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Abstract. We define weak units in a semi-monoidal 2-category C

as cancellable pseudo-idempotents: they are pairs (I, α) where I is
an object such that tensoring with I from either side constitutes a
biequivalence of C , and α : I ⊗ I → I is an equivalence in C . We
show that this notion of weak unit has coherence built in: Theorem A:
α has a canonical associator 2-cell, which automatically satisfies the
pentagon equation. Theorem B: every morphism of weak units is
automatically compatible with those associators. Theorem C: the 2-
category of weak units is contractible if non-empty. Finally we show
(Theorem E) that the notion of weak unit is equivalent to the notion
obtained from the definition of tricategory: α alone induces the whole
family of left and right maps (indexed by the objects), as well as the
whole family of Kelly 2-cells (one for each pair of objects), satisfying
the relevant coherence axioms.
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Introduction

The notion of tricategory, introduced by Gordon, Power, and Street [2] in
1995, seems still to represent the highest-dimensional explicit weak categorical
structure that can be manipulated by hand (i.e. without methods of homotopy
theory), and is therefore an important test bed for higher-categorical ideas. In
this work we investigate the nature of weak units at this level. While coherence
for weak associativity is rather well understood, thanks to the geometrical
insight provided by the Stasheff associahedra [12], coherence for unit structures
is more mysterious, and so far there seems to be no clear geometric pattern for
the coherence laws for units in higher dimensions. Specific interest in weak units
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stems from Simpson’s conjecture [11], according to which strict n-groupoids
with weak units should model all homotopy n-types.

In the present paper, working in the setting of a strict 2-category C with
a strict tensor product, we define a notion of weak unit by simple axioms
that involve only the notion of equivalence, and hence in principle make sense
in all dimensions. Briefly, a weak unit is a cancellable pseudo-idempotent.
We work out the basic theory of such units, and compare with the notion
extracted from the definition of tricategory. In the companion paper Weak
units and homotopy 3-types [4] we employ this notion of unit to prove a version
of Simpson’s conjecture for 1-connected homotopy 3-types, which is the first
nontrivial case. The strictness assumptions of the present paper should be
justified by that result.

By cancellable pseudo-idempotent we mean a pair (I, α) where I is an object in
C such that tensoring with I from either side is an equivalence of 2-categories,
and α : I ⊗ I ∼

→ I is an equi-arrow (i.e. an arrow admitting a pseudo-inverse).
The remarkable fact about this definition is that α, viewed as a multiplication
map, comes with canonical higher order data built in: it possesses a canonical
associator A which automatically satisfies the pentagon equation. This is our
Theorem A. The point is that the arrow α alone, thanks to the cancellability
of I, induces all the usual structure of left and right constraints with all the
2-cell data that goes into them and the axioms they must satisfy.

As a warm-up to the various constructions and ideas, we start out in Section 1
by briefly running through the corresponding theory for cancellable-idempotent
units in monoidal 1-categories. This theory has been treated in detail in [8].

The rest of the paper is dedicated to the case of monoidal 2-categories. In
Section 2 we give the definitions and state the main results: Theorem A says
that there is a canonical associator 2-cell for α, and that this 2-cell automati-
cally satisfies the pentagon equation. Theorem B states that unit morphisms
automatically are compatible with the associators of Theorem A. Theorem C
states that the 2-category of units is contractible if non-empty. Hence, ‘being
unital’ is, up to homotopy, a property rather than a structure.

Next follow three sections dedicated to proofs of each of these three theorems.
In Section 3 we show how the map α : II ∼

→ I alone induces left and right
constraints, which in turn are used to construct the associator and establish
the pentagon equation. The left and right constraints are not canonical, but
surprisingly the associator does not depend on the choice of them. In Sec-
tion 4 we prove Theorem B by interpreting it as a statement about units in
the 2-category of arrows, where it is possible to derive it from Theorem A. In
Section 5 we prove Theorem C. The key ingredient is to use the left and right
constraints to link up all the units, and to show that the unit morphisms are
precisely those compatible with the left and right constraints; this makes them
‘essentially unique’ in the required sense.
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In Section 6 we go through the basic theory of classical units (i.e. as extracted
from the definition of tricategory [2]). Finally, in Section 7 we show that the
two notions of unit are equivalent. This is our Theorem E. A curiosity implied
by the arguments in this section is that the left and right axioms for the 2-
cell data in the Gordon-Power-Street definition (denoted TA2 and TA3 in [2])
imply each other.
(We have no Theorem D.)

This notion of weak units as cancellable idempotents is precisely what can be ex-
tracted from the more abstract, Tamsamani-style, theory of fair n-categories [7]
by making an arbitrary choice of a fixed weak unit. In the theory of fair cate-
gories, the key object is a contractible space of all weak units, rather than any
particular point in that space, and handling this space as a whole bypasses co-
herence issues. However, for the sake of understanding what the theory entails,
and for the sake of concrete computations, it is interesting to make a choice and
study the ensuing coherence issues, as we do in this paper. The resulting ap-
proach is very much in the spirit of the classical theory of monoidal categories,
bicategories, and tricategories, and provides some new insight to these theories.
To stress this fact we have chosen to formulate everything from scratch in such
classical terms, without reference to the theory of fair categories.
In the case of monoidal 1-categories, the cancellable-idempotent viewpoint on
units goes back to Saavedra [10]. The importance of this viewpoint in higher
categories was first suggested by Simpson [11], in connection with his weak-unit
conjecture. He gave an ad hoc definition in this style, as a mere indication of
what needed to be done, and raised the question of whether higher homotopical
data would have to be specified. The surprising answer is, at least here in
dimension 3, that specifying α is enough, then the higher homotopical data is
automatically built in.

Acknowledgements. We thank Georges Maltsiniotis for pointing out to us
that the cancellable-idempotent notion of unit in dimension 1 goes back to
Saavedra [10], and we thank Josep Elgueta for catching an error in an ear-
lier version of our comparison with tricategories. The first-named author was
supported by the NSERC. The second-named author was very happy to be
a CIRGET postdoc at the UQAM in 2004, and currently holds support from
grants MTM2009-10359 and MTM2010-20692 of Spain.

1 Units in monoidal categories

It is helpful first briefly to recall the relevant results for monoidal categories,
referring the reader to [8] for further details of this case.

1.1. Semi-monoidal categories. A semi-monoidal category is a category
C equipped with a tensor product (which we denote by plain juxtaposition),
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i.e. an associative functor

C × C −→ C

(X,Y ) 7−→ XY.

For simplicity we assume strict associativity, X(Y Z) = (XY )Z.

1.2. Monoidal categories. (Mac Lane [9].) A semi-monoidal category C

is a monoidal category when it is furthermore equipped with a distinguished
object I and natural isomorphisms

IX
λX // X XI

ρX
oo

obeying the following rules (cf. [9]):

λI = ρI (1)

λXY = λXY (2)

ρXY = XρY (3)

XλY = ρXY (4)

Naturality of λ and ρ implies

λIX = IλX , ρXI = ρXI, (5)

independently of Axioms (1)–(4).

1.3 Remark. Tensoring with I from either side is an equivalence of categories.

1.4 Lemma. (Kelly [5].) Axiom (4) implies axioms (1), (2), and (3).

Proof. (4) implies (2): Since tensoring with I on the left is an equivalence, it
is enough to prove IλXY = IλXY . But this follows from Axiom (4) applied
twice (swap λ out for a ρ and swap back again only on the nearest factor):

IλXY = ρIXY = IλXY.

Similarly for ρ, establishing (3).
(4) and (2) implies (1): Since tensoring with I on the right is an equivalence,
it is enough to prove λII = ρII. But this follows from (2), (5), and (4):

λII = λII = IλI = ρII. ✷

The following alternative notion of unit object goes back to Saavedra [10]. A
thorough treatment of the notion was given in [8].

Documenta Mathematica 18 (2013) 71–110



Coherence for Weak Units 75

1.5. Units as cancellable pseudo-idempotents. An object I in a semi-
monoidal category C is called cancellable if the two functors C → C

X 7−→ IX

X 7−→ XI

are fully faithful. By definition, a pseudo-idempotent is an object I equipped
with an isomorphism α : II ∼

→ I. Finally we define a unit object in C to be a
cancellable pseudo-idempotent.

1.6 Lemma. [8] Given a unit object (I, α) in a semi-monoidal category C , for
each object X there are unique arrows

IX
λX // X XI

ρX
oo

such that

(L) IλX = αX

(R) ρXI = Xα.

The λX and ρX are isomorphisms and natural in X.

