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1. INTRODUCTION

Langlands’s principle of functoriality predicts the existence of a staggering
wealth of transfers (or lifts) between automorphic forms for different reduc-
tive groups. In recent years, attempts at the formulation of p-adic variants
of Langlands’s functoriality have been articulated in various special cases. We
prove the existence of the Shimura-Shintani-Waldspurger lift for p-adic families.
More precisely, Stevens, building on the work of Hida and Greenberg-Stevens,
showed in [2I] the existence of a A-adic variant of the classical Shintani lifting
of [20] for GL2(Q). This A-adic lifting can be seen as a formal power series with
coefficients in a finite extension of the Iwasawa algebra A := Z,[X] equipped
with specialization maps interpolating classical Shintani lifts of classical mod-
ular forms appearing in a given Hida family.

Shimura in [19], resp. Waldspurger in [22] generalized the classical Shimura-
Shintani correspondence to quaternion algebras over Q, resp. over any number
field. In the p-adic realm, Hida ([7]) constructed a A-adic Shimura lifting, while
Ramsey ([I7]) (resp. Park [12]) extended the Shimura (resp. Shintani) lifting
to the overconvergent setting.

In this paper, motivated by ulterior applications to Shimura curves over Q,
we generalize Stevens’s result to any non-split rational indefinite quaternion
algebra B, building on work of Shimura [I9] and combining this with a result
of Longo-Vigni [9]. Our main result, for which the reader is referred to Theorem
below, states the existence of a formal power series and specialization maps
interpolating Shimura-Shintani-Waldspurger lifts of classical forms in a given
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p-adic family of automorphic forms on the quaternion algebra B. The A-
adic variant of Waldspurger’s result appears computationally challenging (see
remark in [I5 Intro.]), but it seems within reach for real quadratic fields (cf.
[13)).

As an example of our main result, we consider the case of families with trivial
character. Fix a prime number p and a positive integer N such that p t N.
Embed the set ZZ? of integers greater or equal to 2 in Hom(Z? , Z;) by sending
k € ZZ? to the character x +— 272, Let fo be an Hida family of tame
level N passing through a form fy of level T'o(Np) and weight ko. There is
a neighborhood U of kg in Hom(Z,,Z,’) such that, for any k € 722 NU,
the weight k specialization of fo gives rise to an element fi € Si(I'o(Np)).
Fix a factorization N = MD with D > 1 a square-free product of an even
number of primes and (M, D) = 1 (we assume that such a factorization exists).
Applying the Jacquet-Langlands correspondence we get for any k € ZZ2 N U
a modular form f;gL on I'; which is the group of norm-one elements in an
Eichler order R of level Mp contained in the indefinite rational quaternion
algebra B of discriminant D. One can show that these modular forms can be
p-adically interpolated, up to scaling, in a neighborhood of ky. More precisely,
let O be the ring of integers of a finite extension F' of Q, and let D denote
the O-module of O-valued measures on ZIQ, which are supported on the set of
primitive elements in ZIQ,. Let T'g be the group of norm-one elements in an
Eichler order Ry C B containing R. There is a canonical action of I’y on D
(see [0 §2.4] for its description). Denote by Fj the extension of F' generated
by the Fourier coefficients of fx. Then there is an element ® € H'(I'g, D) and
maps pi : HY(Tg,D) — HY(T, F}.) such that p(k)(®) = ¢, the cohomology
class associated to f{¥, with k in a neighborhood of ko (for this we need a
suitable normalization of the cohomology class associated to f;gL, which we do
not touch for simplicity in this introduction). We view ® as a quaternionic
family of modular forms. To each ¢, we may apply the Shimura-Shintani-
Waldspurger lifting ([I9]) and obtain a modular form hy of weigh k + 1/2,
level 4Np and trivial character. We show that this collection of forms can
be p-adically interpolated. For clarity’s sake, we present the liftings and their
A-adic variants in a diagram, in which the horizontal maps are specialization
maps of the p-adic family to weight k; JL stands for the Jacquet-Langlands
correspondence; SSW stands for the Shimura-Shintani-Waldspurger lift; and
the dotted arrows are constructed in this paper:

foo >fk

A—adic JLI IJL

Pk
o "> g
A—adic SSW | Issw
v

O foee >hk
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THE A-ADIC SSW CORRESPONDENCE 3

More precisely, as a particular case of our main result, Theorem 3.8 we get the
following

THEOREM 1.1. There exists a p-adic neighborhood Uy of ko in Hom(Z,, Z) ),
p-adic periods Q. for k € Uy NZ=? and a formal expansion

0= ZagqE

&1

with coefficients a¢ in the ring of Cp-valued functions on Uy, such that for all
ke UyNZZ2 we have

O(k) = Q. - hy.
Further, Qg, # 0.

2. SHINTANI INTEGRALS AND FOURIER COEFFICIENTS OF HALF-INTEGRAL
WEIGHT MODULAR FORMS

We express the Fourier coefficients of half-integral weight modular forms
in terms of period integrals, thus allowing a cohomological interpretation
which is key to the production of the A-adic version of the Shimura-
Shintani-Waldspurger correspondence. For the quaternionic Shimura-Shintani-
Waldspurger correspondence of interest to us (see [I5], [22]), the period in-
tegrals expressing the values of the Fourier coefficients have been computed
generally by Prasanna in [16].

2.1. THE SHIMURA-SHINTANI-WALDSPURGER LIFTING. Let 4M be a positive
integer, 2k an even non-negative integer and x a Dirichlet character modulo
4M such that x(—1) = 1. Recall that the space of half-integral weight modular
forms Sy,11/2(4M, x) consists of holomorphic cuspidal functions i on the upper-
half place $ such that

h(v(2)) = 5"/ (7, 2)* T x(d)h(2),

for all v = (¢ 4) € T'g(4M), where j'/2(v, 2) is the standard square root of the
usual automorphy factor j(v, z) (cf. [15, 2.3]).

