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ABSTRACT. In this paper, we construct Chern class maps and cycle class
maps with values ip-adic étale Tate twists [Sa2]. We also relate pradic
étale Tate twists with the finite part of Bloch-Kato. As arpbgation, we
prove that the integral part gfadic regulator maps has values in the finite
part of Galois cohomology under certain assumptions.
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1 INTRODUCTION

Let p be a rational prime number. Let be a Dedekind ring whose fraction field has
characteristic zero and which has a residue field of chaiatitey. Let X be a regular
scheme of pure-dimension which is flat of finite type o¥er Spec(A) and which is
a smooth or semistable family around its fibers a¥ef characteristip. Extending
the idea of Schneider [Sc], the author defined in [Sa2] thea®E,,(r)x (r,n > 0)
of the derived category of étale/p™-sheaves oX playing the role of the-th Tate
twist with Z /p™-coefficients, which are endowed with a natural productstne with
respect to- and both contravariantly and covariantly functorial (iteere exist natural
pull-back and trace morphisms) for arbitrary separatedpimems of finite type of
such schemes. Those pull-back and trace morphisms sdtesfyrojection formula.

The first aim of this paper is to construct the following Chelass map and cycle
class map forn,r > 0:

Kim (X)

C,.m (Chemn class)
(missing);
4

_ dy™
CH"(X,m) H2"™(X,%n(r)x),

_
(cycle class) et
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178 K. SaTo

whereK,, (X) denotes the algebralc-group [Q] andCH" (X, m) denotes the higher
Chow group [B2]. The Chern classes with values in higher Cgosups have not
been defined in this arithmetic situation for the lack of adart structure on them,
which we do not deal with in this paper. We will prepare thddwing results to

construct the above maps:

(a) The Dold-Thom isomorphism, i.e., the projective bundlmida forp-adicétale
Tate twists. See Theorefnl below for details. We note here that theadic
étale Tate twists do not satisfy homotopy invariance.

(b) For a regular closed immersion: X, — X/ of codimensior: of simplicial
schemes for which theadicétale Tate twists are defined, we construct a Gysin
morphism

gys; : Tu(r)x, — Ri'To(r +¢)x;[2¢]  in D((X\)a, Z/p")

satisfying transitivity and projection formula. See Prgjimn 5.4 below for
details.

(c) We introduce a version gf-adic étale Tate twists with log poles along hori-
zontal normal crossing divisor&sees3 below), and prove ap-adic analogue
of the usual homotopy invarian¢eee Corollary4.3 below) and a semi-purity
property(see Theorerf.5below) for this new coefficient.

The existence o€, ,,, will be verified by (a) and the general framework due to Gillet
[Gil]. The additivity ofC,. ,, for m > 1 will follow from (b) (cf. §5). On the other
hand, we will need the results in (c) to constrat™ (cf. §7). This ‘higher’ cycle
class map will be a fundamental object to study in ‘higheghwr classfield theory
[Sai]. We will mention a local behavior efy"™ in Remark 7.2 below.

The second aim of this paper is to relate thadic étale Tate twists with the finite
part of Galois cohomology [BK2], using the Fontaine-Jamnsenjecture proved by
Hyodo, Kato and Tsuiji ([HK], [K4], [Ts1], cf. [Ni2]). We assue here thatd is a
p-adic integer ring and thaX is projective overA with strict semistable reduction.
Let K be the fraction field ofd and putXy := X ®4 K = X[p~!]. We define

Hi(Xa ‘IQP(T)X) =Qp Rz, ]&n He’it(Xv ‘In(r)X)a

n>1

Hl(XK’ QP(T)) = QP ®Zp ]gl Hézt(XKv N?ﬂr)v
n>1

wherep,~» denotes the étale sheaf @f-th roots of unity onXg, i.e, the usual Tate
twist on X x. We have a natural restriction m&fi (X, Tq, (r)x) — H (Xk,Q,(r))
and a canonical descending filtratidi® on H'(Xx,Q,(r)) resulting from the
Hochschild-Serre spectral sequence for the coveking:= Xx ®x K — Xx (cf.
(9.0.1)). We define a (not necessarily exhaustive) filtrafi¢ on H*(X,Tg, (r)x)
as the inverse image df* on H* (X, Q,(r)), which induces obvious inclusions for
m>0

g H' (X, Tq, (r)x) = grf H'(Xx, Qp(r)) = H™ (K, H'™™ (X7, Qp(r)))-
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CycCLE CLASS AND p-ADIC REGULATOR 179

Here H*(K, —) denotes the continuous Galois cohomology of the absoluteissa
groupGx = Gal(K/K) defined by Tate [Ta]. We will prove that

grpH' (X, Tq, (r)x) C Hy(K, H'™ (X%, Qp(r)) (f = finite part)

assuming thap is sufficiently large and that the monodromy-weight conjee{Mo]
holds for the log crystalline cohomology of the reduction’dfin degreei — 1 (see
Theorem 9.1 below). This result is an extension ofkedic point conjecture ([Sc],
[LS], [Nel]) to the semistable reduction case and gives amamified’ version of
results of Langer [La] and NekovarF [Ne2] relating the lggt®mic cohomology ofX
with the geometric patl, (K, H'~ ' (X%, Qp(r))).

There is an application of the above results as follows.H &e a number field and
let VV be a proper smooth geometrically integral variety okerPutV := V @ K.
Let i andr be non-negative integers witlr > i + 1, and letp be a prime number.
The étale Chern characters (cf. [So]) indgeadic regulator maps

regy’ T h  Kypois1(V)e — HY (K, H (V,Qyu(r)))  (2r >i+1),
regy” : Ko(V)hom — H' (K, H*"~H(V,Qy(r))) Q2r=1i+1).

HereKo (1 )nom denotes the homologically trivial part 8§ (V'), andK,,,(V'), denotes
the integral part oK,,,(V') in the sense of Scholl (s€40 below). Motivated by the
study of special values of-functions, Bloch and Kato [BK2] conjecture that the
image ofreg?"~*~"" is contained in the finite pa#t ; (K, H'(V,Q,(r))) and spans
it overQ,. In the direction of this conjecture, we will prove the fallimg result, which
extends a result of Nekovar [Ne2] Theorem 3.1regﬂ”“ to the cas@r > i + 1 and
extends a result of Niziol [Nil] on the potentially good retiun case to the general
case:

THEOREM 1.1 (§10) Assume- < p — 2 and the monodromy-weight conjecture for
the log crystalline cohomology of degreef projective strict semistable varieties over
F,. Then we have

Im(reg?_i_l”') - H}(K7 H'(V, Qp(1))).

Here a projective strict semistable variety oWy means the reduction of a regular
scheme which is projective flat ovepaadic integer ring with strict semistable reduc-
tion.

We use the alteration theorem of de Jong [dJ] to prove Thearg&pand the projec-
tive strict semistable varieties concerned in the assummtiean those obtained from
alterations of scalar extensionslgfto the completion of< at places dividing.

This paper is organized as follows. §8, we introduce cohomological and homo-
logical logarithmic Hodge-Witt sheaves with horizontaj lpoles on normal crossing
varieties over a field of characterisfic> 0. In §3, we defingp-adic étale Tate twists
with horizontal log poles, and construct a localizationusate using this object (The-
orem 3.12). Irg4 ands5, we prove the Dold-Thom isomorphisms and define the Chern
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180 K. SaTo

class maps fop-adic étale Tate twists. The sections 6 and 7 will be devaidatie
construction of cycle class maps fpradic étale Tate twists. 1§8 we will introduce
Hodge-Witt cohomology and homology of normal crossing eties and prove that
the monodromy-weight conjecture implies a certain invatr@ycle theorem. 11§9,
we establish the comparison betweeadic étale Tate twists and the finite part of
Bloch-Kato. We will prove Theorem 1.1 §10. In the appendix, we will formulate a
continuous crystalline cohomology and a continuous syit@mhomology to prove
several technical compatibility results which will haveebaused ir9.

The author expresses his gratitude to Professors Shuji &adt Takeshi Tsuiji, and
Masanori Asakura for valuable comments and discussionb@subjects of this pa-
per.

NOTATION

For an abelian groug/ and a positive integex, ,M and M /n denote the kernel

and the cokernel of the map/ =% M, respectively. For a field:, k& denotes a
fixed separable closure, ar@, denotes the absolute Galois groGpl(k/k). For

a topologicalG,-module M, H*(k, M) denote the continuous Galois cohomology
groupsH¢, .. (Gy, M) in the sense of Tate [Ta]. IM is discrete, thend*(k, M)
agree with the étale cohomology group$egc(k) with coefficients in the étale sheaf
associated with/ .

Unless indicated otherwise, all cohomology groups of saware taken over the
étale topology. For a schen¥, an abelian shea# on X, (or more generally an
object in the derived category of abelian sheavesXey) and a pointz € X, we
often write i (X, %) for H}(Spec(0x ), #). For a positive integem which is
invertible on.X, we write 11, for the étale sheaf of the:-th roots of unity onX. For
a prime numbep which is invertible onX and integersn, r > 0, we define

H™(X, Zy(r)) = lim H'(X, 5,
n>1
H™(X,Qp(r)) := Qp ®z, H™ (X, Zy(r)).
For an equi-dimensional schem&and a non-negative integey we write X ¢ for
the set of all points oX' of codimension.

For a scheme (or a simplicial schem®)and an integen > 2, Shy X, Z/n) de-
notes the category of étale/n-sheaves o, andD (X, Z/n) denotes the derived
category of complexes of objects 8h\ X¢;, Z/n).

2 LoGARITHMIC HODGE-WITT SHEAVES

We first fix the following terminology.

DerFINITION 2.1 (1) A normal crossing varity over a fieldis a pure-dimensional
scheme which is separated of finite type okeand everywherétale locally

DOCUMENTA MATHEMATICA 18 (2013) 177-247



CycCLE CLASS AND p-ADIC REGULATOR 181

isomorphic to

Spec(klto, ..., tn]/(to- - t,)) forsomed < a < N :=dim(Y).
(2) We say that a normal crossing varietyis simple if all irreducible components

of Y are smooth ovek.

(3) An admissible divisor on a normal crossing varity is a reduced effective
Cartier divisor D such that the immersioP — Y is everywhereétale locally
isomorphic to

Spec(k[to, ..., tn]/(to - tastatt - tars)) < Spec(klto, ... tn]/(to- - ta))
for somea, b > O witha + b < N = dim(Y).

Let p be a prime number, and létbe a field of characteristie. LetY be a normal
crossing variety ovek, and letD be an admissible divisor ovi. PutV :=Y — D
and letf andg be as follows:

pcl. oy 4 Sy—y_p.

Forr € Z, we define étale sheavef, ;,) , andAfy, 5, , onY as follows:

Ty Dy = Im (dlog (9:07)% = @D vevo iz*MQ;JOg)

Uiy pym = Ker (a P vevo i W U 1o = D vevr iaWi Q;jlolg) .

Here forz € V, i, denotes the composite map— V' — Y, andW;, Q7 . denotes
the étale subsheaf of the logarithmic part of the Hodge-¥tieafli;, Q4 (cf. [B1],
[11]), which means the zero sheaf fgr< 0. The mapd is the sum of boundary maps

due to Kato [K1]. By definition, we have
ty.0yn = Yy.pym =0 for r<o.

WhenD = (), we put

Uy, 1= 1/6,7@)771 and Ay g 1= )‘E.Y,(Z)),nv

)

which are considered in [Sal]. Although we assumed the giedes ofk in [Sal],
the results in loc. cit§§2.1-2.4 an§3.1-3.2 are extended to the case thad not
necessarily perfect by results of Shiho [Sh] Theorems 32 aAd the compatibility
mentioned in [AS] Remark 7.3 (1). We hayg,_’D)_’n = g.vy,,, by the left exactness
of g., andvj, } ~ R!f'vi by the purity of}., ([Sal] Theorem 2.4.2). Hence there
is a short exact sequence

0 — 1, — Uy pyu — foVpn — 0. (2.1.1)
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182 K. Saro
By this fact, we have

v,0)n = Y(v,0)n = 9+ W Ly 10g

if Y is smooth (loc. cit. (2.4.9)), which we denote By, Q7 (v,D),lo The following
proposition will be useful later, when€ is not necessarily smootﬁ

PROPOSITION 2.2 Assume that” is simple, and let7, Y, --- , Y, be the distinct
irreducible components &f. Then there is an exact sequenceYgn

’f‘2

70 r 7l r
0— AfY,D),n - @ WIQ(YI,DI),Iog — @ WIQ(YI,DI),Iog —

[1]=1 [1]=2
q—1 )
T @ W’QEYI-,DI)JOE; — 0,
ITl=q
where the notation|7| = ¢’ means thatl runs through all subsets dfl, 2, ..., ¢}
consisting of elements, and for such= {i1,1s,...,4} (¢;'S are pair-wise distingt
we put
YI::YilﬂYizﬂ---ﬂYit and Dr:=D xy Y.

The arrowi® denotes the natural restriction map. Faf, I') with I = {i1, 2, ...,%:}
(i < ig < --- <ig)and|I'| =t + 1, the(I, I")-factor of # is defined as

0 (fI¢1I)

(_1)t—¢l ~(Brp)* (if I'=1u {it+1} andiq < - <o < dpg1 < dat1 < o < Gg),

wheres;,; denotes the closed immersidp — Y7.
We need the following lemma to prove this proposition:

LEMMA 2.3 Assume thafY, D, V) fits into cartesian squares of schemes
D Y \%
D —w v

such that? is regular, such that the vertical arrows are closed immansiand such

thatY, 2 andY U Z are simple normal crossing divisors @i, where we put/’ :=
% — 2. Then the pull-back maigh.0; — g.0}; onYg is surjective.

ct 95
5

Proof of Lemma 2.3We use the same notation as in Proposition 2.2. For a Cartier
divisor E on a schem¢, letc? (E) € ‘E‘ (Z,0}) be the localized first Chern class

of the invertible sheat;(F). Since# is regular,h, 0 is generated by, and
local uniformizers of the irreducible componetits; } ;c ; of 2. Put

D =Y xo 2; (jelJ),
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CycCLE CLASS AND p-ADIC REGULATOR 183

which is an admissible divisor o¥i. Since(g.0}})/ 0y ~ R f'0y, itis enough to
show that the Gysin map

@ @ Zp;, — le!ﬁ;
JjeJ

sendingl € Zp, to c} (D;) is bijective onDg. By [Sal] Lemma 3.2.2, there is an
exact sequence Oy

0=y 5@ oy @ oy D@ ooy, —o0, @230
[]=1 [1]=2 l11=q
where7’s are defined in the same way &s in Proposition 2.2, and denotes the
number of the distinct irreducible componentsiof Sincef!ﬁg = 0 for any non-
empty subsef C {1,2,...,q}, the exactness of (2.3.1) implies that of the lower row
of the following commutative diagram with exact rows:

0 @ Lp; 7. @ @ Zp;ny, 7 @ @ Zp,ny;

jeJ jed |I|=1 jed |I)=2

0 _R'floy P R'Aoy, P RO,

1|=1 [1]=2

whereD; N Y7 is regular for eacly € J andI C {1,2,...,¢} by the assumption

thatY U 2 has simple normal crossings o#i. The middle and the right vertical
arrows are defined in the same way as¢goland bijective by the standard purity for
0> ([Gr1] lll §6). Hencey is bijective as well. O

Proof of Proposition 2.2Since the problem is étale local ah we may assume that
(Y, D, V) fits into a diagram as in Lemma 2.3. Then there is an exact seque

#1 Fa—1 .
Wolw 9)10g — @ Wo Sy, pryjog — 0 — @ WSy, Diyjog — 0

[7]=1 [T]=q

on %, by Lemma 2.3 and induction on the number of component¥ afhich is
similar as for [Sal] Lemma 3.2.2. The assertion follows fitbia exact sequencé.]

3 p-ADIC ETALE TATE TWISTS WITH LOG POLES

In §§3—7, we are mainly concerned with the following setting.

SETTING 3.1 Let A be a Dedekind domain whose fraction field has characteristic
and which has a maximal ideal of positive characteristict Pu

S := Spec(A).
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Letp be a prime number which is notinvertibleh Let X be a regular scheme which
is flat of finite type over and whose fibers over the closed points @f characteristic
p are empty or reduced normal crossing divisorsX¥nWe writeY C X for the union
of those fibers, which may be empty.

Let D C X be a normal crossing divisor such thHatJ Y has normal crossings oXi
(D may be empty). PW := X — (Y UD)andV :=Y — (Y N D), and consider a
diagram of immersions

Ve——sX-D<~—>U

|7

y t o x

Letn andr be positive integers. We first state the Bloch-Kato-Hyodmtiem on the
structure of the sheadlil := z‘*R’”j*;Lf?{, which will be useful in this paper. We define
the étale shea#,M onY as

HM = (i75.00)%" ),
whereJ denotes the subsheaf @fj. 0;; )®" generated by local sections of the form
a1 ® az @ -+ ® ar (a1,0a2,...,a, € "5, 07) with ag + a; = 0 or 1 for some
1 < s <t < n. There is a homomorphism of étale sheaves ([BK1] 1.2)

HM — M (3.1.1)

which is a geometric version of Tate’s Galois symbol map. aal sections
a,as,...,ar € i*j*ﬁg, we denote the class afi ® as ® --- ® a, in JZ/TM by
{a1,as,...,a,}, and denote the image §fi1, as, . .., a,} € #Munder (3.1.1) again
by {a1,aq,...,a,}. We define filtrationg/ * and¥* on M as follows.

DEFINITION 3.2 Putp := Ker(Ox — i.0y) and1 + p? := Ker(O% —
(Ox [p?)*) forg > 1.

(1) We definezz®#,M as the full sheaf#,M. For ¢ > 1, we definez2#M c M
as the image of*(1 + p9) @ (i*j. O )® L.

(2) For g > 0, we defineZzM" as the image o/ ?.#M under the mag3.1.1)

(3) WhenA is local and its residue field has characteristicp, we fix a prime
elementr € A and define#M!” C M as the part generated bg "M and
the image of#72#M, ® (r) under(3.1.1)

Let L x. be the log structure o associated with the normal crossing divisot D
([K3]), and let Ly- be its inverse image log structure oritg (loc. cit. (1.4)). The
following theorem is a variant of theorems of Bloch-Katoddlyp ([BK1] Theorem
1.4, [Hy1] Theorem 1.6), and the caBe= () corresponds to their theorems.

