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Abstract. We study the continuous (co-)homology of towers of
spectra, with emphasis on a tower with homotopy inverse limit the
Tate construction XtG on a G-spectrum X . When G = Cp is cyclic of
prime order andX = B∧p is the p-th smash power of a bounded below
spectrum B with H∗(B;Fp) of finite type, we prove that (B∧p)tCp is
a topological model for the Singer construction R+(H

∗(B;Fp)) on
H∗(B;Fp). There is a stable map ǫB : B → (B∧p)tCp inducing the
ExtA -equivalence ǫ : R+(H

∗(B;Fp))→ H∗(B;Fp). Hence ǫB and the
canonical map Γ: (B∧p)Cp → (B∧p)hCp are p-adic equivalences.
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1. Introduction

Let p be a fixed prime. We study homology and cohomology groups with
Fp-coefficients associated to towers of spectra

(1.1) Y = holim
n→−∞

Yn −→ · · · −→ Yn−1 −→ Yn −→ · · · ,

where each Yn is bounded below and of finite type over Fp, and Y is equal to
the homotopy inverse limit of the tower. By a result of Caruso, May and Priddy
[11], there exists an inverse limit of Adams spectral sequences that calculates
the homotopy groups of the p-completion Yp̂ = F (S−1/p∞, Y ) of Y , where

F (−,−) denotes the function spectrum and S−1/p∞ is the Moore spectrum
with homology Z/p∞ in degree −1. The E2-term for this spectral sequence is
given by the Ext-groups of the direct limit of cohomology groups

(1.2) H∗
c (Y ;Fp) = colim

n→−∞
H∗(Yn;Fp) ,

arising from the tower (1.1), considered as a module over the mod p Steenrod
algebra A . We shall refer to this colimit as the continuous cohomology groups
of Y .
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1.1. The algebraic Singer construction. A natural question is: how
well do we understand the structure of (1.2) as an A -module? There is an
interesting example of a tower of spectra where this question has the answer:
very well. In fact, this question appeared in the study of Segal’s Burnside ring
conjecture for cyclic groups of prime order. At the heart of W. H. Lin’s proof
of the case p = 2, published in [20], lies a careful study of the A -module

P = H∗
c (RP

∞
−∞;F2) = colim

m→∞
H∗(RP∞

−m;F2) ,

and its associated Ext-groups Ext∗,∗
A

(P,F2). It turns out that P = P (x, x−1) =
F2[x, x

−1] is isomorphic to the so-called Singer construction R+(M) on the
trivial A -module M = F2, up to a degree shift. The Singer construction has
an explicit description as a module over A . More importantly, it has the
property that there is a natural A -module homomorphism ǫ : R+(M) → M
that induces an isomorphism

ǫ∗ : Ext∗,∗
A

(M,F2)
∼=
−→ Ext∗,∗

A
(R+(M),F2) .

1.2. The topological Singer construction. Our objective is to present
a topological realization and a useful generalization of these results. For any
bounded below spectrum B of finite type over Fp, we construct a tower of
spectra

(B∧p)tCp = holim
n→−∞

(B∧p)tCp [n]→ · · · → (B∧p)tCp [n−1]→ (B∧p)tCp [n]→ · · ·

as in (1.1). Here Cp is the cyclic group of order p, and B∧p is a Cp-equivariant
model of the p-th smash power of B, specified in Definition 5.3. The Tate
construction (B∧p)tCp is recalled in Definition 4.1, and the spectra (B∧p)tCp [n]
in the Tate tower are introduced in Definition 4.3.

Remark 1.1. Note that the naively equivariant homotopy type of the p-fold
smash power B∧p, as a spectrum with Cp-action, is the same in all models
for the stable homotopy category, but that its genuinely equivariant homotopy
type, as a Cp-spectrum, depends on the choice of model for the smash prod-
uct. In particular, the meaning of the fixed point spectrum (B∧p)Cp and the
geometric fixed point spectrum ΦCp(B∧p) is model-dependent. On the other
hand, the homotopy orbit spectrum (B∧p)hCp

, the homotopy fixed point spec-

trum (B∧p)hCp and the Tate construction (B∧p)tCp only depend on the naively
equivariant homotopy type of B∧p. For definiteness, we work with Lewis–May
equivariant spectra, as in [18].

In Definition 5.8 we introduce the notation

R+(B) = (B∧p)tCp

for the topological Singer construction on B, and in Theorem 5.9 we prove that
there is a natural isomorphism

R+(H
∗(B;Fp)) ∼= H∗

c (R+(B);Fp) = colim
n→−∞

H∗((B∧p)tCp [n];Fp)

of A -modules, relating the algebraic and topological Singer constructions.
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Theorem 5.9. Let B be a symmetric spectrum that is bounded below and of
finite type over Fp. There are natural isomorphisms

ω : H∗
c (R+(B))

∼=
−→ R+(H

∗(B))

and

ω∗ : R+(H∗(B))
∼=
−→ Hc

∗(R+(B))

of A -modules and complete A∗-comodules, respectively.

We define a natural stable map ǫB : B → (B∧p)tCp in Definition 5.10, and
prove in Proposition 5.12 that it realizes the algebraically defined A -module
homomorphism ǫ : R+(H

∗(B;Fp)) → H∗(B;Fp) in continuous cohomology. It
is in the definition of ǫB that the choice of genuinely equivariant model for B∧p

begins to play a role.

Proposition 5.12. Let B be a bounded below spectrum of finite type over Fp.
Then the homomorphism

(ǫB)
∗ : H∗

c (R+(B)) −→ H∗(B)

induced on continuous cohomology by the spectrum map ǫB : B → R+(B) is
equal to Singer’s homomorphism

ǫH∗(B) : R+(H
∗(B)) −→ H∗(B)

associated to the A -module H∗(B), via the identification ω : H∗
c (R+(B)) ∼=

R+(H
∗(B)) of Theorem 5.9.

The Segal conjecture for Cp follows as a special case of this, when B = S is the
sphere spectrum, since S∧p is a model for the genuinely Cp-equivariant sphere
spectrum. More generally, we prove in Theorem 5.13 that for any bounded
below spectrum B with H∗(B;Fp) of finite type the canonical map

Γ: (B∧p)Cp −→ (B∧p)hCp ,

relating the Cp-fixed points and Cp-homotopy fixed points for B∧p, becomes a
homotopy equivalence after p-completion.

Theorem 5.13. Let B be a bounded below spectrum of finite type over Fp.
Then the natural maps

ǫB : B −→ R+(B) = (B∧p)tCp

and

Γ: (B∧p)Cp −→ (B∧p)hCp

are p-adic equivalences of spectra.

In [7, 1.7], with M. Bökstedt and R. R. Bruner, we deduce from this result that
there are p-adic equivalences Γn : (B

∧pn)Cpn −→ (B∧pn)hCpn for all n ≥ 1.
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1.3. Outline of the paper. In §2, we discuss towers of spectra as above,
and the associated limit systems obtained by applying homology or cohomology
with Fp-coefficients. When dealing with towers of ring spectra it is convenient
to work in homology, while for the formation of the Ext-groups mentioned above
it is convenient to work in cohomology. In order to be able to switch back and
forth between cohomology and homology we discuss linear topologies arising
from filtrations, and continuous dualization. Then we see how an A -module
structure in cohomology dualizes to an A∗-comodule structure in a suitably
completed sense.
In §3 we recall the algebraic Singer construction on an A -module M , in its
cohomological form, and study a dual homological version, defined for A∗-
comodules M∗ that are bounded below and of finite type. We give the details
for the form of the Singer construction that is related to the group Cp, since
most references only consider the smaller version related to the symmetric
group Σp.
Then, in §4, we define a specific tower of spectra {XtG[n]}n with homotopy

inverse limit equivalent to the Tate construction XtG = [ẼG∧F (EG+, X)]G on
a G-spectrum X . We consider the associated (co-)homological Tate spectral
sequences, and compare our approach of working with homology groups to
earlier papers that focused directly on homotopy groups.
In §5, we specialize to the case whenX = B∧p. This is also where we discuss the
genuinely Cp-equivariant model of the spectrum B∧p, given by the p-fold smash
product of (symmetric) spectra introduced by Bökstedt [6] in his definition of
topological Hochschild homology. It is for this particular Cp-equivariant model
that we can define the natural stable map ǫB : B → R+(B) realizing Singer’s
homomorphism ǫ.

1.4. Notation. Spectra will usually be named B, X or Y . Here B will be a
bounded below spectrum or S-algebra of finite type over Fp. Spectra denoted by
X will be equipped with an equivariant structure. The main examples we have
in mind are the p-fold smash productX = B∧p treated here, and the topological
Hochschild homology spectrum X = THH(B) treated in the sequel [22]. When
dealing with generic towers of spectra, we will use Y . The example of main
interest is the Tate construction Y = XtG on some G-equivariant spectrum X .
We write A for the mod p Steenrod algebra and A∗ for its Fp-linear dual. We
will work with left modules over A and left comodules under A∗. In the body
of the paper we write H∗(B) = H∗(B;Fp) and H

∗(B) = H∗(B;Fp), for brevity.
Unlabeled Hom means HomFp

, and ⊗ means ⊗Fp
.

1.5. History and notation of the Singer construction. The Singer
construction appeared originally for p = 2 in [25] and [26], and for p odd in
[19]. The work presented here concentrates on its relation to the calculations
by Lin and Gunawardena and their work on the Segal conjecture for groups of
prime order. A published account for the case of the group of order 2 is found
in [20]. A further study appears in [1], where a more conceptual definition of
the Singer construction is given.
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In W. Singer’s paper [25], the following problem is posed: LetM be an unstable
A -module and let ∆ = F2{Sq

r | r ∈ Z} be the graded F2-vector space with a
formal generator Sqr in each degree. There is a map of graded F2-vector spaces

d : ∆⊗M −→M

taking Sqr⊗m to Sqr(m) for r ≥ 0, and to 0 for r < 0. Does there exist
a natural A -module structure on the source of d rendering this map an A -
linear homomorphism? Singer answers this question affirmatively, by using an
idea of Wilkerson [27] to construct the A -module that he denotes R+(M), an
A -module map d : R+(M) → M of degree 1, and an isomorphism R+(M) ∼=
∆⊗M , also of degree 1, that makes the two maps called d correspond. In the
end, the construction does not depend on M being unstable.
In Li and Singer’s paper [19], the odd-primary version of this problem is solved,
with ∆ = Fp{β

i Pr | i ∈ {0, 1}, r ∈ Z}. Starting with that paper there is a
degree shift in the notation: R+(M) now denotes the suspension of R+(M)
from Singer’s original paper, so that the A -module map d : R+(M)→M is of
degree 0.
In connection with the Segal conjecture, Adams, Gunawardena and Miller [1]
published an algebraic account of the Singer construction, for all primes p.
They write T ′(M) for the A -module denoted R+(M) in [25] and [26], and let
T ′′(M) = ΣT ′(M) be its suspension, denoted R+(M) in [19]. For the trivial

A -module Fp, T
′′(Fp) is isomorphic to the Tate homology Ĥ−∗(Σp;Fp), which

can be obtained by localization from ΣH∗(Σp;Fp). Hence T
′(Fp) = Ĥ∗(Σp;Fp)

is a localized form ofH∗(Σp;Fp). Adams, Gunawardena and Miller are not only
concerned with the Segal conjecture for the groups of prime order, but also for
the elementary abelian groups (Cp)

n, so the cross product in cohomology is
important for them. They therefore prefer T ′ over T ′′. In fact, they really
work with an extended functor T (M) = T (Fp) ⊗T ′(Fp) T

′(M), where T (Fp) =

Ĥ∗(Cp;Fp).
In our context, for the cohomological study of towers of ring spectra it will
be the coproduct in Tate homology that is most important, which is why we
prefer T ′′ over T ′. Again, our emphasis is on Cp instead of Σp, so that the
Singer-type functor we shall work with is the extension

Ĥ−∗(Cp;Fp)⊗T ′′(Fp) T
′′(M)

of T ′′(M), which is a direct sum of (p − 1) shifted copies of the T ′′(M) =
R+(M) of Li and Singer. This is the functor we shall denote R+(M), so that

R+(Fp) = Ĥ−∗(Cp;Fp), and R+(M) = ΣT (M) in the notation of [1].
The connection between the Singer construction and the continuous cohomo-
logy of a tower of spectra, displayed below as (5.1) for G = Σp, was found by
Haynes Miller, and explained in [9, II.5.1]. There the functor denoted R+ is
the same as in [19] for odd p, shifted up one degree from [26] for p = 2.
In the following we will make use of the fact that the Singer construction
on an A -module M comes equipped with the homomorphism of A -modules
ǫ : R+(M) → M . In Singer’s work [26], this map has degree +1 (and was
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named d), whereas in [19] and [9] it has degree 0. We choose to follow the latter
conventions, because this is the functor that with no shift of degrees describes
our continuous (co-)homology groups. Furthermore, the homomorphism ǫ will
be realized by a map of spectra, and will therefore be of degree zero.
We choose to write R+(M) instead of T (M) or any of its variants, because the
letter T is heavily overloaded by the presence of THH, the Tate construction
and the circle group T. To add to the confusion, the letter T is also used in
Singer’s [26] work, but with a different meaning than the T appearing in [1].

1.6. Acknowledgments. This work started out as a part of the first author’s
PhD thesis [21] at the University of Oslo, supervised by the second author. The
first author wishes to express the deepest gratitude to Prof. Rognes for offering
ideas, help and support during the work of his thesis. Thanks are also due to
R. Bruner, G. Carlsson, I. C. Borge, S. Galatius, T. Kro, M. Bökstedt, M. Brun
and B. I. Dundas for interest, comments and discussions, and to the referee for
his careful reading of the manuscript.

2. Limits of spectra

We introduce our conventions regarding towers of spectra and their associated
(co-)homology groups. Our motivation is the result of Caruso, May and Priddy,
saying that there is an inverse limit of Adams spectral sequences arising from
such towers. The input for this inverse limit of Adams spectral sequences will
give us the definition of continuous (co-)homology groups.

2.1. Inverse limits of Adams spectral sequences.

Definition 2.1. Let R be a (Noetherian) ring. A graded R-module M∗ is
bounded below if there is an integer ℓ such that M∗ = 0 for all ∗ < ℓ. It is of
finite type if it is finitely generated over R in each degree.
A spectrum B is bounded below if its homotopy π∗(B) is bounded below as a
graded abelian group. It is of finite type over Fp if its mod p homologyH∗(B) =
H∗(B;Fp) is of finite type as a graded Fp-vector space. The spectrum B is of

finite type over Ẑp if its homotopy π∗(B) is of finite type as a graded Ẑp-module.

