have

n—1 n—1
(1.10.1) (Y Vi(la) =Y F™V*([@)) = ab +pal  +...+p"tdh_,
=0 =0
and
(1.10.2)
n—1 . n—1 ) .
(> dvi(la)) = > FrdVi(a)) =ah 'dao+dl  day+...+ak ydan,
=0 =0

where the a; are any liftings of a; € Ox to Ox-.

THEOREM 1.10.3 (Ekedahl). Let X be a smooth k-scheme of pure dimension
N with structure map px : X — Speck. Then (Wy,px)'W, € Db(W, X) is
concentrated in degree —N, for all m > 1 and there is a quasi-isomorphism of
complexes of Witt dualizing systems (see Example[1.6), (1) and (2))

T : Wewx (N)[N] W Kx = PEWew,

such that
(1) The map 7 : QN[N] 5 p&k is the classical (ungraded) quasi-
isomorphism, i.e. it is the composition of the natural quasi-

isomorphism QY [N] — Eze(n)(QX[N]) with the inverse of [[.7.2, (2).
Here Z°*[N] is the shifted codimension filtration of X and Eze[n) the
Cousin functor.

(2) 7 is compatible with étale pullback, i.e. if f: U — X is étale, then the
following diagram commutes

FWawx (N)[N] —= f*Kx = f*piWew

Wowy (N)[N] —— Ky = pWew,

where py : U — Speck is the structure morphism of U, the vertical
isomorphism on the right is induced by f*p)A( =~ pr)A( =~ pﬁ and the
isomorphism on the left is induced by (W, f)*W,QF = W, Q8 , n > 1
(see [I79, 1, Prop. 1.14]).

Proof. We do not write the shift (V) in the following (the statement about
the grading being obvious). In [Eke84, I, Thm. 4.1] it is proven that one has
an isomorphism 7, : W, QY = (Wopx)'Wy[=N] in DY(W,X). (We give
a sketch of the construction in case X admits a smooth lift over W,, in the
remark below.) Let Z* be the filtration by codimension on W, X. For C any
complex let Eze(C) be the associated Cousin complex. Then Ez. induces
an equivalence from the category of dualizing complexes with filtration Z°® in
D?(W,, X) and the category of residual complexes with associated filtration Z*
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on Wy, X with quasi inverse the natural localization functor (see [Con00, Lem.
3.2.1]). Thus we obtain an isomorphism of residual complexes

Ez+(WaQX) = Eze (Wapx) Wa[=N]) & (W px ) Wa[-N].

By Lemma [[5.9 the natural map W,, QY — Eze (W, Q%) is a resolution, for all
n > 1 (by [Har66, IV, Prop. 2.6.]). Therefore we obtain a quasi-isomorphism
(by abuse of notation again denoted by 7,,)

Tn : WnQ%[N] ﬁ) (WnP)AWn-

It follows from [Eke84, I, Lem 3.3 and II, Lem. 2.1], that the 7,,, n > 1, are
compatible with p, C™,V and hence induce a morphism of complexes of Witt
dualizing systems as in the statement. The property (1) is proved at the end of
the proof of [Eke84] I, Thm. 4.1, p. 198 ] and (2) follows from the construction
of 7,, in [Eke84, I, 2.] (see in particular the second paragraph on page 194). O

Remark 1.10.4. Let us sketch for later purposes how the isomorphism 7, :

Whwx — (Wnpx)'Wy,[—N] is constructed in case X admits a smooth lifting

px’ : X' — Spec W,,. For details see [Eke84l I, 2.]. Let

(1.10.3) 0 WoQx = a"HpR (X' /W,)

be the canonical isomorphism of graded W, -algebras of [IR83| III, (1.5)] (see
0

Lemma [LT0.2). The composition W, Ox = 0" HA (X' /W,,) — Ox: defines
a finite morphism € : X’ — W,, X, which fits into a commutative diagram

X/%an

Px’l anpX

Spec W, LAY Spec W,,.

It follows that ¢ becomes an isomorphism W,Qx — e, Hpr(X'/W,). (Here
we abuse the notation €, to indicate where the W,,Ox-module structure
on the W,-module Hpgr(X’'/W,) is coming from, which is of course not
an Oxs,-module.) Since pxs is smooth we have a canonical isomorphism

X! WX /W, = pxWn[—N]. Now Ekedahl shows, that the composition

WX /W, 25 G*P!X'Wn[_N] = €*P!X’Un!Wn[_N]

Tre

= G*Gl(WnPX)!Wn[_N] — (WnPX)!Wn[_N]
factors over e, HYR (X'/W,,). Then 7, is defined as the composition
Whwx 2= e, HER (X! /Wy) — (Wapx ) W[N]

COROLLARY 1.10.5. Let X be a smooth k-scheme of pure dimension N. De-
note by E(Wewx) the Cousin complex associated to Wewx with respect to the
codimension filtration on X (cf. [L28). Then the maps p, C™ , V on Wewx
induce morphisms of complezes on the system {E(Wnwx)(N)[N]}n; this de-
fines a Witt residual complex E(Wewx )(N)[N], which is isomorphic as Witt
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residual complex to Kx (see Notation[[.92). This isomorphism is compatible
with €tale base change.

COROLLARY 1.10.6. Let the notations be as above. Then there is an isomor-
phism in C*(dARW x qc)

p: BE(WeQx) = Dx(Weldx)(—N)[-N],
given by the composition

LID

E(W.Qx) 252292 Bom(WeQx, Wawyx)) =

Cor. I3 ~
%

Hom(WeQx, E(Wewx)) — Hom(WeQx, Kx)(—N)[—N].

The map p is compatible with étale base change.

1.11. THE TRACE MORPHISM FOR A REGULAR CLOSED IMMERSION.

1.11.1. Local Cohomology. Let X = Spec A be an affine Cohen-Macaulay
scheme and Z C X a closed subscheme of pure codimension ¢, defined by the
ideal I C A. Let t = t1,...,t. € I be an A-regular sequence with \/@ =+I,
here (t) denotes the ideal (t1,...,t.) C A. (After shrinking X such a sequence
always exists.) We denote by K*(t) the Koszul complex of the sequence t, i.e.
K=9(t) = K,(t) = N1 A, ¢=0,...,c, and if {eq,...,e.} is the standard basis
of A¢ and €iy,...siqg = €y N ... Neg, then the differential is given by

q
— K. _ ;
A (€,niy) = di(ein i) = D (=1 e, o

j=1

We define the complex
K®(t,M) := Hom4 (K ~°(t), M),
and denote its n-th cohomology by H™ (¢, M). The map

Homa(/\ A%, M) — M/()M, ¢+ @ler,. )

induces a canonical isomorphism H¢(¢, M) ~ M/(t)M.

If ¢ and ¢’ are two sequences as above with (') C (¢), then there exists a ¢ x ¢
matrix T with coefficients in A such that ¢ = T't and T induces a morphism of
complexes K*(t') — K*(t), which is the unique (up to homotopy) morphism
lifting the natural map A/(t') — A/(¢). Furthermore we observe that, for any
pair of sequences t, t' as above there exists an N > 0 such that (V) C ('),
where tV denotes the sequence ¢V, ... tY. Thus the sequences ¢ form a directed
set and He(t, M) — H(t', M), (') C (t), becomes a direct system. It follows
from [SGA2| Exp. II, Prop. 5], that we have an isomorphism

(1.11.1) lim M /()M = lim H(t, M) = Hg (X, M),

where the limit is over all A-regular sequences t = t1,...,t. with V((t)) = Z
and M is the sheaf associated to M. In fact it is enough to take the limit
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over the powers t" = tf,...,t7, n > 1, of just one regular sequence ¢ with
V((t)) = Z. We denote by

m

)

the image of m € M under the composition
M — M/(t)M — H(t, M) — Hy (X, M).

It is a consequence of the above explanations that we have the following prop-
erties:

(1) Let ¢t and ¢ be two sequences as above with (¢') C (t). Let T be a
¢ X c-matrix with ¢’ = T, then

-}

L ] e

(3) If M is any A-module, then

(2)

HS(X,0x) @4 M = HL(X, M), m Qm — [“ﬂ

is an isomorphism.

Remark 1.11.2. Since for an A-regular sequence ¢ as above K*(t) — A/(t) is a
free resolution, we have an isomorphism

Ext™(A/(t), M) ~ Hom% (K*(t), M).
Notice that we also have an isomorphism
Hom!, (K* (1), M) ~ K*(t, M),

which is multiplication with (—1)"("+1)/2 in degree n (see [Con00, (1.3.28)]).
We obtain an isomorphism

Ve BExt(A/(t), M) = He(t, M) = M/(t)M,
which has the sign (—1)¢(¢+1)/2 in it. In particular under the composition

Ext®(A/(t), M) 225 M/(OM — HS(X, M)

the class of a map ¢ € Homy4 (A A, M) is sent to

(= 1)1/ [%(61;,.,13)} '

Remark 1.11.3. If X = Spec A is a k-scheme and ¢t = t;,...,t. is a regular
sequence of sections of Ox, then for any n the sequence [t] = [t1],..., [tc] of
sections of W,,Ox is a regular sequence. Here [t;] denotes the Teichmiiller lift
of t;. Indeed the sequence [t] is regular iff its Koszul complex is a resolution
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of W, A/([t]) and thus the statement follows by induction from the short exact
sequence

0= Ko([t]7, Wo_14) 5 Ko([t], WnA) = Ka(t, A) — 0.

PROPOSITION 1.11.4. Let i : Z < X be a closed immersion between smooth
k-schemes of pure dimension Nz, Nx and structure maps pz, px and let ¢ be
the codimension of Z in X, i.e. ¢ = Nx — Nz. Then we have the following
isomorphism in D} (W,Ox),

(1.11.2) RI', (Whwx) = HG (Wywx)[—d]

Assume furthermore, that the ideal sheaf of Z is generated by a reqular sequence
t=t1,...,tc of global sections of Ox and define a morphism 1z, by

0

with & € W, Q%% any lift of o, and d[t] = d[t1] - ... - d[t.]. Then the following
diagram in Db, (W, Ox) is commutative

1Zn (Wni)*anz — HCZ(anX), o = (1)5[

CWni,Wnp

’I‘I’ 7
(Wai)s (Wapz) 2 Wi == TW) (Wit) > (Wapx ) A Woy —— R, (Wapx ) > Wi,

"'Z,nT: :TTX,W,

(W) s Wiwsz [Nz] — = HG (Wwx ) [N7] = RL;(Wawx)[Nx]
where Tryy, ; is the n-th level of the trace morphism from Lemma -89

Proof. We write i, = Wyi, px.n = Wppx and Wy pz = pz,. By (L52) we
have HY,(W,wx) = 0 for i < c¢. Furthermore H,(W,wx) = 0 for i > ¢,
by Cech considerations. (Locally the ideal of Z is generated by a regular se-
quence of length ¢ and thus U \ Z may locally be covered by ¢ affine open
subschemes.) This gives the isomorphism ([LIT2). To prove the commutativ-
ity of the diagram in the statement of the proposition we have to show that
two elements in Homwy, 0 (ins Whwz, HE(Whwx)) are equal. This is a local
question. We may thus assume, that the closed immersion ¢ lifts to a closed
immersion 7’ : Z/ < X’ between smooth W,-schemes and that there exists
a regular sequence t' = t7,...,t. in Ox, which generates the ideal of Z’ and
reduces modulo p to t. As in Remark [[L.TO.4 we obtain a commutative diagram

€z

Zr erZ
pzr | X! X WX ez

lpx/ PX,n\L

Spec W, LA Spec W,,,

where we write 0" instead of Wi, (F§, .. 1.)-
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Consider the following diagram, in which we set A := W,,[~Nz| and write (—)'
instead of (—)2:

(1.11.3)

Tr,,
. ~ ' ~ VIR i | o~
Inx€ZxWzl jW, — inxezxPy N > ex.ili py A —> ex RLzp A <— ex« RLzwxr iy, [e]

| | oo, |

) N 3_ . ! = n ! 3 N
inxez  Hpg (Z') = > inxPy N ——> inxippx n A ——> RLzpx A < ex«RLZzHp&K (X7)[]

inxWnwz RL 5 (Wnwx)lc]

}=

HG(Whwx).

We give some explanations: We have A = ¢™'A (see Example [L6.4] (1)) and
the three vertical maps in the middle are the compositions

Tr
. ! ~ I nlp o~ 1o <z . |
Ins€z:Pz A Zips€zapyo A2 Zn*GZ*ezpz,nA -y Zn*Pz,nAa

| | !
VLN ~ VAN nlA ~ AN
€xs, 8 PN Ziniezid px o™ A Zinezii eXpX,nA

~ PN Tre,
= i €2x€ 700 Px n N — inxinpx A

Tre
ex+RL,p/ A = RT yex pxio™ A = R£Z€X*€!Xp!X’nA —x, REzP!)(,nA-

Now one easily checks that the two squares in the middle commute. In fact,
to see that the first of the two middle squares commute, one only needs, that
Cfrg) (gf)’ = f'¢' is a natural transformation, which is compatible with
triple compositions (see [Con00, p.139, (VAR1)]) and that Tr., : ez}, — id is
a natural transformation. For the commutativity of the second middle square

we need the naturality of Try : i%i" — id and the formula (see [Con00, Lem
3.4.3, (TRA1)])

Tri, 0 inx(Tre;) © (in€z)«(Cez,in) = Tri e,
=Treir = Trey 0 exs(Tri) 0 (exi)u(Cirex )-
That there exist two unique dotted arrows, which make the two outer diagrams
commutative was proved by Ekedahl, see Remark[[.]J0.4l The two vertical maps
in the two lower triangles are the isomorphisms from Lemma [[.LT0.2l Thus the
two triangles commute by definition of 7z, and 7x ,, see Remark [[T04 Tt

follows that the whole diagram commutes.
Let 0z and ox be the following compositions

07 :€zxWz )W, — EZ*’Hgﬁ(ZI/WN) i) anZ;
ox texsHG (Wxrw,) = exs HG(HDE (X! /Wh)) = HE (Wawx).
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We obtain maps
(1.11.4)

Hom(ex«in«wzr yw,, ex«HG(wWxr /w,,))
lﬂx
Hom (i Whwz, HY, (anx))& Hom(ex«in«wz w, , Hy(Wnwx)),
with the horizontal map being injective (since oz is surjective). We denote by
a the following composition
a:=H7xn) " o H'(Tr;, 0 ¢ip py. © Tz,n) € Hom(in Wowz, Hg (Wywx)).

The commutativity of the diagram in the statement of the proposition means,
that a equals 2z,. Thus it is enough to show

(1.11.5)  D(oz)(a) = D(0z)(2z,n) in Hom(exsinswz w, , HZ(Whwx)).

We define o’ € Hom(i,wz:  w, ,H%(wx/w,)) to be the following composition
a : H° (i;wzf/wn ~ il py A = ili pli A T, RL,(p'x/A) ~ REZ(wX//Wn)[c]) .

Then diagram (CIT3) says

(1.11.6) D(oz)(a) = ox(exs«(a’)).

We define 1z by

dt'B
v’

(VAR iZ/*wZ//Wn — HCZ(WX//Wn); ﬂ — (1)C|:

with 5 € QY7 a lift of 5. We have
(1.11.7) D(Uz)(lzm) = Ux(GX*(’LZ/)).

Indeed, this follows from the concrete description of ox and oz given by Lemma
and from the fact that by [LTT] 1) the following equality holds for all

WEPWHJQ§6W%
o[ e (1)

where we set /7" ! = ¢/?" 71 ... ¢/P" 7! By (IIL6) and (CILT) we are thus
reduced to show

170 =a' in Hom(i,wz w, , Hy (wx /w, )

which is well-known (see e.g. [CR09, Lemma A.2.2]). O

2. PUSHFORWARD AND PULLBACK FOR HODGE-WITT COHOMOLOGY WITH
SUPPORTS

In this section all schemes are assumed to be quasi-projective over k. We fix a
k-scheme S.
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2.1. RELATIVE HODGE-WITT COHOMOLOGY WITH SUPPORTS.

DEFINITION 2.1.1. We denote by (Sm./S) and (Sm*/S) the following two
categories: Both have as objects pairs (X, ®) with X an S-scheme, which is
smooth and quasi-projective over k (for short we will say X is a smooth k-
scheme over S) and ® a family of supports on X and the morphisms are given
by

Homg,,, ((X,®),(Y,V)) = {f € Homg(X,Y)| f| is proper and f(®) C ¥}

and

Homgm«((X, @), (Y, ¥)) = {f € Homs(X,Y)]| f_l(ll/) C @}
If X is a smooth k-scheme over S and Z C X a closed subset, we write (X, Z) =
(X,®z) and X = (X, X) = (X, Px) € Obj(Sm.) = Obj(Sm*) (see Definition
[LZT for the notation).
We will say that a morphism f : (X, ®) — (Y, ¥) in (Sm./S) or (Sm*/S) is
étale, flat, smooth, etc. if the corresponding property holds for the underlying
morphism of schemes X — Y. We will say that a diagram

(X/, (bl) N (}/I7 \I/I)

L

is cartesian, if the underlying diagram of schemes is cartesian.

2.1.2. For (X,®) € obj(Sm./S) = obj(Sm*/S), with structure map a : X —
S we denote by H((X,®)/S) the de Rham-Witt system

H((X,®)/S) = D R'aaWa2x € dRWg
>0

and its level n part by H,((X,®)/S). We denote by H((X,®)/S) the de
Rham-Witt module

H((X,®)/5) = P R'asWa2x € dRWs.

i>0
We write
HY((X,®)/S) := RlaaWeQ%, H"I((X,®)/S) = RlasW.Q%.
By definition we have:
(1) If Z C X is closed then, H((X, Z)/S) = @RjaZWQX. In particular

H((X,2)/X) =P H,(WQx), in particular H(X/X) = WQx.
(2) Let U C S be open and set Xy := X xg U and &y = & N Xyy. Then

H((X,®)/S)v = H(Xv, ®v)/U), H(X,®)/S)v =H(Xv, Pv)/U).
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2.2. PULLBACK.
DEFINITION 2.2.1. Let f : (X,®) — (Y,¥) be a morphism in (Sm*/S).
Then applying RI'y to the functoriality morphism W,y — Rf.WeQx
in D"(dRWy) and composing it with the natural map RLGRf. =
Rf+RL ;-1 (y) — Rf.RLg yields a morphism in D*(dRWy)
(2.2.1)

RLg(WeSdy) = RLgRf-WeSdx = R RL -1 (g)WeSlx — Rf. RLaWeldx.

Let a: Y — S be the structure morphism. Then we define
£ =P H (Ra. @ZI)) : H((Y, ¥)/S) — H((X,®)/S) in dRWg

and

= H'(Rlim Ra.@ZI)) : H((Y,9)/S) — H((X,®)/S) in dRWs.

We call these morphisms the pullback morphisms. Notice that by definition f*
always factors as

FH(Y,0)/S) = H((X, f7H(W)/9)) 25 H((X, 8)/9),
same with 7.
PROPOSITION 2.2.2. The assignments
H:(Sm*/S)° — dRWg, (X,®)— H((X,P)/S)

and

H:(Sm*/S)° — dRWg, (X,®)— H((X,®)/S)

define functors, where we set H(f) = f* and ﬁ(f) = f*, for a morphism
[ (X, @) — (Y,0) in (Sm*/S5).

Furthermore, if U C S is open and fuy : (Xu,®u) — Yu,%y) is the pull-
back of f : (X,®) — (Y, ¥) over U, then fi; = (f*)jv on H((Yv,¥Yv)/U) =
H((Y,V)/S) v (resp. on H).

Proof. This is all straightforward. |

2.3. PUSHFORWARD. Let X be a smooth k-scheme of pure dimension N with
structure map p : X — Speck. Recall that we set Kx = p53Wew and that this
is isomorphic to E(Wewx )(NN)[N], where E denotes the Cousin complex with
respect to the codimension filtration (see Corollary [LI0.0). Furthermore we
have the dualizing functor

Dx (=) = Hom(—, Kx)

(see [[L6.0), which we may view as a functor from C(dRWx 4c)° to C(dRWx)
or from D(dRW x )° to D(dRWx).

For any morphism f : (X,®) — (Y, ¥) in (Sm./S) the composition of the
isomorphism Ky =~ f2Ky (see Proposition [[8.8) with ¥ from Proposition
[[9.4] defines a natural transformation of functors on C(dRW x 4c)°

(2.3.1) 0 : foDx (=) = Ly Dy (f«(-)).
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The map 6y is compatible with compositions and étale base change. Fur-
thermore, recall that the multiplication pairing WeQ% ®@w WeQ% — WoQ4
induces an isomorphism in C®(dRW x 4c) (see Corollary [LT0.6)

(2.3.2) px : E(WaQx) = Dx(WeQx)(—N)[—N].

The map px is compatible with étale base change.

DEFINITION 2.3.1. Let f : (X, ®) — (Y, ¥) be a morphism in (Sm./S). We
assume that X and Y are of pure dimension Nx and Ny . Consider the following
composition of morphisms of complexes of de Rham-Witt systems on Y

(2.33)  foB(WaQx)(Nx)[Nx] 255 foDx(Wex) 2 Ly Dy (f Wal2x)

D(f* '
P, Py Dy (WaQy) 2255 Ty B(WaQy ) (Ny ) [Ny ].

By Lemma this induces a morphism in D*(dRWy-)
(2.3.4) RfeWedx — RE\I,W.Qy(—T)[—T],

where r = Nx — Ny is the relative dimension.
Let a: Y — S be the structure morphism. Then we define

. = €D H' (R @ED) : H((X, 2)/8) » H((Y, )/S)(~1) in dRWs

and

fo = @ H'(Rim Ra. @Z) : H((X.9)/S) = AV 1)/S)(~r) in dRWs.

We extend these definitions additively to all morphisms f : (X, ®) — (Y, ¥) in
(Sm./S) (where X and Y don’t need to be pure dimensional). We call these
morphisms the push-forward morphisms. Notice, that since f¢ is proper, f(®)
is a family of supports on Y and f, always factors as

fo t HI(X, @)/S) — H((Y, f(@))/9)(—r) 2 H((Y, ¥)/S)(~r),
same with 7:1

Remark 2.3.2. Without supports and for a proper morphism between smooth
k-schemes a similar push-forward was already defined in [Gro85, II, Def. 1.2.1].
(Although the verification, that it is compatible with F', V| d and = was omit-
ted.)

PROPOSITION 2.3.3. The assignments
H:(Sm./S)— dRWg, (X,®)— H((X,P)/5)

and

H: (Sm./S) — dRWg, (X, ®) > H((X,®)/S)

define functors, where we set H(f) = f. and H(f) = fu, for f : (X, ®) — (Y, ¥)
a morphism in (Sm./S).
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Furthermore: (1) If U C S is open and fu : (Xu,®v) — (Yu,Py) is the
pullback of f : (X, ®) = (Y, ¥) over U, then fu. = (f«)juv on H((Yv, Vy)/U) =
H((Y,V)/S)u (resp. on H). (2) If j: (U,®) < (X, ®) is an open immersion
in (Sm./S), then j. is the excision isomorphism.

