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Abstract. We note that open moduli spaces of sheaves over lo-
cal Calabi-Yau surface geometries framed along the divisor at infinity
admit symmetric perfect obstruction theories. We calculate the corre-
sponding Donaldson-Thomas weighted Euler characteristics (as well
as the topological Euler characteristics). Furthermore, for blowup
geometries, we discuss the contribution of exceptional curves.
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1 Introduction

Moduli spaces of sheaves over threefolds admit virtual fundamental classes in a
lot of examples, yielding Donaldson-Thomas invariants [T]. The rank 1 case is
particularly interesting, bearing connections with virtual curve counts [MNOP].

In this note, we study open moduli spaces of higher rank sheaves over local
Calabi-Yau surface geometries, framed along the divisor at infinity. We prove
that the moduli spaces admit symmetric perfect obstruction theories, and in
this context, we compute the ensuing Donaldson-Thomas Euler characteristics.
In addition, we find the topological Euler characteristics of the compactified
moduli spaces of framed modules. We also discuss a “blowup” formula. Fi-
nally, we point out other geometries which can be studied by the same methods.

This way, we extend previously known results in two directions 1.

1The search for such generalizations motivated our interest this topic.
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(i) First, there is quite a bit of literature on moduli spaces of framed sheaves
over surfaces. An exhaustive survey is not our intention here, but we
refer the reader to [BPT], [N] for calculations which we partially carry
out in the higher dimensional setting, and also for a more comprehensive
bibliography.

(ii) Second, as suggested above, we partially generalize to higher rank re-
sults about the Hilbert scheme of points over threefolds. For these, the
Donaldson-Thomas Euler characteristics, in the form needed here, were
calculated in [BF].

2 Framed sheaves over local Calabi-Yau surface geometries

We now detail the discussion. Let S be a smooth complex projective surface,
and let X◦ denote the total space of the canonical bundle KS → S. We are
concerned with moduli spaces of sheaves over the open Calabi-Yau threefold
X◦. The noncompact geometry does not allow for a good moduli space of
semistable sheaves. Instead, we will consider the compact threefold

π : X = P(KS +OS) → S.

This comes equipped with two divisors

S∞ = P(KS + 0) and S0 = P(0 +OS)

corresponding to the summands KS and OS . Clearly,

X \ S∞ = X◦.

We form the moduli space Mn of semistable framed modules (E, φ) of rank r

with
c1(E) = c2(E) = 0, χ(F ) = N := rχ(OS)− n,

with a non-zero framing over S∞:

φ : E → OS∞
⊗ C

r.

The moduli space Mn was constructed in [HL]. Semistability was defined with
respect to a polynomial δ of degree ≤ 2 with positive leading coefficient, as well
as an ample divisor H on X . We will pick

H = π⋆H0 + ǫc1(OP(1)),

for an ample divisor H0 on S and a sufficiently small rational ǫ > 0. By
definition, (E, φ) is semistable provided that

(i) for all proper subsheaves F of E, the Hilbert polynomials satisfy

PF − δ ≤
rkF

rkE
(PE − δ);
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(ii) if F is contained in the kernel of φ, then

PF ≤
rkF

rkE
(PE − δ).

Semistable framed modules admit Harder-Narasimhan filtrations, yielding
the notion of S-equivalence. There is a projective moduli space Mn of S-
equivalence classes of framed modules, cf. [HL].

We will consider the open subset

M
◦
n →֒ Mn

corresponding to what are called framed sheaves in [L], [N]. These are stable
framed modules (E, φ) such that

(iii) E is torsion free, locally free near S∞, and φ is an isomorphism along
S∞.

Over curves and certain surfaces and for special framings, the stability condi-
tions (i) and (ii) are automatic for the framed sheaves of (iii), cf. [BM], but for
threefolds stability is not yet known to follow on general grounds.

Example We describe the moduli space in perhaps the simplest example, that
of the Hilbert polynomial

PE = POX
− ℓ.

Intuitively, in this case we should get the Hilbert scheme of points. This is not
entirely obvious because framed modules are not required to be torsion free and
because of the stability condition. The exact description will be determined by
comparing δ to the polynomial

∆ = χ(mH |S∞
) =

m2H2
0

2
+ l.o.t.

