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642 JEREMIAH HELLER AND MIRCEA VOINEAGU

1. INTRODUCTION

Let X be a quasi-projective real variety. In [Teh10] the reduced Lawson homol-
ogy groups RL,H,, (X) are introduced as homotopy groups of certain spaces of
“reduced” algebraic cycles. For ¢ = 0 we have RLoH,(X) = H,(X(R);Z/2),
where H, (X (R);Z/2) is the Borel-Moore homology. At the other extreme we
have that RL,H,(X) is a quotient of the Chow group CH,(X). There are
generalized cycle maps

cYCqn  RLgH(X) = Hy (X (R);Z/2)
and the images of these cycle maps form a filtration of the homology
Im(cyenn) C Im(cycn—1,n) C -+ C Im(cycon) = Ho(X(R);Z/2).

The first step of this filtration is the image of the Borel-Haeflinger cycle map
Im(cyenn) = Ho(X(R);Z/2) a4 (see Theorem [6.3).

The construction of the reduced Lawson homology is based on Friedlander’s
construction of Lawson homology groups for complex varieties. Friedlander-
Mazur [FM94] have conjectured a relationship between the filtration on singular
homology of the space of complex points given by images of the generalized
cycle map and the niveau filtration. Teh makes an analogous conjecture for
the reduced Lawson groups.

CONJECTURE 1.1 ([Teh10, Conjecture 7.9]). Let X be a smooth projective real
variety. Then Im(cycyn) = Non—gHn(X(R); Z/2) for any 0 < g < n.

Here N,H,, (X (R); Z/2) is the niveau filtration which is the sum over all images
Im (Hn(V(R); Z/2) — Hu(X(R); Z/2))

such that dimV < p.

In the complex case, Friedlander-Mazur’s conjecture is a very difficult and
interesting question. It is known to be true with arbitrary finite coefficients as a
corollary of the Beilinson-Lichtenbaum conjecture. With integer coefficients, it
is known that Suslin’s conjecture for a smooth complex quasi-projective variety
X implies Friedlander-Mazur’s conjecture for X. Moreover, Beilinson showed
that Grothendieck’s conjecture B for a smooth complex quasi-projective variety
X is equivalent to the rational Friedlander-Mazur conjecture for X [Beil(] (see
also [Fri95]).

Surprisingly, the real case is totally different.

THEOREM 1.2. Conjecture [l is false.

To see the failure of this conjecture we first observe that the niveau filtration on
reduced Lawson homology is uninteresting (the case of Borel-Moore homology
is ¢ = 0). Specifically we have that

RL,H,(X) j>n

N;RL,H,(X) = {0 s
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REMARKS ON FILTRATIONS OF THE HOMOLOGY OF REAL VARIETIES643

This is a consequence of Corollary 4] which asserts that the coniveau spec-
tral sequence for the reduced morphic cohomology collapses. Conjecture [L]
is therefore equivalent to the surjectivity of the generalized cycle maps. It is
known that in general H, (X (R);Z/2) # H,(X(R);Z/2)q14 although it is diffi-
cult to find explicit examples. In Example and Proposition we give an
explicit class of such examples. Our examples are based on a decomposition
given in Theorem [B.1] of the reduced cycle spaces of a blow-up with smooth
center. This decomposition is a generalization to reduced cycle spaces of the
main result of [Sch&5)].

As another application of this decomposition we give in Corollary 5.5 examples
of smooth rational varieties X such that

cyer1 s RIVHY(X) — HY(X(R),Z/2)

is not injective. This is in contrast to the complex case where the group of
divisors modulo algebraic equivalence of an irreducible complex variety always
injects into the corresponding homology group. This also gives examples of thin
divisors which represent non-trivial classes in the reduced Lawson homology
group (see Remark [5.0).

The collapse of the coniveau spectral sequence for reduced morphic cohomology
is a consequence of local vanishing of motivic cohomology in degrees larger
than the weight together with the vanishing theorem proved in [HVI12b]. For
the purposes of seeing that Conjecture [[1] is false one does not need the full
strength of the collapsing, it suffices to use only the local vanishing of motivic
cohomology. However, an interesting consequence of the collapse of this spectral
sequence is that we can compute reduced morphic cohomology as the sheaf
cohomology

HZ,. (X;RLINH®) = RLIYH™(X).
As a consequence, we identify a family of birational invariants given by
RLIH’(X) = HY,.(X; RLIH),

for any ¢ > 0. In case ¢ = dim(X) we obtain that the number s of connected
components of X (R) is a birational invariant (i.e. RLY™X) HO(X) = (Z/2)*).
The purely algebraic nature of s forms part of the main result of [CTP90], where
they use étale cohomology. The relation between reduced morphic cohomology
and étale cohomology is discussed in the final section. As an application of
these birational invariants we compute reduced Lawson homology of a real
rational surface in Corollary 310

In Section [6] we discuss cycle maps. We show that there is basically one cycle
map from the mod-2 motivic cohomology to mod-2 singular cohomology of the
space of real points. As a consequence we see in Theorem that the Borel-
Haeflinger cycle map factors through the cycle map from reduced morphic
cohomology to singular cohomology.

We thank the anonymous referee for some helpful comments.
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644 JEREMIAH HELLER AND MIRCEA VOINEAGU

2. PRELIMINARIES

Let Y be a projective complex variety and Cq(Y") the Chow variety of effective
g-cycles on Y. Write Z,(Y) = (C4(Y)(C))T for the group completion of this
monoid. The group completion is done algebraically and Z,(Y") is given the
quotient topology. It turns out that this naive group completion is actually a
homotopy group completion [FG93], [LF92]. When U is quasi-projective with
projectivization U C U then define Z,(U) = Z,(U)/Z,(Us) where Uy, = U\U
(and the quotient is a group quotient). This definition is independent of choice
of projectivization [LF92], [FG93].