THEOREM 3.3 (1) The symbol maf8.1.1)is surjective, i.e. Z°M" = M.
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(2) Assume thatd is local and that its residue fieldl has characteristipp. Then
there are isomorphisms

M VOM] =5 W wie g
T Iagr _~ r—1
AI/OMH/% Mn — Wle",log ’

wherell;, wy'. |,, denotes the image of the logarithmic differential map

dlog : (LE.)®™ — €D iy W Q!

y,log
yeYy?
and for a pointy € Y, i, denotes the natural map— Y.

(3) Under the same assumption as(R), let e be the absolute ramification index
of 4, and letL; be the log structure oSpec(k) associated with the pre-log
structureN — k sendingl — 0. Pute’ := pe/(p — 1). Thenforl < ¢ < €,
there are isomorphisms

r—1 r—1
r r ~ Wy-o /‘% o (P/YQ)a

UM [ VIM] = Q7Y Y
Wy-o /gyo (p | Q)a

VIMY UM s Wi 22

Herew(?, denotes the differential module @f, Ly - ) over(Spec(k), L) ([K3]
(1.7)), and %Ay, (resp.25:) denotes the image df: w{’}o_l — wy (resp. the
kernel ofd : Wi, — wi'™).

(4) Under the same assumption and notation a8hwe haveZ/ M| = VM| =
O0forqg>¢.

Proof. Note that the irreducible componentsibfare semistable families around the
fibers of characteristip by the assumption that U D has normal crossings oK.
The assertions (1) and (2) are reduced to the caseXhatsmooth ovelS and that
D = { (i.e., the Bloch-Kato theorem) by Tsuiji’s trick in [Ts2] Rioof Theorem 5.1
and a variant of Hyodo'’s lemma [Hy1] Lemma 3.5, whose detgillbe explained in
a forthcoming paper [KSS]. The assertion (4) follows fronK[B Lemma 5.1.

We prove (3). Letr € A be the fixed prime element. L&t € Ly. be the im-
age ofr, and let[7] C Ly. be the subsheaf of monoids generatedtbyThe quo-
tient Ly /[7] is a subsheaf of monoids @fy (with respect to the multiplication of
functions generated by?y and local equations defining and irreducible compo-
nents ofY". There is a surjective homomorphism

6m : Oy @ {(Lys /[7])EP}E™ — Wik
defined by the local assignment
Z2QY1 @ QYm — 2z - dlog(y1) A -+ A dlog(ym),

with z € 0y and eachy; € (Ly./[7])8. The kernel ofj,, is generated by local
sections of the following forms (cf. [Hyl] Lemma 2.2):
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(1) 2®y1 @ - @ ym such thay, belongs tod

Spec(k)|y for somel < s < m.

(2) z®y1 ® -+ ® ym, such thatys, = y; forsomel < s <t < m.

B) i (ai®a®YI® @ Ymo1) — 3 by (b @b @Y1 @+ @ Y1) With
eacha;,b; € Ly /[7] such that the sums. £_, a; andy &_, b; taken inOy
belong toLy- /[7] and satis,fny:1 a; = Zf;l b;.

Hence the assertion follows from the arguments in loc. cB51. O

We define the étale subsheaf/” c M as the part generated By'M! and the
image of(i*h. 0% _ ,)®", whereh denotes the open immersioh — D — X. By
Theorem 3.3 (2), Proposition 2.2 and the same arguments[8a2j53.4, we obtain
the following theorem:

THEOREM 3.4 There are short exact sequences of sheavégon
0 — FM;; — M} 5 vy by, — 0,
0 — %'M;, — FM, == Xy pryyn — 0,

whereo is induced by the boundary map of Galois cohomology grougstdiKato
[K1], andT is given by the local assignment

{a1,a2,...,a,} —— dlog(@r ® a2 @ - -- ®ay).

Hereay,as,...,a, are local sections of*h. 05 _p,, and fora € i*h,. 0% _,, a de-
notes its residue class in.&; .
Now we define the-adic étale Tate twists.

DEFINITION 3.5 Forn > 1 andr € Z, we define a cochain compléxb(r)ZXyD) of
sheaves oK as follows.

(1) For r = 0, we defineC’, (0)¢y py = Z/p", the constant shedt/p™ placed
in degree0. Forr < 0, we definel, (r)tx ) = jitomu (uyn ", Z/p"), the
sheafji.#omy (u5: ", Z/p™) placed in degree.

(2) Assume > 1, and let.#* be the Godement resolutionm?! onUg. We define
Cn(r)ZX_’D) as

G IV — o —
— I Ker(d s oI = G T Yy boyym (35:1)

wherej,.#Y is placed in degreé andi*u&}my)yn is placed in degree + 1.

The last arrows], is defined as the composite map
on Ker(d: jo I — juIGTY) —= R jupsd L i*”&})my),n’
ando denotes the surjective map in Theorgm

DOCUMENTA MATHEMATICA 18 (2013) 177-247



CycCLE CLASS AND p-ADIC REGULATOR 187

We often writeZ,, () x, p) for Cy(r )(X p) regarded as an object AP (X, Z/p").

WhenD = (), we often writeC,,(r)% and <, (r)x for C,(r )(x,@) and T, () x,0)
respectively.

PROPOSITION 3.6 For r > 0, T, (r)x,p) is concentrated if0, r], and there is a
distinguished triangle iD*(Xe, Z/p™)

- t @r “nl=T]
z*y(ry’le,)’n[—r — 1] —— T (1) (x,0) — T<r Rjufign — ix EY le,) e

Proof. The first assertion follows from the surjectivity of, in the definition of
Cn(r){x,p)- The second assertion is straight-forward. a

REMARK 3.7 Proposition3.6implies that¥,,(r) x defined here agrees with that in
[Sa2]§4 by a unigue isomorphism compatible with the identity ma@g%fon U (loc.
cit. Lemma4.2.2) Although we assumed that the residue fieldd of characteristig
are perfectinloc. cit., the results in loc. cig —§7.2hold true without this assumption
by results of Shih{Sh] Theorems.2, 4.1and the compatibility result ifAS] Remark
7.3(1)

PROPOSITION 3.8 The complex, (r )(x D) is contravariantly functorial in the pair

(X, D). Here a morphism of pair6X, D) — (X', D’) means a morphism of schemes
f: X — X’ satisfyingf(X — D) c X' — D'.

Proof. The caser < 0 is clear. As for the case > 1, it is enough to show that the
map

C o
1x0 : R jopuol — v (YDmY)

is contravariant i X, D). Let f : (X,D) — (X', D') be a morphism of pairs, and
consider the following diagram of immersions:

vl x A oy —x D,

whereY” denotes the union of the fibers & — S of characteristip. By the first
exact sequence in Theorem 34, (:= o for (X', D")) is surjective andKer(i/,c")
maps intoKer(i,o) under the base-change map

[ Rt — R
Hence this map induces a pull-back map
v payym = Yy Doy m- (3.8.1)
These maps are obviously compatible with and satisfy transitivity. Thus we obtain

the proposition. O
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COROLLARY 3.9 (1) LetV be the category whose objects are schetkess in
Setting3.1 and whose morphisms are morphisms of schemes. Then the com-
plexesC,,(r)% = Cy(r )( .0y With X € Ob(V) form a complexCi, (r)* of
sheaves on the bigtale siteV.

(2) The Godement resolutia®y, (r)?y ) 0N Xe: of Cn(r)7y p) is contravariantly
functorial in (X, D).

REMARK 3.10 The objectt,,(r) x, p) is also contravariantly functorial in the pair

(X, D). More precisely, for a morphism of paifs: (X, D) — (X', D’), there is a
natural morphism

f* : f*Tn(r)(X’,D’) — In(r)()QD) in Db(Xét,Z/pn)

by Proposition 3.8, which is, in fact, the unique morphisit gxtends the pull-back
isomorphism oﬁ?{ for U — U’ (cf. [Sa2]Proposition4.2.8)

REMARK 3.11 LetV andC,(r)® be as in Corollary3.9, and let%,(r) be the com-
plexC,, (r)*® regarded as an object of the derived categb®8(Vs, Z/p™). LetV’ C V
be the full subcategory consisting of schemies Ob(V) withp—! € I'(X, Ox). The
following facts will be useful later i§5:

(1) There exists a unique product structure
T(q) @ Tp(r) — Tulg+7) i DVer, Z/p")

that extends the isomorphigif! @ us — 157" on the bigetale site(V' ),
which follows from the same arguments a@SaZ] Proposition4.2.6

(2) There exists a unique isomorphism
Gm @ Z/p"[-1] = %,(1) in D(Ve,Z/p")

that extends the canonical isomorphi§i @ Z/p"[—1] — ppn on (V' )a,
which follows from the same arguments as in loc. cit. Prajpmsé.5.1

THEOREM 3.12 WhenD is regular, there is a canonical morphism
§:Tu(r)(x,p) — Tn(r —1)p[—1] in D*(Xe, Z/p")
fitting into a distinguished triangle
T (r—1)p[=2] 25 To(r)x 2 Tu(r)(x.p) —= Tn(r—1)p[—1], (3.12.1)
wherea denotes the closed immersiéh— X, and3 denotes the natural morphism

of pairs (X, D) — (X, 0). The arrowa, denotes the Gysin morphig®a2] Theorem
6.1.3
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Proof. The case: < 0 immediately follows from the absolute purity [FG]. To prove
the case > 0, we first construct the morphistn Consider a diagram of immersions

..
y tox<®o X[pil]
B
ECl . p<f O DpY.
There is a distinguished triangle 0a)p ¢

vor T 2] 2 S Rua§ 5 -1,

whered; is defined as the composite
loc
81t Ruap® =55 0, RU ST 1] = v, pSr = -1]

andd'°c denotes the connecting morphism of a localization sequeWeused the
absolute purity [FG] for the last isomorphism. Applyifitgu.., we get a distinguished
triangle onXg,

7

xR puy, Er-1_ Q]HRw*u 4 L>R]* —)a*ch* er=1_1]. (3.12.2)

Consider a diagram
Tn(r)(x,p) — Tger*Mf?nT

5 \Lég:—r<r(62)
v ,
T (r — 1)p[ 1] — 1< (@ Rpup& 1)) —2 vy 2[— 1],

where the lower row is a part of a distinguished triangleRcfiposition 3.6 fo( D, 0))
and+ denotes the composite morphisnv i’ : £ — X. Since¥,,(r)x,p) is con-
centrated if0, r|, we see that the composiiko 5 o ¢ is zero by Theorem 3.4 and a
simple computation on symbols. On the other hand, we have

Hom po (. z/pm) (Fn (F) (x, D) VeV =7 = 1]) = 0,
again by the fact thaf,, (r) x, p) is concentrated if0, r]. Hence there exists a unique
morphismd fitting into the above diagram (cf. [Sa2] Lemma 2.1.2 (1)) ckhis the

desired morphism. Finally the triangle (3.12.1) is distiistped by (3.12.2) and a
commutative diagram with exact rows ofy; (y = a0 7’)

93 1
R" w*ﬂp —>-RT]*MPT—>Q*RT 190*#?7 —0
lax \LU(X,D) lap
—1 r—1 2
0 ’L*VYn il (Y,E)n ’Y*Z/E n 0,
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where the surjectivity of; in the upper row follows from Theorem 3.3 (1) faD, ),
and the exactness of the lower row follows from (2.1.1). O

REMARK 3.13 Let(, be a primitivep-th root of unity, and letd” be the normaliza-
tion of A[(,]. Then all the definitions and results for the p&iX, D) in this section
are extended to the scalar extensioXi ® 4 A’, D ® 4 A'). Indeed, Theorer.3 (1)
and(2) will be proved iNKSS] for this generalized situation. One can check Theorem
3.3(3)and(4) for (X ®4 A’, D ®4 A’) by the same arguments as foX, D). See
[Sa2]§3.5for an argument to extend Theorehdl.

4  DoLD-THOM ISOMORPHISM

Let S,p and X be as in Setting 3.1, and letandr be integers witm > 1. In this
section we prove the Dold-Thom isomorphism feadic étale Tate twists. Ldf be

a vector bundle of rank + 1 on X, and letf : P := P(F) — X be the associated
projective bundle, which is a projective smooth morphisnredétive dimensionu.
Let (1) be the tautological invertible sheaf @ and let¢ € H?(P, %, (1)p) be
the value of the first Chern class(¢'(1)g) € H' (P, 03') under the connecting map
associated with the Kummer distinguished triangle

Op — Op — T,(1)p[1] — Op[1]

(cf. [Sa2] Proposition 4.5.1). The composite morphisms

Tu(r — ) x[~20) L= RETu(r — qp[-2i] —=> RES, (e (0< q < a)

induce a canonical morphism
vE P Tn(r — @)x[-2¢) — RET. (e in D"(Xet, Z/p").
q=0

THEOREM 4.1 (DOLD-THOM ISOMORPHISM) < iS an isomorphism.

Proof. v is an isomorphism outside a&f by [M] VI Theorem 10.1. The case < 0
follows from this fact and the proper base-change theoremprdve the case > 0,
we consider a diagram of schemes

PP

gl | lf

Yy e x <L O XpY.
We have to show that (yg) is an isomorphism:

a

T (vE) @ T Tn(r — @)x[—2q] = Rg.y*Tn(r)p, (4.1.2)

q=0
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where we identified* R f. %, (r)p with Rg.v*%,,(r)p by the proper base-change theo-
rem. By a standard norm argument (cf. [S§P).3) using Bockstein triangles (loc. cit.
§4.3), we are reduced to the case that 1 and that!’ (X, &x) contains a primitive
p-th root of unity (see Remark 3.13). We need the followingresn

LEMMA 4.2 Leté € H'(P, A}, ) be the image of under the pull-back map
v H*(P,T1(1)p) — H' (P, Ap,)

(cf. [Sa2]Proposition4.4.10) Then there are isomorphisms i (Yz;, Z/p)

P ru-: P A -al = Rgpy 1)
q=0 q=0
P ru-: P rill-ad = Revp, )
q=0 q=0
P cru-: P i [-q = Rg.wp ©)
q=0 q=0
Pérv-: P 2 [-a = Re. 2% 4)
q=0 q=0

Here 27 (resp.25") denotes the kernel df: wi? — wi? ! (resp.d : wp — wip™h).

Proof of Lemma 4.2Note that¢ agrees with the first Chern class of the tautological
invertible sheaf onP = P(i*E). Since the problems are étale local Bnwe may
assume that” is simple. IfY is smooth, then (1) and (2) are due to Gros [Gr1] |
Théoréme 2.1.11. The general case is reduced to the srastby [Sal] Proposition
3.2.1, Corollary 2.2.7. As for (3), since we have

T T

Rg.whp ~ @ Rg*(QqP/Y Rey Wy 1) =~ @ (Rg*QqP/Y) ®%, wy

q=0 q=0
by projection formula, the assertion follows from the isoptdasms
E1U—: Oy[—q == Rg*QqP/Y (0<g<a).
(4) follows from the same arguments as for [Gr1] | (2.2.3). O

We return to the proof of (4.1.1) for > 0. The case- = 0 follows from Lemma
4.2(1) withr = 0. To prove the case > 1, we use the objectK(r — ¢)x €
D*(Ye, Z/p) andK(r)p € D®(Ps,Z/p) defined in [Sa2] Lemma 10.4.1, which fit
into distinguished triangles

K(r—q)x[-1] = ¢/ @ * Ty (r — g = 1)x = i*T1(r — ¢)x = K(r — ¢)x,
K(r)e[-1] — g*1' @ " Ti(r = D)p — 7" T1(r)e — K(r)e.
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Herey’ denotes the constant sheaj. .,,(~ Z/p) on Y and the central arrows are
induced by the product structure of Tate twists. By induttor > 0, our task is to
show that the morphism

a a

P ¢u-: P K(r—q)x[-2¢] — Rg.K(r)p (4.2.1)

q=0 q=0
is an isomorphism, where we have used the pull-back morghism
7K —gx —Kr—qr (0<q<a)

induced by the pull-back morphisms for Tate twists (loc.Ribposition 4.2.8, Lemma
2.1.2(2)). By loc. cit. Lemma 10.4.1(2), we have

pWovw TP (m=r—q-1)
AT (K(r —q)x) ~ § FM{™* (m=r-q)
0 (otherwise)

and similar facts holds fdK(r) p (see§3 for F'M?). Therefore (4.2.1) is an isomor-
phism by Lemma 4.2 and Theorems 3.3(3), (4) and 3.4 With= 0 (see also the
projection formulain loc. cit. 4.4.10). This completes gveof of Theorem 4.1. [

The following corollary 4.3 follows immediately from Theams 3.12, 4.1 and the
projection formulra ([Sa2] Corollary 7.2.4), which ispaadic version of homotopy
invariance and plays an important role in our constructiocyole class maps (s&&
below).

COROLLARY 4.3 LetE be a vector bundle oX of rankia, and putP = P(E & 1),
the projective completion df. LetP’ be the projective bundlB(E) regarded as the
infinite hyperplane, and lef : P — X be the natural projection. Then the composite
morphism

To(r)x 15 RET,(r)e — RETa(r) )

is an isomorphism i’ (Xe., Z/p™).

5 CHERN CLASS

The main aim of this section is to construct the Chern class (6&.1) below. Let

S andp be as in Setting 3.1, and I#tbe the category whose objects areschemes
satisfying the conditions in Setting 3.1 f&r and whose morphisms are morphisms of
schemes. LeX, be a simplicial object iV, i.e., a contravariant functor

X, AP — V),
whereA denotes the simplex category. For a morphisiria] — [b] in A, we write

v Xy — X, (X, := X, ([a)))
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for X, (v), which is a morphisminV. For0 < i < a, letd’ be the coface map ir:
e ge{ 02120
For integer®) < i < a, we often write
di : Xov1 — Xa
for (d*)X. See [Fr]§1 for the definition of the small étale sité(, )& on X,.

DEFINITION 5.1 (1) For r € Z, we define a comple&’, ()%  of sheaves on
(X4)e by restricting the complexC,,(r)® on Vg, cf. Corollary 3.9, We
will often write T,,(r) x, for the complexC,,(r)%, regarded as an object of

DP((X. ), Z/p").
(2) We define a canonical morphism

0:Gpn[-1] — T,(1)x, In D°((X,)e)

*

by the composite morphism
Gim[~1] — G @ Z/p"[-1] = T, (1)x,,

where the left arrow denotes the canonical morphism indumed — Z/p™
and the right arrow is the restriction of the isomorphism iarfark3.11 (2)
We next review the following basic notions:

DEeFINITION 5.2 (1) A vector bundle oveiX, is a morphismf : E, — X, of
simplicial schemes such th#t : £, — X, is a vector bundle for any > 0
and such that the commutative diagram

B, -l x, (5.2.1)

4, )
fa

Ea — Xa
induces an isomorphisth, = vX*E, := E, xx, X, of vector bundles over
X, for any morphismy : [a] — [b] in A (cf. [Gi2] Examplel.1).