To avoid strictly semistables, we assume that ∆ − δ is not a constant a with
0 ≤ a ≤ ℓ.

The sheaves E in the moduli space have rank 1 and can be written in the form

0 → T → E → E◦ → 0

where T is torsion and E◦ is torsion free. In fact,

E◦ = IZ ⊗ L

for some line bundle L → X , and some subscheme Z of dimension at most 1.
Now, by stability, or using Lemma 1.2 of [HL], the kernel K of the restricted
framing

φ∞ : T → OS∞
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must satisfy

pK ≤ 0 =⇒ K = 0.

Therefore φ∞ gives an inclusion of the torsion module T into the framing OS∞
,

showing that

T = 0 or T = i⋆(IW ⊗M),

for some line bundle M over i : S∞ → X , and a subscheme W ⊂ S∞ of
dimension zero.

In the first case, since c1(E) = c2(E) = 0, we must have c1(L) = 0 and Z is
zero dimensional. We claim that L = OX . Indeed, L restricts trivially to the
fibers of X → S, hence it must be a pullback

L = π⋆N

of a degree zero line bundle N on S. The framing condition implies that there
must exist a nonzero morphism N → OS , hence N must be trivial. Therefore,
up to isomorphisms, the only framed modules are

(E, ι) : IZ → OS∞

for zero dimensional subschemes Z of length ℓ. We analyze semistability. The
kernel of ι takes the form IU (−S∞) for some zero dimensional scheme U . Thus,
we must have

χ(IU (mH − S∞)) ≤ χ(mH)− ℓ− δ ⇐⇒ ℓ− ℓ(U) ≤ ∆− δ.

If ∆ − δ has negative leading term, the inequality cannot be satisfied. If
∆ − δ has positive leading term, then the inequality is automatic and sta-
bility follows. Hence, the moduli space is either empty, or isomorphic to X [ℓ]. 2

We claim the second case cannot occur under our assumptions. If it did, then

0 → i⋆(IW ⊗M) → E → L⊗ IZ → 0.

Calculating the Chern class c1(E) = 0, we find

L = O(−S∞)⊗ π⋆N,

for some degree 0 line bundle N overs S. Therefore

0 → i⋆(IW ⊗M) → E → IZ(−S∞)⊗ π⋆N → 0, φ : E → OS∞
.

2We also remark here that if ∆ − δ = a for some a ∈ {0, . . . , ℓ}, then there are strictly
semistable framed modules. Indeed, pairs of subschemes Z◦ of X◦ and Z∞ of S∞ with
ℓ(Z∞) = a yield the strictly semistable framed modules (IZ◦ (−S∞), 0)⊕ (i⋆IZ∞/S∞

, ι).
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We already argued above that the restriction φ∞ of φ to the torsion module
i⋆(IW ⊗ M) must be injective. Since φ∞ 6= 0, there must exist a non-zero
morphism M → OS , hence M∨ must be effective. Since c2(E) = 0, we have

ι⋆c1(M) = [Z].

Therefore, M is trivial and Z is of dimension zero. The Hilbert polynomial
gives

ℓ(Z) + ℓ(W ) = ℓ.

Furthermore, up to scalars, φ∞ must be the natural inclusion. Semistability
implies that

Pi⋆IW − δ ≤ 0 =⇒ ∆− δ ≤ ℓ(W ).

Since φ∞ is the natural inclusion, the image of φ in OS∞
must be the ideal

sheaf IU of a scheme U ⊂ W . Let K be the kernel of φ. We have

PK = PE − Pi⋆IU = PE − (∆− ℓ(U)).

Semistability implies

PK ≤ PE − δ =⇒ ∆− δ ≥ ℓ(U).

Therefore, we conclude that
∆− δ = a

for some constant a such that

ℓ(W ) ≥ a ≥ ℓ(U).

In particular 0 ≤ a ≤ ℓ which contradicts our assumption.

To summarize, when ∆ − δ is not equal to a constant between 0 and ℓ, we
obtain the following description of the moduli space:

(a) if (the leading term of) ∆− δ < 0, then we get ∅;

(b) if (the leading term of) ∆− δ > 0, then the moduli space is the Hilbert
scheme X [ℓ].