If X is a real variety then G = Z/2 acts on Z,(X¢) via complex conjugation.
The space of real cycles on X is defined to be the subgroup Z,(X¢)¢ of cycles
invariant under conjugation. Write Z,(X¢)*" for the subgroup generated by
cycles of the form a4+ @. The space of reduced cycles on X is defined to be the
quotient group

DEFINITION 2.1 ([Tehl0]). Let X be a quasi-projective real variety. The re-
duced Lawson homology of X is defined by

RLyH, (X)) = mRy(X).

When ¢ = 0 we have that Ro(X) = Z¢(X(R))/2 so by the Dold-Thom the-
orem RLoH;(X) = H;(X(R);Z/2) is the Borel-Moore homology of X (R). In
general RL,H,1;(X) are all Z/2-vector spaces. It is not known whether these
are finitely-generated vector spaces or not however we do have the following
vanishing theorem.

THEOREM 2.2 ([HVI2D]). Let X be a quasi-projective real variety. Then
RL H,(X) =0
if n > dim(X).

There is also a space R%(X) = Z9(X¢)%/Z9(X¢)™ of reduced algebraic cocy-
cles on X when X is normal and projective. We refer to [Teh10] for the details
of its construction. It is convenient to extend this definition to quasi-projective
normal varieties, which is done in [HVI2Db] although not introduced formally
as such an extension. We avoid difficulties with point-set topology by giving
the extension as a simplicial abelian group. Define the simplicial abelian group
of reduced cocyles on a quasi-projective normal real variety

_ Sing, Zq/Q(X@)G
= Sing, Z1/3(Xc)™

RY(X)

If X is a projective, normal real variety then Eq(X) = Sing, RY(X) is a
homotopy equivalence [HV12bl Lemma 6.7].
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DEFINITION 2.3 ([Tehl(]). Let X be a normal quasi-projective real variety.
Define the reduced morphic cohomology of X by

RLIHT(X) = m;RI(X).

The reduced Lawson homology and reduced morphic cohomology are related
by a Poincare duality. This is proved in [TehlO, Theorem 6.2] for smooth
projective varieties. We give a quick proof below which applies to both the
projective and quasi-projective case. If T is a topological abelian group we
write T = Sing, T" for the associated simplicial abelian group. If M is a G-
module and ¢ is the nontrivial element of G we write N = 1 + ¢ and define
M = Im(N). If in addition M is 2-torsion then we have the two fundamental

short exact sequences of abelian groups 0 — MY — M Ny M 5 0 and
0— M» — M% — M% /M — 0.

THEOREM 2.4. Let X be a smooth quasi-projective real variety of dimension d.
The inclusion B B

RUX) = Ra(X x A?)
is a homotopy equivalence of simplicial abelian groups. Consequently there is a
natural isomorphism RLIH™(X) = RLq_gHq n(X).

Proof. This follows from consideration of the following comparison diagrams
of homotopy fiber sequences of simplicial abelian groups where the right-hand
horizontal maps are all surjective,

24/2(X¢)¢ —————> 29/2(X¢) ———> Z4/2(X¢)™

Z./2(Xc xc AL)E — Za/2(Xc xc AL) —> Z4/2((Xc xc AL)™

and

29/2(Xc)™ 29/2(Xc)¢ RI(X)

| | |

Z4/2(Xc xc AL)™ — Z4/2(Xe xe AL)C —=Ry(X x AL).

The displayed homotopy equivalences follow from [Fri98, Theorem 5.2] and
[HV12bl Corollary 4.20]
O

The inclusion of algebraic cocycles into topological cocycles defines a general-
ized cycle map

cycqn : RLIH"(X) — H"(X(R);Z/2).
If X is smooth and ¢ > dim X then the cycle map cycg,y, is an isomorphism. For
X projective this follows from [Teh10), Corollary 6.5, Theorem 8.1] (the results
there are stated under the assumption that X (R) is nonempty and connected
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646 JEREMIAH HELLER AND MIRCEA VOINEAGU

but this is unnecessary). The isomorphism for projective varieties implies the
isomorphism for quasi-projective varieties (for example by using cohomology
with supports and an argument as in [HVI2al Corollary 4.2]).

There are operations called the s-map in both reduced Lawson homology
and reduced morphic cohomology s : RLyH,(X) — RL,_1H,(X) and s :
RLYH™(X) — RLY™H™(X). Iterated compositions of s-maps give rise to
generalized cycle maps in reduced Lawson homology

cycqn : RLyH,(X) 2 RLy_1H,(X) S -+ 5 RLoH,(X) = Ho(X(R);Z/2).

The s-map in morphic cohomology is compatible with the cycle map in the
sense that cycy , agrees with the composition

cycqn : RLUH™(X) < RLOTVH™(X) 22200, g (X (R); Z/2).

Let X be a normal quasi-projective real variety and Z C X a closed subvariety.
The reduced morphic cohomology with supports is defined in the usual way with
RLIHTY(X)yz = mR4(X)z where RY(X )z = hofib(R¥(X) — RI(X — Z)).