To any quaternionic integral weight modular form we may associate a half-
integral weight modular form following Shimura’s work [19], as we will describe
below.

Fix an odd square free integer N and a factorization N = M - D into coprime
integers such that D > 1 is a product of an even number of distinct primes.
Fix a Dirichlet character vy modulo M and a positive even integer 2k. Suppose
that

U(-1) = (=)~
Define the Dirichlet character x modulo 4N by
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Let B be an indefinite quaternion algebra over Q of discriminant D. Fix a
maximal order Op of B. For every prime ¢|M, choose an isomorphism

ip: B (2%0) Qy ~ Mg(@e)

such that i¢(Op ®z Z¢) = Ma(Z). Let R C Op be the Eichler order of B
of level M defined by requiring that i,(R ®z Z¢) is the suborder of My(Zy) of
upper triangular matrices modulo ¢ for all /|M. Let I' denote the subgroup
of the group R;* of norm 1 elements in R* consisting of those v such that
ie(v) = (§%) mod ¢ for all £[M. We denote by So;(I") the C-vector space
of weight 2k modular forms on I', and by Sax(T',%?) the subspace of Sox(T)
consisting of forms having character 1? under the action of R;. Fix a Hecke
eigenform

f € SQk‘ (F7 ¢2)
as in [19, Section 3].
Let V' denote the Q-subspace of B consisting of elements with trace equal to
zero. For any v € V, which we view as a trace zero matrix in M (R) (after
fixing an isomorphism i, : B @ R ~ M3(R)), set

G, = {y € SLy(R)| vy tvy = v}

and put ', := G, NT'. One can show that there exists an isomorphism

~

w:R* = @G,
defined by w(s) = 6*1(5 0 )ﬂ, for some 8 € SLy(R). Let t, be the order

0s !
of Ty N {£1} and let -, be an element of T, which generates I, {£1} / {£1}.
Changing v, to 7, ! if necessary, we may assume =, = w(t) with ¢ > 0. Define
V* to be the Q-subspace of V' consisting of elements with strictly negative

norm. For any « = (‘Z _ba) € V* and z € H, define the quadratic form
Qu(2) := cz* — 2az —b.

Fix 7 € H and set

P(fa D) = = 2lm(@) /) [ Qa2 p(e)is
where nr : B — Q is the norm map. By [19, Lemma 2.1], the integral is
independent on the choice 7, which justifies the notation.

Remark 2.1. The definition of P(f,«,T) given in [19, (2.5)] looks different: the
above expression can be derived as in [I9, page 629] by means of [19, (2.20)
and (2.22)].

Let R(T') denote the set of equivalence classes of V* under the action of T by
conjugation. By [19 (2.6)], P(f,«,T') only depends on the conjugacy class of
a, and thus, for C € R(T"), we may define P(f,C,T") := P(f, «,T") for any choice
of @ € C. Also, ¢(C) := —nr(«a) for any o € C.

Define O% to be the maximal order in B such that O ®z Z¢ ~ Op Qg Z for
all £+ M and Oz ®z Z, is equal to the local order of B ®g Q; consisting of
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elements 7 such that i,(y) = ((,;J b/éw) with a,b,¢,d € Zj, for all ¢/|M. Given

a € O, we can find an integer b, such that

(1) is(a) = ( - /M > mod ir(R®z Ze), V| M.
Define a locally constant function 7, on V by ny(a) = ¢(be) if « € O5NV and
n(a) = 0 otherwise, with ¢(a) = 0 if (a, M) # 1 (for the definition of locally
constant functions on V' in this context, we refer to [19, p. 611]).

For any C € R(T"), fix a¢ € C. For any integer £ > 1, define

ag(h) = 2u(M\9) " Y. nulac)e VAP(f.C.T).

CeR(I),q(C)=¢
Then, by [19] Theorem 3.1],

hi= Z:ag(fz)qE € Skt1/2(4N, X)
e>1

is called the Shimura-Shintani-Waldspurger lifting of f.

2.2. COHOMOLOGICAL INTERPRETATION. We introduce necessary notation to
define the action of the Hecke action on cohomology groups; for details, see [d]
§2.1]. If G is a subgroup of B* and S a subsemigroup of B* such that (G, 5)
is an Hecke pair, we let H(G, S) denote the Hecke algebra corresponding to
(G, S), whose elements are written as T'(s) = GsG = [],Gs; for s,s; € S
(finite disjoint union). For any s € S, let s* := norm(s)s~! and denote by
S* the set of elements of the form s* for s € S. For any Z[S*]-module M
we let T'(s) act on H'(G, M) at the level of cochains ¢ € Z'(G, M) by the
formula (¢|T'(s))(v) = >, sfc(ti(y)), where t;(y) are defined by the equations
Gs;v = Gs;j and s;v = t;(y)s;. In the following, we will consider the case of
G =T and

S = {s € B*[i¢(s) is congruent to (§ *) mod ¢ for all £|M}.