(2) A regular closed immersion of simplicial schemes is a mamhi: X, — Y,
such thati, : X, — Y, is a regular closed immersion for any> 0 and such
that the diagram

X, -y, (5.2.2)
vxl lvy
X, L> Y,
is cartesian for any morphism : [a] — [b] in A. An effective Cartier divisor

X, onY, is aregular closed immersioX, — Y, of pure codimensioh.
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We now define the first Chern classes of effective Cartiessdig and line bundles.

DeFINITION 5.3 (1) For an effective Cartier divisoD,. on X, we define the first
Chern clasx: (D,) € H} (X.,%,(1)) as the value of the first Chern class
c1(Dy) € Hp, ((X.)zar, ©*) under the composite map

Hp, (X.)zar, 0%) S H, (X., G) B HD, (X, Ta(1)),

wheree : (X, )& — (X4)zar denotes the continuous map of small sites. The
arrow p denotes that in DefinitioB.1 (2)

(2) For aline bundleL, on X,, we define the first Chern class
ci(Ly) € H* (X4, Tn(1))

as the value of the isomorphism cldés] € H*((X,)zar, %) (cf. [Gi2] Ex-
amplel.1l)under the composite map

H'((X,)zar, ) - H'(X,, Gm) —2 HX(X,,Tn(1)). (5.3.1)
The following proposition plays a key role in the proof of itney sum formula
in Proposition 5.5 (3) below.

PROPOSITION 5.4 Let f : X, < X/ be a regular closed immersion of simplicial
objects inV of pure codimension > 1. Letr be a non-negative integer. Then there
exists a Gysin morphism

gysy: Tu(r)x, — RfT.(r+c)x;2d  In DY ((Xi)er, Z/p")
satisfying the following three properties

(a) (Consistency with the first Chern clask » = 1, then the value of € Z/p™ =
H°(X,,%,(0)) under the Gysin map

gysy : HO(X*v‘In(O)) — H?((Xia‘zn(l))
agrees with the first Chern clasg(X..) in Definition5.3 (1)

(b) (Transitivity) For another regular closed immersian: X, — X of simpli-
cial objects inV of pure codimension > 1, the composite morphism

gysy

To(n)x, — RfTa(r + c)x[2]
SO, RERGTa(r + e+ )y 20+ 2]

—— R(go f)'Tn(r+c+)xu[2(c+ )]
agrees withgys ;.
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(c) (Projection formula The following diagram commutes In(( X, )et, Z/p™):

id®gys
RAT(9)x; ® Tu(r)x, — RF'Tu(g)x; @ RF\Tn(n + r)x, [2r]

wl lproduct

Tl +7)x, i RFTa(q+ 7+ ¢)x: [2¢],

where the left vertical arrowt is the composite morphism

£ ®id
N

Rf!Tn(Q)Xi - {Sn(r)X* SH(Q)X* & Tn(T)X*

duct
_product, Tolg+1)x,

and the product structures o, () x, }rez and{%,(r) x, }~cz are obtained
from that in Remarid.11

Proof. PutU, := X, ® Z[p~'] andV, = X, ® Z[p~']. Lety : U, — V, be the
regular closed immersion induced Iy By the absolute purity [FG] and the spectral
sequence

EYY = HY, (Va, nS¢) = HEP (Vi 156),

we have
HE (Vi 1) ~ Ker(dg — di = HEE (Vo, pat) — HE, (Vi ).

By the definition of regular closed immersions in DefinitioR2 &), the cycle class
cly, (Uo) € HE (Vo, p5) lies in the group on the right hand side, loc. cit. Propositio
1.1.3. We thus define the cycle class

clv, (Us) € HE (Vi, pio)

as the element correspondingde, (Uy). Sincecpm?{_rv* ~ ugfﬂ* on (U,)e , the
cup product withcly, (U,) defines a Gysin morphism

" cy, (U)U— .
gYS, ol . ot =y RS (2d] in DY((Uy)en Z/p"),

which satisfies the three properties (a) —(c) listed aboee Iec. cit. Proposition 1.2.1
for (b)). We show that there exists a unique morphism

gys; : Tu(r)x, — RFTa(r+0)x;[2¢ in DY((X.)a, Z/p")
that extendgys,,. Put

Y, =X, Q@Z[pZ, L:=T,(r)x, and M:= Rf'T,(r+c)x; [2¢].

*

and leta andg be as follows:
U, o x, <2y,
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Consider the following diagram " ((X,)e, Z/p™) whose lower row is distin-
guished:

&t 1< RA ST (5.4.1)

Rﬁ*(gy%)t
a Ra' —> M AN RB.B*M —= a.Ra'M[1].

Here the upper horizontal arrow is the canonical morphigimRiopositions 3.6 and
3.8), and the lower row is the localization distinguishddrtgle for 9t (cf. [SaZ2]
(1.9.2)). We have

T<r@ RA'ON = 0 (5.4.2)

by the purity in loc. cit. Theorem 4.4.7, which implies that

HomD+((X*)éhZ/pn)(TS,RB*/L;?TT, a*Ra!Sﬁ[l])
= Homsh\((X*)éhz/pn)(Rrﬂ*ugf, OZ*RTJrlOé!m),

whereSh\((X, ), Z/p™) denotes the category of étale sheaveZ 4i"*-modules on
X,. By this fact and the compatibility fact in loc. cit. Theoréhi.1, one can easily
check that the composite-d) o Rf.(gys,,) is zero inD* (X4 )et, Z/p™). Therefore
we obtain a unique morphisigys, that extendsgys,, again by (5.4.2) and by loc.
cit. Lemma 2.1.2(1). The property (a) gjs; is straight-forward, and the property
(b) follows from the uniqueness @fys;. The property (c) follows from the same
argument as for loc. cit. Corollary 7.2.4. O

Following the method of Grothendieck [G] and Gillet [Gil],ewdefine Chern
classes

o(By) = (ci(E))izo € @) H¥ (X, 5(1)
i>0
of a vector bundler, over X, as follows. LetE, be of ranka, and letf be the
natural projectio®(E,) — X,. Leté € H?(P(E,),T,(1)) be the value of the first
Chern class of the tautological line bundlel®(E, ), cf. Definition 5.3 (2). Noting the
Dold-Thom isomorphism

D HY (X Tul0) = H*(B(E), Tu@), (b)Y [ () ue

(5.4.3)
obtained from Theorem 4.1 and [Gil] Lemma 2.4, we define

co(Ey):=1 and c¢;(E,):=0 for i>a,
and define;; = ¢;(E,) fori =1,2,...,a by the equation
EMH [ e)UE ™ 4 fr(cam) UE+ f7(ca) =0
in H2*(P(E,), Tn(a)).
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PRrROPOSITION 5.5 LetX, be a simplicial objectin. Then the Chern classegE,)
of vector bundler, over X, satisfy the following properties

(1) (Normalizatior) If E, is a line bundle, then we have,(F,) = 1 and
ci(Ex) = 0fori > 1, and ci(E,) is the value of the first Chern class
c1(Ey) € HY((Xy)zar, 0%) under the may5.3.1)

(2) (Functoriality) For a morphismf : X, — X of simplicial objects in’ and a
vector bundleZ, on X!, we have

c(fEy) = [Te(Ey),

where f* on the right hand side denotes the pull-back map obtained tiee
contravariant functoriality oft,, (r), cf. Remark3.10

(3) (Whitney sum For a short exact sequenée— E, — E, — E! — 0 of vector
bundles onX,, we have

(B = Y B Uc(E]) € H"(X,, Tu(r))

s+t=r

for eachr > 0, where the cup product is taken with respect to the product
structure of{%,,(r) x, }»>o in the derived category &/p™-sheaves oX, )« ,
cf. RemariB.11 (1)

Moreover, the Chern classe§E, ) are characterized by these three properties.

Proof. The properties (1) and (2) immediately follow from this défon of Chern
classes. The last assertion on the unigueness follows tnemsplitting principle of
vector bundles, whose details are straight-forward aniddehe reader.

We prove the property (3) using the arguments of GrothelkdiefG] p. 144 Theo-
rem 1 (iii), as follows. Letr’ : D’ — X, andn” : D — X, be the (simplicial) flag
schemes of2;, andE?, respectively, and put

!/ "
D, :=D. xx. D",

which is identified with the flag scheme of* E/ overD’. Let f : D, — X, be the
natural projection. Since the pull-back map

Fr HP (X0, Tn(0) — H*(Ds, Ta(0)),

isinjective by (5.4.3), we may repla¢¥,, F,, E., E) with (D,, f*E,, f*E., f*EY)
to assume thak, has a filtration by subbundles

E,=E'DE!>---2E*=0 (a:=rank(E,))

such that the quotiertt? /E*! is a line bundle oveX, for 0 < i < a — 1 and such
thatE® = B for b = rank(E”). Now let

g: X, =Pk, — X,
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be the projective bundle associated wih. Let L, be the tautological line bundle
overX’' = P(E,) and lets : X, — ¢*F, ® L, =: F, be the section induced by the
canonical inclusiofiL, )" < ¢*E,:

SZX; #A%{i —>9*E*®L*:F*-
PutF! := ¢*E! @ L andV} := s~ 1(F?) for 0 < i < a. ThenV2 is empty because

does not vanish. Moreovéf! is a simplicial object iV and the section

S

si: V) = Flly; — (FI/F Yy
meets the zero section transversally@ox ¢ < a — 1, cf. [G] p. 147. On the other
hand, to prove the Whitney sum formula, it is enough to show

m—+n—1

Il «a@E/Fr=o.

=0
We are thus reduced to the following simplicial analogueoef tit. p.141 Lemma 2:

LeEMMA 5.6 Let X, be a simplicial object in/. Let £, be a vector bundle of rank
a overX,. Let(E?)o<i<, be a descending filtration consisting of subbundlesion
such thatE? has ranka — i. For 1 < i < a, put

& = (B ED) € HY(X,, T, (1)),
Lets: X, — E, be asectionot, — X, . For0 <i < qa, put

ViesTNED), L= (BY/ER)

*

v (restriction of E /E™! ontoV)),
and lets; : V! — L’ be the section induced I3y Assume the following condition

e V! is a simplicial object inV for 0 < i < a, ands; intersects the zero section
transversally for) < i < a — 1.

Then we have .
dx, VO =]]& in H*(X. Tula)),
=1

whereclx, (V*) denotes the value dfunder the Gysin map
Z[p" = H°(V, Tn(0)) — H** (X4, Tn(a)).

One can easily check this lemma by the properties of the Gysirphisms in
Proposition 5.4 and the arguments in loc. cit. p.141 Lemm&2is completes the
proof of Proposition 5.5. O

Now let X be a scheme which belongsYo Applying the construction of Chern
classes to the case, = B,GL, x andE, = universal rank bundle oveiB,GL,/X,
we obtain Chern classes

¢j(E.) € H¥(B.GL, x,%Tn(5)) (> 0),
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which are called theniversal ranks Chern classesOn the other hand, I€t, (j)% be
an injective resolution of the compleX, (7)% on Xe defined in Definition 3.5, and
consider the following complex of abelian sheaveson,:

. 25 —2 . 2j—1 . . .
Y ¢ )5 o eL,()E ! 5 Ker(d¥ L)Y = eL()ZT).

Heree : X& — Xz, denotes the continuous map of small sites, and we regarded
this sequence as a chain complex with the most right termeglat degred). We
apply the Dold-Puppe construction [DP] to this complex ttadba sheaf of simplicial
abelian groups, which we denote BY%,(j),2;). For a closed subsef of X and
non-negative integerisr > 0, we define the Chern class map

CZ,: KZ(X) — Hy (X, Tn(r)) (5.6.1)
as the following composite map (cf. [Gil] Definition 2.22):
KAX) — H;"(Xzar, Z X ZsoB,GL(Ox))

P H;Y(Xzar, ZooBLGL(Ox))
i (ZLiooCr — ~ r—1
o) {1 (X oy Lo K (T (1), 20)) 2 HZ = (X, S (1))

HereZ., denotes the Bousfield-Kan completion [BoK], and we have tisedniver-
sal ranks Chern class,. (E,) for a sufficiently larges to define the arrowr; (Zsoc;).
See [Gil] Proposition 2.15 for the first arrow and see loc.xi£26 for the last iso-
morphism. The maﬁfo agrees withc,. for X, = X (constant simplicial scheme)
defined before.

THEOREM 5.7 (1) C,Zl is contravariantly functorial in the paitX, Z), that s, for
amorphismf : X — X’inV and a closed subset’ ¢ X' with f~1(Z') C Z,
there is a commutative diagram

z!
(Gl

KZ(X') —= Hy (X', Tu(r))

|
CZ

KZ(X) ——> HZ (X, T, (r)).

(2) CZ, is additive fori > 0.
(3) The induced Chern character

ch: P Ki(X) — ] H'(X,Tq,(r)
i>0 i,r>0
with H(X,%q, () = Qp ®z, Hm >y HY(X,%,(r)) is a ring homomor-
phism.

Proof. (1) follows from the functoriality results in Proposition5§2) and Proposition
3.8. The assertion (2) follows from Proposition 5.5 (3) a@dll] Lemma 2.26. See
loc. cit. Definition 2.34 and Proposition 2.35 for the adser(3). O
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6 PURITY ALONG LOG POLES
This and the next section are devoted to the constructiorydéclass maps from
higher Chow groups tp-adic étale Tate twists.

Let £ be a field of characteristjc > 0, and letY” be a normal crossing variety over
k. Letc be a positive integer. LdD be a non-empty admissible divisor &h and let
Z be areduced closed subschemé& ofvhich has codimensiohr ¢ and contained in
D. Leti : Z — Y be the natural closed immersion. In this section, we first@tbe
following purity result:

THEOREM 6.1 (PURITY) We haveR%'v(y, ;) , = 0forg <c.

See Theorem 6.5 below for a consequence of this theorem.thitthe assertion for

q = c does not follow directly from Gros’ purity [Gr1] Il Théonge 3.5.8, even when

Y is smooth. The case thitis smooth has been considered and proved independently
by Mieda ([Mi1] Proof of Theorem 2.4, [Mi2]). Although the pof of Theorem 6.1
given below is essentially a variant of Gros’ proof of [Gri[Théoreme 3.5.8, we
include detailed computations for the convenience of thdee

Proof of Theorem 6.1.Since the problem is étale local, we may assume Yhad
simple and that there exists a p&#', 2) satisfying the following (1) and (2):

(1) # is smooth ovek and containg” as a normal crossing divisor,

(2) 2 is a normal crossing divisor ot such thay” U & has normal crossings on
% and suchthat N2 = D.

Then we have a short exact sequenceZ@gn

r+1 r+1 r
0 ’Wlﬂ(@/,@),log ’WlQ(ﬂy,yug),mg » V(y,p);n — 0

(a variant of (2.1.1)), which reduces the assertion to tise thaty” is smooth ovek
and thatD has normal crossings an. Furthermore, we may assume tiais regular
of pure codimension by a standard devissage argument. In what follows, we prove

RY'WoQy pyiog =0 for g#c+1, (6.1.1)

\log

assuming thal” is smooth ovek (and thatZ is regular and contained iR). By the
short exact sequences bh

0 — W1y pyjog — WUy, D)0g — Lv,D)tog — 0
0— QfY,D)JOg — % (log D) i; Oy (logD) — 0
(cf. (2.1.1) and [Sal] Corollary 2.2.5(2), Lemma 2.4.6)s inough to show that
RY' %7 (log D) = 0 = R%'Q4 (logD)  for q#c, (6.1.2)

1 —C: R%' %7 (logD) — R%'Q% (logD) s injective (6.1.3)
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The assertion (6.1.2) follows from the smoothnes¥ aind the fact tha©?, (log D)
and 27 (log D) are locally free over’y and(&y )P, respectively.

We prove (6.1.3) in what follows. Since the problem is étatal onZ, we may
assume the following condition:

(x) Y is affine, and there exists a regular sequetice- - , t. € I'(Y, Oy) such that

the ideal(ty, - - - ,t.) C Oy definesZ and such that,,--- ,t, (1 < a < c)are
uniformizers of the irreducible componentgaf Moreoverf)}, is free overdy
and has a basi$dt, } xc 4 Which containgity, . . ., dt..

Let 7 be the natural open immersion

T Y[ttt —— Y.

Forj =1,...,¢, leto; be the natural open immersion
—1 —1 —1 —
oj Y[ttt T Y.

We recall here the following standard fact (cf. [Gr1] Il (BB:

LEMMA 6.2 We have isomorphisms of sheavesZn

Ri'Q} (log D) ~ T*T*QQUOgD)/Z;ﬂ 0j+0; 82y (log D) (6.2.1)
=m0 [ (S 03007 (108 D) + 25— 030039 ),
R°i' 27 (1og D) ~ 7.7 27108 D) | T5_; 1.0} % (10g D) (6.2.2)

= 7.7 % [ (52 03003 2108 D) + X5_ 11 0303 57 ),
where we regarded the sheaves on the right hand side as shea¥e, naturally.

We define an ascending filtratidiil,,, (m > 0) on7.7*Q} as

1
Fllm(T*T*er) = {mw S T*T*QTY

w € Q’{/}

Let Fil, (R%'Q% (log D)) be the induced filtration, and I€tl, (R%i' 27 (log D)) be its
inverse image under the canonical map

R¢i' 27 (log D) — R%i'Q% (log D)) (6.2.3)
induced by the natural inclusio#fy, (log D) — 7, (log D)). Note that
R¢i' %5 (logD) = | ] Fil,, (R 25 (log D)).
m=0
We prove here the following lemma.
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LEMMA 6.3 (1) The map6.2.3)is injective.

(2) Fil,(Ri' 27 (log D)) is generated by elements of the form

1 . .
{W w] with w e gy,

where[—] denotes the residue classkil,,, (R 27 (log D)) via (6.2.2)
(3) The kernel of the projection vi®.2.1)
Fil,y, (1.7* Q%) — Fil,, (R%'Q5 (log D))
agrees with the subgroup

{ 1 wj € O (logD;) (1<j<a) }

j; (tl"'tjflthrl"'tc)pm J Wy EQE/ (a<] < C)

whereD; C Y denotes the regular divisor defined fyfor 1 < j < a.
Proof. We prove (1). By the short exact sequence
0 — 2 (log D) — QU (log D)~ B+ (log D) — 0,
we have a long exact sequencezn
- — RN A (log D) — R 25/ (log D) — R (log D) — - -

The assertion follows from the smoothnessYofand the fact that#;"! (log D) is
locally free over(&y )P. The assertion (2) is a consequence of (1), and (3) is straigh
forward. O

We return to the proof of (6.1.3), and compute the rhapC' in (6.1.3):
1—C: R% %7 (logD) — R%'Q (log D)), (6.3.1)
using the filtratiorFil,. Put
8 (=) := Fili (=) /Film—1(=).