3 Obstruction theory

We note now that the obstruction theory of framed sheaves is symmetric. To
this end, we assume that δ is good, i.e. it satisfies the following conditions:

• if deg δ = 0, then δ > (r − 1)n;

• if deg δ = 2, the quadratic term of δ is sufficiently small compared to that
of ∆.
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In particular, any δ of degree 1 is good for all n.

Theorem 1. When δ is good, the moduli space M
◦
n admits a symmetric perfect

obstruction theory at the stable points (E, φ).

Proof. The deformation theory of stable framed sheaves was worked out in
[HL], [S]. Write

(E ,Φ) → M
◦
n ×X

for the universal family, which exists by [HL], and let p and q be the natural
projections. The complex

F = Rp⋆RHom(E(−S∞), E ⊗ q⋆KX)[2]

is an obstruction theory over M◦
n. The obstruction theory is symmetric in the

sense that there is a symmetric isomorphism

F → F
∨[1].

This is a consequence of Grothendieck duality and of the the crucial observation
that

KX = O(−2S∞).

The calculation of the canonical bundle standardly follows from the Euler
sequence of the projective bundle X .

The obstruction theory is perfect with amplitude contained in [−1, 0]. Indeed,
the amplitude is clearly contained in [−2, 1]. By symmetry, it suffices to explain
that the degree −2 term is zero. In turn, this is implied by the vanishing

Hom(E,E(−S∞)) = 0

which holds for all sheaves E in M
◦
n. Indeed, assuming there is a non-zero

morphism
E → E(−S∞),

we let K and I denote its kernel and image, and write rK and rI for their
ranks. We have rI > 0. By stability

PK − δ ≤
rK

r
(PE − δ), PI(S∞) − δ ≤

rI

r
(PE − δ).

Considering the quadratic terms of these inequalities, we obtain

c1(K) ·H2 ≤ δ0

(
1−

rK

r

)
, c1(I) ·H

2 + rIS∞ ·H2 ≤ δ0

(
1−

rI

r

)
,

where δ0 is half the leading term of δ. We also have

c1(K) + c1(I) = 0.

Adding, we obtain
rIS∞ ·H2 ≤ δ0

which is impossible when the leading term δ0 < S∞ · H2 is sufficiently small.
This completes the proof.
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Example We determine the obstruction theory for the previous example. We
consider case (b) corresponding to ∆− δ > 0, ∆− δ does not equal a constant
a with 0 ≤ a ≤ ℓ. The tangent space at the ideal sheaf IZ was found in [HL]
to be

TZM = Ext1(IZ , [IZ → OS∞
]).

This can be calculated from the exact triangle

[IZ → OS∞
] → [OX → OS∞

] ∼= O(−S∞) → OZ .

We have

Ext0(IZ ,OX(−S∞)) = Ext3(OX , IZ(−S∞))∨ = H3(IZ(−S∞))∨

= H3(OX(−S∞))∨ = 0,

and similarly for Ext1. From the exact triangle, we obtain

0 → Ext0(IZ ,OZ) ∼= TZX
[ℓ] → TZM → 0.

In particular, this agrees with the identification

M ∼= X [ℓ].

Thus, by symmetry, the obstruction theory of M coincides with the usual
obstruction theory for the Hilbert scheme only along the open part (X◦)[ℓ].

4 Calculations

Symmetric perfect obstruction theories have associated Behrend functions [B].
In particular, the open moduli space

M
◦
n →֒ Mn

is endowed with a constructible function

ν : M◦
n → Z.

We will calculate the Donaldson-Thomas weighted Euler characteristic

χ̃(M◦
n) =

∑

k

kχ(ν−1(k)).