THEOREM 2.5 (Cohomological purity for reduced morphic cohomology). Let
X be a smooth, quasi-projective real variety of dimension d and Z C X a
closed smooth subvariety of codimension p. There are homotopy equivalences
RY(X)y ~ R17P(Z), which induce natural isomorphisms

RLYH™(X); = RLY"PH" P(Z).

Proof. This follows from the localization sequence for reduced Lawson homol-
ogy [Tehl0, Corollary 3.14] together with Poincare duality, Theorem 4] be-
tween reduced Lawson homology and reduced morphic cohomology. O

Recall that a presheaf F(—) of cochain complexes satisfies Nisnevich descent
provided that for any smooth X, any étale map f : Y — X, and open embed-
ding i : U C X such that f:Y — f~}(U) — X — U is an isomorphism, we have
a Mayer-Vietoris exact triangle (in the derived category of abelian groups):

F(X)=FY)® FU)— F(f~Y(V)) = F(X)[1].

COROLLARY 2.6. The presheaf ﬁq(—) is homotopy invariant theory and satis-
fies Nisnevich descent.

Proof. Tt is homotopy invariant by [Teh10, Theorem 5.13]. Nisnevich descent
follows immediately from Theorem O

3. BIRATIONAL INVARIANTS AND EXAMPLES

We use the following decomposition theorem for spaces of reduced cycles of
blow-ups with smooth center in order to obtain a decomposition of the cok-
ernels of the cycle map from reduced Lawson homology. Later we use this
decomposition to exhibit spaces whose cycle map has nontrivial cokernel. Re-
call that R_,(X) = Ro(X x A9) for ¢ > 0.
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THEOREM 3.1. Let X be a smooth projective real variety and Z C X a smooth
closed irreducible subvariety of codimension d > 1. Let w : Blz(X) — X be the
blow up of X with smooth center Z. Then, for any 0 < ¢ < dim(X) we have a
homotopy equivalence of topological abelian groups

h.e.
(32) Ry(Blz(X))"E Ry(X) ® Ry-a:1(2) @ Ry-as2(Z) & ® Ry (2).
Moreover this decomposition is compatible with s-maps.

Proof. We follow the ideas used to prove [Voi, Theorem 2.5] and the main
theorem of [Sch85]. We work in H~! AbTop, the category of topological abelian
groups with a CW-structure with inverted homotopy equivalences.

Recall that 771(Z) — Z is the projective bundle p : P(NzX) — Z of dimension
d — 1. The decomposition in the statement of the theorem is given as follows.
The first component of the map is 7w, (notice that m, o 7* = id). The other
maps are given via compositions

® _ . oO(1 l
01 Ry—arr1(Z) 2 Ry (Bl (X)) 200 R (Bl4(X)),

where p* : Ry(Z) = Ryra—1(P(N2X)) 2 Rypa—1(Blz(X)).
Using the Mayer-Vietoris sequence (see Corollary 220]), we have the homotopy
equivalence

Ri(Blz(X)) ™5 Ru(X) & Ker(p.),
where p. : Ri(Nz(X)) = Ri(Z). In H=LAbTop

(3.3) Ker(p:) £ Rg-a+1(2) ® Rg—a+2(Z2) & -+ & Rq-1(Z).

The Segre classes s;(NzX)N — : Ri(Z) = Rird—1-1(Z) satisfy s;(Nz(X)) N
— =0ifl < 0and so(Nz(X))N— = id. Using this one can prove the projective
bundle formula for the reduced cycle groups in the usual way, see [Teh10]. The
projective bundle formula is valid as well for negative indexes. We thus obtain

Ri(Nz(X)) = ®o<i<d—1Ri—d+1+1(2).

Now one can conclude the homotopy equivalence (B3).

By [Tehl(] the s-maps are compatible with all of the maps involved in the

decomposition ([B2) therefore this decomposition is preserved by the s-maps.
O

The generalized cycle maps cycqn : RLeHn(X) = Hp(X(R),Z/2), are defined
as a composite of s-maps together with the Dold-Thom isomorphism. Write
Tgn(X) = coker(cycqn : RLgH,(X) — Ho(X(R),Z/2))
and
K n(X) =ker(cycqn : RLgH,(X) = Ho(X(R),Z/2)).
Notice that Ty, (X) =0 = Ky,(X), for ¢ <0 and any X.
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COROLLARY 3.4. Let 7 : Blz(X) — X and Z be as in the above theorem. Then
TgnBlz(X)) = Tyn(X) ® Tg-1,n-1(2) @ .. & Ty—at1,n—a+1(2),

and

(3.5)  KgnBlz(X)) =Kyn(X)® Kg—1-1(2) ® ... & Ky—gt1,n-d+1(2).

Proof. In the case k = 0 the decomposition [B.2)) gives

Ro(Blz(X)(R)) "< Ro(X(R)) ® R-441(Z(R)) & R-a2(Z(R) & - - & Ro1(Z(R)),

therefore producing the decomposition of Borel-Moore homology

Hi(Blz(X)(R),Z/2) =
Hi(X(R),Z/2) ® He-a-1(Z(R),Z/2) ® - - - & Hr—1(Z(R), Z/2).

The s-maps respect the decomposition [2)) and comparing the decomposition
for ¢ = 0 and for ¢ > 0 yields the result. O

COROLLARY 3.6. If Z(R) = 0, then T, ,(Blz(X)) = Tyn(X) for any 0 < ¢ <
n < dim(X).

REMARK 3.7. An analog of Corollary B4 for the cokernel of the Borel-
Haeflinger cycle map was originally proven by Schiilting in [Sch85]. There
separate arguments are needed to give a decomposition algebraically and a de-
composition topologically. An advantage that our uniform proof has is that
is entirely algebraic, the homology of real points being expressed in terms of
homotopy of the group of algebraic cycles Ro(X).