Since we have

1 1
- - - - f T
C((t1t2 e w) COREAL Clw) for we 2y,

the Cartier operator preservis, (by Lemma 6.3 (2)) and induces a map

gl’m(C) ‘8 (RCZIQP{/UOgD)) — grm(R(’L|Q§/(IOgD))a
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which is the zero map fan > 2. Hence we have
the kernel of (6.3.1)C Fil; (R%' 27 (log D)).

Let D; C Y be as we defined in Lemma 6.3 (3) for< j < a. Fix an arbitrary
w € 2y, and assume that

xTr =

[m W] € Fili (R' 27 (log D))

belongs to the kernel of (6.3.1). To show (6.1.3), we havetu@that

w=>Y_ ¥y, forsome (6.3.2)

j=1

n; € Ny (logDj) (1<j<a)
n; €y (a<j<o)

in Q% (log D), which is equivalent to that = 0 in R%' 27 (log D) by Lemma 6.3 (1)
and (6.2.1). Since = C(z) in Fil; (R%'Q} (log D)) by assumption, we have

1 1 C(w) Z 1
w— w) =
(tth R tc)p tity - - te = (tth coetjoqtyn e .tc)p

Q@

in 7, 7*QY, for somea; € Qf (logD;)(1 < j < a)ande; € QY (a < j < ¢) by
Lemma 6.3 (3). This implies

w=(tity- )’ 'Cw)+ > ta; in Qf, (6.3.3)
j=1
and our task is to prove that

- e ) (1<j<
(tits - to)P1C(w) = Z ¢ for Some{CJ € Qy(logD;) (1<j<a)

= ¢ ey (a<j<o.
(6.3.4)
Take a basigdty}rca Of Q). over &y which containdty, . . ., dt. (see the condition

(x)). Fix an ordering oml and letJ be the set of alt-tuplesA = (A, \a, ..., \,) Of
elements of] satisfying

AL <A <-on <A

ForA = (A1, Ag,..., ) € J, put
dty :=dtx, Ndtx, N--- Ndty, € Qy.
Using the basigdtx } ac.s Of O} over &y, we decompos€'(w) as
Clw)=€e+46 (6,6 € QF). (6.3.5)
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Heree is an Oy -linear combination ofitx’s which containdt; for somel < j < a,
andé is an Oy -linear combination ofit’s which contain none oflt4, ..., dt,. We
have

(trta--te)P"re =Y 1 3; forsomes; € Oy (logD;) (1<j<a), (6.3.6)
j=1
which implies (6.3.4) it = 0. Otherwise, we proceed as follows. Put
y = (tats---t.)P"10 € Q.

Sincedw = 0, the equalities (6.3.3) and (6.3.6) imply

c
7 2dty Ay =17""dy+ > 23] forsome
j=1

B € Q3 (logDj) (1 <j<a)
B; € Qy (a<j<o).

By this equality and the assumption &none can easily check that

7 e Q% (logDy)

, (6.3.7)
By € 2<j<o)

(&3
B 2dty Ny =Y B for some{

j=1
To proceed with the proof of (6.3.4), we need the followingiea:

LEMMA 6.4 Let f andg be the followingdy -linear maps, respectively
f:OL — QUL 2 dty Az,

: dt
g: Q% (logD1) — Q3 (log Dy), 2+ t_l Az
1

Then the following holds

(1) Form > 1, we have

Im(f) N (t;ﬂ Q3 (log Dy) +Z tr le) = t7Im(g) +Z 7 Im(f).
j=2

Jj=2

(2) For m,n > 0, we have

Oyt N (Z t;mm(f)) 3 7 Im(f).
j=2 j=2

(3) Form > 0, the sequence

0y — 1 i 0p

is exact.
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Proof. These assertions follow from linear algebra o¥&r. The details are straight-
forward and left to the reader. O

By (6.3.7) and Lemma 6.4 (1) fon. = p, we have

C
72 dty Ay =1""dty A+ Y P dt Ay (6.4.1)
=2

for somey; € QY (logD1) and somey; € QF (2 < j < ¢). If p = 2, this equality
implies
t11)_2 dt1 Ny = tzf_2 dt1 N\ (ﬁl’yl + Z Tf;? ’}/j). (642)
j=2

If p > 3, we obtain (6.4.2) from (6.4.1) by replacing, . . ., 7. suitably inQ7, (2 <
j < ¢), where we used Lemma 6.4 (2) forn,n) = (p,p — 2). Noting thatt;~; and
t 7 (2 < j < c) belong toQ3,, we have

C
B2y =t 2dt A9+ 8Ty + Y HF (57%y) for somed € Qf!
j=2

by (6.4.2) and Lemma 6.4 (3) for, = p — 2. Thus we have

~ _ dt : -
(tity -t )P~L6 = 17 1yt§’<t—1m9+v1> +Y (),
1 .
j=2

which implies (6.3.4) (see also (6.3.5), (6.3.6)). This ptetes the proof of (6.3.2),
(6.1.3) and Theorem 6.1. O

THEOREM 6.5 LetS,p and X be as in Settin@.1, and letc be a positive integer.
Let D be a non-empty normal crossing divisor &n and letZ be a closed subset of
X which has codimension c. PutU := X — D. Then we have

0 (g<r+0
HL(X, Tp(r o~ o (6.5.1)
AR ) {H’Z:;‘J(U, Turu)  (g=r+o).
In particular, whenZ has pure codimensionon X, we have
HL(X, T xm) = 4 (4 <2n) (6.5.2)
2 DA gpr (200U (g = 20), -

whereZ/p"[Z° N U] means the fre& /p"-module generated by the s&t N U.
Proof. Admitting (6.5.1), we obtain (6.5.2) from the purity ®f,(r)y ([Sa2] Theorem
4.4.7, Corollary 4.4.9) and the absolute purity;(ﬁf onU[p~!] ([FG]). To show
(6.5.1), we divide the problem into the following 4 cases:

DOCUMENTA MATHEMATICA 18 (2013) 177-247



206 K. SaTo

(1) ZcDny (2)ZcDandZ ¢Y
(3) Zis arbitrary and; < r + ¢ (4) Z is arbitrary and; = r + ¢.

The case (1) follows from Theorems 3.3, 6.1 (see also Rema®&) and the same
arguments as in [Sa2] Theorem 4.4.7. The case (2) follown fre case (1) and the
same arguments as in loc. cit. Corollary 4.4.9. The casel¢8)fallows from similar
arguments as for the previous cases. To prove the case (t§,Avas the union of
closed subsets

Z = 271U 2,

whereZ; has pure codimensianon X, Z> has codimensiot» ¢ + 1 on X and we
suppose that no irreducible componentggfare contained ;. SinceZ; N Z, has
codimensiorn> ¢ + 2 on X, the assertion in the cases (1)-(3) and a Mayer-Vietoris
long exact sequence

s H S, (X, T () (x.p) — €D HE (X, Tu(r)(x.0))
j=1,2

— H2+C(X, Tn(r)(x,0)) — HZQﬁZ(X, Tn(r)x,py) — -

imply isomorphisms

HZ(X, Tn(r)(x.p) =~ D HE (X, Tu(r)x.0)) = Hy (X, T(r) (x.0))-

j=1,2

Similarly, we havef1 ;"¢ (U, Ty, (r)v) ~ Hy S, (U, Tn(r)u) by the purity ofT, (1)
([Sa2] Corollary 4.4.9). Hence we may assume théias pure codimensianon X.
Moreover we may assume that no irreducible components afe contained irD

by the cases (1)+(2) and a similar devissage argument. To@mgrthatZ N D has
codimensior> ¢ + 1 on X, we obtain the case (4) from the cases (1)+(2) and a long
exact sequence

e — H7ZF(D(X’ Tn(r)(X,D)) — H}+C(X, Sn(r)(X,D)) — HTZ;%](U, Tn(T)U>

— Hy ) (X, T (n) (x.p) — -

This completes the proof of Theorem 6.5. O

DEFINITION 6.6 Let X and D be as in Theorerf.5, and letC' be a cycle oV :=
X — D of codimensiom. LetWW C U be the support of' and leti¥ be its closure in
X. Then we define the cycle class

C|X(C) S H%(X, Tn(r)(X,D))
as the inverse image ofy (C) ([Sa2] 5.1.2)under the isomorphism in Theoresrb

HZ(X, %0 (r) (x,p)) = Hip (U, Tn(r)v).
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7 CYCLE CLASS MAP

Let S,p and X be as in Setting 3.1. In this section, we construct a cyclgsafaor-
phism )
cdx 2% Q" Z/p" — T(r)x I D(Xe, Z/p"), (7.0.1)

following the method of Bloch [B3§4 (cf. [GL] §3, see also Remark 7.3 below). Here
Z(r)$t denotes the étale sheafification &rof the presheaf of cochain complexes

U +— 2"(U,x)[—2r],
andz" (U, =) denotes Bloch’s cycle complex
-— 2"(U,q) o, 2"(U,q—1) oy 4, 2"(U,0).

(degree—q) (degree—q + 1) (degreeD)

We review the definition of this complex briefly, which will lseful later. LetA* be
the standard cosimplicial scheme o%eec(Z):

Al = Spec(Z[to,tl, ceey tq]/(to +li 4 F g = 1).
A face of A? (of codimensior: > 1) is a closed subscheme defined by the equation
tiy =t,=---=t,=0 forsome 0<i; <izs<: - <ig<gq.

Now 2" (U, q) is defined as the free abelian group generated by the setiofexiral
closed subschemes @h x A? of codimensiorn which meet all faces of/ x A?
properly. Here a face df x A means the product éf and a face ofA?. Noting that
the faces of codimensioh are effective Cartier divisors, we define the differential
mapd, as the alternating sum of pull-back maps along the faces difreension1,
which defines the above compleX(U, x).

We fix a projective completion? of A? as follows:
Ad = Proj (Z[To, Th, ..., Ty, Too) /(To + T + -+ - + Ty = Tio)).
Let D? C A¢ be the hyperplane at infinity:
D9: Ty =0.
The following proposition plays a key role in our constroatof the morphism (7.0.1).

ProrosiTiON 7.1 Letg andr be integers withy, » > 0, and letU beétale of finite
type overX. Let Y7 be the set of all closed subsetsi@nx A? of pure codimension
r which meet the faces &f x A? properly. ForiW € X4, let W be the closure of
WinU x A4, Then

(1) There is an isomorphism

cd™:2"(U,q) @ Z/p" = h_r)n HT%VL (U x A, ‘I"(r)(UXF,UXDq))
Wesira

sending a cycl€' € 2" (U, q) to the cycle classl;, .7 (C) (see Definitior.6).
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(2) For W € X4, the natural morphism

T<2r Rl (U x Ad, ‘Iﬂ(r)(UxF,UxDq))
— HZ (U X B0, %0(0) sz, 0y ) [=27]
is an isomorphism in the derived categoryZyfp™-modules.

(3) LetC be a cycle which belongs t6 (U, ¢), and letiW be the support of’ (note
that 1/ belongs tax™9). Leti : U x A4—1 < U x A4 be the closure of a face
mapi : U x A?~1 < U x A Then the pull-back map

A H% (U X E; Tn(r)(UxF,UxDq))
2r - —_—
— H;,l(W) (U x Ad 17‘271(74)(U><AQ*1,U><D’171))

sends the cycle class;;, 7 (C) to cl; ;= (i*C), wherei*C' denotes the
pull-back of the cycl€’ along:.

Proof. (1) and (2) follow from Theorem 6.5 and the definitionz6{U, ¢). We show
(3). By Theorem 6.5, it is enough to show that the pull-backma

i Hiy (U x AT T () uxad) — H vy (U X AL T () pga)
sends the cycle clasty « A« (C) t0 clyyy pa—1 (i*C). Put
U:=UxAl P:=iUxATYYcw and ¥V :=%-9

and lett € I'(%, O/) be a defining equation af. Noting thati='(W) = W N 2,
consider the following diagram:

H%}(%, () ! H%m@(.@, Tn(r)a)
@ Y s
HEL (4, Talr 4+ 1)) ————= HI2 (U, Tur + 1))

l

@ H NV, Su(r+1)y) =5 & HZP(UZ(r+ D)
yeEWo 2e(WN2)°

g g’

D wy)*/p" div & z/p.
yeWwo ze(WnNg)o0

Here we definedv by sendingy € HZM (%, T ()% ) t0 {t|»} Uw|y, where{t|y}
denotes the class ofy € I'(¥, 0) in H(¥,%,,(1)y). The arrows,, g andg’ are
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Gysin isomorphisms (cf. [Sa2] Theorem 4.4.7). The arrévase boundary maps of
localization long exact sequences, and the central sqoarmates obviously. The ar-
row div denotes the divisor map, and the bottom square commuteg lepthpatibility
inloc. cit. Theorem 6.1.1 and [JSS] Theorem 3.1.1 (see asodRk 3.7 of this paper).
The top square commutes by the following equalities( H&: (%, T, (1)« )):

ixo0i*(w) =clg(Z2)Uw=—0{tly}) Uw==0{tly} Uw|y) = = o a(w),

where the first (resp. second) equality follows from the @ctipn formula in [Sa2]
Corollary 7.2.4 (resp. the same compatibility as mentidoefdre). Hence the asser-
tion follows from the transitivity of Gysin maps fdv N 2 — 2 — % (loc. cit.
Corollary 6.3.3) and the fact that the divisor méip sendst|, € x(y)*/p" to the
cyclei*[y], where[y] means the cycle o given by the closure af. This completes
the proof. O

We construct the morphism (7.0.1). Rdras in the proposition, there is a diagram
of cochain complexes concernimgsee Corollary 3.9 (2) fof,,(r)®):

cl™q J—
2"(U,q) @ Z/p"[-2r] —— lim Hyy (U X Aqvin(r)(Uxﬂ,UxDq)) [—2r]
Wwexma
a™d . R .
— h_II)l TSQTFW (U X Aq7G”(r)(U><F,U><Dq))
WeXxr4q

g — .
R A (U X Aq7G"(r)(U><F,U><Dq)> .

Herea™? and ™9 are natural maps of complexes, which are obviously contiavia

for the face map# x A?~! — U x A?. The mapcl™? is bijective and contravariant
for these face maps by Proposition 7.1 (1) and (3). Hence wkayromorphisms of
double complexes concernitig, o)

(Clr’*)floof’*

2 (U, %) ® Z/p"[~27] liny <o Iy (U X 2%, Go (1) pmmm))

r (U x A%, Gn(T)ZUxF,UxD*))

b

where the differentials in the-direction are alternating sums of pull-back maps along
the faces of codimension and the last arrow is the inclusion to the factoxof 0.
The first and the last arrows are quasi-isomorphisms on gueided total complexes
by Proposition 7.1 (2) and Corollary 4.3, respectively. \Wast obtain the desired
morphism (7.0.1) inD (X, Z/p™) by sheafifying the diagram of total complexes.

REMARK 7.2 The Rost-Voevodsky theorg¢fWol], [Vo2], [We], cf. [BK1] §3) and
the Suslin-Voevodsky theorg®V] (cf.[GL]) imply that the morphisr(r.0.1)induces
isomorphismgcf. [Sa2] Conjecturel.4.1)

T<r (Z(T)% QF Z/p") = T(r)x in Db(Xét,Z/p"),
T<r (Z(r) & @Y Z/p") = T<rRe.Tp(r) x in DY(Xzar, Z/p"),
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which one can easily check by similar arguments afSi] §A.2. HereZ(r)5" de-
notes the complex of Zariski sheavesX¥rdefined ad/ — 2" (U, *)[—2r], ande
denotes the continuous map of sifég — Xz,,.

REMARK 7.3 If X is smooth oveS, thenZ(r)4" is concentrated in degrees r by
a result of GeissefGe] Corollary 4.4. Hence his arguments in loc. c§{6, Proof of
Theorenil.3gives an alternative construction ¢7.0.1)in this case.

8 DE RHAM-WITT COHOMOLOGY AND HOMOLOGY

In this section we define two kinds of de Rham-Witt complex@siormal crossing
varieties playing the roles of cohomology and homology, ealdte them with the
modified de Rham-Witt complex of Hyodo [Hy2]. The main resulf this section are
Theorems 8.8 and 8.12 below.

Let £ be a field of characteristjc > 0, and letY” be a normal crossing variety over
k. LetU C Y be a dense open subset which is smooth éyend lets : U — Y be
the natural open immersion.

DEFINITION 8.1 We define the comple¥y;, A3,, d) of étale sheaves ol as the
differential graded subalgebra of. ¥}, 7, generated by

W, 0y and Xy, (C oW, Qp),

which we call the cohomological de Rham-Witt compleX ofit is easy to see that
W, AS, does not depend on the choiceldf For n = 1, W] A3, is the same as the
complexA$, defined ifSal]§3.3.

By the relations
V(aR(z)) = V(a)x € W41 Qf, (a € W Ou, x € Wig1 Q7 16g)

F(ax)=F (x) € W, QF, (a € Wyt10u, © € Woy1 Q1) (8.1.1)
R(ax) = R(a)R(x) € W, QF, (a € Wnt10u, 2 € Wit 1 Q77 154)

(cf. [I1] | Théoréme 2.17, Proposition 2.18), the operald, F, R on ¥, 2}, induce
operators

VW, Ay — W Ay,

F W, Ay — W, Ay,

R: Wy Ay — Wi Ay,
which satisfy relations

FV=VF=p, FdV=d, dF =pFd, Vd=pdV, (8.1.2)
RV=VR, RF=FR, Rd=dR. (8.1.3)

The local structure ofi}, Ay- can be written in terms of the usual Hodge-Witt sheaves
of the strata ofy’.

DOCUMENTA MATHEMATICA 18 (2013) 177-247



CycCLE CLASS AND p-ADIC REGULATOR 211

ProrosITION 8.2 (1) Assume that” is simple, and let7, Y3, -+ , Y, be the ir-
reducible components &f. Then there is an exact sequenceYgn

0— WAy 5 @D Wy, = P woy, D

|I]=1 |I]=2
N r
= P way, —o

[I]=q
where the notation is the same as in Proposit2oh

(2) Assume that” is embedded into a smookhvariety % as a normal crossing
divisor. Leti : Y — % be the closed immersion. Then there is a short exact
sequence o/

0 — Wy (—log V) — W —— i, W, AT — 0.

Proof. (1) follows from the contravariant functoriality of Hodd#itt sheaves of
smooth varieties and the same arguments as for [Sal] Ptigma3i2.1. The assertion
(2) follows from (1) and [Mo] Lemma 3.15.1. O

We next introduce homological Hodge-Witt sheaves.