Proof. This follows from the corresponding properties of (233), which follow
from Proposition [L9.4] and Corollary O

For later use we record:

PRrROPOSITION 2.3.4 ([Gro85l II, Prop. 4.2.9]). Let f : X — Y be a finite
morphism between two connected smooth k-schemes. We may view f as a
morphism in (Sm./Y) or as a morphism in (Sm*/Y'). Then the composition

feo [T Wey — WeQy
equals multiplication with the degree of f.
2.4. COMPATIBILITY OF PUSHFORWARD AND PULLBACK.

PROPOSITION 2.4.1 (Gros). Leti: Z — (X, Z) be a closed immersion of pure
codimension c in (Sm./S). Then

RL,WoQx[d] = HS (WeQdx) in DT (dRWx).

Suppose further the ideal sheaf of Z in Ox is generated by a regular sequence
t =t1,...,tc of global sections of X, then the projection of i : H(Z/X) —
H((X,Z)/X) to the n-th level is given by

(24.1) Wi (i) WaSr = HG (Wa2x)(e), @ (=1)° [d[[’?]a]
where we set [t] := [t1],...,[tc] and d[t] := d[t1] - - - d[t.] € W,,Q%, with [t;] €

W, Ox the Teichmiller lift of t;, and & is any lift of o € W, (i) W,Qz to
WoQx.

The above proposition is proved in [Gro85l II, 3.4], but since the proof uses a
result by Ekedahl, which is referred to as work in progress and which we could
not find in the literature we reprove the above proposition (using Proposition
[[LIT4 instead of a comparison of Ekedahl’s trace with Berthelot’s trace in
crystalline cohomology as Gros does).

Proof. The first statement is proven as in (LILZ). It remains to prove the
explicit description Z4T). Let pz, : WpZ — SpecW,, and px.n : WX —
Spec W,, be the structure maps, i,, :== W, (i) : W,,Z — W,, X the closed immer-
sion (for this proof we don’t use the i,, defined in [[T]) and write dim X = Ny,
dim Z = Nz. By Definition Z.3.1] the projection to the n-th level of i, is given
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by the following composition in DZC (Cxm)

ineWnQz(N2)[Nz] 2225 i RHom(W, 0z, K 7.,)
Yy RD, RHom(in, W Qz, K x.n)
Dlin) RHom(W,Qx,L,Kx )
-1
N‘X,n’ -

RL;(WnQ2x)(Nx)[Nx].

Here pzp, ptx,n and 6;, are images in the derived category of the projections
to the n-th level of the corresponding maps from We denote by 1z, the
following morphism

1z (Wai) Wawz — HE(Whwx)(c), a— (—1)° {d[[i]]&} ’

with & € Wanz any lift of a. Then it follows from Proposition [LTT.4 that
in the derived category (i), equals

i Wz (N2)INZ] 2P 2 om (i Wiz, i Winw 2 (N2) [N2])
L2 Hom(in. WaQz, H (Wawx ) (Nx)[Nz])
D(ir)

—  Hom(W,Qx,HZ(Whwx)(Nx)[Nz])
—  HZ(Wnllx)(Nx)[—c][Nx]

= RL,(WnQx)(Nx)[Nx].
Here the isomorphism (x) is the inverse of

c =~ c o Otﬂ

Hz (Waldx)(Nx) = Hom(Woldx, Hy Wawx)), |, | = (B || ]
It is straightforward to check, that taking H "2 (—) of this composition gives
Z41) and hence the claim. O

COROLLARY 2.4.2. Leti : Y — X be a closed immersion between smooth
affine k-schemes and assume that the ideal of Y in X is generated by a reg-
ular sequence ti,...,t.. Let Z C'Y be a closed subset which is equal to the
vanishing set V(f1,... fi) of global sections f1,..., fi € I'(Y,Oy). Denote by
iz : (Y,Z) — (X, Z) the morphism in (Sm./Speck) induced by i. Then the
projection to the n-th level of iz. is given by

i . i itc c “ —-1)° diela
ot Hy (Y, WaQly) — HE (X, Wax)(0), Lf]} = (=1) [[t],[f]}

where o € T(Y, W, Qy), & € T(X, W,,Qx) is some lift, [f] = [f1],...,[fi] and
[t], d[t] as in in Lemma[24])

Proof. Choose fi,...,f; € (X, Og() lifts of f1, ..., f; and define the set Z C X
as the vanishing locus of these f;’s. Denote by iy,x the closed immersion
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Y — (X,Y) viewed as a morphism in (Sm./X). Then it follows from the first
part of Proposition [ZZ4.1] that iz. ,, equals
HL (X, iy/xen) : Hy (Y, WnQy) = HL(X,i.W,,Qy)
— HL(X, Hy (Wallx)) = HH (X, WaQx)[d].
Now denote by [t] = [t1],...,[te] and [f] = [fi],...,[fs] the Teichmiiller lifts

of the sequences t and f to I'(X, W, Ox) and by K([t]) and K([f]) the corre-
sponding sheafified Koszul complexes. We define a morphism of complexes

0 WpQx[0] = Hom(K™*([t]), Wn2x (c))[c], ar (e1A...Aec — (—1)%d[t]a)

where eq,...,e. is the standard basis of (W,,Ox)¢. Then the second part of
Proposition ZZ.T] maybe rephrased by saying that the diagram

Wi Qx — = Hom(K™*([t]), W Qx(e))[c]

1. W, Qy

=
Hs (Wnllx)(c)

Ty X«

commutes. This yields the following commutative diagram of complexes (in
which the lower square is concentrated in degree 0):

Hom(K~* ([7]), Waf2x)li] — Hom(IC~*([7)), Hom(C~* (1), W 2x () ) ]

@

HL (X, WnQlx) ———————— HL(X, Hom(K™*([t]), WnQx (c))[c])

H (X, i WaQy)

=

Ty /X«

HL (X, Hs (Waf2x)(c)).

Now the claim follows from K([t]) ®w,0x K([f]) = K([t], [f]) and the commutativity
of the following diagram, in which we denote W,Qx (¢) simply by A

Hom(K™*([f]), Hom(K™*([#]), A)[e])[i] — Hom(K~*([t], [/]), A)[e + ]

| |

HL(X, 15 (A) = HF (X, A).

O

LEMMA 2.4.3. Let Y be a smooth k-scheme, f : X =Py — Y the projection
and U a family of supports on' Y. We denote by fy/s : (X, L)) — (Y, 0)
the morphism in (Sm./S) induced by f and by

fusse : HIX, F7HE))/S) = H((Y, ©)/S)(~r)

the corresponding push-forward (same for 7:[) Leta:Y — S be the structure
morphism. Then:
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(1) The higher direct images R'f.WeQx wvanish for i > r + 1. Therefore
there is a natural morphism in D+ (dRWy )

e: RfWex — R f . WQx[—7]

and the push-forward fy,s. factors as

D H' (Raw REWa0x) S @D R aw (R £ Walx) 2% @D Raly " Waly (—1).
Similar for H (replace ay by ay in the above formula,).
(2) The push-forward fy,y. : H(X/Y) = H(Y/Y)(=r) induces an iso-
morphism

fy/y* : er*W.QX E—) W.Qy(*?”),

with inverse induced by the push-forward i, : He(Y/Y)(—1) —
He(X/Y), where i : Y — X is any section of f.

Proof. First of all observe that it suffices to prove the statements on each finite
level n separately.

(1) By [Gro85l I, Cor 4.1.12] we have an isomorphism in D(W,, 2y —dga) (with
W,y — dga the category of differential graded W;,Q2y-modules)

T
(2.4.2) REW,Qx ~ €D W Qy (—i)[—].
i=0
This gives the first statement of (1) and in particular an isomorphism in
D(WnQy - dga)

-
(2.4.3) REW,Qx ~ P R f.W,0x[—i]

i=0
and the morphism e from (1) is the projection to the r-th summand. On the
other hand (fy,y.)n is induced by a derived category morphism (2.3.4))

(2.4.4) REW,Qx — W Qy (—7)[r].
Since the composition

R W Qx[—i] Y2, pr w0y BED w0y (<[]

is an element in Ext™" (R’ f. W, Qx, W,,Qy (—r)), this composition is zero for
all ¢ < r. Thus the morphism (24.4)) factors over e. This implies the second
statement of (1).

(2) Tt suffices to check that Jy/y« induces an isomorphism; ¢, will then auto-
matically be the inverse for any section ¢ of f. (Notice that by (Z4.2)) we know
R" f WeQdx >~ Wy (—r) but we don’t know that this isomorphism is induced
by fy/y«.) To this end, let R be the Cartier-Dieudonné-Raynaud ring of k, see
[IR83] I]. (R is a graded (non-commutative) W-algebra generated by symbols
F and V in degree 0 and d in degree 1, satisfying the obvious relations). Set
R, := R/V"R+ dV™R. We denote by D®(Y, R) the bounded derived category
of R-modules. Any de Rham-Witt module is in particular an R-module. Thus
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we may view Rif,W.Qx = Rif.WSQx, i > 1, as an object in D°(Y,R). In
D®(Y, R) we have the following isomorphisms

R, @5 R f.WQx ~ R, @5 WQy (—i) ~ W, Qy (—i) ~ R f,W,Qx,

where the first and the last isomorphism follow from [Gro85, I, Thm. 4.1.11,
Cor. 4.1.12] and the second isomorphism is [IR83| II, Thm (1.2)]. Since fy,y.
is clearly a morphism of R-modules it follows that the projection of fy,y, to
the n-th level, identifies with

Rn ®1{‘% fY/Y* : Rn ®é er*WQX — Rn ®é WQY(_T)-

We thus have to show that this is an isomorphism for all n. Now Ekedahl’s
version of Nakayama’s Lemma [Eke85, I, Prop. 1.1, Cor. 1.1.3] (also [III83]
Prop. 2.3.7]) implies that it is in fact enough to prove that the projection of
Jy/v« tolevel 1 - in the following simply denoted by f. - is an isomorphism,
i.e. we have to show (for all ¢ > 0)

fo RT£QY = Q87
In fact, f. is given by H" of the following morphism in D%(Oy)
Rf.Q% ~ Rf.RHom(QY* 9 wx) ~ RHom(Rf. QX 9, wy )[—]
LU, Rgyom(QN* 7, wy)[—r] = Q%" [—7],

with Nx = dimX. Thus it is enough to show that H"(D(f*)[—r])
H(D(f*)) is an isomorphism. This follows from the well-known formula

,.
REQY = @y
=0

which might be proved using the Kiinneth decomposition Q%
PBitjmq [ U R0y QJX/Y and [SGA7(2), Exp. XI, Thm 1.1, (ii)]. O

PROPOSITION 2.4.4. Let

(X', @) " (v', W)

(X,®) —L—~ (v, 0)

be a cartesian diagram, with f, f' morphisms in (Sm./S) and gx,gy mor-
phisms in (Sm*/S). Assume that one of the following conditions is satisfied

(1) gy is flat, or
(2) gy is a closed immersion and f is transversal to gy (i.e. f""Ny )y =

NX’/X)
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Then the following diagram commutes

(2.4.5) H((X,0)/8) e 1 (v, 0)/5)
H((X,®)/S) —L>H((V,¥)/S)

and also with H replaced by H.

In [Gro85, II, Prop. 2.3.2 and p.49 | a version of this Proposition (in the derived
category) is proved in the case without supports with f a closed immersion and
gy transversal to f. (This case is also covered here by factoring gy as a closed
immersion followed by a smooth projection.)

Proof. We distinguish two cases.

1. case: f is a closed immersion and gy is either flat or transversal to f.
Since ® and &’ are also families of supports on Y and Y’ the push-forward
f« factors over H((Y,®)/S) and f, factors over H((Y’,®')/S). Hence we may
assume ¥ = ® and ¥’ = &’. Furthermore by Definition 221} the pull-back g%
factors over H((X’, g% (®))/S) and g} factors over H((Y’, g5 (®))/S). Hence
we may assume that in the diagram (ZZE5) we have ¥ = &, &' = g*(®),
v = g;l((b). We may further assume, that X, X', Y,Y’ are equidimensional
and set c:=dimY —dim X =dimY’ —dim X’ and h:= fogx =gy o f’.
We consider the following diagram in Dt (dRWy-)

Rgy (f,
(2.4.6) R W xR gy RE v Wy (0)[d
Rf. (93‘<)T TRLX(gi‘/)
Rf*WoQX I REXWOQY (C) [C]’

where the horizontal (resp. vertical) morphisms are induced by (Z3.4) (resp.
(ZZ1)). By our assumption on the supports we obtain diagram (23] if we
apply ®H!(Rag(—)) (resp. @H’(R@Rad—))) to diagram (ZZ.6]), where
a:Y — S is the structure morphism. Thus it suffices to show that ([2:4.6)
commutes. By Proposition 24Tl the diagram (ZZ4.6]) is isomorphic to the outer
square of the following diagram

Rgy . (f!
(2.4.7) RRWx 2 Rgy Hee (W) (€)

nat‘T Tnat.
gy «(f1)

h*WoQX’ gY*HS(’(WOQY/)(C)

9% T Tgif

FWaQx — T HE (W) (c).
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The upper square obviously commutes. Thus it suffices to check that the lower
square of sheaves of de Rham-Witt systems commutes. This may be checked
locally and we may hence assume that the ideal sheaf of X in Oy is generated
by a regular sequence t = t1,...,t.. By our assumptions on gy, the sequence
gyt = gyti,...,gytc is again a regular sequence generating the ideal sheaf of
X’ in Oy+. Now the statement follows from the explicit formula [ZZ41]).

2. case: X =Py and f: X — Y is the projection map. In this situation we
also have X’ =P}, and f’ : X’ — Y’ is the projection map. The morphisms f
and f factor over (X, f~1(¥)) — (Y, ¥) and (X', f/~ (V")) — (Y’,¥’), which
are morphisms in (Sm,/S). Similar to the first case we conclude that it is
enough to consider the case ® = f~1(¥), ¥/ = gy (¥) and &' = )
Now Lemma 243 (1) reduces us to show the commutativity of the following
diagram (with h = fogx =gy o f')

H°(Rgy . (f.
(2.4.8) R h WeQx: 2B 1)) gy« WelQy (1)
g}T Tgi‘w
HO(f.)

R f WeQx

W.Qy(*?”).

But now let ¢ : Y — X be a section and ¢ : Y’ — X’ its pull-back, viewed as
morphisms over Y. We obtain push-forwards

i* : W.Qy(*”l’) — er*W.Qx, Z; : gy*W.Qy/(fT) — Rrh*W.QX/.
And since gy is transversal to i we may apply case 1. to obtain
(9y f« — figx) o i = gy fuis — flilgy = 0.

Thus the commutativity of ([Z4.])) follows from Lemma 243 (2), which tells
us that 7, is an isomorphism (with inverse f.).

Proof in the general case. Since f : (X, ®) — (Y, ¥) is quasi-projective we may
factor it as follows

(X,®) 5 (U, @) L (P,3) 5 (V, 1),

where P =P%, i : (X,®) — (U, ®) is a closed immersion, j : (U, ®) — (P, ®)
is an open immersion and 7 : (P,®) — (Y, ¥) is the projection. Notice that
we use the properness of fg to conclude that ® is also a family of supports on
U and on P and that all the maps above are in (Sm,/S). By base change we
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obtain a diagram

f/

m

J

(X', 9") —— (Uy+, @) — (Py:, @) — (Y, T')

R

(X,®) — = (Uy,®) —— (P,®) —"— (Y, D),

\/

f

with the horizontal maps in (Sm./S) and the vertical maps in (Sm*/S). Notice
that if gy satisfies condition (1) or (2) from the statement of the Proposition,
then so does gy. By the functoriality of the push-forward the commutativity
of the square ([2:41) follows from the first two cases and the fact that j. and j.,
are just the excision isomorphisms by Proposition 22353 (2). This proves the
proposition.

]

3. CORRESPONDENCES AND HODGE-WITT COHOMOLOGY

In this section all schemes are assumed to be quasi-projective over k. We fix a
k-scheme S.

3.1. EXTERIOR PRODUCT.

3.1.1. Let X and Y be two k-schemes and M and N two complexes of de
Rham-Witt systems on X and Y respectively. Then for all n > 1 we set

M, XN, := pl_an Rz, pQ_INn as a complex of abelian sheaves on X x Y,

where p; : X XY — X and p2 : X XY — Y are the two projection morphisms.
It is obvious, that the maps my ® my make the family {M,, K N,,},>1 into a
pro-complex of abelian sheaves on X x Y, which we denote by

(3.1.1) M&N.

3.1.2. Godement resolution. Let X be a k-scheme. For a sheaf of abelian groups
A on X we denote by G(A) its Godement resolution. Then there is a natural
way to equip the family {G(W,Qx)}n>1 with the structure of a complex of
de Rham-Witt systems on X, which we denote by G(W.{x). It follows from
the exactness of G(—) and the surjectivity of the transition maps W, 11Qx —
WnQlx, that each term G4(W,{lx) is a flasque de Rham-Witt system (in the
sense of [[L53). Thus the natural augmentation map WeQx — G(WlQx),
makes G(W,{x) a flasque resolution of de Rham-Witt systems of X.
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3.1.3. Exterior product for Godement resolutions. Let X and Y be two k-
schemes with families of supports. It follows from the general construction
in [God73| II, §6. 1], that there is a morphism of pro-complexes of abelian
sheaves on X XY

G(WeQx) K G(Wefdy) — G(WeQx X WeQy).
Therefore, multiplication induces a morphism of complexes
(3.1.2) GWdx) RG(WeQy) — G(Wedx xy)-

DEFINITION 3.1.4. Let (X, ®) and (Y, ¥) be in (Sm,/S) and denote the struc-
ture maps by a : X — S and b: Y — 5. Then we define the exterior products
Xt H((X,D)/S)RHI ((Y,¥)/S) = HTI((X xY,® x ¥)/S x §),

X HU((X,®)/S) RHI (Y, 0)/S) = HH (X xY,® x ¥)/S x S)
as the composition of H*/ ((a x b)exw (BL2)) (resp. H”j((m)‘w\l,(m))

) with the natural map

H (X, ®)/S)RH (Y, 0)/S) = H™ ((axb)exw(G(WeQx)HG(Wely)))
(resp. with (7)), where we use H*((X,®)/S) = H (asG(Wa 2x)), etc.
LEMMA 3.1.5. Let X = Spec A and Y = Spec B be two smooth affine k-schemes
and Zx C X, Zy CY closed subsets. Assume there are sections sy,...,8; € A

and t1,...,t; € B whose vanishing set equals Zx and Zy respectively. Then
for allm > 1 and q,r > 0 the morphism

X Hy (X, W,Q%) @z H, (Y, W, Qy) = Hy /5 (X x Y, W, Q%)
induced by Definition[3.1.] is given by

[[Sl]v-é-,[si]] ) [[tl]a--ﬁ-,[tﬂ] B |:PT[51]7"'ap?[zj];ﬁ;;[fl]a'"7p;[tj] 7

where we use the notation of [LIL1, o € W,,Q%, B € W, Q% andpy : X xY —
X and py : X XY =Y are the two projection maps.

Proof. We denote by C' the tensor product A ®; B and by K4, Kp and K¢
the respective Koszul complexes (see [LITI) K*([t], W,Q%), K*([s], W,,Q7%)
and K*(pi[t], p3[s]), WnQL™"). For any ordered tuple L = (I; < ... < l¢) of
natural numbers [, € [1,i+ j] we denote o(L) := max{v € [0,¢] |1, < i}, where
we set lg := 0. Notice that o(L) =0iff I; > i or L = . We define

Lgi: (ll < ...<la(L)), lfO'(L) S [1,5],
0, if o(L) =0,

0, if o(L) =¢ or L = 0.

Thus the natural numbers appearing in the tuple L= are contained in [1,1],
whereas those appearing in L=? are contained in [1, j].

i {«zg@m —i) << (g—i), ifo(l) <&
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Let {e1,...e}, {f1,...,f;} and {h1,...,hiy;} be the standard bases of
W (A), W, (B)? and W, (C)™7, respectively. If L = (I < ... < l¢) is an
ordered tuple with I, € [1,1], then we write ep, = e;; A... Aej € /\5 Wh(A)L.
In case L is the emptyset we define ey, to be 1 € W,,(A4). Similarly we define

the notations fr and hp.
With this notation we can define the morphism

" v
e: P (Homw,AA)(/\Wn(A)l,WnQZ) XHomwn(B)(/\Wn(B)]yWn%)>
ptv=¢

13
— Homw,, (¢ (/\ W (C)' ™ W,Q8™),

by sending a tuple of pairs of morphisms @&,,4+,=¢(¢", ") to the morphism,
which is uniquely determined by

hr = pie” B (ep<i) - pay 7B (frs0).

It is straightforward to check, that € induces a morphism of complexes K4 ®z
Kp — K¢, which in degree zero equals

€ W ©z Wl — WoQE",  a® B pia-psh
and in degree ¢ + j is given by
et K,i4 ®z ijg — Ké“} fiﬂ(sﬁ & ¢)(h[1,z‘+j]) = pT@(e[l,z‘]) 'p§¢(f[1,j])-

By the very definition of the symbols [[ ﬂ, ete. in [[LIT]] it remains to

«
Sl] L) [S'L
show, that the following diagram commutes:

(3.1.3)  HI(Ka)® HI(Kg) 2 HiI (K, 0 Kp) > H(Ke)

| |

i J i+J
Hy, ®Hy, Hy 70

where we abbreviate Hj, = Hj (X, W,Q%), etc. This is a straightforward

calculation. O

3.1.6. Exterior product for Cousin compleres. Let X and Y be smooth k-
schemes and denote by Z% and Z3. their respective filtrations by codimension.
Then we obtain from B.1.2] a natural morphism

Ly G(WeQx) KT 5 G(Weldy) . Lyorn G(Waldxxy)
EZ‘}fl ®£Z§, +£Z; ®£Z§,+1 EZ;t(b;lG(W°QXxy)’

where we abbreviate the denominator on the left in the obvious way. With the
notation from [[L5.8] there is an obvious morphism from

M WoQx) KM (WaQly)

“ +1
a7z ( 74 2
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to the (i + j)-th cohomology of the left hand side. In composition we obtain a
morphism

Hi (W.Qx) X Hj (W.QY) — ,HiZJrajﬂy atb+1 (WoQXxY)a

Z?(/Z()l(+1 Z;)’/Z§7/+1 XXY/ZXXY
which is compatible with Frobenius. It is straightforward to check that this
pairing induces a morphism of pro-complezes of sheaves of W -modules on X XY

(314) E(WOQX) X E(WOQY) — E(WOQXXY)a

where F(—) denotes the Cousin complex with respect to the codimension fil-

tration (see [[5.8).

PRroOPOSITION 3.1.7. The exterior products defined above satisfy the following
properties:

(1) The exterior products (for # and H) can also be calculated by using the
morphism B14) in Definition[3.1.4) instead of the morphism [B12).

(2) The exterior products are associative.
(3) Let f: (X,®) = (Y, V) and f": (X', ") = (Y, ¥') be two morphisms
in (Sm*/S) and o € H((Y,V)/S), o/ € H((Y',¥")/S), then

(ffa) x (f" oY= (f x fY*(axd) inH(X x X', ®xd)/S xS).

Similar with H.
(4) Let f : (X,®) — (Y,T) be a morphism in (Sm./S) and o €
HU(X,®)/9), o/ € H((X',®")/S), then

(fea) x o = (f xidx/)«(a x o) in H(Y x X', ¥ x &')/S x S).