Proof. Let L : C → C denote the functor defined by tensoring with I on the
left. Since L is fully faithful, we have a bijection

Hom(IX,X) → Hom(IIX, IX).

Now take λX to be the inverse image of αX ; it is an isomorphism since αX is.
Naturality follows by considering more generally the bijection

Nat(L, idC ) → Nat(L ◦ L,L);

let λ be the inverse image of the natural transformation whose components are
αX . Similarly on the right. ✷

1.7 Lemma. [8] For λ and ρ as above, the Kelly axiom (4) holds:

XλY = ρXY.

Therefore, by Lemma 1.6 a semi-monoidal category with a unit object is a
monoidal category in the classical sense.

Proof. In the commutative square

XIIY
XIλY //

ρXIY

��

XIY

ρXY

��

XIY
XλY

// XY
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the top arrow is equal to XαY , by X tensor (L), and the left-hand arrow is
also equal to XαY , by (R) tensor Y . Since XαY is an isomorphism, it follows
that XλY = ρXY . ✷

1.8 Lemma. For a unit object (I, α) we have: (i) The map α : II → I is
associative. (ii) The two functors X 7→ IX and X 7→ XI are equivalences.

Proof. Since α is invertible, associativity amounts to the equation Iα = αI,
which follows from the previous proof by setting X = Y = I and applying L and
R once again. To see that L is an equivalence, just note that it is isomorphic
to the identity via λ. ✷

1.9. Uniqueness of units. Just as in a semi-monoid a unit element is unique
if it exists, one can show [8, 2.20] that in a semi-monoidal category, between
any two units there is a unique isomorphism of units. This statement does not
involve λ and ρ, but the proof does: the canonical isomorphism I ∼

→ J is the

composite I
ρ
−1

I
−→ IJ

λJ
−→ J .

2 Units in monoidal 2-categories: definition and main results

In this section we set up the necessary terminology and notation, give the main
definition, and state the main results.

2.1. 2-categories. We work in a strict 2-category C . We use the symbol # to
denote composition of arrows and horizontal composition of 2-cells in C , always
written from the left to the right, and occasionally decorating the symbol # by
the name of the object where the two arrows or 2-cells are composed. By an
equi-arrow in C we understand an arrow f admitting an (unspecified) pseudo-
inverse, i.e. an arrow g in the opposite direction such that f#g and g#f are
isomorphic to the respective identity arrows, and such that the comparison 2-
cells satisfy the usual triangle equations for adjunctions. (The usual word for
‘equi-arrow’ is of course ‘equivalence’; we reserve the latter word for equivalence
of categories and 2-categories. We find it useful to have a different word for
the equivalences inside a 2-category.) It is worth pointing out that it is not
necessary to insist on the triangle equations. If the 2-cells exist but do not
satisfy the triangle equation, they can always be replaced by 2-cells that do.
We shall make extensive use of arguments with pasting diagrams [6]. Our
drawings of 2-cells should be read from bottom to top, so that for example

X
h //

f
  

@@
@@

@@
@ Z

Y

U
g

??~~~~~~~

denotes U : f #
Y

g ⇒ h. The symbol © will denote identity 2-cells.
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The few 2-functors we need all happen to be strict. By natural transformation
we always mean pseudo-natural transformation. Hence a natural transforma-
tion u : F ⇒ G between two 2-functors from D to C is given by an arrow
uX : FX → GX for each object X ∈ D , and an invertible 2-cell

FX
uX //

F (x)

��

ux

GX

G(x)

��

FX ′

uX′

// GX ′

for each arrow x : X → X ′ in D , subject to the usual compatibility condi-
tions [6]. The modifications we shall need will happen to be invertible.

2.2. Semi-monoidal 2-categories. By semi-monoidal 2-category we mean
a 2-category C equipped with a tensor product, i.e. an associative 2-functor

⊗ : C × C −→ C

(X,Y ) 7−→ XY,

denoted by plain juxtaposition. We already assumed C to be a strict 2-category,
and we also require ⊗ to be a strict 2-functor and to be strictly associative:
(XY )Z = X(Y Z). This is mainly for convenience, to keep the focus on unit
issues.
Note that the tensor product of two equi-arrows is again an equi-arrow, since
its pseudo-inverse can be taken to be the tensor product of the pseudo-inverses.

2.3. Semi-monoids. A semi-monoid in C is a triple (X,α, Ã) consisting of an

object X , a multiplication map α : XX → X , and an invertible 2-cell Ã called
the associator,

XXX
αX //

Xα

��

Ã

XX

α

��

XX α
// X

required to satisfy the ‘pentagon equation’:

XXXX
αXX //

XXα

��

XαX

!!D
DD

DD
DD

DD
DD

D

ÃX

XXX

αX

!!D
DD

DD
DD

DD
DD

D

XÃXXX

Xα

!!D
DD

DD
DD

DD
DD

D XXX
αX //

Xα

��

Ã

XX

α

��
XX

α
// X

=

XXXX
αXX //

XXα

��

©

XXX

Xα

��

αX

!!D
DD

DD
DD

DD
DD

D

ÃXXX
αX

//

Xα

!!D
DD

DD
DD

DD
DD

D

Ã

XX

α

!!D
DD

DD
DD

DD
DD

D XX

α

��
XX

α
// X
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In the applications, α will be an equi-arrow, and hence we will have

Ã = A #
XX

α

for a some unique invertible

A : Xα ⇒ αX,

which it will more convenient to work with. In this case, the pentagon equation
is equivalent to the more compact equation

XXXX
αXX //

XXα

��

XA XαX

��

XXX

αX

��

ÃX

XXX
αX

// XX

=

XXXX
αXX //

XXα

��

©

XXX

Xα

��

A αX

��

XXX
αX

// XX

(6)
which we shall also make use of.

2.4. Semi-monoid maps. A semi-monoid map f : (X,α, Ã) → (Y, β, B̃) is the
data of an arrow f : X → Y in C together with an invertible 2-cell

XX
ff

//

α

��

F

Y Y

β

��

X
f

// Y

such that this cube commutes:

Y Y Y
βY

// Y Y

β

��
XXX

fff

==zzzzzzzzzzzz αX //

Xα

��

Ff

XX

ff

==zzzzzzzzzzzz

α

��

Y

Ã

F

XX
α

// X

f

==zzzzzzzzzzzz

=

Y Y Y
βY

//

Y β

��

Y Y

β

��

B̃

XXX

fff

==zzzzzzzzzzzz

Xα

��

Y Y
β

// YfF

XX

ff

==zzzzzzzzzzzz

α
//

F

X

f

==zzzzzzzzzzzz

When β is an equi-arrow, the cube equation is equivalent to the simpler equa-
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tion:

XXX
fff

//

Xα

��

A αX

��

Y Y Y

βY

��

Ff

XX
ff

// Y Y

=

XXX
fff

//

Xα

��

fF

Y Y Y

Y β

��

B βY

��

XX
ff

// Y Y

(7)

which will be useful.

2.5. Semi-monoid transformations. A semi-monoid transformation be-
tween two parallel semi-monoid maps (f,F) and (g,G) is a 2-cell T : f ⇒ g in
C such that this cylinder commutes:

XX

gg

&&

TT

ff

88

α

��

Y Y

β

��

X

F

f

99 Y

=

XX

gg

&&

G

α

��

Y Y

β

��

X

g

%%
T

f

99 Y

2.6 Lemma. Let f : X → Y be a semi-monoid map. If f is an equi-arrow (as
an arrow in C ) with quasi-inverse g : Y → X, then there is a canonical 2-cell
G such that (g,G) is a semi-monoid map.

Proof. The 2-cell G is defined as the mate [6] of the 2-cell F−1. It is routine to
check the cube equation in 2.4. ✷

2.7. Pseudo-idempotents. A pseudo-idempotent is a pair (I, α) where α :
II → I is an equi-arrow. A morphism of pseudo-idempotents from (I, α) to
(J, β) is a pair (u,U) consisting of an arrow u : I → J in C and an invertible
2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J.

If (u,U) and (v,V) are morphisms of pseudo-idempotents from (I, α) to (J, β),
a 2-morphism of pseudo-idempotents from (u,U) to (v,V) is a 2-cell T : u ⇒ v

satisfying the cylinder equation of 2.5.
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2.8. Cancellable objects. An object I in C is called cancellable if the two
2-functors C → C

X 7−→ IX

X 7−→ XI

are fully faithful. (Fully faithful means that the induced functors on hom cat-
egories are equivalences.) A cancellable morphism between cancellable objects
I and J is an equi-arrow u : I → J . (Equivalently it is an arrow such that
the functors on hom cats defined by tensoring with u on either side are equiv-
alences, cf. 5.1.) A cancellable 2-morphism between cancellable arrows is any
invertible 2-cell.

