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1 Definitions and Notation

Our main result, theorem 3.6, shows that there is an equivalence of categories
between the orthogonal components for the slice filtration (see definition 1.1)
and the weakly birational motivic stable homotopy categories which are con-
structed in this paper (see definition 2.9). Relying on this equivalence; we are
able to describe over an arbitrary base scheme (see theorems 4.2, 4.4 and 4.6)
the slices for projective spaces (including P∞), Thom spaces and blow ups. We
also construct the birational motivic stable homotopy categories (see definition
2.4), which are a natural generalization of the weakly birational motivic sta-
ble homotopy categories, and show (see proposition 2.12) that there exists a
Quillen equivalence between them when the base scheme is a perfect field. Our
approach was inspired by the work of Kahn-Sujatha [1] on birational motives,
where the existence of a connection between the layers of the slice filtration
and birational invariants is explicitly suggested. Furthermore, this approach
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allows to obtain analogues for the slice filtration in the unstable setting (see
remark 3.8).

In this paper X will denote a Noetherian separated base scheme of finite Krull
dimension, SchX the category of schemes of finite type over X and SmX the
full subcategory of SchX consisting of smooth schemes over X regarded as
a site with the Nisnevich topology. All the maps between schemes will be
considered over the base X . Given Y ∈ SchX , all the closed subsets Z of Y
will be considered as closed subschemes with the reduced structure.

Let M be the category of pointed simplicial presheaves in SmX equipped with
the motivic Quillen model structure [14] constructed by Morel-Voevodsky [8, p.
86 Thm. 3.2], taking the affine line A1

X as interval. Given a map f : Y → W in
SmX , we will abuse notation and denote by f the induced map f : Y+ → W+

in M between the corresponding pointed simplicial presheaves represented by
Y and W respectively.

We define T in M to be the pointed simplicial presheaf represented by S1∧Gm,
where Gm is the multiplicative group A1

X − {0} pointed by 1, and S1 denotes
the simplicial circle. Given an arbitrary integer r ≥ 1, Sr (respectively Gr

m)
will denote the iterated smash product S1∧· · ·∧S1 (respectively Gm∧· · ·∧Gm)
with r-factors; S0 = G0

m will be by definition equal to the pointed simplicial
presheaf X+ represented by the base scheme X .

Let Spt(M) denote Jardine’s category of symmetric T -spectra on M equipped
with the motivic model structure defined in [6, Thm. 4.15] and let SH denote
its homotopy category, which is triangulated. We will follow Jardine’s notation
[6, p. 506-507] where Fn denotes the left adjoint to the n-evaluation functor

Spt(M)
evn // M

(Xm)m≥0
� // Xn

Notice that F0(A) is just the usual infinite suspension spectrum Σ∞
T A.

For every integer q ∈ Z, we consider the following family of symmetric T -spectra

Cq
eff = {Fn(S

r ∧G
s
m ∧ U+) | n, r, s ≥ 0; s− n ≥ q;U ∈ SmX} (1.1)

where U+ denotes the simplicial presheaf represented by U with a disjoint base
point. Let Σq

TSH
eff denote the smallest full triangulated subcategory of SH

which contains Cq
eff and is closed under arbitrary coproducts. Voevodsky [16]

defines the slice filtration in SH to be the following family of triangulated
subcategories

· · · ⊆ Σq+1
T SHeff ⊆ Σq

TSH
eff ⊆ Σq−1

T SHeff ⊆ · · ·

It follows from the work of Neeman [9], [10] that the inclusion

iq : Σ
q
TSH

eff → SH
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has a right adjoint rq : SH → Σq
TSH

eff , and that the following functors

fq :SH → SH

s<q :SH → SH

sq :SH → SH

are triangulated, where fq is defined as the composition iq ◦ rq; and s<q, sq
are characterized by the fact that for every E ∈ SH, we have distinguished
triangles in SH:

fqE
θE
q // E

πE
<q // s<qE // S1 ∧ fqE

fq+1E
ρE
q // fqE

πE
q // sqE // S1 ∧ fq+1E

We will refer to fqE as the (q − 1)-connective cover of E, to s<qE as the
q-orthogonal component of E, and to sqE as the q-slice of E. It follows di-
rectly from the definition that s<q+1E, sqE satisfy that for every symmetric

T -spectrum K in Σq+1
T SHeff :

HomSH(K, s<q+1E) = HomSH(K, sqE) = 0

Definition 1.1. Let E ∈ Spt(M) be a symmetric T -spectrum. We will say
that E is n-orthogonal, if for all K ∈ Σn

TSH
eff

HomSH(K,E) = 0

Let SH⊥(n) denote the full subcategory of SH consisting of the n-orthogonal
objects.

The slice filtration admits an alternative definition in terms of (left and right)
Bousfield localization of Spt(M) [11, 12]. The Bousfield localizations are con-
structed following Hirschhorn’s approach [2]. In order to be able to apply
Hirschhorn’s techniques, it is necessary to know that Spt(M) is cellular [2,
Def. 12.1.1] and proper [2, Def. 13.1.1].

Theorem 1.2. The Quillen model category Spt(M) is:

1. cellular (see [5], [3, Cor. 1.6] or [12, Thm. 2.7.4]).

2. proper (see [6, Thm. 4.15]).