DEerINITION 8.3 For r > 0, we define thétale shea#l], =7 onY as theW,, &y -
submodule of.. W, 2}, generated by/{/,n(c . W, Q7). Similarly as forli, A}, the
sheafl}], = does not depend on the choicelof For n = 1, Wi =7, agrees with the
sheaf=7, defined iSal]§2.5

SinceAy.,, C vy, by definition, we havél;, Ay, C W, =7, which agree withV, €25,
whenY is smooth (cf. [Sal] Remark 3.1.4). The following local dgstion will be
useful later.

ProprosiTION 8.4 (1) Under the same setting and notation as in Proposition
8.2(1) there is a canonical ascending filtratidf, (¢ > 0) on I}, =7 satis-
fying

Fo (W7,

[1]

P)=0 and gl W5y ~ @ W0yt

[I|=a

where the isomorphism far > 2 depends on the fixed ordering of the irre-
ducible components af.

(2) Under the same setting and notation as in ProposiBo(2) there is a short
exact sequence o,

0 — Wt — W, Q5 (logY) - i W, 53 — 0,
whereyp is induced by the Poincérresidue mapping

00 : W, Q5 (logY) — (io) Wp, Q7.
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Proof. We first recall the following fact due to Mokrane [Mo] Proptasn 1.4.5. Under
the setting of (2), e, 11, Q% (logY") (@ > 0) be the image of the product

W, Q% (logY) x W, Q5% — W, Qyy(logY).
PutF_ W, Q% (logY’) := 0. Then there are isomorphisms
W, Qy (a =0)
@mza WZQ?};G (a =2 1),
which are induced by Poincaré residue mappings:for 1 and depend on the fixed
ordering of the irreducible components Bffor a > 2. We prove (2). Because the
complementy := Y — U has codimensio>» 2 on ¢ and the sheaveH,, Q;jl

andWy, Q;jl (logY") are finitely successive extensions of locally frég -modules of
finite rank ([11] | Corollaire 3.9), the sequence

grt W, Q% (logY) ~ { (8.4.1)

0 — W Q5™ — W, QL (logY) 2% (io). W, Q4

is exact by (8.4.1) fo®# — . Hence itis enough to show thiat (o) = .1}, =7. Let
Fa(vy.,,) (@ > 0) be the filtration ons,  in [Sal] Proposition 2.2.1, which is defined
under the assumption thitis simple and satisfies

Foy,,) =0 and grivy, ~ @ W.Qy 1" (non-canonically)
[ Il=a
Hence comparing this local descriptionuf , with (8.4.1) form = r + 1, we see
thatim(go) = i.W,, =}. As for (1), we define the desired filtratidn, (W, =}.) as
the 1, Oy -submodule generated By, (vy-,,). This filtration satisfies the required
properties by (2) and again by (8.4.1). O

Since the residue mapping in Proposition 8.4 (2) commutes with the operators

d,V, F, R (cf. (8.1.1)), these operators &%, (27, induce operators

d: W, =y — W, =5,

VW, 5 — Wy 55,

F Wy By — Wy 55,

R: W1 55 — W, 57
by Proposition 8.4 (2) (without the assumptions in Propmsi8.4 (1) or (2)), which
satisfy the relations listed in (8.1.2) and (8.1.3). We ¢h# resulting complex
(W, =y, d) the homological de Rham-Witt complexiof

REMARK 8.5 There are natural injective homomorphisms of complexes

dim(Y) dim(Y")
B Nl = WAy, D w.ul-rl— W5y,
=0 r=0

where the differentials on the complexes on the left hane aid defined as zero.
Indeed the differentials oW, €27, are zero oni},, 7, . .
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The following Proposition 8.6 and Theorem 8.8 explain a amdntal relationship
betweent], A}, andW¥], =3..

ProprosITION 8.6 The complet¥;, =3 is a W, A3.-module, that is, there is a natu-
ral W}, Oy -bilinear pairing

Wp Ay x W, 25 — W, 531° (r,s >0) (8.6.1)
satisfying the Leibniz rule
d(z-y)=(dz) - y+(-1)"2-dy (z€ WAy, y €W, =5}).

Moreover this pairing is compatible witR and satisfies relations

z-V(y) =V(F(z)-y) (x € Wp A,y € W, 53).

Viz) -y=V(z-F(y))
Proof. The pairing (8.6.1) is induced by the productldf, 27, and the biadditive
pairing
;’,n X Vf’,n — V{/ﬁls

defined in [Sal] Definition 3.1.1. The properties of the pajr(8.6.1) follow from the
corresponding properties of the product@f 27, ([11] | Théoreme 2.17, Proposition
2.18). O

REMARK 8.7 Whenk is perfect andY” is the special fiber of a regular semistable
family X over a discrete valuation ring with residue figldwe have

W, A5, C Wwy C W, Ey

by [Sal]Proposition4.2.1 HereW,, wy. denotes the modified de Rham-Witt complex
associated withX [Hy2]. The compleX1;, =5 does not in general have a product
structure unles§” is smooth.

THEOREM 8.8 Assume thak is perfect and that” is proper overk. Putb :=
dim(Y) andW;, := W, (k). Then

(1) There is a canonical trace map,, : H?*(Y, W}, Z%) — W, which is bijective
if Y is geometrically connected oveér

(2) The pairing

HI(Y, W, Ay) x HE=H(Y, W, Z3) o2 B (Y, W, 53) —2 W,
is a non-degenerate pairing of finitely generaiég-modules for any > 0.
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Proof. (1) Let f,, be the canonical morphisi;, Y — W, wherell;,Y means the
scheme consisting of the topological spatend the structure shedl;, 0y . Since
H20 (Y, W, Z%) ~ Hb(Y, W, Z%), our task is to show that

W2y = LW, in DEL(W.Y, W, 0v), (8.8.1)

where the subscripic means the triangulated subcategory consisting of complexe
with quasi-coherent cohomology sheaves gfydneans the twisted inverse image
functor of Hartshorne [Ha]. It is smooth, (8.8.1) is a theorem of Ekedahl [E]. In
the general case, (8.8.1) is reduced to the smooth case pgs$#ion 8.4 (2) and the
same arguments as for [Sal] Proposition 2.5.9.

(2) The case: = 1 follows from [Sal] Corollary 2.5.11, Proposition 3.3.5.€l¢ase
n > 2 follows from a standard induction argumentond the following lemmafl

LEMMA 8.9 (1) There are injective homomorphisms
p:Woa Ay = WAy and  p: W, 5) — W, 59
induced by the multiplication byon W, Ay andW,, =7, respectively.
(2) The following natural projections of complexes are quasirnorphisns
W, Ay Jp(Wpo1 AS) — AY and - W, E% /p(W—1 5y ) — =y

Proof. WhenY is smooth, the assertions are due to lllusie [I1] | Proposi.4 and
Corollaire 3.15. In the general case, (1) follows from ttatthe dense open subset
U C Y we fixed before. To prove (2), we may assume tHias simple. Then the
assertions follow from those for the stratalofind Propositions 8.2 (1) and 8.4 ().

In the rest of this section, we work under the following sejtiLet A be a discrete
valuation ring with perfect residue fiekd and letX be a regular semistable family
overA. PutY := X ®4 k. Recall that

W, A, C Whwy C W, =y

by Remark 8.7. We define a Frobenius endomorphyjson these complexes by F'
on degreen > 0. There is a short exact sequence of complexes with Frobeation

dat

0 — Wpwh (—1)[=1] 25 W &% — Wwh — 0 (8.9.1)

by [Hy2] (1.4.3), where the compleN;, w$ (—1) means the comple}, wy with
Frobenius endomorphism . The monodromy operator

N : Wwy — Wwy (—1)
is defined as the connecting morphism associated with thisesee.
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ProprosITION 8.10 There is a short exact sequence of complexes with Frobenius
action

0 — WA}, — W,y — W, 55 (-1)[-1] — 0 (8.10.1)
fitting into a commutative diagram of complexes

W w3 (=1)[-1]

o] T

Wo Ay ———— W, By ——— W, 53.(~1)[1]

Iy

W, wy.
Consequently, we obtain a complexi®f (k)-modules with Frobenius action for> 0
H' (Y, Wp AS) — H'(Y, W, w5
S5 H (Y, Wawd ) (—1) — H (Y, W, 29)(-1). (8.10.2)
Proof. Leto : U — Y be as before and define a homomorphism W, &} —
oW, Q! as the composite
0 W&y — 0u0* Wiy =5 0 (W, QF @ W, 7Y 22 o W, it

where the second arrow is obtained from the fact that theese(8.9.1) splits ol
It is easy to see thdt satisfies

do =0d and OF = pFo,

which induces a map of complex@% : W, w3, — 0. W, Qf;(—1)[—1]. To show that
0°® induces the exact sequence (8.10.1), we may assume theggsuim Proposition
8.2(2). Then we have an isomorphism of complexes

W, w3 ~ W, Q% (logY) /W, Q% (—logY) ([Hy2] p. 247 Lemma)

and the assertion follows from Propositions 8.2 (2) and 3.4The commutativity of
the diagram in the proposition is straight-forward and efthe reader. O

We prove that the monodromy-weight conjecture for log @aliste cohomology
implies an invariant cycle ‘theorem’ (cf. [12] 2.4.5), wiiavill be useful in§§9-10
below. LetA be a discrete valuation ring with finite residue fididand X be a
regular scheme which is projective flat ovérwith strict semistable reduction. Put
Ky := Frac(W(k)) andY := X ® 4 k. For integer; > 0, we define

C'=Q,®z, lim H (Y, W, AS), (8.10.3)
n>1

D' :=Q, ®z, lim H'(Y,W,w}), (8.10.4)
n>1

E' = Qp ®z, lim H'(Y, W, 53), (8.10.5)
n>1
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which are finite-dimensional ovéf, and F-isocrystals ove$pec(k). The content of
the monodromy-weight conjecture due to Mokrane is the ¥atg:

CONJECTURE 8.11 ([Mo] CoNJECTURE 3.27) The filtration onD? induced by
the weight spectral sequendec. cit. 3.25 cf. [Na] (2.0.9p)) agrees with the mon-
odromy filtration induced by the monodromy operafér: D' — Di(—1) ([Mo]
3.26)

THEOREM 8.12 Leti > 0 be an integer, and assume Conject8ré1for Di. Then
the following sequence df-isocrystals ovebpec(k) induced by(8.10.2)is exact

¢ — pi —> Di(~1) — Fi(-1).

Proof. Suppose tha# (k) = p®. Theny® is Ky-linear and we use the notion of
weights concerning®. Because the groups
H(Y, Wp AY),  HY(Y,Wowy), H(Y,W,=}), H(Y,W,o%)

are finite for anyn > 1, there is a diagram af'-isocrystals with exact rows by (8.9.1)
and Proposition 8.10

H

O B =L B (1) ——= ¢ —— fr —2 (),

Di(—-1) — Dit+1

where we put _
= Q, ®z, lim H'(Y, W, &}).

n>

—

By the assumption o®?, Ker(V) has weights< i andCoker(N) has weights> i +2.
Hence for the reason of weights, it is enough to show theviatig lemma, where we
do not need Conjecture 8.11:

LEMMA 8.13 Forintegersi > 0, C* has weights< i and E? has weights> s.

Proof of Lemma 8.13WhenY is smooth, the lemma is a consequence of the Katz-
Messing theorem [KM]. In the general casg! has weights< i by the spectral
sequence of’-isocrystals obtained from Proposition 8.2 (1)

® i o
)
[I|=s+1

where we put
D} :=Q, ®gz, lim H' (Y7, W, Q%,).

n>1

MoreoverE'® has weights> i by the duality result in Theorem 8.8. Thus we obtain
Lemma 8.13 and Theorem 8.12. O
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REMARK 8.14 One can show Lemnt&l3for E alternatively by the Katz-Messing
theorem and the spectral sequence obtained from Propodtib(1)

Ey'= @@ Dyti(s) = B
[I|=1-s

9 COMPARISON WITH THE FINITE PART OF BLOCH-KATO

In this section we relate the cohomologyeédic étale Tate twists with the finite part
of Bloch-Kato [BK2]. Letp be a prime number, and I&f be ap-adic local field, i.e.,
afinite extension oR,. Let Ok be the integer ring of, and letk be the residue field
of Og. In this section we consider Tate twists only in the sens€ gfZ,-modules
(and not in the sense df-crystals). For a topologicalr x-Z,-module M/ and an
integerr € Z, we define

M &g, Z,(1)" (if > 0),
M= {Homzp(ZZ(U@(_"),M) (it r <0),

whereZ,(1) denotes the topologicélK-moduIel'gl n>1 ppn (K).

Let X be a regular scheme which is projective flat o@gf with strict semistable
reduction, and puXx = X ®p, K andY = 2 ®o, k. Letj : Xg — X
be the natural open immersion, and etndr be non-negative integers. Put :=
H'(X%,Q,) (see also Notation) and

Hi+1(X7 {SQP (T)) = Qp ®Zp ]&n Hi+1(X’ Tn(T)X%

n>1

which are finite-dimensional ovép,.. Let F'* be the filtration onH " (X k., Q,(r))
resulting from the Hochschild-Serre spectral sequence

Byt = HO(K, /(1)) = HOM(Xxe, Qp(1). (9.0.1)

Let F1H"(X,Tg,(r)) be the inverse image af“H ! (Xx,Q,(r)) under the
canonical mag* : H'*1(X,Tq, (r)) = H (X, Qp(r)). We have

= grp H'H (X, Tq, (1) — grpH™ (XK, Qp(r) = H'(K, V(1))
by definition. We relat&®" with the finite part of Bloch-Kato [BK2]:
Hi(K,7'(r)) == Ker(v: H'(K,7"(r)) = H'(K, 7" ®q, Bays)).

whereB.s denotes the period ring of crystalline representationsiddfby Fontaine
[Fo1l], and: is induced by the natural inclusidd, (r) < Bcys. The main result of
this section is as follows

THEOREM 9.1 Assumeé) < r < p — 2 and Conjecture8.11for D? := D(Y'). Then
we have 4 .
" C Hi(K, V' (r)).

Further if > dim(Xg) — p + 3, then we have"” = H (K, 7" (r)).
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REMARK 9.2 WhenX is smooth oveOx, Theoren®.1is a part of thep-adic point
conjecture raised by Schneidfsc] and proved by Langer-Saif.S] and Neko#ér
[Ne1].

Put

HiJrl(XyTSer*Qp( Qp ®Zp im HZJrl X T<TR]*,UP )
n>

[an

and letF7H "1 (X, 1<, Rj.p. ) be the inverse image @t H' ™ (X, Q,(r)) under
the map
7 HHUX, m< Rjwpl) — HH (X, Q1))

We first prepare the following key commutative diagram toverdheorem 9.1, as-
sumingd < r < p—2:

HY K, 7)) FYHTY X, 1<, Rj.Q,(r)) (9.2.1)

[ e
1

HY(K, 7" ®q, Beys) D!/ND?

EY,

whereE® := E*(Y) is as in (8.10.5), and’/N D‘ denotes the cokernel of the mon-
odromy operatofN : D — D?. The top arrow is induced by* and an edge homo-

morphism of the spectral sequence (9.0.1). The awdsvinduced by the complex

(8.10.2), and the arrow’ is induced by the composite map

Hi+1(X7 Tg,-Rj*uf?J') AN Hz‘+1—7-(y7 1/{/;11) SN Hi(Y,WLE;/) (n>1).

See Theorem 3.4 far and see Remark 8.5 for the last map. The constructions of
the arrowsy andé and the commutativity of the square (A) deeply rely ongkedic
Hodge theory. The commutativity of the triangle (B) is rate&aight-forward once
we definea (see Proposition 9.10 below). The proof of Theorem 9.1 wéllgiven
after Proposition 9.10.

REMARK 9.3 In his paper[La], Langer considered the diagrad) assuming that
Ok is absolutely unramifie@oc. cit. Proposition2.9). We remove this assumption
and the assumptiofx) stated in loc. cit. p191, using a continuous version of crys-
talline cohomologysee AppendiR below). For this purpose, we include a detailed
construction ofx and a proof of the commutativity ¢4).

CONSTRUCTION OF §. We first construct the maf There is an exact sequence of
topologicalG i -Q,-modules

0 — ¥ @g, Beays — V' ©g, Ba =3 ¥ ®g, By — 0, (9.3.1)
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where N denotes the monodromy operator Bg. Taking continuous Galois coho-
mology groups, we obtain a long exact sequence

0 — (¥ ®q, Bays)* — (V' ©q, Ba)®* 28 (¥ ®q, B)®*
— HY(Gk, V" ®q, Barys) — -

By the Cy;-conjecture proved by Hyodo, Kato and Tsuiji ([HK], [K4], [I]s cf. [Ni2]),
the last arrow of the top row is identified with the map: D? — D’ (see (9.3.3)
below for the construction af's;-isomorphisms). We thus define the desired mag
the connecting map of this sequence.