We are now ready for the main definition and the main results.

2.9. Units. A unit object is by definition a cancellable pseudo-idempotent.
Hence it is a pair (I, α) consisting of an object I and an equi-arrow α : II → I,
with the property that tensoring with I from either side define fully faithful
2-functors C → C .
A morphism of units is a cancellable morphism of pseudo-idempotents. In other
words, a unit morphism from (I, α) to (J, β) is a pair (u,U) where u : I → J is
an equi-arrow and U is an invertible 2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J.

A 2-morphism of units is a cancellable 2-morphism of pseudo-idempotents.
Hence a 2-morphism from (u,U) to (v,V) is an invertible 2-cell T : u ⇒ v such
that

II

vv

%%

TT

uu

99

α

��

JJ

β

��

I

U

u

:: J

=

II

vv

%%

V

α

��

JJ

β

��

I

v

$$
T

u

:: J

This defines the 2-category of units.

In the next section we’ll see how the notion of unit object induces left and right
constraints familiar from standard notions of monoidal 2-category. It will then
turn out (Lemmas 5.1 and 5.2) that unit morphisms and 2-morphisms can be
characterised as those morphisms and 2-morphisms compatible with the left
and right constraints.
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Theorem A (Associativity). Given a unit object (I, α), there is a canonical
invertible 2-cell

III
αI //

Iα

��

Ã

II

α

��

II α
// I

which satisfies the pentagon equation

IIII
αII //

IIα

��

IαI

!!D
DD

DD
DD

DD
DD

D

ÃI

III

αI

!!D
DD

DD
DD

DD
DD

D

IÃIII

Iα

!!D
DD

DD
DD

DD
DD

D III
αI //

Iα

��

Ã

II

α

��
II

α
// I

=

IIII
αII //

IIα

��

©

III

Iα

��

αI

!!D
DD

DD
DD

DD
DD

D

ÃIII
αI

//

Iα

!!D
DD

DD
DD

DD
DD

D

Ã

II

α

!!D
DD

DD
DD

DD
DD

D II

α

��
II

α
// I

(8)

In other words, a unit object is automatically a semi-monoid. The 2-cell A is
characterised uniquely in 3.7.

Theorem B. A unit morphism (u,U) : (I, α) → (J, β) is automatically a
semi-monoid map, when I and J are considered semi-monoids in virtue of
Theorem A.

Theorem C (Contractibility). The 2-category of units in C is con-
tractible, if non-empty.

In other words, between any two units there exists a unit morphism, and be-
tween any two parallel unit morphisms there is a unique unit 2-morphism.
Theorem C shows that units objects are unique up to homotopy, so in this
sense ‘being unital’ is a property not a structure.

The proofs of these three theorems rely on the auxiliary structure of left and
right constraints which we develop in the next section, and which also displays
the relation with the classical notion of monoidal 2-category: in Section 7 we
show that the cancellable-idempotent notion of unit is equivalent to the notion
extracted from the definition of tricategory of Gordon, Power, and Street [2].
This is our Theorem E.

3 Left and right actions, and associativity of the unit (Theo-
rem A)

Throughout this section we fix a unit object (I, α).
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3.1 Lemma. For each object X there exists pairs (λX , LX) and (ρX ,RX),

λX : IX → X, LX : IλX ⇒ αX

ρX : XI → X, RX : Xα ⇒ ρXI

where λX and ρX are equi-arrows, and LX are RX are invertible 2-cells.
For every such family, there is a unique way to assemble the λX into a natural
transformation (this involves defining 2-cells λf for every arrow f in C ) in
such a way that L is a natural modification. Similarly for the ρX and RX .

The λX is an action of I on each X , and the 2-cell LX expresses an associativity
constraint on this action. Using these structures we will construct the associator
for α, and show it satisfies the pentagon equation. Once that is in place we
will see that the actions λ and ρ are coherent too (satisfying the appropriate
pentagon equations).

We shall treat the left action. The right action is of course equivalent to
establish.

3.2. Construction of the left action. Since tensoring with I is a fully
faithful 2-functor, the functor

Hom(IX,X) → Hom(IIX, IX)

is an equivalence of categories. In the second category there is the canonical
object αX . Hence there is a pseudo pre-image which we denote λX : IX → X ,
together with an invertible 2-cell LX : IλX ⇒ αX :

IIX

αX

%%

LX

IλX

99 IX

Since α is an equi-arrow, also αX is equi, and since LX is invertible, we conclude
that also IλX is an equi-arrow. Finally since the 2-functor ‘tensoring with I’
is fully faithful, it reflects equi-arrows, so already λX is an equi-arrow.

3.3. Naturality. A slight variation in the formulation of the construction
gives directly a natural transformation λ and a modification L: Let L : C → C

denote the 2-functor ‘tensoring with I on the left’. Since L is fully faithful,
there is an equivalence of categories

Nat(L, IdC ) → Nat(L ◦ L,L).

Now in the second category we have the canonical natural transformation whose
X-component is αX (and with trivial components on arrows). Hence there
is a pseudo pre-image natural transformation λ : L → idC , together with a
modification L whose X-component is LX : IλX ⇒ αX .
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However, we wish to stress the fact that the construction is completely object-
wise. This fact is of course due to the presence of the isomorphism LX : some-
thing isomorphic to a natural transformation is again natural. More precisely,
to provide the 2-cell data λf needed to make λ into a natural transformation,
just pull back the 2-cell data from the natural transformation αX . In detail,
we need invertible 2-cells

IX
λX //

If

��

λf

X

f

��

IY
λY

// Y.

To say that the LX constitute a modification (from λ to the identity) is to have
this compatibility for every arrow f : X → Y :

IIX

αX

&&

LX

IλX

88

IIf

��

IX

If

��

IIY

Iλf

IλY

88 IY

=

IIX

αX

&&

©

IIf

��

IX

If

��

IIY

αY

&&

LY

IλY

88 IY

(Here the commutative cell is actually the 2-cell part of the natural transfor-
mation αX .) Now the point is that each 2-cell λf is uniquely defined by this
compatibility: indeed, since the other three 2-cells in the diagram are invertible,
there is a unique 2-cell that can fill the place of Iλf , and since I is cancellable
this 2-cell comes from a unique 2-cell λf . The required compatibilities of λf

with composition, identities, and 2-cells now follows from its construction: λf

is just the translation via L of the identity 2-cell αX .

3.4. Uniqueness of the left constraints. There may be many choices
for λX , and even for a fixed λX , there may be many choices for LX . However,
between any two pairs (λX , LX) and (λ′

X , L′X) there is a unique invertible 2-cell
Uleft

X : λX ⇒ λ′

X such that this compatibility holds:

IλX

IUleft
X +3

LX

� 
::

::
::

::
::

::
::

::
::

::
Iλ′

X

L
′

X

~� ��
��

��
��

�

��
��

��
��

�

αX

Indeed, this diagram defines uniquely an invertible 2-cell IλX ⇒ Iλ′

X , and
since I is cancellable, this 2-cell comes from a unique 2-cell λX ⇒ λ′

X which
we then call Uleft

X .
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There is of course a completely analogous statement for right constraints.

3.5. Construction of the associator. We define A : Iα ⇒ αI as the
unique 2-cell satisfying the equation

IIII

IαI

!!B
BB

BB
BB

BB
BB

III

αI

��

A
Iα

))
II

=

IIII

IαI

))
R

−1

I I

ρII

55

IαI

��

IL−1

I IIλ

��

III

Iλ

��

LI αI

��

©

III

ρI

((
RI

Iα

66 II

(9)
This definition is meaningful: since IαI is an equi-arrow, pre-composing with
IαI is a 2-equivalence, hence gives a bijection on the level of 2-cells, so A is
determined by the right-hand side of the equation. Note that A is invertible
since all the 2-cells in the construction are.

The associator Ã is defined as A-followed-by-α:

Ã := A #
II

α,

but it will be more convenient to work with A.

3.6 Proposition. The definition of A does not depend on the choices of left
constraint (λ, L) and right constraint (ρ,R).

Proof. Write down the right-hand side of (9) in terms of different left and right
constraints. Express these cells in terms of the original LI and RI , using the
comparison 2-cells Uleft

I and U
right

I of 3.4. Finally observe that these comparison
cells can be moved across the commutative square to cancel each other pairwise.