For details and definitions about Bousfield localization we refer the reader to
Hirschhorn’s book [2]. Let us just mention the following theorem of Hirschhorn,
which guarantees the existence of left and right Bousfield localizations.
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Theorem 1.3 (see [2, Thms. 4.1.1 and 5.1.1]). Let A be a Quillen model
category which is cellular and proper. Let L be a set of maps in A and let K
be a set of objects in A. Then:

1. The left Bousfield localization of A with respect to L exists.

2. The right Bousfield localization of A with respect to the class of K-colocal
equivalences exists.

Now, we can describe the slice filtration in terms of suitable Bousfield localiza-
tions of Spt(M).

Theorem 1.4 (see [12]). 1. Let RC
q

eff
Spt(M) be the right Bousfield local-

ization of Spt(M) with respect to the set of objects Cq
eff (see Eqn. (1.1)).

Then its homotopy category RC
q

eff
SH is triangulated and naturally equiv-

alent to Σq
TSH

eff . Moreover, the functor fq is canonically isomorphic to
the following composition of triangulated functors:

SH
R // RC

q

eff
SH

Cq // SH

where R is a fibrant replacement functor in Spt(M), and Cq a cofibrant
replacement functor in RC

q

eff
Spt(M).

2. Let L<qSpt(M) be the left Bousfield localization of Spt(M) with respect
to the set of maps

{Fn(S
r ∧G

s
m ∧ U+) → ∗| Fn(S

r ∧G
s
m ∧ U+) ∈ Cq

eff }

Then its homotopy category L<qSH is triangulated and naturally equiva-

lent to SH⊥(q). Moreover, the functor s<q is canonically isomorphic to
the following composition of triangulated functors:

SH
Q // L<qSH

Wq // SH

where Q is a cofibrant replacement functor in Spt(M), and Wq a fibrant
replacement functor in L<qSpt(M).

3. Let SqSpt(M) be the right Bousfield localization of L<q+1Spt(M) with
respect to the set of objects

{Fn(S
r ∧G

s
m ∧ U+) | n, r, s ≥ 0; s− n = q;U ∈ SmX}

Then its homotopy category SqSH is triangulated and the identity functor

id : RC
q

eff
Spt(M) → SqSpt(M)

is a left Quillen functor. Moreover, the functor sq is canonically isomor-
phic to the following composition of triangulated functors:

SH
R // RC

q

eff
SH

Cq // SqSH
Wq+1 // RC

q

eff
SH

Cq // SH
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Proof. (1) and (3) follow directly from [12, Thms. 3.3.9, 3.3.25, 3.3.50, 3.3.68].
On the other hand, (2) follows from proposition 3.2.27(3) together with theorem
3.3.26; proposition 3.3.30 and theorem 3.3.45 in [12]

2 Birational and Weakly Birational Cohomology Theories

In this section, we construct the birational and weakly birational motivic sta-
ble homotopy categories. These are defined as left Bousfield localizations of
Spt(M) with respect to maps which are induced by open immersions with a
numerical condition in the codimension of the closed complement (which is
assumed to be smooth in the weakly birational case). The existence of the
left Bousfield localizations considered in this section follows immediately from
theorems 1.2 and 1.3.

Lemma 2.1. Let a, a′, b, b′, p, p′ ≥ 0 be integers such that a − p = a′ − p′ and
b − p = b′ − p′. Assume that p ≥ p′, then for every Y ∈ SmX , there is a weak
equivalence in Spt(M), which is natural with respect to Y

ga,bp,p′(Y ) : Fp(S
a ∧G

b
m ∧ Y+) → Fp′(Sa′

∧G
b′

m ∧ Y+)

Proof. We have the following adjunction (see [12, Def. 2.6.8])

(Fp, evp, ϕ) : M → Spt(M)

Using this adjunction, we define ga,bp,p′(Y ) as adjoint to the identity map:

Sa ∧G
b
m ∧ Y+

id
−→ evp(Fp′ (Sa′

∧G
b′

m ∧ Y+)) ∼= Sp−p′

∧G
p−p′

m ∧ Sa′

∧G
b′

m ∧ Y+

∼= Sa ∧G
b
m ∧ Y+

Thus, it is clear that ga,bp,p′(Y ) is natural in Y , and it follows from [12, Prop.
2.4.26] that it is a weak equivalence in Spt(M).

Definition 2.2 (see [13, section 7.5]). Let Y ∈ SchX , and Z a closed sub-
scheme of Y . The codimension of Z in Y , codimY Z is the infimum (over the
generic points zi of Z) of the dimensions of the local rings OY,zi .

Since X is Noetherian of finite Krull dimension and Y is of finite type over X ,
codimY Z is always finite.

Definition 2.3. We fix an arbitrary integer n ≥ 0, and consider the following
set of open immersions which have a closed complement of codimension at least
n+ 1

Bn = {ιU,Y :U → Y open immersion |

Y ∈ SmX ;Y irreducible; (codimY Y \U) ≥ n+ 1}

The letter B stands for birational.
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Now we consider the left Bousfield localization of Spt(M) with respect to a
suitable set of maps induced by the families of open immersions Bn described
above.

Definition 2.4. Let n ∈ Z be an arbitrary integer.

1. Let BnSpt(M) denote the left Bousfield localization of Spt(M) with
respect to the set of maps

sBn = {Fp(G
b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ Br}.

