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Abstract. When looking at Bott’s original proof of his periodicity
theorem for the stable homotopy groups of the orthogonal and unitary
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1 Introduction

Bott’s original proof of his periodicity theorem [Bo-59] is differential geomet-
ric in its nature. It relies on the observation that in a compact Riemannian
symmetric space P one can choose two points p and q in “special position”
such that the connected components of the space of shortest geodesics in P
joining p and q are again compact symmetric spaces. Set P0 = P and let P1 be
one of the resulting connected components. This construction can be repeated
inductively: given points pj, qj in “special position” in Pj , then Pj+1 is one
of the connected components of the space of shortest geodesic segments in Pj
between pj and qj . If we start this iterative process with the classical groups

P0 := SO16n, P̃0 := U16n, P̄0 := Sp16n

and make at each step appropriate choices of the two points and of the con-
nected component, one obtains

P8 = SOn, P̃2 = U8n, P̄8 = Spn.

Each of the three processes can be continued, provided that n is divisible by
a sufficiently high power of 2. We obtain (periodically) copies of a special
orthogonal, unitary, and symplectic group after every eighth, second, respec-
tively eighth iteration. These purely geometric periodicity phenomena are the
key ingredients of Bott’s proof of his periodicity theorems [Bo-59] for the stable
homotopy groups πi(O), πi(U), and πi(Sp) (see also the remark at the end of
this section).
In his book [Mi-69], Milnor constructed totally geodesic embeddings

Pk+1 ⊂ Pk, P̃k+1 ⊂ P̃k, P̄k+1 ⊂ P̄k,

for all k = 0, 1, . . . , 7. In each case, the inclusion is given by the map which
assigns to a geodesic its midpoint (cf. [Qu-10] and [Ma-Qu-10], see also Section
2 below).
The goal of this paper is to establish connections between the following three
chains of symmetric spaces:

P0 ⊃ P1 ⊃ P2 ⊃ . . . ⊃ P8,

P̃0 ⊃ P̃1 ⊃ P̃2 ⊃ . . . ⊃ P̃8,

P̄0 ⊃ P̄1 ⊃ P̄2 ⊃ . . . ⊃ P̄8.

We will refer to them as the SO-, U-, respectively Sp-Bott chains. Starting
with the natural inclusions

P0 = SO16n ⊂ U16n = P̃0 and P̃0 = U16n ⊂ Sp16n = P̄0
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we show that the iterative process above provides inclusions

Pj ⊂ P̃j and P̃j ⊂ P̄j

for all j = 0, 1, . . . , 8. These are all canonical reflective inclusions of symmetric
spaces, i. e. they can be realized as fixed point sets of isometric involutions (see
Appendix A, especially Tables 5 and 6 and Subsections A.1 - A.16) and make
the following diagrams commutative:

P0

∩

��

P1

∩

��

⊃
oo P2

⊃
oo

∩

��

· · ·⊃
oo P8

⊃
oo

∩

��

P̃0 P̃1

⊃
oo P̃2

⊃
oo · · ·⊃

oo P̃8

⊃
oo

P̃0

∩

��

P̃1

∩

��

⊃
oo P̃2

⊃
oo

∩

��

· · ·⊃
oo P̃8

⊃
oo

∩

��

P̄0 P̄1
⊃

oo P̄2
⊃

oo · · ·⊃
oo P̄8

⊃
oo

Moreover, the vertical inclusions are periodic, with period equal to 8. Con-
cretely, we show that up to isometries, the inclusions

P8 ⊂ P̃8 and P̃8 ⊂ P̄8

are again the natural inclusions

SOn ⊂ Un and Un ⊂ Spn

(see Theorems 4.1, 4.3 and Remark 4.5 below). We mention that all inclusions
in the two diagrams above are actually reflective. For example, notice that
P4 = Sp2n, P̃4 = U4n, and P̄4 = SO8n; the inclusions

P4 ⊂ P̃4 and P̃4 ⊂ P̄4

are essentially the usual subgroup inclusions

Sp2n ⊂ U4n and U4n ⊂ SO8n

(see Remark 4.4).

Remark. We recall that the celebrated periodicity theorem of Bott [Bo-59]
concerns the stable homotopy groups πi(O), πi(U), and πi(Sp) of the orthogo-
nal, unitary, respectively symplectic groups. Concretely, one has the following
group isomorphisms:

πi(O) ≃ πi+8(O), πi(U) ≃ πi+2(U), πi(Sp) ≃ πi+8(Sp),
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for all i ≥ 0. If we now consider the standard inclusions

On ⊂ Un and Un ⊂ Spn (1.1)

then the maps induced between homotopy groups, that is πi(On) → πi(Un)
and πi(Un) → πi(Spn) are stable relative to n within the “stability range”.
One can see that the resulting maps

fi : πi(O) → πi(U) and gi : πi(U) → πi(Sp),

are periodic in the following sense:

fi+8 = fi and gi+8 = gi. (1.2)

These facts are basic in homotopy theory and can be proved using techniques
described e.g. in [May-77, Ch. 1]. We provide an alternative, more elementary
proof of Equation (1.2) and determine the maps fi and gi explicitly, by using
only the long exact homotopy sequence of the principal bundles On → Un →
Un/On and Un → Spn → Spn/Un, combined with the explicit knowledge of the
stable homotopy groups of O, U, Sp, U/O, and Sp/U (the details can be found
in Section 5, see especially Theorems 5.3 and 5.6, Remarks 5.4 and 5.7, and
Tables 1 and 3). The present paper shows that the results stated by Equation
(1.2) are just direct consequences of the abovementioned differential geometric
periodicity phenomenon, in the spirit of Bott’s original proof of his periodicity
theorems. Besides the inclusions given by Equation (1.1) we will also consider
the following ones, which are described in detail in Appendix A, Subsections
A.1 - A.16:

O2n/Un ⊂ Gn(C
2n), U2n/Spn ⊂ U2n, Gn(H

2n) ⊂ G2n(C
4n),

Spn ⊂ U2n, Spn/Un ⊂ Gn(C
2n), Un/On ⊂ Un,

Gn(R
2n) ⊂ Gn(C

2n), Gn(C
2n) ⊂ Sp2n/Un, Un ⊂ U2n/O2n,

Gn(C
2n) ⊂ G2n(R

4n), Un ⊂ O2n, Gn(C
2n) ⊂ O4n/U2n,

Un ⊂ U2n/Spn, Gn(C
2n) ⊂ Gn(H

2n).

For each of them we will prove a periodicity result similar to those described
by Equation (1.1). The precise statements are Corollaries 5.5 and 5.8.

Acknowledgements. We would like to thank Jost-Hinrich Eschenburg for
discussions about the topics of the paper. We are also grateful to the Math-
ematical Institute at the University of Freiburg, especially Professor Victor
Bangert, for hospitality while part of this work was being done. The second
named author wishes to thank the University of Regina for hosting him during
a research visit in March 2010.

2 Bott periodicity from a geometric viewpoint

In this section we review the original (geometric) proof of Bott’s periodicity
theorem. We adapt the original treatment in [Bo-59] to our needs and therefore
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change it slightly. More precisely, we will use ideas of Milnor [Mi-69], as well
as the concept of centriole, which was defined by Chen and Nagano [Ch-Na-88]
(see also [Na-88], [Na-Ta-91], and [Bu-92]).

2.1 The geometry of centrioles.

Let P be a compact connected symmetric space and o a point in P . We say that
(P, o) is a pointed symmetric space. As already mentioned in the introduction,
a key role is played by the space of all shortest geodesic segments in P from o
to a point in P which belongs to a certain “special” class. It turns out that this
class consists of the poles of (P, o), (cf. [Qu-10] and [Ma-Qu-10]). The notion
of pole is described by the following definition. First, for any p ∈ P we denote
by sp : P → P the corresponding geodesic symmetry.

Definition 2.1 A pole of the pointed symmetric space (P, o) is a point p ∈ P
with the property that sp = so and p 6= o.

Let G be the identity component of the isometry group of P . This group
acts transitively on P . We denote by K the G-stabilizer of o and by Ke its
identity component. The following result is related to [Lo-69, Vol. II, Ch. VI,
Proposition 2.1 (b)].

Lemma 2.2 If p is a pole of (P, o), then k.p = p for all k ∈ Ke.

Proof. The map σ : G → G, σ(g) = sogso is an involutive group automor-
phism of G whose fixed point set Gσ has the same identity component Ke as
K. Since p is a pole, we have σ(g) = spgsp and the fixed point set Gσ has
the same identity component as the stabilizer Gp of p in G. Consequently,
Ke ⊂ Gp. �

Example 2.3 Any compact connected Lie group G can be equipped with a
bi-invariant metric and becomes in this way a Riemannian symmetric space
(cf. e.g. [Mi-69, Section 21]). The geodesic symmetry at g ∈ G is the map
sg : G→ G, sg(x) = gx−1g, x ∈ G. An immediate consequence is a description
of the poles of G: they are exactly those g which lie in the center of G and
whose square is equal to the identity of G. We also note that the identity
component of the isometry group of G is G×G/∆(Z(G)), where ∆(Z(G)) :=
{(z, z) : z ∈ Z(G)}. Here G×G acts on G via

(g1, g2).h := g1hg
−1
2 g1, g2, h ∈ G (2.1)

and the kernel of this action is equal to ∆(Z(G)). Finally, the stabilizer of the
identity element e of G is ∆(G)/∆(Z(G)).

Remark 2.4 Not any pointed compact symmetric space admits a pole. For
example, consider the Grassmannian Gk(K

2m), where 0 ≤ k ≤ 2m and K =
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R,C, or H. It has a canonical structure of a Riemannian symmetric space. One
can show that Gk(K

2m) has a pole if and only if k = m. Indeed, let us first
consider an element V of Gm(K2m). Then a pole of the pointed symmetric
space (Gm(K2m), V ) is V ⊥, the orthogonal complement of V in K2m.
From now on, we will assume that k 6= m. We take into account the general
fact that if a compact symmetric space P has a pole, then there is a non-trivial
Riemannian double covering P → P ′ (see e.g. [Ch-Na-88, Proposition 2.9] or
[Qu-10, Lemma 2.15]). Now, none of the spaces Gk(K

2m) is a covering of
another space, in other words, all Gk(K

2m) are adjoint symmetric spaces. To
prove this, we need to consider the following two situations. If K = R, we note
that the symmetric space Gk(R

2m) has the Dynkin diagram of type b, hence it
has exactly one simple root with coefficient equal to 1 in the expansion of the
highest root (see [He-01], Table V, p. 518, Table IV, p. 532 and the table on
p. 477). On the other hand, Gk(R

2m) is covered by the Grassmannian of all
oriented k-subspaces in R

2m. By using the theorem of Takeuchi [Ta-64], the
latter space is simply connected, and Gk(R

2m) is its adjoint symmetric space.
If K = C or K = H, we note that the symmetric space Gk(K

2m) has Dynkin
diagram of type bc; by using again [Ta-64], we deduce that Gk(K

2m) is at the
same time simply connected and an adjoint symmetric space.

Recall that spaces of shortest geodesic segments with prescribed endpoints in
a symmetric space are an important tool in Bott’s proof of his periodicity
theorem [Bo-59]. We can identify such spaces with submanifolds by mapping
a shortest geodesic segment to its midpoint. We therefore have a closer look
at these spaces. The objects described in the following definition are slightly
more general, in the sense that the geodesic segments are not required to be
shortest (we will return to this assumption at the end of this subsection).

Definition 2.5 Let p be a pole of (P, o). The set Cp(P, o) of all midpoints of
geodesics in P from o to p is called a centrosome. The connected components
of a centrosome are called centrioles.

For more on these notions we refer to [Ch-Na-88] and [Na-88]. The follow-
ing result is a consequence of [Na-88, Proposition 2.12 (ii)] (see also [Qu-10,
Proposition 2.16] or [Qu-11, Proposition 2]).

Lemma 2.6 Any centriole in a compact symmetric space is a reflective, hence
totally geodesic submanifold.

