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ABSTRACT. Let L = A + Z for a C! vector field Z on a com-
plete Riemannian manifold possibly with a boundary. A number of
transportation-cost inequalities on the path space for the (reflecting)
L-diffusion process are proved to be equivalent to the curvature con-
dition Ric — VZ > —K and the convexity of the boundary (if exists).
These inequalities are new even for manifolds without boundary, and
are partly extended to non-convex manifolds by using a conformal
change of metric which makes the boundary from non-convex to con-
vex.
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1 INTRODUCTION

In 1996 Talagrand [I3] found that the L2-Wasserstein distance to the standard
Guassian measure can be dominated by the square root of twice relative en-
tropy. This inequality is called (Talagrand) transportation-cost inequality, and
has been extended to distributions on finite- and infinite-dimensional spaces.
In particular, this inequality was established on the path space of diffusion
processes with respect to several different distances (i.e. cost functions): see
e.g. [7] for the study on the Wiener space with the Cameron-Martin distance,
[T7, 5] on the path space of diffusions with the L2-distance, [I§] on the Rie-
mannian path space with intrinsic distance induced by the Malliavin gradient
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operator, and [0, [27] on the path space of diffusions with the uniform distance.
The main purpose of this paper is to investigate the Talagrand inequality on
the path space of reflecting diffusion process, for which both the curvature and
the second fundamental form of the boundary will take important roles.

Let M be a connected complete Riemannian manifold possibly with a boundary
OM. Let L = A+ Z for a C! vector field Z on M. Let X; be the (reflecting if
OM +# () diffusion process generated by L with initial distribution p € Z(M),
where & (M) is the set of all probability measures on M. Assume that X; is
non-explosive, which is the case if M is convex and the curvature condition

Ric—VZ > -K (1.1)

holds for some constant K € R. In this case, for any T" > 0, the distribution
7 of Xjo.7 := {X; : t €[0,T]} is a probability measure on the (free) path
space

M = C([0,T); M).

When g = d,, the Dirac measure at point o € M, we simply denote ITj = IT7.

For any nonnegative measurable function F' on My such that Hz(F ) =1, one
has

Wh(de) =TI (F)u(da) € 2(M). (1.2)

Let p be the Riemannian distance on M; i.e. for z,y € M, p(x,y) is the length
of the shortest curve on M linking = and y. Then M7 is a Polish space under
the uniform distance

poo(v,m) = sup p(ye,m), v,m€ M.
t€[0.7]
Let W, be the L?-Wasserstein distance (or L?-transportation cost) induced

by pso- In general, for any p > 1 and for two probability measures II;,IIs on
MT,

1/p
Wopooe (T, I) :=_ inf { /MTxMT poc (7, m)Pm(dy, dn)}
is the LP-Warsserstein distance (or LP-transportation cost) of II; and Iy in-
duced by the uniform norm, where % (Il;, Il5) is the set of all couplings for IT;
and Ils.

Before moving on, let us recall the Talagrand transportation-cost inequality es-
tablished in [6] on the path space over Riemannian manifolds without boundary.
Let OM = and p, = p(o,-). If

1Z] < %0 po (1.3)
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holds for some positive function ¢ such that fooo ﬁds = o0, then (see [0l
Theorem 1.1])

Wy (FITE TE)? < 2
K
According to [12] @], [I§], the log-Sobolev inequality for a smooth elliptic dif-
fusion implies the Talagrand transportation-cost inequality with the intrinsic
distance. So, (L4]) was proved in [6] by using a known damped log-Sobolev
inequality on the path space and finite-dimensional approximations. To ensure
the smoothness of the approximating diffusions, one needs the boundedness of
curvature. To get rid of this condition, a sequence of new metric approximating
the original one were constructed in [6], which satisfy (IT]) and have bounded
curvatures. In this way (4] was established without using curvature upper
bounds. But to realize this approximation argument, the technical condition
(C3) with [;° ﬁds = oo was adopted.
In this paper we adopt a different argument developed in [27] for diffusions on
R? by using the martingale representation theorem and Girsanov transforma-
tions, so that this technical condition was avoided. Furthermore, we present
a number of cost inequalities which are equivalent to the convexity of M (if
exists) and the curvature condition (LI)).
When OM # 0, let N be the inward unit normal vector field of M. Then the
second fundamental form of OM is defined by

25T — Ol (FlogF), F>0,TI1(F)=1. (1.4)

LU, V)= —(VyN,V), U,V eToM,

where TOM is the tangent space of OM. If T > 0, i.e. I(U,U) > 0 for all
U e TOM, we call M (or 9M) convex.

THEOREM 1.1. Let Pr(o,-) be the distribution of Xr with Xo = o, and let
Pr be the corresponding semigroup. The following statements are equivalent to
each other:

(1) OM is either convex or empty, and (L1) holds.
(2) Forany T > 0,u € P (M) and nonnegative F' with Hg(F) =1,

2
Wa (FH,?H;TL;)Q < ?(GQKT - 1)H§(F log F)

holds, where pt, € 2(M) is fized by (L2).
(3) ([TF) holds for any o € M and T > 0.
(4) For any o€ M andT >0,

Wap(Pr(o,), fPr(0,))* < 2T = 1)Pr(flog f)(o),
f Z O;PTf(O) =1
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(5) ForanyT >0, u,ve P(M), and p > 1,

WP,POQ (Hljja szj) § eKTWP,P(Na V)v

where Wy, , is the LP-Wasserstein distance for probability measures on M
induced by p.