For any field L and any integer n > 0, let V,,(L) denote the L-dual of the
L-vector space P, (L) of homogeneous polynomials in 2 variables of degree n.
We let My(L) act from the right on P(z,y) as Ply(x,y) := P(y(x,y)), where

for v = (%) we put

Y(@,y) == (az + yb, cx + dy).
This also equips V,,(L) with a left action by 7 - ¢(P) := ¢(P]y). To simplify
the notation, we will write P(z) for P(z,1).
Let F denote the finite extension of Q generated by the eigenvalues of the Hecke
action on f. For any field K containing F', set

Wy(K) = H'(T, Vi_o(K))”

where the superscript f denotes the subspace on which the Hecke algebra acts
via the character associated with f. Also, for any sign &+, let ij (K) denote
the +-eigenspace for the action of the archimedean involution (. Remember
that ¢ is defined by choosing an element wy, of norm —1 in R* such that such
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that ig(wse) = (§ % ) mod M for all primes ¢|M and then setting ¢ := T (woo)
(see [9], §2.1]). Then W?(K) is one dimensional (see, e.g., [9, Proposition 2.2]);
fix a generator ¢J$ of W% (F).

To explicitly describe (b)jf, let us introduce some more notation. Define

flwss(2) := (Cz + D)2 f(weo(2))

where ioo(woo) = (A 5). Then flws € S2x(T') as well. If the eigenvalues of

the Hecke action on f are real, then we may assume, after multiplying f by a
scalar, that flws = f (see [19, p. 627] or [I0, Lemma 4.15]). In general, let
I(f) denote the class in H*(T', V,_2(C)) represented by the cocycle

v

v(7)
P— L,(f)(P):= / f(2)P(2)d=

for any 7 € H (the corresponding class is independent on the choice of 7). With
this notation,

P(fa a, F) = —(2(—nr(a))1/2/ta) : I’yac (f) (Qac (Z)k_l)'

Denote by I£(f) := (1/2)- I(f) £ (1/2) - I(f)|woo, the projection of I(f) to the
eigenspaces for the action of woo. Then I(f) = I (f)+I~(f) and Ijjf = Q? -q[)f,
for some Qf e C*.

Given a € V* of norm —¢, put o = w laws. By [19, 4.19], we have

oo

()& 2P (f,0,T) + () 2P(f,a/,T) = —n(a) - ta " I (Que (2)"71).

‘We then have

h E —n(ac) -
ag(h) = i) I (Qac(2)"7).
CeRz(D),q(C)=¢ 20(T\H) tae

We close this section by choosing a suitable multiple of h which will be the
object of the next section. Given Q,(z) = c2? — 2az — b as above, with « in
V*, define Qu(2) := M - Qqa(2). Then, clearly, I=(f)(Qac(2)*1) is equal to
MF T (f)(Qae (2)F71). We thus normalize the Fourier coefficients by setting

(2)

a 7 . ki]‘ . a ~
ac(h) = — e(h) - M — 2u\H) _ 3 my(ac) 6 Qe ().
f CeR(D),q(C)=¢ ¢
So
(3) hi=Y_ag(h)g*

belongs to Si11/2 (4N, x) and is a non-zero multiple of h.
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3. THE A-ADIC SHIMURA-SHINTANI-WALDSPURGER CORRESPONDENCE

At the heart of Stevens’s proof lies the control theorem of Greenberg-Stevens,
which has been worked out in the quaternionic setting by Longo—Vigni [9].
Recall that IV > 1 is a square free integer and fix a decomposition N = M - D
where D is a square free product of an even number of primes and M is coprime
to D. Let p{ N be a prime number and fix an embedding Q < Qp.

3.1. THE HIDA HECKE ALGEBRA. Fix an ordinary p-stabilized newform
(4) fO € Sko (Fl(MpTO)mFO(D)a€O)

of level T'y (Mp™) N Ty(D), Dirichlet character ey and weight ko, and write O
for the ring of integers of the field generated over QQ,, by the Fourier coefficients
of fo.
Let A (respectively, O[Z]) denote the Iwasawa algebra of W := 1 + pZ,
(respectively, Z;) with coefficients in O. We denote group-like elements in A
and O[ZX] as [t]. Let h%? denote the p-ordinary Hida Hecke algebra with
coefficients in O of tame level I'1(N). Denote by £ := Frac(A) the fraction
field of A. Let R denote the integral closure of A in the primitive component
K of h&d @ L corresponding to fo. It is well known that the A-algebra R is
finitely generated as A-module.
Denote by & the O-module Homg, (R, Q) of continuous homomorphisms of
O-algebras. Let X1t the set of arithmetic homomorphisms in X, defined in
[9. §2.2] by requiring that the composition

We—A - Q,
has the form v — ¥, (y)y™ with n, = k, — 2 for an integer k, > 2 (called
the weight of k) and a finite order character ¢, : W — @p (called the wild
character of k). Denote by r, the smallest among the positive integers ¢ such
that 1+ p'Z, C ker(1,,). For any k € X 'let P, denote the kernel of x and

R p, the localization of R at k. The field F}; := Rp,_/P.Rp, is a finite extension
of Frac(Q). Further, by duality, x corresponds to a normalized eigenform

fr € Sk, (To(ND™), &)

for a Dirichlet character €, : (Z/Np™=Z)* — Q,. More precisely, if we write
1 for the character of R, defined as in [0, Terminology p. 555], and we let w
denote the Teichmiiller character, we have €, := ¥, - ¥r - w™ "™ (see [0, Cor.
1.6]). We call (e, ki) the signature of k. We let ko denote the arithmetic
character associated with fo, so fo = fx,, ko = kko, €0 = €ry, and rg = 71y, .
The eigenvalues of f,, under the action of the Hecke operators T;, (n > 1 an
integer) belong to F;,. Actually, one can show that f, is a p-stabilized newform
on 'y (Mp™)NTy(D).

Let Ay denote the Iwasawa algebra of Z) x (Z/NZ)* with coefficients in O.
To simplify the notation, define A := (Z/NpZ)*. We have a canonical isomor-
phism of rings Ax ~ A[A], which makes Ay a A-algebra, finitely generated as
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A-module. Define the tensor product of A-algebras
Ry =R @A AN,

which is again a A-algebra (resp. Apy-algebra) finitely generated as a A-module,
(resp. as a Ay-module). One easily checks that there is a canonical isomor-
phism of A-algebras

(where A acts on R); this is also an isomorphism of A x-algebras, when we let
An =~ A[A] act on R[A] in the obvious way.