We recall that a submanifold of a Riemannian manifold is called reflective if
it is a connected component of the fixed point set of an isometric involution.
Reflective submanifolds of irreducible simply connected Riemannian symmetric
spaces have been classified by Leung in [Le-74] and [Le-79] . This classification
in the special case when the symmetric space is a compact simple Lie group
will be an important tool for us (see Appendix C).
Although the following result appears to be known (see [Ch-Na-88] and
[Na-88]), we decided to include a proof of it, for the sake of completeness.
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Lemma 2.7 Let p be a pole of (P, o). The centrioles of (P, o) relative to p are
orbits of the canonical Ke-action on P .

Proof. Let C be a connected component of Cp(P, o) and take x ∈ C. There
exists a geodesic γ : R → P such that γ(0) = o, γ(1) = x, and γ(2) = p. For
any k ∈ Ke, the restriction of the map k.γ : R → P to the interval [0, 2] is a
geodesic segment between o and p (see Lemma 2.2). Thus the point k.γ(1) is
in Cp(p, o). Since Ke is connected, we deduce that Ke.x ⊂ C.
Let us now prove the converse inclusion. Take y ∈ C and consider a geodesic
µ : R → C such that µ(0) = x and µ(1) = y. By Lemma 2.6, µ is a geodesic
in P as well. We consider the one-parameter subgroup of transvections along
µ which is given by τµ : R → G, τµ(t) := sµ(t/2) ◦ sµ(0) (see e.g. [Sa-96, Lemma
6.2]).
Claim. τµ(t) ∈ Ke, for all t ∈ R.
Indeed, since µ(0) and µ(t/2) are both midpoints of geodesic segments between
o and p, we have sµ(0).o = p and sµ(t/2).p = o. Hence, τµ(t).o = o. We deduce
that τµ(t) ∈ K. Since τµ(0) is the identity transformation of P , we actually
have τµ(t) ∈ Ke.
The claim along with the fact that µ(0) = x implies that τµ(1).x =
sµ(1/2) ◦ sµ(0).x = sµ(1/2).x = y. Thus y ∈ Ke.x. �

From Lemmata 2.2 and 2.7, we see that whenever a centriole in Cp(P, o) con-
tains a midpoint of a shortest geodesic segment between o and p, then this
centriole consists of midpoints of such shortest geodesic segments only. Such
centrioles are called s-centrioles. (For further properties of s-centrioles we refer
to [Qu-11].)

2.2 The SO-Bott chain

We outline Milnor’s description [Mi-69, Section 24] of this chain. The chain
starts with P0 = SO16n. We then consider the space of all orthogonal complex
structures in SO16n, that is,

Ω1 := {J ∈ SO16n : J2 = −I}.

This space has two connected components, which are both diffeomorphic to
SO16n/U8n. We pick any of these two components and denote it by P1. For
2 ≤ k ≤ 7 we construct the spaces Pk ⊂ SO16n inductively, as follows: Assume
that Pk has been constructed and pick a base-point Jk ∈ Pk. We define Pk+1

as the top-dimensional connected component of the space

Ωk+1 := {J ∈ Pk : JJk = −JkJ}.

In this way we construct P2, . . . , P7. Finally, we pick J7 ∈ P7 and define P8 as
any of the two connected components of the space

Ω8 := {J ∈ P7 : JJ7 = −J7J}.
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918 A.-L. Mare and P. Quast

(Note the latter space is diffeomorphic to the orthogonal group On, thus it
has two components that are diffeomorphic). It turns out that P1, . . . , P8 are
submanifolds of SO16n, whose diffeomorphism types can be described as fol-
lows: P0 = SO16n, P1 = SO16n/U8n, P2 = U8n/Sp4n, P3 = G2n(H

4n) =
Sp4n/(Sp2n × Sp2n), P4 = Sp2n, P5 = Sp2n/U2n, P6 = U2n/O2n, P7 =
Gn(R

2n) = SO2n/S(On × On), and P8 = SOn. The details can be found
in [Mi-69, Section 24].
For our future goals it is useful to have an alternative description of the SO-Bott
chain. This is presented by the following two lemmata.

Lemma 2.8 For any 0 ≤ k ≤ 7, the subspace Pk of SO16n is invariant under
the automorphism of SO16n given by X 7→ −X.

Proof. First, Ωk is obviously invariant under X 7→ −X , X ∈ SO16n. The
decisive argument is the information provided by the last paragraph on p. 137
in [Mi-69]: for any X ∈ Ωk, there exists a path in Ωk from X to −X . �

Let us now equip SO16n with the bi-invariant metric induced by

〈X,Y 〉 = −tr(XY ), (2.2)

for all X,Y in the Lie algebra o16n of SO16n. Then P1, . . . , P8 are totally
geodesic submanifolds of SO16n (see [Mi-69, Lemma 24.4]). Fix k ∈ {0, 1, . . . , 7}
and set J0 := I. From Example 2.3 we deduce that −Jk is a pole of (SO16n, Jk).
By the previous lemma, −Jk lies in Pk and, since the latter space is totally
geodesic in SO16n, −Jk is a pole of (Pk, Jk). The following lemma follows from
the Remark on p. 138 in [Mi-69].

Lemma 2.9 For any k ∈ {0, 1, . . . , 7}, the space Pk+1 is an s-centriole of
(Pk, Jk) relative to the pole −Jk.

Remark 2.10 As we will show in Proposition B.1 (b), P8 is isometric to SOn,
the latter being equipped with the standard bi-invariant metric multiplied by
a certain scalar. Assume that n is an even integer and pick J8 ∈ P8. With
the method used in the proof of Lemma 2.8 one can show that −J8 is in P8

as well (indeed by the footnote on p. 142 in [Mi-69], there exists an orthogonal
complex structure J ∈ SO16n which anti-commutes with J1, . . . , J7). As in
Lemma 2.9, −J8 is a pole of (P8, J8) and, by using Example 2.3 for G = SOn,
it is the only one. We conclude that the SO-Bott chain can be extended and is
periodic, in the sense that if n is divisible by a “large” power of 16, then every
eighth element of the chain is isometric to a certain special orthogonal group
equipped with a bi-invariant metric.

2.3 The Sp-Bott chain

This is obtained from the SO-chain by taking P4 as the initial element.
More precisely, we replace n by 8n and, in this way, P4 is diffeomorphic to
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Sp16n. This is the first term of the Sp-chain, call it P̄0. Here is the list of
all terms of the chain, described up to diffeomorphism: P̄0 = Sp16n, P̄1 =
Sp16n/U16n, P̄2 = U16n/O16n, P̄3 = G8n(R

16n) = SO16n/S(O8n × O8n), P̄4 =
SO8n, P̄5 = SO8n/U4n, P̄6 = U4n/Sp2n, P̄7 = Gn(H

2n) = Sp2n/Spn × Spn,
and P̄8 = Spn. As explained in the previous subsection, these are Riemannian
manifolds obtained by successive applications of the centriole construction. The
starting point is P0 = Sp16n with the Riemannian metric which is described at
the beginning of Section 3: by Proposition B.1 (a), this metric is the same as
the submanifold metric on P4, up to a scalar multiple.

2.4 Poles and centrioles in U2q

Let q be an integer, q ≥ 1. We equip the unitary group U2q with the bi-invariant
metric induced by the inner product

〈X,Y 〉 = −tr(XY ), (2.3)

for all X,Y in the Lie algebra u2q of U2q. The center of U2q is

Z(U2q) = {zI : z ∈ C, |z| = 1}.

From Example 2.3, the pointed symmetric space (U2q, I) has exactly one pole,
namely the matrix −I. By Lemma 2.7, the centrioles of (U2q, I) are certain
orbits of the conjugation action of U2q on itself, since they coincide with the
orbits of the action of U2q/Z(U2q).
Let us describe explicitly the s-centrioles. We first describe the shortest
geodesic segments in U2q between I and −I, that is, γ : [0, 1] → U2q such
that γ(0) = I and γ(1) = −I. Any such γ is U2q-conjugate to the 1-parameter
subgroup

γk : t 7→ exp

[

t

(

πiIk 0
0 −πiI2q−k

)]

, t ∈ R (2.4)

restricted to the interval [0, 1], for some 0 ≤ k ≤ 2q (see [Mi-69, Section
23]). Consequently, any s-centriole is of the form U2q.γk

(

1
2

)

, that is, the U2q-
conjugacy class of

exp

[

1

2

(

πiIk 0
0 −πiI2q−k

)]

=

(

iIk 0
0 −iI2q−k

)

.

The U2q-stabilizer of this matrix is Uk × U2q−k, hence one can identify the
orbit with U2q/Uk × U2q−k, which is just the Grassmannian Gk(C

2q). If we
equip the orbit with the submanifold Riemannian metric, then the (transitive)
conjugation action of U2q on it is isometric, in other words, the metric is U2q-
invariant. Note that up to a scalar there is a unique such metric on Gk(C

2q)
and it makes this space into a symmetric space.
We will be especially interested in the centriole corresponding to k = q, which
we call the top-dimensional s-centriole. Concretely, this is the U2q-conjugacy
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class of the matrix

Aq :=

(

iIq 0
0 −iIq

)

(2.5)

and it is isometric to the Grassmannian Gq(C
2q) equipped with a canonical

symmetric space metric.
Finally, note that if instead of I the base point is an arbitrary element A of U2q,
then the only pole of (U2q , A) is the matrix −A. The corresponding centrioles
are A(U2q .γk

(

1
2

)

), that is, A-left translates in U2q of the conjugacy classes
described above. As before, they are all s-centrioles.

Remark 2.11 The top-dimensional s-centriole of (U2q , A) relative to −A is
invariant under the automorphism of U2q given by X 7→ −X . The reason is
that the matrix −Aq is U2q-conjugate to Aq.

2.5 Poles and centrioles in Gq(C
2q)

We regard the Grassmannian Gq(C
2q) as the top-dimensional s-centriole of

(U2q, I) relative to −I, that is, the conjugacy class in U2q of the matrix Aq
described by Equation (2.5). Note that, by Remark 2.11, if A is in Gq(C

2q),
then −A is in Gq(C

2q), too.

Lemma 2.12 If A ∈ Gq(C
2q), then the pointed symmetric space (Gq(C

2q), A)
has only one pole, which is −A.

Proof. First, observe that the geodesic symmetries sA and s−A of U2q are
identically equal (see Example 2.3). By Lemma 2.6, Gq(C

2q) is a totally
geodesic submanifold of U2q. Hence, −A is a pole of (Gq(C

2q), A). We claim
that the pointed symmetric space (Gq(C

2q), A) has at most one pole. Indeed,
let π be the Cartan map of Gq(C

2q), i.e. the map that assigns to each point
its geodesic symmetry. It is known that this is a Riemannian covering onto
its image, the latter being a compact symmetric space. Observe that the
fundamental group of the adjoint space of Gq(C

2q) is Z2. We prove this by
using the same kind of argument as in the second half of Remark 2.4: the
Dynkin diagram of the symmetric space Gq(C

2q) is of type c, hence there is
exactly one simple root with coefficient equal to 1 in the expansion of the
highest root (see [He-01], Table V, p. 518, Table IV, p. 532 and the table on
p. 477); we use again the theorem of Takeuchi [Ta-64]. Since Gq(C

2q) is simply
connected and we have π(A) = π(−A) we deduce that π is a double covering.
Finally, we take into account that any pole of (Gq(C

2q), A) is in the pre-image
π−1(π(A)). �

We note that this lemma is related to [Na-92, Proposition 2.23 (i)].

Remark 2.13 Recall that, by definition, Gq(C
2q) is the space of all q-

dimensional complex vector subspaces of C2q. The lemma above implies readily
that if V is such a vector space, then the pointed symmetric space (Gq(C

2q), V )

Documenta Mathematica 17 (2012) 911–952



Bott Periodicity for Inclusions 921

has only one pole, which is V ⊥, the orthogonal complement of V in C2q relative
to the usual Hermitian inner product.