(6) Forany x,y € M and T >0,

WQ,p(PT(Ia ')a PT(ya )) < eKTp(w’ y)

(7) For any T >0, p€ P (M), and F > 0 with IT](F) = 1,

2 12
Wapo (FILL ) < { = (@57 = DI (Flog F) | + KT Wa, (., ).

(8) For any p € P (M) and C >0 such that

Wao(fu, )® < Cu(flog f), f>0,u(f) =1,
there holds

2 2
W, (FIL T )? < < (€T —1) + eKT\/5> 1’ (Flog F),

F>0,I(F) = 1.

When OM is empty or convex, there exist many equivalent semigroup inequal-
ities for the curvature condition (I)): see e.g. [3|[10] for equivalent statements
on gradient estimates, log-Sobolev/Poicaré inequalities, and isoperimetric in-
equality; [19, 22, 23] for equivalent Harnack type inequalities; and [I1] for
equivalent inequalities on Wasserstein distances. The corresponding results
have been partly extended in [23] 24] to the non-convex case. Theorem [Tl pro-
vides seven equivalent inequalities for the convexity of M (if exists) and the
curvature condition (IZI]), which are new even for manifolds without boundary.
We would like to mention that the log-Sobolev inequality has been established
in [26] on the path space over manifolds with convex boundary, and in a forth-
coming paper we will extend the results on intrinsic ultracontractivity derived
in [25] to non-compact manifolds with boundary.

To prove Theorem [I. 1], we shall use a formula of the second fundamental form
established in [22] for compact manifolds with boundary. Since in this paper
the manifold is allowed to be non-compact, we shall reprove this formula in Sec-
tion 2 by using the reflecting diffusion process up to the exit time of a compact
domain. This formula implies the equivalence of Theorem [[.T[(1) and the semi-
group log-Sobolev/Poincaré inequalities (see Theorem 2] below). In Section
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3 we prove Theorem [[LT] by using results in Section 2, the martingale repre-
sentation and Girsanov transformation for (reflecting) diffusions on (convex)
manifolds.

To establish transportation-cost inequalities on the path space for non-convex
manifolds, we shall adopt a conformal change of metric (-,-) = f~2(-,) such
that M is convex under the new metric (see [2I, Lemma 2.1]). Let A’ be the
Laplacian induced by the new metric, we have (see [2I Lemma 2.2])

d—2
L:f*Q{A’JerZJrTVfQ}. (1.5)
According to this fact, we will modify our arguments in Section 4 to study
the reflecting diffusion process generated by L := ?(A + Z) for a smooth

function v on a convex manifold, then extend Theorem [[.T]in Section 5 to the
non-convex setting.

2 FORMULAE FOR THE SECOND FUNDAMENTAL FORM AND APPLICATIONS

When M is compact, the following formula on M has been found in [22]:

VP VRSl 2
%1_1;% \/1—5 1Og (Pt|Vf|p)1/p - _ﬁﬂ(vf7 vf)7 p > 17 (21)

where f is a smooth function satisfying the Neumann boundary condition.
When M is non-compact, some technical problems appear in the original proof
when e.g. a dominated convergence is used. To fix these problems, we shall
stop the process in a compact domain, so that we shall first study the behavior
of hitting times.

Recall that the reflecting L-diffusion process can be constructed by solving the
SDE

dX; = V2@, 0dB, + Z(X,)dt + N(X,)dL, (2.2)

where @, is the horizontal lift of X; onto the frame bundle O(M), B; is the
d-dimensional Brownian motion.
By the Itd formula, for any f € C?(M) we have

df(Xe) = V2(VF(Xe), @ 0 dBy) + LE(Xe)dt + N f(Xp)dly,  (2.3)
where Nf = (N,Vf). For any R > 0, let

TR = inf{t Z 0: p(Xo,Xt) Z R}

PRrROPOSITION 2.1. Let R > 0 and Xo = 0 € M be fixed. Then there exist two
constants c1,co > 0 such that

P(rp < t) < cie™ 2/t t>0.
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Proof. This result is well known on manifolds without boundary (cf. [2] Lemma
2.3]), and the proof works also when dM is convex. As in the present case the
boundary is not necessarily convex, we shall follow [2I] to make the boundary
convex under a conformal change of metric. Since

Br:={zeM: plo,x) <R}

is compact, there exists a constant ¢ > 0 such that I > —o holds on OM NBg.
Let f > 1 be smooth such that

Nlogf >0 ondMNBg. (2.4)

Such a function can be constructed by using the distance function ps to the
boundary OM. Since pg is smooth in a neighborhood of the boundary, there
exists a constant rg > 0 such that ps is smooth on {z € Bag : pa(x) < ro}.
Let h € C*°([0,00)) such that »" > 0,h(0) = 1,h’(0) = o and R/(r) = 0 for
r > ro. Then h o py is smooth on Bag and Nlogh o pslanins,, = 0. Thus, it
suffices to take smooth f > 1 such that f = ho py on Bp.