2. Let b(n) denote its fibrant replacement functor and SH(Bn) its associated
homotopy category.

For n 6= 0 we will call SH(Bn) the codimension n+ 1-birational motivic stable
homotopy category, and for n = 0 we will call it the birational motivic stable
homotopy category.

Lemma 2.5. Let n ∈ Z be an arbitrary integer. Then for every a ≥ 0, the maps

Sa ∧ sBn = {Fp(S
a ∧G

b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ Br}

are weak equivalences in BnSpt(M).

Proof. Let Fp(G
b
m ∧ ιU,Y ) ∈ sBn with ιU,Y ∈ Br. Both Fp(G

b
m ∧ U+) and

Fp(G
b
m ∧Y+) are cofibrant in Spt(M) (see [12, Props. 2.4.17, 2.6.18 and Thm.

2.6.30]) and hence also in BnSpt(M). By construction, Fp(G
b
m∧ιU,Y ) is a weak

equivalence in BnSpt(M); and [2, Thm. 4.1.1.(4)] implies that BnSpt(M) is
a simplicial model category. Thus, it follows from Ken Brown’s lemma (see [4,
lemma 1.1.12]) that Fp(S

a∧Gb
m∧ιU,Y ) is also a weak equivalence in BnSpt(M)

for every a ≥ 0.

Proposition 2.6. Let E be an arbitrary symmetric T -spectrum. Then E is
fibrant in BnSpt(M) if and only if the following conditions hold:

1. E is fibrant in Spt(M).

2. For every a, b, p, r ≥ 0 such that b− p ≥ n− r; and every ιU,Y ∈ Br, the
induced map

HomSH(Fp(S
a ∧Gb

m ∧ Y+), E) ∼=

ι∗U,Y // HomSH(Fp(S
a ∧Gb

m ∧ U+), E)

is an isomorphism.

Proof. (⇒): Since the identity functor

id : Spt(M) → BnSpt(M)
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is a left Quillen functor, the conclusion follows from the derived adjunction

(Q, b(n), ϕ) : SH → SH(Bn)

together with lemma 2.5.
(⇐): Assume that E satisfies (1) and (2). Let ω0, η0 denote the base points of
the pointed simplicial sets Map∗(Fp(G

b
m ∧Y+), E) and Map∗(Fp(G

b
m ∧U+), E)

respectively. Since Fp(G
b
m ∧ Y+) and Fp(G

b
m ∧U+) are always cofibrant, by [2,

Def. 3.1.4(1)(a) and Thm. 4.1.1(2)] it is enough to show that every map in
sBn induces a weak equivalence of simplicial sets:

Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp(G
b
m ∧ U+), E)

Since Spt(M) is a pointed simplicial model category, we observe that lemma
6.1.2 in [4] and remark 2.4.3(2) in [12] imply that the following diagram is
commutative for a ≥ 0 and all the vertical arrows are isomorphisms

πa,ω0Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y ++WWWWWWWWWWWWWWWWWWWW

∼=

��

πa,η0Map∗(Fp(G
b
m ∧ U+), E)

∼=

��

HomSH(Fp(S
a ∧Gb

m ∧ Y+), E)
ι∗U,Y

++WWWWWWWWWWWWWWWWWWWW

HomSH(Fp(S
a ∧Gb

m ∧ U+), E)

by hypothesis, the bottom row is an isomorphism, hence the top row is also an
isomorphism. This implies that for every map in sBn, the induced map

Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp(G
b
m ∧ U+), E)

is a weak equivalence when it is restricted to the path component of
Map∗(Fp(G

b
m ∧ Y+), E) containing ω0. This holds in particular for

Map∗(Fp+1(G
b+1
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp+1(G
b+1
m ∧ U+), E)

Therefore, the following map is a weak equivalence of pointed simplicial sets,
since taking S1-loops kills the path components that do not contain the base
point

Map∗(S
1,Map∗(Fp+1(G

b+1
m ∧ Y+), E))

��
Map∗(S

1,Map∗(Fp+1(G
b+1
m ∧ U+), E))
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Now, since Spt(M) is a simplicial model category we deduce that the rows in
the following commutative diagram are isomorphisms

Map∗(S
1,Map∗(Fp+1(G

b+1
m ∧ Y+), E))

∼= ++WWWWWWWWWWWWWWWWWWWWW

ι∗U,Y

��

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ Y+), E)

ι∗U,Y

��

Map∗(S
1,Map∗(Fp+1(G

b+1
m ∧ U+), E))

∼= ++WWWWWWWWWWWWWWWWWWWWW

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ U+), E)

Thus, by the three out of two property for weak equivalences, we conclude that

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ Y+), E)
ι∗U,Y // Map∗(Fp+1(S

1 ∧Gb+1
m ∧ U+), E)

is also a weak equivalence of pointed simplicial sets. Finally, lemma 2.1 implies
that the following diagram is commutative and the vertical arrows are weak
equivalences in Spt(M)

Map∗(Fp+1(S
1 ∧G

b+1
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp+1(S
1 ∧G

b+1
m ∧ U+), E)

Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y //

g
1,b+1
p+1,p(Y )∗

OO

Map∗(Fp(G
b
m ∧ U+), E)

g
1,b+1
p+1,p(U)∗

OO

Thus, we conclude by the two out of three property for weak equivalences that
the bottom arrow is also a weak equivalence in Spt(M).