As a next step, we look at s-centrioles in Gq(C
2q). Since Gq(C

2q) is an irre-
ducible and simply connected symmetric space, there is a unique s-centriole
of (Gq(C

2q), Aq) relative to the pole −Aq (see Theorem 1.2 and the sub-
sequent remark in [Ma-Qu-10]). To describe it, we first find a shortest
geodesic segment from Aq to −Aq in Gq(C

2q). Let us consider the curve
γ : [0, 1] → Gq(C

2q) ⊂ U2q,

γ(t) = exp

[

t

(

0 πi
2 Iq

πi
2 Iq 0

)]

.Aq =

(

cos(πt2 )Iq i sin(πt2 )Iq
i sin(πt2 )Iq cos(πt2 )Iq

)

.Aq,

where the dot indicates the conjugation action. Observe that γ(0) = Aq and
γ(1) = −Aq. We claim that γ is a shortest geodesic segment between Aq and
−Aq in Gq(C

2q). Indeed, for any t ∈ [0, 1] the matrix γ′(t) is U2q-conjugate
with the Lie bracket of the matrices

(

0 πi
2 Iq

πi
2 Iq 0

)

and Aq, which is equal to
(

0 πiIq
πiIq 0

)

.

Thus the length of γ relative to the bi-invariant metric on U2q given by Equation
(2.3) is equal to π

√
2q, which means that γ is a shortest path in U2q between

Aq and −Aq (see [Mi-69, p. 127] or Lemma 3.1 below). Since the length of the
vector γ′(t) is independent of t, γ is a geodesic segment. Its midpoint is

γ

(

1

2

)

=

(

0 Iq
−Iq 0

)

. (2.6)

In view of Lemma 2.7, the centriole we are interested in is the orbit of γ(12 )
under the Ke-action. Since Ke = (Uq × Uq)/Z(U2q), this is the same as the
orbit of γ(12 ) under conjugation by Uq × Uq ⊂ U2q. One can easily see that
this orbit consists of all matrices of the form

(

0 −C−1

C 0

)

where C is in Uq. Multiplication from the left by the matrix given by Equation
(2.6) induces an isometry between the latter orbit and the subspace of U2q

formed by all matrices
(

C 0
0 C−1

)

,

with C ∈ Uq.
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We deduce that if we equip the s-centriole of (Gq(C
2q), Aq) relative to −Aq

with the submanifold metric, then it becomes isometric to Uq, where the latter
is endowed with the bi-invariant metric induced by

〈X,Y 〉 = −2tr(XY ), (2.7)

X,Y ∈ uq. Moreover, if instead of Aq the base point is an arbitrary element
A of Gq(C

2q), then the only pole of (Gq(C
2q), A) is the matrix −A. The

corresponding centriole is obtained from the previous one by conjugation with
B, where B ∈ U2q satisfies A = BAqB

−1. Thus this centriole has the same
isometry type as the previous one.

Remark 2.14 We saw that there is a natural isometric identification between
the centriole of (Gq(C

2q), A) relative to −A and Uq. One can also see from
the previous considerations that this centriole is invariant under the isometry
X 7→ −X , X ∈ U2q, and the isometry induced on Uq is X ′ 7→ −X ′, X ′ ∈ Uq.

2.6 The U-Bott chain

The following chain of inclusions results from the previous two subsections.
We start with P̃0 := U2q, equipped with the bi-invariant Riemannian metric

defined by Equation (2.3). The top-dimensional s-centriole of (P̃0, I) relative
to −I is denoted by P̃1. Pick J1 ∈ P̃1. (The reason why the elements of P̃1

are denoted by J is explained in Appendix A, particularly Definition A.1 and
Equation (A.1).) By Remark 2.11, −J1 is in P̃1, too. We denote by P̃2 the
s-centriole of (P̃1, J1) relative to the pole −J1. We have

P̃0 ⊃ P̃1 ⊃ P̃2.

The elements of the chain are described by the following isometries:

P̃0 ≃ U2q, P̃1 ≃ Gq(C
2q), P̃2 ≃ Uq,

where Gq(C
2q) carries the (symmetric space) metric induced via its embedding

in U2q and Uq is endowed with the metric described by Equation (2.7).
We now take q = 8n and repeat the construction above three more times. By
always choosing the top-dimensional centriole, we ensure that all our spaces
are invariant under the map U16n → U16n, X 7→ −X (see Remarks 2.11 and
2.14 above). We proceed as follows:
First we pick J2 ∈ P̃2 as a base point. Then −J2 is a pole of (P̃2, J2). Indeed,
we know that the geodesic symmetries sJ2

and s−J2
of U16n are equal (see

Example 2.3) and P̃2 is a totally geodesic submanifold of U16n.
After that, we consider the top-dimensional s-centriole of (P̃2, J2) relative to
−J2 and denote it by P̃3. As before, we have the identification

P̃3 ≃ G4n(C
8n).
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In the same way, we construct P̃4, . . . , P̃8, by picking Jk−1 in P̃k−1 and defining
P̃k as the top-dimensional centriole of (P̃k−1, Jk−1) relative to −Jk−1, for all
k = 4, . . . , 8. We have the identifications:

P̃5 ≃ G2n(C
4n), P̃6 ≃ U2n, P̃7 ≃ Gn(C

2n), P̃8 ≃ Un,

where each P̃k carries the submanifold metric. Similarly to Equation (2.7),
one can see that the Riemannian metric induced on Un via the diffeomorphism
P̃8 ≃ Un coincides with the bi-invariant metric on Un induced by

〈X,Y 〉 = −16tr(XY ), (2.8)

X,Y ∈ un.
In this way we have constructed the U-Bott chain, which is P̃0 ⊃ P̃1 ⊃ . . . ⊃ P̃8.

2.7 Bott’s periodicity theorems

Bott’s original proof (see [Bo-59]) uses the space of paths between two points
in a Riemannian manifold.

Definition 2.15 If M is a Riemannian manifold and p, q are two points in
M , we denote by Ω(M ; p, q) the space of piecewise smooth paths γ : [0, 1] →M
with γ(0) = p and γ(1) = q.

The space Ω(M ; p, q) has a topology which is induced by a certain canonical
metric (the details can be found for instance in [Mi-69, Section 17]).
Let (P, o) be again a pointed compact symmetric space, p a pole of it, and Q ⊂
P one of the corresponding s-centrioles. Recall that Q consists of midpoints of
geodesics in P from o to p. We have a continuous injection

j : Q→ Ω(P ; o, p) (2.9)

that assigns to q ∈ Q the unique shortest geodesic segment [0, 1] → M from o
to p whose midpoint is q. This induces a map

j∗ : πi(Q) → πi(Ω(P ; o, p)) = πi+1(P )

between homotopy groups. Bott’s proof [Bo-59] relies on the fact that this map
is an isomorphism for all i > 0 that are smaller than a certain number which
can be calculated explicitly in concrete situations, including all the situations
we have described in Subsections 2.2, 2.3, and 2.6. The main tool is Morse
theory, see also Milnor’s book [Mi-69] (for a different approach we address to
[Mit-88]).
We now apply the result above for the elements of the SO-chain, see Subsection
2.2. For all i = 1, 2, . . . sufficiently smaller than n, we obtain

πi(SOn) = πi(P8) ≃ πi+1(P7) ≃ . . . ≃ πi+7(P1) ≃ πi+8(P0) = πi+8(SO16n).
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This yields the following isomorphism between stable homotopy groups:

πk(O) ≃ πk+8(O),

for all k = 0, 1, 2, . . .. This is Bott’s periodicity theorem for the orthogonal
group. Similarly, for the unitary and symplectic groups, one has

πk(U) ≃ πk+2(U) and πk(Sp) ≃ πk+8(Sp)

for all k = 0, 1, 2, . . ..

3 Inclusions between Bott chains

In this section we link the three Bott chains constructed above. The following
lemmata are key ingredients that make this process possible. We recall that for
any q ≥ 1 the Lie group U2q carries the bi-invariant Riemann metric described
by Equation (2.3). We regard SO2q as a Lie subgroup of U2q and endow it with
the submanifold metric (note that for q = 8n this is the same as the metric
described by Equation (2.2)). For r ≥ 1 we also consider the symplectic group
Spr, which is defined as the space of all H-linear automorphisms of Hn that
preserve the norm of a vector. As explained in Subsection A.5, this group has
a canonical embedding into U2r. More precisely, Spr can be identified with the
subgroup of U2r that consists of all matrices of the form

(

A −B
B A

)

which are in U2r, where A and B are r × r matrices with complex entries (see
[Br-tD-85, Ch. I, Section 1.11]). Yet another canonical embedding, which we
also need here, is the one of Ur into Spr, see Subsection A.9. Concretely, Ur
can be considered as the subgroup of Spr consisting of all matrices which are
of the above form with B = 0 and A ∈ Ur .
For future use we also mention that Spr lies in U2r and Ur lies in Spr as fixed
point sets of certain involutive group automorphisms. More precisely, let us
consider the element

Kr :=

(

0 Ir
−Ir 0

)

of U2r and the group automorphism of U2r given by X 7→ KrXK
−1
r , where X

is the complex conjugate of X : the automorphism is involutive and its fixed
point set is just Spr. In the same vein, let us consider the element

Ar :=

(

iIr 0
0 −iIr

)

of Spr and the corresponding (inner) automorphism of Spr, τ̄(X) := ArXA
−1
r :

this automorphism is involutive as well and its fixed point set is equal to Ur
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(note that Ar has also been used in Subsections 2.4 and 2.5 and is also relevant
in Subsection A.15).
Let us now consider the inner product on u2r given by

〈X,Y 〉 = −1

2
tr(XY ), X, Y ∈ u2r.

Note that the bi-invariant Riemannian metric induced on U2r is different from
the one defined by Equation (2.3). However, we are exclusively interested in
the subspace metrics on Spr and Ur. On the last space, the induced metric is
bi-invariant and satisfies

〈X,Y 〉 = −tr(XY ),

for all X,Y ∈ ur, i.e. this metric is the one given by Equation (2.3).

Lemma 3.1 Relative to the metrics defined above, we have:

distSO2q
(I,−I) = distU2q

(I,−I) = π
√

2q,

distUr
(I,−I) = distSpr

(I,−I) = π
√
r.

Proof. The length of a shortest geodesic segment in U2q between I and −I
has been calculated in [Mi-69, Section 23]. It is equal to π

√
2q. By [Mi-69,

Section 24], a shortest geodesic segment in SO2q from I to −I is

[0, 1] → SO2q, t 7→ exp















tπ















0 1 . . . 0 0
−1 0 . . . 0 0

. . .

0 0 . . . 0 1
0 0 . . . −1 0





























.

Its length is also equal to π
√
2q.

To justify the second equation in the lemma, we just note that

[0, 1] → U2r, t 7→ exp

[

t

(

πiIr 0
0 −πiIr

)]

is a shortest geodesic segment in U2r from I to −I. The image of this
geodesic lies entirely in Ur ⊂ Spr and is consequently shortest in both Ur
and Spr. Its length can be calculated as before, by using [Mi-69, Section 23]. �

The next lemma concerns the SO-Bott chain, which has been constructed in
Subsection 2.2. The result can be found in [Mi-69, p. 137]. Since it plays an
important role in our development, we state it separately.

Lemma 3.2 If we equip each Pk, k = 1, 2, . . . , 7 with the submanifold metric,
then we have

distSO16n
(I,−I) = distP1

(J1,−J1) = . . . = distP7
(J7,−J7).

This result can also be deduced from [Qu-Ta-11]. Relevant to this context is
[Na-Ta-91, Remark 3.2 b)], too.
We are now ready to construct the inclusions between the three Bott chains.
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3.1 Including Pk into P̃k

We start by recalling that P1 is one of the two s-centrioles of (SO16n, I) relative
to the pole −I (see Subsection 2.2). Also recall that P̃1 is the top-dimensional
s-centriole of (U16n, I) relative to the pole −I (see Subsection 2.6). By Lemma
3.1, P1 is contained in one of the s-centrioles of (U16n, I) relative to −I, call it
P̃ ′
1.