✷
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3.7. Uniqueness of A. Equation (9) may not appear familiar, but it is
equivalent to the following ‘pentagon’ equation (after post-whiskering with α):

IIII
ρII

//

IIλ

��

IαI

!!D
DD

DD
DD

DD
DD

D

(RI)#(αI)

III

αI

!!D
DD

DD
DD

DD
DD

D

(IL)#(Iα)III

Iα

!!D
DD

DD
DD

DD
DD

D III
αI //

Iα

��

A#α

II

α

��
II

α
// I

=

IIII
ρII

//

IIλ

��

©

III

Iλ

��

αI

!!D
DD

DD
DD

DD
DD

D

L#αIII
ρI

//

Iα

!!D
DD

DD
DD

DD
DD

D

R#α

II

α

!!D
DD

DD
DD

DD
DD

D II

α

��
II

α
// I

(10)
From this pentagon equation we shall derive the pentagon equation for A,
asserted in Theorem A. To this end we need comparison between α, λI , and
ρI , which we now establish, in analogy with Axiom (1) of monoidal category:
the left and right constraints coincide on the unit object, up to a canonical
2-cell:

3.8 Lemma. There are unique invertible 2-cells

ρI
E
⇒ α

D
⇒ λI ,

such that

III

αI

""

Iλ

L

ID

//

Iα

<< II = III

αI

&&

A

Iα

88 II = III

αI

""
ρI

EI

R

//

Iα

<< II

(11)

Proof. The left-hand equation defines uniquely a 2-cell Iα ⇒ IλI , and since I

is cancellable, this cell comes from a unique 2-cell α ⇒ λI which we then call
D. Same argument for E. ✷

Theorem A (Associativity). Given a unit object (I, α), there is a canonical
invertible 2-cell

III
αI //

Iα

��

Ã

II

α

��

II α
// I

which satisfies the pentagon Equation (8).
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Proof. On each side of the cube equation (10), paste the cell EII on the top,
and the cell IID on the left. On the left-hand side of the equation we can
use Equations (11) directly, while on the right-hand side we first need to move
those cells across the commutative square before applying (11). The result is

precisely the pentagon cube for Ã = A#α. ✷

3.9. Coherence of the actions. We have now established that (I, α, Ã) is
a semi-monoid, and may observe that the left and right constraints are coherent
actions, i.e. that their ‘associators’ L and R satisfy the appropriate pentagon
equations. For the left action this equation is:

IIIX
αIX //

IIλ

��

IαX

!!D
DD

DD
DD

DD
DD

D

ÃX

IIX

αX

!!D
DD

DD
DD

DD
DD

D

(IL)#(Iλ)IIX

Iλ

!!D
DD

DD
DD

DD
DD

D IIX
αX //

Iλ

��

L#λ

IX

λ

��
IX

λ
// X

=

IIIX
αIX //

IIλ

��

©

IIX

Iλ

��

αX

!!D
DD

DD
DD

DD
DD

D

L#λIIX
αX

//

Iλ

!!D
DD

DD
DD

DD
DD

D

L#λ

IX

λ

!!D
DD

DD
DD

DD
DD

D IX

λ

��
IX

λ
// X

Establishing this (and the analogous equation for the right action) is a routine
calculation which we omit since we will not actually need the result. We also
note that the two actions are compatible—i.e. constitute a two-sided action.
Precisely this means that there is a canonical invertible 2-cell

IXI
λXI

//

IρX

��

B

XI

ρX

��

IX
λX

// X.

This 2-cell satisfies two pentagon equations, one for IIXI and one for IXII.

4 Units in the 2-category of arrows in C , and Theorem B

In this section we prove Theorem B, which asserts that a morphism of units
(u,U) : (I, α) → (J, β) is automatically a semi-monoid map (with respect to the
canonical associators A and B of the two units). We have to establish the cube
equation of 2.4, or in fact the reduced version (7). The strategy to establish
Equation (7) is to interpret everything in the 2-category of arrows of C . The
key point is to prove that a morphism of units is itself a unit in the 2-category
of arrows. Then we invoke Theorem A to get an associator for this unit, and a
pentagon equation, whose short form (6) will be the sought equation.
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4.1. The 2-category of arrows. The 2-category of arrows in C , denoted
C 2, is the 2-category described as follows. The objects of C 2 are the arrows of
C ,

X0
x // X1 .

The arrows from (X0, X1, x) to (Y0, Y1, y) are triples (f0, f1, F ) where f0 : X0 →

Y0 and f1 : X1 → Y1 are arrows in C and F is a 2-cell

X0
f0

//

x

��

F

Y0

y

��

X1
f1

// Y1.

If (g0, g1, G) is another arrow from (X0, X1, x) to (Y0, Y1, y), a 2-cell from
(f0, f1, F ) to (g0, g1, G) is given by a pair (m0,m1) where m0 : f0 ⇒ g0 and
m1 : f1 ⇒ g1 are 2-cells in C compatible with F and G in the sense that this
cylinder commutes:

X0

g0

%%
m0

f0

99

x

��

Y0

y

��

X1

F

f1

99
Y1

=

X0

g0

%%

G

x

��

Y0

y

��

X1

g1

%%
m1

f1

99
Y1

Composition of arrows in C 2 is just pasting of squares. Vertical composition
of 2-cells is just vertical composition of the components (the compatibility is
guaranteed by pasting of cylinders along squares), and horizontal composition
of 2-cells is horizontal composition of the components (compatibility guaranteed
by pasting along the straight sides of the cylinders). Note that C 2 inherits a
tensor product from C : this follows from functoriality of the tensor product on
C .

4.2 Lemma. If I0 and I1 are cancellable objects in C and i : I0 → I1 is an
equi-arrow, then i is cancellable in C 2.

Proof. We have to show that for given arrows x : X0 → X1 and y : Y0 → Y1,
the functor

HomC2(x, y) → HomC2(ix, iy)

defined by tensoring with i on the left is an equivalence of categories (the check
for tensoring on the right is analogous).
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Let us first show that this functor is essentially surjective. Let

I0X0
s0 //

ix

��

S

I0Y0

iy

��

I1X1 s1
// I1Y1

be an object in HomC2(ix, iy). We need to find a square

X0
k0 //

x

��

K

Y0

y

��

X1
k1

// Y1

and an isomorphism (m0,m1) from (s0, s1, S) to (I0k0, I1k1, iK), i.e. a cylinder

I0X0

I0k0

''

m0

s0

77

ix

��

I0Y0

iy

��

I1X1

S

s1

77
I1Y1

=

I0X0

I0k0

''

iK

ix

��

I0Y0

iy

��

I1X1

I1k1

''

m1

s1

77
I1Y1

Since I0 is a cancellable object, the arrow s0 is isomorphic to I0k0 for some
k0 : X0 → Y0. Let the connecting invertible 2-cell be denoted m0 : s0 ⇒ I0k0.
Similarly we find k1 and m1 : s1 ⇒ I1k1. Since m0 and m1 are invertible, there
is a unique 2-cell

I0X0
I0k0 //

ix

��

T

I0Y0

iy

��

I1X1
I1k1

// I1Y1

that can take the place of iK in the cylinder equation; it remains to see that
T is of the form iK for some K. But this follows since the map

2CellC (k0#y, x#k1) −→ 2CellC (i(k0#y), i(x#k1))

K 7−→ iK (12)

is a bijection. Indeed, the map factors as ‘tensoring with I0 on the left’ followed
by ‘post-composing with iY1’; the first is a bijection since I0 is cancellable, the
second is a bijection since i (and hence iY1) is an equi-arrow).
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Now for the fully faithfulness of HomC2(x, y) → HomC2(ix, iy). Fix two objects
in the left-hand category, P and Q:

X0
p0

//

x

��

P

Y0

y

��

X1 p1

// Y1

X0
q0

//

x

��

Q

Y0

y

��

X1 q1
// Y1.

The arrows from P to Q are pairs (m0,m1) consisting of

m0 : p0 ⇒ q0 m1 : p1 ⇒ q1

cylinder-compatible with the 2-cells P and Q. The image of these two objects
are

I0X0
I0p0

//

ix

��

iP

I0Y0

iy

��

I1X1
I1p1

// I1Y1

I0X0
I0q0

//

ix

��

iQ

I0Y0

iy

��

I1X1
I1q1

// I1Y1.

The possible 2-cells from iP to iQ are pairs (n0, n1) consisting of

n0 : I0p0 ⇒ I0q0 n1 : I1p1 ⇒ I1q1

cylinder-compatible with the 2-cells iP and iQ. Now since I0 is cancellable,
every 2-cell n0 like this is uniquely of the form I0n0 for some n0. Hence there
is a bijection between the possible m0 and the possible n0. Similarly for m1

and n1. So there is a bijection between pairs (m0,m1) and pairs (n0, n1).
Now by functoriality of tensoring with i, all images of compatible (m0,m1) are
again compatible. It remains to rule out the possibility that some (n0, n1) pair
could be compatible without (m0,m1) being so, but this follows again from the
argument that ‘tensoring with i on the left’ is a bijection on hom sets, just like
argued for (12). ✷

4.3 Lemma. An arrow in C 2,

X0
f0

//

x

��

F

Y0

y

��

X1
f1

// Y1

is an equi-arrow in C 2 if the components f0 and f1 are equi-arrows in C and
F is invertible.