REMARK 3.8. Using similar techniques one can prove a decomposition analo-
gous to ([B2]) for the spaces of real cycles defining dos Santos equivariant Lawson
homology groups.

COROLLARY 3.9. The groups Th,,(X) and K1.,(X) are birational invariants
for smooth projective real varieties.

Proof. By [AKMWO02, Theorem 0.3.1] every birational map between smooth
projective varieties factors as a composition of blow-ups and blow-downs with
smooth centers. The result then follows from Corollary [3.4 g
We close the section with the following computation.

birational
COROLLARY 3.10. Let X be a rational smooth projective surface i.e. X e
PZ. Then the cycle map

cycqm : RLyH,(X) — H (X (R),Z/2)
s an isomorphism for ¢ < n.

Proof. We have Ro(X) = Ro(X(R)). By Corollary we have that T ,(X)
and K ,(X) are birational invariants and we know that Ty ,(P3) = 0 =
K1.,(P%). By Theorem L4l the group moR2(X) is a birational invariant. O
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REMARK 3.11. For X as in the previous corollary we have that RL H,(X) =0
for n < g and n > 2 and RLoHo(X) = RLoH2(X) = RL1Hy(X) =
RLyHy(X) = 7,)2.

4. CONIVEAU SPECTRAL SEQUENCES

In this section we show that the coniveau spectral sequence for reduced morphic
cohomology collapses. We make use of [CTHK97| for the Bloch-Ogus theorem
identifying the Fs-term of this spectral sequence. Let X be a smooth, quasi-
projective real variety and write X ) for the set of points € X whose closure
has codimension p. Let h* be a cohomology theory with supports. Define
hi(X) = colimycx bt ;(U) and h'(k(z)) = colimycz h*(U) (where in both
colimits, U ranges over nonempty opens). One may form the Gersten complex
0= @ mx)—» @ )= @ rrx) -

e X (0) reX @) reX(®)

This complex gives rise to the coniveau spectral sequence

EP = P nrtX) = hrti(X)

rzeX ()

The associated filtration is NPA"(X) = UzIm(h%(X) — h(X)), where the
union is over closed subvarieties Z C X of codimension p.

ProrosiTION 4.1. [CTHK97, Corollary 5.1.11, Theorem 8.5.1] Let h* be a
cohomology theory with supports on Sm/R which satisfies Nisnevich excision
and is homotopy invariant. Let HY? be the Zariski sheafification of the presheaf
U — h?(U). Then the Gersten complex ET'? is a flasque resolution of H? and
the coniveau spectral sequence has the form

Y = HY, (X;H) = H9(X).

Zar
For every q, the group H°(X,H%) is a birational invariant for smooth proper
varieties.

COROLLARY 4.2. Let X be a smooth quasi-projective real variety. For each k
we have spectral sequences

EPi(k)= @5 RL*PHI(k(z)) = RL*H"T(X).
e X ()
The Ba-terms are EY(k) = HY,, (X; RLVHT) and each HY,, (X; RLEHY) is a
birational invariant for smooth projective real varieties. Moreover, the s-maps
induce maps of spectral sequences { EP1(k)} — {EP%(k +1)}.

Proof. By Corollary reduced morphic cohomology is homotopy invariant
and satisfies Nisnevich excision. For z € X we have that Z N U is smooth
for small enough open U C X. Therfore, for small enough open U C X we can
apply Theorem 25lto ZNU C U and we conclude that we have an isomorphism
RLFHPY(X), = RL¥PH9(k(x)). Thus the E;-page of the coniveau spectral
sequence can be rewritten in the displayed form. The s-maps are natural
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650 JEREMIAH HELLER AND MIRCEA VOINEAGU

transformations and so induce maps of the exact couples defining the coniveau
spectral sequence. O

The following result gives us the collapsing of the coniveau spectral sequence.
It is a consequence of the main vanishing theorem of [HV12b] and the local
vanishing of equivariant morphic cohomology and morphic cohomology.

THEOREM 4.3. Let R = Ory,,... 1, be the semi-local ring of a smooth, real
variety T at a finite set of points ty,...,t, € T. Then
RL*H?(Spec R) = 0
ifq#0 and any k > 0.
Proof. For convenience write Y = Spec R. By definition
RL*HY(Y) = colim RL*H(U),

where the colimit is over all open U C T such that all £; € U. Recall also that
filtered colimits commute with homotopy groups and preserve exact sequences.
We need to see that RL*H*~*(Y) = n,R¥(Y) = 0 for s # k. The main
vanishing result in [HVI2b, Theorem 6.10] implies that msR*(Y) = 0 for s > k.
Consider the homotopy fiber sequences of simplicial abelian groups

Zk)2(Ye)G —= 2k /2(Ye) —= 2k /2(Ye)™

and
ZF /(Yo )™ — ZF/2(Ye)C —= RE(Y).

Because m, 2% /2(Ye)® = 0 = m,2%/2(Ye) if s < k — 1 ([FHW04, Theorem
7.3] and [HVI2a, Lemma 3.22]) we see that m,Z%/2(Yc)® = 0if s < k — 1.

Using the second homotopy fiber sequence we conclude that wsﬁk(Y) = 0 if
s<k-—1. O

COROLLARY 4.4. Let X be a smooth quasi-projective real variety. For any k,
the coniveau spectral sequence for reduced morphic cohomology satisfies

EP(k) =0

for ¢ # 0. Consequently EY°(k) = E2O(k) and so we have natural isomor-
phisms

HY, (X;RLFH) = RLFHP(X).
In particular H*(X,RLIH®) = RLIH®(X) = 7,(RY(X)) is a birational in-
variant for smooth projective real varieties.