Claim. P̃ ′
1 = P̃1, i.e. P1 ⊂ P̃1.

Both J1 and −J1 are in P1, thus also in P̃ ′
1. The geodesic symmetries sJ1

and
s−J1

of U16n are equal. Since P̃ ′
1 is a totally geodesic submanifold of U16n, the

restrictions of the two geodesic symmetries to P̃ ′
1 are equal, too. Therefore,

−J1 is a pole of the pointed symmetric space (P̃ ′
1, J1). On the other hand,

P̃ ′
1 is isometric to one of the symmetric spaces Gk(C

16n), where 0 ≤ k ≤ 16n
(see Subsection 2.4). It is known that amongst these Grassmannians there is
just one which admits a pole relative to a given base point, namely the one
corresponding to k = 8n (see Remark 2.4). This finishes the proof of the claim.

Note that the following diagram is commutative:

P1

∩

��

1
// Ω(P0; I,−I)

∩

��

P̃1

̃1
// Ω(P̃0; I,−I)

where the horizontal arrows are inclusion maps and the vertical arrows are
given by Equation (2.9).

Recall that P2 is an s-centriole of (P1, J1) relative to −J1. By Lemmata 3.1
and 3.2, any shortest geodesic segment in P1 which joins J1 and −J1 is also
shortest in P̃1. Since P̃2 is the unique s-centriole of (P̃1, J1) relative to −J1
(see Subsection 2.5), we have

P2 ⊂ P̃2. (3.1)

Again, we have a commutative diagram, which is:

P2

∩

��

2
// Ω(P1; J1,−J1)

∩

��

P̃2

̃2
// Ω(P̃1; J1,−J1)

In the same way we prove that we have the inclusions

Pk ⊂ P̃k (3.2)

for all k = 3, . . . , 8.
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3.2 The inclusion Pk ⊂ P̃k as fixed points of the complex conju-

gation

We will use the following notations.
Notations. Let A be a topological space. If a is an element of A, then Aa
denotes the connected component of A which contains a. If σ is a map from A
to A then Aσ := {x ∈ A : σ(x) = x}.
The main tool we will use in this subsection is the following lemma.

Lemma 3.3 Let (P̃ , o) be a compact connected pointed symmetric space, p a
pole of (P̃ , o) and γ0 : [0, 1] → P̃ a geodesic segment which is shortest between
γ0(0) = o and γ0(1) = p. Set j0 := γ0

(

1
2

)

and denote by Q̃ the centriole of

(P̃ , o) relative to p which contains j0 (see Definition 2.5). Let also σ be an
isometry of P̃ . Assume that σ(o) = o, σ(p) = p, and set P := (P̃ σ)o. Also
assume that the trace of γ0 is contained in P . Then:
(a) p is a pole of (P, o),
(b) Q̃ is σ-invariant,
(c) (Q̃σ)j0 = (Cp(P, o))j0 .

Proof. (a) Since p is a pole of (P̃ , o), the geodesic reflections sP̃o and sP̃p
are equal. But P is a totally geodesic submanifold of P̃ , hence the geodesic

reflections sPo = sP̃o |P and sPp = sP̃p |P are equal as well.

(b) Take x ∈ Cp(P̃ , o). Then there exists a geodesic segment γ : [0, 1] → P̃

with γ(0) = o, γ(1) = p, and γ
(

1
2

)

= x. The path σ ◦ γ : [0, 1] → P̃ is also a
geodesic segment. It joins σ ◦ γ(0) = o with σ ◦ γ(1) = p. Thus, its midpoint
σ(x) lies in Cp(P̃ , o) as well. We have shown that σ leaves Cp(P̃ , o) invariant

and induces a homeomorphism of it. Consequently, σ maps P = Cp(P̃ , o)j0
onto a connected component of Cp(P̃ , o). This must be Cp(P̃ , o)j0 , because
σ(j0) = j0.
(c) Since P is a totally geodesic submanifold of P̃ , we deduce that Cp(P, o) ⊂
Cp(P̃ , o) ∩ P̃ σ, hence Cp(P, o)j0 ⊂ Cp(P̃ , o)j0 ∩ P̃ σ = Q̃σ. We have shown that

Cp(P, o)j0 ⊂ (Q̃σ)j0 .

Let us now prove the opposite inclusion. Take j an arbitrary element of Q̃σ.
There exists γ : [0, 1] → P̃ a geodesic segment with γ(0) = o, γ(1) = p, and
γ
(

1
2

)

= j. Since Q̃ is an s-centriole, we can assume that γ is shortest between

o and p. This implies that the restriction of γ to the interval
[

0, 12
]

is a shortest
geodesic segment between o and j; moreover, it is the unique shortest geodesic
segment

[

0, 12
]

→ P̃ between o and j (cf. e.g. [Ga-Hu-La-04, Corollary 2.111]).

On the other hand, the curve σ ◦ γ :
[

0, 12
]

→ P̃ is a shortest geodesic segment
with the properties

σ ◦ γ(0) = σ(o) = o and σ ◦ γ
(

1

2

)

= σ(j) = j.

Consequently, we have σ ◦ γ = γ, and therefore the trace of γ is contained in
P . This implies that j ∈ Cp(P, o). We have shown that Q̃σ ⊂ Cp(P, o). This
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implies readily the desired conclusion. �

Let us denote by τ the (isometric) group automorphism of U16n given by com-
plex conjugation. That is, τ : U16n → U16n,

τ(X) := X, X ∈ U16n.

Note that the fixed point set of τ is O16n.
By collecting results we have proved in this subsection and the previous one,
we can now state the following theorem.

Theorem 3.4 For any k ∈ {0, 1, . . . , 8}, the space P̃k is τ-invariant and we
have

Pk = (P̃ τk )Jk
. (3.3)

The following diagram is commutative:

P0

∩

��

P1

∩

��

⊃
oo P2

⊃
oo

∩

��

· · ·⊃
oo P8

⊃
oo

∩

��

P̃0 P̃1

⊃
oo P̃2

⊃
oo · · ·⊃

oo P̃8

⊃
oo

(3.4)

where the two horizontal components are the SO- and the U-Bott chains, and
the vertical arrows are the inclusions Pk ⊂ P̃k, k ∈ {0, 1, . . . , 8}, induced by
Equation (3.3). The following diagram is also commutative

Pℓ+1

∩

��

ℓ+1
// Ω(Pℓ; Jℓ,−Jℓ)

∩

��

P̃ℓ+1

̃ℓ+1
// Ω(P̃ℓ; Jℓ,−Jℓ)

(3.5)

where the maps ℓ+1 and ̃ℓ+1 are the canonical inclusions given by Equation
(2.9), for all ℓ ∈ {0, 1, . . . , 7}.

3.3 The inclusions P̃k ⊂ P̄k

We start with the standard inclusion P̃0 = U16n ⊂ Sp16n = P̄0. The Sp-
Bott chain defined in Subsection 2.2 can be described in terms of the complex
structures J1, . . . , J8 ∈ SO16n above as follows: P̄k+1 is an s-centriole of (P̄k, Jk)
relative to −Jk, for all k = 0, 1, . . . , 7 (as already mentioned in Subsection
2.2, the main reference for this construction is [Mi-69, Section 24]; see also
[Es-08], Section 19, especially pp. 43–44). With the methods of Subsection 3.1
one can show that we have the totally geodesic embeddings P̃k ⊂ P̄k, for all
k = 0, 1, . . . , 8.
As mentioned at the beginning of this section, U16n lies in Sp16n as the fixed
point set of the (involutive, inner) group automorphism τ̄ : Sp16n → Sp16n,
τ̄ (X) := A8nXA

−1
8n . In the same way as in Subsection 3.2, we can prove the

following analogue of Theorem 3.4:
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Theorem 3.5 For any k ∈ {0, 1, . . . , 8}, the space P̄k is τ̄-invariant and we
have

P̃k = (P̄ τ̄k )Jk
. (3.6)

The following diagram is commutative:

P̃0

∩

��

P̃1

∩

��

⊃
oo P̃2

⊃
oo

∩

��

· · ·⊃
oo P̃8

⊃
oo

∩

��

P̄0 P̄1
⊃

oo P̄2
⊃

oo · · ·⊃
oo P̄8

⊃
oo

(3.7)

where the two horizontal components are the U- and the Sp-Bott chains, and
the vertical arrows are the inclusions P̃k ⊂ P̄k, k ∈ {0, 1, . . . , 8}, induced by
Equation (3.6). The following diagram is also commutative

P̃ℓ+1

∩

��

̃ℓ+1
// Ω(P̃ℓ; Jℓ,−Jℓ)

∩

��

P̄ℓ+1

̄ℓ+1
// Ω(P̄ℓ; Jℓ,−Jℓ)

where the maps ̃ℓ+1 and ̄ℓ+1 are the canonical inclusions given by Equation
(2.9), for all ℓ ∈ {0, 1, . . . , 7}.

Remark 3.6 We note in passing that all maps in the commutative diagrams
described by Equations (3.4) and (3.7) are inclusions of reflective submanifolds.

4 Periodicity of inclusions between Bott chains

4.1 The inclusion P8 ⊂ P̃8

We have the isometries:

P8 ≃ SOn and P̃8 ≃ Un.

The first is discussed in Proposition B.1 (b) and the second in Subsection 2.6.
Note that P̃1 is actually contained in SU16n (see Subsection 2.5). Thus, from
Theorem 3.4 we obtain the following commutative diagram:

SO16n

∩

��

P8
⊃

oo

∩

��

SU16n P̃8

⊃
oo

where all arrows are inclusion maps, as follows: P8 ⊂ P0 = SO16n; P̃8 ⊂ P̃1 ⊂
SU16n; SO16n is contained in SU16n as the identity component of the fixed
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point set of τ , the latter being the complex conjugation; finally, by Theorem
3.4, the space P̃8 is τ -invariant and P8 is a connected component of the fixed
point set P̃ τ8 . We will prove the following result.

Theorem 4.1 There exists an isometry ψ : P̃8 → Un which maps P8 to SOn
and makes the following diagram commutative:

P8

∩

��

ψ|P8
// SOn

∩

��

P̃8

ψ
// Un

Here the inclusions P8 ⊂ P̃8 and SOn ⊂ Un are the one mentioned in the
diagram (3.4), respectively the standard one (see e.g. Subsection A.1).

The rest of this subsection is devoted to the proof of this theorem. First pick
J ∈ P8 and denote

p = TJ P̃8.

Let R : p× p × p → p be the curvature tensor of P̃8 at the point J . It is a Lie
triple in the sense of Loos [Lo-69, Vol. I]. Let c be the center of this Lie triple,
that is,

c = {η ∈ p : R(η, x)y = 0 for all x, y ∈ p}.
We also denote by p̌ the orthogonal complement of c in p relative to the Riemann
metric 〈 , 〉J of P̃8 at the point J . Both elements of the splitting

p = c⊕ p̌

are Lie subtriples of p. Recall from Subsection 2.6 that there exists an isometry

ϕ : P̃8 → Un,

where Un is equipped with the bi-invariant Riemannian metric described by
Equation (2.8). Thus, the center c is a 1-dimensional vector subspace of p. Let
τ∗ : p → p be the differential of τ |P̃8

at J . It is a Lie triple automorphism of p
that preserves the inner product 〈 , 〉J . Thus it leaves both the center c and its
orthogonal complement p̌ invariant. The fixed point set of τ∗, call it Fix(τ∗),
is a Lie sub-triple which splits as:

Fix(τ∗) = Fix(τ∗|c)⊕ Fix(τ∗|p̌).