We can extend any x € X to a continuous O-algebra morphism

KN:RN —>@p

setting

n n
KN <Z T '51') =Y w(ri) - Pr(5)

i=1 i=1
for r;, € R and §; € A. Therefore, xy restricted to Z; is the character
t — e.(t)t". If we denote by Xy the O-module of continuous O-algebra
homomorphisms from Ry to @p, the above correspondence sets up an injec-
tive map Xt <y Xy, Let XY™ denote the image of A" under this map.
For ky € X¥h we define the signature of sy to be that of the corresponding
K.

3.2. THE CONTROL THEOREM IN THE QUATERNIONIC SETTING. Recall that
B/Q is a quaternion algebra of discriminant D. Fix an auxiliary real quadratic
field F' such that all primes dividing D are inert in F' and all primes dividing
Mp are split in F, and an isomorphism ip : B ®qg F ~ My (F). Let Op denote
the maximal order of B obtained by taking the intersection of B with M (Op),
where OF is the ring of integers of F'. More precisely, define

Op = L_l(il?l (ir(B®1) N Ma(OF)))

where ¢ : B — B ®gq F' is the inclusion defined by b +— b® 1. This is a maximal
order in B because ip(B ® 1) N My(OF) is a maximal order in ir(B®1). In
particular, i and our fixed embedding of Q into Q, induce an isomorphism

ip : B®o Qp ~ Ma(Qp)
such that i,(Op ®z Z,) = Ma(Z,). For any prime ¢|M, also choose an embed-
ding Q < Q, which, composed with ig, yields isomorphisms

i+ B®g Qr = M2(Qr)

such that i,(Op ®z Z;) = My(Z¢). Define an Eichler order R C Op of level
M by requiring that for all primes ¢|M the image of R ®z Zy via iy consists
of upper triangular matrices modulo ¢. For any r > 0, let ', denote the
subgroup of the group R;* of norm-one elements in R consisting of those
such that i,(y) = (‘Zg) with ¢ = 0 mod Mp" and a = d = 1 mod Mp",
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for all primes ¢|Mp. To conclude this list of notation and definitions, fix an
embedding F' — R and let
ico 1 B®g R~ M;(R)

be the induced isomorphism.

Let Y := ZIQ, and denote by X the set of primitive vectors in Y. Let D denote
the O-module of O-valued measures on Y which are supported on X. Note that
Mos(Z,) acts on Y by left multiplication; this induces an action of My(Z,) on
the O-module of O-valued measures on Y, which induces an action on ID. The
group R* acts on D via i,. In particular, we may define the group:

W := H' (T, D).
Then D has a canonical structure of O[Z,[-module, as well as hord-action, as
described in [9] §2.4]. In particular, let us recall that, for any [t] € O[Z,], we

have
/ ol y)d(f] - v) = / ot ty)dv,
X X

for any locally constant function ¢ on X.
For any x € X#th and any sign 4+ € {—, +}, set

o E
WiE = Wi, (Fy) = H' (T, Vi, (Fr))

where £ is any Jacquet-Langlands lift of f, to I, ; recall that the superscript
fr denotes the subspace on which the Hecke algebra acts via the character
associated with f., and the superscript + denotes the +-eigenspace for the
action of the archimedean involution ¢. Also, recall that Wi is one dimensional
and fix a generator ¢ of it.

We may define specialization maps

pr: D —V, (F)
by the formula
o) )P = [ al)Ply
Zp X LY
which induces (see [9, §2.5]) a map:
Dr Word N Word.
Here W'Y and WO denote the ordinary submodules of W and W, re-

spectively, defined as in [3| Definition 2.2] (see also [9, §3.5]). We also let
Wr =W ®x R, and extend the above map p, to a map

Pr W%d — Wzrd
by setting p.(z @ 1) = pp(x) - £(r).

THEOREM 3.1. There exists a p-adic neighborhood Uy of ko in X, elements ®+
m W?{d and choiceg of p-adic periods QX € F,, for k € Uy N X*h such that,
for all k € Uy N X e have

pﬂ(q)i) = Qf : (bf
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+
and Qi # 0.

Proof. This is an easy consequence of [9, Theorem 2.18] and follows along the
lines of the proof of [2I Theorem 5.5], cf. [10, Proposition 3.2]. O

We now normalize our choices as follows. With Uy as above, define
ugrlth = Z/lO N Xarlth'

Fix x € U™ and an embedding Q, — C. Let fJ denote a modular form
onI';, corresponding to f. by the Jacquet-Langlands correspondence, which is
well defined up to elements in C*. View ¢;= as an element in H*(T,._, V,,(C))*.
Choose a representative (I% of ®*, by which we mean that if * = > <I>l:-t T,
then we choose a representative @fv for all i. Also, we will write p,(®)(P) as

€ x .= k(r;) - € z, +
/przg K(y)P( 7y)d<1>,y Z ( ) / (y)P( y)dq)lﬁ

P Zp XLy

With this notation, we see that the two cohomology classes
v — ex(y) Pz, y)dDE (z,y)
Zp XLy

and
y(7)
vy — QF. / P(z, 1) 5% (2)dz
are cohomologous in H(T';,_,V;,, (C)), for any choice of T € H.