Cs-1SOMORPHISM. Before constructingy, we recall the construction of’;-
isomorphisms, which will be useful later ([K4], [Ts34.10). See [K3] for the general
framework of log structures and log schemes. Put

W:=W(k) and Kg:=Frac(W)=W][p~].
For alog scheméZ, M) and an integen > 1, we define
(Zna MZn) = (Za MZ) X Spec(Z) SpeC(Z/pn),

where we regardeSipec(Z) andSpec(Z/p™) as log schemes by endowing them with
the trivial log structures and the fiber product is taken ec¢htegory of log schemes.
Let M be the log structure oX associated with the normal crossing dividor Let
Og be the integral closure aPx in K, and letM be the log structure oX :=

X ®0, Og define by base-change (see (A.0.2) below). Put= Y ®, k. For

n > 1ands >0, let.”,(s) x 77 € D+ (Y, Z/p™) be Tsuji's version of syntomic
complex of(X, M) (§A.5). Letj : Xz — X be the natural open immersion. For
m, s > 0, we define the syntomic cohomology @Y, M) as

Hy (X, M), 7G,(s)) = Qp @z, lim H™ (Y, #7(s) % 71))-

n>1

The following isomorphism due to Tsuji ([Ts1] Theorem 3.@% plays a crucial

role:
Hg, ((77 M)a y@;(s)) = HW(Y, Tgst*Qp(S))- (9.3.2)

syn

The right hand side is isomorphic 6™ (s) = H™ (X%, Q,(s)) if s > dim(Xx) or
s > m. We now introduce the crystalline cohomology(af, M) overW:

HcTys((Ya M)/W)Qp =Qp 1z, Lin HEY ((Ymﬁn)/m)v

crys
n>1

whereH™ ((X ., M ,,)/W,,) denotes the crystal cohomology X ,,, M,,) over W,

crys

(seesA.1 below). We define &' i -equivariant homomorphism
gr V" — D™ QK, Bt
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as the composite mag (= dim (X))

€ .
ym s H(X, ), 75,(d) ®g, Qp(—d) (9.3.3)
2 m o~
B, g (X, ) /W), ©q, Qp(—d)
(3)
= (D™ @k, BE)V=" ®q, Qp(—d)

4
B, D™ @, Bet,

)
)

(X

where (1) is obtained from the isomorphism (9.3.2) with- d, the arrow (2) is the
p?-times of the canonical map induced by (A.5.2) below, andi§3he crystalline
interpretation of D™ ® g, B )V=0 due to Kato ([K4]§4, cf. Proposition A.3.1(3)
below). The map (4) is induced by the natural inclusi@n—d) < Bs:. The Bg-
linear extension of™ is an isomorphism by [Ts2] Theorem 4.10.2:

/Vm ®Qp Bst L) Dm ®K0 Bst 3 (934)

which we call theC;;-isomorphism. Now we have a commutative diagranGgf-
modules form, s > 0

Hg}n((yv M)a y@;(s)) T Hcrg/s((yv M)/W)Qp ﬁ) (Dm B Ko BSJDN:O

(9.3.2)l

Ym(s) C

q//m ®Qp Bst — s D™ ®K0 Bst;

9.3.4)

(9.3.5)
where the arrow (1) is thg”-times of the canonical map (A.5.2), and (2) is the crys-
talline interpretation of D™ @, B )V=" mentioned in (9.3.3). This diagram com-
mutes by the construction of (9.3.4) and the compatibibigt$ in [Ts1] Corollaries
4.8.8and 4.9.2.

REMARK 9.4 We modified th€s-isomorphisms iffiTs1] by constant multiplications
to make them consistent with the canonical map from syntoatiomology of Kato
to (continuou$ crystalline cohomologysee the magl) of (9.5.1)and the equality
(A.5.4) below). Under this modification, the elemetgj, in [Ts1] p. 378is replaced

with p~'#,,, and Corollary4.8.80f loc. cit. remains true.

CONSTRUCTION OF «. We start the construction af assumingd < r < p —
2, which will be complete in Corollary 9.8 below. Far > 1, let.%,(r)x,m) €
Dt (Y&, Z/p™) be the syntomic complex of Kato (séA.5 below). Since) < r <
p — 2, there is an isomorphism

(T<r Rjutipn )|y = Sn(r)x,my 0 D¥ (Y, Z/p") (9.4.1)

for eachn > 1 ([Ts2] Theorem 5.1), andl (X, <, Rj.Q,(r)) is isomorphic to
the syntomic cohomology

HIH (X, M), S, (1) = @, @2, lim H* (Y, %) xeaan))
n>1
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by the proper base-change theorem. Therefore we conBigigh((X, M), %, (1))
instead of (X, 7<, Rj.Q,(r)), which is the major reason we assumg p — 2.
We first prove:

LEMMA 9.5 The kernel of the composite map

§: Hgn((X,M),y@p(r)) — HJ, ((Xa M)/W)@p — H, ((77M)/W)Qp

crys crys

agrees with that of the composite map

0 HIV(X, M), S, (m) "2 H™(X, 70, Rj.Q, (1)

— V(r) = H™ (X5, Qp(r)).

Proof. The map factor through (9.3.2) witk = r, and the mayg factors through the
map (1) in (9.3.5) withs = r by (A.5.4) below. Hence the diagram

HIL (X, M), S, (r) —— H (X, 71)/W)q,

crys
n l

() C D™ g, Ba

commutes by (9.3.5), which implies the assertion. O
Let HZ.. .. ((X, M)/W) be the continuous crystalline cohomology &f, M ) over

cont-cr

W (seesA.2 below). Put

H3 (X, M), S, ()" = Ker(n : H, (X, M), S, (r) — ¥"™(1)),

Hggnt—cr((Xv M)/W)Qp = @P ®z, Hggnt—cr((Xv M)/W)a
H{e oo (X, M) /W), = Ker(Higy o (X, M)/W)g, — HZy (X, M)/W)g,).

cont-cr cont-cr crys

There are canonical maps

syn cont-cr

Hig (X, M), o, (r)° B B (X, M)/ W), ®3.1)
G (K, Bl (X, )/ W)g,)

crys
@ . _

= HY (K, (D' ®k, B{)N=")
4 .

Oy HY (K, 7" ©g, Bens),

where (1) is the canonical map obtained from Lemma 9.5 angd2ition A.6.1(2)

below, the arrow (3) is the isomorphism (2) in (9.3.5) for= ¢, and (4) is obtained
from the Cy-isomorphism (9.3.4) and (9.3.1). The most crucial map §3ltained

from an edge homomorphism of the spectral sequence in TimeArd.2 (see also
Corollary A.4.5 below). To proceed with the constructiorngfwe need to introduce
some notation.
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DEFINITION 9.6 PutS := Spec(Ok ), and fix a primer of Ok . Let Mg be the log
structure onS associated with the closed poifit = 0}. PutV := Spec(WW[t]), and
let My be the log structure of” associated with the divisdrt = 0}. Let

v: (S, Mg) — (V, My)

be the exact closed immersion oWrsending. — . For eachn > 1, let(&,,, Ms,)
be the PD-envelope of the exact closed immersjpn (V,,, My, ) < (S, Ms,)
compatible with the canonical PD-structure pi;,. We define

ng/s((Xv M)/(ga Mé"))@p = QP ®Zp ]gl ng;/s((Xna Mﬂ)/(gna Mé"n))v
n>1
which is anRe = Liglnzl I'(&,, Os,)-module endowed with @s-semilinear en-
domorphismp and aKy-linear endomorphismV satisfyingNy = ppN. Herepg is
a certain canonical Frobenius operator dds. SegTs1] p. 253for ¢¢, loc. cit.§4.3
for N andy, and see loc. cit. Remark3.9for N.

The following lemma plays a key role in our constructionogfwhere we do not
need to assume < r < p — 2 (compare with the assumptigr) in [La] p. 191).

LEMMA 9.7 (1) There exists a long exact sequence

cont-cr

(X, M)/W)g, — HiW (X, M)/(&, Ms))q,
A HE (X, M)/(8, Mg))g, 2 HitL (X, M)/W)g, — -

and the image of agrees withH & . (X, M)/W)(%p.

(2) There is a commutative diagram whose lower row is exact

Hi (X, M)/(8, Mg))g, —25= Higneo (X, M)/W)S,

crys p

l (-t l

D' D HY(K, 7" ®q, Beys)-

Here the right vertical arrow is the composite(@) —(4)in (9.5.1) and the left
vertical arrow is the specialization maps with— 0 (cf. [Ts1] (4.4.4))

Proof. (1) follows from Proposition A.2.4 and Corollaries A.3.2 @nd A.3.4 below.
As for (2), the exactness of the lower row has been explaiméuk construction of.
See Corollary A.4.5 below for the commutativity of the sqar O

COROLLARY 9.8 The composite ma(®.5.1)factors as follows
HEV(X, M), S, (r))° — D'UND' < HY(K, V' ©g, Beys).

syn

We definex as the first arrow of this decomposition.
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COMMUTATIVITY OF THE DIAGRAM (9.2.1). We first prove that the square (A) in
(9.2.1) is commutative. By the constructionefindd, it is enough to show

THEOREM 9.9 The following square is commutative

HIEH(X, M), S, ()" —== FTH*(X, 1<, Rj.Qp(r)) (9.9.1)

syn

(Q'S'I)l l

Berys = Qp(r)

HY(K, V" @q, Bearys) <————— H'(K,7(r)),
where the right vertical arrow is the top arrow {i9.2.1)

Proof. Putd := dim(X k). We define a5 x-homomorphism

g7 s 1) S22 (X 0), 75, (1) — 220l (K, 31)/ W),

and as the following map for < d:

BT Vi) = V() 0g, Qplr — d) — 20 i (R, TD)/W)o, (r — d).

We next define a homomorphism

" HG (X M), H, ()"

HY(K, Heyo (X, M)/ W)g, (r — d)) (if r < d)
H' (K, Hipyo (X, M)/ W)g, ) (if r > d)

crys

as the following composite map,if< d:

HIEN (X, M), S, (r)° % HY(K, H (X, 7)/W)g,)
~ YK, Hay(X, M)/ W)g, (r — d) ®q, Qp(d — 1))
O, 5 (K, H (X)W, (r — d)),

where (i) is the composite of (1) and (2) in (9.5.1), and @i)iduced by the inclusion
Qp(d —r) — HY((X,M)/W)q, (cf. (A.6.5) below) and the cup product of crys-

talline cohomology. If- > d, then we define/>" as the composite of (1) and (2) in
(9.5.1).
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We prove the commutativity of (9.9.1) assuming: d. In this case, the following
triangle commutes by Theorem A.6.7 below:

HIEYW(X, M), S, (1))° (9.9.2)

syn
l ,yi,'r

HY (K, (1) — s H (K, Hi (K, 51)/W)a, (r — d)),
where the left vertical arrow is the composite of the top bamtal and the right vertical
arrows of (9.9.1). Moreover the following square commutgethie construction of the
Csi-isomorphism (9.3.4) (compare with (9.3.5)):

i,7

Vi) —2 o~ Hi (X, )/W)g, (r — d) (9.9.3)

crys

Qp(r)‘_)BcrYSl l

. (9.3.1) (9.3.4) X _
V" @q, Berys (D’ ®q, Bst)N=",

~

where the right vertical arrow is given by the isomorphishd®(9.3.5) and the in-
clusionQ,(r — d) < Bays. The commutativity of (9.9.1) follows from these commu-
tative diagrams and the fact that the composite map (9.8r&€ea with the composite
of ¥4 and the map

HY (K, Hl (X, 3D)/W)g, (r — d) — H' (K, 7" ©q, Bays)

crys

induced by the right vertical arrow and the bottom isomaogphin (9.9.3).
Whenr > d, the following triangle commutes by Corollary A.6.3 below:

HFH(X, M), g, (r))°

syn
l/ ,Yi,r

HY(K, 7(r) ——

HY(K, Hey (X, M)/ W)g,),

crys

where the left vertical arrow is defined in the same way asHat of (9.9.2). The
commutativity of (9.9.1) follows from this diagram and thmgram (9.3.5). This
completes the proof of Theorem 9.9. O

ProposITION 9.10 The triangle(B) in (9.2.1)is commutative.

Proof. There is a commutative diagram by the definitiordah Proposition A.2.4

Hi (X, M)/(&, Mg))g, —2%> Di

crys
al J/df/\

Hég;li—cr((Xy M)/W)Qp & Ei+17
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where Dit! = Dit1(Y) is as in the proof of Theorem 8.12, the left (resp. right)
vertical arrow is as in Lemma 9.7 (1) (resp. given by the pobduith dlog(t), cf.
(8.9.1)), and the horizontal arrows are the specializatiaps byt — 0. Therefore in
view of the constructions af ands’, it is enough to check that the following diagram
of canonical morphisms commutesM( at, Z/p™) for eachn > 0:

S xan =%, iy ywy ——— Vo W, &%

al (8.10.1)l l(a.lo.l)

V;/nl[ 7’] Remark 8.5 ME;Zril[—l] ngy[ 1],

WhereJ][’X M) /W is as in§A.5 below, ands denotes the specialization map by
t—0. 'Ighe rlght square commutes obviously in the category of deres of sheaves.
As for the left square, we have only to show the commutativitthe diagram of the
r-th cohomology sheaves becalige=y=""'[-1] is concentrated in degreesr and
Zn(r)(x,m 1S concentrated in degreesr by (9.4.1). Since we have

- ©an, . o
H(In(r) xany) = (R jupipt )|y

and the sheaf on the right hand side is generated by symbothéocaseD = ) of
Theorem 3.3 (1)), one can check this commutativity of theydien of sheaves by a
straight-forward computation on symbols using the contyiléi in [Ts1] Proposition
3.2.4(2). O

Proor or THEOREM 9.1. We have the following commutative diagram by (9.2.1):

’

FTH™Y(X, T, (r) — FTHHY(X, 1<, Rj.Qy(r) —— E
\ l (B) JG
) w DD

\l‘s

HY(K, 7" ®q, Bers),

where the left triangle commutes obviously. The kernet & H (K, 7" (r)) by
definition. The top row is a complex by the definitionssdfand¥,, (r) x. The mape
is injective by Theorem 8.12 and Conjecture 8.11/8r We obtain the first assertion

" C Hi (K, 7' (r)) (9.10.2)

by a simple diagram chase on this diagram. To obtain the ske@ssertion, we repeat
the same arguments f@24—%4-7+1 where we putl := dim(X ). The map

€: D2d—i/ND2d—i — E2d—i
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is injective by Conjecture 8.11 fdp?, Theorems 8.12 and 8.8 and the Poincaré duality
betweenD? and D??— [Hy2]. Hence we have

prd—id—r+1 H}(K, 7/2d—i(d —r41)). (9.10.2)

The results (9.10.1) and (9.10.2) imp#/" = H}(K,¥"(r)), becausep™" and
@d=id=rt1 (resp.H} (K, 7" (r)) andH} (K, 7?~/(d — r + 1))) are the exact an-
nihilators of each other under the non-degenerate paiffitigeoTate duality

HY(K, 7' (r)) x HY(K,7*7d —r+1)) — Q,
by [Sal] Corollary 10.6.1 (resp. [BK2] Proposition 3.8). O

10 IMAGE OF p-ADIC REGULATORS

In this section, we prove Theorem 1.1. We first review the dédims of the finite part
of Galois cohomology [BK2] and the integral part of algebrdigroups [Sch] over
number fields.

Let K be a number field and let” be a topological? x -QQ,,-module which is finite-
dimensional ove@,. Leto be the integer ring of(. For a place of K, let K, (resp.
0,) be the completion ofC (resp.o) atv. The finite partH}(K, V) C HYK,7)is
defined as

HY(K,,7)
Hi(K, V) = Ker| HY(K e
v — I )

v : finite

1
!
wherew runs through all finite places df, andH}(KU, ) is defined as follows:

Ker(HY(K,,?) — H'(I,, 7)) (if ulp),

HYK,, V) = :
i ) {Ker(Hl(Kv, V) — HYK,,V ®q, Beys))  (if v[p),

wherel, denotes the inertia subgroup @fx,. We next review the definition of the
integral part of algebraik-groups. Let” be a proper smooth variety over the number
field K. First fix a finite place) of K. By de Jong’s alteration theorem [dJ], there is a
proper generically finite morphism

7V —V, =V Rr K,

such thal’’ has a projective regular mod&l with strict semistable reduction over the
integer ring of some finite extension &f,. The integral parK,,,(V;)s, C K (V,) ®
Q is the kernel of the composite map
Kn(V) ©Q
Image ofK,,(X") @ Q’

which is in fact independent of’ ([Sch]§1). The integral parK,,(V), is defined as

Kin(V)o := Ker(|<m(v)®@_> I1 W)
v : finite MAYV /0y

Kin(V2) ® Q@ 7 K (V') @ Q —»
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wherew runs through all finite places d&'. If V' admits a regular model which is
proper flat over the integer ring df, thenK,,(V'), agrees with the image of thé¢
group of the model, i.e., the integral part considered byis&n. By these definitions
of H}(K, ¥) andKg,—;—1(V),, Theorem 1.1 is immediately reduced to Theorem
10.1 below, which is an analogue of Theorem 1.1 over localdiel

Let ¢ andp be prime numbers. We change the setting slightly, and<ldie an
¢-adic local field, i.e., a finite extension Qf;. Let Ok be the integer ring of(, and
let VV be a proper smooth variety ovatr. Leti andr be integers witt2r > i 41 > 1.
There is g-adic regulator map obtained from étale Chern character

regp . K27-—i—1(V)OK,hom — Hl(K7 Hi(v7 @p(r)))a

where V' denotesV @x K, and Ky, —i—1(V)o,, hom denotes the subspace of
Kar—i—1(V)o, consisting of all elements which vanish f#***(V,Q,(r)) under
the Chern character.

THEOREM 10.1 If £ = p, assume that < p — 2 and that Conjectur&.11holds for
projective strict semistable varieties ovgy in degreei. Thenim(reg,,) is contained

in H (K, H'(V,Qp(r))).

REMARK 10.2 When/ = p, we need Conjectur.11for the reduction of an alter-
ation of V. When?¢ # p, we do not need the monodromy-weight conjecture, but use
Deligne’s proof of the Weil conjectuf®] to show thateg, is zero.

Proof of Theorem 10.1We first reduce the problem to the case thahas a regular
model which is projective flat ovep i with strict semistable reduction. By de Jong’s
alteration theorem [dJ], there exists a proper generidalite morphismr : V/ — V
such thatl’’ has a projective regular model with strict semistable rédnover the
integer ringOy, of L := I'(V’, Oy/). Then there is a commutative diagram

reg,, (T H'(K, H'(V, p\T"
Kor—i—1(V )0, hom —> HY (K, H'(V,Q,(r))) H}EK HiEV7 gpgr;;;

reg,, v HYL,H (V',Qy(r
KQT,ifl(VI)OL,hom I Hl(L’ HZ(V/’QP(T))) H}EL, HlEW7 ngT;;;

whereV’ denotesV’ ®;, K, and the right (and the middle) vertical arrows are split
injective by a standard argument using a corestriction ni&@uatois cohomology and

a trace map of étale cohomology. By this diagram and the itlefinof K.(V)o,.,
Theorem 10.1 foll/ is reduced to that fob’’. Thus we may assume that has a
projective regular modeX with strict semistable reduction ovérx. Then the case

¢ # p follows from [Nel] Il Theorem 2.2 (cf. [D]). We prove the caée= p. LetY

be the reduction oX. Put

HH_l(Xv ‘IQ])(T)) = @P ®z, m HH_l(Xv ‘In(r))a
n>1
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and letkz,—;—1 (X )nom (resp.H't1 (X, Tq, (r))°) be the kernel of the composite map

Kop—i—1(X) — Kap—i—1(V) C—h> HHl(Vv @p(r)) - HHl(Va Qp(r))
(resp. HH_l(Xv 2Q, (r) — Hi_H(Va Qp(r)) - Hi+1(77 @p(r)) )-

There is a commutative diagram by Corollary 5.7

Kar—i—1(X )hom — Kor—i—1(V) 0, hom

Chl lregp

H™TH (X, T, (r)* ——= H' (K, H'(V,Qy(r))).