The first term of the splitting above is contained in the center of Fix(τ∗). On
the other hand, P8 is the connected component of J in the fixed point set of
τ |P̃8

: P̃8 → P̃8. Therefore we have Fix(τ∗) = TJP8; as P8 is isometric to SOn
(see the beginning of this section), TJP8 is isomorphic to the Lie triple of SOn.
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The latter Lie triple has no center, since SOn is a semi-simple symmetric space.
Consequently, we have Fix(τ∗|c) = {0}. Both τ and τ∗ are involutive, thus

τ∗(x) = −x, for all x ∈ c. (4.1)

Consequently,

Fix(τ∗) = Fix(τ∗|p̌).

We denote by P̌8 the complete connected totally geodesic subspace of P̃8 cor-
responding to the Lie sub-triple p̌. It is mapped by ϕ isometrically onto SUn,
the latter being equipped with the restriction of the bi-invariant metric given
by Equation (2.8). The space P̌8 is τ -invariant and we have

(P̌ τ8 )J = (P̃ τ8 )J = P8. (4.2)

We need the following lemma.

Lemma 4.2 There exists an isometry ϕ : P̃8 → Un such that ϕ(J) = In and
ϕ(P8) = SOn. Moreover, there exists A ∈ SUn which satisfies A = AT such
that

ϕ(τ(p)) = Aϕ(p)A−1, (4.3)

for all p ∈ P̌8.

Proof. Let ϕ : P̃8 → Un be the isometry above. The condition ϕ(J) = In is
achieved after modifying ϕ suitably, that is, multiplying it pointwise by ϕ(J)−1.
This proves the first claim in the lemma.
We now prove the second claim. To this end, we first recall that ϕ|P̌8

: P̌8 →
SUn is an isometry, where SUn is equipped with the restriction of the bi-
invariant metric given by Equation (2.8). Thus, the map τ ′ := ϕ ◦ τ ◦ ϕ−1|SUn

is an involutive isometry of SUn. Moreover, the identity element In is in the

fixed point set SUτ
′

n . From Proposition C.1 we deduce that there exists an
involutive group automorphism µ of SUn such that either

τ ′(X) = µ(X), for all X ∈ SUn (4.4)

or

τ ′(X) = µ(X)−1, for all X ∈ SUn. (4.5)

Moreover, in the second case the space (SUτ
′

n )In is isometric to SUn/SU
µ
n,

where the last space has the canonical symmetric space metric. Assume that
we are in the second case. From Equation (4.2), SOn would be isometric
to SUn/SU

µ
n. The involutive group automorphisms of SUn are classified, see

e.g. [Wo-84, p. 281 and p. 290]. It turns out that the group SUµn is isomorphic
to S(Uk × Un−k), for some 0 ≤ k ≤ n, or to SOn, or to Spn/2, if n is divisible
by 2. None of the corresponding quotients is a symmetric space isometric to
SOn.
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We deduce that Equation (4.4) holds. Once again from the classification of the
involutive group automorphisms of SUn mentioned above ([Wo-84, p. 290]),
we deduce readily the presentation of τ described by Equation (4.3). �

We are now ready to prove the main result of this subsection.
Proof of Theorem 4.1. Let ϕ : P̃8 → Un be the isometry mentioned in Lemma
4.2.
Claim. Equation (4.3) holds actually for all p ∈ P̃8.
Indeed, both ϕ ◦ τ and AϕA−1 are isometries P̃8 → Un, which map J to In. It
remains to show that their differentials at J are identically equal. By Equation
(4.3) they are equal on the last component of the splitting TJ P̃8 = c ⊕ p̌. In
fact, they are also equal on c, in the sense that for any x ∈ c we have

(dϕ)J ◦ τ∗(x) = A(dϕ)J (x)A
−1.

This can be justified as follows. First, by Equation (4.1), the left-hand side
is equal to −(dϕ)J (x). Second, since ϕ : P̃8 → Un is an isometry, (dϕ)J is a
Lie triple isomorphism between TJ P̌8 and TInUn, thus it maps x to the center
of TInUn, which is the space of all purely imaginary multiples of the identity;
hence we have (dϕ)J (x) = −(dϕ)J (x) and this matrix commutes with A.
Let us now consider the map c : Un → Un, c(X) = AXA−1, and observe that
the following diagram is commutative:

P̃8

τ

��

ϕ
// Un

c

��

P̃8

ϕ
// Un

Since ϕ(J) = In, we deduce that ϕ maps (P̃ τ8 )J to (Un)
c
In
. The latter set, that

is, the fixed point set of c, has been determined explicitly in [Wo-84, p. 290]:
it is of the form BOnB

−1, for some B ∈ Un. The connected component of
In in this space is BSOnB

−1. On the other hand, by Equation (4.2), we have
(P̃ τ8 )J = P8. Thus ϕ maps P8 isometrically onto BSOnB

−1. In conclusion, the
map ψ : P̃8 → Un, ψ(X) = B−1ϕ(X)B, has all the desired properties. �

4.2 The inclusion P̃8 ⊂ P̄8

The following result is analogous to Theorem 4.1:

Theorem 4.3 There exists an isometry χ : P̄8 → Spn which maps P̃8 to Un
and makes the following diagram commutative:

P̃8

∩

��

χ|P̃8
// Un

∩

��

P̄8

χ
// Spn
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Here the inclusions P̃8 ⊂ P̄8 and Un ⊂ Spn are the one mentioned in the dia-
gram (3.7), respectively the standard one (see e.g. Section A.9 and the beginning
of Section 3).

This can be proved by using the same method as in Subsection 4.1. In fact,
the proof is even simpler in this case, since, unlike Un, the symmetric space
Spn is semisimple, i.e. the corresponding Lie triple has no center.

Remark 4.4 In the same spirit and with the same methods as in Theorems
4.1 and 4.3, one can show that for the embeddings P4 ⊂ P̃4 and P̃4 ⊂ P̄4 one
obtains commutative diagrams

P4

∩

��

≃
// Sp2n

∩

��

P̃4
≃

// U4n

P̃4

∩

��

≃
// U4n

∩

��

P̄4
≃

// SO8n

where the horizontal arrows indicate isometries. More precisely, the spaces
P4, P̃4, and P̄4 have the submanifold metrics arising from the three Bott chains
and the spaces Sp4n, U8n, and SO8n have the metrics described earlier in this
paper (see the beginning of Section 3) up to appropriate rescalings. The inclu-
sions P4 ⊂ P̃4, P̃4 ⊂ P̄4 are those mentioned in the diagrams (3.4) respectively
(3.7) and the inclusions Sp2n ⊂ U4n and U4n ⊂ SO8n are standard, i.e. those
described in Subsections A.5, respectively A.13.

Remark 4.5 Assume that in the above context n is divisible by 16. As we
have already pointed out (see Remark 2.10 and Sections 2.3 and 2.6), each of
the three Bott chains can be extended using the centriole construction. One
obtains:

P0 ⊃ P1 ⊃ P2 ⊃ . . . ⊃ P16,

P̃0 ⊃ P̃1 ⊃ P̃2 ⊃ . . . ⊃ P̃16,

P̄0 ⊃ P̄1 ⊃ P̄2 ⊃ . . . ⊃ P̄16,

where we have isometries

P16 ≃ SOn/16, P̃16 ≃ Un/16, P̄16 ≃ Spn/16.

Theorems 4.1 and 4.3 imply that the centriole constructions can be performed
in such a way that we have

Pk ⊂ P̃k, P̃k ⊂ P̄k, 8 ≤ k ≤ 16,

and these inclusions are again those described by Tables 5 and 6, up to some
obvious changes of the subscripts. This observation is one of the main achieve-
ments of our paper. We can express it in a more informal manner, by saying
that the inclusions Pk+8 ⊂ P̃k+8, P̃k+8 ⊂ P̄k+8 are the same as Pk ⊂ P̃k,
respectively P̃k ⊂ P̄k.
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5 Application: periodicity of maps between homotopy groups

In this section we apply the main results of this paper, which are differential
geometric, to the topology of classical Riemannian symmetric spaces. The
results we prove here, i.e. Theorems 5.3 and 5.6, followed by Corollaries 5.5
and 5.8, are in fact just common knowledge in homotopy theory (one can
prove them using techniques described e.g. in [May-77, Ch. 1]). The goal of
our approach is to provide more insight concerning these results, by indicating
that there is a differential geometric periodicity phenomenon that stays behind
them, similar to the periodicity phenomenon that stays behind Bott’s classical
periodicity theorems [Bo-59].

We start by recalling that a simple application of the long exact homotopy se-
quence of the principal bundle Um → Um+1 → S2m+1 shows that the homotopy
groups πi(Um) are m-stable. More precisely, they remain unchanged up to an
isomorphism for anym which is larger than i

2 . We denote by πi(U) the resulting
group, or rather, isomorphism class of groups. The Bott periodicity theorem
[Bo-59] for the unitary group says that πi(U) = πi+2(U), for i = 0, 1, 2, . . ..
There is also a version of this result for the orthogonal and symplectic group.
First of all, we have πi(Om) ≃ πi(Om+1) =: πi(O) for all m and i such that
m ≥ i + 1. The periodicity theorem in this case says that πi(O) = πi+8(O),
for i = 0, 1, 2, . . .. Similarly, πi(Sp) = πi+8(Sp), for i = 0, 1, 2, . . . (see [Mi-69,
Section 24]).

5.1 The maps induced by Om →֒ Um

Let us consider the canonical embedding map ım : Om →֒ Um. Let fmi :=
(ım)∗ : πi(Om) → πi(Um) be the map between homotopy groups induced by
ım. The following notion will be used in this section.

Definition 5.1 Let A,A′,B, and B′ be groups and f : A → B, f ′ : A′ → B′

group homomorphisms. We say that f is equivalent to f ′ and denote f ∼ f ′

if there exist group isomorphisms g : A → A′ and h : B → B′ that make the
following diagram commutative:

A
f

//

g

��

B
h

��

A′
f ′

// B′

We will need the following result.

Lemma 5.2 The equivalence class modulo ∼ of the map fmi : πi(Om) →
πi(Um) is stable. That is, modulo the equivalence relation ∼, the map fmi
is independent of m for all m ≥ i+ 1.
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Proof. Let us consider the commutative diagram

Om
ım

//

��

Um

��

Om+1
ım+1

// Um+1

The vertical arrows indicate the canonical inclusion maps, given by

A 7→
(

1 0
0 A

)

for any m×m orthogonal matrix A. By functoriality we obtain the following
commutative diagram.

πi(Om)
fm
i

//

��

πi(Um)

��

πi(Om+1)
fm+1

i
// πi(Um+1)

We only need to recall that for any m ≥ i + 1 both vertical arrows are
isomorphisms (to show that the map πi(Om) → πi(Om+1) is an isomorphism
for m ≥ i + 1, one uses the long exact sequence of the principal bundle
Om → Om+1 → Sm). �

Let us denote by fi the equivalence class of the map fmi , for m ≥ i+1. Before
stating the main result of this subsection, let us note that both the domain
and the codomain of the map fmi : πi(Om) → πi(Um) are periodic relative to
i, with period equal to 8. The following theorem says that the map fmi itself
is periodic (modulo ∼).

Theorem 5.3 We have fi = fi+8, for all i ≥ 0.

Proof. Let us first assume that i > 0. We use the notations which have been
established in the previous sections. The commutative diagram (3.5) induces
by functoriality

πi(Pk+1)

��

(k+1)∗
// πi(Ω(Pk))

��

≃
// πi+1(Pk)

��

πi(P̃k+1)
(̃k+1)∗

// πi(Ω(P̃k))
≃

// πi+1(P̃k)

(5.1)

for all k ∈ {0, 1, . . . , 7}. Recall that P0 = SO16n, P̃0 = U16n, and both (k+1)∗
and (̃k+1)∗ are isomorphisms for any i which is sufficiently small compared
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to n (see Subsection 2.7 and the references therein). Since πi+8(SO16n) =
πi+8(O16n), we obtain the diagram:

πi+8(O16n)

fi+8

16n

��

≃
// πi(P8)

��

πi+8(U16n)
≃

// πi(P̃8)

Finally, from Theorem 4.1 we deduce that we have a commutative diagram of
the form

πi(P8)

��

≃
// πi(SOn)

fn
i

��

πi(P̃8)
≃

// πi(Un)

We only need to use the fact that πi(SOn) = πi(On).
We now analyze the case i = 0. We have π0(U) = π8(U) = {0}, thus the maps
f0 and f8 are clearly equal. This finishes the proof of the theorem. �

i mod 8 0 1 2 3 4 5 6 7
πi(O) Z2 Z2 0 Z 0 0 0 Z

πi(U) 0 Z 0 Z 0 Z 0 Z

fi 0 0 0 k 7→ 2k 0 0 0 id

Table 1: The stable maps between homotopy groups induced by Om →֒ Um.