Let {Yn}n∈Z be a sequence of spectra, with maps fn : Yn−1 → Yn for all inte-
gers n. Assume that each Yn is bounded below and of finite type over Fp, and
let Y be the homotopy inverse limit of this system:

(2.1) Y −→ · · · −→ Yn−1
fn
−→ Yn −→ · · ·

In general, Y will neither be bounded below nor of finite type over Fp.
For each n there is an Adams spectral sequence {E∗,∗

r (Yn)}r with E2-term

Es,t2 (Yn) = Exts,t
A
(H∗(Yn),Fp) =⇒ πt−s((Yn)p̂) ,

converging strongly to the homotopy groups of the p-completion of Yn.
Each map in the tower (2.1) induces a map of Adams spectral sequences
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fn : {E
∗,∗
r (Yn−1)}r → {E

∗,∗
r (Yn)}r. For every r let

E∗,∗
r (Y ) = lim

n→−∞
E∗,∗
r (Yn) ,

and similarly for the dr-differentials. We now state and prove a slightly sharper
version of [11, 7.1].

Proposition 2.2. Let {Yn}n be a tower of spectra such that each Yn is bounded
below and of finite type over Fp, and let Y = holimn Yn. Then the bigraded
groups {E∗,∗

r (Y )}r are the terms of a spectral sequence, with E2-term

Es,t2 (Y ) ∼= Exts,t
A
( colim
n→−∞

H∗(Yn),Fp) =⇒ πt−s(Yp̂ ) ,

converging strongly to the homotopy groups of the p-completion of Y .

The difference between this statement and the statement in [11] lies in the hy-
pothesis on the Yn: we do not assume that Yn is p-complete, and weaken

the condition that Yn should be of finite type over Ẑp to the condition
that H∗(Yn;Fp) should be of finite type. We refer to the spectral sequence
{E∗,∗

r (Y )}r as the inverse limit of Adams spectral sequences associated to the
tower {Yn}n.

Proof. For any bounded below spectrum B of finite type over Fp, the Adams
spectral sequence converges strongly to π∗(Bp̂). Since the E2- and E∞-terms of
this spectral sequence are of finite type, the abelian groups π∗(Bp̂) are compact
and Hausdorff in the topology given by the Adams filtration.
The category of compact Hausdorff abelian groups is an abelian category, as is
the category of discrete abelian groups. The Pontryagin duality functor assigns
to each abelian group G its character group Hom(G,T), where T = S1 is the
circle group. It induces a contravariant equivalence between the category of
compact Hausdorff abelian groups and the category of discrete abelian groups.
The functor taking a filtered diagram of discrete abelian groups to its colimit is
well-known to be exact. It follows that the functor taking a filtered diagram of
compact Hausdorff abelian groups to its inverse limit is also an exact functor.
In particular, passing to filtered inverse limits commutes with the formation of
kernels, images, cokernels and homology, in the abelian category of compact
Hausdorff abelian groups.
We now adapt the proof of [11, 7.1], using this version of the exactness of
the inverse limit functor. First, we construct a double tower diagram (2.2)
of spectra, where the n-th row is an Adams resolution of Yn, such that each
Zn,s is a bounded below spectrum of finite type over Fp. The n-th row can be
obtained in a functorial way by smashing Yn with a fixed Adams resolution for
the sphere spectrum S. The top row consists of the homotopy inverse limits
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Zs = holimn Zn,s for all s ≥ 0.

(2.2) . . . // Zs //

��

. . . // Z0 = Y

��

...

��

...

��
. . . // Zn−1,s //

��

. . . // Zn−1,0 = Yn−1

fn

��
. . . // Zn,s // . . . // Zn,0 = Yn

By assumption, the homotopy cofiberKn,s of the map Zn,s+1 → Zn,s is a wedge
sum of suspended copies of the Eilenberg–MacLane spectrum H = HFp, also
bounded below and of finite type over Fp. The exact couple

π∗(Zn,s+1)
i // π∗(Zn,s)

j

��

π∗(Kn,s)

k

ffM
M

M
M

M

generates the Adams spectral sequence {E∗,∗
r (Yn)}r, with Es,t1 (Yn) =

πt−s(Kn,s). The dashed arrow has degree −1.
Now consider the p-completion of diagram (2.2). The n-th row becomes

(2.3) . . . −→ (Zn,s)p̂ −→ . . . −→ (Zn,0)p̂ = (Yn)p̂

and the homotopy cofiber of (Zn,s+1)p̂ → (Zn,s)p̂ is the p-completion of Kn,s,
which is just Kn,s again. There is therefore a second exact couple

(2.4) π∗((Zn,s+1)p̂)
i // π∗((Zn,s)p̂)

j

��

π∗(Kn,s)

k

ggO
O

O
O

O
O

for each n, which generates the same spectral sequence as the first one. Fur-
thermore, in the second exact couple all the (abelian) homotopy groups are
compact Hausdorff, since the spectra Zn,s and Kn,s are all bounded below and
of finite type over Fp.
The p-completion of the top row in (2.2) is the homotopy inverse limit over n
of the p-completed rows (2.3). The exactness of filtered limits in the category
of compact Hausdorff abelian groups now implies that there are isomorphisms
π∗((Zs)p̂)

∼= limn π∗((Zn,s)p̂) for all s. Furthermore, the inverse limit over n
of the exact couples (2.4) defines a third exact couple (of compact Hausdorff
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abelian groups)

(2.5) π∗((Zs+1)p̂)
i // π∗((Zs)p̂)

j

��

lim
n
π∗(Kn,s) ,

k

ggN
N

N
N

N
N

which generates the spectral sequence {E∗,∗
r (Y )}r that we are after. Here

Es,t1 (Y ) ∼= limnE
s,t
1 (Yn), and by induction on r the same isomorphism holds

for each Er-term, since E∗,∗
r+1 is the homology of E∗,∗

r with respect to the dr-
differentials, and we have seen that the formation of these limits commutes with
homology. In particular, each abelian group Es,tr (Y ) is compact Hausdorff.
The identification of the E2-term for s = 0 amounts to the isomorphism

lim
n

HomA (H∗(Yn), N) ∼= HomA (colim
n

H∗(Yn), N)

for N = ΣtFp. The general case follows, since we can compute ExtsA by means
of an injective resolution of Fp.
We must now check the convergence of this spectral sequence, which we (and
[11]) do following Boardman [3]. The Adams resolution for each Yn is con-
structed so that

lim
s
π∗((Zn,s)p̂) = Rlim

s
π∗((Zn,s)p̂) = 0 .

These two conditions ensure that the Adams spectral sequence for Yn converges
conditionally [3, 5.10]. The standard interchange of limits isomorphism gives

lim
s
π∗((Zs)p̂)

∼= lim
n

lim
s
π∗((Zn,s)p̂) = 0 .

Moreover, the exactness of the inverse limit functor in this case implies that
the derived limit

Rlim
s

π∗((Zs)p̂) = 0

vanishes, too. Hence the inverse limit Adams spectral sequence generated
by (2.5) is conditionally convergent to π∗(Yp̂ ). This is a half-plane spectral se-
quence with entering differentials, in the sense of Boardman. For such spectral
sequences, strong convergence follows from conditional convergence together
with the vanishing of the groups

REs,t∞ = Rlim
r

Es,tr (Y ) ,

see [3, 5.1, 7.1]. Again, the vanishing of this Rlim is ensured by the exactness
of lim for the compact Hausdorff abelian groups Es,tr (Y ). �

2.2. Continuous (co-)homology. The spectral sequence in Proposition 2.2
is central to the proof of the Segal conjecture for groups of prime order and
will be the foundation for the present work. Our work will, in analogy with
Lin’s proof of the Segal conjecture, focus on the properties of the E2-term of
the above spectral sequence.
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Definition 2.3. Let {Yn}n be a tower of spectra such that each Yn is bounded
below and of finite type over Fp, and let Y = holimn Yn. Define the continuous
cohomology of Y as the colimit

H∗
c (Y ) = colim

n→−∞
H∗(Yn) .

Dually, define the continuous homology of Y as the inverse limit

Hc
∗(Y ) = lim

n→−∞
H∗(Yn) .

Note that we choose to suppress from the notation the tower of which Y is a
homotopy inverse limit, even if the continuous cohomology groups do depend
on the choice of inverse system. For example, let p = 2 and let Y = S2̂ be the
2-completed sphere spectrum. Since Y is bounded below and of finite type over
F2, we may express Y by the constant tower of spectra. But by W. H. Lin’s
theorem, S2̂ ≃ holimnΣRP

∞
n , where each ΣRP∞

n is also bounded below and of
finite type over F2. Now colimnH

∗(ΣRP∞
n ) = ΣP (x, x−1) = R+(F2) is much

larger than H∗(S2̂) = F2.
By the universal coefficient theorem and our finite type assumptions, the Fp-
linear dual of H∗

c (Y ) is naturally isomorphic to Hc
∗(Y ). The continuous homo-

logy of Y will often not be of finite type, so its dual is in general not iso-
morphic to the continuous cohomology. However, if we take into account the
linear topology on the inverse limit, given by the kernel filtration induced from
the tower, we do get that the continuous dual of the continuous homology is
isomorphic to the continuous cohomology. We discuss this in §2.4.
Note that the continuous cohomology is a direct limit of bounded below A -
modules. The direct limit might of course not be bounded below, but we do
get a natural A -module structure on H∗

c (Y ) in the category of all A -modules.
Dually, the continuous homology is an inverse limit of bounded below A∗-
comodules, but the inverse limit might be neither bounded below nor an A∗-
comodule in the usual, algebraic, sense. Instead we get a completed coaction
of A∗

Hc
∗(Y ) −→ A∗ ⊗̂H

c
∗(Y ) ,

where ⊗̂ is the tensor product completed with respect to the above-mentioned
linear topology on the continuous homology. We discuss this in §2.5.

2.3. Filtrations. For every n ∈ Z, let An be a graded Fp-vector space and
assume that these vector spaces fit into a sequence

(2.6) 0 −→ · · · −→ An −→ An−1 −→ · · · −→ A−∞

with trivial inverse limit, and colimit denoted by A−∞. We assume further
that each An is of finite type. Let An = Hom(An,Fp) be the dual of An. The
diagram above dualizes to a sequence

(2.7) A−∞ −→ · · · −→ An−1 −→ An −→ · · · −→ 0

with inverse limit

A−∞ = lim
n
An = lim

n
Hom(An,Fp) ∼= Hom(colim

n
An,Fp) = Hom(A−∞,Fp)
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isomorphic to the dual of A−∞, and trivial colimit. The last fact follows from
the assumption that An is finite dimensional in each degree. Indeed,

lim
n
An ∼= lim

n
Hom(An,Fp) ∼= Hom(colim

n
An,Fp)

and thus limnA
n = 0 implies that colimnAn is trivial, since the latter injects

into its double dual. Furthermore, the derived inverse limits RlimnA
n and

RlimnAn are zero, again because An and An are degreewise finite.
Adapting Boardman’s notation [3, 5.4], we define filtrations of the colimit
of (2.6) and the inverse limit of (2.7) using the corresponding sequential limit
systems.

Definition 2.4. For each n ∈ Z, let

FnA−∞ = im(An → A−∞)

and

FnA−∞ = ker(A−∞ → An) .

Then

(2.8) · · · ⊂ FnA−∞ ⊂ Fn−1A−∞ ⊂ · · · ⊂ A−∞

and

(2.9) · · · ⊂ Fn−1A−∞ ⊂ FnA−∞ ⊂ · · · ⊂ A−∞

define a decreasing (resp. increasing) sequence of subspaces of A−∞

(resp. A−∞).

The filtration (2.8) clearly exhausts A−∞, in the terminology of Boardman
[3, 2.1]. Since each An and ker(An → A−∞) is of finite type, the right derived
limits RlimnA

n and Rlimn ker(A
n → A−∞) are both zero. By assumption

limn A
n = 0, hence both limn F

nA−∞ and Rlimn F
nA−∞ vanish. This means

that the filtration (2.8) is Hausdorff and complete, also in the sense of Board-
man [3, 2.1], and that the canonical map A−∞ → limn(A

−∞/FnA−∞) is an
isomorphism. Completeness is equivalent to saying that Cauchy sequences
converge in the linear topology given by the filtration. That the filtration is
Hausdorff is saying that Cauchy sequences have unique limits.
For the filtration (2.9), the proof of [3, 5.4(b)]) shows, without any hypotheses,
that the filtration is Hausdorff and complete. It also shows that the filtration
is exhaustive, since the colimit of (2.7) is trivial. We collect these facts in the
following lemma.

Lemma 2.5. Assume that the inverse limit limnA
n in (2.6) is trivial and that

each An is of finite type. Then both filtrations given in Definition 2.4 (of
colimnA

n = A−∞ resp. its dual A−∞) are exhaustive, Hausdorff and complete.
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2.4. Dualization. The dual of the inverse limit A−∞ of (2.7) is the double
dual of the colimit A−∞ of (2.6). It contains this colimit in a canonical way, but
is often strictly bigger, since A−∞ need not be of finite type. To remedy this,
we take into account the linear topology on the limit induced by the inverse
system, and dualize by considering the continuous Fp-linear dual.
In this topology on A−∞, an open neighborhood basis of the origin is given by
the collection of subspaces {FnA−∞}n. A continuous homomorphism A−∞ →
Fp is thus an Fp-linear function whose kernel contains FnA−∞ for some n.
The set of these forms an Fp-vector space Homc(A−∞,Fp), which we call the
continuous dual of A−∞.

Lemma 2.6. There is a natural isomorphism

Hom(A−∞,Fp) ∼= A−∞ .

Give A−∞ the linear topology induced by the system of neighborhoods
{FnA−∞}n. Then there is a natural isomorphism

Homc(A−∞,Fp) ∼= A−∞ .

Proof. The first isomorphism has already been explained. For the second, we
wish to compute

Homc(A−∞,Fp) ∼= colim
n

Hom(A−∞/FnA−∞,Fp) .