Documenta Mathematica 18 (2013) 71–110



90 André Joyal and Joachim Kock

Proof. We can construct an explicit quasi-inverse by choosing quasi-inverses to
the components. ✷

4.4 Corollary. If (I0, α0) and (I1, α1) are units in C , and (u,U) : I0 → I1
is a unit map between them, then

u : I0 → I1

is a unit object in C 2 with structure map

I0I0
α0 //

uu

��

U−1

I0

u

��

I1I1 α1

// I1.

Proof. The object u is cancellable by Lemma 4.2, and the morphism
(α0, α1,U

−1) from uu to u is an equi-arrow by Lemma 4.3. ✷

Theorem B. Let (I0, α0) and (I1, α1) be units, with canonical associators A0

and A1, respectively. If (u,U) is a unit map from I0 to I1 then it is automatically
a semi-monoid map. That is,

I0I0I0
uuu //

I0α0

��

A0 α0I0

��

I1I1I1

α1I1

��

Uu

I0I0 uu
// I1I1

=

I0I0I0
uuu //

I0α0

��

uU

I1I1I1

I1α1

��

A1 α1I1

��

I0I0 uu
// I1I1

Proof. By the previous Corollary, (u,U−1) is a unit object in C 2. Hence there
is a canonical associator

B : uU−1
⇔ U−1u.

By definition of 2-cells in C 2, this is a pair of 2-cells in C

B0 : I0α0 ⇒ α0I0 B1 : I1α1 ⇒ α1I1,

fitting the cylinder equation

I0I0I0

α0I0

''

B0

I0α0

77

uuu

��

I0I0

uu

��

I1I1I1

uU−1

I1α1

77
I1I1

=

I0I0I0

α0I0

''

U−1u

uuu

��

I0I0

uu

��

I1I1I1

α1I1

''

B1

I1α1

77
I1I1
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This is precisely the cylinder diagram we are looking for—provided we can show
that B0 = A0 and B1 = A1. But this is a consequence of the characterising
property of the associator of a unit: first note that as a unit object in C 2, u
induces left and right constraints: for each object x : X0 → X1 in C 2 there
is a left action of the unit u, and this left action will induce a left action of
(I0, α0) on X0 and a left action of (I1, α1) on X1 (the ends of the cylinders).
Similarly there is a right action of u which induces right actions at the ends of
the cylinder. Now the unique B that exists as associator for the unit object u

compatible with the left and right constraints induces B0 and B1 at the ends
of the cylinder, and these will of course be compatible with the induced left
and right constraints. Hence, by uniqueness of associators compatible with
left and right constraints, these induced associators B0 and B1 must coincide
with A0 and A1. Note that this does not dependent on choice of left and right
constraints, cf. Proposition 3.6. ✷

5 Contractibility of the space of weak units (Theorem C)

The goal of this section is to prove Theorem C, which asserts that the 2-category
of units in C is contractible if non-empty. First we describe the unit morphisms
and unit 2-morphisms in terms of compatibility with left and right constraints.
This will show that there are not too many 2-cells. Second we use the left and
right constraints to connect any two units.

The following lemma shows that just as the single arrow α induces all the
λX and ρX , the single 2-cell U of a unit map induces families Uleft

X and U
right

X

expressing compatibility with λX and ρX .

5.1 Lemma. Let (I, α) and (J, β) be units, and let (u,U) be a morphism of
pseudo-idempotents from (I, α) to (J, β). The following are equivalent.

(i) u is an equi-arrow (i.e. u is a morphism of units).
(ii) u is left cancellable, i.e. tensoring with u on the left is an equivalence of

categories Hom(X,Y ) → Hom(IX, JY ).
(ii’) u is right cancellable, i.e. tensoring with u on the right is an equivalence

of categories Hom(X,Y ) → Hom(XI, Y J).
(iii) For fixed left actions (λX , LX) for the unit (I, α) and (ℓX , L′X) for the

unit (J, β), there is a unique invertible 2-cell Uleft

X , natural in X:

IX
uX //

λX

��

Uleft

X

JX

ℓX

��

X
X

// X
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such that this compatibility holds:

IIX
uuX //

IλX

��

LX αX

��

JJX

βX

��

UX

IX
uX

// JX

=

IIX
uuX //

IλX

��

uUleft

X

JJX

JℓX

��

L′X βX

��

IX
uX

// JX

(13)
(iii’) For fixed right actions (ρX ,RX) for the unit (I, α) and (rX ,R′

X) for the
unit (J, β), there is a unique invertible 2-cell Uright

X , natural in X:

XI
Xu //

ρX

��

U
right

X

XJ

rX

��

X
X

// X

such that this compatibility holds:

XII
Xuu //

Xα

��

RX ρXI

��

XJJ

rXJ

��

U
right

X u

XI
Xu

// XJ

=

XII
Xuu //

Xα

��

XU

XJJ

Xβ

��

R′

X
rXJ

��

XI
Xu

// XJ

(14)

Proof. (i) implies (ii): ‘tensoring with u’ can be done in two steps: given an
arrow X → Y , first tensor with I to get IX → IY , and then post-compose
with uY to get IX → JY . The first step is an equivalence because I is a unit,
and the second step is an equivalence because u is an equi-arrow.
(ii) implies (iii): In Equation (13), the 2-cell labelled uUleft

X is uniquely defined
by the three other cells, and it is invertible since the three other cells are. Since
tensoring with u on the left is an equivalence, this cell comes from a unique
invertible cell Uleft

X , justifying the label uUleft

X .
(iii) implies (i): The invertible 2-cell Uleft

X shows that uX is isomorphic to
an equi-arrow, and hence is an equi-arrow itself. Now take X to be a right
cancellable object (like for example I) and conclude that already u is an equi-
arrow.
Finally, the equivalence (i)⇒(ii’)⇒(iii’)⇒(i) is completely analogous. ✷

Note that for (u,U) the identity morphism on (I, α), we recover Observation 3.4.
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5.2 Lemma. Let (I, α) and (J, β) be units; let (u,U) and (v,V) be morphisms
of pseudo-idempotents from I to J ; and consider a 2-cell T : u ⇒ v. Then the
following are equivalent.

(i) T is an invertible 2-morphism of pseudo-idempotents.
(ii) T is a left cancellable 2-morphism of pseudo-idempotents (i.e., induces a

bijection on hom sets (of hom cats) by tensoring with T from the left).
(ii’) T is a right cancellable 2-morphism of pseudo-idempotents (i.e., induces

a bijection on hom sets (of hom cats) by tensoring with T from the right).
(iii) For fixed left actions (λX , LX) for (I, α) and (ℓX , L′X) for (J, β), with

induced canonical 2-cells Uleft

X and Vleft

X as in 5.1, we have:

IX

vX

&&

TX

uX

88

λX

��

JX

ℓX

��

X

Uleft

X

X

99 X

=

IX

vX

&&

Vleft

X

λX

��

JX

ℓX

��

X

X

%%
©

X

99 X

(15)

(iii’) For fixed right actions (ρX ,RX) for (I, α) and (rX ,R′

X) for (J, β), with
induced canonical 2-cells U

right

X and V
right

X as in 5.1, we have:

XI

Xv

&&

XT

Xu

88

ρX

��

XJ

rX

��

X

U
right

X

X

99 X

=

XI

Xv

&&

V
right

X

ρX

��

XJ

rX

��

X

X

%%
©

X

99 X

(16)

Proof. It is obvious that (i) implies (ii). Let us prove that (ii) implies (iii),
so assume that tensoring with T on the left defines a bijection on the level
of 2-cells. Start with the cylinder diagram for compatibility of tensor 2-cells
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(cf. 2.5). Tensor this diagram with X on the right to get

IIX

vvX

&&

TTX

uuX

88

αX

��

JJX

βX

��

IX

UX

uX

88 JX

=

IIX

vvX

&&

VX

αX

��

JJX

βX

��

IX

vX

&&

TX

uX

88 JX

On each side of this equation, paste an LX along αX , apply Equation (13) on
each side, and cancel the L′X that appear on the other side of the square. The
resulting diagram

IIX

vvX

&&

TTX

uuX

88

IλX

��

JJX

JℓX

��

IX

uUleft

X

uX

88 JX

=

IIX

vvX

&&

vVleft

X

IλX

��

JJX

JℓX

��

IX

vX

&&

TX

uX

88 JX

is the tensor product of T with the promised equation (15). Since T is can-
cellable, we can cancel it away to finish.
(iii) implies (i): the arguments in (ii)⇒(iii) can be reversed: start with (15),
tensor with T on the left, and apply (13) to arrive at the axiom for being a
2-morphism of pseudo-idempotents. Since both Uleft

X and Vleft

X are invertible,
so is TX . Now take X to be a right cancellable object, and cancel it away to
conclude that already T is invertible.
Finally, the equivalence (i)⇒(ii’)⇒(iii’)⇒(i) is completely analogous. ✷

5.3 Corollary. Given two parallel morphisms of units, there is a unique unit
2-morphism between them.

Proof. Choose left actions for (I, α) and (J, β) as in Lemma 5.2 (iii), and take
X to be a right cancellable object. For given morphisms of units u and v

as in Lemma 5.2, Equation (15) defines the 2-cell T uniquely, since λX is an
equi-arrow and X is right cancellable. ✷

Next we aim at proving that there is a unit morphism between any two units.
The strategy is to use the left and right constraints to produce a unit morphism

I // IJ // J.