Proposition 2.7. The homotopy category SH(Bn) is a compactly generated
triangulated category in the sense of Neeman [9, Def. 1.7].

Proof. We will prove first that SH(Bn) is a triangulated category. For this, it
is enough to show that the smash product with the simplicial circle induces a
Quillen equivalence (see [14, sections I.2, I.3])

(− ∧ S1,ΩS1−, ϕ) : BnSpt(M) → BnSpt(M)

It follows from [2, Thm. 4.1.1.(4)] that this adjunction is a Quillen adjunction,
and the same argument as in [12, Cor. 3.2.38] (replacing [12, Prop. 3.2.32]
with proposition 2.6) allows us to conclude that it is a Quillen equivalence.
Finally, since SH is a compactly generated triangulated category (see [12, Prop.
3.1.5]) and the identity functor is a left Quillen functor

id : Spt(M) → BnSpt(M)
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it follows from the derived adjunction

(Q, b(n), ϕ) : SH → SH(Bn)

that SH(Bn) is also compactly generated, having exactly the same set of gen-
erators as SH.

Definition 2.8. We fix an arbitrary integer n ≥ 0, and consider the following
set of open immersions with smooth closed complement of codimension at least
n+ 1

WBn = {ιU,Y :U → Y open immersion |

Y, Z = Y \U ∈ SmX ;Y irreducible; (codimY Z) ≥ n+ 1}

Notice that every map in WBn is also in Bn, but the converse doesn’t hold.
The reason to consider maps ιU,Y in WBn is that if the closed complement
is smooth, then the Morel-Voevodsky homotopy purity theorem (see [8, Thm.
2.23]) characterizes the homotopy cofibre of ιU,Y in terms of the Thom space
of the normal bundle for the closed immersion Y \U → Y .

Definition 2.9. Let n ∈ Z be an arbitrary integer.

1. Let WBnSpt(M) denote the left Bousfield localization of Spt(M) with
respect to the set of maps

sWBn = {Fp(G
b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ WBr}.

2. Let wb(n) denote its fibrant replacement functor and SH(WBn) its asso-
ciated homotopy category.

For n 6= 0 we will call SH(WBn) the codimension n + 1-weakly birational
motivic stable homotopy category, and for n = 0 we will call it the weakly
birational motivic stable homotopy category.

Proposition 2.10. Let E be an arbitrary symmetric T -spectrum. Then E is
fibrant in WBnSpt(M) if and only if the following conditions hold:

1. E is fibrant in Spt(M).

2. For every a, b, p, r ≥ 0 such that b − p ≥ n − r; and every ιU,Y ∈ WBr,
the induced map

HomSH(Fp(S
a ∧G

b
m ∧ Y+), E) ∼=

ι∗U,Y // HomSH(Fp(S
a ∧G

b
m ∧ U+), E)

is an isomorphism.

Proof. The proof is exactly the same as in proposition 2.6.
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Proposition 2.11. The homotopy category SH(WBn) is a compactly gener-
ated triangulated category in the sense of Neeman.

Proof. The proof is exactly the same as in proposition 2.7.

Proposition 2.12. Assume that the base scheme X = Spec k, with k a perfect
field, then the Quillen adjunction:

(id, id, ϕ) : WBnSpt(M) → BnSpt(M)

is a Quillen equivalence.

Proof. Consider the following commutative diagram

Spt(M)

id

wwppppppppppp

id

&&MMMMMMMMMM

WBnSpt(M)
id

//_________ BnSpt(M)

where the solid arrows are left Quillen functors. Clearly, WBr ⊆ Br for every
r ≥ 0, so sWBn ⊆ sBn, and we conclude that every sWBn-local equivalence
is a sBn-local equivalence. Therefore, the universal property of left Bousfield
localizations implies that the horizontal arrow is also a left Quillen functor.
The universal property for left Bousfield localizations also implies that it is
enough to show that all the maps in

sBn = {Fp(G
b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ Br}

become weak equivalences in WBnSpt(M). Given Fp(G
b
m ∧ ιU,Y ) ∈ sBn with

ιU,Y ∈ Br, we proceed by induction on the dimension of Z = Y \U . If dim Z =
0, then Z ∈ SmX since k is a perfect field (and we are considering Z with the
reduced scheme structure), hence Fp(G

b
m ∧ ιU,Y ) ∈ sWBn and then a weak

equivalence in WBnSpt(M).
If dim Z > 0, then we consider the singular locus Zs of Z over X . We have
that dim Zs < dim Z since k is a perfect field. Therefore, by induction on
the dimension Fp(G

b
m ∧ ιV,Y ) is a weak equivalence in WBnSpt(M), where

V = Y \Zs. On the other hand, Fp(G
b
m ∧ ιU,V ) is also a weak equivalence in

WBnSpt(M) since ιU,V is also in Br and its closed complement V \U = Z\Zs

is smooth over X , by construction of Zs.
But Fp(G

b
m ∧ ιU,Y ) = Fp(G

b
m ∧ ιV,Y ) ◦ Fp(G

b
m ∧ ιU,V ), so by the two out of

three property for weak equivalences we conclude that Fp(G
b
m∧ ιU,Y ) is a weak

equivalence in WBnSpt(M).