To calculate the maps fi explicitly, we can use the long exact homotopy se-
quence of the principal bundle Om → Um → Um/Om. This information is
described in Table 1 (where we have used the table from [Mi-69, p. 142]).
Justifications are needed only for the maps f3 and f7. Let us calculate the map
f3 : π3(O) → π3(U). Since π4(U/O) = 0 and π3(U/O) = Z2 (cf. e.g. [Bo-59,
Section 1]), we obtain the following exact sequence:

0 → Z
f3→ Z → Z2 → 0.

This implies the desired description of f3. As about f7, the relevant exact
sequence is

0 → Z
f7→ Z → 0.

Remark 5.4 Note that the two exact sequences above can be used to show
that for any j = 0, 1, 2, . . ., the map f8j+3 : Z → Z is given by k 7→ 2k, k ∈ Z,
and f8j+7 : Z → Z is the identity map. Therefore this simple argument gives
an alternative proof to Theorem 5.3.
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We can combine Theorem 5.3 above with the commutative diagram given by
(5.1) and the results concerning the exact expressions of the embeddings Pk ⊂
P̃k, k = 1, 2, . . . , 8 obtained in Appendix A (see Table 5 and Subsections A.2 -
A.8). We deduce:

Corollary 5.5 Let Am →֒ Bm be given by any of the inclusions

O2m/Um ⊂ Gm(C2m), U2m/Spm ⊂ U2m, Gm(H2m) ⊂ G2m(C4m),
Spm/Um ⊂ Gm(C2m), Um/Om ⊂ Um, Gm(R2m) ⊂ Gm(C2m),
Spm ⊂ U2m.

Then the maps πi(Am) → πi(Bm) induced between the stable homotopy groups
are stable relative to m and periodic relative to i, with period equal to 8.

The exact expression of the stable maps πi(Am) → πi(Bm) can be deduced
from the table above by finding n and k such that Pk and P̃k are equal to Am
respectively Bm for a certainm which depends on n (see Table 5 for 1 ≤ k ≤ 7).
The only embedding for which this is not possible is O2m/Um ⊂ Gm(C2m).
In this case, we note that P1 = SO2m/Um, where m = 8n (see Subsection
2.2 or Table 5). Consequently, πi(O2m/Um) = πi(P1) for any i 6= 0 and
therefore in this case the map πi(O2m/Um) → πi(Gm(C2m)) is equivalent to
πi(P1) → πi(P̃1) in the sense of Definition 5.1. For i ≡ 0 mod 8, we note
that πi(Gm(C2m)) = {0}, hence the map πi(O2m/Um) → πi(Gm(C2m)) is
identically zero. To deal with any of the remaining six inclusions we just take
k ∈ {2, 3, . . . , 7} and use inductively the commutative diagram (5.1) to deduce
that the map πi(Pk) → πi(P̃k) is equivalent to πi+k(Om) → πi+k(Um) (here
m = 16n is in the stability range). For instance the stable maps between
homotopy groups induced by the inclusion Spm ⊂ U2m are described in Table
2 (see also Remark 4.4).

i mod 8 0 1 2 3 4 5 6 7
πi(Sp) 0 0 0 Z Z2 Z2 0 Z

πi(U) 0 Z 0 Z 0 Z 0 Z

πi(Sp) → πi(U) 0 0 0 id 0 0 0 k 7→ 2k

Table 2: The stable maps between homotopy groups induced by Spm →֒ U2m.

5.2 The maps induced by Um →֒ Spm

In the same way as in the previous subsection, we consider the inclusion map
Um → Spm and the maps gmi : πi(Um) → πi(Spm) induced between homotopy
groups. As in Lemma 5.2, if we fix i and take any m which is sufficiently
larger than i, all of these group homomorphisms are equivalent in the sense of
Definition 5.1. Denote by gi the equivalence class of these maps. The following
result can be proved with the same methods as Theorem 5.3.
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Theorem 5.6 We have gi+8 = gi.

Table 3 describes the maps gi explicitly.

i mod 8 0 1 2 3 4 5 6 7
πi(U) 0 Z 0 Z 0 Z 0 Z

πi(Sp) 0 0 0 Z Z2 Z2 0 Z

gi 0 0 0 k 7→ 2k 0 k 7→ k mod 2 0 id

Table 3: The stable maps between homotopy groups induced by Um →֒ Spm.

Remark 5.7 The results in Table 3 have been obtained as direct consequences
of the long exact homotopy sequence of the principal bundle Um → Spm →
Spm/Um and the knowledge of πi(Sp/U), i = 0, 1, 2, . . .. In fact, this long exact
sequence can also be used to give an alternative proof of the periodicity of the
maps πi(U) → πi(Sp).

In the same way as Corollary 5.5, we can prove the following result (this time
using Table 6 in Appendix A and Subsections A.10 - A.16).

Corollary 5.8 Let Am →֒ Bm be given by any of the inclusions

Gm(C2m) ⊂ Sp2m/U2m, Um ⊂ U2m/Om, Gm(C2m) ⊂ G2m(R4m),
Gm(C2m) ⊂ O4m/U2m, Um ⊂ U2m/Spm, Gm(C2m) ⊂ Gm(H2m),
Um ⊂ O2m.

Then the maps πi(Am) → πi(Bm) induced between the stable homotopy groups
are stable relative to m and periodic relative to i, with period equal to 8.

These maps πi(Am) → πi(Bm) mentioned above can be described explicitly, by
using Table 3 and the fact that πi(P̃k) → πi(P̄k) is equivalent to πi+k(Um) →
πi+k(Spm). For example, the stable maps πi(Um) → πi(O2m) are described in
Table 4.

i mod 8 0 1 2 3 4 5 6 7
πi(U) 0 Z 0 Z 0 Z 0 Z

πi(O) Z2 Z2 0 Z 0 0 0 Z

πi(U) → πi(O) 0 k 7→ k mod 2 0 id 0 0 0 k 7→ 2k

Table 4: The stable maps between homotopy groups induced by Um →֒ O2m.
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A Standard inclusions of symmetric spaces

Explicit descriptions of the spaces in the SO-Bott chain have been obtained
by Milnor in [Mi-69, Section 24] using orthogonal complex structures of R16n,
i.e. elements J of O16n with the property that J2 = −I. A similar construction
works for any matrix Lie group, as it has been pointed out in [Qu-10]. For our
needs, we describe the U-Bott chain in these terms. We start with the following
definition.

Definition A.1 An element J ∈ U16n is a complex structure if J2 = −I.
Like in the case of the orthogonal group (see [Mi-69, Lemma 24.1]) we can iden-
tify complex structures in U16n with midpoints of shortest geodesic segments
in U16n from I to −I. More specifically, recall from Subsection 2.4 that −I is a
pole of (U16n, I) and the space of shortest geodesic segments in U16n from I to
−I is the union of all conjugacy orbits U16n.γk|[0,1], 0 ≤ k ≤ 16n (see Equation
(2.4)).

Lemma A.2 The set of all midpoints of the geodesic segments in the union
⋃

0≤k≤16n U16n.γk|[0,1] coincides with the set of all complex structures in U2q.

Proof. Let γ|[0,1] : [0, 1] → U16n be a geodesic segment in the union above:
it satisfies γ(0) = I and γ(1) = −I. Then γ : R → U16n is a one-parameter
subgroup. Thus we have

γ

(

1

2

)2

= γ(1) = −I.

This means that γ
(

1
2

)

is a complex structure. To prove the converse inclusion,
take J ∈ U16n such that J2 = −I. Then the eigenvalues of J are ±i, hence J
is U16n-conjugate to a matrix of the form

(

iIk 0
0 −iI16n−k

)

for some k ∈ {0, 1, . . . , 16n}. The converse inclusion is proved. �

Recall from Subsection 2.6 that P̃1 is the top-dimensional s-centriole of (U16n, I)
and J1 is an element of P̃1. The previous lemma says that the union of all s-
centrioles in U16n from I to −I is the same as the set of all complex structures
in U16n. We deduce that

P̃1 = {J ∈ U16n : J2 = −I}J1
, (A.1)

where we have used the notation established at the beginning of Subsection
3.2.
We saw afterwards that we have the isometry P̃1 ≃ G8n(C

16n), where P̃1 is
equipped with the metric induced by its embedding in U16n and G8n(C

16n) with
the usual symmetric space metric. We defined P̃2 as the (unique) s-centriole of
(P̃1, J1) relative to −J1 and then we fixed an element J2 of P̃2.
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Lemma A.3 The centrosome C−J1
(P̃1, J1) can be expressed as:

C−J1
(P̃1, J1) = {J ∈ P̃1 : JJ1 = −J1J}. (A.2)

Consequently, P̃2 = {J ∈ P̃1 : JJ1 = −J1J}J2
.

Proof. We first take J = γ(12 ), where γ : R → P̃1 is a geodesic such that

γ(0) = J1 and γ(1) = −J1.

But P̃1 is a totally geodesic submanifold of U16n, thus γ is a geodesic in U16n.
We deduce that there exists x in u16n such that

γ(t) = J1 exp(2tx), t ∈ R.

The condition γ
(

1
2

)

= J implies that J1 exp(x) = J. Multiplying from the left
by J1 and taking into account that J2

1 = −I gives exp(x) = −J1J. Conse-
quently, we have

−J1 = γ(1) = J1 exp(x) exp(x) = J(−J1J) = −JJ1J.

This implies that JJ1 = −J1J .
We now prove the converse inclusion. Take J ∈ P̃1 such that JJ1 = −J1J . Let
γ : R → P̃1 be a geodesic with the property that

γ(0) = J1 and γ

(

1

2

)

= J.

Claim. γ(1) = −J1.
Indeed, the curve J−1

1 γ is a geodesic in U16n, thus a one-parameter group. In
other words, we have

J−1
1 γ(t) = exp(2tx), t ∈ R,

where x ∈ u16n. This implies that J = γ(12 ) = J1 exp(x), hence exp(x) =

J−1
1 J = −J1J = JJ1, and consequently

γ(1) = J1 exp(2x) = J1 exp(x) exp(x) = J(JJ1) = −J1.

�

Note that the previous two results are special cases of [Qu-10, Lemmata 3.1
and 3.2].
We have the isometry P̃2 ≃ U8n, where P̃2 has the submanifold metric and
U8n the bi-invariant metric described by Equation (2.7) with q = 4n (see
Subsection 2.5). The pair (P̃2, J2) has exactly one pole, which is −J2. We
defined P̃3 as the top-dimensional s-centriole of (P̃2, J2) relative to −J2 and we
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fixed J3 ∈ P̃3. Since P̃2 is a totally geodesic submanifold of U16n, we can use
the same reasoning as in the proof of Lemma A.3 to show that

P̃3 = {J ∈ P̃2 : JJ2 = −J2J}J3
.

In the same way, for any k ∈ {2, . . . , 8} we have

P̃k = {J ∈ P̃k−1 : JJk−1 = −Jk−1J}Jk
.