Similar with H.

(5) Let (X,®) and (Y, ¥) be smooth k-schemes over S with families of
supports and o € H>1((X,®)/S), B € HI"((Y,V)/S). Then (similar
properties hold for H):

(a) The switching isomorphism

H(X xY,dx¥)/SxS)2H((Y x X,¥ x P)/S x 5)

sends o X B to (—1)7" I3 x a.

(b)
Fla)x F(B) =F(ax8), =(a)xn(8)=mr(axp),

(e x ) = (der) x B+ (=1)Ta x d(P),

for a, B8 € Hy.
(c)

Via) x B =V(ax F(B)), pla)xpB=plaxmn())
fOT‘ o€ Hn, ﬂ € HnJrl'
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Proof. (1) follows from [God73l II, Thm. 6.2.1]. (2), (3) and (5) easily follow
from the properties [God73, II, 6.5, (b), (d), (e)] and the corresponding prop-
erties of the multiplication map WeQx X WeQy — WeQlxxy. It remains to
check (4). Since f is quasi-projective we may factor it as the composition of
a regular closed immersion followed by an open embedding into a projective
space over Y followed by the projection to Y. Using similar arguments as in the
proof of Proposition 244 (together with Lemma [ZZ.3]), we can reduce to the
case that ® = ¥ and that f : (X, ®) — (Y, ®) is a regular closed immersion of
pure codimension ¢. By (1) it thus suffices to show, that the following diagram
commutes

GID

f(E(WaQx)) R E(W.Qx/) E(WeQxxx)

f*&ldl l(fxidxl)*
(L (EWa23))(0)c]) B EWax) EEL Ty 0 B(WaQy x) (0],

where we denote by f. and (f X idx/). the morphism defined in (Z33]). The
question is local and we may therefore assume X = Spec A, X' = Spec A’
and Y = Spec B are affine and that the ideal of YV in X is generated by a
regular sequence 71, ..., 7.. Furthermore we may check the commutativity in
each degree separately and thus by the description of the terms of the Cousin
complex in[[L5.8 (2), we are reduced to show the commutativity of the following
diagram:

Hy (X, W Q%) ® Hy (X', Wa Q%)) —— H?;(szx/ (X x X', W Q7))

f*®idl l(fxid)*

H;’;{%Y,Wn(lg,tfx,)®H%X/(X/7Wnﬂ )—>HZZt(]>J<r§ /(YXX/7W"Q§/+><T)J(F’C)

where Zx C X and Zx/ C X' are integral closed subschemes of codimension
1 and j respectively. But this follows from the explicit formulas in Corollary
2.4.2l and Lemma [3.1.5] O

Remark 3.1.8. Notice that in the situation of (4) above the two elements o x
(f«a) and (idxs X f)«(a@/ X «) are in general only equal up to a sign. This is
the reason for the sign in ([B.3.6]).

3.2. THE CYCLE CLASS OF GROS. We review some results of [Gro85)].

3.2.1. Witt log forms. Let X be a smooth k scheme. We denote by
Wnﬂg(,log

the abelian sheaf on the small étale site X of X defined in [III79] 1, 5.7]; it is
the abelian subsheaf of Wnﬂg(ét which is locally generated by sections of the
form

M---M, with z1,...,2q € O%, .

[z1]  [zg] «
By definition W,90% 1, = Z/p"Z.
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3.2.2. The cycle class. Let X be a smooth k-scheme and Z C X a closed
integral subscheme of codimension ¢. Then by [Gro85, II, (4.1.6)] the restriction
map

(321) H%(Xétﬂ WnQS(,log) E_> HE\Z ((X \ Zsing)ét; WnQ;(,log)

is an isomorphism (where Zgn, denotes the singular locus of Z). Therefore
following Gros we can define the log-cycle class of Z of level n

chog,n(Z) € Hz(Xet, WnQ% 10g)

sing

as the image of 1 under the Gysin isomorphism ([Gro85, II, Thm 3.5.8 and
(3.5.19)])

(3.2.2) HO((Z \ Zsing)ét Z/p"Z) = H%\Zsi,,g((X \ Zsing)ét WnQ,CX,log)
composed with the inverse of B2 (see [Gro83 II, Def. 4.1.7.]). We define
the cycle class of Z of level n
cn(Z) € HY (X, W,8x)
to be the image of cliog,n(Z) under the natural morphism Hg(Xet, Wn2 15,) —
H (X, WnQ%). We have
7(cliogn(Z)) = chogn-1(2Z), 7(cln(Z)) = cln-1(Z).

Therefore (cliog,n(Z))n (resp. (cln(Z))n) give rise to an element in the projec-
tive system HZ (Xet, We 2k 1oq) (vesp. HZ (X, We %)), which we simply denote

by cliog(Z) (resp. cl(Z)).
Notice that we have an isomorphism

(3.2.3) H5(X,WQ5) = lim Hg (X, W,Q%).
(Indeed by Proposition [L5.6 (5) we have a spectral sequence
R'lim HY (X, W, Q%) = Hy" (X, WQ%),
which by Lemma [[L5T] (1) gives a short exact sequence
0— R I'&nH?l(X, W.Q%) —» HZ (X, WQ%) — @H%(X’ wW,Q%) — 0.

But by Lemma HS (X, W,0%) equals 0 for all n. Hence (:23).) We
define

él(Z) € HZ (X, WQ%)
as the image of lim  cl,(Z) via (B.23).

3.2.3. Properties of the cycle classes. The above cycle classes have the following

properties (we only list them for ¢l there are analogous properties for cljos and
él):

(1) Let Z C X be a closed integral subscheme of codimension ¢ and U C X

be open such that ZNU is smooth. Denote by i : ZNU < (U, ZNU)

the morphism in (Sm./Spec k) which is induced by the inclusion of Z
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in X and by j: (U, ZNU) — (X,Z) in (Sm*/Speck) the morphism
induced by the open immersion U C X. Then

Jrel(Z) = c(ZNU) =i (1) in HS(X, WeQ%),

where 1 is the multiplicative unit in the pro-ring H*(Z NU, WeOznv).
(2) Let Z and Z’ be two closed integral subschemes of X of codimension

¢ and ¢ respectively intersecting each other properly (i.e. each irre-

ducible component of Z N Z’ has codimension ¢ + ¢’ in X). Then

A(2.7') = A*(cl(Z) x cl(Z")) in HEES,, (X, WoQete),

Here Z.Z' is the intersection cycle ), ny[T], where the sum is over
the irreducible components of Z N Z’ and nr are the intersection mul-
tiplicities (computed via Serres tor-formula), cl(Z.Z’) is defined to be
Spncl(T)and A: (X, ZNZ') - (X x X, Z x Z") in (Sm*/Speck)
is induced by the diagonal morphism.

(3) For a line bundle £ on X we denote by ¢1(L)iog € H'(Xat, WeSi 105)
the sequence of elements (dlog, ([£]))n, where [£] denotes the class of
Lin H' (X,0%) = H(Xet, Gy,) and dlog,, is induced by taking H' of
the map G,,, — Wnﬂ}(,log’ a — dlogla]. We denote by ¢q (L) the image
of C1 (E)]Og in Ifl()(7 W.Qg()

Let D C X be an integral subscheme of codimension 1, then

c(D) = c¢,(O(D)) in H (X, W,Qk).
(4) Let Z be as in (1), then:
F(cl(2)) =n(cl(Z)), V(c(Z))=p(cl(Z)), d(c(Z))=0.

(1) follows from the fact, that the Gysin morphism ([B22) is induced by the
pushforward i, where iy : Z \ Zsing = (X \ Zsing, Z \ Zsing) in (Sm./Speck)
is induced by the inclusion. This follows from [Gro85 II, 3.4.] (or alternatively
from the description of the Gysin morphism in [Gro85| II, Prop. 3.5.6] together
with Proposition ZZ411) (2) is [Gro85l II, Prop. 4.2.12.] and (3) is [Gro85, II,
Prop. 4.2.1]. The first and the last equality in (4) follow from the definition,
the second equality is implied by the first and 7 (cl,,(Z)) = cl,,—1(2).

3.3. HODGE-WITT COHOMOLOGY AS WEAK COHOMOLOGY THEORY WITH
SUPPORTS.

3.3.1. Weak cohomology theories with supports. Weak cohomology theories
with supports have been introduced in [CR09]. For the convenience of the
reader we recall the definitions.

First, recall the definition of the categories Sm. = (Sm./k) and Sm* =
(Sm*/k) in Definition ZT1l For both categories Sm* and Sm, finite coprod-
ucts exist:

x,o)[[vv) = xJ[yv.euw).
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For (X,®) let X = [], X; be the decomposition into connected components,

then
(x, @) = [[(Xi, 2 nax,).

?
In general products don’t exist, and we define

(X, ) (Y, ¥):=(X xY,0o x T)
which together with the unit object 1 = Spec(k) and the obvious isomorphism
(X,2)(Y,¥) = (Y, ¥)®(X, @) makes Sm, and Sm™* to a symmetric monoidal
category (see [MLIS8| VII.1]).

3.3.2. A weak cohomology theory with supports consists of the following data
(Fe, F*,T,e):

(1) Two functors Fy : Sm, — GRAB and F* : (Sm*)°? — GRAB such that
F.(X) = F*(X) as abelian groups for every object X € ob(Sm.) =
ob(Sm*). We will simply write F(X) := F.(X) = F*(X). We use
lower indexes for the grading on F,(X), i.e. Fiu(X) = ®;F;(X), and
upper indexes for F*(X).

(2) For every two objects X,Y € ob(Sm.) = ob(Sm*) a morphism of
graded abelian groups (for both gradings):

TxyyiF(X) ®ZF(Y) —)F(X@Y)

(3) A morphism of abelian groups e : Z — F(Spec(k)). For all smooth
schemes 7 : X — Spec (k) we denote by 1x the image of 1 € Z via the
map Z 5 F*(Spec (k)) LN F*(X).

3.3.3. These data are required to satisfy the following conditions:

(1) The functor F. preserves coproducts and F* maps coproducts to prod-
ucts. Moreover, for (X, ®1), (X, P2) € ob(Sm.) with &1 NPy = {(} we
require that the map

F* (1) + F7(g2) : FY(X, 1) & F*(X, @g) — F*(X, @1 U D),

with s (X,(I)l U(I)g) — (X,(I)l) and J2 (X,(I)l U(I)Q) — (X7¢2) in
Sm™*, is an isomorphism.
(2) The data (Fy,T,e) and (F*, T, e) respectively define a (right-lax) sym-
metric monoidal functor.
(3) (Grading) For (X, ®) such that X is connected the equality
Fz(Xa @) - F2dimX7i(Xa @)

holds for all s.
(4) For all cartesian diagrams (cf. Z1.T)

(X', @) L= (v', W)

-k

(X,9) —— (Y, 7)
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with gx,g9y € Sm* and f, f' € Sm, such that either gy is smooth
or gy is a closed immersion and f is transversal to gy the following
equality holds:

F*(QY)OF*(f) = F*(fI)OF*(gX)'

Recall that f is transversal to gy if (f')*Ny/,)y = Nx/,x where N denotes the
normal bundle. The case X’ = () is also admissible; in this case the equality

B33E) reads:

F*(gy) o F(f) = 0.
In [CRO9, p. 700] it is spelled out what it means for (Fy,T,e) (and (F*,T,e))
to be a right-lax symmetric monoidal functor.

DEFINITION 3.3.4. If the data (Fy, F*,T,e) as in B3.2 satisfy the conditions
B33 then we call (Fy, F*, T, e) a weak cohomology theory with supports.

DEFINITION 3.3.5. Let (Fy, F*,T,e),(G.,G*,U,¢€) be two weak cohomology
theories with support. By a morphism

(3.3.1) (Fe, F*,T,e) = (G«,G",U,¢€)
we understand a morphism of graded abelian groups (for both gradings)
¢: F(X)— G(X) forevery X € ob(V,) = ob(V"),
such that ¢ induces a natural transformation of (right-lax) symmetric monoidal
functors
¢: (F,T,e) = (Gs,Uye)and ¢ : (F*,T,e) = (G*,U,e),
i.e. ¢ induces natural transformations F, — G, F* — G*, and

(3.3.2) poT=Uo(p®¢), Poe=c¢.

3.3.6. Chow theory as a weak cohomology theory with supports. An example of a
weak cohomology theory with supports are the Chow groups (CH,, CH*, X, €)
[CRO9, 1.1]. We will briefly recall the definitions for the convenience of the
reader.

DEFINITION 3.3.7 (Chow groups with support). Let ® be a family of supports
on X. We define:

CH(X, ®) = lim,,__ CH(WV).

Wea
The group CH(X, ®) is graded by dimension. We set
CH. (X, ®) = @) CH4(X, ®)[2d],

a>0
where the bracket [2d] means that CHy (X, ®) is considered to be in degree 2d.
There is also a grading by codimension. Let X =[], X; be the decomposition
into connected components then CH* (X, ®) = @, CH*(X;, N ®x,) and

CH*(X;,® N ®x,) = @ CHY(X;, & N 0y, )[2d]
a>0
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where CHY(X;, ® N ®y,) is generated by cycles [Z] with Z € &N dx,, Z
irreducible, and codimy, (Z) = d.
Let f: (X,®) — (Y, ¥) be a morphism in Sm,. There is a push-forward

(3.3.3) CH.,(f) : CH(X, ®) — CH(Y, ¥),

defined by the usual push-forward of cycles (fjw )« : CH(W) — CH(f(W)) —
CH(Y, V) (for this we need that fjy is proper and f(®) C ¥). We obtain a
functor

(3.34) CH,:Sm., — GrRAB, CH.(X,®):=CH(X,®), [+ CH.(f).
In order to define a functor
CH" : (Sm™)°? — GRAB

we use Fulton’s work on refined Gysin morphisms [Ful98| §6.6].

Let f: X — Y be a morphism between smooth schemes and let V' C Y be a
closed subscheme, thus f : (X, f~1(V)) — (Y, V) is a morphism in Sm*. We
define

CH*(f) := f': CH(Y,V) = CH(V) — CH(f~}(V)) = CH(X, f~}(V)).

For the general case let f : (X,®) — (Y, V) be any morphism in Sm*. For
every V € ¥ the map f induces (X fY(V)) = (Y, V) in Sm*. We may define

CH*(f) : CH(Y, W) = lim,,_ CH(Y, V) — liy,,,_, CH(X, W) = CH(X, ®).
The assignment
CH* : (Sm*)° — GRAB, CH*(X,®) = CH(X,®), f+ CH*(f)
defines a functor. Together with the exterior product x (see [Ful98, §1.10]) and
the obvious unit 1 : Z — CH(Spec (k)), we obtain a weak cohomology theory
with supports (CH,, CH", x,1).
3.3.8. ;From Proposition and Proposition we obtain two functors
H, : Sm, — GRAB,
H* : (Sm*)°? — GRAB,

where for an object (X, ®) € ob(Sm.) = ob(Sm*) with structure morphism
a: X — Spec (k) we have

H(X,®) := H (X, ®) := H*(X,®) := H((X,®)/Speck) = @) RlaeW. Q%
p,q>0

as abelian groups (see (LZ4]) for the definition of d4). In view of Proposition
[.5.6] we get an equality

Riae = H%0 R%iLnORa* o Rls.
In particular, if & = ®x is the set of all closed subsets of X then
H(X):=H(X,®x) = @ H(Rlim RT(W,0%)).

p,q>0
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Note that RlimoRI' = RI' o Rlim and RlIm(W,Q%) = lm(W,Q%) = WOk
by Lemma Thus we obtain
HX)= P HY(X, WX).
p,q20

In the following we will write H(X) for H(X, ®x).
The grading for H* is defined by

H'(X,0)= P RlaaW,0%.
p+g=i

For H,(X,®) the grading is defined such that B3.3(4) holds.
For two objects (X, ®), (Y, ¥) with structure maps a : X — Spec (k),b:Y —
Spec (k), we define
(3.3.5) T:H(X,®) @, HY,¥) = HX xY,® x )
by the formula
(3.3.6) T(aip ® Bjg) = (1) (i X B1q),

where o, , € RlaaWeQ%, B4 € RiIbyWaQ%, and x is the map in BT4
We define

e: 7 — H(Spec (k) = W (k)
by e(n) = n for all n € Z.

PrOPOSITION 3.3.9. The triples (ﬁ*,T, e) and (I:I*, T,e) define right-lax sym-
metric monoidal functors.

Proof. The morphism T respects the grading H* and the grading H,. In the
following we will work with the upper grading H*. All arguments will also
work for the lower grading H, because the difference between lower and upper
grading is an even integer.

The axioms which involve e do obviously hold. By using the associativity of x
(Proposition B-I77(2)) it is straightforward to prove the associativity of T. Let
us prove the commutativity of T', i.e. that the diagram

(3.3.7) H(X,®) @ HY,¥) > H(X xY,® x )

| ]

H(Y,V)® H(X,®) —— H(Y x X,V x d)

is commutative. The left vertical map is defined by a® s (—1)dee(@) deg(8) g
a. By using Proposition B.I7(5)(a) we obtain

e(T(aip ® Biqg)) = e((—1)FPq; ) x B 4) = (—1)FPI (—1)Patii g, x

= (‘Upﬁpjﬁj,q X Q,p-
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On the other hand,

T( )P0 5y, @ ) = ()P (150G, x o,
= (71);Dl1+pjﬂj’q X Qi p.
This proves the commutativity of diagram B.3.7).

The functoriality of T with respect to H* follows immediately from Proposition
BI7(3). The functoriality of T' with respect to H, follows from Proposition

BIT)(4). O

THEOREM 3.3.10. The datum (ﬁ*, H*T, e) is a weak cohomology theory with
supports (cf. Definition[3.57).

Proof. We have to verify the properties in section B33l Property B.33(1) is
obvious. Proposition B30 implies B33(2). The compatibility of the gradings
B331(3)) is satisfied by definition. Proposition 2244 yields B33|(4). O

3.3.11. In the same way as in section [3.3.8 we define
PH, : Sm, — GRAB,
PH* : (Sm*)? — GRAB,

where for an object (X, ®) € ob(Sm.) = ob(Sm*) with structure morphism
a: X — Spec (k) we have

PH(X,®) = PH.(X,®) = PH*(X,®) = @) RPaa W, Q%
p20
as abelian groups. The grading is defined in the obvious way:
PH?(X,®) = RPaa W, %,

and zero for all odd degrees. Of course, for PH, (X, ®) the grading is defined
such that B33|(4) holds.
For two objects (X, ®@), (Y, ¥), we get an induced map

T:PH(X,®) @z PH(Y,¥) = PH(X xY,® x U)
from (3:3.5).

Theorem [3.3.101 implies the following statement.

COROLLARY 3.3.12. The datum (PH,, PH*,T,e€) is a weak cohomology theory
with supports (cf. Definition [3.34]). Induced by the inclusion PH(X,®) C

H(X,®), we get a morphism of weak cohomology theories with supports
(cf. Definition [Z.3.3])

(PH,,PH* T e) — (H,,H*,T,e).
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3.4. CYCLE CLASSES. One of the main goals of [CR09] was to give a criterion
when a weak cohomology theory (Fy, F*,T,e) admits a morphism

(CH.,CH*, x,1) — (F., F*,T,e).

In order to apply [CR09, Theorem 1.2.3] in our situation, i.e. for
(Pﬁ*, PH*.T, e), we first need to prove semi-purity.
Recall that (PI:I*,PI:I*,T,e) satisfies the semi-purity condition (cf. [CR09,
Definition 1.2.1]) if the following holds:
e For all smooth schemes X and irreducible closed subsets W C X the
groups PH;(X, W) vanish if ¢ > 2dim W.
e For all smooth schemes X, closed subsets W C X, and opensets U C X
such that U contains the generic point of every irreducible component
of W, we require the map

PH*()) : PHydqimw (X, W) = PHogimw (U, W N U),
induced by 7: (U,WNU) — (X,W) in Sm*, to be injective.
ProrosiTioN  3.4.1. The weak cohomology theory with supports
(PH.,PH*,T,e) satisfies the semi-purity condition.
Proof. To verify the two conditions we may assume that X is connected of
dimension d. Since
PHy (X, W) = Hi7H(X, W%,

we need to show that H “(X, WQ% ") vanishes if 2i > 2dim W (or equiva-
lently, d — i < codimx W). Indeed, we have

Hy (X, W5 ") = R 'a. RLy Rlim (W, Q5 )

with @ : X — Spec (k) the structure map. Since RLw Rlim = Rlim RL'y,, we
need to show that

(3.4.1) RIL, W, Q% =0,

for j < codimx W. This follows from Lemma [[.5.9] (which follows from the fact
that the graded pieces of the standard filtration on WnQEI(_i are extensions of
locally free Ox-modules [II79] I, Cor. 3.9]).

For the second condition, let W C X be a closed subset and U C X open, such
that U contains the generic point of every irreducible component of W. We
need to prove that the restriction map

H&;dimW(X, WQSl{dimW) N H[Zl'atyi/[I/mW(U; WngdimW)
is injective. But the kernel is a quotient of H“fvf\c}]imw(X, WQf,l{dimW), which

vanishes because d — dim W < codimx (W\U). O

DOCUMENTA MATHEMATICA 17 (2012) 663-781



HoDGE-WITT COHOMOLOGY ... 727

3.4.2. In view of [CR09, Theorem 1.2.3] there is at most one morphism of
weak cohomology theories with support

(CH,,CH*, x,1) — (PH,,PH* T,e).

THEOREM 3.4.3. There is exactly one morphism (in the sense of Definition
733

(CH.,CH*, x,1) — (PH,, PH*,T,e).

Proof. We need to verify the criteria given in [CR09, Theorem 1.2.3].
The condition [CR09, Theorem 1.2.3](1) is satisfied by Proposition 2341
For the second condition [CR09, Theorem 1.2.3](2) we need to show that for the
0-point 29 : Spec (k) — P! and the oo-point 124, : Spec (k) — P! the following
equality holds:

PH,(19)oe = PH,(150) o e.
ByB.Z3|(1) the left hand side is ¢/({0}) and the right hand side equals ¢l({o0}).
In view of B.223(3) we obtain

e({0}) = c1(Opi (1)) = cl({oo}).

For W C X an irreducible closed subset, we set clx w) := ¢l(W). Then
B23(1) implies that condition [CR09, Theorem 1.2.3](4) holds.
Finally, we prove [CR09, Theorem 1.2.3](3). Let : : X — Y be a closed
immersion between smooth schemes, and let D C Y be an effective smooth
divisor such that

e D meets X properly, thus DN X := D xy X is a divisor on X,

e D' := (DN X)ypeq is smooth and connected, and thus DNX =n - D’

as divisors (for some n € Z,n > 1).
We denote by 1x : X — (Y, X),2pr : D' — (D, D’) the morphisms in Smi.
induced by 2, and we define g : (D,D’) — (Y, X) in Sm* by the inclusion
D C Y. Then the following equality is required to hold:
(3.4.2) PH*(9)(PH.(1x)(1x)) =n- PH.(1p/)(1 ).
Obviously, we may assume that X and Y are connected; we set ¢ := codirpyX .
A priori, we need to prove the equality (342) in H, (D, WQS,). Since H*(g),
H.(1x) and H,(1p) are morphisms in dRWy, they commute with Frobenius.
Thus both sides of (B:42) are already contained in the part which is invariant
under the Frobenius H$, (D, WQ%)¥. Denote by f : (D,D’) — (Y,D’) the
morphism in Sm, which is induced by the inclusion D C Y.
We claim that
PH.(f): H (D, WQ$%) — HS (Y, WQsH)

is injective on HS, (D, WQ5)E.
Indeed, by [[I79 I, Thm. 5.7.2] there is an exact sequence of pro-sheaves on
Det

0 = WeQdp 0 — We Q) R WeQg — 0.
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This yields an exact sequence of pro-groups
HE (D, W) = Hpy (Dee, W2 10,) — Hy (D, Wa25)F — 0.