The image of the bottom arrow is containecHr}(K, H(V,Q,(r))) by Theorem 9.1

and Conjecture 8.11 fab* = D*(Y’), which implies Theorem 10.1. This completes
the proof of Theorems 10.1 and 1.1. O

A CONTINUOUS CRYSTALLINE COHOMOLOGY

In this appendix, we formulate continuous versions of @ljise and syntomic coho-
mology of log schemes, combining the methods of Jannsew, &at Tsuji ([J], [K2],
[K3], [Ts1], [Ts2]). The results of this appendix have beaed in§9 of this paper.
See [K3] for the general framework of log structures and ldgesnes.

Let p be a prime number, and Ié& be a complete discrete valuation field of char-
acteristicO whose residue field is a perfect field of characteristic Let Ox be the
integer ring of K. PutW := W(k), W, := W, (k) (n > 1) and Ky := Frac(WW). Let
X be a regular scheme which is projective flat ozt with semistable reduction,
and put

Xi =X ®0, K, Y =X ®0, k
Xz =Xgo®x K, Y:=Y&,k and X :=X®o, Ok,

whereOy denotes the integral closure ©f in K. Let M be the log structure o’
associated with the normal crossing dividor We endowX with a log structurel/
as follows. For a finite field extensidly K, putSy, := Spec(Oy), and letM, bethe
log structure orb;, associated with its closed point. We den@ig, M, ) simply by
(S, Ms), and defind X, , Mo, ) by base-change in the category of log schemes

(XOUMOL) = (X,M) X(S,Ms) (SL,MSL)- (A.O.l)
We then define the log structufd on X as that associated with the pre-log structure

hﬂ MOL |Y7 (A02)
KCLCK
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whereL runs through all finite field extensions ff contained ik, Mo, |5 denotes
the topological inverse image af o, onto X, and the inductive limit is taken in the
category of étale sheaves of monoidsX¥n

For a log scheméZ, M) and an integen > 1, we define
(Zna MZn) = (Za MZ) X Spec(Z) SpeC(Z/pn),

where we regardeSipec(Z) andSpec(Z/p™) as log schemes by endowing them with
the trivial log structures and the fiber product is taken m¢htegory of log schemes.

We denote byMod(Z/p*) the category of the projective syste§iB, },,>1 of Z,-
modules such thak;, is aZ/p™-module for eacln > 1. For a pro-finite groug,
Mod(G-Z/p*) denotes the category of the projective systdifig},> of discrete
G-modules such that, is aZ/p™-module.

For a schemd’, Sh\(T,Z/p*) denotes the category of the projective systems
{Z,}n>1 Of étale sheaves dh such that%,, is aZ/p™-sheaf for eacm > 1. For
a pro-finite groups acting onT’, Sh(T., G-Z/p*) denotes the category of the pro-
jective systemg.%#,, },,>1 of étaleG-sheaves off’ such that%,, is aZ/p"-sheaf for
eachn > 1. We write D(Tw, Z/p*) (resp.D(T«, G-Z,/p*)) for the derived category
of Sh\{Te, Z/p*) (resp.Sh\(Ts, G-Z/p*)).

For an additive category’, we writeQ ® % for the Q-tensor category o¥, i.e.,
the category whose objects are the sanf& and such that for object$, B € ¢, the
group of morphisms$lomgg« (4, B) is given byQ ® Hom« (A, B). We often write
Q® Afor A € ¥ regarded as an object @f ® ¥ to avoid confusions.

A.1 CRYSTALLINE COMPLEXES

We construct the following objects:

E(xe,00)/Wer B(xaM0)/ (80,05,) € DT (Yer, Z/p®)
E, 5. /we B 0/ (60me,) € DT (Yer, Gi-Z/p°),

whereW;, meansSpec(W;,) endowed with the trivial log structure for eaeh> 1.
See Definition 9.6 fo(&,,, Mg, ). To constructE x, i) w,, we fix an étale hyper-
covering(X*, M*) — (X, M) and a closed immersiaX*, M*) < (Z*, Mz«) of
simplicial fine log schemes ové¥ such that Z¢, M) is smooth oveiV for each
i € N (cf. [HK] (2.18)). Put

Y =X~ R0k k,

which is an étale hypercovering &f. Forn > 1, let(Z;;, M. ) be the PD-envelope
of (X, M) — (Z,;, Mz:) with respect to the canonical PD-structure(pih C W,
([K3] Definition 5.4), and we define a compl& x . ax),w;, of sheaves o} as

d 1 d d q d
ﬁ@; — ﬁ@; ®ﬁ}n w(ZT*I,yMz;)/WI P\ ﬁ@; ®@’Z7§ w(ZII,»Mz;l)/Wz — e

where the first term is placed in degl@andng;’,MZ;)/m denotes the-th differ-

ential module of Z;;, Mz. ) overW,, cf. [K3] (1.7). See loc. cit. Theorem 6.2 fat

DOCUMENTA MATHEMATICA 18 (2013) 177-247



230 K. SaTo

Regarding this complex as a complex of projective systenith f@spect ta: > 1) of
sheaves o, we obtain a compleX x; r;),w, Of objects ofSh\Y, Z/p®). We

then define

E(x.. v we = RO(Exs nzyw,) € DY (Y, Z/p®),

where6 : Sh\Y;,Z/p*) — Sh\Ys,Z/p®) denotes the natural morphism of
topoi. The resulting objecE x, 1s,)/w, IS independent of the choice of the pair
((X*, M*),(Z*, Mz+)) by a standard argument (cf. [K2] p. 212).

To construcE x, ar)/(s.,Mme,)» We PutV := Spec(W{t]), and defineMy as the
log structure orV associated with the divisdit = 0}. We regard X, M) as a log
scheme ove(V, My ) by the composite map

(X, M) — (S,Mg) — (V, My),

where the last map is given By — , the prime element ad i we fixed in Definition
9.6 to defing(&),, Mg, ). We then apply the same construction asipk, s,)/w,

to the morphism( X, M) — (V, My), i.e, fix an étale hypercoveringK*, M*) —

(X, M) and a closed immersioit : (X*,M*) — (Z*, M) of simplicial log
schemes ovefV, My ) such that(Z?, M) is smooth ovelV for eachi € N. We
defineE x, a,)/ (6, 0me,) DY replacmgw?Z;,MZ;’)/m with ng;JMZ%)/(VmMVn) in

the above definition ot x, az,)/w, -

We constructf <, 7, ,w, as follows. Fix an étale hypercoverifg™, M*) —

(X, M) and for each finite extensioh/ K contained inK, fix a closed immersion
(X8, Mp, ) = (21, Mz;) (X5, Mp,) == (X%, M*) X(s.m5) (Sz,Ms,)) of
simplicial fine log schemes ové&V" such thai 27 , Mz;) is smooth oveiV for each
i € NandL/K, and such that for finite extensioi$/ L there are morphisms,. /. :
(27, Mz:,) — (Z], Mz; ) satisfying transitivity. For a finite extensidiy K, letk,
be the residue field af, and put

Y} = X*®o, kr and Y*:= X*®o, k,

which are étale hypercoverings o}, := Y ®; k; andY, respectively. We de-
fine a complex]E(XéLw.,MéLw.)/W. on Y7 applying the same construction as for
E(x;,mz)/w, to the embeddingX, , M5, ) — (27, Mz ), whose inverse image
onto Y™ yields an inductive system of complexes of objectSoi(Y %,, Gx-Z/p*®)
with respect to finite extensiods/ K. We then define

E

®earpwe = I Boeg g o/walyes

KCLCK
Ex. 0w, = Ro*(E(Y;,H;)/W.) € D" (Y&, Gr-Z/p*),

whered : Sh(Y%,, Gx-Z/p*) — Sh\(Y &, Gx-Z/p®) denotes the natural morphism

of topoi. We construcE =, 37, (s, .1, ) @PPlying similar arguments to the com-

pIexes]E(XéL Mg /(60 Ms,) -

DOCUMENTA MATHEMATICA 18 (2013) 177-247



CycCLE CLASS AND p-ADIC REGULATOR 231

We define the following objects dflod(Z/p*):

Hoy(Xe, Ma)/Wa) := R'T(E(x, a10) /) (A1)

Hl o (Xe, My)/ (60, Mg,)) := R'T(E(x, M) /(60 M2,))> (A.1.2)

Hys(Xo, Mo) /W) == R'T(Ex, 37.)/w.) (A.1.3)

H(Xo, Ma)/ (60, Ms,)) = R'T (B, 377.) /(60 015, (A.1.4)
wherel” andI” denote the following left exact functors, respectively:

I:=r,—):Sh(Ys,Z/p*) — Mod(Z/p*), (A.1.5)

I':=IY,-):Sh\Y¢,Gx-Z/p*) — Mod(Gx-Z/p*). (A.1.6)

We define ‘naive’ crystalline cohomology groups
Heys (X, M)/W),  Heyo(X, M)/(&, Me)),

crys crys

Hérys((X’M)/W) and Hérys((X’M)/(@@’Mg))

as the projective limit of (A.1.1)—-(A.1.4), respectively.

REMARK A.1.6 Letm, : Sh\(Ys,Z/p®) — Sh\(Ys, Z/p™) be the natural functor
sending{.%,, }>1 t0 %,. Sincer, is exact, it extends to a triangulated functor

o+ DF (Yer, Z/p®) — D™ (Yar, Z/p"),

which send¥ x, ar,)/w. — E(x,,m,.)/w, an object computing the crystalline co-
homology of( X,,, M.,)/W;,, becauser,, is compatible with the gluing functagd...
Moreover by{J] Propositionl.1 (b) we have

chrys((XﬂM')/W ) { crys((XTlvMﬂ)/Wl)}nZl'
We have similar facts fofA.1.2), (A.1.3)and(A.1.4) as well.

A.2 CONTINUOUS CRYSTALLINE COHOMOLOGY

We define continuous crystalline cohomology groups asvidlo

Héont cr((X7 M)/W) = Rl ( m OF) (E(X.,Mo)/w.)7 (A21)
Héont cr((X5 M)/(gv Mé")) = RZ(I&HOF) (E(X.,M.)/(o“.,]\/fg.))a (A22)

wherel" is as in (A.1.5). BecausE has an exact left adjoint, it preserves injectives
and there exists a spectral sequence

ab*RaL crys X'vM')/W') Haer ((XvM)/W)

cont-cr

BecauseR“@ = 0 for a > 2, this spectral sequence breaks up into short exact
sequences

0 — Rl]# I{érys1 XO’MO)/WO) — Héont cr((X7M)/W)
— H' (X,M)/W) — 0. (A.2.3)

crys

We have similar exact sequences for (A.2.2) by the same agtsm
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ProprosITION A.2.4 There exists a distinguished triangle

dt
E(xXe M)/ We — Bxe M) /(60 Me0) = Bixe ) /(60 Me,) ~— Bixeaza)m, [1]

in DT (Ye, Z/p®). Consequently we obtain a long exact sequence

S Hzont—cr((X5 M)/W) — Hzont—cr((X5 M)/(gv Méa))

(X, M)/ (&, Mg)) L5 HEL (X, M)/W) — --- .

v 7
Hcont-cr cont-cr

Proof. The assertion follows from the same arguments as in the pifd&#] Lemma
4.2 withF = 0°°, O

There is a commutative diagram (see Definition 9.6XQr

Hi

cont-cr

((X7 M)/(gv Méa)) —— Hciont—cr((X5 M)/(gv Mé"))

l l

Hi (X, M)/(6, Mg)) —— Hl (X, M)/(&, Mg)).

crys crys

We will show later that the vertical arrows are bijective iarGllary A.3.2 (1) below.

A.3 COMPARISON OF PROJECTIVE SYSTEMS OF CRYSTALLINE COHOMOLOGY

We recall here the following comparison facts on projecsystems of crystalline
cohomology groups, which will be useful later. Note that far € Mod(Z/p*®), both
Jim Ao andR! lim A, have finite exponents i ® (A4,) ~ 0in Q ® Mod(Z/p*®).

PROPOSITION A.3.1 Letibe a non-negative integer, and piif, := H' (Y, W, w$).
Let P, be the ring defined ifiTs1] §1.6, and putRe, := I'(&,, Os,).

(1) There is an isomorphism i@ ® Mod(Z/p*®)
Q& (Hlye(Xe, Ma)/ (84, Mg,))) ~ Q@ {Rs, @w, Dj}n>1
andR'lim Hl,((Xe, Ms)/(64, Me,)) has afinite exponent.
(2) There is an isomorphism i® ® Mod(Gk-Z/p*®)
Q@ (Hiys((Xe, Ma)/ (60, Ms,))) = Q@ { P @w, D}
and R'lim Hi ((Xe,M,)/(és, Ms,)) has a finite exponent.
(3) There is an isomorphism i® ® Mod(Gk-Z/p*®)
Q& (Hepys(Xo, Ma)/Wa)) ~ Q@ {(Po @, D)}z

and R'lim H. .((X.,M,)/W,) has a finite exponent. Her& acts on
P, ®w, Di by Np, ® 1 +1® N and Np, denotes the monodromy opera-
toron P, cf.[Ts1] p. 253

DOCUMENTA MATHEMATICA 18 (2013) 177-247



CycCLE CLASS AND p-ADIC REGULATOR 233

Proof. (1) The first assertion follows from [HK] Lemma 5.2 (see alsdin the proof
of [Ts1] Proposition 4.4.6). To show the second asserti@cieck that the projective
system{ Rs, ®w;, D! },,>1 satisfies the Mittag-Leffler condition. Indedd:, is finitely
generated ovell;,, and the projectios, ., — Ry, is surjective by the presentation

Rg, =Wt t" /v (v > 1)]|@w W, (e:=[K : Ky))

obtained from the definition di,,, M, ) (see the proof of [Ts1] Proposition 4.4.6).

(2) The first assertion follows from that of (1) and [Ts1] Posjtion 4.5.4. The
second assertion follows from the fact th@®, ®w, D! }.>: satisfies the Mittag-
Leffler condition. Indeed, the natural projectiéhy,; — P, is surjective (loc. cit.
Lemma 1.6.7) and;, is finitely generated ovei,.

(3) See the proof of loc. cit. Proposition 4.5.6 for the firssextion.. We show the
second assertion. Note thA}, is flat overli;,, becauseR s, is flat overW;, and P,
is flat overR¢, by the above presentation &fs, and loc. cit. Proposition 4.1.5. Let
{Dy,}n>1 be aprojective system &F -modules such thdD,, is finitely generated over
W, for eachn, and letN : {D,,},,>1 — {D,}»>1 be a nilpotent¥-endomorphism.
Our task is to show that

R'im {(P, @, Dn) ="} =0,
Consider a short exact sequence of projective systems
0 — {(Dw)V st — {Du}ns1 — {N(Dn)}nz1 — 0.

Note that(D,,)V=° and N(D,,) are finitely generated ové¥;, for eachn. Letb be
the minimal integer for whichV® = 0 on {D,,},,>1. By [K4] Lemma 4.3 and the
flatness ofP,, overW},, we have a short exact sequence for each 1

0— (P, ®w, (Dn)NZO)N:O — (P ®w, Dn)N:() — (Pn ®w, N(Dn))N:() — 0,
which yields a short exact sequence of projective systemfsrespect to, > 1. Since
N*=1 = 0on{N(D,)}n>1, we may assume = 1 by induction onb > 1. Now let
B, beasin[Ts1}1.6 and letd.,,s be asin loc. cit§1.1. Then we have isomorphisms

(2) (3)

() _ n
(P, @w, D)V =~ (P)V= @w, Dy = B, @w;, Dy = (Aays/P™) @w;, D,

where (1) follows from the assumptign= 1 and the flatness aof,, overW¥;,. The
isomorphism (2) (resp. (3)) follows from loc. cit. CoroNat.6.6 (resp. the definition
of B, inloc. cit. §1.6). ThusR@@ {(P, ®w, Dy,)N=},,>1 is zero, and we obtain
the assertion. O

COROLLARY A.3.2 (1) Fori > 0, we have

Heyo (X, M)/(8, Me))g, = Hegne.or (X, M)/ (&, Me))q, -

crys
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(2) The torsion subgroups off} .((X,M)/(&, Mg)) and HE (X, M)/W)

crys crys

have finite exponents for any> 0.

Proof. (1) follows from Proposition A.3.1(1) and the remark aftérq.3). Since
lim > P, isp-torsion free, the assertion (2) follows from the isomospins in Propo-
sition A.3.1 (3). O

REMARK A.3.3 If K is absolutely unramified, then we have

chrys((Xnv Mn)/m/’;l) = Hl(Yv Wla};/)v
which is finitely generated ové#;, by Theoren8.8 (2)and (8.10.1) éee alsdHy?2]
(1.4.3), (2.4.2)) Consequently, the projective systéfy, . ((X., M,)/W,) satisfies
the Mittag-Leffler condition and we obtain a long exact sewpae

v Hiy (X, M)/ W)o, — Hiy (X, M)/(8, Me))g,

crys crys

=5 Hip (X, M)/(6, M), — HIZL (X, M)/W)g, — -+
which removes the assumpti¢n) in [La] p. 191 On the other hand, the author
does not know i}, ((X,, M,.)/W,) satisfies the Mittag-Leffler condition even up

to torsion, whenk is not absolutely unramified.