3 A Characterization of the Slices

This section contains our main results. We give a characterization of the slices
in terms of effectivity and birational conditions (in the sense of definition 3.1),
and we also show that there is an equivalence between the notion of orthogo-
nality (see definition 1.1) and weak birationality (see definition 3.1).

Documenta Mathematica 18 (2013) 51–70



Birational Motivic Homotopy Theories 61

Definition 3.1. Let E ∈ Spt(M) be a symmetric T -spectrum and n ∈ Z.

1. We will say that E is n+1-birational (respectively weakly n+1-birational),
if E is fibrant in BnSpt(M) (respectively WBnSpt(M)). If n = 0, we
will simply say that E is birational (respectively weakly birational).

2. We will say that E is an n-slice if E is isomorphic in SH to sn(E
′) for

some symmetric T -spectrum E′.

Definition 3.2. 1. Let ιU,Y be an open immersion in SmX . Let Y/U de-
note the pushout of the following diagram in M (i.e. the homotopy
cofibre of ιU,Y in M)

U+
ιU,Y //

��

Y+

��
X // Y/U

2. Given a vector bundle π : V → Y with Y ∈ SmX , let Th(V ) denote the
Thom space of V , i.e. V/(V \σ0(Y )), where σ0 : Y → V denotes the zero
section of V .

Lemma 3.3. Let ιU,Y ∈ WBr for some r ≥ 0, and let a, b, p ≥ 0 be arbitrary
integers such that b − p ≥ n− r. Then

Fp(S
a ∧G

b
m ∧ Y/U) ∈ Σn+1

T SHeff

Proof. Since Σn+1
T SHeff is a triangulated category, it is enough to consider the

case a = 0. It is also clear that it suffices to show that F0(Y/U) ∈ Σr+1
T SHeff .

Now, it follows from the Morel-Voevodsky homotopy purity theorem (see [8,
Thm. 2.23]) that there is an isomorphism in SH

F0(Y/U) → F0(Th(N))

where Th(N) is the Thom space of the normal bundle N of the (smooth)
complement Z of U in Y :

e : Y \U = Z → Y

But, ιU,Y ∈ WBr; so e is a regular embedding of codimension c at least r + 1,
hence N is a vector bundle of rank at least r + 1. Therefore, if N is a trivial
vector bundle we conclude from [8, Prop. 2.17(2)] that

F0(Th(N)) ∼= F0(S
c ∧G

c
m ∧ Z+) ∈ Σc

TSH
eff ⊆ Σr+1

T SHeff

Finally, we conclude in the general case by choosing a Zariski cover of Z which
trivializes N and using the Mayer-Vietoris property for Zariski covers.
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Lemma 3.4. Let U ∈ SmX . Consider the open immersion in SmX

mU : A1
U\U → A

1
U

given by the complement of the zero section. Then mU ∈ WB0, and there exists
a weak equivalence in Spt(M) between its homotopy cofibre in M, A1

U/(A
1
U\U)

and S1 ∧Gm ∧ U+

tU : A1
U/(A

1
U\U) → S1 ∧Gm ∧ U+

Proof. Since the zero section i0 : U → A1
U is a closed embedding of codimension

1 between smooth schemes over X , it follows from the definition of WB0 that
mU ∈ WB0. Finally, [8, Prop. 2.17(2)] implies the existence of the weak
equivalence tU .

Proposition 3.5. Let E ∈ Spt(M) be a symmetric T -spectrum and n ∈ Z.
Consider the following conditions:

1. E is fibrant in L<n+1Spt(M).

2. E is weakly n+ 1-birational (see definition 3.1(1)).

3. E is n+ 1-birational (see definition 3.1(1)).

Then (1) and (2) are equivalent. In addition, if the base scheme X = Spec k,
with k a perfect field, then (1), (2) and (3) are equivalent.

Proof. (1)⇒(2): Assume that E is fibrant in L<n+1Spt(M). By proposition
2.10 it suffices to show that for every a, b, p, r ≥ 0 with b−p ≥ n− r, and every
ιU,Y ∈ WBr; the induced map

HomSH(Fp(S
a ∧Gb

m ∧ Y+), E) ∼=

ι∗U,Y // HomSH(Fp(S
a ∧Gb

m ∧ U+), E)

is an isomorphism. We observe that

Fp(S
a ∧G

b
m ∧ −) : M → Spt(M)

is a left Quillen functor, therefore the following

Fp(S
a ∧G

b
m ∧ U+)

Fp(S
a∧G

b
m∧ιU,Y )// Fp(S

a ∧G
b
m ∧ Y+) // Fp(S

a ∧G
b
m ∧ Y/U)

is a cofibre sequence in Spt(M). However, SH is a triangulated category and
lemma 2.1 implies that

Fp+1(S
a ∧G

b+1
m ∧ Y/U) ∼= ΩS1 ◦R ◦ Fp(S

a ∧G
b
m ∧ Y/U)

are isomorphic in SH, where R denotes a fibrant replacement functor in
Spt(M). Hence it suffices to show that

HomSH(Fp+1(S
a ∧G

b+1
m ∧ Y/U), E) = HomSH(Fp(S

a ∧G
b
m ∧ Y/U), E) = 0
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But this follows from lemma 3.3 together with [12, Prop. 3.3.30], since we are
assuming that E is fibrant in L<n+1Spt(M).
(2)⇒(1) Assume that E is n + 1-weakly birational. Then, proposition 3.3.30
in [12] implies that it suffices to show that

HomSH(Fp(S
a ∧G

b
m ∧ U+), E) = 0

for every Fp(S
a ∧Gb

m ∧ U+) ∈ Cn+1
eff .