3.3. METAPLECTIC HIDA HECKE ALGEBRAS. Let o : Ay — Ay be the ring ho-
momorphism associated to the group homomorphism ¢ — ¢2 on Zy x(Z/NZ)*,
and denote by the same symbol its restriction to A and (’)[[Z;]]. We let A,
O[Z; ], and Ay, denote, respectively, A, O[Z;] and Ay viewed as algebras
over themselves via . The ordinary metaplectic p-adic Hida Hecke algebra we
will consider is the A-algebra

R =R @) A,
Define as above B _
X = Hom‘é’_n;lg(R,@p)
and let the set X2rth of arithmetic points in X to consist of those & such that

the composition

we A€

A—=1RA 75,( i Qp
has the form v — ¥z (v)y"™* with ngz := kz — 2 for an integer k;z > 2 (called
the weight of &) and a finite order character ¢z : W — Q (called the wild
character of &). Let rz the smallest among the positive integers ¢ such that
1+ p'Z, C ker(¢).

We have a map p : X — X induced by pull-back from the canonical map
R — R. The map p restricts to arithmetic points.
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As above, define the A-algebra (or Ay-algebra)
(6) Ry =R & Ano

via A= 1® A, B _ B
We easily see that Ry ~ R[A] as Ay-algebras, where we enhance R[A] with
the following structure of Ay ~ A[A]-algebra: for Y. A;-d; € A[A] (with \; € A

and ¢; € A) and Y r; -0} € R[A] (with Ty =Y uTih @Now € R, rjn € R,
Aj.h € Ay, and 0% € A), we set

(Z&- - 6;) - (Z?‘j 287) =) (rin ® Nidgn)) - (6:6).

0,4;h
As above, extend & € X {0 a continuous O-algebra morphism
I%N : RN — @p

by setting

n n
RN <Z T '51') = Z R(xs) - Yr(0:)

i=1 i=1
for x; € R and 6; € A, where ¢ is the character of R. If we denote by QFN the
O-module of continuous O-linear homomorphisms from ﬁN to Qp, the above
correspondence sets up an injective map xerith <y ¥y and we let X J?,mh denote
the image of Xarith Pyt e = Vi - Pr - w ", which we view as a Dirichlet
character of (Z/Np™#7)*, and call the pair (ez, kz) the signature of Ky, where
k is the arithmetic point corresponding to &y .
We also have a map py : )?N — X induced from the map Ry — ﬁN taking
r — r ® 1 by pull-back. The map py also restricts to arithmetic points. The
maps p and py make the following diagram commute:

)?arithcﬁ )?E,rith

yarithC Xﬁ,rith
where the projections take a signature (e, k) to (€2, 2k).

3.4. THE A-ADIC CORRESPONDENCE. In this part, we combine the explicit in-
tegral formula of Shimura and the fact that the toric integrals can be p-adically
interpolated to show the existence of a A-adic Shimura-Shintani-Waldspurger
correspondence with the expected interpolation property. This follows very
closely [21], §6].

Let iy € /’?ﬁ,mh of signature (ez,kz). Let L, denote the order of My(F)

consisting of matrices (M;Tc b/AC/leT) with a,b,c,d € Op. Define

Op, =" (ip' (ir(B®1)NL,))
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12 MATTEO LONGO, MARC-HUBERT NICOLE

Then Op,, is the maximal order introduced in §21] (and denoted O there)
defined in terms of the maximal order Op and the integer Mp". Also,

S:=0nN OB,T

is an Eichler order of B of level Mp containing the fixed Eichler order R of
level M. With a € V* N Op, 1, we have

. _( a b/(Mp)
™ ivte) = (¢ 1
in My (F) with a,b,c € Op and we can consider the quadratic forms

Qa(z,y) = cx® — 2azy — (b/(Mp))y?,
and
(8) Qa(w,y) := Mp- Qalz,y) = Mpex® — 2Mpazy — by®.
Then Qa(x, y) has coefficients in Op a{ld, composing with F' — R and letting
x =z, y =1, we recover Q,(z) and Q,(z) of §27I (defined by means of the
isomorphism i, ). Since each prime ¢|Mp is split in F’ , the elements a, b, ¢ can
be viewed as elements in Z; via our fixed embedding Q — Qy, for any prime
L] Mp (we will continue writing a, b, ¢ for these elements, with a slight abuse of
notation). So, letting b, € Z such that i,(a) = (* b=/(MP) ) modulo i¢(S®7Ze),
for all ¢|Mp, we have b = b, modulo MpZ, as elements in Zg, for all ¢/|Mp, and
thus we get

(9) Ner (Oé) = €g (ba) = Gk(b)

for b as in ().
For any v € D, we may define an O-valued measure j, (v) on Z, by the formula:

. F@®)dja (v)(t) ::/ . f(@a(x,y))du(x,y).
7 Ly XL

for any continuous function f : Z; — C,. Recall that the group of O-valued
measures on Z; is isomorphic to the Iwasawa algebra O[[Z;(]], and thus we may
view jo () as an element in O[Z;] (see, for example, [I, §3.2]). In particular,
for any group-like element [\] € O[Z)] we have:

IRCLCEADICEYS ( . f<ts>dm<s>> dGa@)O) = [ FODdia()(0).

Zy

On the other hand,

[ Gy = [ 5@aew)dr = [ f(Ga(e)ds

Zp XZLp Zp XLy Zp XZLp
and we conclude that jo (A - v) = [X*] - jo(¥). In other words, jo is a O[Z)]-
linear map
Jo:D— O[[Z;]]a.