(Notice that HY, (D, WeQ%) = H}, (De, WeQL), since the W,Q% are quasi-
coherent on W, D and D¢, = (W, D)¢g.) But HBTl(D,W.QCD) = 0 (see e.g.
BZ1)) and thus

Hp (Det, Wed5 1) = im Hf,, (D, WoQ5)" 623 HS, (D, WQH)E.

(—
n

E

Combining this with Gros’ Gysin isomorphism (322 we obtain an isomor-
phism

BZ3 (1) 55

Z, = H (D, W), 1+ él(D) PH.(1p)(1p:).

In the same way we also obtain an isomorphism
Z, = HSP(Y, WS 1 (D) 2D PHL(f) o PH.(1p)(1p).

This yields the claim.
Thus it suffices to prove the following equality

PH,(f)PH"(9)(PH.(1x)(1x)) = n- PH.(f)PH.(1p/)(1p).

For this denote by ¢’ : D — (Y, D) in Sm, and Ay : (Y,D') —» (Y xY,D x X)
in Sm* the morphisms induced by the inclusion and the diagonal respectively.
Then

PH.(f)PH(9)(PH.(1x)(1x)) = PH.(¢')(1p) U PH,(1x)(1x)
— PH*(Ay)(@(D) x d(X))  BZ3 (1)

=d(D.X) B.23 (2)
=n-el(D")
=n-PH.(foip)(1p) B.2.3 (1),

=n- PH,(f)PH.(ip)(1p/)

where a Ub := PH*(Ay)(T(a ® b)) and hence the first equality holds by the
projection formula, see [CR09, Proposition 1.1.11]. This finishes the proof. O

DEFINITION 3.4.4. We denote by
¢l : (CH,,CH*, x,1) — (H,, H*,T,e)

the composition of the morphism in Theorem [3.4.3] and Corollary [3.3.12 Note
that there is no conflict with the notation in section
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3.4.5. To a weak cohomology theory F = (F., F*,T,e) we can attach a
graded additive category Corp (J[CR09, Definition 1.3.5]). By definition we
have ob(Corg) = ob(Sm.) = ob(Sm*), and

Homcor . (X, ®), (Y. 0)) = F(X x Y, P(®, 7)),
where
P(®,V):={Z C X xY;Zis closed, pr, | Z is proper,
Z Npry Y (W) € pry H(¥) for every W € ®}.
The composition for correspondences is as usual:
boa = Fu(pia)(F* (pr2)(a) U F* (pas) (b)),
with ps; : X1 x Xo x X3 — X; X X the projection; the product U is defined

by aUb:= F*(A)(T(a®0b)) (see [CRO9, 1.3] for the details).
Moreover, there is a functor

pr : Corp — (AD)
to abelian groups defined by
pr(X, @) = F(X,®)
pr(7) = (a = Fu(pry)(F*(pry)(a) Uy)), for v e F(X XY, P(®,V)),

(see [CROY, 1.3.9]).
The morphism

¢l : CH = (CH,,CH*, x,1) — H = (H,, H*, T, e)
(Definition B:44) induces a functor (see [CR0O9, 1.3.6])

Cor(él) : Corcy — Cory.

For (X, ®) € Cory, the group py (X, ®) = ﬁ(X, D) is a de Rham-Witt module
over k (i.e. an object in dRWy). The next theorem states that the Chow
correspondences act as morphism of de Rham-Witt modules.

THEOREM 3.4.6. The composition

Corcu — Corg L, (Ab)
induces a functor
(3.4.3) Corg : Corcy — d/R\\Nk.

Proof. Let (X,®),(Y,¥) € Sm. Note that Corcu((X,®), (Y, ¥)) is graded
and is only non-trivial in even degrees. By definition

COT%H((Xa (I))7 (K \I/)) = CHdimXJri(X X K ]D((I)7 \I/))7

(we may assume that X is equidimensional), where CHY™ X (X x Y, P(®, ¥))
is generated by cycles Z with codimyxyZ = dim X + i, as in
We will show that a cycle Z € CorZy, (X, ®), (Y, V)) defines a morphism

P (E1(2)) : F(X,®)(~i) — H(Y, )
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in dARW % (the shift by —i concerns only the grading and the differential, which
is multiplied with (—1)?).

Because pullback is a morphism of de Rham-Witt modules (Definition 2:2.1))
and pushforward is a morphism of de Rham-Witt modules up to the shift with
the relative dimension (Definition 2-3.1]), we can easily reduce the statement to
the following claim. For all (X, ®) and all irreducible closed subsets Z C X of
codimension ¢ the map

H(X,®) = H(X x X,® x &2)(c)
a—T(a®cl(Z))
is a morphism in dRW k- The compatibility with F' and V follows immediately

from Proposition B.I7(5) and the invariance F'(él(Z)) = él(Z) (results of Gros
B2314)). The compatibility with d also follows from Proposition B.I7(5) and

d(el(2)) = 0 B.2.3(4)):

T(da® él(Z)) L (—1)desda) gy x ¢1(2) G30),
= (-t Cd(a x el(z))  BIIG), BZI4),
= (=1)%dT(a®él(Z)) B.3.9).
O
PROPOSITION 3.4.7. (i) For every f : (X,®) — (Y,¥) in Sm* the

transpose of the graph T(f)! C Y x X defines an element in
Cordy; (Y, ), (X, ®)) (i.e. has degree 0). The morphism
Cora(T(f)") : H(Y,¥) —» H(X, D)

is the same as f* in Definition [2.2.]]

(ii) For every f : (X,®) — (Y U) in Sm, the graph T'(f) € X xY
defines an element in Corgy (X, ®), (Y, ¥)) (i.e. has degree —2r =
2(dim(Y) — dim(X))). The morphism

Cora(T(f)) : H(X,®)(r) — H(Y,¥)
1s the same as f, in Definition [2.31.

Proof. For (i). Let iy : (X, f~1¥) — (Y x X, pr{,lllf) be the morphism in Sm*
induced by the morphism of schemes (f, idX) Let i1 : X — (Y x X,T(f)})
and i3 : (X, f710) — (Y x X,T(f)! N pry'¥) be the morphism in Sm. in-
duced by (f,idx). For all a € H(Y,¥) we use the projection formula [CR09,
Proposition 1.1.11] to obtain:

Cora(L(f)")(a) = Ha(pry)(H" (pry)(a
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The proof of (ii) is similar. O

3.5. CORRESPONDENCE ACTION ON RELATIVE HODGE-WITT COHOMOLOGY.
For a scheme S over k we need a relative version of the functor (B:43]) with

values in de Rham-Witt modules (E{\TV s over S.

Let f: X - Sand g:Y — S be two schemes over S. Suppose that X,Y are
smooth over k. Since X xgY C X x Y defines a closed subset we can define
the family of supports on X x Y

(3.5.1) P(X xgY):= P((I)X,(I)y)ﬂX XgY,

this is the family of supports consisting of all closed subsets of X x ¢ Y, which
are proper over Y. (Recall that ®x denotes the family of all closed subsets of
X.) If h: Z — S is another S-schemes which is smooth over k, then

D13 |p1_21(P(X xgsY)) ﬁp2_31(P(Y X g Z)) is proper,
p13(pis (P(X X5 Y)) Npgg (P(Y x5 Z)) C P(X x5 Z).

By using the fact that CH defines a weak cohomology theory with supports we
obtain a composition (see [CR09, 1.3] for details)

(3.5.2)

CH(X xY,P(X xsY))x CH(YY x Z, P(Y x5 Z)) > CH(X x Z, P(X x5 Z)),

(a,b) = boa:= CH.(p13)(CH" (p12)(a) U CH" (p23) (b)),

with morphisms p;; induced by the projections:

pr2: (X XY X Z, P(X xsY)x Z
pes (X XY X Z, X x P(Y xg Z)

)= (X XY,P(X xgY)) € Sm*,

)
p13: (X XY X Z, P(X xsY)NP(Y xg2))

(

%
= Y xZ,P(Y xg Z)) € Sm™,
= (X x Z,P(X Xg Z)) € Sm,.

DEFINITION 3.5.1. We define Cs to be the (graded) additive category whose
objects are given by k-morphisms f : X — S, where X is a smooth scheme
over k. Sometimes we will by abuse of notation write X instead of f : X — S.
The morphisms are defined by

Home, (X,Y) := CH(X x Y, P(X x5Y)),

and the composition is as in B52). For f: X — S the identity element in
Home, (X, X) is the diagonal Ax.

The verification that the composition defines a category is a straightforward
calculation. Notice that if X — S and Y — S are proper, then Home, (X,Y) =
CH(X xsY). The full subcategory of Cs whose objects are proper S-schemes,
which are smooth over k, has been defined and studied in [CHOO, Definition 2.8].
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3.5.2. Leta € Home(f: X —S,9:Y = 5)=CH(X xY,P(X xgY)), with
X and Y integral. Suppose that a is of degree 4, i.e. is contained in CHY™ X+,
For every open subset U C S we get by restriction an induced cycle

ay € CH(f~'(U) x g7 (U), P(f~(U) xv g~ (V))).
By using the functor Corg (8:43) we obtain a morphism in dRW K
Coralay) : H(f~H(U))(—i) = H(g~"(U)).
Recall that H(f~1(U)) = D, >0 HI(f1(U), W1 1y); we denote by
U F(U)=H(fU)(=i), U G(U) = H(g™(U)),

the obvious presheaves on S.

LEMMA 3.5.3. Let a € Home (f : X — S,9g: Y — 5) = CH(X x Y, P(X xg

Y)). The collection (Corg(av))ucs defines a morphism of presheaves
(COTél(aU))UCS F—G.

By sheafification we obtain a morphism of sheaves

(3.5.3) (Cora(av))vcs : D RUFWOE (—i) - @D Rig. W

p,q2>0 p,q2>0

Proof. Let U,V be two open subsets of S such that V' C U. We denote by
C(f~Y(V) — fFYU)) c f~YU) x f~1(V) the transpose of the graph of the
inclusion f~Y(V) — f~1(U), and similarly for I'(g~* (V) — ¢~ }(U))".

Since the restrictions F(U) — F (V) and G(U) — G(V') are induced by the cor-
respondences Corg (D(f~1(V) — f~1(U))!) and Corg(T'(g= (V) — g~ 1(U))Y),
respectively, we only need to prove that

L(g~ (V) = g7 (U) cay = ay o T(f71(V) = f7H(U))’
as morphisms in Corcy, i.e. as cycles in
CH(f~'(U) x g~ (V), P(fH(U) x5 g~ (V).
Via the identification f~H(U) xgg1(V) = f~1(V) xs g~ }(V) both sides equal

ay .
Since the sheafification of F is @, - R1f, WQE (—i), and similarly for G, we

obtain ([F5.3)). O

ProPOSITION 3.5.4. The assignment
7:[(7/5) : Cs — ms,
H(X/S):= @ RILW,

P,q20
H(a/S) := (Corgav))vcs,
(c¢f. LemmalZD3) defines a functor to de Rham-Witt modules over S.

For the proof of the Proposition we will need the following lemma.

DOCUMENTA MATHEMATICA 17 (2012) 663-781



HoDGE-WITT COHOMOLOGY ... 733

LEMMA 3.5.5. Let S = Spec (R). Let X, Y be S-schemes which are smooth over
k. We denote by f*: W(R) — H(X,WOx) and g* : W(R) — H°(Y,WOy)
the maps induced by f : X — S and g : Y — S, respectively. We denote by
pri: X XY = X and pry : X XY — Y the projections.

Let Z C X xXgY be an irreducible closed subset which is proper over Y ; we set
¢ =codimxxyZ. Then

H*(pry)(g*(r)) U el([Z]) = H" (pry)(f*(r)) U él([Z])
in HS (X XY, WQ% .y).

Proof. Choose an open set U C X x Y such that Z N U is nonempty and
smooth. Since the natural map

H%(X X Ya WQ;(XY) - H%ﬁU(Ua WQ((:J)
is injective (Proposition [B4T]), it suffices to check the equality on
Hg g (UWOQE). Wewrite 21 : ZNU — (U, ZNU) in Smy and 15 : ZNU = U

in Sm* for the obvious morphisms. By using the projection formula and
A([ZNU]) = Hi(+1)(1) B2Z3(1)) we reduce to the statement

H* (12)H (pra) (g™ (r)) = H* (12) H* (pr1) (£ (r))-

This follows from g o pry 0129 = f o pry o 19. ]

Proof of Proposition[3.5.4] For two composable morphisms a,b in Cg, we
clearly have

(boa)U = bUO(lU
for every open U C S. This implies H(bo a/S) = H(b/S) o H(a/S).
Moreover, Corg (ay) is a morphism in d/R\\Nk for all U, thus ﬂ(a/S) commutes
with F,V,d. Finally, we need to show that 7:[((1/ S) induces a morphism of
W(Og)-modules. For this, we may assume that S = Spec (R) is affine, and it
suffices to show that

Core(a) : H(X)(—i) — H(Y)
is W(R)-linear. We proceed as in the proof of [CR09, Proposition 3.2.4].
The ring homomorphism f* : W(R) — H°(X,WOx) and g* : W(R) —
HO(Y, WOy ) induce the W (R)-module structures on H(X) and H(Y) via the
U-product:

r-a= f*(r)Ua,

for all € W(R) and a € H(X); similarly for H(Y). We have to prove the
following equality for all r € R,a € H(X), and irreducible closed subsets
ZCXxgY:

9" (r) U H.(pra) (H* (pry)(a) UEl([Z])) = H.(pra) (H* (pry) (f*(r) Ua) U el([2])).
For this, it is enough to show that

H* (pry) (9" (r)) U l([Z]) = H* (pry) (£ (r)) L el([2])
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in HZ(X x Y, WQ%y), with ¢ the codimension of Z. Lemma implies
the claim. O

PROPOSITION 3.5.6. Let X and Y be two S-schemes which are smooth over k.

(i) If Z is the transpose of the graph of a morphism h : X — Y over S
then H([Z]/8) is the pullback morphism defined in 221

(ii) If Z is the graph of a proper morphism h : X — Y over S then
H([Z]/S) is the pushforward morphism defined in 231

Proof. The statement follows from Proposition B.4.71 |

3.5.7. Local cup product. Let X be a smooth equidimensional k-scheme and
Z C X an integral closed subscheme of codimension ¢. We have (see e.g.

ELD) |
HL (X, WQx)=0, foralli<ec.

Hence there is a natural morphism in the derived category of de Rham-Witt
modules on X

(3.5.4) HCZ(WQ)() — RL,WQx [C]
inducing an isomorphism
(3.5.5) H (X, WQx) = HO (X, 1S (Wx)).

We may thus define a local version of the cup product with the cycle class of
Z,(Z) € HY(X,HL(WQx))
(3.5.6)

WQx - HG(WQx)(c), a— aUd([Z]) = A*((—l)c'deg“(a x ¢l([2]))),

as the composition

(—1)des e (= xel((2])

WQX nat. prl*pr1_1WQX pI‘l*Hg(Xz(WQXXX)(C)

where A : (X,Z) - (X x X, X x Z) in (Sm*/X x X) is induced by the
diagonal, A* is the pullback constructed in[2.:2Z.Jland x is the exterior product
from B4l Notice that by Lemma aUél(Z) equals (—1)¢de82q - ¢l([Z]).

LEMMA 3.5.8. In the above situation the cup product with él([Z]),
HY (X, WQx) = H (X, WQx)(c), araUel([Z]),

factors via the local cup product, i.e. equals the composition

H (X, Wx) B2 mix w1, wax) () B2 give(x, way)(e).

Proof. Recall that for a € H'(X, WQ%) the cup product a U él([Z]) equals
H*(A)((=1)*9¢(a x el([2]))),
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where A : (X, Z) — (X x X, X xZ)in (Sm™*/Spec k) is the diagonal. Therefore
it suffices to show that the exterior product

(3.5.7) x A([Z]) : HI(X, WQ%) — HE (X x X, WQLe,)
factors via H*(X, —) applied to

pri W% = Hiz(Wxxx), avr (=1)(axé((2])),
composed with the natural map H%, ,(WQxxx) = Rl x, zWQxxx|c]. Let
E(W,2x) be the Cousin complex of W,Qx (see[h8, Lemma[[59), then the

complex I' , E(W,Q x ) equals zero in all degrees < ¢, hence there is a morphism
of complexes

(3.5.8) HG(WeQx) = Ly E(WeO5) ],

which, after applying %in to it, represents ([B.54). We obtain the following
commutative diagram

Xeél([Z
pry B0 ) ) B(W,0% ) B HG (WeQd) — Ly s E(Wa Q%)

| e

_ X él([2]) ¢ c c c
prj 1W.Q§< ——— WLQ% BHG(WQ%) HXXZ(W‘QqXerX)’
where the top right arrow is the composition
E(W.0%) BHS (W05) 25D, py,01) R L, BE(W.0%)[d

= (BWaQ%) BRI, E(Wa05)[d T2 Ty, BV ).

Notice that the isomorphism
(3.5.9) (ERL,E[) = (ERL,E)[d

is given by multiplication with (—1)% on E* KL, E’, for all 4,5 (see the sign
convention in [Con00, (1.3.6)]). Now we apply H'(X,—) o lim to the above
diagram, use Proposition BT, (1), take care about the sign from (B59) and
use (B2Z3) and we see that (B57) factors as desired. O

3.5.9. Let h : § — T be a morphism of k-schemes. Then any two objects
X,Y € Cs naturally define objects in Cr (via h) and X xgV C X xr Y
is a closed subscheme. This gives a natural map CH(X x Y, P(X xgY)) —
CH(X xY,P(X xrY)). In this way h induces a functor

CS %CT.

If b is fixed, we denote the image of a € Homey(X,Y) in Home, (X,Y) via
this functor again by a. But notice that this functor is in general not faithful.

ProprosITION 3.5.10. Let h: S — T be a morphism of k-schemes. Let f : X —
S and g:Y — S be two objects in Cs and assume that X and Y are integral
and f and g are affine. Let Z C X xXgY be a closed integral subscheme which
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is finite and surjective over Y, therefore giving rise to a morphism in dRW s
(by Proposition

H([Z2]/S) : [ WQx — g Wy
Then we have the following equality of morphisms in dRW T

H([2))T) = @Rih*’}:[([Z]/S) : @Ri(hf)*WQX - @Ri(hg)*vmy.

Proof. We consider the following composition in the derived category of abelian
sheaves on S:

(3.5.10) FWQx 25 R(fpry) Wy oy

BED, R (fpry) He (W) ()

SEEEEE, Rigpry) Hy (W v )(©)

—— g« Rpry RL (W Qx xv)[c](c)

BED, L way.

Notice that the third arrow only exists in the category of abelian sheaves, it
is not respecting the W(Og-module structure. We claim that the composition
@B510) equals H([Z]/S) and that &;R'h, F5.10) equals H([Z]/T). This will
prove the statement. Clearly it suffices to prove the last claimed equality, the
first then follows with A = id.

To this end, let U C T be an open subset. We denote by Xy, Yy and Zy
the pullbacks of X, Y and Z over U. Then Corg([Zy]) : H{(Xy, WQx,) —
HY (Y, WQy, )(c) is given by the following composition

I{i()(U7 WQXU) &) Hi(XU7 RPI“1*WQXu><YU)

= HY(Yy, Rpry, WQxy, xve)

el(1Z, ;
M} H' (YU7 Rpr2*R£ZU WQXU xYu [C] (C))

BID i (Y, Wy, ).

Since f and g are affine this composition equals by Lemma 5.8 the com-
position Hi(h~'(U), @5.10)). By definition H([Z]/T) is the sheafification
of U +— Cora([Zy]) and the sheafification of U ~ H'(h=*(U), @510)) is
R'h.(3510)). This proves the claim.

g

3.6. VANISHING RESULTS. Recall from Proposition[3.5.4 that we have a functor
#(?/S) : Cs — dRW s,
H(X/S):= @ RISV

p,q>0
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(cf. Definition B5Tl for Cg). Let f: X — S,¢g: Y — S be objects in Cg, i.e.
S-schemes which are smooth over k. For simplicity let us assume that X and
Y are connected. For an equidimensional closed subset Z C X xg Y which is
proper over Y and has codimension dim X + ¢ in X X Y we obtain a morphism
in msi

H(2]/9): | @ RV | (—i) — €D RIg. WL

p,q>0 p,q2>0

LEMMA 3.6.1. Let Z C X xgY be closed subset which is proper over Y. Let
r > 0 be an integer. Suppose that for every point z € Z the image pry(2) is a
point of codimension > r in Y. Then there is a natural number N > 1 such
that
N -image(H([Z]/S)) ¢ €D Rig.WQ.
pP2T,q2T

In other words, the projection of image(H([Z]/S)) to

P Ry

p<r or q<r

1s killed by N.

Proof. We may assume that Z is irreducible and X,Y are connected. We set
i=dimY —dimZ = codimxxy Z — dim X.

By using an alteration we can find a smooth equidimensional scheme D of
dimension dimY — r together with a proper morphism 7 : D — Y such that
m(D) D pry(Z). In particular, Z is contained in the image of the map idx x g7 :
X xsD— X xgY.

Let Zp C X xg D be an irreducible closed subset with dim(Zp) = dim(Z) and
(idx x )(Zp) = Z. (Zp is automatically proper over D.) We define N to be
the degree of the field extension k(Z) C k(Zp).

We obtain three maps:

H(Z/8) : H(X/S)(~i) = H(Y/S),
H(Zp/S) : H(X/S)(~i) = H(D/S)(~r),
H((m)/S) - H(D/S)(~r) = H(Y/S),
(I'(w) denotes the graph of ). We claim that
N-H(Z/S) =H(T(x)/S) o H(Zp/S).
Indeed, by functoriality it is sufficient to prove
N-[Z] = [I(m)] e [Zp]
where o is the composition in Cs (see (B5.2)). This is an easy computation in

intersection theory.
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Thus it is sufficient to show that
image(H([[(m)]/S)) ¢ €D RIg.WO.
pP2T,q2T
Proposition implies that H([['(7)]/S) is the push-forward 7. defined in
231l Thus
H([T(m)]/S)(R(g o ). WQ,) C RTT g WO,
for all (p, q), which completes the proof. a

LEMMA 3.6.2. Let Z C X xg Y be closed subset, which is proper over Y.
Suppose that X is equidimensional of dimension d. Let r > 0 be an integer.
Suppose that for every point z € Z the image prq(z) is a point of codimension
>r in X. Then there is a natural number N > 1 such that

N - &b RIfWOE | C ker(H([Z]/9)).

p>d—r or ¢g>d—r

Proof. The proof is analogous to the proof of Lemma [3.6.11

We may assume that Z is irreducible and Y connected. We set ¢ = dimY —
dim Z = codimx xyZ — dim X.