The same argument as in lemma 2.5 implies that it is enough to consider the
case when Fp(G

b
m ∧ U+) ∈ Cn+1

eff . Moreover, we can further reduce to the case

where b, p ≥ 1 and Fp(S
1∧Gb

m∧U+) ∈ Cn+1
eff . In effect, if Fp(G

b
m∧U+) ∈ Cn+1

eff ,
then lemma 2.1 implies that the natural map

g1,b+1
p+1,p(U) : Fp+1(S

1 ∧G
b+1
m ∧ U+) → Fp(G

b
m ∧ U+)

is a weak equivalence in Spt(M).
Now, it follows from lemma 3.4, that if b ≥ 1, and 0 − p + (b − 1) ≥ n (i.e.
b − p ≥ n + 1); then Fp(G

b−1
m ∧ mU ) ∈ sWBn, i.e. a weak equivalence in

WBnSpt(M).
Since SH(WBn) is a triangulated category, id : Spt(M) → WBnSpt(M) is a
left Quillen functor, and Fp(G

b−1
m ∧ (A1

U/(A
1
U\U+))) is the homotopy cofibre of

Fp(G
b−1
m ∧mU ); we deduce that E being n+ 1-weakly birational implies that

HomSH(Fp(G
b−1
m ∧ (A1

U/(A
1
U\U+))), E) = 0

Finally, it follows from lemma 3.4 that the following groups are isomorphic

0 = HomSH(Fp(G
b−1
m ∧ (A1

U/(A
1
U\U+))), E)

∼= HomSH(Fp(S
1 ∧G

b
m ∧ U+), E)

(2)⇔(3): This follows directly from proposition 2.12.

Theorem 3.6. The Quillen adjunction

(id, id, ϕ) : WBnSpt(M) → L<n+1Spt(M)

is a Quillen equivalence. In addition, if the base scheme X = Spec k, with k a
perfect field, then the Quillen adjunction

(id, id, ϕ) : BnSpt(M) → L<n+1Spt(M)

is also a Quillen equivalence.

Proof. We show first that WBnSpt(M) and L<n+1Spt(M) are Quillen equiv-
alent. Since WBnSpt(M), L<n+1Spt(M) are both left Bousfield localizations
of Spt(M), we deduce that they are simplicial model categories with the same
cofibrant replacement functor Q. Thus, it suffices to show that they have the
same class of weak equivalences.
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However, proposition 3.5 implies that WBnSpt(M), and L<n+1Spt(M) also
have the same class of fibrant objects. Therefore, it follows from [2, Thm. 9.7.4]
that they have exactly the same class of weak equivalences.
Finally, if the base scheme is a perfect field, by proposition 2.12 we conclude
that WBnSpt(M) and BnSpt(M) are Quillen equivalent.

Theorem 3.7. Let E be fibrant in Spt(M). Then E is an n-slice (see definition
3.1(2)) if and only if the following conditions hold:

S1 E is n-effective, i.e. E ∈ Σn
TSH

eff .

S2 E is n+ 1-weakly birational.

In addition, if the base scheme X = Spec k, with k a perfect field, then E is
an n-slice if and only if the following conditions hold:

GSS1 E is n-effective, i.e. E ∈ Σn
TSH

eff .

GSS2 E is n+ 1-birational.

Proof. Assume that E is an n-slice. Then theorems 1.4(1) and 1.4(3) imply
that E is n-effective and fibrant in L<n+1Spt(M). Hence, proposition 3.5
implies that E is also n+ 1-weakly birational.
Now we assume that E satisfies the conditions S1 and S2 above. Then, propo-
sition 3.5 implies that E is fibrant in L<n+1Spt(M). Therefore, theorem 1.4(3)
implies that E is isomorphic in SH to its own n-slice sn(E).
Finally, if the base scheme is a perfect field, then by proposition 3.5 the condi-
tions S2 and GSS2 are equivalent; hence we can conclude applying the same
argument as above.

Remark 3.8. Notice that theorem 3.6 implies that it is possible to construct
the slice filtration directly from the Quillen model categories WBnSpt(M)
described in definition 2.9 without making any reference to the effective cat-
egories Σq

TSH
eff . One of the interesting consequences of this fact is that it

is possible to obtain analogues of the slice filtration in the unstable setting,
since the suspension with respect to T or S1 does not play an essential role
in the construction of WBnSpt(M), i.e. we could consider the left Bousfield
localization of the motivic unstable homotopy category M with respect to the
maps in definition 2.8. We will study the details of this construction in a future
work.

4 Some Computations

In this section we use the characterization of the slices obtained in theorem 3.7
to describe the slices of projective spaces, Thom spaces and blow ups.
To simplify the notation, given a simplicial presheaf K ∈ M or a map f ∈ M;
let sj(K), sj(f) (respectively s<j(K), s<j(f)) denote sj(F0(K)), sj(F0(f))
(respectively s<j(F0(K)), s<j(F0(f))).
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Lemma 4.1. Let g : E → F be a map in SH such that s<n(g) and s<n+1(g) are
both isomorphisms in SH. Then the n-slice of g, sn(g) is also an isomorphism
in SH.