Before going ahead, let us introduce some notation. Let x be a Dirichlet char-
acter modulo Mp", for a positive integer r, which we decompose accordingly
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THE A-ADIC SSW CORRESPONDENCE 13

with the isomorphism (Z/Np"Z)* ~ (Z/NZ)* x (Z/p"Z)* into the product
X = X~ - Xp With xn : (Z/NZ)* — C* and x, : (Z/p"Z)* — C*. Thus,
we will write x(z) = xn(zn) - Xp(2p), where zy and z, are the projec-
tions of © € (Z/Np"Z)* to (Z/NZ)* and (Z/p"Z)*, respectively. To sim-
plify the notation, we will suppress the N and p from the notation for =y
and z,, thus simply writing « for any of the two. Using the isomorphism
(Z/NZ)* ~ (Z/MZ)* x (Z/DZ)*, decompose xn as XN = Xa - XD With xas
and yp characters on (Z/MZ)* and (Z/DZ)*, respectively. In the following,
we only need the case when yp = 1.
Using the above notation, we may define a O[Z]-linear map J, : D — O[Z}]
by
Ja(v) = €z a1 (b) - €x,p(—1) - Ja(v)
with b as in ([@). Set Dy := D ®qzx) Ay, where the map O[Z;] — Ay is
induced from the map Z; — Z) x (Z/NZ)* on group-like elements given by
z +— = ® 1. Then J, can be extended to a Ay-linear map J, : Dy — Ay .
Setting Dg , = Ry @A, Dy and extending by Ry -linearity over A we finally
obtain a R y-linear map, again denoted by the same symbol,
Jo:Dry — Rn.
For v € Dy and r € Ry we thus have
Jo(r @v) = €z m(b) - €rp(—1) -7 ® ja(¥).
For the next result, for any arithmetic point ky € XY™ coming from x €
Xarith “extend p, in (@) by Ry-linearity over O[Z}], to get a map
Prn - ]D)RN — Vnn
defined by py (r@v) := pe(v) - £n(r), for v € D and r € Ry. To simplify the
notation, set

(10) vV, )iy = pry (V (QZR/Q)
The following is essentially [21] Lemma (6.1)].

LEMMA 3.2. Let iy € )?j{‘,mh with signature (e, kz) and define ky = py(Fn).
Then for any v € Dgr, we have:

AN (Ja(V) = e () - (1, )y -
Proof. For v € Dy and r € Ry we have
EN (Ja(r ® V)) = kN (e;i,M(b) cemp(—1) -7 ®ja(u))
=eam(b) - €xp(—1) - En(r®1) - &n(1® ja(v))

= caar(B) - enp(-1) i)+ [ Fn(dia(v)

Zyp

and thus, noticing that 7y restricted to Z, is REn(t) = €z p(t)t"%, we have

v (Ja(rov)) = eg,M(b)'ek,p(*l)%N(T)/ €ip(Qa(7,9))Qa(w,y)"*2dv.

Zp XLy
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14 MATTEO LONGO, MARC-HUBERT NICOLE

Recalling (), and viewing a, b, ¢ as elements in Z,,, we have, for (z,y) € Z, XLy s

€R,p (Qa(xyy)) = 5F€,p(_by2) = 5F€,p(_b)5fc,p(y2) = 5F€,p(_b)5§,p(y) = GR,P(_b)EH,p(y)

Thus, since ez(—1)? = 1, we get:

RN (Ja(r ® V)) = kN (r) - €rp (D) - € p(b) - PH(V)(QZQ/Q) = 1e,, (@) - (v, Q)
where for the last equality use (@) and (I0Q). O

Define

WRN =W ®O[[Z§f]] RN,
the structure of O[[Z;]]—module of R being that induced by the composition
of the two maps O[Z)] — Ay — Ry described above. There is a canonical
map

¥ WRN — Hl(ro,DRN)

described as follows: if v, is a representative of an element v in W and r € Ry,
then ¥(v @ r) is represented by the cocycle v, @ r.
For v € Wr, represented by v, and { > 1 an integer, define

Jac (P,
O (v) := > M.

ceRtma@=¢
DEFINITION 3.3. For v € Wpg,,, the formal Fourier expansion
() =Y b: ()¢
§>1
inR N [q] is called the A-adic Shimura-Shintani-Waldspurger lift of v. For any
i € X2rith the formal power series expansion

o) (n) = 3 fn (8e()) ¢

£21

is called the &-specialization of ©(v).

There is a natural map

Wr — WRN
taking v ® r to itself (use that R has a canonical map to Ry ~ R[A], as
described above). So, for any choice of sign, ®* € Wx will be viewed as an
element in Wg .

JFrom now on we will use the following notation. Fix kg € xarith and put
ko = p(kg) € X*h_ Recall the neighborhood Uy of kg in Theorem Bl Define

Uy == p~ 1 (Up) and

I;{v(a)),rith — 1/70 N /’farith.
For each & € U™ put k = p(i) € U™, Recall that if (ez, kz) is the signature
of &, then (4, k) 1= (€2,2kz) is that of ro. For any x := p(£) as above, we
may consider the modular form

f:;]L € Skx, (Fn—, ) GH)
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THE A-ADIC SSW CORRESPONDENCE 15

and its Shimura-Shintani-Waldspurger lift

I
)

3
—
K
N—
7N

|
=L
N——
&

hn = Z aﬁ(hn)qg € Skn+1/2(4Np7‘”,XR), where XN(I) :
3

normalized as in (@) and (@]). For our fixed kg, recall the elements ® := &+
chosen as in Theorem ] and define ¢, := ¢;" and Q,, := Qf for xk € UHith,