By [2Il Lemma 2.1] and (Z4]), M is convex in B under the new metric

<'ﬂ '>I = f_2<'a '>a
where (-, -) is the original metric. Let A’ be the Laplacian induced by the new
metric. We have (see [21, Lemma 2.2])
L=f2A+2)
for some Cl-vector field Z’. Let p, be the Riemannian distance to o induced
by the new metric. By the Laplacian comparison theorem,
Lpz<c onBp (2.5)

holds for some constant ¢ > 0 outside the cut-locus induced by (-, -)’. Since OM
is convex on B and N is still the inward normal vector under the new metric,
we have

Np, <0 on OM N Bg.
Therefore, by using Kendall’s Itd formula for the distance (cf. [9] for f = 1),
Z3) implies
dp5(Xe) < 2V2 F 73 (Xe)po(Xe)dby + cdt, < 7R,
or equivalently,

tATR

ENG) / £ (X)Po(Xs)dby + c(t A 7R) — F2(Xinrs)

is an increasing process, where b; is some one-dimensional Brownian motion.
Since f~2 < 1, this implies that for any 6 > 0, the process

DOCUMENTA MATHEMATICA 18 (2013) 297-322



TRANSPORTATION-COST INEQUALITIES . .. 303

0 1) 462 [*
Zs = exp |:¥ﬁ§(X5) — % — t_2 ﬁ?,(Xu)dU:|; s <Tr
0

is a super martingale. Therefore, letting C' > 1 be a constant such that f < C
on By and thus, p, > p, > C~'p, holds on B, we obtain

P(rp <t) = IP’( max po(Xsarp) > R) < P(R > max po(Xsarp) > E)

s€[0,t] s€[0,t] C
dR? 45%R?

< > — _§c—

= P(g[%,}%] Zsnrn 2 €XP [ C?2 oc t D

R? 5w
< — (5 .
_exp[cé (0 405)}, §>0
The proof is then completed by taking e.g. § = 1/(8C?). O

PROPOSITION 2.2. Let Xg =0 € OM. Then for any R > 0,

lim sup %‘Elt/\m - 2\/75/71" < 00.

t—0

Proof. Repeating the proof of [22] Lemma 2.2] by using ¢t A 7 in place of ¢, we
obtain

Elf,, <ct, te€0,1] (2.6)

for some constant ¢ > 0. Let 9 > 0 be such that pg is smooth on {ps < r9}NBp.
Let

T=inf{t >0: pag(Xt) > 10}

By the It6 formula we have

dpa(X;) = V2db; + Lpa(Xe)dt +dl;, t<7A7g, (2.7)

where, as before, b; is some one-dimensional Brownian motion. By the proof
of [22] Theorem 2.1] using 7 A 75 in place of 7, we have, instead of (2.4) in [22],

E(po(Xenrars) — \/§|l~)t/\r/\'rR|)2 <at? telo,1] (2.8)

for some constant ¢; > 0, where b; is some one-dimensional Brownian motion.

Due to (Z7),

|Elt/\7'/\TR - EPB(Xt/\T/\TR)‘ S CQt

holds for some constant ¢o > 0. Combining this with ([2:8) we arrive at
[Eliprary = V2Ebiarnrgl| < cst,  t€[0,1]
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for some constant ¢z > 0. Since E|b;| = 1/2t/m and E|b;|> = ¢, this and (Z8)
imply

2Vt ~
[Elines Ti‘ = [Blinry — VIEIb||

- 2.9
< st + Elgsrargy (liars + V2 b)) 29

< cst+cea/tP(t > 7 ATR), t€]0,1].

Moreover, noting that

P(r At <t,7p >71) < ]P( Il’l[%X] po(Xsararn) > ro),
se|0,t

by using 7 A T to replace 7 in the proof of [22] Proposition A.2], we conclude
that
P(r AT <t, TR >T) < csexp[—ra/(16t)], t>0

holds for some constant c5 > 0. Combining this with Proposition 2] we obtain

P(tZT/\TR)§66€7C7/t, t>0
for some constants cg, 7 > 0. Therefore, the proof is completed by 29). O

THEOREM 2.3. Let f € C*°(M) with N f|aar = 0.
(1) For anyp>1 and R >0,

2 P 1/p
i (VA o BV AP Cina))? 2
t—=0 +/t V£l N3
holds at points on OM such that |V f| > 0.
(2) Assume that for any g € C§(M) the function |V P.g| is bounded on [0,1] x

M. If moreover f has a compact support, then (Z1) holds points on OM such
that |V f| > 0.

(V. V) (2.10)

Proof. ([ZI0) follows immediately from the proof of [22] Theorem 1.2] by using
Proposition 2:2]in place of [22] Theorem 2.1], and using ¢ A 7r in place of t.
Next, let f € C§°(M). By the assumption of (2) and that Lf € C§(M),
[VP.Lf]is bounded on [0,1] x M. So, the proof of [22, (3.1)] implies that

2 P 2 P, p)1/p
=0 /i (P|V fIP)t/p =0 Vi V£

Since by Proposition 2] there exist two constant c1,cs > 0 such that
|PAV P —EIVSP(Xinra)| < [IVFIRP(E > 7R) < cre™2/", ¢ >0,

we conclude that (2) follows from (ZI1)) and 2I0). O
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As an application of (ZI0), the following result provides equivalent semigroup
log-Sobolev/Poincaré inequalities for Theorem [LT[1).

THEOREM 2.4. Fach of the following statements is equivalent to Theorem
[L2(1):
(9) For any T > 0 and f € Cy,(M),

e2KT -1
Ppf?log f* < (Prf?)log Prf? + TPTWJCF-
(10) For any T > 0 and f € Cp(M),
e2KT -1
Prf? < (Prf)*+ TPT|Vf|2'

Proof. According to e.g. [I6, Lemma 3.1], which holds also for the non-
symmetric case, Theorem [[|1) implies the semigroup log-Sobolev inequality
(9). It is well known that the log-Sobolev inequality implies the Poincaré in-
equality. So, (10) follows from (9). Hence, it remains to show that (10) implies
Theorem [[LT(1). Below we shall prove the convexity of 9M and the curvature
condition (L)) respectively.