Since the obstruction theory is not perfect symmetric over the boundary,
these weighted Euler characteristics do not calculate intersection theoretic
Donaldson-Thomas invariants of Mn.
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4.1 Virtual localization

Our computation is via equivariant localization. The following result was
proved in [BF] for torus actions with isolated fixed points, and in [LQ] in
arbitrary generality. Let M be a moduli space admitting a C

⋆-action compat-
ible with the symmetric perfect obstruction theory. Then the fixed point set
M

C
⋆

also inherits a symmetric perfect obstruction theory. Furthermore, the
Behrend functions of M and M

C
⋆

at torus fixed points p are related by

νM(p) = (−1)ǫpνMC⋆ (p),

where ǫp is given by the difference in the dimension of the Zariski tangent
spaces

ǫp = dimTpM− dimTpM
C

⋆

.

This observation is used in [LQ] as follows. The torus acts on the subscheme

{p ∈ M \MC
⋆

: νM(p) = k}

with no fixed points, hence its Euler characteristic must be zero, cf. [LY].
Therefore,

χ({p ∈ M : νM(p) = k}) = χ({p ∈ M
C

⋆

: νM(p) = k})

yielding

χ̃(M) =
∑

k

kχ({p ∈ M
C

⋆

: νMC⋆ (p) = k(−1)ǫp}).

We will apply these remarks to the action of C⋆ on Mn induced by the scaling
action in the fibers of the projective bundle X → S and the scaling action on
the framing coming from a generic embedding

C
⋆ →֒ GLr.

We will find the torus fixed points in Mn.

Lemma 2. Assume δ is good. The C
⋆-fixed framed modules in Mn take the

form

E =

r⊕

i=1

IZi

where Zi are zero dimensional subschemes of X invariant under the action of
the torus, of total length n. The framing φ is the natural composition E →֒
Or

X → Or
S∞

.

Proof. We first prove that all invariant framed modules are torsion free. Indeed,
the torsion module T of E is C⋆-fixed. By stability, the framing φ gives a C

⋆-
invariant injection

φ∞ : T →֒ OS∞
⊗ C

r.
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Therefore, the torsion module splits

T = ⊕ℓ
j=1i⋆(IWj

⊗Mj),

for zero dimensional subschemesWj of S∞ and line bundlesMj over S∞. Again
by stability applied to the torsion submodule T we find

pT − δ ≤ 0 =⇒ ℓ ·H2 · S∞ ≤ δ0

where δ0 is half the quadratic coefficient of δ. By assumption, we may take
δ0 < H2 · S∞, implying that ℓ = 0 and showing that the torsion module
vanishes.

Now, since E is torsion free and C
⋆-invariant, the argument of [BPT] shows

that
E = ⊕r

i=1IZi
⊗ Li

where Li are line bundles over X and Zi are subschemes of dimension at most
1. The subschemes Zi must be torus invariant. Since c1(E) = c2(E) = 0, we
find ∑

c1(Li) = 0 (1)

and furthermore
r∑

i=1

c1(Li)
2 = 2

r∑

i=1

[Zi]. (2)

Since the framed module (E, φ) is semistable, for all submodules F of E of
positive rank we must have

c1(F ) ·H2 − δ0

rk F
≤

c1(E) ·H2 − δ0

rk E
.

Taking F = IZi
⊗ Li we find

c1(Li) ·H
2 ≤ δ0

(
1−

1

r

)
.

Now, since δ0 is sufficiently small compared to the denominator of the rational
divisor H , we conclude

c1(Li) ·H
2 ≤ 0.

In fact, c1(Li) ·H
2 = 0 for all i, because of (1). We argue that Li are trivial

and Zi are zero dimensional.

Write
c1(Li) = π⋆Di + diζ,

where Di are divisors on the surface S and ζ = c1(OP(1)). We calculate

∑

i

c1(Li)
2 = π⋆

(
∑

i

D2
i

)
+ 2

∑

i

di (π
⋆Di · ζ) + (

∑

i

d2i )ζ
2 = 2

∑

i

[Zi], (3)
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Set

M = 2
∑

i

diDi −

(
∑

i

d2i

)
KS .

Using
ζ2 +KS · ζ = 0,

we conclude from (3) that

π⋆

(
∑

i

D2
i

)
+ π⋆M · ζ = 2

∑

i

[Zi]. (4)

Pushing (4) forward under π we find

M = 2
∑

i

π⋆[Zi].