Proof. We have EV'?(k) = @,¢c xw RLF"PHI(k(z)). For x € X ) we have that
k(z) = Ou,,, where U is the open set of nonsingular points of T and 7 is the
generic point. In particular the previous result implies that RL¥~PH?(k(x))
for g # 0. The other statements follow from Proposition E.1] O
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REMARK 4.5. The case k = dim X tells us that H% = 0 for any i > 0 where
H?, is the Zariski sheafification of the presheaf U — H*(U(R);Z/2). This also
follows from [Sch94, Theorem 19.2].

REMARK 4.6. Corollary 4] gives us birational invariants RLIH®(X) for 0 <
g < d=dim(X). If ¢ = d then we have

RLH(X) = H*(X(R); Z/2) = (Z/2)®*

and therefore s = s(X) = #(connected components of X (R)) is a birational
invariant of an algebraic nature. This also follows from the main result of
[CTP90] where they show that HY(X,H?%) = HY(X(R),Z/2) for any n >
dim(X)+1. Here H.; is the sheaf associated to the presheaf U — H? (U, u5™).
At the other extreme if one takes ¢ = 0,

RL°H(X) = (Z/2)®"

where r = r(X) = #(geometrically irreducible components of X) and so r is
also a birational invariant.

REMARK 4.7. By Corollary [£.4] and Corollary 2] the s-maps
RLIH™(X) > RLITTH™(X)

are obtained as the map induced on Zariski sheaf cohomology by the sheafified
s-maps s : RLIH® — RLITHO. In particular we see that the generalized cycle
map

cyYcqm : RLTH™(X) — H™(X (R); Z/2)

is obtained from the sheafified cycle map RLIH® — H$. In the last section
we show that this cycle map is naturally related to the Borel-Haeflinger cycle
map [BH61].

We finish by observing that Poincare duality gives the collapsing of the niveau
spectral sequence for reduced Lawson homology (of possibly singular varieties).

PROPOSITION 4.8. Let X be a quasi-projective real variety. Write X,y for
the set of points x € X whose closure has dimension p. The niveau spectral
sequence

E;,q(k?) = @xeX<p)RLka+q(k($)) = RLyHp14(X)
satisfies B} (k) = 0 for any q # 0 and therefore Ej (k) = E>, (k).

Proof. The niveau spectral sequence is constructed as in [BO74]. Consider an
x € X(,. For any open U C T which is smooth, by Theorem 2] we have
RLyH,(U) = RLP~*HP=™(U). In particular, we see that RLyH,(k(z)) =
RLP=FHP="(k(z)). Therefore by Corollary 4l we have RLjH,:,(k(z)) =
RLP~*H~9(k(x)) = 0 for any q # 0. O
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5. FILTRATIONS IN HOMOLOGY
Let X be a quasi-projective real variety of dimension d. The generalized cycle

map ¢gn : RLyH,(X) — H,(X(R),Z/2) is the composition of ¢ iterations of
the s-map together with the Dold-Thom isomorphism. Write

RT,H,(X) = Im(¢qn : RLyH,(X) = H, (X (R); Z/2).

This gives us a decreasing filtration of the homology of the space of real points
and is called the topological filtration.
Associated to the niveau spectral sequence is the niveau filtration

NpRLLH,(X) = > Im(RLyH,(V) = RLyH,(X)).
dim V<p
Notice that in the complex case, if Y is a complex variety of dimension d then

Weak Lefschetz theorem says that
NoHp(Y(C);Z) = Npy1 Ho(Y(C); Z) = -+ = NgHn (Y (C); Z)).

)

In particular, in the complex case there are only n 4 1 steps in the filtration,
and another d — n are equal to the homology. In the real case, we don’t have
this theorem and so apriori all one has is a filtration.

NoH,.(X(R);Z/2) C--- C NgH,(X(R);Z/2) = H,(X(R);Z/2).
Teh has formulated the following conjecture which is made in analogy with a

conjecture of Friedlander-Mazur [FM94, Conjecture p.71] for complex varieties.

CONJECTURE 5.1 ([Tehl0, Conjecture 7.9]). Let X be a smooth projective real
variety. Then RT H,(X) C Nap_oH, (X (R);Z/2) and moreover this contain-
ment is an equality RTqH,(X) = Nop_gHp (X (R); Z/2) for any 0 < ¢ < n.

JFrom Proposition 4.8 we have the following equality:

E> (k) = Np_qRLyH,(X)/Ny_q 1 RLLH,(X) =0

n—q,q

for any ¢ # 0. This means that for any k& we have

RLyH,(X)= NqRLH,(X)="-+-=Npy1RL H,(X) = N,RLiH,(X),
and
0=N_1RLyH,(X)= NoRL,H,(X)=+--=N,_1RLH,(X).

The first row of equalities contains the groups that appear in Conjecture (.11
Consequently the first part of the conjecture is obviously true because by the
above we have that N; H,,(X(R);Z/2) = H,(X(R); Z/2) for all j > n.