By using an alteration we can find a smooth equidimensional scheme D of
dimension d — r together with a proper morphism = : D — X such that
(D) D pry(Z). In particular, Z is contained in the image of the map 7 x gidy :
DxgY — X xgY.

Let Zp € D xgY be an irreducible closed subset with dim(Zp) = dim(Z) and
(rm xidy)(Zp) = Z. (Zp is automatically proper over Y.) We define N to be
the degree of the field extension k(Z) C k(Zp).

We obtain three maps:

H(Zp/S) : H(D/S)(—i) = H(Y/S),
H(T(n)'/S) : H(X/S) = H(D/S),
(T'(m)" denotes the transpose of the graph of m). We claim that
N -H(Z/S) =H(Zp/S) o H(D()!/S).
Indeed, by functoriality it is sufficient to prove
N - [Z] =[Zp] e [[(m)']

where o is the composition in Cg (see (8.5.2))). This is a straightforward calcu-
lation in intersection theory.
Because dim D = d — r, the map H(I'(r)!/S) vanishes on

P Rk,

p>d—r or g>d—r

H(Z/S) : H(X/S)(—i) = H(Y/S),
(

which proves the statement. O
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Remark 3.6.3. Resolution of singularities implies that Lemma B.6.1] and
hold for N = 1.

3.7. DE RHAM-WITT SYSTEMS AND MODULES MODULO TORSION.

3.7.1. Let A be an abelian category (only A = dRWx and A = cﬁ{\\VX will
be important for us). There are two natural Serre subcategories attached to
torsion objects of A. We define

Ap_tor :={X € 0b(A) | In € Z\{0} : n - idx = 0}
as full subcategory of A. We define
Ator = {X € ob(A) | I(Xi)ier € A}_,,, 30 : @Xi — X epimorphism}
iel
as full subcategory of A. Note that the index set I is not finite in general.
Obviously,

Ab—tor C Ator .

3.7.2. If A is well-powered, i.e. the family of subobjects of any object is a

set (e.g. A = cﬁ{\\VX), then the quotient categories A/ Ap_tor and A/ Asor
exist and are abelian categories. We refer to [Gab62, Chapitre III] for quotient
categories. The functors

q: A_>A/Ab7to7“; q/ :A_>A/Ator;

are exact. Moreover, ¢(X) = 0 if and only if X € Ap_¢0r; the same statement
holds for ¢’ and A;,,-. There is an obvious factorization

A — A/Abftor - A/AtOT'
If A is the category of (left) modules over a ring R then
A/ Aror =2 (R ®7z Q-modules).

We define
Ag := A/ Ap_ior-

For future reference, we record the following special case.
DEFINITION 3.7.3. Let X be a scheme over k. We define
mx,@ = mx/mx,mtor
as quotient category. We denote by ¢ the projection functor
g: dRWx — dRW x g.
We use the same definitions for dRW x.

The main reason for working with the quotient A/ Ap_¢o, instead of A/ Ay, is
that the Homs are well-behaved.

DOCUMENTA MATHEMATICA 17 (2012) 663-781



740 ANDRE CHATZISTAMATIOU AND KAY RULLING

ProroOSITION 3.7.4. Let A be a well-powered abelian category. Let X,Y €
ob(A). Then

Hom 4, (¢(X), q(Y))
1s naturally a Q-module and the map
Hom4(X,Y) ®z Q — Hom 4, (¢(X), q(Y))
s an isomorphism.
Proof. For any n € Z\{0} the morphism ¢(Y) —% ¢(Y) in Ag is invertible;
therefore
Q € Hom, (¢(Y), ¢(Y)).

Via the composition

Hom(q(X), ¢(Y)) x Hom(q(Y), q(Y)) = Hom(q(X), ¢(Y))
we see that Hom(q(X), ¢(Y)) is a Q-module. The Q-module structure induced
by Q € Hom(q(X), q(X)) and

Hom(g(X), ¢(X)) x Hom(q(X), ¢(Y')) — Hom(q(X), q(Y))

is the same, because
fo(a(X) = q(X)) = (a(Y) = q(Y))o f=nf.
We need to show that the canonical map
HOII]_A(X, Y) ®z Q — HOIH_AQ (Q(X)a Q(Y))

is an isomorphism.

For the injectivity it is sufficient to prove that for all f € Hom4(X,Y) with
q(f) = 0 it follows that n- f = 0 for some n € Z\{0}. Indeed, ¢(f) = 0 implies
image(f) € Ap_tor; thus there is an integer n # 0 with n - idimage(r) = 0. It
follows that nf = 0.

For the surjectivity, let f : X — Y be a morphism in A such that
ker(f),coker(f) € Ap—tor; equivalently g(f) is an isomorphism. We need to
show that the inverse map ¢(f) ! is contained in the image of Hom4 (Y, X) ®7
Q. Choose an integer n1 # 0 such that ng - idye,(y) = 0. Then there exists
g1 : im(f) — X such that g; o f = n; - idx. Let ny # 0 be an integer such
that ny - ideoker(sy = 0. Then Y 2, Y factors through im(f) and we obtain
g2 : Y 2 im(f) £ X. Thus the image of go ® (ny - np)~! is the inverse of

q(f)- O

COROLLARY 3.7.5. Let F' : A — B be a functor between well-powered abelian
categories. There is a natural functor Fy : Ay — Bg defined by

Fo(q(X)) = F(X)
for every object X in A, and
Fy : Hom, (q(X), ¢(Y)) = Homp, (Foq(X), Foq(Y))
Fp = F ®z1idg
via the isomorphism of Proposition [3.74).
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Remark 3.7.6. The statement of Corollary also follows from
F(Abftor) - Bbftor
by using the universal property of the quotient category.

PROPOSITION 3.7.7. Let F' : A — B be a left-exact functor between well-powered
abelian categories. Suppose that the left derived functor

RF : DY (A) — D" (B)
exists. Suppose that there exist sufficiently many F-acyclic objects in A. Then
Fg : Ag — Bo
is left-exact and the left derived functor
RFy : D" (Ag) — D*(Bg)
exists. Moreover, the diagram

——>D*(B)

D% (q) D% (q)
RFy
D*(Ag) —= D*(Bg)

15 commutative.

Proof. Let
(3.7.1) ox Ly iz o

be an exact sequence in Ag. By [Gab62, Chapitre III1,§1, Corollaire 1] we can
find an exact sequence

(3.7.2) 0-xLyLz-0
in A and isomorphisms X’ =N q(X),Y’ =N q¥),Z' =, q(Z), such that the
diagram
0 x ey sz 0
S
0 q(X) g(Y) —>q(Z2) —=0

is commutative. Since ¢ is exact and gF' = Fggq, it follows that Fy is left exact.
We define

Py :={X' € ob(Ag) | 3X € ob(A) : ¢(X) = X', R'F(X) € By_tor for all i > 0}

as a full subcategory of Ag. If X € ob(A) is an F-acyclic object then ¢(X) €
Py. Therefore every object Y € ob(Ag) admits a monomorphism 2 : ¥ — X
with X € ob(Pyp).
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Suppose that in the exact sequence B.7I)) we know that X’ € ob(Py). We
claim that the following holds

Y’ € ob(Py) & Z' € ob(Py).
As above, we may prove the claim for (B772) instead of BZ.I). It is easy to
see that R'F(X) € By_tor for all i > 0, and we conclude that
qRIF(Y) = qR'F(Z) for all i > 0.
This implies the claim.
In the same way we can see that if (B77.I]) is an exact sequence with objects in
FPg then
0— FQ(XI) — F@(Y’) — FQ(ZI) —0
is exact. From [Har66l I, Cor. 5.3, 5] it follows that the left derived functor
RF@ : Dt (.AQ) — D" (BQ)
exists. Moreover, if X is F-acyclic then ¢(X) is Fg acyclic. Therefore the
diagram
D*(A) _RE D*+(B)
D*(q)l lDﬂq)

D+(Ag) —2% D*(By)

is commutative.

|

Remark 3.7.8. Let f : X — Y be a morphism between k-schemes and ® a
family of supports on X. The assumptions of the Proposition are satisfied for
the functors

I'y :dRWx — dRWx,
f« : dRWx — dRWy,
lim : dRWx — dRW x,
f.:p : dRWX — dRWy,
ﬁp :dRWx — my,
of Proposition

NOTATION 3.7.9. In general, we will denote by a subscript Q the image of
an object of dRW x (resp. of D*((ﬁ{\\NX)) under the localization functor ¢
(resp. Dt (q)). It F: dRW x — dRWy is a functor we will by abuse of notation
denote Fy again by F and RFp again by RF. Thus ¢(Rf.WQx) will be

denoted by Rf.W{lx g, etc. (Warning: W x g is not the same as WQx ®zQ.)

4. WITT-RATIONAL SINGULARITIES

All schemes in this section are quasi-projective over k.
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4.1. THE WITT CANONICAL SYSTEM.

4.1.1. Recall from Definition the notion of a Witt residual complex. Let
X be a k-scheme with structure map px : X — Speck, then there is a canonical
Witt residual complex Kx = p%Wew (see Notation [LO.2)). This complex has
the following properties:

(1) If X is smooth of pure dimension d, then there is a quasi-isomorphism
of graded complexes 7x : Wewx — Kx(—d)[—d], which is compatible
with localization. (Ekedahl, see Theorem [[LT0.3])

(2) If j : U — X is an open subscheme, then j*Kx = Ky (see Proposition
X9,

(3) If f: X — Y is a morphism of k-schemes, then there is a canonical
isomorphism f2 Ky = Kx induced by ¢ t.py » Where py is the structure
map of Y. This isomorphism is compatible with composition and local-
ization and in case f is an open embedding also with the isomorphism
in (2) (via f* = f2). (See Proposition [[88)

(4) For a proper k-morphism f : X — Y, there is a trace map Try :
f+Kx — Ky, which is a morphism of complexes of Witt quasi-dualizing
systems (see Definition [[L6.3); it is compatible with composition and
localization (see Lemma [[L8.9)).

(5) We have a functor

DX = ’Hom(—, Kx) : C(dRWX,qC)O — C(dRWX).
It preserves quasi-isomorphisms and hence also induces a functor from
D(dRW x 4c)° to D(dRW x) (see [[L9)).
(6) Let f: X — Y be a finite morphism. We denote by
Uy : fuDx (=) = Dy (fu(=))

the composition

FoHom(—, Kx) ™ Hom(f.(—), fix) —L5 Hom(—, Ky).

Then 9 is an isomorphism of functors on C~(dRWx ¢c); it is com-
patible with composition and localization. (It is an isomorphism on
each level by duality theory, see [LT73], (7); for the other assertions see
Proposition [L9.4])

DEFINITION 4.1.2. Let X be a k-scheme of pure dimension d. The Witt canon-
ical system on X is defined to be the (—d)-th cohomology of Kx sitting in
degree d and is denoted by Wewx, i.e.

Wewyx := H 4 Kx)(—d).

Since W,Ox is a Witt system (i.e. a de Rham-Witt system with zero dif-
ferential), Wewx inherits the structure of a Witt system from the canonical
isomorphism Kx = Hom(W,Ox,Kx) and LTl (5). We denote the limit
with respect to 7 by
Wwx = Iim Wewx.
o
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Remark 4.1.3. Notice that in case X is smooth the above definition of Wewx
coincides (up to canonical isomorphism) with our earlier definition of Wewx =
WeQ%, by EII] (1). But observe, in Example [L6.4], (2) we viewed it as a
Witt dualizing system, whereas now as a Witt system. This will not cause any
confusion.

PRrROPOSITION 4.1.4. Let X be a k-scheme of pure dimension d. Then Wewx
has the following properties:

(1)
(2)

(6)

The sheaf Wiwx equals the usual canonical sheaf on X if X is normal.
The complex Kx is concentrated in degree [—d,0], hence there is a
natural morphism of complexes

W.wX — Kx(—d)[—d].

This morphism is a quasi-isomorphism if X is Cohen-Macaulay (CM).
For each n the sheaf Wywx is a coherent sheaf on W, X, which satisfies
Serre’s condition Ss.

Let 7 : U < X be an open subscheme which contains all 1-
codimensional points of X. Then we have an isomorphism of Witt
systems

W.CUX ﬂ)j*j*W.WX :j*W.wU.
If X is normal, U can be chosen to be smooth, in which case we have
an isomorphism
JxWepy >~ j*W.QC,lJ7

which is induced by [{-1.1, (1) and (2). In particular the transition
maps Whwx — Wi_1wx are surjective if X is normal.
Assume X is normal. Then there is a natural isomorphism for all n

Hom(W,wx, Wowx) = H Y Dx n(Wywx ) (—d)),

where Dx n(—) = Hom(—, Kx ). Therefore Hom(Wewx, Wewx) is
naturally equipped with the structure of a Witt system and multiplica-
tion induces an isomorphism of Witt systems

WoOx = Hom(Wewx, Wewx ).

Let f : X — Y be a proper morphism between k-schemes, which are both
of pure dimension d. Then we define the pushforward fy : f Wewx —
Wewy as the composition in dRWy

fot foWewx = fH YEKx)(~d) = H-(fKx)(~d) 5 HY(Ky)(~d) = Wewy

(7)

This morphism is compatible with composition and localization and in
case X and Y are smooth coincides with the pushforward defined in
Definition [Z231] (for S =Y.)

The sequence of W,,Ox -modules

n—1
0= i Whoiwx §> Wawx F—) ’L'*F;;lwx

is exact for any n > 1. Furthermore, if X is CM, then the map on the
right is also surjective. (Here we write wx := Wiwx.)
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Proof. (1) is clear by construction. (In the derived category of coherent sheaves
Kx 1 is isomorphic to p!Xk, where px : X — Spec k is the structure map.) It
suffices to prove the other statements on a fixed finite level n.

(2). The codimension function associated to Kx,, (see[[.TI)) is given by

dix., (x) = —trdeg(k(x)/k) = dim Ox , — d

(see [Con00, (3.2.4)]). This already gives the first statement of (2). For the
second statement the same argument as in [Eke84l I, 2.] works (there for
smooth schemes). For the convenience of the reader we recall the argument.
Let X be CM. We have to show that H(Kx ,) = 0 for all i # —d. For n =1
this follows from (1). We have an exact sequence of coherent W, Ox-modules

-1
*

. Vn—l i
0— Z*F;é OX —_— WnOX l> 'Ln*Wn—loX;

where Fx denotes the absolute Frobenius on X and ¢, 4, denote the closed
embeddings X — W, X, W,,_1 X — W, X. Applying RHomw, 0, (—, Kx,»n)
to it and using duality for the finite morphisms iFy " and i, (cf. I (6))
we obtain a triangle in D(W,,Ox)

(4.1.1) e Kxn1 — Kxn— ((F ) Kx1 — ineKx.n-1[1].

Therefore the statement follows by induction.
(3). Since Kx 1, is a residual complex, it has coherent cohomology by definition.
To prove the Ss property of W,wx it suffices to show

(41.2) {Ext?/vnoxyz(k(x), Whwx ) =0, for aiull re X
Extyy, oy, (k(2), Wawx o) =0, fori=0,1andall z € X,

where X(¢) denotes the points of codimension ¢. By the formula for the codi-

mension function associated to Kx , above and [Har66, V, §7], we have

0, if z ¢ X(td),

(4.13) Extiv,ox.. (K@), Kxn) = {k(:c), if € X0+,

Thus the vanishing [@II2) can easily be deduced from the spectral sequence
Ey) = Ext!(k(z), H (Kx,,)) = Ext'" (k(z), Kx.»)

and the vanishing E57 = 0if i < 0 or j & [—d, 0] (by (2)).
(4). The first morphism is bijective by (3) and [SGA2, Exp. III, Cor. 3.5].
(5). The first isomorphism is obtained by considering the spectral sequence

Ext!(Wowx, H (Kx.n)) = Ext™™ (W,wx, Kx ) = H (Dx n(Wywx))

and using that H’(Kx,,) # 0 only for j € [—d,0], by (2). The second isomor-
phism can easily be deduced from (4), the isomorphism W,,Ox = 7 W, Oy
(W,,Ox is S2) and the corresponding statement for smooth schemes, see [L.TO. 1}
(6) The equality f.H 4(Kx) = H%(f.Kx) follows from the spectral sequence
R f.H'(Kx) = R f,Kx, (2) above and from Rf.Kx = f.Kx. The other
statements follow from [LTT] (4).
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(7) Recall that F' and p on Wewx are defined by the isomorphism Kx =
Hom(W,Ox, Kx) and the formulas in Thus the exact sequence in (7) is
the result of applying H~? to the triangle ({21.1]) above and using the isomor-
phisms po¢; and V o ¢, from |

DEFINITION 4.1.5. Let f : X — Y be a finite and surjective k-morphism
between integral normal schemes both of dimension d.

(1) We define a pullback morphism in dRWy
I Wewy — fulWewx

as follows: Choose open and smooth subschemes jx : U — X and
jy V. — Y, which contain all 1-codimensional points of X and Y
respectively and such that f restricts to a morphism f': U — V. We
define f* as the composition

Wawy ZBELO. o pgd I g ZELEL o

~BLAG), o

It is straightforward to check, that this morphism is independent of the
choice of U. We also write f* for the sum of the natural pullback on
WeO with the just defined pullback, i.e.

[T WOy & Wewy — f.(WeOx & Wewx).
Taking the limit we obtain a pullback in dRW Y
ff WOy @ Wwy — fL(WOx & Wwx).
(2) We define a pushforward in dRWy
Jst fiWeOx — WOy

as the composition

~ AT A 5

FW 0y 2220, ¢ g om(Wawy, Wewy)
ZBLAO), pa (s, Dy (W) (~d)

~. 9 _

—4H d(DY(f*WoWX)(*d))
Dy (f*), (1)
z—(5)> Hom(Wewy, Wewy)

=BLA0), o,

We also write f. for the sum of the pushforward on f,Wewx defined
in Proposition 1.4 (6) with the just defined pushforward. Taking the

limit we obtain a pushforward in dRWy
fo: f(WOx ® Wwx) = WOy & Wwy.

H™(Dy (Wewy)(~d))
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LEMMA 4.1.6. Let f : X — Y be a finite and surjective k-morphism between
normal integral schemes of dimension d.

(1) Let jy : V <=Y be an open smooth subscheme, which contains all 1-
codimensional points of Y and such that U := f~1(V) C X is smooth
and contains all 1-codimensional points of X (e.g. V=Y \ f(Xsing))-
Denote by jx : U < X and f': U = f~1(V) — V the pullbacks. Then

Jxof*=[1"ojy, Jvofe=Fflojk,

where f'* is the pullback defined in Definition[ZZ1l and f' is the push-
forward defined in Definition [2.31] (with S =V ).
(2) The composition f. o f* equals the multiplication with the degree of f.

Proof. The first part of (1) follows from the fact that all the maps in the
definitions of f, and f* are compatible with localization; the second part follows
immediately from the definitions. For (2) we have to check that f.of*—deg f =
0 in HOIn(W.Oy, W.Oy) = WOy and in ’Hom(W.wy, W.wy) = W,0y. It
suffices to check this on some open V' C Y and hence the assertion follows from
(1) and Proposition 2234 (Gros). O

4.2. TOPOLOGICAL FINITE QUOTIENTS.

4.2.1. Universal homeomorphisms. Recall that a morphism of k-schemes u :
X — Y is a undversal homeomorphism if for any Y’ — Y the base change
morphism v : X xy Y/ — Y’ is a homeomorphism. By [EGAIV(4), Cor.
(18.12.11)] this is equivalent to say that w is finite, surjective and radical. In
case X and Y are integral and Y is normal it follows from [EGAI Prop. (3.5.8)],
that u is a universal homeomorphism if and only if « is finite, surjective and
purely inseparable (i.e. k(Y) C k(X) is purely inseparable).

4.2.2. Relative Frobenius. We denote by o : Speck — Speck the Frobenius
(we will not use the notation from section any longer); for a k-scheme X
we denote by X the pullback of X along ¢” : Spec k — Spec k and by o% ¢
X (™) — X the projection. Notice that since k is perfect, o' is an isomorphism
of F,-schemes. The n-th relative Frobenius of X over k is by definition the
unique k-morphism F;}/k : X — X which satisfies o% o F;}/k = F'}, where
Fx : X — X is the absolute Frobenius morphism of X. Clearly F'g Jk is a
universal homeomorphism.

LEMMA 4.2.3. Letu : X — Y be a morphism between integral k-schemes, which
s a universal homeomorphism and assume that'Y is normal. Then degu = p"
for some natural number n and there exits a universal homeomorphism v : Y —
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X (™) such that the following diagram commutes

F¥/k

X—)X(”)7

ul / \Luxidspec k

Fy /e

Proof. We may assume X = Spec B and Y = Spec A. Then by 2T u* : A —
B is an inclusion of k-algebras which makes k(A) C k(B) a purely inseparable
field extension of degree p™. F)’é’;k is given by B ®pon k = B, b® A — b .
But b*" € k(A) N B = A by the normality of Y. Therefore F )y factors via
u* : A — B. We obtain a homomorphism of k-algebras B ® o» k — A, which

gives rise to a k-morphism v : Y — X It follows that v is a universal
homeomorphism, which makes the diagram in the statement commutative. [

LEMMA 4.2.4. Let u : X — Y be a universal homeomorphism between two
integral and normal schemes. Let u, and u* be the pushforward and the pullback
from Definition[.1.5 Then

usu” =degu-idwoyewwy), Ul =degu-id, (woyxewwy)-

Proof. The equality on the left is a particular case of Lemma ET.6, (2). To
prove the equality on the right we may assume that X and Y are smooth (by
Proposition T4 and the corresponding statement for W©). Then by Lemma
16, (1) and Proposition B5.6, we have u, = H([[]/Y) and u* = H([[]/Y),
where I' € X x Y is the graph of u and I'! its transpose. Therefore we are
reduced to show

(4.2.1) [ o[l =degu-[Ax] in CH(X x X, P(X xy X)),

where Ax C X x X is the diagonal. But since u is flat (being a finite and surjec-
tive morphism between integral and smooth schemes) and a homeomorphism,
we have

[Ft] (¢] [F] = [X Xy X] = dlmk(X)(k(X) ®k(y) k(X)) . [Ax] = degu~ [Ax]
g

DEFINITION 4.2.5. Let X be a normal and equidimensional scheme. We say
that X is a finite quotient if there exists a finite and surjective morphism from
a smooth scheme ¥ — X. We say that X is a tame finite quotient if this
morphism can be chosen to have its degree (as a locally constant function on
Y) not divisible by p. We say that X is a topological finite quotient if there
exists a universal homeomorphism u : X — X’ to a finite quotient X".

Remark 4.2.6. If X’ is a finite quotient, so is X'™ 1t follows from Lemma
[2.3] that if X is normal and equidimensional and if there exists a universal
homeomorphism u : X’ — X with a source a finite quotient X’, then X is a
topological finite quotient.
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Topological finite quotients are good to handle because of the following Propo-
sition.