As a consequence, M is effective. The requirement that the slopes of Li are
trivial translates into the condition

(π⋆Di + diζ)(π
⋆H0 + ǫζ)2 = 0

which rewrites as
(Di − diKS) · Σ = −di

where

Σ =
ǫ(2H0 − ǫKS)

H2
0

is an ample rational curve class on S for small ǫ. Write

Fi = Di − diKS

so that
Fi · Σ = −di.

Since
M = 2

∑

i

diFi + (
∑

i

d2i )KS

is effective, its intersection with Σ must be positive. This gives

−2
∑

i

d2i + (
∑

i

d2i )KS · Σ ≥ 0.

For small ǫ we have KS · Σ < 2. We conclude from here that di = 0 for all i.
Therefore M = 0, and by (4) we must have

π⋆

(
∑

i

D2
i

)
= 2

∑

i

[Zi]
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is effective. Note that the left hand side is supported on fibers. Therefore,

∑

i

D2
i ≥ 0. (5)

We moreover proved

Fi · Σ = 0 =⇒ Di · Σ = 0.

Since Σ is ample, by Hodge index theorem we have

D2
i ≤ 0,

with equality only if Di is numerically equivalent to 0. In fact equality must
occur because of (5). This yields c1(Li) = 0. In turn,

Li = π⋆Ni

for some line bundles Ni → S of first Chern class 0. Furthermore, from (3) we
find [Zi] = 0 hence Zi must be zero dimensional.

Thus

E = ⊕r
i=1IZi

⊗ π⋆Ni,

where ∑
ℓ(Zi) = n.

Clearly, Zi must be torus invariant and φ = ⊕φi where

φi : IZi
⊗ π⋆Ni → OS∞

.

We next claim that φi 6= 0 for all i. Indeed, if φi = 0 for some i, then IZi
⊗π⋆Ni

is in the kernel of φ, yielding by stability

χ(IZi
(mH)⊗ π⋆Ni) ≤

1

r




∑

j

χ(IZj
(mH)⊗ π⋆Nj)− δ



 .

This gives

n ≥ ℓ(Zi) ≥
n

r
+

δ

r
.

This is a contradiction since δ > (r − 1)n. Therefore φi 6= 0, showing that
there exists a non-zero morphism Ni → OS . Therefore Ni must be trivial,
completing the proof.

Over the open moduli space M◦
n, the same result holds without any restrictions

on δ:
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Lemma 2A. The C
⋆-fixed framed sheaves E in M

◦
n must split

E =

r⊕

i=1

IZi

where Zi are zero dimensional subschemes of X◦ invariant under the action of
the torus, of total length n.

Proof. By assumption E is torsion free, hence

E = ⊕r
i=1IZi

⊗ Li.

Since the framing is an isomorphism, we conclude Zi is contained in X◦ and
Li is trivial on S∞. Hence,

Li = O(diS0)

for some integers di. We claim that di = 0 for all i. This in turn implies that
Zi are zero dimensional by using c2(E) = 0.

Assume first that the quadratic term of δ is sufficiently small. This case is
already covered by Lemma 2, but a simpler argument is possible over M◦

n; we
record it here for future reference. Indeed, the stability condition applied to
Li ⊗ IZi

gives

diS0 ·H
2 = c1(Li) ·H

2 ≤ δ0

(
1−

1

r

)
=⇒ di ≤ 0.

Since c1(E) = 0, we have
∑

i di = 0. Hence di = 0 for all i, as claimed.

We now give the general argument. Using that c1(E) = c2(E) = 0, we find

(
∑

i

d2i )S
2
0 = 2

∑

i

[Zi]. (6)

Assume not all di are equal to 0. Since the Zi’s are torus invariant and disjoint
from S∞, their cohomology classes are supported on the surface S0. Using that

S2
0 = (K2

S)f + ζ · π⋆KS ,

from equation (6) we find K2
S = 0. From here, pushing forward under π, we

conclude
(
∑

i

d2i )KS = 2
∑

i

π⋆[Zi]

which is effective. Hence
KS ·H0 ≥ 0.