(a) Let M # 0. For any o € M and non-trivial U € T,0M, we aim to show
that I(U,U) > 0. Let f € Cy°(M) such that N f|par = 0 and Vf(o) = U. Let
Xy =o0 and

7 =inf{t >0:plo, X¢) > 1}.

Since f and f? satisfies the Neumann boundary condition, we have

tATL
Ef(Xonr,) = £(0) + E / Lf(X.)ds,
tATL

Ef*(Xonn) = f2(0) + 2E /

tAT1
(FLF)(X,)ds + 2E / IV £2(X.)ds.
0 0

So,

B (Xinn) ~ {EF(Xinn))? = 2E | U (X — (X0} LF(X)ds

tATL 2 tATY (2'12)
— (E/ Lf(Xs)ds) +2E/ IV F2(Xs)ds.
0 0
Since Lf is bounded on By := {x : p(o,2) < 1}, we have
tAT1 2
(E / Lf(XS)ds) <ct? (2.13)
0
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for some ¢ > 0. Moreover, due to Proposition 2]

P(r <t) < e/t >0 (2.14)

holds for some constants c¢j,co > 0. Thus,

IPLf2(0) — (Pf)?(0) — (B (Xinm) — {EF(Xinr)}?)| = o(f2),
E / T P(X)ds = 1V (o) + / E{|V/2(Xonn) — [V £(0) }ds + (),
’ ’ (2.15)

where and in what follows, o(s) stands for a function of s > 0 such that
lims_,90(s)/s = 0.

Similarly, applying the Ité formula to {f(Xs) — f(0)} Lf(Xs), we obtain (note
that N f|an = 0)

e [ U LX) — F0))LF(X)ds

— off?) + / E[(/(Xonn) — FO)LF(Xonr)]ds
0 (2.16)

:o(t2)+E/O ds/os " LU = FO)LfHX,)dr

{E / ds / ((f — F()NLFH(X,)dl,.

Noting that

106) - 500) = V2 | VI(XL), B 0 dB) + / LP(X)du, w<,

and that

r 2
E sup (/ (Vf(Xu),(I)uodBu)) < cot, t€[0,1]
0

rel0,t]

holds for some constant ¢z > 0, we obtain from ([ZI6]) and (Z6]) that

‘E/o Tl{f(Xs)—f(O)}Lf(Xs)ds < cst?, te[o,1] (2.17)

holds for some constant ¢z > 0. Finally, by Theorem 2:3(1), we have

N
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for small ¢ > 0. Combining this with (ZI2), (ZI3), ZI3) and (ZIT), and
noting that U = V f(0), we conclude that
16¢%/2

3 I(U,U) + o(t¥?). (2.19)

P f?(0) = (Pf)*(0) = 2|V f(0)* +

Finally, (Z1I8)) and (ZI4)) imply that

2Kt71

S PIVS*(0) = 2t[Vf(0)* + ﬁH(U U) +o(t*?)
K t - ﬁ ) .

Since 1¢ < 8, combining this with (10) and (ZIJ) we conclude that I(U,U) > 0.
(b) Let Xg = 0 € M\ OM, we aim to show that Ric—VZ > —K holds on T, M.
Let R > 0 such that B N OM = (). Since I; increases only when X; € OM,
ly = 0 for t < 7. Hence, due to Proposition 1] for any f € Cg°(M),

Pof(0) = (Pf)*(0) = o(t?) + Ef*(Xinry) — (Ef(Xinrs))’
=o(t?) + /O {ELF*(Xsnrn) — 2f(0)ELf(Xonry) s — ( /O ELf(XsATR)?;)QO.)

By the continuity of s — Lf(Xsnrs), we have

2

t
(/ ELf(XsATR)ds) = (Lf)?(0)t* + o(t?). (2.21)
0
Similarly, it is easy to see that
ELf*(Xoprn) = 2f (0)ELf (Xsnrr)

= Lf?*(0) —2f(0)Lf(0) + s{LLf* —2fLLf}(0) + o(s)
= 2|V f|*(0) + 2s{LIV f*(0) + (L)*(0) + 2(Vf,VLf)(0)} + o(s)-

Combining this with [2:20) and 22I)) we obtain

P f?(0) = (Pef)*(0) = 2t|V f1*(0) +t*(LIV f*+2(Vf, VLf)}(0) +0(t?). (2.22)

Finally, by Proposition 2.1l and noting that [, = 0 for s < 75, we have

PV f[*(0) = o(t?) + E[V fI*(Xears) = [V fI*(0) + tLIV f[*(0) + o(2).
Combining this with (10) and ([Z22]), we conclude that

SV (0) ~ (VA VLF)0) 2 ~KIVfl(0), f € Ci=(M).

This completes the proof by the Bochner-Weitzenbock formula. |
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3 PRroor or THEOREM [I]]

By taking p = d,, we have pL = TII(F)é, = J,. So, (3) follows from each
of (2), (7) and (8). Next, (4) follows from (3) by taking F'(Xjo, 1) = f(X7),
and (5) implies (6) by taking p = 2 and p = d,,v = §,. Moreover, it is clear
that (8) follows from (7) while (7) is implied by (2) and (5). So, it suffices to
prove that (1) = (3) = (2),(4) = (1) = (6) = (5) and (6) = (1), where “ ="
stands for “implies”.

(a) (1) = (3). We shall only consider the case where dM is non-empty and
convex. For the case without boundary, the following argument works well by
taking I; = 0 and N = 0. The idea of the proof comes from [27], where elliptic
diffusions on R? were concerned. Let B; be the d-dimensional Brownian motion
on the naturally filtered probability space (€,.%;,P). Let {X; : t > 0} solve
m) with Xo = 0.