As a first step towards this goal we have:
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5.4 Lemma. Let I and J be units, and pick a left constraint λ for I and a right
constraint r for J . Put

γ := rIλJ : IJIJ → IJ

Then (IJ, γ) is a unit.

Proof. Since I and J are cancellable, clearly IJ is cancellable too. Since λJ

and rI are equi-arrows, γ is too. ✷

5.5 Lemma. There is an invertible 2-cell

IJIJ
λJλJ //

γ

��

Z

JJ

β

��

IJ
λJ

// J.

Hence (λJ ,Z) is a unit map. (And there is another 2-cell making rI a unit
map.)

Proof. The 2-cell Z is defined like this:

IJIJ

IJλJ

��

λJλJ

��

IJJ

λJJ

**
Kλ

λJJ

44

rIJ

��

R−1 Iβ

��

λβ

JJ

β

��

IJ
λJ

// J

where the 2-cell Kλ is constructed in Lemma 7.2. ✷

5.6 Corollary. Given two units, there exists a unit morphism between them.

Proof. Continuing the notation from above, by Lemma 5.4, (IJ, γ) is a unit,
and by Lemma 5.5, λ : IJ → J is a morphism of units. Similarly, r : IJ → I is
a unit morphism, and by Lemma 2.6 any chosen pseudo-inverse r−1 : I → IJ

is again a unit morphism. Finally we take

I
r−1

// IJ
λ // J.

✷
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Theorem C (Contractibility). The 2-category of units in C is con-
tractible, if non-empty. In other words, between any two units there exists a
unit morphism, and between any two parallel unit morphisms there is a unique
unit 2-morphism.

Proof. By Lemma 5.6 there is a unit morphism between any two units (an equi-
arrow by definition), and by Corollary 5.3 there is a unique unit 2-morphism
between any two parallel unit morphisms. ✷

6 Classical units

In this section we review the classical theory of units in a monoidal 2-category,
as extracted from the definition of tricategory of Gordon, Power, and Street [2].
In the next section we compare this notion with the cancellable-idempotent
approach of this work. The equivalence is stated explicitly in Theorem E.

6.1. Tricategories. The notion of tricategory introduced by Gordon, Power,
and Street [2] is roughly a weak category structure enriched over bicategories:
this means that the structure maps (composition and unit) are weak 2-functors
satisfying weak versions of associativity and unit constraints. For the associa-
tivity, the pentagon equation is replaced by a specified pentagon 3-cell (TD7),
required to satisfy an equation corresponding to the 3-dimensional associahe-
dron. This equation (TA1) is called the nonabelian 4-cocycle condition. For the
unit structure, three families of 3-cells are specified (TD8): one corresponding
to the Kelly axiom, one left variant, and one right variant (those two being
the higher-dimensional analogues of Axioms (2) and (3) of monoidal category).
Two axioms are imposed on these three families of 3-cells: one (TA2) relating
the left family with the middle family, and one (TA3) relating the right family
with the middle family. These are called left and right normalisation. (These
two axioms are the higher-dimensional analogues of the first argument in Kelly’s
lemma 1.6.) It is pointed out in [2] that the middle family together with the
axioms (TA2) and (TA3) completely determine the left and right families if
they exist.

6.2. Monoidal 2-categories. By specialising the definition of tricategory
to the one-object case, and requiring everything strict except the units, we
arrive at the following notion of monoidal 2-category: a monoidal 2-category
is a semi-monoidal 2-category (cf. 2.2) equipped with an object I, two natural
transformations λ and ρ with equi-arrow components

λX : IX → X

ρX : XI → X
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and (invertible) 2-cell data

IX
λX //

If

��

λf

X

f

��

IY
λY

// Y

XI
ρX

//

fI

��

ρf

X

f

��

Y I ρY

// Y,

together with three natural modifications K, Kλ, and Kρ, with invertible com-
ponents

K : XλY ⇒ ρXY

Kλ : λXY ⇒ λXY

Kρ : XρY ⇒ ρXY .

We call K the Kelly cell.
These three families are subject to the following two equations:

XλY Z

XK
λ
Y,Z +3

KX,Y Z

� 
::

::
::

::
:

::
::

::
::

:
XλY Z

KX,Y Z

~� ��
��

��
��

�

��
��

��
��

�

ρXY Z

(17)

XρY Z
K

ρ

X,Y
Z

+3
X`

XKY,Z
::

::
::

::
:

::
::

::
::

:
ρXY Z>F

KXY,Z

��
��

��
��

�

��
��

��
��

�

XY λZ

(18)

6.3 Remark. We have made one change compared to [2], namely the direction
of the arrow ρX : from the viewpoint of α it seems more practical to work with
ρX : XI → X rather than with the convention of ρX : X → XI chosen in [2].
Since in any case it is an equi-arrow, the difference is not essential. (Gurski in
his thesis [3] has studied a version of tricategory where all the equi-arrows in the
definition are equipped with specified pseudo-inverses. This has the advantage
that the definition becomes completely algebraic, in a technical sense.)

6.4 Lemma. The object I is cancellable (independently of the existence of K,
Kλ, and Kρ.)

Proof. We need to establish that ‘tensoring with I on the left’,

L : Hom(X,Y ) → Hom(IX, IY ),
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is an equivalence of categories. But this follows since the diagram

Hom(X,Y )
L //

Id

��

Hom(IX, IY )

_ # λY

��

Hom(X,Y )
λX # _

// Hom(IX, Y )

is commutative up to isomorphism: the component at f : X → Y of this
isomorphism is just the naturality square λf . Since the functors λX #_ and
_#λY are equivalences, it follows from this isomorphism that L is too. ✷

6.5. Coherence of the Kelly cell. As remarked in [2], if the Kλ and Kρ

exist, they are determined uniquely from K and the two axioms. Indeed, the
two equations

IλY Z

IKλ
Y,Z +3

KI,Y Z

� 
::

::
::

::
:

::
::

::
::

:
IλY Z

KI,Y Z

~� ��
��

��
��

�

��
��

��
��

�

ρIY Z

XρY I
K

ρ
X,Y

I
+3 ρXY I

XY λI

XKY,I

X`:::::::::

:::::::::
KXY,I

>F
���������

���������

(19)

which are just special cases of (17) and (18) uniquely determine Kλ and Kρ, by
cancellability of I. But these two special cases of the axioms do not imply the
general case.
We shall take the Kelly cell K as the main structure, and say that K is coherent
on the left (resp. on the right) if Axiom (17) (resp. (18)) holds for the induced
cell Kλ (resp. Kρ). We just say coherent if both hold. We shall see (7.8) that
in fact coherence on the left implies coherence on the right and vice versa.

6.6. Naturality. The Kelly cell is a modification. For future reference we
spell out the naturality condition satisfied: given arrows f : X → X ′ and
g : Y → Y ′, we have

XIY

ρXY

''

KX,Y

XλY

77

fIg

��

XY

fg

��

X ′IY ′

fλg

X′λY ′

77X
′Y ′

=

XIY

ρXY

''

ρfg

fIg

��

XY

fg

��

X ′IY ′

ρX′Y
′

''

KX′,Y ′

X′λY ′

77X
′Y ′
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6.7 Remark. Particularly useful is naturality of λ with respect to λX and
naturality of ρ with respect to ρX . In these cases, since λX and ρX are equi-
arrows, we can cancel them and find the following invertible 2-cells:

Nλ : IλX ⇒ λIX

N
ρ : ρXI ⇒ XρI ,

in analogy with Observation (5) of monoidal categories.