The dual of the image FnA−∞ = im(An → A−∞) is the image

(2.10) Hom(FnA−∞,Fp) ∼= im(A−∞ → An) ∼= A−∞/FnA−∞ ,

and FnA−∞ is of finite type, so the canonical homomorphism

FnA−∞ ∼=
−→ Hom(A−∞/FnA−∞,Fp)

into its double dual is an isomorphism. Passing to the colimit as n→ −∞ we
get the desired isomorphism, since colimn F

nA−∞ ∼= A−∞. �

2.5. Limits of A∗-comodules. Until now, the objects of our discussion have
been graded vector spaces over Fp. We will now add more structure, and
assume that (2.6) is a diagram of modules over the Steenrod algebra A . It
follows that the finite terms An in the dual tower (2.7) are comodules under
the dual Steenrod algebra A∗. We need to discuss in what sense these comodule
structures carry over to the inverse limit A−∞.
Let M∗ be a graded vector space, with a linear topology given by a system
{Uα}α of open neighborhoods, with each Uα a graded subspace of M∗. We
say that M∗ is complete Hausdorff if the canonical homomorphism M∗ →
limα(M∗/Uα) is an isomorphism. Let V∗ be a graded vector space, bounded
below and given the discrete topology. By the completed tensor product V∗ ⊗̂
M∗ we mean the limit limα(V∗ ⊗ (M∗/Uα)), with the linear topology given
by the kernels of the surjections V∗ ⊗̂M∗ → V∗ ⊗ (M∗/Uα). The completed
tensor product is complete Hausdorff by construction. Given a second graded
vector spaceW∗, discrete and bounded below, there is a canonical isomorphism
(V∗ ⊗W∗) ⊗̂M∗

∼= V∗ ⊗̂ (W∗ ⊗̂M∗).
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Definition 2.7. Let M∗ be a complete Hausdorff graded Fp-vector space.
We say that M∗ is a complete A∗-comodule if there is a continuous graded
homomorphism ν : M∗ → A∗ ⊗̂M∗ such that the diagrams

M∗
ν //

∼=
##HH

HHH
HHH

H A∗ ⊗̂M∗

ǫ⊗̂1

��

Fp ⊗̂M∗

and

(2.11) M∗
ν //

ν

��

A∗ ⊗̂M∗

ψ⊗̂1

))RRRRRRRRRRRRR

A∗ ⊗̂M∗

1⊗̂ν
// A∗ ⊗̂ (A∗ ⊗̂M∗)

∼= // (A∗ ⊗A∗) ⊗̂M∗

commute. Here ǫ : A∗ → Fp and ψ : A∗ → A∗ ⊗A∗ denote the counit and co-
product in the dual Steenrod algebra, respectively. Let N∗ be another complete
A∗-comodule and let f : N∗ → M∗ be a continuous graded homomorphism.
Then f ∈ Homc

A∗
(N∗,M∗) if the diagram

N∗
ν //

f

��

A∗ ⊗̂N∗

1⊗̂f

��

M∗
ν // A∗ ⊗̂M∗

commutes. Hence there is an equalizer diagram
(2.12)

Homc
A∗

(N∗,M∗) // Homc(N∗,M∗)
f 7→(1⊗̂f)◦ν

//

f 7→ν◦f
// Homc(N∗,A∗ ⊗̂M∗) .

Lemma 2.8. Suppose given a sequence of graded Fp-vector spaces, as in (2.6),
with each An bounded below and of finite type. Suppose also that An is an
A -module and that An → An−1 is A -linear, for each finite n. Then, with
notation as above, A−∞ is an A -module, and the topological Fp-vector space
A−∞ is a complete A∗-comodule.

Proof. The category of A -modules is closed under direct limits, so the first
claim of the lemma is immediate. For each n we get a commutative diagram

A ⊗An // //

λn

��

A ⊗ FnA−∞ // //

��

A ⊗A−∞

λ

��

An // // FnA−∞ // // A−∞ ,

where the vertical arrows are the A -module action maps. For every finite n, the
dual of the A -module action map λn : A ⊗An → An defines an A∗-comodule
coaction map νn : An = Hom(An,Fp) → Hom(A ⊗ An,Fp) ∼= Hom(A ,Fp) ⊗
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Hom(An,Fp) = A∗ ⊗An, where the middle isomorphism uses that A and An

are bounded below and of finite type over Fp. Similarly, the dual of the diagram
above gives a commutative diagram

A∗ ⊗An A∗ ⊗A−∞/FnA−∞
oooo Hom(A ⊗A−∞,Fp)oooo

An

νn

OO

A−∞/FnA−∞
oooo

OO

A−∞ ,oooo

OO

where we use the identification from (2.10). Passing to limits over n, we get
the diagram

lim
n

(A∗ ⊗An) A∗ ⊗̂A−∞

∼=oo Hom(A ⊗A−∞,Fp)
∼=oo

lim
n
An

limn νn

OO

A−∞

∼=oo

ν

OO

A−∞ .
=oo

Hom(λ,Fp)

OO

The middle vertical coaction map ν is continuous, as it is realized as the in-
verse limit of a homomorphism of towers. It is clear that the upper left hand
horizontal map is injective, but we claim that it is also surjective.
To see this, let Zn be the cokernel of A−∞/FnA−∞ →֒ An. We know from
Lemma 2.5 that limn(A−∞/FnA−∞) ∼= limnAn and Rlimn(A−∞/FnA−∞) =
0, so limn Zn = 0. This implies that limn(A∗ ⊗ Zn) = 0, since there are
natural injective maps A∗ ⊗ Zn →֒ Hom(A , Zn), and limn(A∗ ⊗ Zn) →֒
limn Hom(A , Zn) ∼= Hom(A , limn Zn) = 0. Now A∗ ⊗ Zn is the cokernel of
A∗⊗A−∞/FnA−∞ →֒ A∗⊗An, hence in the limit A∗ ⊗̂A−∞ → limn(A∗⊗An)
is surjective.
The commutativity of the diagrams in Definition 2.7 is immediate since they
are obtained as the inverse limits of the corresponding diagrams involving An
and νn. Thus A−∞ is a complete A∗-comodule. �

Corollary 2.9. Let {Yn}n be a tower of spectra as in (2.1), each bounded
below and of finite type over Fp, with homotopy inverse limit Y . Then the con-
tinuous cohomology H∗

c (Y ) = colimnH
∗(Yn) is an A -module, the continuous

homology Hc
∗(Y ) = limnH∗(Yn) is a complete A∗-comodule, and there are nat-

ural isomorphisms Hom(H∗
c (Y ),Fp) ∼= Hc

∗(Y ) and Homc(Hc
∗(Y ),Fp) ∼= H∗

c (Y ),
in the respective categories. �

3. The algebraic Singer constructions

Classically, the algebraic Singer construction is an endofunctor on the category
of modules over the Steenrod algebra. In §3.1 we recall its definition, and a
key property proved by Adams, Gunawardena and Miller. We then dualize the
construction in §3.2.
Later, we will see how the algebraic Singer construction arises in its cohomolog-
ical (resp. homological) form as the continuous cohomology (resp. continuous
homology) of a certain tower of truncated Tate spectra. This tower of spectra
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induces a natural filtration on the Singer construction. We introduce this fil-
tration in purely algebraic terms in the present section, and will show in §5.4
that the algebraic and topological definitions agree.

3.1. The cohomological Singer construction.

Definition 3.1. Let M be an A -module. The Singer construction R+(M)
on M is a graded A -module given additively by the formulas

Σ−1R+(M) = P (x, x−1)⊗M

for p = 2, and
Σ−1R+(M) = E(x)⊗ P (y, y−1)⊗M

for p odd. Here deg(x) = 1, deg(y) = 2, and Σ−1 denotes desuspension by one
degree. The action of the Steenrod algebra is given, for r ∈ Z and a ∈ M , by
the formula

(3.1) Sqs(xr ⊗ a) =
∑

j

(
r − j

s− 2j

)
xr+s−j ⊗ Sqj(a)

for p = 2, and the formulas

Ps(yr ⊗ a) =
∑

j

(
r − (p− 1)j

s− pj

)
yr+(p−1)(s−j) ⊗ Pj(a)

+
∑

j

(
r − (p− 1)j − 1

s− pj − 1

)
xyr+(p−1)(s−j)−1 ⊗ β Pj(a)

Ps(xyr−1 ⊗ a) =
∑

j

(
r − (p− 1)j − 1

s− pj

)
xyr+(p−1)(s−j)−1 ⊗ Pj(a)

and

β(yr ⊗ a) = 0

β(xyr−1 ⊗ a) = yr ⊗ a

for p odd.

This is the form of the Singer construction that is related to the cyclic
group Cp. The cohomology of the classifying space of this group is H∗(BCp) ∼=
E(x) ⊗ P (y) for p odd, with deg(x) = 1, deg(y) = 2 and β(x) = y, as
above. The natural A -module structure on H∗(BCp) extends to the local-
ization H∗(BCp)[y

−1] = E(x) ⊗ P (y, y−1), and letting M = Fp we get that
Σ−1R+(Fp) is isomorphic to H∗(BCp)[y

−1] as an A -module. The case p = 2
is similar.
When p odd there is a second form of the Singer construction, related to the
symmetric group Σp. Following [19, p. 272] we identify H∗(BΣp) with the
subalgebra E(u)⊗P (v) of H∗(BCp) generated by u = −xyp−2 and v = −yp−1,
with deg(u) = 2p − 3 and deg(v) = 2p − 2. The smaller form of the Singer
construction then corresponds to the direct summand E(u)⊗P (v, v−1)⊗M of
index (p− 1) in E(x)⊗ P (y, y−1)⊗M . Explicit formulas for the action of the
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Steenrod operations on the smaller form of the Singer construction are given
in [26, (3.2)], [19, §2] and [9, p. 47].
In our work, we are only concerned with the version of the Singer construction
related to the group Cp. The exact form of the formulas in Definition 3.1 is
justified by Theorem 5.2 below.

3.1.1. The cohomological ǫ-map. An important property of R+(M) is that
there exists a natural homomorphism ǫ : R+(M) → M of A -modules. In
Singer’s original definition for p = 2, the map is given by the formula

(3.2) ǫ(Σxr−1 ⊗ a) =

{
Sqr(a) for r ≥ 0,

0 for r < 0.

For p odd, the A -submodule spanned by elements of the form Σy(p−1)r ⊗ a
or Σxy(p−1)r−1 ⊗ a is a direct summand in R+(M). The homomorphism ǫ is
given by first projecting onto this direct summand and then composing with
the map

Σy(p−1)r ⊗ a 7−→ −(−1)rβ Pr(a)

Σxy(p−1)r−1 ⊗ a 7−→ (−1)r Pr(a)
(3.3)

for r ≥ 0, still mapping to 0 for r < 0. See [9, p. 50]. It is clear that ǫ is
surjective.
We recall the key property of ǫ. Adams, Gunawardena and Miller [1] make the
following definition.

Definition 3.2. An A -module homomorphism L → M is a Tor-equivalence
if the induced map

(3.4) TorA∗,∗(Fp, L) −→ TorA∗,∗(Fp,M)

is an isomorphism.

The relevance of this condition is:

Proposition 3.3 ([1, 1.2]). If L → M is a Tor-equivalence, then for any
A -module N that is bounded below and of finite type the induced map

(3.5) Ext∗,∗
A

(M,N) −→ Ext∗,∗
A

(L,N)

is an isomorphism.

Here is their key result, proved in [1, 1.3].

Theorem 3.4 (Gunawardena, Miller). The Singer homomorphism

ǫ : R+(M)→M

is a Tor-equivalence.

We will later encounter instances of A -module homomorphisms R+(M)→ N
induced by maps of spectra. It is often possible to determine those homomor-
phisms by the following corollary.
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Corollary 3.5. Let M , N be A -modules such that N is bounded below and
of finite type. Then

ǫ∗ : HomA (M,N) −→ HomA (R+(M), N)

is an isomorphism, so any A -linear homomorphism f : R+(M) → N factors
as g ◦ ǫ for a unique A -linear homomorphism g : M → N :