PROPOSITION 3.4. For all k € Zjloamh such that r. =1 we have
RN (9&((1))) = QH . ag(h,@) and @((I))(RN) = QK . h,.i.
Proof. By Lemma [3.2] we have
~ 776;;- (ac) A&
Rv(0e(®) = D o (2)(QuE).
CER(I).q(C)=¢ ¢
Using Theorem B we get
~ Nez \OC 'QH ko —
AN (0e(®)) = > ¥¢n( ).
CER(T1),q(C)=¢ ae
Now (@) shows the statement on <y (0 (®)), while that on ©(®)(<y) is a formal

consequence of the previous one. O

COROLLARY 3.5. Let ay, denote the image of the Hecke operator T, in R. Then
®(¢)|T5 =a,-O(D).
Proof. For any k € X let a,(k) := k(T},), which is a p-adic unit by the
ordinarity assumption. For all & € U3 ™™ with r, = 1, we have

O(®)(An)|Ty = Qe - T, = ap(k) - Q- by = ap(r) - O(P)(Rn).
Consequently,

I~$N (9&02 (@)) = ap(n) . I%N (95(@))

for all % such that r, = 1. Since this subset is dense in /'FN, we conclude that

Ocp2 (P) = ap - 0c(®) and so O(P)|T7 = a,, - O(P). O

For any integer n > 1 and any quadratic form ) with coefficients in F', write
[Q]n for the class of @ modulo the action of ip(I'y). Define F, ¢ to be the
subset of the F-vector space of quadratic forms with coefficients in F' consisting
of quadratic forms Q,, such that a € V*N Op,, and —nr(a) = £&. Writing 06,
for the discriminant of @, the above set can be equivalently described as

Fne ={Qala € VN Op.,, 65, = Np"E}.

Define F,, ¢/T', to be the set {[Qa]n| Qu € Fne} of equivalence classes of F,, ¢
under the action of ix(I',). A simple computation shows that Q,-1,, = Qalg
for all « € V* and all g € T',,, and thus we find

Fne/Tn ={[Qc.]n|C € R(Tn), 85, = Np"&}.
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16 MATTEO LONGO, MARC-HUBERT NICOLE

We also note that, in the notation of §2.1] if f has weight character v, de-
fined modulo Np™, and level I',,, the Fourier coefficients a¢(h) of the Shimura-
Shintani-Waldspurger lift h of f are given by

() = Y Wgroer
QIEFme/Tn @

and, if Q = Qq, we put ¥(Q) := 1y (by) and tg = t,. Also, if we let

]:n/Fn = an,g/rn
13
we can write
(12) = Y D gr(gpr)giarn,
(QI€F. /T, ¢

Fix now an integer m > 1 and let n € {1,m}. For any t € (Z/p"7Z)* and any
integer £ > 1, define F,, ¢; to be the subset of F,, ¢ consisting of forms such
that Np"b, =t mod Np™. Also, define F, ¢ /I, to be the set of equivalence
classes of F,, ¢, under the action of ip(I'y). If « € V* N Op,,, and

. a b
ir(a) = ( e —u ) ,
then

(13) Qal(w,y) = Np"cx® —2Np"azy — Np"by?
ffom which we see that there is an inclusion Fi, ¢y C© Figpm—1 4. If Qa and
Qo belong to Fiy e, and o = gag~! for some g € I',,, then, since I',,, C I'y,
we see that @ and @ represent the same class in Fy ¢pm-1 4/I'1. This shows
that [Qa]m — [Qal]1 gives a well-defined map

Tt t Fmet/Tm — Figpm-1,4/T1.
LEMMA 3.6. The map mm ¢+ s bijective.

Proof. We first show the injectivity. For this, suppose Qn and Q. are in Fmet
a~nd [Qoi]l = [Qa/]}. So there exists g = (: f) in ip(I'1) such that such that
Qa = Qulg. If Qo = cx? — 2azy — by?, and easy computation shows that
Qo = 2% — 2d'zy — V'y? with

¢ =ca® — 2aay — by?

! —

a = —caf + afy+ aad + b6
b = —¢B? + 2a88 + bd>.

The first condition shows that v+ = 0 mod Np™. We have b = UV
mod Np™, so 62 = 1 mod Np™. Since § = 1 mod Np, we see that §
mod Np™ too.

[Tl
= o
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We now show the surjectivity. For this, fix [Qac]l in the target of 7, and choose
a representative

Qac = cz? — 2azy — by?
(recall Mpm§|6Qac, Nple, Npla, and b € Of, the last condition due to

ny(ac) # 0). By the Strong Approximation Theorem, we can find § € T'y
such that

. 1 0
ie(g) = ( a1 1 ) mod Np™

1

for all ¢|Np. Take g := ip(g), and put a := g 'acg. An easy computation,

. : /AR VWA — (ap
using the expressions for a/,0’, ¢ in terms of a,b,c and g = (7 6) as above,

shows that o € V* N Op m, ny(a) =t and dg, = Np™¢, and it follows that
Qa € fm,g,t- Now
W([Qa]m) = [Qa]l = [nglacg]l = [Qac]l
where the last equality follows because g € I'y. O
PROPOSITION 3.7. For all i € UZ™™ we have
O(®) (AN Ty " = Qs - h.

Proof. For r, = 1, this is Proposition [3.4] above, so we may assume 7, > 2. As
in the proof of Proposition 3.4 combining Lemma, and Theorem B.J]we get

O(@)(An) = Y Belaed By ghon| g

&1 \certarme
which, by () and ([I2) above we may rewrite as
~ €x Q : QK _
o) = Y HD ey (gretygiasin
[QleF1 /T Q

By definition of the action of T, on power series, we have
: & - _ rr
@((I))(RN”T;N—I _ Z € (Ci) QSK(Q]% 1)q6Q/(Np )'
QIeF/Trprlsq @
Setting Fy,.¢/Ty := Fnie/Tn for n € {1,r.}, Lemma [3.6] shows that
) e>1Y 08
Fi i =1{lQ] € F1+/T1+ such that p™|dq} is equal to F, ;.
Therefore, splitting the above sum over ¢t € (Z/Np™=7Z)*, we get
- re—1 _ €:(Q) - Qs ko—1\,8q/(Np™=)
@y = Y Y D gy

te(Z/pr=—12)* [QIEFT,

>y Ry @

te(Z/pre—12)% [QI€Fm +/T'm to

= > (@)D ) (rem1ygia/ V),
Qern/rn @
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Comparing this expression with (I2]) gives the result. a