The following lemma holds for K independently of Axioms (17) and (18):

6.8 Lemma. The Kelly cell K satisfies the equation

XIIY

ρXIY

""
XλIY

KX,IY

XNλ

//

XIλY

<<XIY = XIIY

ρXIY

""
ρXIY

NρY

KXI,Y

//

XIλY

<<XIY

Proof. It is enough to establish this equation after post-whiskering with XλY .
The rest is a routine calculation, using on one side the definition of the cell Nλ,
then naturality of K with respect to f = X and g = λY . On the other side,
use the definition of Nρ and then naturality of K with respect to f = ρX and
g = Y . In the end, two K-cells cancel. ✷

Combining the 2-cells described so far we get

ρII
K

−1

⇒ IλI
N

λ

⇒ λII
K

λ

⇒ λII

and hence, by cancelling I on the right, an invertible 2-cell

P : ρI ⇒ λI .

Now we could also define Q : ρI ⇒ λI in terms of

IρI
K

ρ

⇒ ρII
N

ρ

⇒ ρII
K

−1

⇒ IλI .

Finally, in analogy with Axiom (1) for monoidal categories:

6.9 Lemma. We have P = Q. (This is true independently of Axioms (17) and
(18).)

Proof. Since I is cancellable, it is enough to show IPI = IQI. To establish this
equation, use the constructions of P and Q, then substitute the characterising
Equations (19) for the auxiliary cells Kλ and Kρ, and finally use Lemma 6.8. ✷
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6.10. The 2-category of GPS units. For short we shall say GPS unit for
the notion of unit just introduced. In summary, a GPS unit is a quadruple
(I, λ, ρ,K) where I is an object, λX and ρX are natural transformations with
equi-arrow components, and K : XλY ⇒ ρXY is a coherent Kelly cell (natural
in X and Y , of course).
A morphism of GPS units from (I, λ, ρ,K) to (J, ℓ, r,H) is an arrow u : I → J

equipped with natural families of invertible 2-cells

IX
uX //

λX

��

Uleft

X

JX

ℓX

��

X
X

// X

XI
Xu //

ρX

��

U
right

X

XJ

rX

��

X
X

// X

satisfying the equation

XIY
XuY //

XλY

��

K ρXY

��

XJY

rXY

��

U
right

X Y

XY
XY

// XY

=

XIY
XuY //

XλY

��

XUleft

Y

XJY

XℓY

��

H rXY

��

XY
XY

// XY

(20)
Finally, a 2-morphism of GPS unit maps is a 2-cell T : u ⇒ v satisfying the
compatibility conditions (15) and (16) of Lemma 5.2.

6.11. Remarks. Note first that u is automatically an equi-arrow. Observe
also that Uleft and Uright completely determine each other by Equation (20), as
is easily seen by taking on the one hand X to be a left cancellable object and on
the other hand Y to be a right cancellable object. Finally note that there are
two further equations, expressing compatibility with Kλ and Kρ, but they can
be deduced from Equation (20), independently of the coherence Axioms (17)
and (18). Here is the one for Kλ for future reference:

IXY
uXY //

λXY

��

Kλ λXY

��

JXY

ℓXY

��

Uleft

X Y

XY
XY

// XY

=

IXY
uXY //

λXY

��

Uleft

XY

JXY

ℓXY

��

Hℓ ℓXY

��

XY
XY

// XY

(21)

7 Comparison with classical theory (Theorem E)

In this section we prove the equivalence between the two notions of unit.
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7.1. From cancellable-idempotent units to GPS units. We fix a unit
object (I, α). We also assume chosen a left constraint λX : IX → X with
LX : IλX ⇒ αX , and a right constraint ρX : XI → X with RX : Xα ⇒ ρXI.
First of all, in analogy with Axioms (2) and (3) of monoidal categories we have:

7.2 Lemma. In the situation of 7.1, there are unique natural invertible 2-cells

Kλ : λXY ⇒ λXY

Kρ : XρY ⇒ ρXY

satisfying

IIXY

IλXY

((

IKλ

IλXY

66IXY = IIXY

IλXY

##

αXY

L−1Y

L

//

IλXY

;;IXY (22)

XY II

ρXY I

((

KρI

XρY I

66XY I = XY II

ρXY I

##

XY α

R

XR−1

//

XρY I

;;XY I (23)

Proof. The conditions precisely define the 2-cells, since I is cancellable. ✷

7.3 Lemma. In the situation of 7.1, there is a canonical family of invertible
2-cells (the Kelly cell)

K : XλY ⇒ ρXY,

natural in X and Y .

Proof. This is analogous to the construction of the associator: K is defined as
the unique 2-cell K : XλY ⇒ ρXY satisfying the equation

XIIY

XαY

**
XL

XIλY

44

XαY

��

RY ρXIY

��

©

XIY

ρXY

��

XIY
XλY

// XY

=

XIIY

XαY

!!C
CC

CC
CC

CC
C

XIY

ρXY

��

K
XλY

))
XY

(24)
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This makes sense since XαY is an equi-arrow, so we can cancel it away. Clearly
K is invertible since L and R are. ✷

We constructed Kλ and Kρ directly from L, and R. Meanwhile we also con-
structed K, and we know from classical theory (6.5) that this cell determines
the two others. The following proposition shows that all these constructions
match up, and in particular that the constructed Kelly cell is coherent on both
sides:

7.4 Proposition. In the situation of 7.1, the families of 2-cells K, Kλ and Kρ

(constructed in 7.2 and 7.3) satisfy the GPS unit axioms (17) and (18):

XλY Z

XK
λ
Y,Z +3

KX,Y Z

� 
::

::
::

::
:

::
::

::
::

:
XλY Z

KX,Y Z

~� ��
��

��
��

�

��
��

��
��

�

ρXY Z

XρY Z
K

ρ

X,Y
Z

+3
X`

XKY,Z
::

::
::

::
:

::
::

::
::

:
ρXY Z>F

KXY,Z

��
��

��
��

�

��
��

��
��

�

XY λZ

Proof. We treat the left constraint (the right constraint being completely anal-
ogous). We need to establish

XIY Z

ρXY Z

""
XλY Z

KX,Y Z

XKλ
Y,Z

//

XλY Z

<<XY Z = XIY Z

ρXY Z

((
KX,Y Z

XλY Z

66XY Z

and it is enough to establish this equation pre-whiskered with XαY Z. In the
diagram resulting from the left-hand side:

XIIY Z
XαY Z // XIY Z

ρXY Z

""
XλY Z

KX,Y Z

XKλ
Y,Z

//

XλY Z

<<XY Z

we can replace (XαY Z)#(KX,Y Z) by the expression that defined KX,Y Z
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(cf. (24)), yielding altogether

XIY Z

ρXY Z

""D
DDD

DD
DDD

DDD
DDD

DDD
D

XIIY Z

XαY Z

55

XLY Z
XIλY Z

FF

ρXIY Z

��

RXY Z
XαY Z

))

© XY Z

XIY Z

XλY Z

55

XKλ
Y,Z

XλY Z

GG

Here we can move the cell XKλ
Y,Z across the square, where it becomes XIKλ

Y,Z

and combines with XLY Z to give altogether XLY Z (cf. (22)). The resulting
diagram

XIY Z

ρXY Z

""D
DDD

DD
DDD

DDD
DDD

DDD
D

XIIY Z

XαY Z

55

XLY Z

XIλY Z

FF

ρXIY Z

��

RXY Z
XαY Z

))

© XY Z

XIY Z

XλY Z

GG

is nothing but

XIIY Z
XαY Z // XIY Z

ρXY Z

((
KX,Y Z

XλY Z

66XY Z

(by Equation (24) again) which is what we wanted to establish. ✷

Hereby we have concluded the construction of a GPS unit from (I, α). We will
also need a result for morphisms:

7.5 Proposition. Let (u,U) : (I, α) → (J, β) be a morphism of units in the
sense of 2.9, and consider the two canonical 2-cells Uleft and Uright constructed
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in Lemma 5.1. Then Equation (20) holds:

XIY
XuY //

XλY

��

K ρXY

��

XJY

rXY

��

U
right

X Y

XY
XY

// XY

=

XIY
XuY //

XλY

��

XUleft

Y

XJY

XℓY

��

H rXY

��

XY
XY

// XY

(Hence (u,Uleft,Uright) is a morphism of GPS units.)