These new presentations of the spaces P̃1, . . . , P̃8, along with those obtained
by Milnor in [Mi-69, Section 24] for the spaces P1, . . . , P8 lead us to descrip-
tions of the embeddings between Bott chains which are discussed in Section 3.
Concretely, they are given by Tables 5 and 6 together with the list A.1 - A.16.

k Pk P̃k Pk ⊂ P̃k

0 SO16n U16n A.1 composed with SO16n ⊂ O16n

1 SO16n/U8n G8n(C
16n) A.2 composed with SO16n/U8n ⊂ O16n/U8n

2 U8n/Sp4n U8n A.3
3 G2n(H

4n) G4n(C
8n) A.4

4 Sp2n U4n A.5
5 Sp2n/U2n G2n(C

4n) A.6
6 U2n/O2n U2n A.7
7 Gn(R

2n) Gn(C
2n) A.8

8 SOn Un A.1 composed with SOn ⊂ On

Table 5: Inclusions between the SO-Bott chain and the U-Bott chain.

k P̃k P̄k P̃k ⊂ P̄k

0 U16n Sp16n A.9
1 G8n(C

16n) Sp16n/U16n A.10
2 U8n U16n/O16n A.11
3 G4n(C

8n) G8n(R
16n) A.12

4 U4n SO8n A.13
5 G2n(C

4n) SO8n/U4n A.14
6 U2n U4n/Sp2n A.15
7 Gn(C

2n) Gn(H
2n) A.16

8 Un Spn A.9

Table 6: Inclusions between the U-Bott chain and the Sp-Bott chain.

In what follows we will be frequently using, without pointing it out each time,
presentations of certain classical symmetric spaces as given in [Mi-69, Section
24] (see also [Es-08, Section 19]).

Documenta Mathematica 17 (2012) 911–952



942 A.-L. Mare and P. Quast

A.1 The inclusion Or ⊂ Ur

To any orthogonal isomorphism A : Rr → R
r one attaches its complex-linear

extension Ac : Cr → Cr, which is defined by Ac(u + iv) := A(u) + iA(v), for
all u, v ∈ Rr. One can see that Ac preserves the norm of a vector in Cr with
respect to the canonical Hermitian product. Thus, Ac lies in Ur.

A.2 The inclusion O2r/Ur ⊂ Gr(C
2r)

The quotient O2r/Ur is identified with the space of all orthogonal complex
structures of R2r, that is, of all J ∈ O2r with the property that J2 = −I. The
inclusion O2r/Ur ⊂ Gr(C

2r) assigns to any such J the eigenspace Ei(J
c) =

{v ∈ C2r : Jc(v) = iv}.

A.3 The inclusion U2r/Spr ⊂ U2r

Fix J0 ∈ O4r an orthogonal complex structure of R4r. Let Jc0 : C4r → C4r be its
complex linear extension. The eigenspaces V + := Ei(J

c
0) and V

− := E−i(J
c
0 )

are complex vector subspaces of C4r of dimension equal to 2r, since the complex
conjugation is an (R-linear) isomorphism between V + and V −. The quotient
U2r/Spr can be identified with the space of all orthogonal complex structures
J of R4r that anticommute with J0. The complex linear extension Jc of such
a J maps V + to V −, being obviously a unitary isomorphism. The inclusion
U2r/Spr →֒ U2r assigns to J the map Jc|V + : V + → V −, where both V + and
V − are identified with C2r.

A.4 The inclusion Gr(H
2r) ⊂ G2r(C

4r)

We first identify C with the subspace of H consisting of all quaternions a +
bi + cj + dk with c = d = 0. This allows us to equip H

2r with the structure
of complex vector space induced by multiplication with complex numbers from
the right. It also allows us to embed C2r into H2r. In this way we obtain the
following identification of complex vector spaces: H2r = C2r⊕jC2r = C4r. The
Grassmannian Gr(H

2r) consists of all right H-submodules of H2r of dimension
equal to r. The map Gr(H

2r) →֒ G2r(C
4r) attaches to any such submodule

V ⊂ H2r the space V itself, regarded as a 2r-dimensional complex subspace of
C4r.

A.5 The inclusion Spr ⊂ U2r

As explained before, we can regard Hr = Cr ⊕ jCr = C2r as a complex vector
spaces. The map Spr →֒ U2r assigns to any symplectic (H-linear on the right)
isomorphism A : Hr → Hr the map A itself, regarded as a unitary (C-linear)
isomorphism C2r → C2r. A description of this embedding in matrix form can
be found for instance [Br-tD-85, Ch. I, Section 1.11] (see also the beginning of
Section 3).
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A.6 The inclusion Spr/Ur ⊂ Gr(C
2r)

The quotient Spr/Ur can be identified with the space of all complex forms
of the quaternionic space Hr, that is, all V ⊂ Hr which is a complex vector
subspace relative to the identification Hr = Cr + jCr = C2r mentioned above
and satisfies Hr = V ⊕ jV . The inclusion map Spr/Ur →֒ Gr(C

2r) assigns to
any such V the space V itself.

A.7 The inclusion Ur/Or ⊂ Ur

The quotient Ur/Or can be identified with the space of all real forms of Cr,
that is, all real vector subspaces V ⊂ Cr such that Cr = V ⊕ iV . This can
be further identified with the space of all orthogonal (R-linear) automorphisms
of Cr = R2r that are anti-complex linear and square to I: the identification
is given by attaching to such an automorphism its 1-eigenspace. If we fix an
anti-complex linear orthogonal automorphism B0 of R2n, then

Ur/Or = {B0A : A ∈ Ur, (B0A)
2 = I}.

The inclusion map Ur/Or → Ur maps B0A to A.

A.8 The inclusion Gr(R
2r) ⊂ Gr(C

2r)

This map assigns to any r-dimensional real vector subspace of R2r the space
V ⊗ C, which is an r-dimensional complex vector subspace of C2r.

A.9 The inclusion Ur ⊂ Spr

Let Ri and Rj be the maps Hr → Hr given by multiplication from the right by
the quaternionic units i and j. Then Spr can be characterized as the space of
all R-linear endomorphisms of Hr which commute with Ri and Rj and preserve
the norm of any vector in Hr relative to the canonical inner product of Hr. Let
us consider the splitting Hr = Cr ⊕ jCr. The group Ur consists of all R-linear
endomorphisms of Cr which commute with Ri and preserve the norm of any
vector in Cr relative to the canonical Hermitian product of Cr. The desired
embedding Ur →֒ Spr is given by

Ur ∋ A 7→ Ah ∈ Spr,

where Ah : Hr → Hr is determined by:

Ah(v + jw) := Av + j(Āw), v, w ∈ C
r.

(One can easily verify that Ah lies in Spr.)
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A.10 The inclusion Gr(C
2r) ⊂ Sp2r/U2r

The quotient Sp2r/U2r can be identified with the space of all complex forms
of H2r, that is, of all real vector subspace X ⊂ H2r with the property that
RiX = X , i.e. X is a complex vector subspace of H2r, and H2r = X ⊕ RjX
(orthogonal direct sum). The inclusion Gr(C

2r) →֒ Sp2r/U2r assigns to the
r-dimensional complex vector subspace V ⊂ C

2r the space V ⊕ RjV
⊥, where

V ⊥ is the orthogonal complement of V in C2r.

A.11 The inclusion Ur ⊂ U2r/O2r

Recall that U2r/O2r is the space of all real forms of C2r (see Subsection A.7).
Also recall that Hr is a complex vector space relative to multiplication by
complex numbers from the right, the dimension being equal to 2r. Let us now
consider the splitting H

r = C
r ⊕ RjC

r. The inclusion Ur →֒ U2r/O2r can be
described as follows:

Ur ∋ A 7→ V := {v +RjAv : v ∈ C
r}.

Note that V described by this equation is a real form of Hr, where the latter
is a complex vector space in the way mentioned above. Indeed, this follows
readily from the fact that V i = {v −RjAv : v ∈ Cr}.

A.12 The inclusion Gr(C
2r) ⊂ G2r(R

4r)

This map assigns to a complex n-dimensional vector subspace V ⊂ C2r the
space V itself, viewed as a real vector subspace of C2r = R4r.

A.13 The inclusion Ur ⊂ SO2r.

We identify C
r = R

r ⊕ iRr with R
2r and make the following elementary obser-

vations: a C-linear transformation of Cr is also R-linear; the norm of a vector in
Cr relative to the standard Hermitian inner product is equal to its norm in R2r

relative to the standard Euclidean inner product. We are lead to the subgroup
embedding Ur →֒ O2r. Since Ur is connected, we actually get Ur →֒ SO2r.

A.14 The inclusion Gr(C
2r) ⊂ SO4r/U2r

We start with the embedding U2r ⊂ SO4r described in Subsection A.13. It
induces the inclusion {J ∈ U2r : J2 = −I} ⊂ {J ∈ SO4r : J2 = −I}.
The first space can be identified with the Grassmannian of all complex vector
subspaces in C2r (see Lemma A.2 and Subsection 2.4). Among its connected
components we can find Gr(C

2r). This is contained in one of the two connected
components of {J ∈ SO4r : J2 = −I}. They are both diffeomorphic to
SO4r/U2r. The desired embedding is now clear.
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A.15 The inclusion Ur ⊂ U2r/Spr

We first consider

Ar :=

(

iI 0
0 −iI

)

∈ U2r,

which is an orthogonal complex structure of R4r via the embedding described at
A.13. Denote by U(R4r , Ar) the set of all elements of O4r which commute with
Ar. This is a subgroup of O4r which is isomorphic to U2r. It acts transitively,
via group conjugation, on the set of all J ∈ O4r with J2 = −I and ArJ =
−JAr. Moreover, the stabilizer of any J is isomorphic to Spr. In this way we
obtain the identification

{J ∈ O4r : J2 = −I, JAr = −ArJ} = U2r/Spr.

The embedding Ur →֒ U2r/Spr assigns to an arbitrary X ∈ Ur the matrix

A :=

(

0 −X−1

X 0

)

∈ U2r,

which is regarded as an element of O4r in the same way as before, i.e. by using
the embedding A.13. (One can easily verify that A2 = −I and ArA = −AAr.)

A.16 The inclusion Gr(C
2r) ⊂ Gr(H

2r)

We consider again the embedding C2r ⊂ H2r defined in Subsection A.4. The
embedding Gr(C

2r) →֒ Gr(H
2r) assigns to a complex r-dimensional vector

subspace V ⊂ C2r the space V ⊗C H = {v + wj : v, w ∈ V }, which is an
H-linear subspace of H2r of dimension r.

B The isometry types of P4 and P8

For any r ≥ 1, we consider the standard bi-invariant Riemannian metrics on
each of the groups SOr, Ur, and Spr. By definition, they are given by 〈X,Y 〉 =
−tr(XY ), for any X,Y in the Lie algebra of SOr, respectively Ur; as for Spr,
the metric is induced by its canonical embedding in U2r, where the latter group
is equipped with the standard metric divided by two (see also the beginning of
Section 3).
The SO-Bott chain P0, P1, . . . , P8 has been defined in Subsection 2.2. Recall
that P1, . . . , P8 are totally geodesic submanifolds of P0 = SO16n, the latter
space being equipped with the standard metric. The main goal of this section
is to prove the following result.

Proposition B.1 (a) If we equip P4 with the submanifold metric, then P4

is isometric to Sp2n, where the metric on the latter space is eight times the
standard one.
(b) If we equip P8 with the submanifold metric, then P8 is isometric to SOn,
where the metric on the latter space is sixteen times the standard one.
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Proof. The proof will be divided into two steps. In the first step, we show that
the results stated by the proposition hold true for a particular choice of com-
plex structures J1, . . . , J7. (Afterwards we will address the general situation.)
Concretely, we write

H
4n = R

4n ⊕ R
4ni⊕ R

4nj ⊕ R
4nk,

and identify in this way H4n = R16n. Take J1 := Ri and J2 := Rj , that is,
multiplication on H

4n from the right by the quaternionic units i, respectively
j. We take J3 in such a way, that J1J2J3 is given by

J1J2J3(q1, . . . , q4n) := (q1, . . . , q2n,−q2n+1, . . . ,−q4n),

for all (q1, . . . , q4n) ∈ H4n.
We now perform Milnor’s construction of the space P4 (cf. [Mi-69, p. 139],
see also Subsection 2.2 above). First, note that the eigenspace decomposition
of J1J2J3 : H4n → H4n is H4n = H2n ⊕ (H2n)⊥, where H2n stands here for
the space of all vectors in H

4n with the last 2n entries equal to 0 and (H2n)⊥

is the space of all vectors in H4n with the first 2n entries equal to 0. The
space P4 consists of all J ∈ P3 which anticommute with J3. If J is such a
transformation, then J3J maps H2n to (H2n)⊥ as a H-linear map (relative to
scalar multiplication from the right) that preserves the norm of any vector.
Let us now consider the subgroup of SO16n which consists of all R-linear endo-
morphisms of R16n that are H-linear, i.e. commute with J1 and J2, and preserve
the norm of a vector. This group is just Sp4n. We prefer to see its elements
as 4n× 4n matrices, say A, with entries in H, such that AA∗ = I4n. From the
above observation, J3P4 := {J3J : J ∈ P4} is the same as the space of all
elements of Sp4n of the form

(

0 −C−1

C 0

)

.