R+(M)
ǫ //

f
##GG

GG
GG

GG
G

M

g
~~~~

~~
~~

~~

N

Proof. This is clear from Theorem 3.4 and Proposition 3.3. �

Remark 3.6. A special case of this occurs when M = N is a non-trivial cyclic
A -module. Then

Fp
∼= HomA (M,M) ∼= HomA (R+(M),M) ,

so any A -linear homomorphism R+(M)→M is equal to a scalar multiple of ǫ.

3.2. The homological Singer construction. Before we define the homo-
logical version of the Singer construction on an A∗-comodule M∗, we need to
discuss a natural filtration on the cohomological Singer construction. For a
bounded below A -module M of finite type over Fp, let F

nR+(M) be equal to

F2{Σx
r ⊗ a | r ∈ Z, deg(a) = q, 1 + r − q ≥ n}

for p = 2, and

Fp{Σx
iyr ⊗ a | i ∈ {0, 1}, r ∈ Z, deg(a) = q, 1 + i+ 2r − (p− 1)q ≥ n}

for p odd. In each case a runs through an Fp-basis for M . Then

(3.6) · · · ⊂ FnR+(M) ⊂ Fn−1R+(M) ⊂ · · · ⊂ R+(M)

is an exhaustive filtration of R+(M), which is clearly Hausdorff. Because M
is bounded below and of finite type, each FnR+(M) is bounded below and of
finite type, so Rlimn F

nR+(M) is trivial. Hence the filtration is complete.
For reasons made clear in Corollary 5.16, we will refer to this filtration as
the Tate filtration. When M is the cohomology of a bounded below spectrum
of finite type over Fp, we will see how (3.6) is induced from topology. In
this case, it will be immediate that the filtration is one of A -modules. For a
general A -module M , this can be checked directly using the explicit formulas
in Definition 3.1.
We are now in the situation discussed in the previous section, with An =
FnR+(M) and A−∞ = R+(M). Letting FnR+(M)∗ = Hom(FnR+(M),Fp) =
An we get an inverse system

(3.7) · · · −→ Fn−1R+(M)∗ −→ FnR+(M)∗ −→ · · ·

as in (2.7), dual to the direct system (3.6). We are interested in the inverse limit
A−∞ = limnAn, with the linear topology given by this tower of surjections.
Recall Definition 2.7 of a complete A∗-comodule.
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Definition 3.7. Let M∗ be a bounded below A∗-comodule of finite type. Its
dual M = Hom(M∗,Fp) is a bounded below A -module of finite type, and
M∗
∼= Hom(M,Fp). We define the homological Singer construction on M∗ to

be the complete A∗-comodule given by

R+(M∗) = Hom(R+(M),Fp) .

It is isomorphic to the inverse limit limn F
nR+(M)∗.

A more explicit description can be given. For p = 2 the F2-linear dual of

Ĥ−∗(C2;F2) ∼= ΣH∗(C2;F2)[x
−1] = ΣP (x, x−1)

is isomorphic to the ring of Laurent polynomials Ĥ−∗(C2;F2) = P (u, u−1),
where deg(u) = −1 and u−r is dual to Σxr−1. For p odd, the Fp-linear dual of

Ĥ−∗(Cp;Fp) ∼= ΣH∗(Cp;Fp)[y
−1] = ΣE(x) ⊗ P (y, y−1)

is isomorphic to Ĥ−∗(Cp;Fp) = E(u)⊗P (t, t−1), where deg(u) = −1, deg(t) =
−2 and u1−it−r is dual to Σxiyr−1. These notations are compatible with those
from [5]. We get an identification of FnR+(M)∗ with

F2{u
r ⊗ α | r ∈ Z, deg(α) = q, r + q ≤ −n}

for p = 2, and with

Fp{u
itr ⊗ α | i ∈ {0, 1}, r ∈ Z, deg(α) = q, i+ 2r + (p− 1)q ≤ −n}

for p odd. In each case α ranges over an Fp-basis forM∗. The maps of (3.7) are
given by the obvious projections. Thus, R+(M∗) is isomorphic to the graded
vector space of formal series

∞∑

r=−∞

ur ⊗ αr

for p = 2, and
∞∑

r=−∞

tr ⊗ α0,r +
∞∑

r=−∞

utr ⊗ α1,r

for p odd. In each of these sums r is bounded below, but not above, since M∗

is bounded below.
Using the linear topology on R+(M∗) given by the kernel filtration coming
from (3.7), we may reformulate this as follows: Let

Λ = Ĥ−∗(Cp;Fp) =

{
P (u, u−1) for p = 2,

E(u)⊗ P (t, t−1) for p odd.

Consider Λ⊗M∗ ⊂ R+(M∗). For every n the composition Λ⊗M∗ ⊂ R+(M∗)→
FnR+(M)∗ is surjective, so the completed tensor product Λ⊗̂M∗ (for the linear
topology on Λ derived from the grading) is canonically isomorphic to R+(M∗).
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3.2.1. The homological ǫ∗-map. Let

ǫ∗ : M∗ −→ R+(M∗)

be the dual of ǫ : R+(M) → M . Then ǫ∗ is a continuous homomorphism of
complete A∗-comodules. Continuity is trivially satisfied since the source of ǫ∗
has the discrete topology.
Dualizing (3.2) and (3.3), we see that ǫ∗ is given by the formulas

(3.8) ǫ∗(α) =

∞∑

r=0

u−r ⊗ Sqr∗(α)

for p = 2, and

(3.9) ǫ∗(α) =

∞∑

r=0

(−1)rt−(p−1)r ⊗ Pr∗(α)−

∞∑

r=0

(−1)rut−(p−1)r−1 ⊗ (β Pr)∗(α)

for p odd. This expression may be compared with [1, (3.6)]. It is clear that ǫ∗
is injective.

Lemma 3.8. Let M and N be bounded below A -modules of finite type, and let
M∗ and N∗ be the dual A∗-comodules. Then

ǫ∗ : HomA∗
(N∗,M∗) −→ Homc

A∗
(N∗, R+(M∗))

is an isomorphism, so any continuous A∗-comodule homomorphism f∗ : N∗ →
R+(M∗) factors as f∗ = ǫ∗ ◦ g∗ for a unique A∗-comodule homomorphism
g∗ : N∗ →M∗.

Proof. Notice that HomA∗
(N∗,M∗) = Homc

A∗
(N∗,M∗) and A∗⊗N∗ = A∗⊗̂N∗,

since M∗ and N∗ are discrete. Applying Hom(−,Fp) to a commutative square

A ⊗R+(M)
λ //

1⊗f

��

R+(M)

f

��

A ⊗N
λ // N

we get a commutative square

A∗ ⊗̂R+(M∗) R+(M∗)
νoo

A∗ ⊗N∗

1⊗̂f∗

OO

N∗
νoo

f∗

OO

of continuous homomorphisms, where R+(M∗) and A∗⊗̂R+(M∗) have the limit
topologies, while N∗ and A∗ ⊗ N∗ are discrete. Applying Homc(−,Fp) to the
latter square we recover the first, by Lemma 2.6. Hence the right hand vertical
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map in the commutative square

HomA (M,N)
ǫ∗

∼=
//

∼=

��

HomA (R+(M), N)

∼=

��

HomA∗
(N∗,M∗)

ǫ∗ // Homc
A∗

(N∗, R+(M∗))

is an isomorphism. It is easy to see that the left hand vertical map is an
isomorphism, and the upper horizontal map is an isomorphism by Corollary 3.5.

�

3.2.2. Various remarks on the homological Singer construction. The following
remarks are not necessary for our immediate applications, but we include them
to shed some light on the coaction ν : R+(M∗) → A∗ ⊗̂ R+(M∗) and the dual
Singer map ǫ∗ : M∗ → R+(M∗), and their relations to the completions intro-
duced so far.
Dualizing (3.1), we get that the dual Steenrod operations on classes ur ⊗ α in
Λ⊗M∗ ⊂ R+(M∗) are given by

(3.10) Sqs∗(u
r ⊗ α) =

∑

j

(
−r − s− 1

s− 2j

)
ur+s−j ⊗ Sqj∗(α)

for p = 2, and similarly for p odd. This sum is finite, since M∗ is assumed to
be bounded below, so we have the following commutative diagram:

(3.11) R+(M∗)
ν // A∗ ⊗̂R+(M∗)

Λ⊗M∗

OO

OO

// A∗ ⊗̂ (Λ⊗M∗)

OO

OO

Two remarks are in order. First, Λ ⊗M∗ is not complete with respect to the
subspace topology from R+(M∗). Hence Λ⊗M∗ is not a complete A∗-comodule
in the sense explained above. Second, there are elements ur⊗α in Λ⊗M∗ with
the property that Sqs∗(u

r ⊗ α) is nonzero for infinitely many s, and similarly
for p odd. For example, Sqs∗(u

−1 ⊗ α) contains the term
(
−s

s

)
us−1 ⊗ α =

(
2s− 1

s

)
us−1 ⊗ α

for j = 0, according to (3.10). This equals us−1 ⊗ α whenever s = 2e is a
power of 2, so ν(u−1⊗α) is an infinite sum. Hence Λ⊗M∗ is not an algebraic
A∗-comodule, either.
We will now identify the image of the homological version of the Singer map

ǫ∗ : M∗ −→ R+(M∗)

with the maximal algebraic A∗-comodule contained in R+(M∗).
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Definition 3.9. Given a complete A∗-comodule N∗, let N
alg
∗ ⊆ N∗ be given

by the pullback

Nalg
∗

ν|Nalg
∗ //

��

��

A∗ ⊗N∗
��

��

N∗
ν // A∗ ⊗̂N∗

in graded Fp-vector spaces. In other words, Nalg
∗ consists of the α ∈ N∗ whose

coaction ν(α) =
∑

I Sq
I
∗⊗αI (in the notation for p = 2) is a finite sum, rather

than a formal infinite sum. Here I runs over the admissible sequences, so that
{SqI∗}I is a basis for A∗, and αI = SqI∗(α).

Lemma 3.10. The restricted coaction map ν|Nalg
∗ factors (uniquely) through

the inclusion A∗ ⊗N
alg
∗ ⊆ A∗ ⊗N∗, hence defines a map

νalg : Nalg
∗ −→ A∗ ⊗N

alg
∗

that makes Nalg
∗ an A∗-comodule in the algebraic sense.

Proof. The composite

Nalg
∗

ν|Nalg
∗ // A∗ ⊗N∗

1⊗ν
// A∗ ⊗ (A∗ ⊗̂N∗)

factors as

Nalg
∗

ν|Nalg
∗ // A∗ ⊗N∗

ψ⊗1
// A∗ ⊗A∗ ⊗N∗ ⊆ A∗ ⊗ (A∗ ⊗̂N∗)

by coassociativity (2.11) of the complete coaction. Hence ν|Nalg
∗ factors

through the pullback A∗ ⊗N
alg
∗ in

A∗ ⊗N
alg
∗

1⊗ν|Nalg
∗ //

��

��

A∗ ⊗A∗ ⊗N∗
��

��

A∗ ⊗N∗
1⊗ν

// A∗ ⊗ (A∗ ⊗̂N∗) .

Algebraic counitality and coassociativity of the lifted map νalg follow from the
corresponding properties of ν displayed in Definition 2.7. �

The following identification stems from a conversation with M. Bökstedt.

Proposition 3.11. The image of the injective homomorphism ǫ∗ : M∗ →
R+(M∗) equals the maximal algebraic sub A∗-comodule R+(M∗)

alg ⊂ R+(M∗).

Proof. Let L∗ be any algebraic A∗-comodule. Given any α ∈ L∗, with coaction
ν(α) =

∑
I Sq

I
∗⊗αI , let 〈α〉 ⊆ L∗ be the graded vector subspace spanned

by the αI = SqI∗(α). Here we are using the notation appropriate for p =
2; the case p odd is completely similar. Since ν(α) is a finite sum, 〈α〉 is
a finite dimensional subspace. Furthermore, it is a sub A∗-comodule, since
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ν(αI) =
∑

J Sq
J
∗ ⊗ SqJ∗ (αI) and SqJ∗ (αI) = (SqI SqJ )∗(α) is a finite sum of

terms SqK∗ (α) = αK .
Now consider the case L∗ = R+(M∗)

alg. It is clear that ǫ∗(M∗) ⊆ R+(M∗)
alg,

since M∗ is an algebraic A∗-comodule and ǫ∗ respects the coaction. Let α ∈
R+(M∗)

alg be any element, and consider the linear span

N∗ = ǫ∗(M∗) + 〈α〉 ⊆ R+(M∗)
alg .

It is bounded below and of finite type, so by Lemma 3.8 there is a unique lift g∗

M∗
ǫ∗ // R+(M∗)

N∗

g∗

aaBBBBBBBB ;;
f∗

;;vvvvvvvv

of the inclusion f∗ : N∗ → R+(M∗). Hence N∗ ⊆ ǫ∗(M∗), so in fact α ∈
ǫ∗(M∗). �

4. The Tate construction

We recall the Tate construction of Greenlees [12], and its relation with ho-
motopy orbit and homotopy fixed point spectra. We then show how it can be
expressed as the homotopy inverse limit of bounded below spectra, in two equiv-
alent ways. This lets us make sense of the continuous (co-)homology groups of
the Tate construction.
We then describe the homological Tate spectral sequences. There are two
types, one converging to the continuous homology of the Tate construction
and one converging to the continuous cohomology. The terms of these spectral
sequences will be linearly dual to each other, but, as already noted in §2.2, their
target groups will only be dual in a topologized sense. The main properties of
these spectral sequences are summarized in Propositions 4.14, 4.15 and 4.17.

4.1. Equivariant spectra and various fixed point constructions.
We review some notions from stable equivariant homotopy theory, in the frame-
work of Lewis–May spectra [18]. Let G be a compact Lie group, quite possibly
finite, and let U be a complete G-universe. We fix an identification U G = R∞,
and write i : R∞ → U for the inclusion.
Let GS U be the category of genuine G-spectra, and let GSR

∞ be the
category of naive G-spectra. Similarly, let SR∞ be the category of (non-
equivariant) spectra. The restriction of universe functor i∗ : GS U → GSR∞

has a left adjoint, the extension of universe functor i∗ : GSR∞ → GS U , see
[18, §II.1].
The functor SR∞ → GSR∞, giving a spectrum the trivial G-action, has a
left adjoint taking a naive G-spectrum Y to the orbit spectrum Y/G, as well
as a right adjoint taking Y to the fixed point spectrum Y G. For a genuine
G-spectrum X , the orbit spectrum X/G = (i∗X)/G and fixed point spectrum
XG = (i∗X)G are defined by first restricting to the underlying naive G-spectra.
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Let EG be a free, contractible G-CW complex. Let c : EG+ → S0 be the

collapse map that sends EG to the non-base point of S0, and let ẼG be its
mapping cone, so that we have a (homotopy) cofiber sequence

(4.1) EG+
c
−→ S0 −→ ẼG

of based G-CW complexes. The n-skeleton ẼG(n) of ẼG is then the mapping

cone of the restricted collapse map EG
(n−1)
+ → S0, for each n ≥ 0. We may

and will assume that each skeleton EG(n−1) is a finite G-CW complex.

Definition 4.1. For each naive G-spectrum Y let YhG = (EG+∧Y )/G be the
homotopy orbit spectrum, and let Y hG = F (EG+, Y )G be the homotopy fixed
point spectrum. For each genuine G-spectrum X let

XhG = (EG+ ∧ i
∗X)/G = (i∗X)hG

and

XhG = F (EG+, X)G = (i∗X)hG

be defined by first restricting to the G-trivial universe. Furthermore, let

XtG = [ẼG ∧ F (EG+, X)]G

be the Tate construction on X . This is the spectrum denoted Ĥ(G,X) by
Bökstedt and Madsen [5] and tG(X)G by Greenlees and May [14].