The second part of the conjecture is false because the s-maps are not always
surjective. Using the material from Section B] we give an explicit example of
this failure. Recall that we write T, ,(X) = coker(cycgn : RLyH,(X) —
Hp(X(R); Z/2)).
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EXAMPLE 5.2. Let Z C P} be the smooth irreducible elliptic curve given by
the equation t?z + ty? — 2® = 0, 2 = 0. Then Z(R) is well known to consist
of 2 connected components (see for example [BCRI8| Example 3.1.2]). Let
X = Blz P? be the blow-up of P? along Z. Then T 2(X) = T2 2(P3) & T1.1(2)
by Corollary B4l Because RL1H1(Z) = moR1(Z) = Z/2 and Z(R) has two
components we conclude that T5 2(X) = Z/2.

More generally we have the following.

PROPOSITION 5.3. For each N > 3, there is a smooth projective real variety
X of dimension N (which is topologically connected) such that Ty 4(X) # 0 for
all2<g< N —1.

Proof. Let Z C PN be a smooth irreducible real curve such that Z(R) has at
least 2 connected components. Let s denote the number of connected compo-
nents of Z(R). Since Z is irreducible we have that R1(Z) = Z/2. Therefore
Ti1(Z) = (Z/2)*~!. Since Z is a curve T;,(Z) = 0 for all other values of i
and n. We take X — P to be the blow up of PV along Z. Then T, ,(X) =
T11(Z) = Z/2°~! by Corollary B4 because 2 < ¢ < N — 1 = codim(Z). O

We also have a similar result for the kernel.

PROPOSITION 5.4. For each N > 3, there is a smooth projective real variety
X, birational to PV, such that Kq4(X) # 0 for all2 < g < N —1.

Proof. Let Z C PN be a smooth irreducible real curve such that Z(R) = 0.
Then K11(Z) = Z/2 and K, ,,(Z) = 0 for all other values of i and n. Take
X — P¥ to be the blow up of PV along Z. We have K, ,(X) = K11(Z) = Z/2
by Corollary 341 O

As an interesting particular case we have the following which is different than
the complex analog.

COROLLARY 5.5. There exists a smooth real variety X birational PY such that
the cycle map on divisors RLYHY(X) — HY(X (R),Z/2) is not injective.

REMARK 5.6. A k-cycle is said to be thin if it is a sum of closed subvarieties Z C
X with dim Z(R) < k. The kernel of the Borel-Haeflinger cycle map consists
entirely of thin cycles by [IS88] and the composite CHy(X) - RL Hy(X) —
H,(X(R);Z/2) agrees with the Borel-Haeflinger cycle map by Theorem
This means that the proposition above gives examples of nonzero classes which
are represented by thin cycles in RL,H,(X).

6. CYCLE MAPS

Let X be a smooth quasi-projective real variety. We discuss two natural cycle
maps from motivic cohomology to the singular cohomology of X (R). Based on
this, we show that Borel-Haeflinger map [BHG61] factors through the reduced
Lawson homology cycle map. We end the section with a discussion of the maps
involved in the Suslin conjecture from the view of the methods in this section.
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Recall that G = Z/2. If M is a G-space we write HS(M;Z/2) for the Borel co-
homology with Z/2-coefficients. The reduced morphic cohomology of X comes
equipped with a natural generalized cycle map to the singular cohomology of
real points. Composing this with the canonical map from real morphic coho-
mology and its isomorphism with motivic cohomology (with Z/2-coefficients)
gives us the cycle map

(61)  HE,(X:Z/2(g) - RLUHPI(X) 25

cyc

— HP7I(X(R); Z/2).
On the other hand the real morphic cohomology maps naturally to the
Borel cohomology of the space of complex points. In turn there is a map
HA(X(C);Z/2) — @H™ (X (R);Z/2) obtained by restricting to real points
together with the decomposition

HE(X(R),Z/2) = H'(X(R) x RP*;2/2) = @) H'(X(R),Z/2).

0<i<n

Composing with the appropriate projection gives us
(62)  HY(X;2/2(g)) — H5(X(C):Z/2) — HP (X (R): Z/2).

We show that the cycle maps (6.1 and (2] agree with each other. Basically
these agree because they can be seen as induced by maps of presheaves of
cochain complexes and so Theorem applies.

Write (T'op)an for the category of topological spaces homeomorphic to a fi-
nite dimensional CW-complex given the usual topology and ¢ : (Top)en —
(Sm/R) zqr for the map of sites induced by X — X (R).

THEOREM 6.3. Let X be a smooth quasi-projective real variety. The cycle maps
given by (61]) and (62) agree. Moreover the intermediate maps in (G2) can
be chosen so that the following diagram commutes

HY, (X, Z/2(q)) — HE/(X, u§*) ——— HE(X(C),Z/2)
RLPHP=1(X) —2% HP=1(X (R),Z/2) ~<— HA(X(R),Z/2).
for any p,q > 0.

Proof. Consider the following complexes of Zariski sheaves on Sm/R:

Z/2(q)(X) = (zequi (P 17", 0)(X xz AR) ® Z/2)[~2]
Z/2(q)** (X) = Sing,(29/2(Xc)%)[~2q]
Z,/2(q)""(X) = Homers (X (C) x A, Z/20(AL))[~2g]
Z/Z() T(X):Homcts(X((C)xEGxAt‘OP,Z/QO(Aq) [—2¢]
Z/2(q)E° (X) = Homers (X(R) x EG x AL, Z/20(A%))%[~24],
R(q)(X) = (Sing, Z7/2(Xc)/ Sing, Z7/2(Xc)™)[~2q]
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These complexes all satisfy Nisnevich descent for standard reasons. See e.g.
[AVI2D, Section 5] for the first three. Similarly for the complex Z/2(q)E°"(X)
because taking real points of a distinguished Nisnevich square of real varieties
gives a homotopy pushout square of spaces. The last complex satisfies Nisnevich
descent by Proposition As a consequence we have