Proof. It is enough to prove the equation obtained by pasting the 2-cell XUY

on top of each side of the equation. This enables us to use the characterising
equation for K and H. After this rewriting, we are in position to apply Equa-
tions (13) and (14), and after cancelling R and L cells, the resulting equation
amounts to a cube, where it is easy to see that each side is just U

right

X Uleft

Y . ✷

7.6. From GPS units to cancellable-idempotent units. Given a GPS
unit (I, λ, ρ,K), just put

α := λI ,

then (I, α) is a unit object in the sense of 2.9. Indeed, we already observed
that I is cancellable (6.4), and from the outset λI is an equi-arrow. That’s all!
To construct it we didn’t even need the Kelly cell, or any of the auxiliary cells
or their axioms.

7.7. Left and right actions from the Kelly cell. Start with natural
left and right constraints λ and ρ and a Kelly cell K : XλY ⇒ ρXY (not
required to be coherent on either side). Construct Kλ as in 6.5, put α := λI ,
and define left and right actions as follows. We define LX as

IλX
N

λ

⇒ λIX
K

λ

⇒ λIX = αX,

while we define RX simply as

Xα = XλI

KX,I

⇒ ρXI.

7.8 Proposition. For fixed (I, λ, ρ,K), the following are equivalent:
(i) The left and right 2-cells L and R just constructed in 7.7 are compatible

with the Kelly cell in the sense of Equation (24).
(ii) The Kelly cell K is coherent on the left (i.e. satisfies Axiom (17)).
(ii’) The Kelly cell K is coherent on the right (i.e. satisfies Axiom (18)).

Proof. Proposition 7.4 already says that (i) implies both (ii) and (ii’). To prove
(ii)⇒(i), we start with an auxiliary observation: by massaging the naturality
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equation

XIIY

ρXIY

''
KX,IY

XλIY

77

XIλY

��

XIY

XλY

��

XIY

XλλY

XλY

77XY

=

XIIY

ρXIY

''

©

XIλY

��

XIY

XλY

��

XIY

ρXY

''
KX,Y

XλY

77XY

we find the equation

XIIY

XλIY

''

XNλ

XIλY

77

ρXIY

��

XIY

ρXY

��

XIY

©

XλY

77 XY

=

XIIY

XλIY

''
K

−1

X,IY

ρXIY

77

ρXIY

��

XIY

XλY

��

KX,Y ρXY

��

XIY

©

XλY

66
XY,

(25)
tailor-made to a substitution we shall perform in a moment.

Now for the main computation, assuming first that K is coherent on the left,
i.e. that Axiom (17) holds. Start with the left-hand side of Equation (24), and
insert the definitions we made for L and R to arrive at

XIIY

©

XλIY

%%
XλIY

XKλ

XNλ

//

XIλY

99

XλIY

��

KX,IY ρXIY

��

XIY

ρXY

��

XIY
XλY

// XY
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in which we can now substitute (25) to get

XIIY

©

XλIY

%%
XλIY

XKλ

K
−1

X,IY

//

ρXIY

99

XλIY

��

KX,IY ρXIY

��

XIY

XλY

��

KX,Y ρXY

��

XIY
XλY

// XY

Here finally the three 2-cells incident to the XIIY vertex cancel each other
out, thanks to Axiom (17), and in the end, remembering α = λI , we get

XIIY

XαY

!!C
CC

CC
CC

CC
CC

XIY

ρXY

��

K
XλY

))
XY

as required to establish that K satisfies Equation (24). Hence we have proved
(ii)⇒(i), and therefore altogether (ii)⇒(ii’). The converse, (ii’)⇒(ii) follows
now by left-right symmetry of the statements. (But note that the proof via (i)
is not symmetric, since it relies on the definition α = λI . To spell out a proof of
(ii’)⇒(ii), use rather α = ρI , observing that the intermediate result (i) would
refer to different L and R.) ✷

We have now given a construction in each direction, but both constructions
involved choices. With careful choices, applying one construction after the
other in either way gets us back where we started. It is clear that this should
constitute an equivalence of 2-categories. However, the involved choices make
it awkward to make the correspondence functorial directly. (In technical terms,
the constructions are ana-2-functors.) We circumvent this by introducing an
intermediate 2-category dominating both. With this auxiliary 2-category, the
results we already proved readily imply the equivalence.
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7.9. A correspondence of 2-categories of units. Let U be following
2-category. Its objects are septuples

(I, α, λ, ρ, L,R,K),

with equi-arrows

α : II → I, λX : IX → X, ρX : XI → X,

(and accompanying naturality 2-cell data), and natural invertible 2-cells

L : IλX ⇒ αX, R : Xα ⇒ ρXI, K : XλY ⇒ ρXY.

These data are required to satisfy Equation (24) (compatibility of K with L and
R).
The arrows in U from (I, α, λ, ρ, L,R,K) to (J, β, ℓ, r, L′,R′,H) are quadruples

(u,Uleft,Uright,U),

where u : I → J is an arrow in C , Uleft and Uright are as in 6.10, and U

is a morphism of pseudo-idempotents from (I, α) to (J, β). These data are
required to satisfy Equation (20) (compatibility with Kelly cells) as well as
Equations (13) and (14) in Lemma 5.1 (compatibility with the left and right
2-cells).
Finally a 2-cell from (u,Uleft,Uright,U) to (v,Vleft,Vright,V) is a 2-cell

T : u ⇒ v

required to be a 2-morphism of pseudo-idempotents (compatibility with U and
V as in 2.5), and to satisfy Equation (15) (compatibility with Uleft and Vleft) as
well as Equation (16) (compatibility with Uright and Vright).
Let E denote the 2-category of cancellable-idempotent units introduced in 2.9,
and let G denote the 2-category of GPS units of 6.10. We have evident forgetful
(strict) 2-functors

U

Φ

~~~~
~~

~~
~~

~~
Ψ

  A
AA

AA
AA

AA
A

E G .

Theorem E (Equivalence). The 2-functors Φ and Ψ are 2-equivalences.
More precisely they are surjective on objects and strongly fully faithful (i.e. iso-
morphisms on hom categories).

Proof. The 2-functor Φ is surjective on objects by Lemma 3.1 and Proposi-
tion 7.4. Given an arrow (u,U) in E and overlying objects in U , Lemma 5.1
says there are unique Uleft and Uright, and Proposition 7.5 ensures the required
compatibility with Kelly cells (Equation (20)). Hence Φ induces a bijection on
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objects in the hom categories. Lemma 5.2 says we also have a bijection on the
level of 2-cells, hence Φ is an isomorphism on hom categories. On the other
hand, Ψ is surjective on objects by 7.7 and Proposition 7.8. Given an arrow
(u,Uleft,Uright) in G , Lemma 7.10 below says that for fixed overlying objects in
U there is a unique associated U, hence Ψ induces a bijection on objects in the
hom categories. Finally, Lemma 5.2 gives also a bijection of 2-cells, hence Ψ is
strongly fully faithful. ✷

7.10 Lemma. Given a morphism of GPS units

(I, λ, ρ,K)
(u,Uleft,Uright)

// (J, ℓ, r,H)

fix an equi-arrow α : II ∼
→ I with natural families LX : IλX ⇒ αX and RX :

αX ⇒ ρXI satisfying Equation (24) (compatibility with K), and fix an equi-
arrow β : JJ ∼

→ J with natural families L′X : IℓX ⇒ βX and R′

X : βX ⇒ rXI

also satisfying Equation (24) (compatibility with H). Then there is a unique
2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J

satisfying Equations (13) and (14) (compatibility with Uleft and the left 2-cells,
as well as compatibility with Uright and the right 2-cells).

Proof. Working first with left 2-cells, define a family WX by the equation

IIX
uuX //

IλX

��

LX αX

��

JJX

βX

��

WX

IX
uX

// JX

=

IIX
uuX //

IλX

��

uUleft

X

JJX

JℓX

��

L′X βX

��

IX
uX

// JX

It follows readily from Equation (21) that the family has the property

WXY = WXY

for all X,Y , and it is a standard argument that since a unit object exists, for
example (I, λI), this implies that

WX = UX

for a unique 2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J,
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and by construction this 2-cell has the required compatibility with Uleft and the
left constraints. To see that this U is also compatible with Uright and the right
constraints we reason backwards: (u,U) is now a morphisms of units from (I, α)
to (J, β) to which we apply the right-hand version of Lemma 5.1 to construct a
new Uright, characterised by the compatibility condition. By Proposition 7.5 this
new Uright is compatible with Uleft and the Kelly cells K and H (Equation (20)),
and hence it must in fact be the original Uright (remembering from 6.10 that
Uleft and Uright determine each other via (20)). So the 2-cell U does satisfy both
the required compatibilities. ✷
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