Proof. It follows from [12, Prop. 3.1.19] that the rows in the following commu-
tative diagram are distinguished triangles in SH

sn(E)

sn(g)

��

// s<n+1(E)

s<n+1(g)

��

// s<n(E)

s<n(g)

��

// S1 ∧ sn(E)

S1∧sn(g)

��
sn(F ) // s<n+1(F ) // s<n(F ) // S1 ∧ sn(F )

Thus, we conclude that sn(g) is also an isomorphism in SH.

Consider Y ∈ SmX . Let Pn(Y ) denote the trivial projective bundle of rank
n over Y , and let P∞(Y ) denote the colimit in M of the following filtered
diagram

P
0(Y ) → P

1(Y ) → · · · → P
n(Y ) → · · · (4.1)

given by the inclusions of the respective hyperplanes at infinity.

Theorem 4.2. Let Y ∈ SmX . Then for any integer j ≤ n, the diagram 4.1
induces the following isomorphisms in SH

sj(P
n(Y )+)

∼= // sj(Pn+1(Y )+)
∼= // · · ·

∼= // sj(P∞(Y )+)

Proof. Let k > n, and consider the closed embedding induced by the dia-
gram (4.1) λk

n : Pn(Y ) → Pk(Y ). It is possible to choose a linear embedding
Pk−n−1(Y ) → Pk(Y ) such that its open complement Uk,n contains Pn(Y ) and
has the structure of a vector bundle over Pn(Y ), with zero section σk

n:

Uk,n

vk
n //

��

Pk(Y ) Pk−n−1(Y )oo

Pn(Y )

σk
n

OO

λk
n

GG

By homotopy invariance s<j(σ
k
n) is an isomorphism in SH for every integer j.

On the other hand, if j ≤ n, then F0(v
k
n) is a weak equivalence in WBjSpt(M)

since the codimension of its closed complement is n+1. Thus, theorems 1.4(2)
and 3.6 imply that if j ≤ n+ 1, then s<j(v

k
n) is also an isomorphism in SH.

Therefore, s<j(λ
k
n) = s<j(v

k
n)◦ s<j(σ

k
n) is an isomorphism in SH for j ≤ n+1;

and using lemma 4.1 we conclude that the induced map on the slices sj(λ
k
n) is

also an isomorphism for j ≤ n.
Finally, the result for P

∞(Y ) follows directly from the fact that the slices
commute with filtered homotopy colimits.
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LetHZ denote Voevodsky’s Eilenberg-MacLane spectrum (see [15, section 6.1])
representing motivic cohomology in SH.

Corollary 4.3. Assume that the base scheme X = Spec k, with k a perfect
field. Then, in the following diagram all the symmetric T -spectra are isomor-
phic to HZ:

HZ
∼= // s0(P0(k)+)

∼= // s0(P1(k)+)
∼= // · · ·

· · ·
∼= // s0(Pn(k)+)

∼= // · · ·
∼= // s0(P∞(k)+)

Proof. This follows immediately from theorem 4.2 together with the compu-
tation of Levine [7, Thm. 10.5.1] and Voevodsky [17] for the zero slice of the
sphere spectrum.

Theorem 4.4. Let ιU,Y ∈ WBn, π : V → Y a vector bundle of rank r together
with a trivialization t : π−1(U) → Ar

U of its restriction to U . Then for every
integer j ≤ n, there exists an isomorphism in SH (see definition 3.2(2))

sj(Th(V )) ∼= Sr ∧G
r
m ∧ sj−r(Y+)

Proof. Let Z ∈ SmX be the closed complement of ιU,Y . Consider the following
diagram in SmX , where all the squares are cartesian

π−1(Z) ∩ (V \σ0(Y )) //

��

V \σ0(Y )

��

π−1(U) ∩ (V \σ0(Y ))
βoo

��
π−1(Z) //

��

V

π

��

π−1(U)
αoo

��
Z // Y UιU,Y

oo

and let γ : Th(π−1(U)) → Th(V ) be the induced map between the corre-
sponding Thom spaces. We observe that α, β also belong to WBn; thus, if
j ≤ n we conclude that F0(ιU,Y ), F0(α), F0(β) are all weak equivalences in
WBjSpt(M). Therefore, theorems 1.4(2) and 3.6 imply that if j ≤ n+1, then
s<j(ιU,Y ), s<j(α), s<j(β) are isomorphisms in SH. We claim that if j ≤ n+1,
then

s<j(γ) : s<j(Th(π
−1(U))) → s<j(Th(V ))

is also an isomorphism in SH. In effect, by construction of the Thom spaces,
we deduce that for any integer j ∈ Z, the rows in the following commutative
diagram in SH are in fact distinguished triangles

s<j((π
−1(U) ∩ (V \σ0(Y )))+) //

s<j(β)

��

s<j(π
−1(U)+) //

s<j(α)

��

s<j(Th(π
−1(U)))

s<j(γ)