The Segal conjecture is concerned with the map Γ: XG → XhG induced by
F (c, 1): X ∼= F (S0, X)→ F (EG+, X) by passing to fixed points. By smashing
the cofiber sequence (4.1) with F (c, 1) and passing to G-fixed points, we can
embed this map in the following diagram, consisting of two horizontal cofiber
sequences:

[EG+ ∧X ]G //

≃

��

XG //

Γ

��

[ẼG ∧X ]G

Γ̂
��

[EG+ ∧ F (EG+, X)]G // F (EG+, X)G // [ẼG ∧ F (EG+, X)]G

The adjunction counit ǫ : i∗i
∗X → X and the map F (c, 1) are both G-maps

and non-equivariant equivalences. By the G-Whitehead theorem, both maps

1 ∧ ǫ : i∗(EG+ ∧ i
∗X) = EG+ ∧ i∗i

∗X −→ EG+ ∧X

and

1 ∧ F (c, 1): EG+ ∧X −→ EG+ ∧ F (EG+, X)

are genuine G-equivalences. Hence we have the equivalence indicated on the
left. Furthermore, there is an Adams transfer equivalence

(4.2) τ̃ : (ΣadGEG+ ∧ i
∗X)/G

≃
−→ [i∗(EG+ ∧ i

∗X)]G ,

where adG denotes the adjoint representation of G. See [18, §II.2] and [14,
Part I] for further details.
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In the cases of interest to us, when G is discrete or abelian, the adjoint repre-
sentation is trivial so that ΣadG = ΣdimG. Hence we may rewrite the diagram
above as the following norm–restriction diagram

(4.3) ΣdimGXhG
N //

=

��

XG
R //

Γ

��

[ẼG ∧X ]G

Γ̂

��

ΣdimGXhG
Nh

// XhG
Rh

// XtG

for any genuine G-spectrum X . We note that the adjunction counit ǫ : i∗i
∗X →

X induces equivalences (i∗i
∗X)hG ≃ XhG and (i∗i

∗X)hG ≃ XhG, hence
(i∗i

∗X)tG ≃ XtG, so the Tate construction on X only depends on the naive
G-spectrum underlying X .
The spectra in the lower row have been studied by means of spectral sequences
converging to their homotopy groups, e.g. in [5], [15], [23], [2] and [16]. These
spectral sequences arise in the case of the homotopy orbit and fixed point

spectra by choosing a filtration of EG, and by a filtration of ẼG introduced
by Greenlees [12] in the case of the Tate spectrum XtG. We shall instead be
concerned with the spectral sequences that arise by applying homology in place
of homotopy.

4.2. Tate cohomology and the Greenlees filtration of ẼG. We re-
call the definition of the Tate cohomology groups from [10, §XII.3], and the
associated Tate homology groups. Let G be a finite group, let FpG = Fp[G]
be its group algebra, and let (P∗, d∗) be a complete resolution of the trivial
FpG-module Fp by free FpG-modules. This is a commutative diagram

· · · // P1
d1 // P0

d0 //

����

P−1
d−1

// P−2
// · · ·

Fp

==

==|||||||

of FpG-modules, where the Pn’s are free and the horizontal sequence is exact.
The image of d0 is identified with Fp, as indicated.

Definition 4.2. Given an FpG-module M the Tate cohomology and Tate ho-
mology groups are defined by

Ĥn(G;M) = Hn(HomFpG(P∗,M))

and
Ĥn(G;M) = Hn(P∗ ⊗FpGM) ,

respectively, where (P∗, d∗) is a complete FpG-resolution. (To form the bal-
anced tensor product, we turn P∗ into a complex of right FpG-modules by
means of the group inverse.) These groups are independent of the chosen com-
plete FpG-resolution, and there are isomorphisms

Ĥn(G;M) ∼= Ĥ−n−1(G;M)
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and
Hom(Ĥn(G;M),Fp) ∼= Ĥn(G; Hom(M,Fp))

for all integers n. Note that we do not follow the shifted grading convention
for Tate homology given in [14, 11.2].

The topological analogue of a complete resolution is a bi-infinite filtration of

ẼG, in the category of G-spectra, which was introduced by Greenlees [12]. We
recall the details of the construction. For brevity we shall not distinguish nota-
tionally between a based G-CW complex and its suspension G-CW spectrum.

For integers n ≥ 0 we let Ẽn = ẼG(n) be (the suspension spectrum of) the

n-skeleton of ẼG, while Ẽ−n = D(Ẽn) = F (ẼG(n), S) is its functional dual.

These definitions agree for n = 0, as Ẽ0 = S is the sphere spectrum. Spli-

cing the skeleton filtration of ẼG with its functional dual, we get the following
diagram

(4.4) D(ẼG) −→ . . . −→ Ẽ−1 −→ Ẽ0 = S −→ Ẽ1 −→ Ẽ2 −→ . . . −→ ẼG ,

which we call the Greenlees filtration. Both ẼG ≃ hocolimn Ẽn and D(ẼG) ≃

holimn Ẽn are non-equivariantly contractible.

Applying homology to the non-limiting terms of this filtration (i.e., the Ẽn for

n ∈ Z) gives a spectral sequence with E1
s,t = Hs+t(Ẽs/Ẽs−1) that converges to

H∗(ẼG,D(ẼG)) = 0. It is concentrated on the horizontal axis, since Ẽn/Ẽn−1

is a finite wedge sum of G-free n-sphere spectra G+ ∧ S
n for each integer n.

Hence the spectral sequence collapses at the E2-term, and we get a long exact
sequence

(4.5) . . . // H2(Ẽ2/Ẽ1)
d12,0

// H1(Ẽ1/Ẽ0)
d11,0

//

����

H0(Ẽ0/Ẽ−1)
// . . .

H0(S)
77

77ooooooooooo

of finitely generated free FpG-modules. Letting

Pn = Hn+1(Ẽn+1/Ẽn)

and dn = d1n+1,0 for all integers n yields a complete resolution (P∗, d∗) of
Fp = H0(S).

4.3. Continuous homology of the Tate construction. LetG be a finite
group and letX be a genuineG-spectrum. By means of the Greenlees filtration,
we may filter the Tate construction XtG by a tower of spectra.

Definition 4.3. For each integer n let ẼG/Ẽn−1 be the homotopy cofiber of

the map Ẽn−1 → ẼG, and define

XtG[−∞, n−1] = [Ẽn−1 ∧ F (EG+, X)]G

XtG[n] = XtG[n,∞] = [ẼG/Ẽn−1 ∧ F (EG+, X)]G .
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Smashing the cofiber sequence Ẽn−1 → ẼG → ẼG/Ẽn−1 with F (EG+, X)
and taking G-fixed points, we get a cofiber sequence

XtG[−∞, n−1] −→ XtG −→ XtG[n,∞]

for each integer n. The maps Ẽn−1 → Ẽn in the Greenlees filtration (4.4) induce
maps between these cofiber sequences, which combine to the non-limiting terms
of the following horizontal tower of vertical cofiber sequences:
(4.6)

∗ //

��

. . . // XtG[−∞, n−1] //

��

XtG[−∞, n] //

��

. . . // XtG

=

��

XtG
= //

=

��

. . . = // XtG
= //

��

XtG
= //

��

. . . = // XtG

��

XtG // . . . // XtG[n,∞] // XtG[n+1,∞] // . . . // ∗

Lemma 4.4. Let X be a G-spectrum. Then

holim
n→−∞

XtG[−∞, n] ≃ ∗ and hocolim
n→∞

XtG[n,∞] ≃ ∗

so

holim
n→−∞

XtG[n,∞] ≃ XtG and hocolim
n→∞

XtG[−∞, n] ≃ XtG .

Proof. For negative n, Ẽn = D(Ẽm) for m = −n, and there is a G-equivariant

equivalence ν : D(Ẽm)∧Z
≃
−→ F (Ẽm, Z) for any G-spectrum Z, since the finite

G-CW spectrum Ẽm is dualizable [18, III.2.8]. Hence

holim
n→−∞

XtG[−∞, n] = holim
n→−∞

[Ẽn ∧ F (EG+, X)]G

= holim
m→∞

[D(Ẽm) ∧ F (EG+, X)]G ≃ holim
m→∞

F (Ẽm ∧ EG+, X)G

∼= F (hocolim
m→∞

Ẽm ∧ EG+, X)G ≃ F (ẼG ∧ EG+, X)G ,

which is contractible because ẼG ∧ EG+ is G-equivariantly contractible.

For the second claim we use that ẼG/Ẽn is a free G-CW spectrum. Indeed,

for n ≥ 0, ẼG/Ẽn ≃ Σ(EG/EG(n−1)). Thus, by the G-Whitehead theorem
and the Adams transfer equivalence (4.2) we have

hocolim
n→∞

XtG[n+1,∞] = hocolim
n→∞

[ẼG/Ẽn ∧ F (EG+, X)]G

≃ hocolim
n→∞

[ẼG/Ẽn ∧X ]G ≃ hocolim
n→∞

[ẼG/Ẽn ∧ i∗i
∗X ]G

≃ hocolim
n→∞

(ẼG/Ẽn ∧ i
∗X)/G ∼= (hocolim

n→∞
ẼG/Ẽn ∧ i

∗X)/G ,

which is contractible since hocolimn→∞ (ẼG/Ẽn) is G-equivariantly con-
tractible. The remaining claims follow, since the homotopy limit of a fiber
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sequence is a fiber sequence, and the homotopy colimit of a cofiber sequence is
a cofiber sequence. �

Hereafter we abbreviate XtG[n,∞] to XtG[n]. Then the lower horizontal tower
{XtG[n]}n in (4.6) becomes

(4.7) XtG −→ . . . −→ XtG[n] −→ XtG[n+1] −→ . . . −→ ∗ ,

which we will refer to as the Tate tower.
The following two lemmas should be compared with the sequences (2.6)
and (2.7).

Lemma 4.5. Let X be a G-spectrum. Then

lim
n→∞

H∗(XtG[n]) = Rlim
n→∞

H∗(XtG[n]) = colim
n→∞

H∗(X
tG[n]) = 0 .

Proof. In cohomology, we have a Milnor lim-Rlim short exact sequence

0 −→ Rlim
n

H∗−1(XtG[n]) −→ H∗(hocolim
n

XtG[n]) −→ lim
n
H∗(XtG[n]) −→ 0 .

By Lemma 4.4 the middle term is zero, hence so are the other two terms. In
homology, we have the isomorphism

colim
n→∞

H∗(X
tG[n]) ∼= H∗(hocolim

n→∞
XtG[n]) .

By the same lemma the right hand side is zero. �

Lemma 4.6. Suppose that X is bounded below and of finite type over Fp. Then
each spectrum XtG[n] is bounded below and of finite type over Fp. Hence

Rlim
n→−∞

H∗(X
tG[n]) = 0 .

Proof. Let XtG[n,m] = [Ẽm/Ẽn−1 ∧ F (EG+, X)]G. For m ≥ n there is a
cofiber sequence

XtG[n,m−1] −→ XtG[n,m] −→
∨

ΣmX ,

with one copy of ΣmX in the wedge sum for each of the finitely many G-free

m-cells in ẼG. Since the connectivity of ΣmX grows to infinity with m, the
first claim of the lemma follows by induction on m. The derived limit of any
tower of finite groups is zero, which gives the second conclusion. �

We use the Tate tower (4.7) to define the continuous (co-)homology of XtG, as
in Definition 2.3 and Corollary 2.9.

Definition 4.7. Let G be a finite group andX aG-spectrum whose underlying
non-equivariant spectrum is bounded below and of finite type over Fp. By the
continuous cohomology of XtG we mean the A -module

H∗
c (X

tG) = colim
n→−∞

H∗(XtG[n]) .

By the continuous homology of XtG we mean the complete A∗-comodule

Hc
∗(X

tG) = lim
n→−∞

H∗(X
tG[n]) .
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There is a natural isomorphism Hom(H∗
c (X

tG),Fp) ∼= Hc
∗(X

tG) of com-
plete A∗-comodules, as well as a natural isomorphism Homc(Hc

∗(X
tG),Fp) ∼=

H∗
c (X

tG) of A -modules.

Remark 4.8. Different G-CW structures on EG will give rise to different Green-
lees filtrations and Tate towers, but by cellular approximation any two choices
give pro-isomorphic towers in homology. The continuous homology, as a com-
plete A∗-comodule, is therefore independent of the choice. Likewise for contin-
uous cohomology.

We end this subsection by giving a reformulation of the Tate construction,
known as Warwick duality [13, §4], which will be used in §5.2 when making a
topological model for the Singer construction.

Proposition 4.9 ([14, 2.6]). There is a natural chain of equivalences

ΣF (ẼG,EG+ ∧X)G ≃ [ẼG ∧ F (EG+, X)]G = XtG .

Proof. We have a commutative diagram of G-spectra

(4.8) EG+ ∧X
F (c,1∧1)

// F (EG+, EG+ ∧X)

EG+ ∧EG+ ∧X

c∧1∧1 ≃

OO

//

1∧F (c,c∧1) ≃

��

F (EG+, EG+ ∧X)

=

OO

F (1,c∧1)≃

��

EG+ ∧ F (EG+, X)
c∧1 // F (EG+, X) .

The maps labeled ≃ are G-equivalences. The proposition follows by taking
horizontal homotopy cofibers and fixed points. �

We now strengthen this to a statement about towers.

Lemma 4.10. For each integer m there is a natural chain of equivalences

ΣF (Ẽm, EG+ ∧X)G ≃ [ẼG/Ẽ−m ∧ F (EG+, X)]G = XtG[1−m]

connecting the tower

ΣF (ẼG,EG+ ∧X)G → . . . −→ ΣF (Ẽm+1, EG+ ∧X)G

−→ ΣF (Ẽm, EG+ ∧X)G −→ . . .

to the Tate tower

XtG −→ . . . −→ XtG[−m] −→ XtG[1−m] −→ . . . .
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Proof. First observe that there is a natural chain of G-homotopy equivalences

ΣF (Ẽm, EG+ ∧X)

ΣD(Ẽm) ∧ EG+ ∧X

ν≃

OO

≃ 1∧1∧F (c,1)

��

ΣD(Ẽm) ∧ EG+ ∧ F (EG+, X)

ΣẼ−m ∧ EG+ ∧ F (EG+, X) .

≃

OO

The upper map ν is an equivalence because Ẽm is dualizable. The middle
map is an equivalence because EG+ is G-free and F (c, 1) is a non-equivariant
equivalence. The lower map is the identity when m ≥ 0 and the map induced

by the natural equivalence Ẽ−m → D(D(Ẽ−m)) = D(Ẽm) when m ≤ 0. The

latter two maps agree for m = 0, since Ẽ0 = S.
We proceed to prove that there is a chain of G-equivalences

ΣẼ−m ∧ EG+ ≃ ẼG/Ẽ−m ,

natural for varying m ∈ Z. This will prove the lemma after passage to G-fixed
points.

For m ≥ 0, let cm : EG
(m−1)
+ → S0 be the restricted collapse map. Consider

the following commutative diagram of G-spectra:

∗

��

// D(Ẽm)
= //

��

Ẽ−m

��

EG+
c //

=

��

S //

Dcm

��

ẼG

��

EG+
Dcm◦c

// D(EG
(m−1)
+ ) // ẼG/Ẽ−m

EG+
Dcm∧1

//

=

OO

D(EG
(m−1)
+ ) ∧ EG+

//

1∧c≃

OO

ΣẼ−m ∧ EG+

≃

OO

All four rows are cofiber sequences. If we disregard the lower row, then all
three remaining columns are also cofiber sequences. Hence, the homotopy

cofiber of Dcm ◦ c is equivalent to ẼG/Ẽ−m, and we have a G-equivalence

ΣẼ−m ∧ EG+
≃
−→ ẼG/Ẽ−m, natural for varying m ≥ 0.
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For m ≤ 0 let n = −m ≥ 0, let in : EG
(n−1)
+ → EG+ be the inclusion, let

δn : EG
(n−1)
+ → EG

(n−1)
+ ∧ EG+ be the diagonal, and let cn : EG

(n−1)
+ → S0

be as above. Consider the following commutative diagram of G-spectra:

S

��

= // S //

��

∗

��

Ẽn