Next, let F' be a positive bounded measurable function on M7 such that inf F >
0 and II7(F) = 1. Then

tdms
m¢ = EP(F(X[OVT]HQ,:) and Lt = m 5 te [O,T]
0 s

are square-integrable #;-martingales under P, where Ep is the expectation
taken for the probability measure P. Obviously, we have

me =3 e 0, 7). (3.1)

Since %; is the natural filtration of By, by the martingale representation theo-
rem (cf. [8, Theorem 6.6]), there exists a unique %;-predictable process 3; on
R? such that

Lt:/o (Bs,dBy), tel0,T). (3.2)

Let dQ = F(Xo,1))dP. Since EpF(X[o 1)) = Hg(F) = 1, Q is a probability
measure on . Due to (BJ) and B2 we have

F(X[O T]) =mr = efoT<BS’dBS>_% OT ”55”2(18.
Moreover, by the Girsanov theorem,
_ t
B; := B; —/ Bsds, t€10,T) (3.3)
0

is a d-dimensional Brownian motion under the probability measure Q.
Let Y; solve the SDE

dY; = V2 Px, v, ®; 0 dB; + Z(Y;)dt + N (Y;)dl;, Y=o, (3.4)

where Py, y, is the parallel displacement along the minimal geodesic from X,
to Y; and l; is the local time of Y; on OM. As explained in e.g. [Il Section
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3], we may assume that the minimal geodesic is unique so that P, , is smooth
in xz,y € M. Since, under Q, B; is a d-dimensional Brownian motion, the
distribution of Yjo 7y is IIY.
On the other hand, by (Z2) and (&3], we have
dX, = V2®, 0 dB, + Z(X,) + V2 ®,8,dt + N(X;)dl,. (3.5)
Since for any bounded measurable function G on M7T
EqG(X(0,17) = Ep(FG)(Xj0,17) = 7 (FG),

we conclude that under Q the distribution of Xq 77 coincides with F' Hg. There-
fore,

Wa,. (FIIT TIZ)? < EQPOO(X[O,T]vy[O,T])2 =Eq tg%g’%] p(X1, V3)2 (3.6)
By the convexity of M we have
(N(2),Vp(y, ) (@) = (N(z), Vp(-,y)(x)) <0, x€IM.

Combining this with the It6 formula for (Xy,Y:) given by B4) and (B3), we
obtain from (L)) that

dp(Xs, ) < Kp(Xe, Yi)dt + V2 (@44, V(- Yy) (X4))dt
< (Kp(xe,¥0) + V2|18l )t
see e.g. [I5, Lemmas 2.1 and 2.2]. Since we are using the coupling by par-

allel displacement instead of the mirror reflection, the martingale part here
disappears (cf. Theorem 2 and (2.5) in [9]). Since Xy = Yp, this implies

t 2 2Kt t
e -1
pxe v <@ (VE [ sas) < o= [haas ve

Therefore,

) e2KT_1 T )
E, X, V)2 <~ | EolB.2ds. 3.7
o max (X0 )P < e [ Bollaas (37)

It is clear that
EqllBslI” = Ee (mr|18s1%)
= Ep (||BsI*Es (mr|-Zs)) = Ep(mal|Bsl|?), s €10,T].

Finally, since (3] and (B2) yield
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d(m); = mid(L); = m7|| B/ *dt,
we have
d
dmt 10gmt = (1 + logmt)dmt + <m>t
2mt
m
= (1 + logmy)dm, + TtHﬁtHth'

As my is a P-martingale, combining this with (3.8)) we obtain

T
/ Eg||8s|1?ds = 2EpF (X0, 77) log F(X[o,1)- (3.9)
0

Therefore, (L)) follows from &8), (B7) and B.3).
(b) (3) = (2). By (3), for each 2 € M, there exists

F T T
T € %(Wﬂx,ﬂx)

such that

2 F F
2 < 2 (o2KT _ T (3.
/MTxMT Poc (7, 1) Tz (dy,dn) < K(e DIL, (Hg(F) log Hg(F)) (3.10)

If x — 7,(G) is measurable for bounded continuous functions G on M* x M7,
then

= / T (de) € %(FHg,HgT)
M F

is well defined and by BI0)

F
2 dr < 2KT71/HT. Fl d
/MTxMTpoo T< 2(e ) [ 12 (Flog g utao)

< E(eQKT — DI (Flog F).

o | o

This implies the inequality in (2).
To confirm the measurability of x + 7, we first consider discrete p, i.e. u =
>0 endy, for some {z,} C M and e, > 0 with Y | &, = 1. In this case

o0
Ty = Z Y=} T, p-a.e.

n=1

which is measurable in 2 and 7 = Y- | uh({zn})m,, . Hence, the inequality
in (2) holds. Then, for general u, the desired inequality can be derived by
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approximating p with discrete distributions in a standard way, see (b) in the
proof of [6, Theorem 4.1].