Zar(Z52/2(q))
Zar (X3 2/2(0)*)
Zar (X3 Z/2(q)")

)
)

Hij(X:Z/2(q))
LIHR™(X;7/2)
H'™%9(X(C);2/2)

Zar(X32/2(q)P") = HG(X(C):Z/2)
2ar(XGZ/2(Q)E°T) = HG(X(R); Z/2)
Zar(XiR(q)) = RLYH'™(X),
where LY1HR~%9(X;7Z/2) denotes Friedlander-Walker’s real morphic cohomol-

ogy [FW02] and H*~%4(X (C);Z/2) is Bredon cohomology.
The map (6.1)) is induced by the map of complexes

1) 2)

(6.4) Z/2(q) = R(q) = ¢+Z/2[q].

The map 1) is given by the “usual” cycle map from motivic cohomology
to reduced morphic cohomology. It is defined as the composite Z/2(q) —
Z/2(q)*" — R(q). The map 2) is obtained by adjunction from the composite

¢*(R(q)) = Mapers((=)(R) x Ay Ro(AR))[-24] = Z/2[~q]

which arises because Ro(A%) ~ K(Z/2,q) and any CW complex has an open
cover given by contractibles.
We show that the map (6.2) is induced by a composite of maps:

(6.5)  Z/2(q) = tr<a Re.Z/2 3, 7./2(q )BOT N 7./2(q )BO’“ 5, .7./2]—q.

of Zariski complexes of sheaves in D~ (Shvzq,(Sm/R)) which we now explain.
Write € : Xet — Xz4r for the usual map of sites. The first unlabeled map
is the cycle map from motivic cohomology to etale cohomology. The map 3)
is obtained in Proposition [6.7] using Cox’s theorem [Cox79]. The map 4) is
obtained by restriction to real points. The map 5) will be obtained from the
adjoint of a map ¢*(Z/2(q)E°") — Z/2]|—q] as follows. Every CW-complex is
locally contractible and so

¢*(Z/2(9)£°") = Homers (EG x A}, Z/20(A%))[~24]

is a quasi-isomorphism of complexes of Zariski sheaves where the right-hand
side is the constant sheaf. In D /Q(Ab), any complex is quasi-isomorphic
with the complex given by its cohomology. We have that H”’q(EG;Z_/Z) =
HPt4(BG; Z/2) and therefore

H*Hom,s(EG x A},,, Z/20(A%))“[—2¢] = HT M (EG; Z/2) = Z,/2

top>
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for 0 < k < 2q and is 0 otherwise. This gives us the map
O*(Z/2(Q)E") = Bo<i<2qZ/2[—i] — Z/2[~i),
which induces the i** projection on cohomology
HG(X(R), Z/2) = ®o<i<a H" T (X(R), Z/2) — H" (X (R),Z/2).
In particular the adjoint of this map for ¢ = ¢ gives us the map 5)
Z/2(Q)R" — dZ/2[~q).

Because both map[6.5 and map [6.4l induce non-trivial maps in cohomology they
have to coincide by Theorem
O

In the proof of the previous theorem we made use of the following result.

THEOREM 6.6. Let k =R or C and write ¢ : (T'op)an — (Sm/E) zar the map of
sites that send X — X (k) where (Top) is the category of spaces homeomorphic
to finite dimensional CW complexes equipped with the usual topology. Then we
have

(1) Homp-((sm/r)z..)(Z/2(q), ¢+2/2[—q]) = Z/2,
(2) Homp- (($m/r)za,) (R(2); 9+2/2(—q]) = Z/2,
(3) Homp-(($m/C)zar) (Z(q)**", RpuZ/n) = Z/n, for any n > 1.

Proof. We have a quasi-isomorphism Z/2(q) ~ Z/2(q)*" and that
Hom(Z/2(q)*", ¢+Z/2[—q]) = Hom(¢"(Z/2(q)**"), Z/2[—q)).
Because every CW complex is locally contractible in D~ (Top) we have
¢*(Z/2(g)*")[2q) = Homers(— x Af,,,, Z/20(A%)C) = Sing, Z/20(AE)“.
;From [dS03, (3.6)] it follows that Z/2¢(A%)% ~ Hiiq K(Z/2,i). This yields
the result because we then have

Homp - (1op) (6*(Z2/2(q)), Z/2[~ @Hq (Z)2,i);2)2) = Z,)2.

In the proof of Theorem [6.3] we observed that ¢*R(q) ~ Z/2[—q| and so

Homp - ((sm/R)za,) (R(2), $+Z/2[—q])
= Homp- ((sm/R) 7a,) (9" R(4), Z/2[—q])
= Homp—((sim/R) z,,) (Z/2[=4], Z/2[—q]) = Z/2.

The last item follows from the equivalence ¢*Z(q)*" ~ Z. We have

Homp - ((sm/C) ) (Z°°*(q), RpwZ/1) = Homp - ((sm/R) 5ar) (L, Z/0) = Z/n,

for any n > 1.

DOCUMENTA MATHEMATICA 17 (2012) 641-661



REMARKS ON FILTRATIONS OF THE HOMOLOGY OF REAL VARIETIESGH7

In the proof of Theorem [6] we also used the following proposition which relies
on Cox’s theorem identifying the etale cohomology of a real variety with Borel
cohomology.

PROPOSITION 6.7. There is a quasi-isomorphism p : tr<s,Re.Z/2 — Z./2(q)B°"
of complexes of Zariski sheaves.