//

��

ẼG //

��

ẼG/Ẽn

≃

��

ΣEG
(n−1)
+

Σin //

≃ Σδn

��

ΣEG+
//

=

��

Σ(EG/EG(n−1))

≃

��

ΣEG
(n−1)
+ ∧ EG+

Σcn∧1
// ΣEG+

// ΣẼn ∧EG+

Again, all four rows are cofiber sequences. If we disregard the lower row, then
all three remaining columns are also cofiber sequences. Hence, the middle
vertical map on the right is a G-equivalence, and we have a G-equivalence

ẼG/Ẽ−m
≃
−→ ΣẼ−m ∧ EG+, natural for varying m ≤ 0.

The direction of the G-equivalence changes when we pass fromm ≥ 0 tom ≤ 0,
but for m = 0 the two equivalences are mutually inverse identifications of

ΣEG+ and ẼG/S. Hence we can connect ΣẼ−m∧EG+ to ẼG/Ẽ−m by a chain

of two G-equivalences, where the first uses the maps ΣẼ−m∧EG+ → ẼG/Ẽ−m

for m ≥ 0 and identity maps for m < 0, and the second uses identity maps for

m ≥ 0 and the maps ẼG/Ẽ−m → ΣẼ−m ∧ EG+ for m < 0. These are then
compatible for all m ∈ Z. �

Corollary 4.11. The continuous (co-)homology of XtG may be computed
from the tower

XtG −→ . . . −→ ΣF (Ẽm+1, EG+ ∧X)G −→ ΣF (Ẽm, EG+ ∧X)G −→ . . .

as

H∗
c (X

tG) ∼= colim
m→∞

ΣH∗(F (Ẽm, EG+ ∧X)G)

and

Hc
∗(X

tG) ∼= lim
m→∞

ΣH∗(F (Ẽm, EG+ ∧X)G) .

4.4. The (co-)homological Tate spectral sequences. Let G be a finite

group and X a G-spectrum. The cofiber sequence Ẽs/Ẽs−1 → ẼG/Ẽs−1 →

ẼG/Ẽs induces a cofiber sequence

[Ẽs/Ẽs−1 ∧ F (EG+, X)]G −→ XtG[s]
i
−→ XtG[s+1]

for every integer s. The left hand term is equivalent to

[Ẽs/Ẽs−1 ∧X ]G ≃ (Ẽs/Ẽs−1 ∧ i
∗X)/G
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since Ẽs/Ẽs−1 is G-free.
Applying cohomology, we get an exact couple of A -modules

(4.9) As+1,∗ i // As,∗

��

Ês,∗1

ccG
G

G
G

with

As,t = Hs+t(XtG[s]) and Ês,t1 = Hs+t((Ẽs/Ẽs−1 ∧ i
∗X)/G) .

By Lemma 4.5, limsA
s = RlimsA

s = 0, so this spectral sequence converges
conditionally to the colimit H∗

c (X
tG), in the first sense of [3, 5.10]. Applying

homology instead, we get an exact couple of algebraic A∗-comodules

(4.10) As,∗
i // As+1,∗

||x
x

x
x

Ê1
s,∗

OO

with

As,t = Hs+t(X
tG[s]) and Ê1

s,t = Hs+t((Ẽs/Ẽs−1 ∧ i
∗X)/G) .

By Lemma 4.5, colimsAs = 0, so this spectral sequence converges conditionally
to the limit Hc

∗(X
tG), in the second sense of [3, 5.10].

We can rewrite the Ê1-term as

Ê1
s,t
∼= Hs(Ẽs/Ẽs−1)⊗FpG Ht(X) = Ps−1 ⊗FpG Ht(X) ,

and the d1-differential is induced by the differential in the complete resolution
(P∗, d∗), so

Ê2
s,t
∼= Ĥs−1(G;Ht(X)) ∼= Ĥ−s(G;Ht(X)) .

Dually, the Ê1-term is

Ês,t1
∼= Hom(Ps−1 ⊗FpG Ht(X),Fp) ∼= HomFpG(Ps−1, H

t(X))

and
Ês,t2

∼= Ĥs−1(G;Ht(X)) ∼= Ĥ−s(G;H
t(X)) .

Definition 4.12. Let G be a finite group and X a G-spectrum. The coho-
mological Tate spectral sequence of X is the conditionally convergent spectral
sequence

Ês,t2 = Ĥ−s(G;H
t(X)) =⇒ Hs+t

c (X)

associated with the exact couple of A -modules (4.9). Dually, the homological
Tate spectral sequence of X is the conditionally convergent spectral sequence

Ê2
s,t = Ĥ−s(G;Ht(X)) =⇒ Hc

s+t(X)

associated with the exact couple of A∗-comodules (4.10).
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Remark 4.13. There is a natural isomorphism Ês,tr
∼= Hom(Êrs,t,Fp) for all

finite r, s and t, so that the dr-differential d
s,t
r : Ês,tr → Ês+r,t−r+1

r is the linear

dual of the dr-differential drs+r,t−r+1 : Ê
r
s+r,t−r+1 → Êrs,t. In this sense the

cohomological Tate spectral sequence is dual to the homological Tate spectral
sequence.

To get strong convergence, we needX to be bounded below in the cohomological
case, and that X is bounded below and of finite type over Fp in the homological
case.

Proposition 4.14. Let G be a finite group and X a G-spectrum. Assume
that X is bounded below. Then XtG is the homotopy inverse limit of a tower
{XtG[s]}s of bounded below spectra, and the cohomological Tate spectral se-
quence

Ês,t2 (X) = Ĥ−s(G;H
t(X)) =⇒ Hs+t

c (XtG)

converges strongly to the continuous cohomology of XtG as an A -module.

Proof. When H∗(X) is bounded below, the cohomological Tate spectral se-
quence has exiting differentials in the sense of Boardman, so the spectral se-
quence is automatically strongly convergent by [3, 6.1]. In other words, the
filtration of Hs+t

c (XtG) by the sub A -modules

F sH∗
c (X

tG) = im(H∗(XtG[s])→ H∗
c (X

tG))

is exhaustive, complete and Hausdorff, and there are A -module isomorphisms

F sH∗
c (X

tG)/F s+1H∗
c (X

tG) ∼= Ês,∗∞ .

�

Proposition 4.15. Let G be a finite group and X a G-spectrum. Assume that
X is bounded below and of finite type over Fp. Then XtG is the homotopy in-
verse limit of a tower {XtG[s]}s of bounded below spectra of finite type over Fp,
and the homological Tate spectral sequence

Ê2
s,t(X) = Ĥ−s(G;Ht(X)) =⇒ Hc

s+t(X
tG)

converges strongly to the continuous homology of XtG as a complete A∗-
comodule.

Proof. When H∗(X) is bounded below, the homological Tate spectral sequence

has entering differentials in the sense of Boardman. The derived limit RÊ∞
∗,∗ =

Rlimr Ê
r
∗,∗ vanishes since H∗(X), and thus Ê2

∗,∗, is finite in each (bi-)degree.
Hence the spectral sequence is strongly convergent by [3, 7.4]. In other words,
the filtration of Hc

s+t(X
tG) by the complete sub A∗-comodules

FsH
c
∗(X

tG) = ker(Hc
∗(X

tG)→ Hc
∗(X

tG[s]))

is exhaustive, complete and Hausdorff, and there are algebraic A∗-comodule
isomorphisms

Fs+1H
c
∗(X

tG)/FsH
c
∗(X

tG) ∼= Ê∞
s,∗ .

�
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4.4.1. Homotopy vs. Homology. We used the Tate tower (4.7) to define our
homological Tate spectral sequence, by applying homology with Fp-coefficients.
When studying the homotopy groups of the Tate construction, it has been
customary to apply π∗(−) to the upper tower in (4.6):
(4.11)

∗ // . . . // XtG[−∞, n−1] // XtG[−∞, n] // . . . // XtG

Applying a homological functor to these two towers of spectra gives two dif-
ferent exact couples with isomorphic spectral sequences. If we are working
with homotopy, we get two spectral sequences converging to the same groups.
Using (4.11) yields a spectral sequence converging to the colimit

colim
n

π∗(X
tG[−∞, n]) ∼= π∗(X

tG) ,

while using (4.7) yields an isomorphic spectral sequence converging to the in-
verse limit

(4.12) lim
n
π∗(X

tG[n]) ∼= π∗(X
tG) .

The latter isomorphism assumes that X is bounded below and of suitably finite
type, so that the right derived limit Rlimn π∗(X

tG[n]) = 0. For example, it

suffices if π∗(X) is of finite type over Z or Ẑp.
When working with homology with Fp-coefficients, instead of homotopy groups,
the failure of the isomorphism we made use of in (4.12) makes the situation
more interesting. Applying H∗(−) to the tower (4.11) will produce a sequence
of homology groups whose inverse limit is not trivial in general. This means
that the associated spectral sequence will not be conditionally convergent to
the direct limit

colim
n

H∗(X
tG[−∞, n]) ∼= H∗(X

tG) .

In fact, we have seen that the (isomorphic) homological Tate spectral sequence,
arising from (4.7), converges strongly to

lim
n
H∗(X

tG[n]) = Hc
∗(X

tG) ,

which is only rarely isomorphic to H∗(X
tG), since inverse limits and homology

do not commute in general.
We end this discussion by noticing that the continuous homology groups of
the Tate construction on X can be thought of as the homotopy groups of
the Tate construction on H ∧ X , where H = HFp is the Eilenberg–MacLane
spectrum of Fp. In other words, continuous homology of XtG is a special case
of homotopy.

Proposition 4.16. For any bounded below G-spectrum X of finite type over Fp
there is a natural isomorphism

π∗(H ∧X)tG ∼= Hc
∗(X

tG) ,

where H has the trivial G-action.
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Proof. For all integers m we have

(H ∧X)tG[1−m] ≃ ΣF (Ẽm, EG+ ∧H ∧X)G

≃ H ∧ ΣF (Ẽm, EG+ ∧X)G ≃ H ∧XtG[1−m] .

The first and last equivalences follow from Lemma 4.10, while the middle equiv-

alence follows from the fact that Ẽm is G-equivariantly dualizable. Thus, we
have that π∗(H ∧ X)tG[n] ∼= H∗(X

tG[n]) for all integers n. For a general
G-spectrum X , we then have the following surjective maps:

π∗(H ∧X)tG −→ lim
n→−∞

π∗(H ∧X)tG[n](4.13)

∼= lim
n→−∞

H∗(X
tG[n]) = Hc

∗(X
tG) .

Since X was assumed to be bounded below and of finite type over Fp, the
groups in the first inverse limit system are all of finite type over Fp, so their
Rlim vanishes and the map in (4.13) is an isomorphism. �

The previous proposition and discussion tells us that the continuous homology
of XtG can be considered both as the direct limit colimn π∗(H ∧X)tG[−∞, n]
or as the inverse limit limn π∗(H ∧X)tG[n,∞]. In both cases, the filtration of
the two groups given by their defining towers are the same.

4.5. Multiplicative structure. We now discuss how the treatment in
[16, §4.3] of multiplicative structure in the homotopical Tate spectral sequence
carries over to the homological Tate spectral sequence.
Let X be a bounded below G-equivariant ring spectrum of finite type over Fp.
We assume that the unit map η : S → X and the multiplication map µ : X ∧
X → X are equivariant with respect to the trivial G-action on S and the
diagonal G-action on X ∧X . By [14, 3.5], the homotopy cartesian square

(4.14) XG
R //

Γ

��

[ẼG ∧X ]G

Γ̂

��

XhG
Rh

// XtG

in (4.3) is a diagram of ring spectra and ring spectrum maps. Up to homotopy

there is a unique G-equivalence f : ẼG ∧ ẼG
≃
→ ẼG, compatible with the

inclusion S0 → ẼG and the homeomorphism S0 ∧ S0 ∼= S0. Using f , the
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multiplication map on XtG is given by the composition

[ẼG ∧ F (EG+, X)]G ∧ [ẼG ∧ F (EG+, X)]G

��

[ẼG ∧ ẼG ∧ F (EG+ ∧ EG+, X ∧X)]G

f∧F (∆,µ)

��

[ẼG ∧ F (EG+, X)]G .

The other multiplication maps arise by replacing ẼG, EG+ or both by S0.
The unit map to XG is adjoint to the G-map S → X , since S has the trivial
G-action. The other unit maps arise by composition with the maps in (4.14).
The non-equivariant ring spectrum structure on the Eilenberg–MacLane spec-
trum H makes H ∧ X a naively G-equivariant ring spectrum, so (H ∧ X)tG

is a ring spectrum. The induced graded ring structure on π∗(H ∧ X)tG then
gives a graded ring structure on the continuous homology Hc

∗(X
tG), by the

isomorphism of Proposition 4.16.

Proposition 4.17. Let G be a finite group and X a G-equivariant ring spec-
trum. Assume that X is bounded below and of finite type over Fp. Then the
homological Tate spectral sequence

Ê2
s,t = Ĥ−s(G;Ht(X)) =⇒ Hc

s+t(X
tG)

is a strongly convergent A∗-comodule algebra spectral sequence, whose product

at the Ê2-term is given by the cup product in Tate cohomology and the Pon-
tryagin product on H∗(X).

Proof. Using the Greenlees filtration, we may filter (H ∧ X)tG by the

tower (4.11). This produces a homotopical Tate spectral sequence with Ê2-
term

Ê2
s,t = Ĥ−s(G;πt(H ∧X)) = Ĥ−s(G;Ht(X)) ,

converging strongly to the homotopy πs+t(H ∧ X)tG ∼= Hc
s+t(X

tG). By the
proof of Proposition 4.16 it is additively isomorphic to the homological Tate
spectral sequence of Proposition 4.15. By [16, 4.3.5], it is also an algebra
spectral sequence, with differentials being derivations with respect to the prod-

uct. The Ê∞-term is the associated graded of the multiplicative filtration of
πs+t(H ∧X)tG given by the images

im(π∗(H ∧X)tG[−∞, s]→ π∗(H ∧X)tG) .

�

5. The topological Singer construction

5.1. Realizing the Singer construction as continuous cohomology.
As observed by Miller, and presented by Bruner, May, McClure and Steinberger
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in [9, §II.5], there is a particular inverse system of spectra whose continuous
cohomology realizes the Singer construction in the version related to the sym-
metric group Σp. We go through the adjustments needed to realize the version
of the Singer construction related to the subgroup Cp generated by the cyclic
permutation (1 2 · · · p).
Let B be a non-equivariant spectrum that is bounded below and of finite type
over Fp. For each subgroup G ⊆ Σp there is an extended power construction
[9, §I.2]

DG(B) = EG⋉G B
(p) ,

well defined in the stable homotopy category. Here B(p) denotes the external p-
th smash power ofB, and G permutes the p copies ofB. It follows from [9, I.2.4]
that DG(B) is bounded below and of finite type over Fp. More precisely, we