��
s<j((V \σ0(Y ))+) // s<j(V+) // s<j(Th(V ))
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Since s<j(α), s<j(β) are isomorphisms in SH for j ≤ n + 1, we conclude that
for j ≤ n+ 1, s<j(γ) is also an isomorphism in SH.
Thus, lemma 4.1 implies that for j ≤ n, sj(ιU,Y ), sj(γ) are isomorphisms in SH.
Now, we use the trivialization t to obtain the following commutative diagram
in SmX where the rows are isomorphisms

Ar
U\U

��

π−1(U) ∩ (V \σ0(Y ))
t̃

∼=
oo

��
Ar

U

""E
E

E
E

E
E

E
E

π−1(U)

πU

wwooooooooooooo

t

∼=
oo

U

The same argument as above, shows that for every integer j ∈ Z, there is an
isomorphism in SH

sj(t̄) : sj(Th(π
−1(U))) → sj(Th(A

r
U ))

On the other hand, [8, Prop. 2.17(2)] implies that there is a weak equivalence
w : F0(Th(A

r
U )) → Sr ∧ Gr

m ∧ F0(U+) in Spt(M). Thus, for j ≤ n there exist
isomorphisms in SH

sj(Th(π
−1(U)))

sj(t̄) //

sj(γ)

��

sj(Th(A
r
U ))

sj(w)

��
sj(Th(V )) sj(S

r ∧G
r
m ∧ U+)

However, there exists a canonical isomorphism in SH

sj(S
r ∧G

r
m ∧ U+) → Sr ∧G

r
m ∧ sj−r(U+)

Finally, we conclude by using the isomorphism sj−r(ιU,Y ) (notice that if j ≤ n
then certainly j − r ≤ n, since r ≥ 0).

Corollary 4.5. Assume that the base scheme X = Spec k, with k a perfect
field. Let ιU,Y ∈ Bn, π : V → Y a vector bundle of rank r together with a
trivialization t : π−1(U) → Ar

U of its restriction to U . Then for every integer
j ≤ n, there exists an isomorphism in SH

sj(Th(V )) ∼= Sr ∧G
r
m ∧ sj−r(Y+)

Proof. Proposition 2.12 implies that F0(ιU,Y ) is a weak equivalence in
WBjSpt(M) for j ≤ n. Hence, the result follows using exactly the same
argument as in theorem 4.4.
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Given a closed embedding Z → Y of smooth schemes over X , let BℓZY denote
the blowup of Y with center in Z.

Theorem 4.6. Let ιU,Y ∈ WBn with closed complement Z, and j ∈ Z an
arbitrary integer. Consider the following cartesian square in SmX

D

q

��

d // BℓZY

p

��

U
uoo

Z
i

// Y UιU,Y

oo

(4.2)

and let qj , dj , pj, ij denote sj(q), sj(d), sj(p), sj(i) respectively. Then the carte-
sian square (4.2) induces the following distinguished triangle in SH

sj(D+)
(−dj

qj
)

// sj(BℓZY+)⊕ sj(Z+)
(pj ,ij) // sj(Y+) (4.3)

If j ≤ n, then sj(ιU,Y ) is an isomorphism in SH, and the following distin-
guished triangles in SH split

sj(D+)

(−dj
qj
)

//
sj(BℓZY+)⊕ sj(Z+)oo

(pj ,ij) //
sj(Y+)

(rj0 )
oo (4.4)

sj(Y+)
rj //

sj(BℓZY+)
pj

oo
//
sj(Th(OD(1)))oo (4.5)

where rj = sj(u) ◦ (sj(ιU,Y ))
−1, and OD(1) denotes the canonical line bundle

of the projective bundle q : D → Z.

Proof. It follows from [8, Prop. 2.29 and Rmk. 2.30] that the following square
is homotopy cocartesian in M

S1 ∧D+

id∧q

��

id∧d // S1 ∧ BℓZY+

id∧p

��
S1 ∧ Z+

id∧i
// S1 ∧ Y+

Thus, we deduce that the following diagram is a distinguished triangle in SH

F0(D+)
(−F0(d)

F0(q) ) // F0(BℓZY+)⊕ F0(Z+)
(F0(p),F0(i)) // F0(Y+)

Since the slices sj are triangulated functors, it follows that diagram (4.3) is a
distinguished triangle in SH.
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Now, we prove that sj(ιU,Y ) is an isomorphism for j ≤ n. By lemma 4.1, it
suffices to show that s<j(ιU,Y ) is an isomorphism in SH for j ≤ n+1. But this
follows directly from theorems 3.6 and 1.4(2) since F0(ιU,Y ) is clearly a weak
equivalence in WBjSpt(M) for j ≤ n.
Thus, rj is well defined for j ≤ n, and the following diagram shows that it gives
a splitting for the distinguished triangle (4.4)

sj(U+)
sj(u) // sj(BℓZY+)

pj

��
sj(U+)

sj(ιU,Y )
// sj(Y+)

(4.6)

Finally, since the normal bundle of the closed embedding d : D → BℓZY is given
by OD(1), we deduce from the Morel-Voevodsky homotopy purity theorem (see
[8, Thm. 2.23]) that the following diagram is a distinguished triangle in SH

sj(U+)
sj(u) // sj(BℓZY+) // sj(Th(OD(1)))

Combining this distinguished triangle with diagram (4.6) above, we conclude
that diagram (4.5) is a split distinguished triangle in SH for j ≤ n.
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