Now, IZi
(diS0 − S∞) is contained in the kernel of φ. Hence by stability

(diS0 − S∞) ·H2 ≤ −
δ0

r
.
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Pick an index i such that di ≥ 1. The above inequality implies

(S0 − S∞) ·H2 ≤ −
δ0

r
=⇒ π⋆KS ·H2 ≤ −

δ0

r
.

However,

π⋆KS ·H2 = ǫ · (2H0 − ǫKS)KS = 2ǫ ·KS ·H0 ≥ 0.

Therefore, KS ·H0 = δ0 = 0. Since the quadratic term of δ is 0, the previous
paragraph applies, showing that in fact all di = 0.

Lemma 3. If δ is good, all torus fixed framed sheaves E in Mn described above
are stable.

Proof. Let F be a subsheaf of E = ⊕IZi
of rank r′. Since F is a subsheaf of

Or
X , by Gieseker semistability we have

PF ≤ r′χ(mH) <
r′

r
PE +

r − r′

r
δ,

at least when r′ 6= r, using that δ > (r − 1)n. When r′ = r, induction on r

yields the claim. For the inductive step, consider the non-zero map F → IZr
,

and write F ′ for the kernel. Then, apply the induction hypothesis to F ′ which
is contained in ⊕r−1

i=1 IZi
.

Next, assume F is in the kernel of φ. The kernel of φ is contained in OX(−S∞)r

(and it is isomorphic to ⊕jIZj
(−S∞) for E in M

◦
n). By Gieseker-semistability,

we have

PF ≤ r′χ(mH − S∞) <
r′

r
(rχ(mH) − n− δ) =

r′

r
(PE − δ),

using that δ is good.

Lemma 4. For all torus fixed sheaves E in M
◦
n, we have

dimTEMn ≡ rn mod 2.

Proof. Since E = ⊕IZi
is stable, the tangent space is calculated in [HL]:

TEMn = Ext1(E,E(−S∞)) =
∑

i,j

Ext1(IZi
, IZj

(−S∞)).

We consider first the contributions of terms corresponding to pairs of indices
(i, j) and (j, i) for i 6= j:

Ext1(IZi
, IZj

(−S∞)) + Ext1(IZj
, IZi

(−S∞))
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= Ext1(IZi
, IZj

(−S∞)) + Ext2(IZi
, IZj

(−S∞))

by Serre duality. Now, considering the above expression modulo 2 we obtain

χ(IZi
, IZj

(−S∞)) + Ext0(IZi
, IZj

(−S∞)) + Ext3(IZi
, IZj

(−S∞)).

Next, it is easily seen that Ext0 vanishes, and same for Ext3 by duality. Thus,
we are left with

χ(IZi
, IZj

(−S∞)) = χ(OX ,OX(−S∞))− χ(OX ,OZj
)− χ(OZi

,OX(−S∞))

= χ(OX(−S∞))− ℓ(Zj) + ℓ(Zi)

= ℓ(Zi) + ℓ(Zj) mod 2.

We consider now the terms with i = j:

Ext1(IZi
, IZi

(−S∞)).

This term was already worked out in the deformation theory of Example 1. We
obtained

Ext1(IZi
, IZi

(−S∞)) = Ext0(IZi
,OZi

) ≡ ℓ(Zi) mod 2,

where for the last congruence we used [BF] or [MNOP]. The lemma follows by
collecting the above facts.

We can now put together the calculation of Lemma 4 and the remarks about
Behrend functions in Subsection 4.1 to calculate the Donaldson-Thomas Euler
characteristic ofM◦

n. We write Xℓ for the subset of the Hilbert scheme of points

in X◦ which parametrizes torus fixed Z’s of length ℓ. For each partition ~ℓ into
r parts (ℓ1, . . . , ℓr) with

ℓ1 + . . .+ ℓr = n

we write
X

~ℓ = X
ℓ1 × . . .× X

ℓr .