have the following calculation.

Lemma 5.1 ([9, I.2.3]). There is a natural isomorphism

H∗(DG(B)) ∼= H∗(G;H∗(B)⊗p) ,

where G permutes the p copies of H∗(B).

The p-fold diagonal map S1 → S1∧· · ·∧S1 ∼= Sp induces maps ∆ : ΣDG(B)→
DG(ΣB) as in [9, §II.3]. Applied to desuspensions of B, these assemble to an
inverse system

(5.1) . . . −→ Σn+1DG(Σ
−n−1B)

Σn∆
−→ ΣnDG(Σ

−nB) −→ . . .
∆
−→ DG(B)

in the stable homotopy category. This is a tower of bounded below spectra of
finite type over Fp, so it makes sense to talk about its associated continuous
cohomology.
We now follow [9, §II.5], but focus on the case G = Cp instead of G = Σp.
There is an additive isomorphism

H∗(DCp
(B)) ∼= Fp{e0 ⊗ α1 ⊗ · · · ⊗ αp} ⊕ Fp{ej ⊗ α

⊗p | j ≥ 0}

where the αi and α range over a basis for H∗(B), the αi are not all equal, and
only one representative is taken from each Cp-orbit of the tensors α1⊗· · ·⊗αp.
The grading is determined by deg(ej) = j. Dually, there is an isomorphism

H∗(DCp
(B)) ∼= Fp{w0 ⊗ a1 ⊗ · · · ⊗ ap} ⊕ Fp{wj ⊗ a

⊗p | j ≥ 0}

where the ai and a range over the dual basis for H∗(B), and wj ⊗ a
⊗p is dual

to ej ⊗ α
⊗p when a is dual to α. It follows that

(5.2) H∗(ΣnDCp
(Σ−nB)) ∼= Fp{Σ

nw0 ⊗ Σ−na1 ⊗ · · · ⊗ Σ−nap}

⊕ Fp{Σ
nwj ⊗ (Σ−na)⊗p | j ≥ 0} .

By [9, II.5.6], the map ∆ in (5.1) is given in cohomology as

∆∗(wj ⊗ a
⊗p) = (−1)j+1α(q) · Σwj+p−1 ⊗ (Σ−1a)⊗p
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where deg(a) = q, m = (p − 1)/2 and α(q) = −(−1)mqm!. For p = 2 the
numerical coefficient should be read as 1. The other classes w0 ⊗ a1 ⊗ · · · ⊗ ap
map to zero. It follows that

(5.3) (Σn∆)∗(Σnwj ⊗ (Σ−na)⊗p)

= (−1)j+1α(q−n) · Σn+1wj+p−1 ⊗ (Σ−n−1a)⊗p .

The action of the Steenrod algebra A on H∗(DCp
(B)) is given by the Nishida

relations. Together with the explicit formula above for the maps (Σn∆)∗, this
determines the direct limit of cohomology groups as an A -module.
Miller observed that this direct limit can be described in closed form by the
Singer construction on the A -module H∗(B), up to a single degree shift. We
now give the Cp-equivariant extension of the Σp-equivariant case discussed in
[9, II.5.1].

Theorem 5.2. For each spectrum B that is bounded below and of finite type
over Fp, there is a natural isomorphism of A -modules

ω : colim
n→∞

H∗(ΣnDCp
(Σ−nB))

∼=
−→ Σ−1R+(H

∗(B)) .

Proof. For p = 2 the isomorphism is given by

ω(Σnwr+n ⊗ (Σ−na)⊗2) = xr+q ⊗ a

where deg(a) = q. For p odd, the isomorphism is given by

ω(Σnw2(r+mn) ⊗ (Σ−na)⊗p) =
(−1)q−n

ν(q−n)
· yr+mq ⊗ a

and

ω(Σnw2(r+mn)−1 ⊗ (Σ−na)⊗p) =
(−1)q

ν(q−n)
· xyr+mq−1 ⊗ a ,

where deg(a) = q, m = (p− 1)/2 and ν(2j + ǫ) = (−1)j(m!)ǫ for ǫ ∈ {0, 1}.
It follows from (5.3) and the relation α(q)ν(q − 1)−1 = ν(q)−1 that these
homomorphisms are compatible under (Σn∆)∗. It is then clear from (5.2)
that ω is an additive isomorphism.
This isomorphism commutes with the Bockstein and Steenrod operations on
the extended powers, described in [18, VIII.3.2] and [9, II.5.5], and the explicitly
defined Bockstein and Steenrod operations on the Singer construction, given
in Definition 3.1. Here are the details: For p = 2, the Steenrod reduced square
Sqs takes ω(Σnwr+n ⊗ (Σ−na)⊗2) = xr+q ⊗ a to

∑

j

(
r + q − j

s− 2j

)
xr+q+s−j ⊗ Sqj(a) ,

by Definition 3.1, while ω takes

Sqs(Σnwr+n ⊗ (Σ−na)⊗2)

=
∑

j

(
r + n+ q − n− j

s− 2j

)
Σnwr+n+s−2j ⊗ (Σ−n Sqj(a))⊗2
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(given by [9, II.5.5(i)]) to

∑

j

(
r + q − j

s− 2j

)
xr+s−2j+q+j ⊗ Sqj(a) ,

and these expressions are equal.
For p odd, the Bockstein operation β takes ω(Σnw2(r+mn) ⊗ (Σ−na)⊗p) =

(−1)q−nν(q − n)−1 · yr+mq ⊗ a to 0 by Definition 3.1. This equals the image
under ω of β(Σnw2(r+mn) ⊗ (Σ−na)⊗p) = 0.

The Steenrod reduced power Ps takes ω(Σnw2(r+mn) ⊗ (Σ−na)⊗p) to

(−1)q−nν(q − n)−1 times the sum

∑

j

(
r +mq − (p− 1)j

s− pj

)
yr+mq+(p−1)(s−j) ⊗ Pj(a)

+
∑

j

(
r +mq − (p− 1)j − 1

s− pj − 1

)
xyr+mq+(p−1)(s−j)−1 ⊗ β Pj(a) ,

according to Definition 3.1. The homomorphism ω takes Ps(Σnw2(r+mn) ⊗
(Σ−na)⊗p), which equals the sum

∑

j

(
r +mq − (p− 1)j

s− pj

)
ΣnwI ⊗ (Σ−n Pj(a))⊗p

+ α(q − n)
∑

j

(
r +mq − (p− 1)j − 1

s− pj − 1

)
ΣnwI−p ⊗ (−1)n(Σ−nβ Pj(a))⊗p

where I = 2(r+mn)+2(s−pj)(p−1) (given by [9, II.5.5(ii)] and the fact that
β anti-commutes with suspension), to

∑

j

(
r +mq − (p− 1)j

s− pj

)
(−1)q−n

ν(q − n)
· yJ ⊗ Pj(a)

+ α(q − n)
∑

j

(
r +mq − (p− 1)j − 1

s− pj − 1

)
(−1)q+1−n

ν(q + 1− n)
· xyJ−1 ⊗ β Pj(a)

where J = r+ (s− j)(p− 1) +mq. These expressions are equal because of the
relation α(q − n)ν(q − n − 1)−1 = ν(q − n)−1 mentioned above, and the fact
that ν(q − n− 1) = −ν(q + 1− n).
Also for p odd, β takes ω(Σnw2(r+mn)−1 ⊗ (Σ−na)⊗p) = (−1)qν(q − n)−1 ·

xyr+mq−1 ⊗ a to (−1)qν(q − n)−1 · yr+mq ⊗ a by Definition 3.1. This equals
the image under ω of β(Σnw2(r+mn)−1 ⊗ (Σ−na)⊗p) = (−1)nΣnw2(r+mn) ⊗

(Σ−na)⊗p (given in [18, VIII.3.2(iii)]).
Finally, Ps takes ω(Σnw2(r+mn)−1 ⊗ (Σ−na)⊗p) to (−1)qν(q − n)−1 times the
sum

∑

j

(
r +mq − (p− 1)j − 1

s− pj

)
xyr+mq+(p−1)(s−j)−1 ⊗ Pj(a) ,
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according to Definition 3.1, while ω takes Ps(Σnw2(r+mn)−1⊗(Σ
−na)⊗p), which

equals the sum

∑

j

(
r +mq − 1− (p− 1)j

s− pj

)
Σnw2(r+mn)−1+2(s−pj)(p−1) ⊗ (Σ−n Pj(a))⊗p

(given by [9, II.5.5(ii)]), to

∑

j

(
r +mq − 1− (p− 1)j

s− pj

)
(−1)q

ν(q − n)
· xyr+(s−j)(p−1)+mq−1 ⊗ Pj(a) .

These expressions are obviously equal. �

5.2. The relationship between the Tate and Singer constructions.
We now show that the inverse system (5.1) for G = Cp and B a bounded below
spectrum can be realized, up to a single suspension, as the Tate tower (4.7) for
a Cp-spectrum X = B∧p.
As a naive Cp-spectrum, B∧p is equivalent to the p-fold smash product
B ∧ · · · ∧ B, with the Cp-action given by cyclic permutation of the fac-
tors. The genuinely equivariant definition of B∧p is obtained by specializa-
tion from Bökstedt’s definition in [6], [4] of the topological Hochschild homo-
logy THH(B) of a symmetric ring spectrum B, in the sense of [17]. Namely,
B∧p = sdpTHH(B)0 = THH(B)p−1 equals the 0-simplices of the p-fold edge-
wise subdivision of THH(B), which in turn equals the (p − 1)-simplices of
THH(B).
The ring structure on B is only relevant for the simplicial structure on THH(B),
and is not needed for the formation of its (p − 1)-simplices. However, it is
necessary to assume that the spectrum B is realized as a symmetric spectrum.
We now make a review of definitions, in order to compare the Bökstedt-style
smash powers of symmetric spectra with the external powers of Lewis–May
spectra.
From now on, let U be the complete Cp-universe

U = R
∞ ⊕ · · · ⊕ R

∞ = (R∞)p

with Cp-action given by cyclic permutation of summands. The inclusion
i : R∞ → U is the diagonal embedding ∆: R∞ → (R∞)p. Let A = {Rn |
n ≥ 0} be the sequential indexing set in R∞, and let Ap = {Rn ⊕ · · · ⊕ Rn =
(Rn)p | n ≥ 0} be the associated diagonal indexing set [18, §VI.5] in U . Recall
that an equivariant prespectrum D is Σ-cofibrant in the sense of [18, I.8.7],
hence good in the sense of Hesselholt and Madsen [15, Def. A.1], if each struc-
ture map ΣW−VD(V ) → D(W ) is an equivariant cofibration for V ⊆ W in
the indexing set. There is a functorial thickening Dτ of equivariant prespec-
tra, which produces Σ-cofibrant, hence good, prespectra, and there is a natural
spacewise equivariant equivalence Dτ → D, see [15, Lem. A.1].
Let B be a symmetric spectrum of topological spaces, with n-th space Bn for
each n ≥ 0. Recall that B is S-cofibrant in the sense of [17, 5.3.6] if the natural
map νn : LnB → B is a cofibration for each n, where the latching space LnB is
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the n-th space in the spectrum B ∧ S̄. Here S̄ is the symmetric spectrum with
0-th space ∗ and n-th space Sn, for n > 0. We prefer to follow the terminology
in [24, III.1.2] and refer to the S-cofibrant symmetric spectra as being flat.
Every symmetric spectrum is level equivalent, hence stably equivalent, to a flat
symmetric spectrum, so any spectrum may be modeled by a flat symmetric
spectrum. Each symmetric spectrum B has an underlying sequential prespec-
trum indexed on A, with B(Rn) = Bn equal to the n-th space of B. The struc-

ture map σ : B(Rn−1) ∧ S1 → B(Rn) factors as Bn−1 ∧ S
1 ιn−→ LnB

νn−→ Bn,
where ιn is always a cofibration. Hence the underlying prespectrum of a flat
symmetric spectrum is Σ-cofibrant.

Definition 5.3. Let B be a symmetric spectrum, with n-th space Bn for each
n ≥ 0, and let I be Bökstedt’s category of finite sets n = {1, 2, . . . , n} for n ≥ 0
and injective functions. Let B∧p

pre be the Cp-equivariant prespectrum with V -th
space

B∧p
pre(V ) = hocolim

(n1,...,np)∈Ip
Map(Sn1 ∧ · · · ∧ Snp , Bn1 ∧ · · · ∧Bnp

∧ SV )

for each finite dimensional V ⊂ U . Here Cp acts by cyclically permuting the
ni, the S

ni and the Bni
, as well as acting on SV . Let

B∧p = L((B∧p
pre)

τ )

be the genuine Cp-spectrum in CpS U obtained by spectrification from the
functorial good thickening (B∧p

pre)
τ of this prespectrum. The natural maps

B∧p
pre(V )

≃
←− (B∧p

pre)
τ (V )

≃
−→ B∧p(V )

are Cp-equivariant equivalences by the proof of [15, Prop. 2.4].

Definition 5.4. Let B be a prespectrum indexed on A. The p-fold exter-
nal smash product B(p) is the spectrification in CpS U of the Cp-equivariant
prespectrum

B(p)
pre((R

n)p) = B(Rn) ∧ · · · ∧B(Rn) = B(Rn)∧p

indexed on Ap. When B is Σ-cofibrant, so is B
(p)
pre, hence the V -th space of the

spectrification is given by the colimit

B(p)(V ) = colim
V⊆(Rn)p

Map(S(Rn)p−V , B(Rn)∧p) .

Here the colimit runs over the n ∈ N0 such that V ⊆ (Rn)p, and (Rn)p − V
denotes the orthogonal complement of V in (Rn)p. Suspension by V induces
an isomorphism

B(p)(V ) ∼= colim
n∈N0

Map((Sn)∧p, B(Rn)∧p ∧ SV ) ,

with inverse given by suspension by (Rm)p − V , followed by p instances of the
stabilization B(Rn) ∧ Sm → B(Rn+m), for m sufficiently large.
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We say that a symmetric spectrum B is convergent if there are integers λ(n)
that grow to infinity with n, such that Bn is ((n/2)+λ(n))-connected and the
structure map ΣBn → Bn+1 is (n+λ(n))-connected, for all sufficiently large n.
These hypotheses suffice for the use of Bökstedt’s approximation lemma in the
following proof. Every symmetric spectrum is stably equivalent to a convergent
one.

Lemma 5.5. Let B be a flat, convergent symmetric spectrum. There is a natural
chain of weak equivalences of naive Cp-spectra

i∗B(p) ≃ i∗B∧p .

Proof. For every finite dimensional V ⊂ R∞ we have a natural chain of Cp-
equivariant maps

colim
n∈N0

Map((Sn)∧p, B(Rn)∧p ∧ SV )

hocolim
n∈N0

Map((Sn)∧p, B(Rn)∧p ∧ SV )

≃

OO

≃

��

hocolim
(n1,...,np)∈N

p
0

Map(Sn1 ∧ · · · ∧ Snp , Bn1 ∧ · · · ∧Bnp
∧ SV )

≃

��

hocolim
(n1,...,np)∈Ip

Map(Sn1 ∧ · · · ∧ Snp , Bn1 ∧ · · · ∧Bnp
∧ SV )

connecting B(p)(V ) to B∧p
pre(V ). The upper map is a weak equivalence because

B is flat, hence Σ-cofibrant. The middle map is a weak homotopy equiva-
lence because the diagonal N0 → N

p
0 is (co-)final. The lower map is a weak

equivalence by convergence, the fact that N
p
0 is filtering, and Bökstedt’s ap-

proximation lemma [6, 1.5], see [8, 2.5.1] for a published proof. Applying the
thickening construction and spectrifying, we get the desired chain of naively
Cp-equivariant weak equivalences. �

Definition 5.6. For p = 2, let R(1) be the sign representation ofC2. For p odd,
let C(1) be the standard rank 1 representation of Cp ⊂ S

1, and let C(i) be its i-
th tensor power. For all primes p, letW ⊂ Rp be the orthogonal complement of
the diagonal copy of R. Then W ∼= R(1) for p = 2, and W ∼= C(1)⊕· · ·⊕C(m)

for p odd, where m = (p− 1)/2. Let ECp = S(∞W ), ẼCp = S∞W , and give
ECp a Cp-CW structure so that

ẼC
((p−1)n)

p = SnW

for all n ≥ 0. Then Ẽ(p−1)n = SnW for all integers n.
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Proposition 5.7. Let B be a flat and convergent symmetric spectrum, and
give ECp a free Cp-CW structure as in the definition above. There is a natural
weak equivalence

(B∧p)hCp
= (ECp+ ∧ i

∗B∧p)/Cp ≃ ECp ⋉Cp
B(p) = DCp