ProprosSITION 4.2.7. Consider morphisms

7
x .V,

where X is smooth and integral, Y, Z are normal and integral, [ is finite and
surjective and u is a universal homeomorphism. Let a : Y — S be a morphism
to some k-scheme S. Set

B 1= pry 4, [X xy Z xy X] in Hom_(X,X) = CH"™ ¥(X x X, P(X x5 X)),
where pry 3 : X x Z x X — X x X is the projection (see[3.3 for the notation,).
Then for all i the composition

ffou,: Ri(au)*(W(’)Z ®Wuwz)g — Ri(af)*(W(’)X ® Wwx)o
induces an isomorphism in d/R\\NS

R (au).(WOz ® Wwz)g = H(B/S)(R (af).(WOx & Wwx)g),

where ﬁ(ﬂ/S) is the morphism from Proposition (see Notation [3.7.9 for
the meaning of the subscript Q).

Proof. First of all notice that both f and u are finite and universally equidimen-
sional. It follows that 8 defines an element in CHY™ X (X x X, P(X xy X)), a
fortiori in CHY™ X (X x X, P(X x g X)). In particular, Proposition B.5.4 yields
a morphism

HBIY) : fL(WOx & Wuwx) — fo(WOx & Wuwx).
We claim
(4.2.2) ﬂ(ﬂ/Y) = frusu’ fi,
with fi, us, u*, f* as in Definition By Proposition 1.4 (4) and Lemma
AT (1) and since H(S/Y) is compatible with localization in Y (just by con-
struction), we may assume, that X, Y and Z are smooth. Then

B=[%lo[lu]o ] oLy,

where we denote by Fsc C Y x X the transpose of the graph of f, etc. Therefore

claim ([22)) follows from Proposition B5.61 Thus Proposition BE5I0 implies
that

H(B/S)(R' (af)+(WOx & Wuwx)

= Image(f*u.u* f. : R'(af)«(WOx & Wwx) — R'(af).(WOx & Wwx)).
Thus the assertion follows from (u*f.)(f*u.) = deg fdegu - id (by Lemma
ETH6 (a) and Lemma [L27]). O
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4.3. QUASI-RESOLUTIONS AND RELATIVE HODGE-WITT COHOMOLOGY.

DEFINITION 4.3.1. We say that a morphism between two integral k-schemes
f: X = Y is a quasi-resolution if the following conditions are satisfied:

(1) X is a topological finite quotient,

(2) f is projective, surjective, and generically finite,

(3) the extension of the function fields k(Y") C k(X) is purely inseparable.

Condition (2) and (3) are for example satisfied if f is projective and birational.
Let X,Y be integral and normal. In general, every projective, surjective and
generically finite morphism f : X — Y can be factored through the normaliza-
tion Y/ of Y in the function field k(X) of X:

fx Ly sy,
The morphism f is birational and w is finite. If k(Y") C k(X)) is purely insep-
arable then u is a universal homeomorphism.

Remark 4.3.2. Let X be an integral k-scheme. It follows from the proof of
[dT97, Cor. 5.15] (cf. also [dJ96, Cor. 7.4]), that there exists a finite and
surjective morphism from a normal integral scheme u : X’ — X, such that
k(X) C k(X') is purely inseparable and a smooth, integral and quasi-projective
scheme X", with a finite group G acting on it such that there is a projective and
birational morphism f : X”/G — X’. In particular X has a quasi-resolution

x"qL x5 x.
THEOREM 4.3.3. Let Y be a topological finite quotient and f : X — Y a quasi-

resolution. Then the pullback f* and the pushforward (see Proposition
(6)) induce isomorphisms in D*(dRWy.q)

I WOYQ = Rf*WOX,Q, Rf*WwX@ = f*wa,@[O] f*i) Wuwy,g.

Proof. We can assume that X and Y are integral schemes of dimension d and
(by Lemma 2274 also that they are finite quotients. Thus there exist smooth
integral schemes X’ and Y’ together with finite and surjective morphisms a :
X - Xandb:Y' =Y. Let
X5HX5Y,

be a factorization of f, with 7 projective and birational, X; normal and u a
universal homeomorphism. We can find a non-empty smooth open subscheme
Up C Y, such that Uy := u=Y(Uy), Uy := 7Y (Uy), U} := b= (Up) and U} :=
a~(Us) are smooth and 7|Us is an isomorphism. Notice that a|U}, b|U}, and
u|Uy are then automatically flat. Set Z{ := Y’ \ U} and Z} := X'\ Uj. We
define

a:=[X'xx X' € CHY(X' x X', P(X' xx X)),

Bi=[Y' xyY']€ CHY(Y' x Y',P(Y' xy Y")),

v:=[X'xy Y] € CHYX' x Y, P(X' xy Y")).
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(See for the notation.) These cycles are well-defined since a : X’ — X and
b:Y’ — Y are universally equidimensional. We claim

(4.3.1) degb- (yoa)—dega- (8o7y) € image(CH(Z, xy Z})),
(4.3.2) dega- (7' o B) —degh- (a0~') € image(CH(Z, xy Z3)),
(4.3.3) (v' oyoa) — (degadegbdegu) - o € image(CH(Z5 xy Z3)),

(434)  (y01'0B) - (degadegbdegu) - 8 € image(CH(Z) xy Z})).

Observe that (Uj xy Y') U (X' xy U}) = Uj xy, U} etc. Thus using the
localization sequence we see that it suffices to prove

degb - (Muyxuvy © uyxuy) = dega - (Bjuxus © Nuyxuy) € CH(Uy xu, Up),
deg a - (Vp; xvy © Bugxuy) = degb - (qugxuy © Vg xwy) € CHUG X, Uy),
(’Y\tU(ng;; o Nuyxuy © uyxuy) = (degadegbdegu) - oy wuy € CH(U; xy, Us),
(Mg xvy © Vg s © Bugxug) = (degadegbdegu) - Bug vy € CH(Ug v, Up).
Obviously
vy = [Lauy] © Laj)s
Biugxuvg = [Tojug) © [Cojuy )
YUy xUy = [FZ\U{)] ° [Lyu] o Mrjvz] © [Cajug]-
Thus the claim follows from
[Cujvn) o [Ty, ] = degu - [Ay,),  [Tyu,] 0 [Cur,] = degu - [Av,];

see ([LZT)) for the equality on the right.
In view of the vanishing Lemmas [3.6.1] and B.6.2] we see that (31 implies,

that H (/Y induces a morphism
H(a/Y) (6]9 Ri(fa).(WOx: & me@) = H(B/Y) (b (WOy: & Wiy )o)
and (Z32) implies that #(7*/Y) induces a morphism

H(B/Y) (b(W Oy & Wuwyr)g) = H(a/Y) <€B R'(fa).(WOx: & wal)@> -

By (#33) and ([@34) these morphisms are inverse to each other, up to mul-
tiplication with (dega degbdegu). By Proposition 2.7 a* induces for all ¢ an
isomorphism R’ f(WOx®Wwx)g — H(a/Y) (R (fa).(WOx &@Wwx)g) and
b* induces an isomorphism (W Oy & Wwy )g — H(B/Y)(b«(W Oy & Wwy)g).
This gives R'f,WOxq = 0 = R f,Wwx g, for all i > 1. It also gives iso-
morphisms in cohomological degree 0, but it is not immediately clear that
these coincide with pullback and pushforward. But since X; is normal and
m : X — X is birational, the pullback 7* : WOx, — m.,WOx clearly is an
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isomorphism and hence so is f*: WOy g — fuWOx g, by Lemma .24 Now
the statement follows from the next lemma. O

LEMMA 4.34. Let f : X — Y be a proper morphism between k-schemes of the
same pure dimension d and assume that the pullback morphism f* : WOy g =
RfWOx,q is an isomorphism in D(d/R\\Ny,@). Then the pushforward (see
Proposition (6))

fo: fiWwx.o = Wwyg

is an isomorphism. More precisely, there exists a natural number N > 1 such
that kernel and cokernel of f Wywx — Wyhwy are N-torsion for all n > 1.

Proof. By assumption we find a natural number N > 1 such that R'f,WOx,
1 > 1, as well as kernel and cokernel of f* : WOy — f.WOx are all N-torsion.
It follows from the short exact sequence

0-wWo XS wWo sw,0 -0

that there exists a natural number M > 1 (e.g. M = N?) such that R’ f.W,Ox,
1 > 1, as well as kernel and cokernel of f*: W Oy — f.W,Ox are M-torison.
Let Cy be the cone of f* : W,0y — Rf.W,Ox in D}.(W,Oy). (Here we
write f, instead of W, (f). etc.) Then the above can be rephrased by saying,
that H(C,,) is M-torsion for all i € Z and all n > 1. Now applying the
dualizing functor Dy, y to the triangle in D% (W, Oy)

WnOy — Rf*WnOX — Cn — Wn(’)y[l]

and using the duality isomorphism Dw, vy Rf. =& Rf.Dw, x yields a triangle in
Dgc (Wn OY)

DW"y(Cn) — Rf*KX’n — Ky’n — DWny(Cn[f].]).
Taking H~?, we obtain an exact sequence
Ext™ O, Ky ) = R K x = Whwy — Ext™4(Cp[~1], Ky ).

As in Proposition[4.T4] (6) the morphism in the middle is just the pushforward
fe: fiWhwx — W,wy. Consider the spectral sequence

By = ExU(H(Co), Kya) = Ext7 (Co, Ky).

The filtration on Ext*™7 (Cp, Ky ) induced by this spectral sequence is finite
and the Fa-terms are M-torsion. Thus the groups Ext~%(C,[~1], Ky,) and
Ext_d(Cn,Ky,n) are M"-torsion, for some r >> 0. In fact r only depends
on the length of the filtration of the above spectral sequence and since this
length is bounded for all n > 1, we may choose r to work for all n. It follows
that kernel and cokernel of f, : fiW,wx — W,wy are M"-torsion; hence
kernel and cokernel of the limit f. : fuWwx — Wwy as well. This yields the
statement. ]
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4.4. RATIONAL AND WITT-RATIONAL SINGULARITIES. A special class of singu-
larities which appear naturally in higher dimensional geometry are the rational
singularities. Essentially, rational singularities do not affect the cohomological
properties of the structure sheaf.

DEFINITION 4.4.1 ([KKMST73, p. 50]). Let S be a normal variety and f : X — S
a resolution of singularities (i.e. f is projective and birational and X is smooth).
We say that f is a rational resolution if
(1) Rif.Ox =0, for i > 0,
(2) R'f.wx =0 fori > 0 (this always holds by Grauert-Riemenschneider if
the characteristic of the ground field is zero (see e.g. [KM98| Cor.2.68]),
but is needed in positive characteristic).

We say that Y has rational singularities if a rational resolution exists.

An immediate problem with the definition of rational singularities in positive
characteristic is that the existence of a resolution of singularities is assumed.
For example, tame quotient singularities are rational singularities provided that
a resolution of singularities exists [CR09, Theorem 2].

If an integral normal scheme Y over a field has one rational resolution, then all
resolutions are rational, i.e. rational singularities are an intrinsic property of
Y. (In characteristic zero, this was proved by Hironaka, see [CR09, Theorem
1] for the characteristic p case.)

In characteristic zero, Kovécs [Kov00] observed that one can replace condition
(1) in Definition 4] by the following condition: there is an alteration f :
X — S such that the natural morphism

Os = Rf.Ox

admits a splitting in the derived category of coherent sheaf on S. The main tool
in the proof is Grauert-Riemenschneider vanishing, and this characterization
does not hold in positive characteristic.

In order to study congruence formulas for the number of points of a variety over
a finite field, Blickle and Esnault [BEO§| introduced the notion of Witt-rational
singularities.

DEFINITION 4.4.2 ([BEQS8, Def. 2.3]). Let S be an integral k-scheme and f :
X — S a generically étale alteration with X a smooth k-scheme. We say that
S has BE-Witt-rational singularities if the natural morphism

W0Os ®zQ — RfWOx ®zQ
admits a splitting in the derived category of sheaves of abelian groups on X.

We call the singularities defined in [BE0O8] BE-Witt-rational singularities, rather
than Witt-rational singularities, because we will redefine Witt-rational singu-
larities in 2441 We remark:

PropPOSITION 4.4.3. The notion of BE-Witt-rational singularities is indepen-
dent of the chosen generically étale alteration. More precisely, if an in-
tegral scheme S has BE-Witt-rational singularities, then for any alteration
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(not necessarily generically étale) g :' Y — S, with Y smooth, the pullback
g" :W0Os®zQ — Rg. WOy ®zQ admits a splitting in the derived category of
sheaves of abelian groups on X.

Proof. Obviously it suffices to prove that if f : X — Y is an alteration between
smooth schemes, then the composition

woy L Rf.WOx 15 woy

is multiplication with [k(X) : k(Y)], where f, is the pushforward from Defini-
tion 23]} It suffices to check this on some non-empty open subscheme U of
Y such that f|f~1(U) is finite. Thus the statement follows from Proposition
234 (Gros). O

DEFINITION 4.4.4. We say that an integral k-scheme S has Witt-rational singu-
larities if for any quasi-resolution (see Definition &31]) f : X — S the following
conditions are satisfied:

(1) f*:W0Osq = f.WOx,g is an isomorphism.

(2) R f.WOx,g =0, for all i > 1.

(3) Rif\Wwx,g =0, for all i > 1.
In case only the first two properties are satisfied we say S has WO-rational
singularities. (See Notation B.7.9 for the meaning of the subscript Q.)

Remark 4.4.5. Notice that if S is normal, then condition (1) above is automat-
ically satisfied. Indeed, each quasi-resolution f : X — S can be factored as
X 5 X; % S with X; normal, 7 projective and birational and u an universal
homeomorphism; thus condition (1) is satisfied by Lemma .24

PROPOSITION 4.4.6. Let S be an integral k-scheme. Then the following state-
ments are equivalent:
(1) S has Witt-rational singularities.
(2) There exists a quasi-resolution f : X — S satisfying (1), (2), (3) of
Definition [].4.4)

(3) There exists a quasi-resolution f: X — S, such that there are isomor-
phisms in D’ (dRWg g)
(4.4.1)
f

fF:W0Osg = RfWOxq, RfiWwxg= fWwxgl0] RALEN Wws, -

(4) For all quasi-resolutions f : X — S the morphisms (A1) are isomor-
phisms.

Proof. Clearly (1) = (2) and (4) = (1). (2) = (3) follows from Lemma
M3 For (3) = (4) notice that by de Jong (see Remark [L3.2) any two quasi-
resolutions of S can be dominated by a third one. Thus the statement follows
from Theorem O

There is an obvious analog of this proposition for WO-rational singularities.
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COROLLARY 4.4.7. Topological finite quotients over k have Witt-rational sin-
gularities.

Remark 4.4.8. In characteristic 0 finite quotients always have rational singu-
larities (see e.g. [KMO98| Prop. 5.13]). In characteristic p > 0 this is not the
case. Indeed let G = Z/p"Z act linearly on a finite dimensional k-vector space,
where k is assumed to be algebraically closed. Then it is shown in [ESS0],
that A(V)/G is not CM, provided that dimy V' > dimy V¥ + 2. In particu-
lar A(V')/G cannot have rational singularities in the sense of Definition 2]
which are always CM. This also shows that Witt-rational singularities do no
need to be CM.

PROPOSITION 4.4.9. Let u : Y — Y’ be a universal homeomorphism between
normal schemes. Then'Y has Witt-rational singularities if and only if Y’ has
Witt-rational singularities.

Proof. If f : X — Y is a quasi-resolution then w o f is a quasi-resolution. For
all ¢ > 0 we get

Ri(uo f),WOxq=u.R f,WOxq, R(uof).Wwxg=uRfWuwxg,
and thus
Ri(uo f).WOxg =04 R f.WOxq =0,
Ri(uo [).,Wwx g =04 R f,Wuwxg =0.
O
DEFINITION 4.4.10. Let S be a k-scheme and X and Y two integral S-schemes.

We say that X and Y are quasi-birational over S if there exists a commutative
diagram

z
X Y
NS
5,

with 7x and 7y quasi-resolutions (see Definition [£3]). We say that the triple
(Z,mx,my) (or just Z if we do not need to specify mx and my) is a quasi-
birational correspondence between X and Y .

Since quasi-resolutions always exist (see Remark L32)), two integral projective
S-schemes X and Y are quasi-birational over S if and only if the generic points
of X and Y map to the same point 7 in S and there exists a field L with a
homomorphism Og, — L and inclusions of Og ,-algebras k(X ) — L, k(Y) —
L, which make L a finite and purely inseparable field extension of k(X) and
E(Y). In particular this is the case if k(X) and k(Y") are isomorphic as Og, -
algebras.
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COROLLARY 4.4.11. Let S be a k-scheme and f : X — S andg:Y — S
two S-schemes, which are integral, have Witt-rational singularities and are
quasi-birational over S to each other. Then the choice of a quasi-birational
correspondence between X and Y induces isomorphisms in Db((ﬁ{\\Ns)

(4.4.2) RfWOxq = Rg:WOy,, RfWwxg= Rg.Wwyg.

Moreover, two quasi-birational correspondences Z and Z' induce the same iso-
morphisms if there exists a field L with a homomorphism Os, — L (n € S
being the common image of the generic points of X and Y ) and inclusions of
Og,y-algebras k(Z) — L, k(Z') — L, which make L a finite and purely in-
separable field extension of k(Z) and k(Z'), such that the composite inclusions
E(X),k(Y) = k(Z) — L and k(X),k(Y) < k(Z') — L are equal.

Proof. A quasi-birational correspondence (Z,mx,7y) between X and Y in-
duces an isomorphism

REWOx.q % RfRrx.WOz0 = Rg.Rry. WO 40 < Rg,WOy.q,

and similar for Ww. For the second statement first notice that if (Z, 7x,7y)
and (Z', 7', ) are two quasi-birational correspondences between X and Y
and if there is a quasi-resolution a : Z' — Z such that 7% = 7x o a and
T, = Ty o a, then they induce the same isomorphisms (LZL2). If we are given
two arbitrary quasi-birational correspondences Z and Z’ between X and Y and
a field L as is the statement of the corollary, then we can take a quasi-resolution
of the closure of the image of Spec L — Z xg Z’ to obtain a quasi-birational
correspondence Z” between X and Y mapping via a quasi-resolution to Z and
7' and is compatible with wx, 7', Ty, 7} in the obvious sense. This proves
the statement. g

COROLLARY 4.4.12. In the situation of Corollary[{.4.11] assume that S is inte-
gral and f and g are generically finite and purely inseparable. Then any quasi-
birational correspondence between X and Y induces the same isomorphism in

D'(dRW )
Rf*WOX,Q = Rg*WOy@, Rf*WwX@ = Rg*Wwy@.

COROLLARY 4.4.13. Let S be a k-scheme and f : X — S be an integral and
projective S-scheme, which has Witt-rational singularities. Let k(X )P be the
perfect closure of k(X) and n € S the image of the generic point of X. Then
Endog ,—alg(k(X)P) is acting on Rf.WOx,g and Rf.Wwx,g as objects in

DY(dRW).

Proof. An element o in Endog, —ae(k(X)P*") will when composed with
E(X) < E(X)Pef factor over a finite and purely inseparable extension L of
k(X). By the remark after Definition it hence gives rise to a quasi-
birational correspondence of X with itself and thus yields the promised well-
defined action by Corollary {4111 O
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Remark 4.4.14. The above corollaries have obvious analogs for WO-rational
singularities.
COROLLARY 4.4.15. Let X and Y be two integral k-schemes, which have WO-
rational singularities and are quasi-birational over k. Then in dRWy g
HY (X,WOx) = H(Y,WOyg), foralli>D0.
In particular, if X andY are projective then [BBEQT, Thm 1.1] yields a Frobe-
nius equivariant isomorphism
i <1~ g7i <1 .
Hp (X/K)~ = Hy, (Y/K) for alli >0,
where K = Frac(W(k)) and Hﬁig(X/K)<1 denotes the part of rigid cohomology
on which the Frobenius acts with slope < 1.

Proof. Apply Corollary [£411]in the case S = k. O

We will also give some results on the torsion, see Theorem [5.1.T0] and Theorem
o. 1.1

COROLLARY 4.4.16. Let k be a finite field. Let X andY be two quasi-birational
integral and projective k-schemes, which have W O-rational singularities. Then
for any finite field extension k' of k we have

I X (K| =Y ()| mod |K'|.
Proof. This follows from Corollary 415 and [BBEQ7, Cor. 1.3]. a

In the case where X and Y are smooth, integral and proper, the above corollary
was proved in [Eke83, Cor. 3, (i)]. In case there is a morphism f : X — Y,
which is birational and X is smooth and projective and Y = Z/G is the quotient
under a finite group G of a smooth projective scheme Z, this was proved in
[Cha09, Thm 4.5.].
We investigate the properties of Witt-rational singularities a little bit further.
PROPOSITION 4.4.17. Consider the following properties on an integral k-scheme
S:
(1) S has rational singularities.

(2) S has Witt-rational singularities.

(3) S has WO-rational singularities.

(4)

3
4) S has BE-Witt-rational singularities.

Then
1) =2)=B)= ).
Furthermore the first implication is strict, by Remark [{-{.8 above.

Proof. (1) = (2): By assumption there exists a resolution f : X — S. The
exact sequences

0= Wyu_10x > W,Ox — Ox — 0
and (see Proposition T4 (7))

P Fn—l
0> Whiwx = Whwx —wx — 0
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give us REf,W,0x = 0 = R f,Wywx for all n,i > 1 and also W,,0g =
f«W,oOx. Since S is CM, the isomorphism W, Og¢ = Rf. W, Ox also gives the
isomorphism f,W,wx = W,wg via duality (see Proposition T4 (2)). Now
the statement follows from the exact sequence (see Lemma [[5.T])

11 i—1 i . : i
0—R %11% f*EnﬁRf*(gEn) —>£%nR f«En — 0,

where E, € {W,Ox,W,wx}. (For the vanishing of R!f.Wwx use that
fWhwx = Wyws and hence the projection maps fiWhwx — filWn_1wx
are surjective, by Proposition LT} (4).)

(2) = (3): trivial.

(3) = (4): By Remark[L32 we find a quasi-resolution of S of the form f : X —
S with X a finite quotient. We thus find a smooth scheme X’ with a finite and
surjective morphism ¢ : X’ — X. Then h := fg: X’ — S is an alteration and
h*: W0Og,g — Rg:WOx g splits by Proposition .40 (1) = (2), and Lemma
T (2); a fortiori h* : W0Os ® Q — Rg.WOx' ® Q splits. O

4.5. COMPLEXES AND SHEAVES ATTACHED TO SINGULARITIES OF SCHEMES.

COROLLARY 4.5.1. Let S be an integral scheme and f : X —- S andg:Y — S
be quasi-resolutions. Then X andY are quasi-birational over X and any quasi-
birational correspondence between X and Y induces the same isomorphism in

the derived category Db((ﬁ{\\Ns)
RfWOxq = RgpWOy,q, RfWwxg=RgWuwyg.

Furthermore, if Z is another integral scheme and h : Z — S a quasi-resolution,
then the isomorphisms

Rf*WOX,Q = Rh*WOZQ, Rf*wa,@ = Rh*WwZ@

induced by any quasi-birational correspondence between X and Z equals the iso-
morphism obtained by composing the isomorphisms induced by quasi-birational
correspondences between X and Y and between'Y and Z.