Proof. We show that the canonical map Z/2(q)?°" — Re,.Z/2, constructed
in [HVI2h, Proposition 5.5] induces a quasi-isomorphism Z/2(q)%°" —
tr<oqRe,Z/2. The map p is its inverse in the derived category. Its hyper-
cohomology gives the cycle map H(X,Z/2) — HJ,(X,Z/2), for every n > 0.

There is a quasi-isomorphism Re*,ug@q = Re*,ug@q” and a commutative dia-
gram
(6.8) Z/2(q)Br ————— tr<a,Re, pud?

t’l“gqu/Q(q + Z')BOT —_— tTSQQRG*M§q+i.
Take ¢ = ¢q. The result follows by showing the bottom map is a quasi-
isomorphism. In [HVI2D, Section 5] it is shown that the composite
7.)2(2q) — tr<2gZ/2(29)P" — tr<g,Re. s>

is the usual cycle map Z/2(2q) — trgque*u§®2q. By Voevodsky’s resolu-
tion of the Milnor conjecture [Voe03| this cycle map is a quasi-isomorphism.
This implies that that H%(X,Z/2) — HX(X,Z/2) is a surjective map be-
tween finite-dimensional spaces for n < 2¢. By [CoxT79] both vector spaces
have the same dimension and so the map is an isomorphism. Therefore
Z])2(q)P°r ~ tr<o,Re,Z/2.

|

Let azq, denote Zariski sheafification and define the following sheaves
H(q) =azar(U — Hy(U(C)),Z/2(q)))
He(G) =azar(U — H(U(C)), Z/2))
Hg(G) =azar (U — Hg(U(R), Z/2)),
M (@) =azar(U — HE(U, p3)),
Hg =azar (U — H"(U(R),Z/2)).

Sheafifying the diagram in Theorem for p = ¢ gives the commutative dia-
gram

H(q) ——= H (g) —= HL(G)

T

RLIHO s 3 HL(G).
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By Corollary L4l and Corollary .2 the sheafified cycle map cycq,o induces the
usual cycle map between reduced morphic cohomology and singular cohomology
RLIH™(X) = Hioy (X: REIH) = Hio (X HY) = H (X (R); Z/2).

The map H%,(q) = HZ,(¢) induces the Bloch-Ogus isomorphism
CH(X) = Hy,,.(X; "}, (q) = Hy,, (X5 HE ().
The composite HY,(q) = HE(G) = HE(G) — HG induces a map
CHY(X) = Ho, (X He (@) = HE,, (X HR) = HU(X(R); Z/2)
which by [CTS96, Remark 2.3.5] is just the Borel-Haeflinger cycle map sending
a closed irreducible Z C X to the Poincare dual of the fundamental class of Z
if dim Z(R) = dim Z and zero otherwise. The above commutative diagram tells

us that this agrees with the composite 79(q)er = H}4(q) = LRIH® — HE and
so we immediately obtain the following.

THEOREM 6.9. Let X be a smooth quasi-projective real variety. For any q > 0,
the Borel-Haeflinger cycle map factors as the composite

CHY(X)/2 — RLIHY(X) 2“2 HI(X(R),Z/2),
where the first map is the natural quotient.

Next we compare the s-map in reduced morphic cohomology with the opera-
tion (—1) in étale cohomology. Recall that the operation (—1) : HZ,(X; u5?) —
HAFY(X; uS7) is defined to be multiplication with the class (—1) which
is the image of —1 under the boundary map H(X;G,,) — HL(X;pus)
in the Kummer sequence. By naturality this is equal to the pullback of
(—1) € HL(Spec(R); u2) under the structure map X — Spec(R). Sheafify-
ing gives the operation on Zariski sheaves (—1) : #%,(¢) — H% (¢ +1).

PROPOSITION 6.10. Let X be a smooth quasi-projective real variety of dimen-
ston d. The following square commutes for any ¢ > 0

Hy, (X:HMi(q)) —— RLIH'(X)

lu(fl) lUs
HY, (XM (g +1)) —— RLTHY(X).
For any q > d+ 1 all maps are isomorphisms.

Proof. The s-operation is induced by multiplication with s € RL*H°(Spec(R)),
where s is the generator. Sheafifying the s-map gives a map of Zariski sheaves
and the composite RLIH® — RLITIHO — HY induces the usual s-map on
sheaf cohomology.

The class (—1) € H},(Spec(R); p2) and (—1) maps to s under the isomorphism
H, (Spec(R); p2) = RL'H(Spec(R)) because they both map to the generator
of HO(pt;Z/2). Therefore the above square commutes. When ¢ > d then the
vertical maps are isomorphisms, both Hf  (X;H%(q)) — H'(X(R);Z/2) and
RLYHY(X) — H'(X(R);Z/2) are isomorphisms. a
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COROLLARY 6.11. Let X be a smooth quasi-projective real variety. We have
the isomorphism of rings

IR

H,(X,p3™)[s™'] = RL'H*(X)[s7'] = H* (X (R), Z/2),

where s = (—1) under the left-hand isomorphism.

REMARK 6.12. The map HZ,(¢) — RLIHC is not in general an isomorphism of
sheaves as we can see for the case of a smooth projective variety of dimension
dim(X) = ¢q. In this case the first group surjects with non-trivial kernel in
codimension 0, 1,2 (under some mild conditions on X) onto the cohomology of
real points by [CTS96]. On the other hand the latter group is the cohomology
of real points by [Tehl0].
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