The following corollary has been used in the proof of Lemn¥a(®):

COROLLARY A.3.4 In the following commutative diagram of canonical maps, the
arrows(3) and(4) are injective

(X, M)/ W)g, — 2= Hi (X, M)/(&, Ms))g,

crys

(2)l l(3)

He (X, )/ W)g, — s H (X, D) /(8 Ms))g, -

crys crys

Hi

cont-cr

In particular, the kernel of1) agrees with that of2).
Proof. The injectivity of (3) follows from Proposition A.3.1 (1) dn(2) and the in-

jectivity of the natural mapsts, — P, forn > 1 ([Ts1] Proposition 4.1.5). The
injectivity of (4) follows from Proposition A.3.1(2) and )3 O

A.4 CONTINUOUS-GALOIS CRYSTALLINE COHOMOLOGY

We define the continuous-Galois crystalline cohomology#ews:
Hlg.o (X, M)/W) := R (lim I'ca ) (Ex, 57,)/w. )
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wherel is as in (A.1.6), and g, denotes the functor taking x-invariant subgroups:
I'cal :=I'(Gk,—) : Mod(G-Z/p*) — Mod(Z/p®).
There is a natural map

Hi

cont—cr((X’ M)/W) — HéG—cr((X’ M)/W) (A41)
by definition.
THEOREM A.4.2 There exists a Hochschild-Serre spectral sequence

g = H (K, HYy (X, T)/W)g,) = HIEL (X, M)/W)g,

crys cG-cr

Proof. Because has an exact left adjoint functor, it preserves injectives there
exists a spectral sequence

E&Y = HY(K, HY.  (Xo, M)/ Wa)) = HSL (X, M)/W),

crys cG-cr

where H*(K,{F,}»>1) for a projective system{ F,,},> of discreteG x-modules
denotes the continuous Galois cohomology=6f in the sense of Jannsen [J. We

show that the canonical map
aaﬂb : Ha(K7 Hb ((Ya M)/W)Qp) — Ha(K7 Hb ((YO,MO)/WO))Q;)

crys crys
(see the proof of loc. cit. Theorem 2.2) is bijective figb > 0. Put
Le:={Py®w, Dy}nz1.  L*:=Q,®z, lim LY = Bf ®k, D,
TV = HY (Ko, ML) /Wa)  and T := HY (X, 3)/W)g, .
Since the torsion part d(fin L} has a finite exponent, the canonical map
Bt HY(K,LY) — H*(K,LY)q, (A.4.3)
is bijective by loc. cit. Theorem 5.15 (¢). We have a shortégaquence of objects in
Q ® Mod(Gk-Z/p*)
0— Q& (1Y) — Qe (L) > Qe (L) — 0
and a short exact sequence of topolog&al-modules
0—T — Lt b —o0 (A.4.4)

by Proposition A.3.1(3) and [K4] Lemma 4.3. These exact saqas yield a commu-
tative diagram with exact rows

RN Hafl(KyLb) N HG(K,Tb) N Ha(K,Lb) i} HG(K,LZ’) —_—

omsa | - oo | oo

o — HOY(K, L), — HY(K, T?)q, — H*(K, LY)q, — H*(K,L)q, — -+ ,

where the arrowg®~1:* and3*? are bijective by (A.4.3). Hence the assertion follows
from the five lemma. O
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COROLLARY A.4.5 Put

Hif o (X, M) /W)Yy = Ker (Hi o (X, M)/W)q, — HLLL (X, M)/W)g,).

cont-cr cont-cr crys

Then the canonical homomorphism

Hci+1 ((X,M)/W)%p — Hl(K, H! ((Yvﬁ)/w)(@p>’

ont-cr crys

obtained from(A.4.1) and an edge homomorphism of the spectral sequence in Theo-
remA.4.2, fits into a commutative diagram

Hiy (X, M)/ (8, Mg))g, ——= Higto (X, M)/W)3,

S |

. (—1)i+1s P S
(BSJ{ QKo DZ)GK Hl(KaH ((XvM)/W)Qp)a

crys

whered is the connecting map induced by that in Proposithg.4 (see Corollary
A.3.4 for the existence and the surjectijityand § denotes the connecting map of
continuous Galois cohomology associated wWat4.4) with b = . The left vertical
arrow is obtained from PropositioA.3.1 (2)

Proof. The assertion follows from Proposition A.3.1(2) and a sengmputation on
boundary maps arising from the distinguished triangle

can,

RT(E(Y. ,M.)/W.) B RT(E(Y. ,M.)/(g.,Mg,))

v EN
— RE(Bx, 77, /60 m2.) — BL Bz, 77,)w,) [1]

in D*(Mod(G k-Z/p*)) (a variant of Proposition A.2.4). The sign1)**! in the dia-
gram arises from the difference of the orientations betwhkisrdistinguished triangle
and (A.4.4), and the fact that the construction of conngctirorphisms associated
with short exact sequences of complexes commutes with fftdughctor [i] up to the
sign(—1). The details are straight-forward and left to the reader. O

A.5 SYNTOMIC COMPLEXES
We construct the following objects for> 0:

S (r)x,m) € DY (Yer, Z/p®) and o (") x ) € DY (Ye,Gr-7/p%),
and the following objects for with0 <r <p-—1

Fo(r)x.m) € DY (Yer, Z/p®) and (1) 31) € DY (Ye,Gy-7/p%).

DEFINITION A.5.1 Let (T, Mr) be a log scheme ovef,. A Frobenius endo-
morphismy : (T, Mr) — (T, Mr) is a morphism ovefZ, such thaty ® Z/p :
(Th, Mry,) — (T1, Mr,) is the absolute Frobenius endomorphism in the senpe3jf
Definition4.7.
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To construct the objects’s () x,ar) @and-%e () x, 1), We fix an étale hypercovering
(X*, M*) — (X, M) and a closed immersiqX *, M*) — (Z*, Mz+) of simplicial
fine log schemes ové¥ such tha{ Z¢, M) is smooth ovefV and has a Frobenius
endomorphism for eache N. Letn > 1 be an integer, and €7, M. ) be the
PD-envelope of X;, M) in (Z};, Mz ) with respect to the canonical PD-structure
on(p) C W,. Fori > 1, let 7l c ¢y, be thei-th divided power of the ideal
J = Ker(0g; — Ox;). Fori < 0, put gl .= 05 LetI(}, /.y, be the
complex of sheaves ori;

M d _ d d . d
/[] _>/[ 1]®ﬁz7§w(12;,kfz;)/m _>_>/[ q]®ﬁZ;ng;§.,IWZ;)/Wz — e,

Where/[’“] is placed in degreé. See [Ts2] Corollary 1.10 fod. The complex
E(x: am2)/w, we considered ifA.1 agrees Witkﬂ@]ﬁ M)W We define a complex
o (1) (x+,m+) ONY; as the mapping fiber of the homomorphism

ph =y JEZ](;,M;) = Eoxz, )

For0 < r < p — 1, the Frobenius endomorphism ¢#;, ., Mz:, ) induces a
homomorphism of complexes

N sermaea i 1G]
Jri=p"- Prtr - J(X;,M;)/Wz — E(X;.,M;)/Wl

(cf. [Ts2] p. 540). We define a compleX,, (1) x«, a+) OnYg as the mapping fiber of
the homomorphism

L= fr i 300 are = Bxpnny)

Regarding,, (7)x~,am+) and.-7, (r) x+ a+) @s complexes of projective systems (on
n > 1) of sheaves o}, we define

yo~(T)(X,M) = Re*(y.N(T)(X*7M*)> (7’ Z 0),

yo(T)(X,M) = Re*(y.(TXX*,]u*)) (OSTgpfl),

wheref : Sh\(Y;,Z/p*) — Sh\Ys,Z/p*) denotes the natural morphism of topoi.
The resulting objects are independent of the pait*, M*), (Z*, Mz+)) (cf. [K2] p.
212).

We construct?y"(r) 37, for r = 0 and 7, (r) x 77 for0 < r < p—1las
follows. Fix an étale hypercovering{*, M*) — (X, M) and for each finite ex-
tensionL/K contained inK, fix a closed immersiofiX¢, , Mg ) < (ZF, Mz:)
(Xg,, M5, ) = (X*,M*) X(s,m5) (SL, Ms,)) of simplicial fine log schemes
over W such that(Zz,Mzz) is smooth ovedV for eachi € N and L/K, such
that Z¢ has a Frobenius endomorphism for eack N and /K, and such that
for finite extensiond.’/ L there are morphisms, /1, : (Z;,, Mz+,) — (Z7, Mz;)
which satisfy transitivity and compatibility with Frobers morplhisms. For a finite
extensionL /K, we defineY} in a similar way as ir§A.1. We define complexes
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yf(r)(XoL Mo, ) and.¥, (T)(XoL Mo, ) ONY} applying the same constructions as
for the complexes?, () x,a) and . (r)(x,m), respectively, to the embedding
(X5,, Mg, ) = (Z1,Mz;), whose inverse images onto* := X* ®o, k yield
inductive systems of complexes of objectsSif\(Y %, G x-Z/p*) with respect to fi-
nite extensiond./ K. We define

S xg g = I AT x g, L)
KCLCK

L)z, 31, = RS xs 315) € DY Ve, Gi-Z/ %),

whered : Sh(Y%,, Gx-Z/p*) — Sh\(Y &, Gk-Z/p®) denotes the natural morphism

of topoi. We construct?s (r) x, 37,y from Ze(r)(xs | my ,)'s in a similar way.
L-®’ L-®

When0 <r < p—1,thereisa canonical projection

Yo : Lo (M) xan) — (M) (xm)

induced by the identity map & ~, 37, ), - There are canonical morphisms

Y*o

= [r]

G S — I 3w — Ex. 57w, (>0 (A.5.2)
o A — J[X oW — Ex,aryw. O<r<p-1), (A5.3)
which satisfy
p-Cy=cLo] (When0 <r <p-—1). (A.5.4)
Forr > 0, we define
Zp*(r) = (p"al) " Zy(r) © Z/p* € SN X7, GK-Z/p®)

wherea denotes the maximal integerr/(p — 1). We haveZ/p®(r)’ = ui. canoni-
cally whenr < p — 2. Similarly forr < 0, we define

Z/p*(r) = p"al Zy(r) ® Z/p® € SN Xz, Gx-L/p®) (A.5.5)

with a the maximal integer wita < —r/(p—1), which will be used in (A.6.4) below.
Letj : X < X andz : Y < X be the natural immersions. L&j, andz* be the
following functors respectively:

EJ, : D*(Xg)a Grc-Z/5") — D* (Ret, Gi-Z /"),
Z* : D+(7ét, GK'Z/p.) — D+(?ét) GK_Z/p.)

THEOREM A.5.6 ([Tsl1] §3.1, [K4] THEOREM 5.4) For r > 0, there exists a
canonical morphism ilD* (Y &, Gx-Z/p®) compatible with product structures

e+ Lo () xar) — T RILL/PO(r)'.
If r < p— 2, thenn. factors through an isomorphism

S x> T<r T Rj, pi . (A.5.7)
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Proof. We definen applying the arguments in [Ts3B.1 in the category oZ/p*-
sheaves. I < p — 2, then we hav& /p*(r) = uf?f, andn;, factors through a mor-
phism7, : Z4(r)x 37 — T"Rj.pye by the construction of (loc. cit. (3.1.11)).
The morphismyj, induces an isomorphism as claimed, becaﬂ”s(a'r)(yﬁ) is con-
centrated irf0, r] and7j, induces isomorphisms on tlketh cohomology objects with

0 < ¢ <rby[K4] Theorem 5.4, O
We define
Hyyo (X, M), S(r) := R'T(Sa(r) x, 1)),
Hy,, (X, M), 2, (r)) = lim H, (X, M), Z(r)),
Hyyo (X, M), S, () := Qp @z, Hyy (X, M), 72, (1)),
Hy (X, M), S, (r) == Qp @z, lim R'T(S(r) 5 77))-

wherel” andI” are as in (A.1.5) and (A.1.6), respectively.

A.6  CONTINUOUS(-GALOIS) SYNTOMIC COHOMOLOGY

We assume < p — 2 in what follows. Fori > 0, we define the continuous syntomic
cohomology as follows:

Hciont-syn((Xv M)a yzp (T)) = RZ(@F) (‘yO(T)(X,M))'
Similarly, we define the continuous-Galois syntomic cohtogy as follows:

gG—syn((Xv M)5 yzp (T)) = Ri(]'glp(;iﬂf) (y‘ (T)(X,M)) :
We put

Hgont—syn((X7 M)’ y@p (T)) = @P ®Zp Héont—syn((X’ M)7 yZ]) (T))
ProOPOSITION A.6.1 Leti > 0 be an integer.
(1) Letn : H., (X, M), S, (r)) — H (X%, Q,(r)) be as in Lemma&.5. Then

syn

the kernel of the composite map

Hongsyn (X, M), S, (1)) — Hiyn (X, M), S, (r)) == H'(Xg, Qp(r))

syn
agrees with that of the composite map

Heonesyn (X, M), S, (1) = Hegn (X, M), S, (1)) = Hipy (X, M)/ W)g,,

cont-syn syn crys

which we denote b’

cont-syn

(X, M), S, (1)), in what follows.
(2) If K is ap-adic local field(i.e., k is finite), then we have

(X, M), 72,(r)) = Hyo((X, M), S2,(r)).

%
H syn

cont-syn
In particular, we have the following canonical map in thissea

H} ((X,M),yzp(’r))—>Hi ((XvM)/W)

syn cont-cr
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(3) If r > d := dim(Xg), then we have
gG—syn((X’ M)7yZ]J (’I")) - Héont(XK7ZP(r))a

whereH*

cont

(Xk,Zp(r)) denotes the continuoésale cohomologid].

Proof. (1) The assertion immediately follows from Lemma 9.5.
(2) There is a short exact sequence analogous to (A.2.3)

0— R11£1 Hsl};ml((X5 M),y.(T)) — Hzont—syn((XvM)5yZp(r))
— HL (X, M), Sz, (r)) — 0.

syn

SinceX is proper ovek andk is finite by assumptiony, ' (X, M), 7, (r)) is finite
for anyi,n > 1 by [Ts1] Proposition 2.4.1. See also the remark in loc. pit263.
The assertion follows from these facts.

(3) Sincer > d by assumption, (A.5.7) implies’, (r)(yﬁ) ~ Z*Rj*uf?.". Hence
the assertion follows from the isomorphisms/int (Mod(G -Z/p*))

RI(Xg, pg0) = RIO(X, Rjusd) = RI(Y, T Rj.puiY), (A.6.2)
where the last isomorphism is a consequence of the properdiesge theorem for
the usual étale cohomology. O

Fori > 0, put

H' (X, Qp(r))° := Ker(H' (X, Qy(r)) = H'(Xg, Qp(1))),
Hyyo (X, M), S, (r)° = Ker( : Hyy (X, M), S, (r)) = H' (Xz, Qp(1)))-

syn syn

We haveH (X, Q,(r)) = H. (XK, Qpy(r)) whenK is ap-adic local field. The
following corollary is a consequence of Proposition A.@). (2) and the covariant
functoriality of Hochschild-Serre spectral sequencesoiefficients (see also the dia-
gram in the proof of Theorem A.6.7 below).

COROLLARY A.6.3 Assume thak’ is ap-adic local field, and let be the composite
map

e HG (X, M), S, (r)° = H™ (Xk, Qp(r))” — H' (K, H'(Xg, Qp(r))),
where the last map is an edge homomorphism of the Hochs8bil: spectral se-
quencg?9.0.1) If » > d, thene fits into a commutative diagram

HH_l((Xv M)a y@p (7,))0 — Hgg;\i—cr((Xa M)/W)(%p

syn
el/ l
i

HY (K, H' (X7, Qp(r))) — H' (K, H,\ (X, M)/W)g,),

C

where the top arrow is obtained from Propositiér6.1 (1)and(2), the right vertical
arrow is the map in CorollanA.4.5and 3%" is as in the proof of Theore9.
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We next construct a commutative diagran@Qine DT (Mod(G k-Z/p®)) assuming
r<d

Qe RI(Y, u(r) x 71))

|

Q® RI' (X, 4S0) ——= Q@ (RI'(Y,Ex, 37.y,w.) @ Z/p*(r — d)'),
(A.6.4)
which is a key ingredient of the commutative diagram (A%8ffor the case: < d.
See (A.5.5) fofZ/p* (r — d)’. We defineh” as the composite morphism

Q® RI(Y, S (r)x.31))

Qe RI Y, Ex, 7.9 w.)
= Q@ {RI(Y.Ex, 37.,)/w,) ® Z/p*(d—7) @ Z/p*(r — d)'}
— Q@ {RI'(Y.Ex, 57.)/w.) ®@Z/p*(r —d)'},

where the last arrow is induced by th& "-times of the composite map

Qez/pd-r) 2 Qo HY, ((X., M), % (d-1) (A.6.5)
(A5.2) -
— Q ® H?rys((XOa M')/W')
(see (A.6.6) below for the isomorphism (1)) and the prodfictygstalline complexes.

We definef” as the morphism induced by (A.5.7) and the isomorphisms 6.2\
To defineg”, we need an isomorphism

f1 Qe RO, #7(d)x5) ~ Q@RI (X%, Z/p*(d)) (A.6.6)
induced byi¢ in Theorem A.5.6 (cf. [Ts1] Theorem 3.3.2 (1)). We define

ht: Qe RO(Y,.77(d) xan) — Q@RI (Y. Ex, 37.)/w.)

in the same way as” (using (A.5.2) instead of (A.5.3)) and defipé := p? - (hdo
(fH~1). Finally we defing;” as the composite of the natural map

RI (X, pe) — RI (X, Z/p*(d)') @ Z/p* (r — d)’

andg? ® id. The above diagram is commutative by the definitiog'ofind the com-
patibility of . with products (cf. [Ts1E3.1). Now we prove

THEOREM A.6.7 Assume thaf( is a p-adic local field(i.e., & is finite). Then the
diagram(9.9.2)commutes for < d.
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Proof. We first note the isomorphisms

Heghtsyn (X, M), S, (r)) == HGH(X, M), S, (1)),

cont-syn syn

HH_l(XKa Qp(r)) — HH_l(XKv@P(T))

cont

by the assumption thétis finite (cf. Proposition A.6.1(2)). For integers > 0 and
s < 0, put

Ra((X,M)/W;5) := RM(@FG3|){RF(?, Ex. 370 /w.) @ Z/p°(s)'},
:&-cr((X7 M)/W7 3)‘%;) = Ker( anl-cr((X7 M)/W7 S)Qp — Hcr:;/s((yv M)/W)Qp (5))

By (A.6.4), there is a commutative diagram

HH_l((Ya M)v y@]) (T))

syn
h’V‘
f’"l \

H (X, Qp(r))o, ——= HSH (X, M) /W), (r - d),

crys

where the bottom arrow is the sameais ™. By this diagram we obtain the arrows
(g")? and(h")? in the following commutative diagram:

HR (X, M), S, (r))°

syn

hr 0
(#m)° e
; (9")° ;
Hc;rn%(Xa Qp(r))o Hc(JZF—ir((X’ M)/Wﬂd* d)%p
edge| ledge

HY(K, H (X0, 5))g, — HY(K, Hiy (Ko, 7a)/Wa) @ Z/p*(r — d))g

crys

c ZT c,
M)

P

HY(K, H (X, Qp(r))) — > HY(K, Hi((X,

crys /W)Qp (T - d))v

where the top triangle is induced by (A.6.4) and the centjalse commutes by the
functoriality of Hochschild-Serre spectral sequences dimowsc andc’ are canoni-
cal maps, and the bottom square commutes by the definitioffs’aindg”. The map

c is bijective by [J] Theorem 5.15(c) and the finitenesst{ X, i) for n > 1.
The bijectivity of ¢’ is obtained from a similar argument as for the proof of Theore
A.4.2. Moreover it is easy to see that the composite of thectdfimn agrees with the
left vertical arrow of (9.9.2), and that the compositei6fand the right column agrees
with v%7 in (9.9.2). The commutativity in question follows from tleefacts. O
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