Proof. First we show that X and Y are quasi-birational over S. For this notice
that £(X) ®p(s) k(Y) is a local Artin algebra. Denote by L its residue field.
Then we can take a quasi-resolution of the closure of the image of Spec L in
X XgY to obtain a quasi-birational correspondence between X and Y. Let V'
and V' be two quasi-birational correspondences between X and Y. Denote by
L" the residue field of the local Artin algebra k(V) ®y(s)k(V"). This is a purely
inseparable field extension of k(S). Hence there is only one embedding over
k(S) of k(X) and k(Y) into L. Thus by Corollary Z4.TT] the two isomorphisms
induced by V and V' are equal. Finally if we have the three quasi-resolutions
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f,9,h, we find a diagram of S-morphisms

VII%VI%Z

|

V——Y

|

X

)

in which V' is a quasi-birational correspondence between X and Y, V' is a
quasi-birational correspondence between Y and Z and V" is a quasi-birational
correspondence between V' and V' (and also between X and Z). The last
statement of the Corollary follows. O

DEFINITION 4.5.2. Let S be an integral k-scheme of dimension d. We define in
D’(dRWs )

WSO,S = Rf*WOXQ, WSd,S = Rf*WwX@,

where f: X — S is any quasi-resolution. This definition is independent (up to
a canonical isomorphism) of the choice of the quasi-resolution f by Corollary

E5.T1

It follows, that S has W O-rational singularities if and only if WSy g = WOg
and it has Witt-rational singularities if and only if in addition we have
Hi(WS4,s) =0 for all i > 1 (which is equivalent to WS4 s = Wwsg g).

Next we want to give a characterization of Witt-rational singularities using
alterations.

PropPOSITION 4.5.3. Let S be an integral k-scheme of dimension d and f :
X — S an alteration with X smooth. Set

ef = degf[X xs X]® € CHY(X x X, P(X x5 X))q,

where [X xg X]° is the cycle associated to the closure of X, X, X, in X xg X
with 1 the generic point of S. Further set

HO(X/S) : @le*wox, H>(X/S) @le*vm

HOD (X)) = HO(X/S) & H(X/S).
Then:

(1) The restriction of H(es/S) to H*OD(X/S)qg is a projector, which we
denote by ey. (See Proposition[5.5.4) for the notation.)
(2) The pullback f* induces a natural morphism of Witt modules over S

f*:W0Osg — efH*OD(X/S)q.
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(3) If g: Y — S is another alteration with Y smooth. Then set

1
Yig = m[X xg Y] e CHYX x Y,P(X x5Y)),

where [X x5 Y]° is the cycle associated to the closure of X, x, Yy, in

X xs Y. Then H(vsy/S) : H(X/S) — H(Y/S) induces an isomor-
phism

(4.5.1) H(vp9/S) : ef(HOD(X/S))g = eg(HW 0D (Y/S))a,
which is compatible with the pullback morphism from (2).

Proof. Take a non-empty open and smooth subset U of S such that the pullback
of f - and in case (3) also of g - over U is finite and surjective and hence also
flat; the pullbacks are denoted by fy : Xy — U and gy : Xy — U. Notice
that the restriction of [X x g X]° and [X xg Y] over U equal [ Xy xy Xy] and
[XU XU YU]

(1) We have to show efoes —ey = 0 on H*(%9(X/S)q. By the same argument
as in the proof of Theorem (using the vanishing Lemmas [3.6.1] and [3.6.2])
it suffices to prove

[XU XU XU] (e} [XU XU XU] —degf . [XU XU XU] = 0.

This follows immediately from [Xy xuy Xu| = [T, ] o [Tf,].

(2) The morphism ey, in particular gives a projector ey : f,WOxq —
f«WOx,q. Thus we need to show, that e o f* = f* on WOg . It suffices to
prove this over U; thus the statement follows from deg f - ez, = f{; o fu«.

(3) To prove that 7y, is an isomorphism on es(H*(©®(X/S)q) with inverse
delgg’;’:[([Y x s X1]°/8) it suffices to show that the following cycles in CH*(X x
Y, P(X xgY)), etc.,

degg - [X xsY]"0[X x5 X]”—deg f-[V xg Y]’ 0 [X x5Y]°
deg f-]Y x5 X]%0[V xg V] —degg - [X x5 X]°o[Y x5 X]°
[V x5 X]°0[X x5 Y]%0[X x5 X]° — (deg fdegg) - [X x5 X]°
[X x5Y]%0[Y xg X]°0[V x5 Y] — (deg fdegg) - [Y xg Y]°

act as zero on H* (D (X/S)g and H* (D (Y/S)q respectively. By the same
argument as in the proof of Theorem (using the vanishing Lemmas B.G.1]
and [3.6.2) it suffices to prove that the pullback along U of the above cycles
vanish. This follows easily from [Xy xy Xy] = [FS”U] o[Cy ], Xu xv Yu] =
[T, ]o[Ts,] and [Ty,]o [I'% ] =deg f-[Ay], etc. This yields the isomorphism
@5T). It is compatible with the pullback from (2), since on WOg g we have
H(vs,g/S)f* = g*. Indeed over U we have H(vy, . gv/U) = @ - g © fu+; thus
it holds on U and hence on all of S. g

DEFINITION 4.5.4. Let S be an integral k-scheme of dimension d and f : X — S
an alteration with X smooth. Then using the notations from Proposition 5.3
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we define

AO(X/S) 1= coker(WOsg L5 ¢, 0(X/8)q) = L0 Oxa

Fors @unanose

i>1
and . _
AYX/S) = efHOUX/S) = P esR £ W o
i>1
Then by Proposition £5.3 A°(X/S) and A%(X/S) are independent of f : X —
S up to a canonical isomorphism and are therefore denoted

A°(S) := AY(X/S), AYS):= AUX/S), A(S):= A%S)a AYS).

Remark 4.5.5. If S is normal, then A(S) is a direct summand of H* (%4 (X/S)q
for any alteration f: X — S with X smooth.

THEOREM 4.5.6. Let S be an integral k-scheme. Then there are isomorphisms
in dRWg g
_H WS s

A°(S) = WQ) @Hi(wso,s), Ad(S) = @Hi(wsds).
> i>1 i>1

In particular:
(1) S has WO-rational singularities <= A°(S) = 0.
(2) S has Witt-rational singularities <= A(S) = 0.

Proof. By de Jong (see Remark [.3.2)) there exists an alteration f : X — S
which factors as
fixbhySs,
where X is smooth, Y = X/G, for G a finite group, h is the quotient map and
g is a quasi-resolution. Thus the following equalities hold by definition for all i
H'WSos) = R'g.WOyq, H'WS4s)=RgWwyg.

Since Y is normal and h is finite and surjective it is also universally equidi-
mensional. Thus [X xy X] € CHY(X x X, P(X xy X)), where d = dim S.
We denote by [X xg X]° the cycle associated to the closure of X, x, X, in
X xg X, where 7 is the generic point of S. We claim

(4.5.2) [X x5 X]” =degg-[X xy X] in CHYX x X, P(X x5 X)).

Indeed it suffices to check this over a smooth and dense open subscheme U of
S, over which ¢ is a universal homeomorphism and Y is smooth. But then

[(Xu xv Xv]° = [Xv xv Xv]
=[]0 [Tl
= [Tl o [T, ] o [Cgy] 0 [Thy]
=degg- [[},,] 0 [Tny] by @2T)
=degyg - [Xv Xy, Xvl.
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Hence the claim. Now H([X xy X]/Y) induces an endomorphism of h. (W Ox &
WQ%) which actually equals h* o hy, for h, and h* as in Definition
(see #22).) It thus follows from Proposition and [@E52) that ey =
H([X x5 X]°/8) factors for each i > 0 as

deg f

Rf.(WOx @ WQ%)o {(WOx @ WQ%)o

R g* WOY 57 WWY

Taking into account that h, o h* is multiplication with the degree of h, this
yields the statement of the theorem. O

4.6. ISOLATED SINGULARITIES. In this section we will relate the sheaf A°(9)
(Definition E54) for a normal variety S with an isolated singularity to the
Witt vector cohomology of the exceptional set in a suitably good resolution

of singularities S. For this, we need to compute the higher direct images of
W(Os)e-

PROPOSITION 4.6.1. Let f : X 5 Y bea proper morphism of schemes. Let
Yo C Y be a closed subset, we denote by Y = Y\Yy the complement. We
consider the cartesian diagrams

X—x—X
N
Y—vVv<—Y,.

Let I C Ox be a sheaf of ideals for Xo. Suppose that R'f.Ox =0 for all i > 0.
Then

R'fW(ZT)g=0 foralli>D0.
In order to prove Proposition [£.6.1] we need several Lemmas.

LEMMA 4.6.2. Let X be a scheme and Z C Ox a sheaf of ideals. For all integers
a > 1 the natural map

W(Z%)q = W(I)g

s an isomorphism.
Proof. The proof is the same as in [BBEQT, Proposition 2.1(ii)]. O

LEMMA 4.6.3. With the assumptions of Proposition[{.0.1] There are N,a >0
such that for all r > N and all n > 1 the morphism

R f W, (T"T) — R f. W, (T"),
induced by I"t* C I", vanishes for all integers i > 0.

Proof. [BBEQOT, Lemma 2.7(i)]. O
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Proof of Proposition[[.6.1 Choose N as in Lemma By using Lemma
[£.6.2 we may replace Z by ZV. Thus we may assume that N = 1. The image
of the Frobenius acting on W,,(Z) is contained in W, (Z?):

Wi (ZP)

and therefore F'* (with a as in Lemma[6.3) is zero on R f,W,,(Z) for all i > 0.
We continue as in the proof of [BBE07, Theorem 2.4]. Since F'* acts as zero on
lim R f.W,(Z) and R lim R f.W,(Z) for all i > 1, we obtain via the exact
sequence

0— R

lim R~ £, W, (Z) = R f.(W(T)) — lim R’ f.W,,(T) = 0

that F2% acts as zero on R*f, W (Z) for alli > 0 (we use that R? m  f. Wy, (7) =
0). Thus the relation F'V = p implies that p?* kills R' f,W(Z) for alli > 0. [

COROLLARY 4.6.4. Let S be an integral scheme with an isolated singularity at
the closed point s € S. Let f : X — S be projective and birational. Suppose
that f is an isomorphism over S\{s}; we denote by E the closed set f~(s)
equipped with some scheme structure. Then

R'f.WOxq=H'(E,WOgq) foralli>D0,
where H'(E,WOg q) is considered as skyscraper sheaf supported in s. More-
over, the morphism is compatible with the Frobenius and Verschiebung action.
Proof. Let Z be the sheaf of ideals for E. We obtain an exact sequence
0= Wipg—WOxq— WOgq—0.

Proposition 6.1 implies that the higher direct images of WZg vanish, which
proves the statement. O

LEMMA 4.6.5. Let E be a scheme. Write B = U._, F; with E; irreducible for
all i. There is a spectral sequence
st N N
EPt = EB Ht(ﬂj-:OElj,W(’)m;:OE%j 0) = H"WE,WOgg).
1<<n < <15 <r
The spectral sequence is compatible with the Frobenius and Verschiebung oper-

ation.

Proof. By [BBEQT7, Proposition 2.1(i)] the sheaf WOn:_ g, ¢ doesn’t depend
on the choice of the scheme structure for N;_yE,; .
(From [BBEQT, Corollary 2.3] we get an exact sequence

WOgq =~ E@PWO0gs, 0~ P WO, ne,0— -

20 10<?1
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where the maps are sums of restriction maps and thus compatible with F' and
V.

For every affine open set U C E we have
H'(U Ni—o £, WO) =0, forallt>0,

because U Nj_, E,; is affine. Therefore we obtain the spectral sequence in the
statement. g

PROPOSITION 4.6.6. Let E be a projective scheme over a finite field k = Fpa.
Write B = U]_, E; with E; irreducible for all i. Suppose that for all s > 1 and
all 1 <19 < -+ <1g <1 the set theoretic intersection N;_oE,;, equipped with
the reduced scheme structure, is smooth.

For all n > 2 the differential of E5t, induced by the spectral sequence of Lemma

n

[{-6.3, vanishes. In other words, By' = H*t'(E,WOg q) is degenerated and
ESt=EyY for all s,t.

Proof. By definition E2! is a subquotient of Eft By assumption, N;_oE,; is
smooth and projective. We know that

Ht (m§=0E'Lj ) Woﬁj:OElj ,Q) = Ht (mjzoE’Lj /K)[O,l[;

crys
where the right hand side is the slope < 1-part of crystalline cohomol-
ogy (K W(k)). This isomorphism is compatible with the F-operation.
It follows from [KMT4] that the characteristic polynomial of F* acting on
H,o(M5_oE,; /K) is the characteristic polynomial of the geometric Frobenius

acting on Hét((ﬂjzoElj) X k, Q) for any prime ¢ # p. Thus F® acting on

H(t:rys(m;:OE’Lj /K)0,1] has algebraic eigenvalues with absolute value p% with

respect to any embedding of K into C. In particular, this holds for the eigen-
values of Et for n > 1 and all s. Thus the differential

Eflfn,tJrnfl N Efl,t SN Efl+n’t7n+1
vanishes if n > 2. O

THEOREM 4.6.7. Let k be a finite field. Let S be a normal integral scheme with
an isolated singularity at the closed point s € S. Let f : X — S be projective
and birational. Suppose that f is an isomorphism over S\{s}; we denote by E
the closed set f~1(s). Write E = Ul_, E; with E; irreducible for all i. Suppose
that for all s > 1 and all 1 < 19 < --- < 15 < 1 the set theoretic intersection
Ni_oE; . equipped with the reduced scheme structure, is smooth.

Then S has W O-rational singularities (Definition[].{.4]) if and only if the spec-
tral sequence of Lemma[{.0.0] satisfies

Ey' =0 for all (s,t) # (0,0).

Proof. Tt follows from Corollary .6.4] that S has W O-rational singularities if
and only if

HY(E,WOgqg) =0 foralli>0.
The assertion follows from Proposition O
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The case t = 0 is a combinatorial condition on the exceptional set E. For any
smooth and proper scheme X over k we have

HY (X, WOx) @y W(k) = HG (X xi k,Qp) ®q, W (k).

Therefore the condition E;’O = 0, for all s > 1, is equivalent to the vanishing
of the cohomology of the complex

P H(E,, <1 k. Q) = @ H((E, NE.,) i k,Qp) —
20 10<?1

D H(E,NE,NE,) xxk,Qp) — ...

10<11 <12

in degree > 1. Of course, the cohomology in degree = 0 equals H*(Exyk,Q,) =
Qp, because S is normal.

For a surface S the conditions for ¢t > 1 are equivalent to E; req Xk k=~ I_[j P!
for all 7. Indeed, for a smooth curve F; we have

dim H'(E;, WOg, o) > dim H'(E;, Og,),

and H'(E;,Og,) = 0 if and only if E; x; k is a disjoint union of P!s.
Therefore S has WO-rational singularities if and only if the exceptional divisor
of a minimal resolution over k is a tree of Pls.

4.7. CONES AND WITT-RATIONAL SINGULARITIES. In [BEOS, Ex. 2.3] Blickle
and Esnault give an example of an Fj,-scheme which has BE-rational singulari-
ties but not rational singularities. Their proof in fact shows, that their example
also has WO-rational singularities. In this section we slightly generalize their
example and show that it also has Witt-rational singularities.

4.7.1. Let X be a proper k-scheme, £ an invertible sheaf on X and V(L) =
Spec (Br,>0L®™). We denote by s : X < V(L) the zero-section. By Grauert’s
criterion (see [EGAII, Cor. (8.9.2)]) £ is ample on X if and only if there exists
a k-scheme C together with a k-rational point v € C' and a proper morphism
q: V(L) = C, such that ¢ induces an isomorphism V(L) \ s50(X) = C\ {v}
and ¢ 1 (v)red = 50(X)rea- If £ is ample, we call any triple (C,q,v) as above
a contractor of the zero-section of V(L). One can choose C for example to be
the cone Spec S, where S is the graded ring k &,,>1 H°(X,£%") and v is the
vertex, i.e. the point corresponding to the ideal S..

The following proposition is well-known; we prove it for lack of reference.

PROPOSITION 4.7.2. Let X be a proper and smooth k-scheme and L an ample
sheaf on X. Then the following statements are equivalent:

(1) For any n > 1 and dall contractors (C,q,v) of the zero-section of
V(L®™) we have R'quwy (geny =0 for all i > 1.
(2) H(X,wx @ LZ") =0 for all i,n > 1.
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Proof. Let (C,q,v) be a contractor of the zero-section of V(£). Denote by Z
the ideal sheaf of the zero section of X in V(£). We have

se =L, S0£ LO™ = I"/I”H.

We set Y, := Spec(Oy(z)/I"); in particular Y7 = s0(X). The sheaves

Riq*wv(ﬁ) have support in {v} and since \/m,Oy (z) = I, where m, C Ox_, is
the ideal of v, the theorem on formal functions yields

Riq*wv(m =0<= @Hi(Yn,WV(ﬁ)lyn) =0.
n

Further wy £y, & wx®L, hence tensoring the exact sequence 0 — In /77—

Oy, ., = Oy, — 0 with wy )y, ., yields the exact sequence

(4.7.1) 0= wx ® L2 = wyiryv,,, = W)y, — 0

(2)= (1): We have H (Y1,wy(z)v;) = H(X,wx ® L) = 0 for all i > 1, by
assumption. Now the statement for (C, ¢, v) follows from [@7.1]) and induction.
Since £ is any ample sheaf, we can replace £ by £&™ in the above argument
and obtain the statement also for a contractor of the zero-section of V(L£®").
()= (2): Let d be the dimension of X. Then the maps
HY Y1, wv(o)ve,) — HY(Yn,wyc)y,) are surjective for all n > 1.
Since ]&nn HYY,, Wy (c)|y,) = 0 by assumption, we get in particular

HY Y1, wy(o)v,) = HY(X,wx ® £) = 0.
Replacing £ by £&™ in the above argument thus gives us
HY(X,w® L") =0, foralln>1.

Assume we proved H (X, w ® L") = 0, for all n > 1. Then @7 yields
that Hi(YnH,wV([;”ynﬂ) — Hi(Y»,“CL)V(ﬁ)‘Yn) is surjective and as above we
conclude that in particular H*(Y1,wy (z)y,) = H'(X,wx ® L) equals zero (if
i > 1). Again we can do the argument with £ replaced by £®" and obtain
Hi(X,wx ® L&) = 0 for all n > 1. This finishes the proof. O

Remark 4.7.3. Notice that in characteristic zero condition (1) is always satisfied
because of the Grauert-Riemenschneider vanishing theorem; condition (2) is
always satisfied because of the Kodaira vanishing theorem.

THEOREM 4.7.4. Let Xy be a smooth, projective and geometrically connected
k-scheme and L an ample sheaf on Xo. Assume (Xo, L) satisfies the following
condition:

(4.7.2) H(Xo,wx, ® LZ™) =0, foralln,i>1.

Let X be the projective cone of (Xo, L), i.e. X = Proj(S[z]), where S denotes
the graded k-algebra k ©,>1 H°(Xo, LZ™).
Then X is integral and normal; it has Witt-rational singularities if and only if

(4.7.3) H'(Xo,WOx,)o =0, foralli>1.
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Furthermore if L is very ample, then X is CM if and only if the following
condition is satisfied:

(4.7.4) H'(Xo,L%") =0, foralln€Z and all 1 <i < dim X, — 1.

Proof. Let v be the k-rational point of X, corresponding to the homogenous
ideal in S[z] generated by Si. Then the pointed projective cone X \ {v} is
an Al-bundle over Xy = ProjS. Thus X has an isolated singularity at v
and it suffices to consider the affine cone C' = Spec S of (Xo,L). Since Xy
is integral, projective and geometrically connected and k is perfect we have
H°(Xy,Ox,) = k, by Zariski’s connectedness theorem. Thus C is integral and
normal by [EGATIL, Prop. (8.8.6), (ii)]. Set V := V(L) = Spec (E,>0L®™);
it is an Al-bundle over Xy, hence is smooth. By [EGAITI, Cor. (8.8.4)] there
exists a projective morphism ¢ : V' — C, such that the triple (C, g, v) becomes
a contractor of the zero-section of V. In particular, ¢ : V' — C' is a projective
resolution of singularities of C'. (In case L is very ample, ¢ : V — C is the
blow-up of C in the closed point v, see [EGAII, Rem. (8.8.3)].) By Proposition
and Remark [£.4.5] it suffices to prove

R'¢.WOyg =0, R'q@Wwyg=0, foralli>1.

By Corollary 6.4l the vanishing R'q.W Oy, = 0 is equivalent to the vanishing
H¥(Xo,WOx,)g = 0. Thus it suffices to prove the vanishing R'q.Wwy,g = 0
under the assumptions ([I72) and Rg. WOy g & WOcqg. Proposition
yields Rig,wy = 0 for all i > 1. Hence also Riq,W,wy = 0 for all i,n > 1,
by the exact sequence in Proposition £T.4] (7) and induction. Therefore the
exact sequence

0— R'm R q.Wywy — R'g.Wwy — lim R'g.Wwy — 0

immediately yields
(4.7.5) R'¢.Wwyg =0, foralli>2.

To conclude also the vanishing of R'q,Wwy g we have to prove the vanishing
(R @n ¢:Wywy)g = 0. To this end denote by I,, K, and C, the image,
the kernel and the cokernel of ¢.Wewy — Wewe, respectively. Notice that
K, and C,, are coherent W,,Oc-modules, whose support is concentrated in the
closed point v; hence these modules have finite length. Therefore Ko and C,
satisfy the Mittag-LefHler condition, in particular R! @Cn =0=R! @Kn.
Furthermore, RQQnKn = 0 by Lemma [[L57] (1). Thus the exact sequence
0— K¢ = g Wewy — Ie — 0 gives

leq*anv o R1<]j£1[n.

We also have the vanishing R'lim W,,wc = 0, since the transition maps are
surjective (by Proposition LT 4] (4)) and therefore the exact sequence 0 —
Iy = Wewe — Cy — 0 gives a surjection

I'&nC’n%Rll'LnIn = 0.
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By Lemma IL34 (lim Cy)g = 0, hence also (R! lim g, Whwy)g = 0.

For the last statement notice that X is CM if and only if H!(C,O¢) = 0 for
all i < d—1 = dim Xg. Since C is affine the long exact localization sequence
gives us an exact sequence

0— H)(C,0c) — H°(C,0¢) — H(C\ {v,},0¢) = H)(C,0c) = 0
and isomorphisms
H™YC\ {v},00) =2 H(C,O¢), for all i > 2.