(c) (4) = (1). According to [12] Section 7] (see also [4, Section 4.1]), by first
applying the transportation-cost inequality in (3) to 1 — e + ¢f in place of f,
then letting ¢ — 0, we obtain the Poincaré inequality

2KT

L PIVIP (P e CHN.T 0. (311)

Thus, the proof is finished by Theorem [2.4]
(d) (1) = (6). Let X; solve (22) with X; = « and Y; solve

Prf? <

dY; = V2 Px, v, ®; 0 dB; + Z(Y;)dt — N(Y;)dly, Yo = v, (3.12)
where [; is the local time of ¥; on M. Since OM is convex and (T holds, as
explained in (a), we have

Thus, peo(X.,Y.) < efTp(x,y). This implies (6).
(e) (6) = (5). By (6), for any x,y € M, there exists 7., € €(II,II}) such
that

/MT - phodmyy < e p(z, y)P.
X

As explained in (b), we assume that p and v are discrete, so that for any
70 € (u,v), Tz, has a 7%-version measurable in (z,y). Thus,

= / ’/Tmyy’/TO(dlL',dy) € %(HE;HZ)
MxM

satisfies
/ phodm < T / p(z,y)Pr’ (d, dy).
MTxMT M x M

This implies the desired inequality in (5).
(f) (6) = (1). Let T' > 0 be fixed. For any z,y € M, let mp, €
€ (Pr(x,-), Pr(y,-)) be the optimal coupling for W> ,, i.e.

WQ,p(PT(xa ')7 PT (y7 ))2 = / deﬂ-m,y' (313)
M x M
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Then for any f € CZ(M), (6) implies

T,y (dz1, d2g)

|Prf(x) = Pri(y)l _ / [f(z1) = f(z2)] p(21,22)
M x M

p($, y) o p(zl7 29) p(m, y)
Wap(Pra ) Prlp)) ([ (G0 = FC)? o g1
= p(x,y) {/MxM p(217Z2)2 :C,y(d 1,d 2)}
wf [ Ut 1
<e {/MXM 9(21722)2 Wz,y(d 1,d 2)} .

(3.14)
Noting that f € CZ(M) implies

£ (21) = f(z2)” < plz1, 22)° [V I (21) + ep(21, 22)°
for some constant ¢ > 0, by (6) and BI3) we obtain
_ 2
[ MEIETCI ade) < PrIVIRG) + T plon ).

Therefore, letting y — x in ([B.I4]) we arrive at

\VPrf(z)| < 5T (Pr|VfI*(z))" /2.

By a standard argument of Bakry and Emery, this implies the Poincaré in-
equality (BIT)). Thus, (1) holds according to Theorem 241

4 THE CASE WITH A DIFFUSION COEFFICIENT

Let ¢ > 0 be a smooth function on M, and let Hz’w be the distribution of
the (reflecting if M = () diffusion process generated by Ly, := 1*(A + Z) on
time interval [0, T'] with initial distribution p, and let Hf’w = H(;me forz € M.
Moreover, for F' > 0 with Hﬁw(F) =0, let

iy (da) = T2 (F)pu(de).

THEOREM 4.1. Assume that OM s either empty or convex and let [I1]) hold.
Let o) € Cp°(M) be strictly positive. Let

Ky = KM0l% + 2012« IVY o ¢l + (d = DIV
Then

W, (FIIL TGy )2 < 2C(T, )T, (Flog F),

R0
pePM), F>0, I ,(F) =1
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holds for

2K, T _

1
C(T,9) = jnf { (14 Ry |2 ———

2K T
g €t —1
oo 20+ BIVY ]}

Ky

Proof. As explained in (a) of the proof of Theorem [[T], we shall only consider
the case that OM is non-empty and convex. According to the proof of “(3) =
(2)”, it suffices to prove for pu = d,,0 € M. In this case the desired inequality
reduces to

Wa . (FHZw, ng) < 20(T,¢)H£w(F logF), F> O,HOT,w(F) =1. (4.1)

Since the diffusion coefficient is non-constant, it is convenient to adopt the
Ito differential d; for the Girsanov transformation. So, the reflecting diffusion
process generated by Ly, := ¥?(A + Z) can be constructed by solving the Ito
SDE

d; X; = \/Ew(Xt)(btdBt + 3 X) Z(Xy)dt 4+ N (Xy)dly, (4.2)

where Xg = o and B; is th~e d-dimensional Brownian motion with natural
filtration .%;. Let B;,Q and B; be fixed in the proof of Theorem [[L1l Then

dr Xy = V29(X0)0edBy + {¥?(X0) Z(Xy) + V20(X1) DBy bt + N(Xy)dly.
(4.3)
Let Y; solve

d;Y: = V20(Y;)Px, v, ®:dB; + V*(Y) Z(Y;)dt + N(Y;)dl;, Yo =o, (4.4)

where I; is the local time of ¥; on M. As in (a) of the proof of Theorem [L]
under Q, the distributions of Y|y 7 and X|g 7} are HZ » and F HZ » respectively.
So,

Wa .. (FHoT,wv H0T,¢)2 < Eq tg[léﬂé] p(Xt, Y;:)Q- (4.5)

Noting that due to the convexity of OM

<N($)an(y7 )(I)) = <N($)an(ay)($)> <0, ze é)M,
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by (@3), (£4) and the It6 formula, we obtain

dp(X1,Ys) < V2 {(Xe)(Va(-, Yi) (X:), ®:dBy)
+ 1/1(3/%)<VP(X:57 )(Y;f)v PXt,Ytq)tdBt>}

d—1
+{ D U2p(Xe Yi) + (W(X)PZ(X0) + VEU(X)1, V(- Vi) (X0))

OV Z(Y0), V(X ) (Vo)) f,
(4.6)

where {U;}9=} are vector fields on M x M such that VU;(X;,Y;) = 0 and

Us(Xe,Ye) = 0(Xe)Vi + (Yo P, v, Vi, 1<i<d—1

for {V;}¢_, an OBN of Tx, M with Vy = Vp(-, Y3)(X}).