We are now ready to state the analogue of [2Il Thm. 3.3], which is our main
result. For the reader’s convenience, we briefly recall the notation appearing
below. We denote by X the points of the ordinary Hida Hecke algebra, and
by AX2rith its arithmetic points. For kg € X" we denote by Uy the p-
adic neighborhood of kg appearing in the statement of Theorem [BI] and put
UGt = Uy N X We also denote by ® = T € W% the cohomology
class appearing in Theorem 3.1l The points X of the metaplectic Hida Hecke
algebra defined in §3.3] are equipped with a canonical map p : Xoarith _y yarith

on arithmetic points. Let UM := Ufy N Xith For cach & € U™, put
k = p(k) € UF™. Recall that if (ez,kz) is the signature of &, then the
signature of k is (€4, ky) = (€2,2kz). For any k := p(&) as above, we may

consider the modular form
f:;]L € Sk, (v €x)
and its Shimura-Shintani-Waldspurger lift

k
71 3
he = 3 ac(h)af € Si 12 (AND™, xe),  where xa(z) = ex(x) (—) ,
£

normalized as in (@) and ([@B). Finally, for & € Xh we denote by Ry its
extension to the metaplectic Hecke algebra Ry defined in §3.3

THEOREM 3.8. Let kg € X Then there exists a choice of p-adic periods
Q. for k € Uy such that the A-adic Shimura-Shintani- Waldspurger lift of ®

O(®) = 0e(P)g"
€1
in Ry[g] has the following properties:
(1) Q4 #0. o
(2) For any & € U™, the k-specialization of ©(®)

O)(kn) == z:i%(@g(q)))q6 belongs to Sy, 4+1/2(ANp"™, x}.),
£>1
where x|, (x) := xx(2) - (%)k"fl, and satisfies
O(®)(An) = Qe - he|T) ™.
Proof. The elements ,; are those Q appearing in Theorem B} which we
used in Propositions 34 and B7 above, so (1) is clear. Applying T;”’l to the
formula of Proposition 8.7, using Corollary B.5 and applying a,(x)' =" on both
sides gives
O(®) () = ap(k)' ™ Qs - h| Ty,

By [18 Prop. 1.9], each application of T}, has the effect of multiplying the
character by (2), hence

hy, = he| T~ € Sps1/2(ANDP™, X0)
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with x/. as in the statement. This gives the first part of (2), while the last
formula follows immediately from Proposition 3.7 O

Remark 3.9. Theorem [[Tlis a direct consequence of Theorem 3.8 as we briefly
show below.
Recall the embedding Z=? < Hom(Z),Z) ) which sends k € Z=? to the char-

acter z — 2*~2. Extending characters by O-linearity gives a map
772X (A) = Homfgo_r:lg(A, Q).

We denote by kM the image of k € Z22 in X(A) via this embedding. We
also denote by w : X — X'(A) the finite-to-one map obtained by restriction of
homomorphisms to A. Let k™) be a point in X of signature (k,1) such that
w(k®)) = kM. A well-known result by Hida (see [6] Cor. 1.4]) shows that
R/A is unramified at k™). As shown in [2ZI} §1], this implies that there is a
section s,y of w which is defined on a neighborhood Uy ) of k@) in X(A)
and sends k) to k(®).

Fix now kg as in the statement of Theorem [l corresponding to a cuspform
fo of weight k¢ with trivial character. The form fy corresponds to an arith-
metic character k(()R) of signature (1, ko) belonging to X'. Let U be the inverse
image of Uy under the section 5;&\)7 where Uy C X is the neighborhood of kéR)

in Theorem Extending scal[zxrs by O gives, as above, an injective contin-
uos map Hom(Z),Z)) < X(A), and we let Uy be any neighborhood of the
character z +— 2*~2 which maps to U} and is contained in the residue class
of ko modulo p — 1. Composing this map with the section U} — Uy gives a
continuous injective map

S: UO<—>L{6‘—>U0

which takes kg to k(()R), since by construction the image of ky by the first map

is kzéA). We also note that, more generally, ¢(k) = k(™) because by construction
s(k) restricts to k™) and its signature is (1, k), since the character of ¢(k) is
trivial. To show the last assertion, recall that the character of ¢(k) is ¢y -
Y -w*, and note that 1, is trivial because k™) (z) = 2#~1, and ¢g -w ™" is
trivial because the same is true for kg and k = kg modulo p— 1. In other words,
arithmetic points in ¢(Up) correspond to cuspforms with trivial character. This
is the Hida family of forms with trivial character that we considered in the
Introduction.

We can now prove Theorem [[1l For all k € Uy N Z22, put Q = Q=) and
define © := O(®) o ¢ with ® as in Theorem for kg = k(()R). Applying
Theorem B8 to kéR), and restricting to ¢(Up), shows that Uy, 2 and © satisfy
the conclusion of Theorem [I.1]

Remark 3.10. For & € Zj{gmh of signature (ez, kz) with rz = 1 as in the above
theorem, h,, is trivial if (—1)%% # ez(—1). However, since ¢, # 0, it follows
that h., is not trivial as long as the necessary condition (—1)k = ¢;(—1) is
verified.
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Remark 3.11. This result can be used to produce a quaternionic A-adic version
of the Saito-Kurokawa lifting, following closely the arguments in [§, Cor. 1].
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