Then, X
~ℓ are the C

⋆-fixed loci of M◦
n. With the convention that

~Z = (Z1, . . . , Zr)

represents an r-tuple of schemes in X
~ℓ, we calculate

χ̃ (M◦
n) =

=
∑

~ℓ

∑

k

k χ({~Z ∈ X
~ℓ : ν

X
~ℓ(~Z) = k(−1)rn−dimT~Z

X
~ℓ

})

= (−1)(r−1)n
∑

~ℓ

∑

~k

r∏

i=1

ki χ({Zi ∈ X
ℓi : νXℓi (Zi) = ki(−1)ℓi−dimTZi

X
ℓi
})

= (−1)(r−1)n
∑

~ℓ

r∏

i=1

(
∑

k

kχ({Z : νXℓi (Z) = k(−1)ℓi−dimTZX
ℓi
}

)
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By applying these results when r = 1, and using the identification of the rank
1 moduli space with the Hilbert scheme worked out in Example 1, we obtain

χ̃((X◦)[ℓ]) =
∑

k

kχ({Z : νXℓ(Z) = k(−1)ℓ−dimTZXℓ}).

This yields

χ̃(M◦
n) = (−1)(r−1)n

∑

~ℓ

χ̃((X◦)[ℓ1]) · . . . · χ̃((X◦)[ℓr]).

We form the generating series

∑

n

qnχ̃(M◦
n) =

(
∑

ℓ

((−1)r−1q)ℓχ̃((X◦)[ℓ])

)r

.

Now, from [BF] we lift the calculation
∑

ℓ

qℓχ̃((X◦)[ℓ]) = M(−q)e(X
◦) = M(−q)e(S),

where M(q) is the MacMahon function

M(q) =
∞∏

k=1

(1− qk)−k.

To summarize, for δ good, we proved

Theorem 5. The following equality holds
∑

n≥0

qnχ̃(M◦
n) = M((−1)rq)re(S). (7)

We are unable to define (and calculalte) the virtual motive [M◦
n]

vir, as it is
done in rank 1 in [BBS] and for surfaces in [N]. This question may deserve
further study.

4.2 Topological Euler characteristics

Lemma 1 also allows us to calculate the topological Euler characteristics of the
compact spaces Mn via the localization results of [LY]:

e(Mn) = e(MC
⋆

n ).

The same calculation as above shows that
∑

qne(Mn) =
(∑

qne(In)
)r

= M(q)re(X) (8)

where In
∼= X [n] denotes the rank 1 moduli space. The series needed here

∑
qne(In) = M(q)e(X)

is computed in [C]. The answer we found is valid whenever δ is good.
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4.3 Blow-up surfaces

A slightly more complicated example arises by considering blow-up geometries.
Indeed, assume that the surface S contains a (−1)-curve C. Then, C →֒ S0 is
super-rigid in X :

NC/X = NC/S ⊕NS0/X |C = OC(−1)⊕OC(−1).

We consider the moduli space Mn,k of rank r modules over X framed by a
trivial rank r bundle at infinity, with numerics

c1 = 0, c2 = k[C], χ = rχ(OX)− n.

In order not to worry about stability, we assume that δ is good of degree 2. By
the argument in the first two paragraphs of Lemma 2A, the torus fixed sheaves
in M

◦
n,k take the form

E = ⊕iIZi

where Zi may have at most 1 dimensional components contained in X◦. Fur-
thermore, ∑

i

[Zi] = k[C],
∑

i

χ(OZi
) = n.

In fact, [Zi] = ki[C] for non-negative integers ki adding up to k. Indeed, after
projecting to the blowdown surface

X → S → S̄

the classes of the effective curves Zi add up to 0, hence they must be trivial.
This shows that the components of Zi are supported on the fibers of X → S

or are contained in the Hirzebruch surface

F = P(KS|C ⊕OC) → C.

In fact, by torus invariance, all components of Zi must be supported over fibers
or over the zero section C →֒ S0. Since

∑
[Zi] = k[C]

contains no fiber classes, or alternatively since the framing must be an iso-
morphism along S∞, we conclude that Zi has no support over fibers, hence
[Zi] = ki[C] as claimed.

We carry out the computation of the Donaldson-Thomas Euler characteristics.
In the new setting, for all C⋆-fixed sheaves E in M

◦
n,k we have

dimTEMn,k ≡ rn− k mod 2.
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The proof follows that of Lemma 4. The only change is the calculation

dimExt1(IZi
, IZi

(−S∞)) ≡ χ(OZi
)− ki mod 2.