Consider

B2n :=

(

0 I2n
−I2n 0

)

,

which is an element of Sp4n. By translating our set J3P4 from the left by B2n,
we obtain

B2n(J3P4) =

{(

C 0
0 C−1

)

: C ∈ Sp2n

}

.

It is clear that P4, as a submanifold of SO16n, is isometric to B2n(J3P4), and
the latter is a subspace of Sp4n. More precisely, it is the image of the embedding
Sp2n → Sp4n,

C 7→
(

C 0
0 C−1

)

. (B.1)

The metric on Sp4n induced by its embedding in SO16n is equal to the stan-
dard metric multiplied by 4. (Indeed, Sp4n is contained in the subspace of all
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elements of SO16n which commute with J1, which is U8n, and the resulting
embedding Sp4n ⊂ U8n is just the one described at the beginning of Section 3;
moreover, the Riemannian metric on U8n induced by its embedding in SO16n

is twice its standard metric.) Thus, the submanifold metric induced on Sp2n

via the embedding (B.1) is the standard one multiplied by 8. Finally note that,
from the previous considerations, Sp2n equipped with this metric is isometric
to the subspace P4 of SO16n.
We will now prove point (b) of Proposition B.1 for a particular choice of J5, J6,
and J7. As it has been pointed out by Eschenburg in [Es-08, Section 19], we
may assume that P4 = Sp2n and P5, P6, P7, P8 are subspaces of Sp2n defined
as follows: first, P5 := {J ′ ∈ Sp2n : (J ′)2 = −I}; then, for ℓ = 5, 6, or 7, pick
J ′
ℓ ∈ Pℓ and define Pℓ+1 as one of the top-dimensional components of the space

{J ′ ∈ Pℓ : J ′J ′
ℓ + J ′

ℓJ
′ = 0}. In what follows Sp2n is regarded as the space

of all R-linear endomorphisms of H2n which preserve the norm of a vector and
commute with R′

i and R
′
j , the operators given by multiplication from the right

by i, respectively j.
We first consider J ′

5 : H2n → H2n given by multiplication from the left by the
negative of the quaternionic unit i, that is

J ′
5(q1, . . . , q2n) := −i(q1, . . . , q2n),

for all (q1, . . . , q2n) ∈ H2n. One can see that J ′
5 is an element of Sp2n and satis-

fies (J ′
5)

2 = −I. Note that the 1-eigenspace of R′
iJ

′
5 is C

2n, which is canonically
embedded in H2n. Next, we take J ′

6 : H2n → H2n given by multiplication from
the left by −j:

J ′
6(q1, . . . , q2n) := −j(q1, . . . , q2n),

for all (q1, . . . , q2n) ∈ H
2n. As before, J ′

6 is in Sp2n and (J ′
6)

2 = I. We also
have J ′

5J
′
6 = −J ′

6J
′
5. The composed map R′

jJ
′
6 leaves C2n invariant and the

1-eigenspace of R′
jJ

′
6|C2n is R2n, which is canonically embedded in C2n. Finally,

we choose J ′
7 to be the map H2n → H2n,

J ′
7(q1, . . . , q2n) := −k(q1, . . . , qn,−qn+1, . . . ,−q2n),

for all (q1, . . . , q2n) ∈ H2n. This new map is in Sp2n, it squares to −I, and
it anticommutes with both J ′

5 and J ′
6. The composed map R′

kJ
′
7 leaves R2n

invariant and we have

R′
kJ

′
7(x1, . . . , x2n) = (x1, . . . , xn,−xn+1, . . . ,−x2n)

for all (x1, . . . , x2n) ∈ R2n. Consequently, the 1-eigenspace of R′
kJ

′
7|R2n is Rn,

that is, the subspace of R2n consisting of all vectors with the last n compo-
nents equal to 0. The (−1)-eigenspace of R′

kJ
′
7|R2n is (Rn)⊥, the orthogonal

complement of Rn in R2n.
We are especially interested in the embedding of P8 in Sp2n. By [Mi-69, p. 141]
(see also [Es-08, Section 19, item 8’]), one can identify P8 with one of the two
connected components of the space of all orthogonal transformations from Rn
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to (Rn)⊥; the identification is given by J ′ 7→ J ′
7J

′|Rn . We deduce that J ′
7P8 is

one of the two connected components of the subspace of Sp2n consisting of all
matrices of the form

(

0 −D−1

D 0

)

where D ∈ On. We may assume that J ′
7P8 is the space of all matrices of the

form above with D ∈ SOn. Let us now consider the matrix

Bn :=

(

0 In
−In 0

)

and observe that

Bn(J
′
7P8) =

{(

D 0
0 D−1

)

: D ∈ SOn

}

.

The subspaces P8 and Bn(J
′
7P8) of Sp2n are isometric. We only need to charac-

terize the submanifold metric on SOn induced by the embedding SOn → Sp2n,

D 7→
(

D 0
0 D−1

)

,

where Sp2n is equipped with the standard metric multiplied by eight (by point
(a)). To this end we first look at the subspaces U2n and SO2n of Sp2n: the
metric induced on U2n is eight times its canonical metric (see the beginning
of Section 3), thus also the metric on SO2n is eight times its canonical metric.
Consequently, the metric on SOn we are interested in is equal to the standard
one multiplied by 16.
If J1, . . . , J7 are now arbitrary, then the results stated by Proposition B.1
remain true. Indeed, one can easily see that in this general set-up, the spaces
P0 and P1 are the same as above, whereas each of P2, . . . , P8 differ from the
ones described above by group conjugation inside SO16n. �

C Simple Lie groups as symmetric spaces and their involutions

Let G be a compact, connected, and simply connected simple Lie group.
Equipped with a bi-invariant metric, G becomes a Riemannian symmetric
space, as explained in Example 2.3. The following result has been proved in
[Le-74] (see the proof of Theorem 3.3 in that paper). Since it plays an essential
role in our Subsection 4, we decided to state it separately and give the details
of the proof.

Proposition C.1 Let τ : G→ G be an isometric involution with the property
that τ(e) = e, where e is the identity element of G. Then there exists an
involutive group automorphism µ : G→ G such that either

τ(g) = µ(g) for all g ∈ G
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or
τ(g) = µ(g)−1 for all g ∈ G.

Moreover, in the second case, the space (Gτ )e (the connected component through
e of the fixed point set Gτ ) is a totally geodesic submanifold of G which is
isometric to G/Gµ. Here G/Gµ is equipped with the symmetric space structure
induced by some bi-invariant metric on G.

Proof. Let Ĝ be the identity component of the isometry group of G. Then
τ induces the involutive group automorphism τ̂ : Ĝ → Ĝ, f 7→ τ ◦ f ◦ τ .
Let ĝ be the Lie algebra of Ĝ and denote by τ̂∗ : ĝ → ĝ the differential map
of τ̂ at the point ê, which is the identity element of Ĝ. We know that Ĝ =
(G ×G)/∆(Z(G)), where Z(G) is the center of G. Thus, if we denote the Lie
algebra of G by g, then we have ĝ = g×g. Consider the map σ : G×G→ G×G,
σ(g1, g2) = (g2, g1), for all g1, g2 ∈ G along with its differential map at the
identity element, that is σ∗ := (dσ)e : ĝ → ĝ, σ∗(x1, x2) = (x2, x1), for all
x1, x2 ∈ g.
Claim 1. τ̂∗ ◦ σ∗ = σ∗ ◦ τ̂∗.
Indeed, σ∗ can also be described as the differential at e of the map Ĝ → Ĝ,
f 7→ se ◦ f ◦ se, where se is the geodesic symmetry of G at e (see [He-01,
Ch. IV, Theorem 3.3]). We only need to notice that the automorphism Ĝ→ Ĝ
described above commutes with τ̂ . In turn, this follows from the fact that
τ ◦ se = se ◦ τ (both sides of the equation are isometries of G whose value at e
is e and whose differential map at e is equal to −(dτ)e).
Let us now observe that τ̂∗(g × {0}) is an ideal of g× g. It can only be equal
to g× {0} or to {0} × g, since g is a simple Lie algebra.
Case 1. τ̂∗(g×{0}) = g×{0}. There exists µ : g → g an involutive Lie algebra
automorphism such that τ̂∗(x, 0) = (µ(x), 0), for all x ∈ g. From Claim 1 we
deduce that τ̂∗(0, x) = (0, µ(x)), for all x ∈ g, thus

τ̂∗(x1, x2) = (µ(x1), µ(x2)),

for all x1, x2 ∈ g. We consider the group automorphism of G whose differential
at e is µ and denote it also by µ. We have

τ̂ ([g1, g2]) = [µ(g1), µ(g2)],

for all g1, g2 ∈ G, where the brackets [ , ] indicate the coset modulo ∆(Z(G)).
Using the identification Ĝ = (G × G)/∆(Z(G)) and the explicit form of its
action on G given by Equation (2.1), this implies

τ(g1τ(h)g
−1
2 ) = µ(g1)hµ(g2)

−1,

for all g1, g2, h ∈ G. Thus, τ(g) = µ(g) for all g ∈ G.
Case 2. τ̂∗(g× {0}) = {0} × g. This time, there exists µ : g → g an involutive
Lie algebra automorphism such that τ̂∗(x, 0) = (0, µ(x)), for all x ∈ g. From
Claim 1 we deduce that τ̂∗(0, x) = (µ(x), 0), for all x ∈ g, thus

τ̂∗(x1, x2) = (µ(x2), µ(x1)),
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for all x1, x2 ∈ g. Again, we consider the group automorphism µ : G → G
whose differential at e is µ. This time we have

τ̂ ([g1, g2]) = [µ(g2), µ(g1)],

which implies
τ(g1τ(h)g

−1
2 ) = µ(g2)hµ(g1)

−1,

for all g1, g2, h ∈ G. This implies τ(g) = µ(g)−1, for all g ∈ G.
We now prove the last assertion in the proposition. We are in Case 2. Consider
the action of G on Gτ given by G × Gτ → Gτ , g.x := gxτ(g), for all g ∈ G
and x ∈ Gτ . Since G is connected, it leaves (Gτ )e invariant. The correspond-
ing action is isometric, where (Gτ )e is equipped with the submanifold metric
induced by its embedding in G.
Claim 2. The action G× (Gτ )e → (Gτ )e is transitive.
To justify this, we take x ∈ (Gτ )e and show that there exists g ∈ G with
x = g.e = gτ(g). Indeed, let γ : R → (Gτ )e be a geodesic in (Gτ )e with
γ(0) = e and γ(1) = x. Since (Gτ )e is a totally geodesic subspace of G, γ is
a geodesic in G, hence we have γ(t) = exp(tX), for all t ∈ R, where X is an
element of g. From τ(γ(t)) = γ(t) for all t ∈ R we deduce that (dτ)e(X) = X .
Then g := exp(12X) is in (Gτ )e and we have gτ(g) = g2 = exp(X) = x.
It only remains to observe that the stabilizer of e under the action mentioned
in the claim is Gµ. �
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