In order to calculate U2p(Xy,Y;), we adopt the second variational formula for
the distance. Let p; = p(Xy,Y;) and let {J;}¢=! be Jacobi fields along the
minimal geodesic v : [0, pt] = M from X; to Y; such that J;(0) = ¢(X;)V; and
Ji(pr) = (Y1) Px, v, Vi, 1 <i < d—1. Note that the existence of v is ensured
by the convexity of M. Then, by the second variational formula and noting
that VU;(X¢,Y:) = 0, we have

I *ZUQ Xt’}ft Z/ {|V J|2 z) 177>}( )d S, (47)

where Z is the curvature tensor. Let

S — S .
Ji(s) = (Ew(}/t) + 2 w(Xt)>P'y(O),7(s)‘/i7 1<i<d-1.

t

We have J;(0) = J;(0) and Ji(p;) = Ji(p¢),1 <i < i — 1. By the index lemma,

I's Z/ {Iv4 Jil* = (%% 7jz)jz,’}/>}(5)d8

< (@ =1)|VVp - / " LBV + (o1 — )X Y Ric(3(s), 4(s)) ds.

DOCUMENTA MATHEMATICA 18 (2013) 297-322



TRANSPORTATION-COST INEQUALITIES . .. 315

Moreover,

VXX, Vol YO(X0) + 000 Z00), T p(Xe, )40
= [T 000+ (= )X 25D, 39 s
0

Pt ds

= L7 (50 + (o1 — (X)) H(V5.2) 07,4} (s)ds
Pt 02 N (4'9)
+ % [M12 0 A6 — 0D () + (o - 90(X0) s,

< [ " (59(%) + (pr — )0(X0))(V4.2) 07,4 (s)ds
Py Jo

+2[Z o9l ool Vbl oops-

Finally, we have

(Vp(Xe, ) (), P v @edBe) = (Pyx, Vp(Xe, (), Bud ) =
= —(Vp(-, Yi)(Xs), & By).

Combining this with (Z6), (1), [@J) and @I), we arrive at

dp(X1, Y3) <V2 (0(Xe) = (Y))(Vp(-, Vi) (Xe), ®:dBy)
+ Ky p(Xe, Yo)dt + V2 |9 o Bl

Then

My =2 / e (B(X,) — (Y1) (V- Vo) (X.), BudB)

is a Q-martingale such that

t
p(Xt,n)geKthﬁﬂeKwt/e*KwS||¢||OO||5s||ds, te0,7]. (4.10)
0

So, by the Doob inequality we obtain
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hy :=E X,,Y,)?
: erél[%?%]p( )

< (14 R)e* v'Eq max M?2ds
s€[0,¢]

t 2
2l R ([ o as)
0

e2K,pt -1 t
<AL+ R BME + (14 R IE S [ EolA.|ds
P 0

t
g4(1+R)||w||§oe2Kwt/ e 2Kush ds
0

B Q2KyT _ 1 [t
H R [ Bolaas
¥ 0

—2Kus is decreasing in s while h, is increasing in s, by

for any R > 0. Since e
the FKG inequality we have

t 1 [t t 1—e 2Kut rt
/ e—2KwshSdS S <_/ e—QKSdS) / hsds — 7/ hSdS.
0 t Jo 0 2Kyt 0

Therefore,
2K,T _ g Q2KyT _q gt
< 2 € . 1 -1 2 / E X 2
<204 RIVeLE et [has @ RO [ Bolalas
holds for ¢t € [0, T1]. Since ho = 0, this implies that

E X, V)2 =h
th%&)%]l’( Y1) T

. ) eQKil’T 1 ) eQKwT -1 T )
< (1 RO e exp [20 + RIVUIE ] [ Bolla.IPds
¥ ¥ 0

Combining this with the (£3) and ([39), we complete the proof. O
THEOREM 4.2. In the situation of Theorem [{.1],
Wap (I, 107 ) < 20wt IVEIEOT YW, (4, v),  pv € 2(M),T > 0.

Proof. As explained in the proof of “(6) = (5)”, we only consider u = ¢, and
v =0d,. Let X; solve [2) with X, = z, and let Y; solve, instead of (7)),

1Y, = V29(Y,) Px, v, ®:dB, + 4> () Z(Vi)dt + N(Y,)dly, Yo =y.
Then, repeating the proof of Theorem 1] we have, instead of (Z10),
p(X1,Ys) < e®vH(My + p(m,y)), t>0 (4.11)
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for
M= V2 [ () — DY) (Vo V) (X.). B L)
So,

t
B0 i) < O plan)? + 2ITUIL [ B X, Vs
0
which implies
Ep(X,,Y;)? < X Ev VeIt oy 42,
Combining this with (ZII)) and the Doob inequality, we arrive at

Wa oo (U7 10 )* S E max p(X;, ¥)? < *TE max (M, + p(x,y))’

< 4P TE(Myp + pla,y))? = 42T (EMG + p(z, y)?)

T

_ g 2KuT <p(x,y)2 +2|‘V¢Hgo/ e_2Kthp(Xt,Yt)2dt)
0

< 4e2(Kw+|lv’¢'Hio)Tp($7y)2'

This implies the desired inequality for @ = 6, and v = 6. O

5 EXTENSIONS TO NON-CONVEX MANIFOLDS

As explained in the end of Section 1, combining Theorem Tl with a proper con-
formal change of metric, we are able to establish the following transportation-
cost inequality on a class of manifolds with non-convex boundary.