Let 7 : C\ {v} = Xy be the pointed affine cone over Xy = ProjS. Since L is
very ample the graded ring S is generated by S; and we obtain

W*OC\{@} = ®£®n.
nez
Therefore HO(C'\ {v},0c) = @,,5¢ H* (X0, £L®") = S = H(C,O¢). Thus
HY(C,0¢) and HY(C,O¢) always vanish and H!(C, O¢) vanishes for 2 < i <
dim Xy if and only if @,,., H*~"(Xo, £L®") vanishes, which is exactly condition
#T4). This proves the Theorem. O

Remark 4.7.5. (1) Condition (@72)) in the above theorem holds in charac-
teristic zero by Kodaira vanishing, which in general is wrong in positive
characteristic; for a counter example see [Ray78|. By [DIS7, Cor. 2.8.]
this condition holds if Xy lifts to a smooth Wa(k)-scheme and has di-
mension < p. Notice also that condition ({72)) and @ 7T4) are always
satisfied if X is a smooth hypersurface in some P} and £ = Opy (1) x,-

(2) The vanishing (L.73) is satisfied if the degree map induces an isomor-
phism CHo (X x k(Xo))g = Q, which is for example the case if Xo.k
is rationally chain connected, where k is an algebraic closure of k. See
[BEOS, Ex. 2.3], alternatively one can also use Bloch’s decomposition
of the diagonal and the vanishing Lemmas [3.6.1] and Another
case where ([L73)) holds is when X, has a smooth projective model
Xy over a complete discrete valuation ring R of mixed characteris-
tic and with residue field k, such that the generic fiber Ap ,, satisfies
H'(Xy,,0x,.,) =0 for all i > 1. This follows from p-adic Hodge the-
ory (“ the Newton polygon of H!..(Xo/W) ® Frac(R) & H'p(Xo,,)
lies above the Hodge polygon”).

(3) The example in [BEQS] alluded to at the beginning of this section is the
following: By [Shi74, Prop. 3] the Fermat hypersurfaces Xy C PZT'H
given by g +...+x4,., 1, where n is such that p” = —1 mod n, for some
v > 1, are unirational over k. Hence X satisfies the conditions (E7.2),
@73) and (E74) of the theorem and we obtain that the projective
cone X of Xy is normal, CM and has Witt-rational singularities. (In
[BEOS, Ex. 2.3.] it was shown that X is WO-rational.) Choosing X
of degree larger than 2r + 2 we see, that H4mXo(X, Ox,) # 0 and it
follows that X cannot have rational singularities.

rys(
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(4) Let X be as in the theorem and let 7 : ¥ — X be any resolution of
singularities. Then R'm,Wwy,g = 0 for all i > 1. As it follows from
the proof and [CR09, Thm. 1], we even have the stronger vanishing
Rim,wy = 0 for all i > 1, which is implied by condition (Z7.2)) solely.
It is an obvious question whether the vanishing R'm,Wwy,g = 0 also
holds without condition (T72), i.e. does some version of Grauert-
Riemenschneider vanishing hold. In view of Proposition 7.2 this
question should be linked to some kind of Kodaira vanishing, of which
at the moment even the formulation is not clear. (But see [BBEQT,
Cor. 1.2] for a first result in this direction.)

4.8. MORPHISMS WITH RATIONALLY CONNECTED GENERIC FIBRE. The goal
of this section is to prove the following theorem.

THEOREM 4.8.1. Let X be an integral scheme with Witt-rational singularities.
Let f: X =Y be a projective morphism to an integral and normal scheme Y .
We denote by n the generic point of Y, and X,, denotes the generic fibre of f.
Suppose that X,, is smooth and for every field extension L D k(n) the degree
map

CHo(Xy Xpp) L) ®2Q — Q
is an isomorphism. Then
PREWOx o=@ H WSoy), PR fFWwxo= @ H WSdimv.y),
i>0 i>0 i>0 i>0
where WS is defined in Definition [[.5.2

482. Let f: X — Y be as in the assumptions of Theorem 8Tl We can
choose a factorization (cf. Remark [A3.2])

X' X/ x s X,
such that
e X’ is smooth, integral and quasi-projective, G is a finite group acting
on X',
e } is birational and projective,
e X" is normal and wu is a universal homeomorphism.

We obtain a commutative diagram
(4.8.1) X’

s

X'/G
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where Y is the Stein factorization of X" — Y. Therefore ' is a universal
homeomorphism. Note that Y is also the Stein factorization of X’'/G — Y.

LEMMA 4.8.3. With the assumptions of Theorem[{.8.1] Set f' = fouohom
with the notation as in diagram [@E8T). We consider X' via f' as a scheme
overY. Let P =3 [['(9)] € CH(X' xy X'), withT'(g) the graph of g. Then
there is a natural isomorphism

H(P/Y) (@ R flWOx: g & WWX’,Q)) = PR f.(WOx g ® Wwxg)

i>0 i>0
Proof. The cycle P = 3 _,[I'(g)] is already defined in CH(X' xx//q X').
Theorem and Corollary [£4.7] imply
(4.8.2) H(P/(X'/G)) (1. WOx g ® mWwx' g) = WOx /6.0 ® Wwx/co-
It follows from Proposition that

H(P/Y) = @leouoh ) H(P/(X'/G)).

Since P? = #G - P, we obtain from ([L8.2) that

H(P/Y) (EB R [L(WOxg & Wwa,@)> =
i>0
PR (fouoh).(WOx/ 60 Wwx c,0)-
>0

uoh

Because X has Witt-rational singularities and X’'/G —— X is a quasi-
resolution we get

0 forall 7 >0

Ri(uoh),(WOx, & Wwx =
(uoh)u( X'/G,Q wx /G,Q) {WOX,Q@WwX,Q for j =0,

which implies the statement. O

PROPOSITION 4.8.4. Let f' : X' — Y be a projective and surjective morphism.
Suppose that Y is normal, and X' is smooth and connected. We denote by n
the generic point of Y. Let Y C X' be a closed irreducible subset such that
Y' =Y is generically finite. We denote by Ay and As the closure of Y, x, X,
and X; %, Y, in X' xy X', respectively. Then there are natural isomorphisms

(4.8.3) H([A1]/Y) (@Rl fiWOx:, ) =~ A%(Y)
>0

(4.8.4) H([A2])Y) (EB R fiWwx, ) & AdmY (),
>0

(See Definition [{-5.4] for A.)
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Proof. We will prove [L84]), the identity (£83) can be proved in the same

way. ~

Let Y — Y’ be an alteration of Y’, such that Y is smooth. We denote by

1:Y — X’ the composition. The graph of 2 defines a morphism
HI@)/Y): HY [Y)(=r) = H(X'/Y),

with 7 := dim X’ — dimY. The closure Z of X,’7 Xy Y,] in X’ xy Y defines a
morphism

(Z/Y) FH(XY) = HY /Y ) (=)
We have (idxs x 2)«([Z ] d - [A] for some d # 0. Finally, we define @ to be

the closure of Y, %, Y, i nY x Xy Y. We have the following relations
[[(2)] o [Z] — d[As] € ker(CH(X' xy X') — CH(X{7 Xn X{?)),
[Z] o [T(2)] — [Q] € ker(CH(Y xy Y) — CH(Y, x, Yy)),
[A2] o [A2] — €[A2] € ker(CH(X' xy X') — CH(X,’, Xn X,’,)),
[Q 0 [Q] — g[Q] € ker(CH(Y xy ¥) — CH(Y, x, ¥)),
for some e, g # 0. Because of Lemma we conclude that

H([A2]/Y) (@le*wa/ >~ (@Rz 0 1) Wwy@)

i>0 i>0
By Definition 25.4] the right hand side is AY™Y (V). O
Proof of Theorem [{.8.1 We use diagram .8.1] and the constructions of
The first step is to prove
(4.8.5) CHo (X, X k() L2Q=Q
for every field extension L D k(n). We have a push-forward map

o CHO(X X L) ® Q = CHo(Xy; X L) @ Q,
and because X, is smooth over k(n) we have a pull—back map

B : CHo(Xy Xpp L) @ Q — CHO(X,’I Xk L) @ Q.
We have the following formula for the composition

Boa=deg(u) Y gu,
geG

provided that G acts faithfully on X’ (we may assume this). Thus (EL83)
follows from the assumptions.
Let

P = [I(g)] € CH(X' xy X),

geG

with I'(g) the graph of g. We denote by P, the image of P in CH(X}, x, X7).
The cycle P, is invariant under the action of G' on the left and the right factor
of X, Xy, X,.
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By the same arguments as in [BS83, Proposition 1] we see that there are non-
zero integers Ni, No, My, M, effective divisors D, Dy on X7’7, and a closed
point « of X, such that

(4.8.6) N1P, + Nofa %, X, ] € image(CH(X), x, Ds)),

(4.8.7) My P, + M[X}, %, a] € image(CH(D; x,, X)).

Let D1, Ds, and Y, be the closures of D1, Ds, and a in X’. The map Y, = Y
is generically finite and Y, , = a. Let A; and A, be the closures of a X, X,’,

and X, x, o in X’ xy X'. Because of the formulas (£8.6), [{81) over the
generic point 7, there is a Weil divisor S C Y such that

N; P + N3[A;] € image(CH(X' xy Ds)) + image(CH(X§ x5 X)),
M; P + M;[As] € image(CH(D; xy X)) + image(CH(X§ x5 X§)).
Lemma [3:6.0] implies that H(P/Y) acts as H([A1]/Y) on
PR FWOx .
>0
;From Lemma B:6.2 we conclude that H(P/Y) acts as H([A2]/Y) on
P R fWwx o
>0
In view of Proposition [£.8.4], Theorem [.5.6] and Lemma [£.8.3] this implies the

statement of the theorem. O

5. FURTHER APPLICATIONS
5.1. RESULTS ON TORSION.

5.1.1. The Cartier-Dieudonné-Raynaud algebra. Recall from [IR83] I, (1.1)]
that the Cartier-Dieudonné-Raynaud algebra is the graded (non-commutative)
W-algebra, generated by formal symbols F' and V in degree 0 and by d in
degree 1 which satisfy the following relations
F-a=F()-F, a-V=V-F(a), (aeW), F-V=p=V.F
a-d=d-a (aeW),F-d-V=d, d-d=0.

(Here F is a formal symbol, whereas F'(a) denotes the Frobenius on the Witt
vectors of k applied to the Witt vector a.) Thus R is concentrated in degree
0 and 1. Notice that any de-Rham-Witt module and any Witt-module on
a scheme X naturally becomes an R-module (the latter with d acting as 0).
Therefore we have an exact functor

dRWx — Sh(X, R) := (sheaves-of R-modules on X)
which trivially derives to a functor
(5.1.1) ¢ : D'(dRW y) — D'(Sh(X, R)) := D*(X, R).

We set
R, =R/(V"-R+d-V"-R).

DOCUMENTA MATHEMATICA 17 (2012) 663-781



HoDGE-WITT COHOMOLOGY ... 773

Notice that this is a left R-module. We obtain a functor
R,®r : Sh(X, R) — Sh(X, W,[d]) := (sheaves of W, [d]-modules on X),

where W,[d] is the graded W,-algebra W,, © W,, - d, with d> = 0. By [IR83|
Prop. (3.2)] the following sequence is an exact sequence of right R-modules

1. S R(-1) D Ry R YV R R, 0,
5.1.2 05 R(—1) D e R Y R LR 0

This allows us to calculate the left-derived functor
R, ®}L;¢ —: D7 (Sh(X, R)) —» D~ (Sh(X, W, [d])) := D~ (X, W, [d]).
One obtains the following.

(1) Assume X is smooth. Then R, ®{§ WQx = W,0x.
(2) Let f: X — Y be a morphism of k-schemes, then

R, @% Rf.(—) = Rf.(R, ®% (-)) : D*(X, R) — D*(Y, W, [d)).
(3) Let X be a scheme and Z C X be a closed subscheme, then
Ry, @ RL4(—) 2 RL (R @ () : D*(X, R) — D*(X, Wy[d]).
The first statement is [IR83l II, Thm (1.2)], the last two statements follow

directly from (12).

PROPOSITION 5.1.2 ([Eke83 I, Prop. 1.1.]). Let S be a k-scheme and M €
D*(S,R) a complex of R-modules, which is bounded in both directions, i.e.
there exists a natural number m, such that H'(M)? is non-zero only for (i,j) €
[—m,m] x [—-m, m].
(1) Assume there exist integers r,s € Z, such that H'(Ry ®% M)7 =0 for
all pairs (i,7) satisfying one of the following conditions

(6.1.3) (i+j=mr,i>s)or(i+j=r—1,1>s+1) or (i+j =r+1,i > s+1).
Then
HY(R, % M) =0, for alln and all (i,7) withi+j =171 > s.

(2) Assume there exist integers r,s € Z, such that H'(Ry ®% M)7 =0 for
all pairs (i,7) satisfying one of the following conditions

(5.14) (i+j=ri<s)or(i+j=r+1,i<s)or(i+j=r—1,i<s—1).
Then
HY (R, % M) =0 for alln and all (i,7) withi+j =7, i < s.

This proposition is called Ekedahl’s Nakayama Lemma because applying it to
the cone of a morphism f : M — N in D?(X, R) between two complexes, which
are bounded in both directions, we obtain that R, ®pg f is an isomorphism for
all n, if Ry @k f is.
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COROLLARY 5.1.3. Let S be a k-scheme and f : X — S, g :Y — S two
S-schemes which are smooth over k. Let ¢ : RfWQx — Rg.WQy be a
morphism in D*(S,R). Then Ry ®r ¢ is a morphism

p1 = R, ®é ©: Rf*QX — RQ*QY n Db(svk[d])
and furthermore:

(1) If there exists an natural number a > 0 such that @1 : @jgaRf*Qg( =
®<aRg: ¥, is an isomorphism, then
¢ = Rlim(R, ©r ¢) : RV = P Re. WY,
n j<a j<a
is an isomorphism.
(2) If there ewists a natural number a > 0 such that ¢ : ®j>a R =
®,>qRg: Y, is an isomorphism, then

= Rlm(R, @r ¢) : D REWY = P Rg. W,

jza jza
is an isomorphism.

Proof. First of all notice, that by B (1) and (2) R, ®% ¢ indeed is
a morphism Rf.W,Qx — Rg.W,Qy and that R@(Rn ®L ¢) is a mor-
phism Rf,WQx — Rg.W{Qy, since R@Rf*WnQX = Rf*R@n Wolx =
RfWQx.

Denote by C the cone of ¢ in D*(S, R). It is clearly bounded in both directions
(in the sense of Proposition[5.1.2)). Assume we are in the situation of (1). Then
Hi(Rl ®§ C)j =0 for all i € Z and j < a. Choose ig € Z and jy < a and set
s :=ip and r := jo + ip. Then H'(R; ®% C)7 = 0 for all (i,7) as in (EL3).
Thus H(R,, ®% C)% = 0 for all n. Therefore R,, ®% ¢ is an isomorphism for
all n in degree < a, which gives (1). Now assume we are in the situation of (2).
Then H' (R, ®§ C)) =0 for all i € Z and j > a. Choose iy € Z and jo > a
and set s := i and 7 := o + jo. Then H'(R; ®% )7 = 0 for (i, j) as in (EL4).
Thus H(R,, ®% C)% = 0, which implies (2) as above. O

LEMMA 5.1.4. Let X be a smooth scheme and E(W,Qx) the Cousin complex
of WeS2 with respect to the codimension filtration on X (see[l.5.8). Then there
is a natural commutative diagram of isomorphisms in D*(X, W, [d])

Ry, @% WQx —— Ry, @ lim E(W,Qx)

Nl lN

W, Qx E(W,Qx).

Proof. There is an obvious map

Ry @ lim E(Wa2x) = lim E(WaQx)/(V" + dV (lim E(WaS2x))) = E(W, ),
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yielding a morphism R, ®IRJ£HE(W.Q)() — E(W,Q), which clearly fits into a
diagram as in the statement. By Lemmal[[.5.9] F(W,{x) is a flasque resolution
of WeQ2x and thus, by Lemmal[l[.54] (4), %in E(W,x) is a resolution of WQx.
Hence the two horizontal arrows in the diagram are isomorphisms, and by
BETTK1) the vertical arrow on the left is an isomorphism. This proves the
claim. O

5.1.5. Let f: X — Y be a morphism between k-schemes. Then we have the
pullback in D*(dRWy) (see Definition Z2.1))

Wy — REWQx.
Using (&.1.2)) and BI.T] (1), (2) one checks
fi=Rn @ (6(Rlim f7)) in D*(Y, W,[d)),

where ¢ is the forgetful functor from (E.I)), f; denotes the image of f* under
the projection from D’(dRWy) to Db(Y,W,[d]) and Rlim : D’(dRWy) —

Db (cﬁ{\\N’y) (see Proposition [[L5.6])

5.1.6. Let f : X — Y be a morphism of pure relative dimension r between
smooth schemes and let Z C X be a closed subscheme, such that f|, is proper.

Then we have the pushforward in D*(dRWy-) (see (Z.3.4))
fe: RfLRL ,WeQdx — Wy (—1)[—7].
Using (2.3.3)) and Lemma [5.1.4] one checks
fen = Ry @ (6(Rlim f,))  in D*(Y, W,,[d)).

5.1.7. Let X be smooth equidimensional scheme and Z C X an integral closed
subscheme of codimension ¢. Then we have the cup-product with cl([Z]) (see

B22) in Db(dRWX)
(yud(2]) : Watx E22 9 w)(e) B2 R, (W) (e)[d.

Notice that in 5.7 we defined this maps only in the limit, but they can clearly
be constructed on each level and the limit of the above gives .57l Also notice
that the first map is given by a +— (—1)¢9°8%q . ¢[([Z]), which is a morphism
of de Rham-Witt systems (since F(cl([Z])) = w(cl([Z])) and d(cl([Z])) = 0.)
Using (&.1.2) and BT (1), (3) one checks

(—Udn((2])) = R @ ¢(RYm((—) Ucl((Z])) in D*(X, Wy[d]).
5.1.8. Let S be a k-scheme, f: X — Sand g : Y — S be two S-schemes
which are smooth over k and of the same pure dimension N. Let Z C X xgY

be a closed integral subscheme of dimension N, which is proper over Y. Then
we define the morphism

R([Z]/S) : Rf.WQx — Rg.WQy in D°(S,R)
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as the composition

RfWQx P, Rf.Rpr{ WQxxy

SAED, Rf.Rpry RE W Qe (N)[N]

S ECEEY, Ry, Rpry, REW iy (N)NV]

Prax

— Rg* WQY

Here we simply write pr; instead of ¢(R @(pr{)) etc. Notice that the third

arrow does not exist in Db(cﬁ{\\N $), since it is not compatible with the WOg-

action. By B and 510 616 BL7 R, ®% R([Z]/S) equals the following
composition in D¥(S, W,,[d]), for all n > 1

*
prl,n

(5.1.5) Rf*WnQX —_— Rf*Rprl*WnQXXy

2D, R, Rpt, R, WaQxxy (N)N]

SEEE, Ry Rpry, RL , WaQxxy (N)[V]

P2, nx

Pt R Wiy

This also shows that
(5.1.6) R([Z]/S) = Rlim(R,, @ R([Z]/5)).
LEMMA 5.1.9. In the situation of [.1.8 we have

@ H'(R(12]/5)) = H([2)/S) : H(X/S) = H(Y/S),
in particular H'(R([Z]/S)) is WOg-linear. (See Proposition[3.5.4) for the no-
tation.) Further,

@ H' (R @ R([Z]/5)) : @R f.0x — @ R'g.Qy
equals the the morphism pg(Z/S) from [CRQO9, Prop. 3.2.4|; in particular it is
Og-linear.
Proof. By Lemma [3.5.8] (and its proof for the level n =1 case) the global cup
product (=) U &l([2)) : HI(X x Y, WQxxy) — HIN(X x Y, WQxry(N))
(resp. (—)Ueli([Z])) : H(X X Y, Qxxy) = Hy V(X x Y, Qxxy(N))) is given
by applying H* (X x Y, R%in(—)) to the cup product of BI7 (resp. applying
HY (X xY,R; ®% (—)) to 517 ). Now the lemma follows from going through

the definitions (cf. also the proof of Proposition B:5I0l and of [CR09, Lem.
4.1.3].) O

THEOREM 5.1.10. Let S be a k-scheme and f : X — S andg:Y — S be two S-
schemes which are integral and smooth over k and have dimension N. Assume
X and Y are properly birational over S, i.e. there exists a closed integral
subscheme Z C X xg Y, such that the projections Z — X and Z — 'Y are
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proper and birational. Then R, % R([Z]/S) (seelEL8) induces isomorphisms
in D*(S, W), for alln > 1

RfW,Ox = Rg.W, Oy, RfW,QF = Rg. W, QY.
Therefore R([Z]/S) = R@(Rn @k R([Z]/9)) induces isomorphisms in
DY(S, R)
Rf.WOx =2 Rg. WOy, RfWQY = Rg.WQY.

Taking cohomology we obtain isomorphisms of WOg-modules which are com-
patible with Frobenius and Verschiebung

Rif,WOx = Rig, WOy, R f WY =RgWQY, forali>o.

Proof. By Ekedahl’s Nakayama Lemma (Corollary B.13)) it suffices, to show
that

H'(Ry @5 R([Z]/9)) : R' fQx — R'g:Qy
is an isomorphism for all ¢ > 0. This follows from Lemma and [CR09,
Thm. 3.2.6]. The second statement follows again from Lemma [E.T.91 O

Remark 5.1.11. Notice that we do not need to assume here that any of the
schemes X, Y or S are quasi-projective. We had to assume it in section 2 and
3 since, we can only prove the compatibility of H(—/S) with composition of
correspondences, in the quasi-projective case. But in the argument above we
only need that the maps exist in D?(S, R) and can then reduce to the result of
[CRO9], where no quasi-projectiveness assumption is needed.

Modulo torsion the WO-part of the following corollary was proved by Ekedahl
in [Eke83].

COROLLARY 5.1.12. Let X and Y be two smooth and proper k-schemes, which
are birational and of pure dimension N. Then there are isomorphisms of
WF,V]-modules

H{(X,WOx) = H(Y,WOy), H{(X,WQY)=H (Y, WQY), foralli>0
and also for all n, isomorphisms of Wy, -modules
HY (X, W,0x) = H(Y,W,0y), H'(X,W,QX) = H(Y,W,Q), foralli>D0.

In the case where X and Y are tame finite quotients (see Definition .2Z5]) we
have no map like R([Z]/S). This is why we have to assume that there exists a
morphism in this case:

THEOREM 5.1.13. Let f : X — Y be a proper and birational k-morphism
between two tame finite quotients. Then we have isomorphisms

F WOy S REWOx, RfWwx 2 filWwx[0] =15 Wy,

where Ww is defined in Definition[].1.2 and f. is the pushforward from Propo-
sition (6). There are also corresponding isomorphisms on each finite
level.

DOCUMENTA MATHEMATICA 17 (2012) 663-781



778 ANDRE CHATZISTAMATIOU AND KAY RULLING

Proof. By [CR09, Cor. 4.3.3] we have isomorphisms

0y S REOx, Rfwx 2 fuwox|0] =225 wy.
By [KMO98, Prop. 5.7] tame finite quotients are CM. Now the statement follows
by induction from the two exact sequences (where X is any pure dimensional
CM scheme)

0= Wn10x 5 W,0x — Ox =0
and (see Proposition [.T.4 (7))

P Fn—l
0> Whiwx = Whwx —— wx — 0.

|

Notice that the W O-part of the theorem is a direct consequence of [CR09, Cor.
4.3.3] and does not need any of the techniques developed in this paper.

COROLLARY 5.1.14. In the situation of Theorem[5.1.13 we have isomorphisms
of W[V, F|-modules

H{(X,WOx) = H\(Y,WOy), H(X ,Wwx)=H(Y,Wwy), foralli>0.

There are also corresponding isomorphisms on each finite level.
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