(B) .

More generally, there are weak equivalences

(B∧p)tCp [1−(p−1)n] ≃ Σ1+nDCp
(Σ−nB)

for all n ≥ 0, which are compatible with the (p− 1)-fold composites of maps in
the Tate tower (4.7) for X = B∧p

. . . −→ (B∧p)tCp [1−(p−1)(n+1)] −→ (B∧p)tCp [1−(p−1)n] −→ . . . ,

and the suspension of the inverse system (5.1) for G = Cp

. . . −→ Σ1+n+1DCp
(Σ−n−1B) −→ Σ1+nDCp

(Σ−nB) −→ . . . .

Proof. By the untwisting theorem [18, VI.1.17] and Lemma 5.5 there are Cp-
equivariant equivalences

ECp ⋉B(p) ≃ ECp+ ∧ i
∗B(p) ≃ ECp+ ∧ i

∗B∧p ,

since ECp is Cp-free. The first claim follows by passage to Cp-orbit spectra.
More generally, there are Cp-equivariant equivalences

Σ1+nECp ⋉ (Σ−nB)(p) ≃ ΣF (SnW , ECp ⋉B(p)) ≃ ΣF (SnW , ECp+ ∧ i
∗B∧p)

by [18, VI.1.5], since Sn ∧ SnW ∼= (Sn)∧p. Passing to Cp-orbits, and using the
Adams transfer equivalence (4.2), we get the equivalences

Σ1+nDCp
(Σ−nB) ≃ ΣF (SnW , ECp+ ∧B

∧p)Cp .

The right hand side is a model for (B∧p)tCp [1−(p−1)n], by Lemma 4.10, since

Ẽ(p−1)n = SnW . The stabilization of the left hand side given by ∆: S1 → Sp

is compatible under all of these equivalences with the stabilization of the right
hand side given by the inclusion S0 → SW , again by [18, VI.1.5]. �

Definition 5.8. For each symmetric spectrum B let the topological Singer
construction on B be the spectrum

R+(B) = (B∧p)tCp .

The topological Singer construction realizes the algebraic Singer constructions,
in the following sense.

Theorem 5.9. Let B be a symmetric spectrum that is bounded below and of
finite type over Fp. There are natural isomorphisms

ω : H∗
c (R+(B))

∼=
−→ R+(H

∗(B))

and

ω∗ : R+(H∗(B))
∼=
−→ Hc

∗(R+(B))

of A -modules and complete A∗-comodules, respectively.
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Proof. We may replace B by a stably equivalent flat and convergent symmet-
ric spectrum, without changing the (co-)homology of B∧p and R+(B). By
Proposition 5.7 there are A -module isomorphisms

H∗((B∧p)tCp [1−(p−1)n]) ∼= Σ1+nH∗(DCp
(Σ−nB))

for each n, which by Theorem 5.2 induce A -module isomorphisms

H∗
c ((B

∧p)tCp) ∼= R+(H
∗(B))

after passage to colimits. The dual A∗-comodule isomorphisms then induce
complete A∗-comodule isomorphisms

Hc
∗((B

∧p)tCp) ∼= Hom(R+(H
∗(B)),Fp) = R+(H∗(B))

after passage to limits. �

5.3. The topological Singer ǫ-map. We now turn to the construction of
a stable map ǫB : B → R+(B) that realizes the Singer homomorphism ǫ on
passage to cohomology. Having done so will enable us to prove Theorem 5.13.
Let B be a symmetric spectrum that is bounded below and of finite type
over Fp. The Cp-spectrum X = B∧p introduced in Definition 5.3 is then also
bounded below and of finite type over Fp. We shall make use of parts of the
Hesselholt–Madsen proof that THH(B) is a cyclotomic spectrum. By the first
half of the proof of [15, Prop. 2.1] there is a natural equivalence

s̄Cp
: [ẼCp ∧B

∧p]Cp
≃
−→ ΦCp(B∧p) ,

where ΦCp(X) denotes the geometric fixed point spectrum of X . Furthermore,
by the simplicial degree k = p− 1 part of the proof of [15, Prop. 2.5] there is a
natural equivalence

r′Cp
: ΦCp(B∧p)

≃
−→ B .

If B is a ring spectrum, both of these equivalences are ring spectrum maps.
We abuse notation and write R also for the composite map

(B∧p)Cp
R
−→ [ẼCp ∧B

∧p]Cp
≃
−→ ΦCp(B∧p)

≃
−→ B ,

which corresponds (at the level of 0-simplices) to the restriction map
R : sdpTHH(B)Cp → THH(B) of [4] and [15].

Definition 5.10. Let ǫB : B → R+(B) be the natural stable map given by the
composite

B
≃
←− ΦCp(B∧p)

≃
←− [ẼCp ∧B

∧p]Cp
Γ̂
−→ (B∧p)tCp = R+(B) .

If B is a ring spectrum then ǫB is a ring spectrum map.
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With this notation we can rewrite the homotopy cartesian square in (4.3) for
X = B∧p as follows:

(5.4) (B∧p)Cp
R //

Γ

��

B

ǫB

��

(B∧p)hCp
Rh

// R+(B)

We thank M. Bökstedt for a helpful discussion on the following two results.

Lemma 5.11. The stable map ǫB : B → R+(B) commutes with suspension, in
the sense that ǫΣB = ∆ΣǫB.

Proof. Consider the commutative diagram:

ΣB

=

��

Σ[ẼCp ∧B
∧p]Cp

≃oo ΣΓ̂ //

∆

��

ΣR+(B)

∆

��

ΣB [ẼCp ∧ (ΣB)∧p]Cp
≃oo Γ̂ // R+(ΣB)

The vertical maps labeled ∆ are induced by the diagonal inclusion S1 → Sp,
which on the right hand side is the same map as was used in the interpretation
(Proposition 5.7) of R+(B) as the inverse system of suspended extended power
constructions. Hence these maps are weak equivalences. �

Proposition 5.12. Let B be a bounded below spectrum of finite type over Fp.
Then the homomorphism

(ǫB)
∗ : H∗

c (R+(B)) −→ H∗(B)

induced on continuous cohomology by the spectrum map ǫB : B → R+(B) is
equal to Singer’s homomorphism

ǫH∗(B) : R+(H
∗(B)) −→ H∗(B)

associated to the A -module H∗(B), via the identification ω : H∗
c (R+(B)) ∼=

R+(H
∗(B)) of Theorem 5.9.

Proof. By Corollary 3.5 there is a unique A -module homomorphism
gB : H∗(B)→ H∗(B) that makes the square

R+(H
∗(B))

ǫH∗(B)

��

H∗
c (R+(B))

(ǫB)∗

��

ω

∼=
oo

H∗(B)
gB // H∗(B)

commute. We must show that gB equals the identity.
First consider the case B = H . The homological Tate spectral sequence

Ê2
∗,∗(H) = Ĥ−∗(Cp;H∗(H)⊗p) =⇒ Hc

∗(R+(H))
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is an algebra spectral sequence (Proposition 4.17), and ǫH : H → R+(H) is
a ring spectrum map, so the image of the unit 1 ∈ H0(H) under (ǫH)∗ is

represented by the unit 1 ⊗ 1⊗p in Ĥ0(Cp;H0(H)⊗p). Hence (ǫH)∗ maps the

dual class represented by 1 ⊗ 1⊗p in Ĥ0(Cp;H
0(H)⊗p) to 1 ∈ H0(H). Now

ω(1⊗ 1⊗p) = Σxy−1⊗ 1 ∈ R+(A ) and ǫA (Σxy−1⊗ 1) = 1 ∈ A , so gH(1) = 1.
(We replace xy−1 by x−1 for p = 2.) Since gH is an A -module homomorphism,
it must be equal to the identity morphism of A = H∗(H).
The case B = ΣnH then follows by Lemma 5.11.
In the general case any element in Hn(B) is represented by a map f : B →
ΣnH , which induces an A -module homomorphism f∗ : ΣnA → H∗(B). By
naturality of the isomorphism ω, the Singer homomorphism ǫ, and the spectrum
map ǫ, we get a diagram

R+(Σ
nA )

ǫΣnA

��

R+(f∗)
''OOOOOOOOOOO

H∗
c (R+(Σ

nH))

(ǫΣnH )∗

��

ω

∼=
oo

R+(f)∗
vvmmmmmmmmmmmm

R+(H
∗(B))

ǫH∗(B)

��

H∗
c (R+(B))

(ǫB)∗

��

ω

∼=
oo

H∗(B)
gB

// H∗(B)

ΣnA
= //

f∗

77oooooooooooo
H∗(ΣnH)

f∗

hhQQQQQQQQQQQQ

where the left hand, upper and right hand trapezoids all commute. The inner
square commutes by construction, and the outer square commutes by the case
B = ΣnH . Since ǫΣnA is surjective, it follows that the lower trapezoid also
commutes. Hence gB equals the identity on the class f∗(Σn1) ∈ Hn(B). Since
n and f were arbitrary, this proves that gB equals the identity on all of H∗(B).

�

The following theorem generalizes the Segal conjecture for Cp.

Theorem 5.13. Let B be a bounded below spectrum of finite type over Fp.
Then the natural maps

ǫB : B −→ R+(B) = (B∧p)tCp

and

Γ: (B∧p)Cp −→ (B∧p)hCp

are p-adic equivalences of spectra.

Proof. The map ǫB induces a map of spectral sequences

E∗,∗
2 (B) = Ext∗,∗

A
(H∗(B),Fp) −→ Ext∗,∗

A
(H∗

c (R+(B)),Fp) = E∗,∗
2 (R+(B))

where the first is the Adams spectral sequence of B, and the second is
the inverse limit of Adams spectral sequences associated to the Tate tower
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{(B∧p)tCp [n]}n, as in Proposition 2.2. The map converges strongly to the ho-
momorphism

π∗(ǫB)p̂ : π∗(Bp̂) −→ π∗(R+(B)p̂) .

By Propositions 5.12 and 3.3 and Theorem 3.4, the map of E2-terms is an
isomorphism, hence so is the map of E∞-terms and of the abutments. In other
words, ǫB is a p-adic equivalence. The corresponding assertion for Γ follows
immediately, since diagram (5.4) is homotopy cartesian. �

5.4. The Tate spectral sequence for the topological Singer con-
struction. We conclude by relating the homological Tate spectral sequence
for B∧p to the Tate filtration on the homological Singer construction forH∗(B),
and likewise in cohomology.

Proposition 5.14. Let B be a bounded below spectrum of finite type over Fp.
The homological Tate spectral sequence

Ê2
∗,∗ = Ĥ−∗(Cp;H∗(B)⊗p) =⇒ Hc

∗((B
∧p)tCp)

converging to Hc
∗(R+(B)) ∼= R+(H∗(B)) collapses at the Ê2-term. Hence the

Ê2 = Ê∞-term is given by

Ê∞
∗,∗ = P (u, u−1)⊗ F2{α

⊗2}

for p = 2, and by

Ê∞
∗,∗ = E(u)⊗ P (t, t−1)⊗ Fp{α

⊗p}

for p odd. In each case α runs through an Fp-basis for H∗(B).
For p = 2 and any r ∈ Z, α ∈ Hq(B), the element ur ⊗ α ∈ R+(H∗(B)) is
represented in the Tate spectral sequence by

ur+q ⊗ α⊗2 ∈ Ê∞
−r−q,2q .

For p odd and any i ∈ {0, 1}, r ∈ Z and α ∈ Hq(B), the element uitr ⊗ α ∈
R+(H∗(B)) is represented in the Tate spectral sequence by

(−1)q

ν(q)
· uitr+mq ⊗ α⊗p ∈ Ê∞

−i−2r−(p−1)q,pq ,

where m = (p− 1)/2 and ν(2j + ǫ) = (−1)j(m!)ǫ for ǫ ∈ {0, 1}.

Proof. Consider first the case B = Sq. Then the result is trivial for dimensional

reasons. The Ê2-term is concentrated in bidegrees (∗, pq), so there is no room
for differentials, and there are no extension problems to be solved. The formula
for the homological Tate spectral sequence representative for uitr⊗α will follow
by dualization from the cohomological case, given below.
Let H be a model for the mod p Eilenberg–MacLane spectrum as a commu-
tative symmetric ring spectrum, and form the spectrum H∧p in CpS U as in
Definition 5.3. The iterated multiplication on H then induces a naively Cp-
equivariant map H∧p → H . Let f : Sq → H ∧B represent a class α ∈ Hq(B),
and consider the naively Cp-equivariant composite map

fp : H∧Spq −→ H∧(H∧B)∧p ≃ H∧H∧p∧B∧p −→ H∧H∧B∧p −→ H∧B∧p .
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On homotopy groups it induces the homomorphismH∗(S
q)⊗p → H∗(B)⊗p that

takes ι⊗pq to α⊗p, where ιq = Σq1 is the fundamental class in Hq(S
q).

By applying the Tate construction to this map, we get a map of spectra

(fp)tCp : (H ∧ Spq)tCp −→ (H ∧B∧p)tCp

and an associated map of homotopical Tate spectral sequences, converging
strongly to a homomorphism π∗(H ∧ S

pq)tCp → π∗(H ∧ B
∧p)tCp . We can

rewrite the latter as an Fp-linear map

(5.5) Hc
∗(R+(S

q)) −→ Hc
∗(R+(B))

by Proposition 4.16. For p odd, this map is given at the level of Ê2-terms as
sending uitr ⊗ ι⊗pq to uitr⊗α⊗p, and similarly for p = 2. The statement of the
proposition then follows by naturality. �

Note that the Fp-linear map (5.5) is not a homomorphism of A∗-comodules in
general, because fp is not of the form 1H ∧ (−).

Proposition 5.15. Let B be a bounded below spectrum of finite type over Fp.
The cohomological Tate spectral sequence

Ê∗,∗
2 = Ĥ−∗(Cp;H

∗(B)⊗p) =⇒ H∗
c ((B

∧p)tCp)

converging to H∗
c (R+(B)) ∼= R+(H

∗(B)) collapses at the Ê2-term, so that

Ê∗,∗
∞ = ΣP (x, x−1)⊗ F2{a

⊗2}

for p = 2, and

Ê∗,∗
∞ = ΣE(x)⊗ P (y, y−1)⊗ Fp{a

⊗p}

for p odd. In each case a runs through an Fp-basis for H∗(B).
For p = 2 and any r ∈ Z, a ∈ Hq(B), the element Σxr ⊗ α ∈ R+(H

∗(B)) is
represented in the Tate spectral sequence by

Σxr−q ⊗ a⊗2 ∈ Ê1+r−q,2q
∞ .

For p odd and any i ∈ {0, 1}, r ∈ Z and a ∈ Hq(B), the element Σxiyr ⊗ a ∈
R+(H

∗(B)) is represented in the Tate spectral sequence by

(−1)qν(q) · Σxiyr−mq ⊗ a⊗p ∈ Ê1+i+2r−(p−1)q,pq
∞ .

Proof. This follows by dualization from the homological case. In the special

case B = Sq, Σxiyr ⊗ a⊗p ∈ H∗
c (R+(B)) ∼= Ĥ−∗(Cp;H

∗(Sq)⊗p) is represented
by (−1)qν(q)−1 · Σxiyr+mq ⊗ a ∈ R+(H

∗(Sq)), by the explicit isomorphism
given in the proof of Theorem 5.2. The formula for the cohomological Tate
spectral sequence representative follows. �

Corollary 5.16. The Tate filtration

{FnR+(H
∗(B))}n

of the Singer construction R+(H
∗(B)) corresponds, under the isomorphism

R+(H
∗(B)) ∼= H∗

c (R+(B)), to the Boardman filtration

{FnH∗
c (R+(B))}n
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of H∗
c (R+(B)).

Proof. For each integer n, the Boardman filtration FnH∗
c (R+(B)) equals the

image of H∗((B∧p)tCp [n]) in H∗((B∧p)tCp), which is the part of H∗((B∧p)tCp)

represented in filtrations ≥ n at the Ê∞-term. This corresponds to the part of
the Singer construction H∗(R+(B)) spanned by the monomials Σxr ⊗ a with
1+r−q ≥ n for p = 2, and by the monomials Σxiyr⊗a with 1+i+2r−(p−1)q ≥
n for p odd, which precisely equals the n-th term FnR+(H

∗(B)) of the Tate
filtration, as defined in §3.2. �
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