THEOREM 5.1. Let OM # () with T > —o for some constant o > 0, and
let (1) hold for some K € R. Then for any f € C°(M) with f > 1 and
Nlog flom > o, and for any p € P (M),

Wa,p (FIL T00)? < 2| f|[2.e(T, )IL (Flog F), F > 0,1 (F) =1
holds for

2kpT _ T—l

e 1 e2rs
exp 201+ R)|[Vf|%———
Kf

c(T,f)zlig;fo{(HR—l) H

kf

where

kg = 5l fllocllVF sl Zlloo + {3d = 5+ (d = 3) T IV F 112 + I(E 2 = FAF) oo

In particular,

Wa,p. (FTI5, 115)? < 2| f2.e(T, /)G (Flog F), o€ M,F > 0,11, (F) = 1.
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Proof. Let f € Cp°(M) such that f > 1. Since I > —o and Nlog flan > o,
by [21, Lemma 2.1] the boundary OM is convex under the new metric

() '>I = f_2<'a )
Let A" and V' be induced by the new metric. Then (see formula (2.2) in [14])

-2
L=f2A+72), ZU:jQZ4—i5—Vf?

Let Ric’ be the Ricci curvature induced by the new metric, we have (cf. formula
(3.2) in [6])

Ric’ = Ric + (d — 2)f *Hess; + (f *Af — (d — 3)|Vlog f[*)(-,-). (5.1)
Since the Levi-Civita connection induced by (-,-)’ satisfies (cf. [3, Theorem
1.59(a)])

ViV =VyV — (U, Viog f)V — (V,Vlog /YU + (U, V)Vlog f, UV €TM,

we have

(Vo2 VY = F2{(V02'.U) (2. V log UL}

=2(U,Viog fI{Z,U) +(VyZ,U) + %HessJu(U, U)
{2,V Iog U ~ 52 (Vlog 12, Vlog U

< (VuZ,U) + 3V log |- |Z][UP + (d — 2)f~Hess; (U,0).

Combining this with (51I), we obtain
Rid (U, U) — (Vy Z',U)

Ric(U,U) = (VuZ,U) + {f 'Af — (d = 3)|Vlog f| = 3|Z| - |V log f|}|U?

>
> _K'(U,UY, UeTM,

where

K':pr{KfQ*fAer(d*3)|Vf|2+3IZ|f|Vf|}- (5.2)

Noting that f > 1, we have

V(2,20 = fUFPZ + (d = 2) [V < | fllssll Z )0 + (d = 2) [V £ e,
VIV LV Y = IV < IV o
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Letting K, be defined in Theorem [L1] for the manifold (M, (-,-)') and L =
P2(A' + Z') with ¢ = f~=1, we deduce from f > 1, (E2) and (53) that

Kw S Rf.
Therefore, C(T,v) < ¢(T, f) and thus, Theorem ] implies

Wapr (FIL, T )* < 2¢(T, I (Flog ), F > 0,IG(F) =1,

where p_ is the uniform distance on M7 induced by the metric (-,-)’. The
proof is completed by noting that poo < || f|lccpl- O

Similarly, since Ky < xy and

P <o < fllops
the following result from Theorem by taking 1 = f~1.

THEOREM 5.2. In the situation of Theorem [51]

—112
Wa,p (IT0 TIE) < 2 flloce™ TV IITW, L (p,v),  pv € 2(M), T > 0.

o

As a consequence of Theorems [l and 5.2, we present below an explicit
transportation-cost inequalities for a class of non-convex manifolds.

COROLLARY 5.3. Assume that (L) holds for some K > 0 and the injectivity
radius gy of OM s strictly positive. Let o > 0 and ~y,k,> 0 be such that
—0 <I <+ and Sectp; < k. Let

0 < r < min {'gM —— arcsin <7\/E )}
in < igar, 1 .
\/E VE+ 2

(i) The transportation-cost inequality

29T_1

0

4(e®T — 1)
0

W2 pee (FH;{’H;{E)Q < (2+ rda)Qe exp [ }HZ(FlogF)

holds for all p € P (M) and F > 0 with IIT(F) = 1, where

r2d2o2 ) do d? rda)

+7(3de>+(d43)++3)02+5|\Z||000(1+T

9:K<1+rda+

In particular,

20T 4(629T _ 1) .
g oxp [ 7 }HO (Flog F)

Wo, (FIIT TIT)? < (2 + rdo)?S
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holds for all F > 0 with Hg(F) =1.
(ii) For any T >0 and p,v € P (M),

W, (I TI) < (2 + ard)e(9+”2)TWg7p(p,y).

o

Proof. Let

h(s) = cos (\/Es) - %sin (\/Es), s>0.

Then h is the unique solution to the equation

W'+ kh=0, h(0)=1,10)=—n.

Up to an approximation argument presented in the proof of [20, Theorem 1.1],
we may apply Theorem [B.1] to

[ =1+0popom,

where pg is the Riemannian distance to M, which is smooth on {pars < isns},
and

a= - [ “(h(s) — hr)*ds,

1 S T
o(o) =+ [ ()~ ) ar [ (hw) - by du, >0
@ Jo tAT
We have ¢(0) = 1,0 < ¢/ < ¢'(0) = 1. Moreover, as observed in [20, Proof of
Theorem 1.1],

a>= (7’)<ﬁ<ﬂ Apopo > —L > 1
=g PV =5y = fverm =T =
So,
rdo od

Iflloe <1+ 00(r) <1+ == Vil <¢'(0) =0, Af === (54)

Noting that (recall that K > 0)

21252
sup(KfQ)gK(lJrrdoJrr 0),

from (4] we conclude that k5 < 6. So, (i) follows from (L) and BTl for R =1,
and (ii) follows from Theorem E2] and (5.4)). O
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