To this end, consider the exact sequence

0 → IZi
(−S∞) → IZi

→ OS∞
→ 0.

Since the map Ext0(IZi
, IZi

) → Ext0(IZi
,OS∞

) is an isomorphism, we obtain
the exact sequence

0 → dimExt1(IZi
, IZi

(−S∞)) → Ext1(IZi
, IZi

) → Ext1(IZi
,OS∞

).

To find the last group, we use the local to global spectral sequence

Hp(Extq(IZi
,OS∞

)) =⇒ Extp+q(IZi
,OS∞

).

The terms with q ≥ 1 vanish since Zi avoids S∞, while the q = 0 terms equal
Hp(OS). Therefore,

Ext1(IZi
,OS∞

) = H1(OS).

From the exact sequence, we conclude

Ext1(IZi
, IZi

(−S∞)) = Ext1(IZi
, IZi

)0.

The dimension of the last vector space was found in [BB] using Theorem 2 of
[MNOP]. The answer is

Ext1(IZi
, IZi

(−S∞)) ≡ χ(OZi
)− ki mod 2

as claimed above.

We form the generating series

∑

n,k

χ̃ (M◦
n,k) q

nvk =




∑

n,k

((−1)r−1q)nvk χ̃(I◦n,k)




r

where I
◦
n,k denotes the rank 1 framed moduli space. This is isomorphic to the

Hilbert scheme. The rank 1 Donaldson-Thomas invariants of super-rigid curves
were calculated in [BB]:

∑

n,k

qnvkχ̃(I◦n,k) = M(−q)e(X
◦) ·

∞∏

m=1

(1− (−q)mv)m.

Therefore, we obtain

∑

n,k

χ̃ (M◦
n,k) q

nvk = M((−1)rq)re(S) ·
∞∏

m=1

(1 − ((−1)rq)mv)mr. (9)

Documenta Mathematica 18 (2013) 323–342



340 Dragos Oprea

4.4 Other geometries

There are other geometries for which the above methods apply. We discuss
some of them here. Most straightforwardly, assuming S∞ is a smooth framing
divisor with

KX = −2S∞,

then our techniques yield
∑

n

qnχ̃(M◦
n) = M((−1)rq)re(X

◦). (10)

In order to make the proof of Lemma 2A work, we need to assume for instance
that the restriction

Pic(X) ∩ (H2)⊥ → Pic(S∞)

is injective. IfX is Fano of index 2, this requirement is satisfied by the Lefschetz
hyperplane theorem applied to the ample class S∞. Examples pertinent to this
setting include, among others:

• X is a cubic in P
4 or a (2, 2) complete intersection in P

5, and S∞ is a
hyperplane section;

• X is a double cover of P3 branched along a quartic, and S∞ is the pullback
of a hyperplane.

Fano threefolds of index higher than 2 also yield symmetric perfect obstruction
theories. This can be checked directly using the well-known classification:

• X is a quadric in P4 or X = P3, and S∞ is a hyperplane section.

In index 3, more examples arise from the curve geometry:

• X = P(OC + E) → C, with E → C any rank 2 bundle of determinant
detE = KC , and S∞ the divisor at infinity.

Since the same argument works in all cases above, let us only discuss the rank
r sheaves over P3 framed along the plane at infinity P2 →֒ P3. Along M

◦
n, the

obstruction theory is symmetric since

TEMn = Ext1(E,E(−1)) = Ext1(E,E(−3)) = Ext2(E,E(−1))∨ = ob∨E .

The second isomorphism follows from the short exact sequences

0 → E(−k − 1) → E(−k) → Or
P2(−k) → 0

for k = 1 and k = 2, and the vanishings

Ext0(E,OP2(−k)) = Ext1(E,OP2(−k)) = 0 for k = 1, 2.

The first vanishing is clear. The second follows from the local to global spectral
sequence:

E
p,q
2 = Hp(Extq(E,OP2(−k)) → Extp+q(E,OP2(−k))

with vanishing E2 terms when p + q = 1. This proves the claim about the
obstruction theory. Equation (10) still holds by the same methods.
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