HASSE PRINCIPLE FOR G-QUADRATIC FORMS

Eva Bayer–Fluckiger, Nivedita Bhaskhar, and Raman Parimala

> Received: August 19, 2012 Revised: February 14, 2013

Communicated by Ulf Rehmann

Abstract.

INTRODUCTION.

Let k be a global field of characteristic $\neq 2$. The classical Hasse–Minkowski theorem states that if two quadratic forms become isomorphic over all the completions of k, then they are isomorphic over k as well. It is natural to ask whether this is true for G-quadratic forms, where G is a finite group. In the case of number fields the Hasse principle for G-quadratic forms does not hold in general, as shown by J. Morales [M 86]. The aim of the present paper is to study this question when k is a global field of positive characteristic. We give a sufficient criterion for the Hasse principle to hold (see th. 2.1.), and also give counter-examples. These counter-examples are of a different nature than those for number fields : indeed, if k is a global field of positive characteristic, then the Hasse principle does hold for G-quadratic forms on projective k[G]modules (see cor. 2.3), and in particular if k[G] is semi-simple, then the Hasse principle is true for G-quadratic forms, contrarily to what happens in the case of number fields. On the other hand, there are counter–examples in the non semi-simple case, as shown in §3. Note that the Hasse principle holds in all generality for G-trace forms (cf. [BPS 13]).

The third named author is partially supported by National Science Foundation grant DMS-1001872.

§1. Definitions, notation and basic facts

Let k be a field of characteristic $\neq 2$. All modules are supposed to be left modules.

G-quadratic spaces

Let G be a finite group, and let k[G] be the associated group ring. A Gquadratic space is a pair (V,q), where V is a k[G]-module that is a finite dimensional k-vector space, and $q: V \times V \to k$ is a non-degenerate symmetric bilinear form such that

$$q(gx, gy) = q(x, y)$$

for all $x, y \in V$ and all $g \in G$.

Two *G*-quadratic spaces (V,q) and (V',q') are *isomorphic* if there exists an isomorphism of k[G]-modules $f: V \to V'$ such that q'(f(x), f(y)) = q(x, y) for all $x, y \in V$. If this is the case, we write $(V,q) \simeq_G (V',q')$, or simply $q \simeq_G q'$.

Hermitian forms

Let R be a ring endowed with an involution $r \mapsto \overline{r}$. For any R-module M, we denote by M^* its dual $\operatorname{Hom}_R(M, R)$. Then M^* has an R-module structure given by $(rf)(x) = f(x)\overline{r}$ for all $r \in R$, $x \in M$ and $f \in M^*$. If M and N are two R-modules and if $f: M \to N$ is a homomorphism of R-modules, then f induces a homomorphism $f^*: N^* \to M^*$ defined by $f^*(g) = gf$ for all $g \in N^*$, called the *adjoint* of f.

A hermitian form is a pair (M, h) where M is an R-module and $h: M \times M \to R$ is biadditive, satisfying the following two conditions:

(1.1) $h(rx, sy) = rh(x, y)\overline{s}$ and $\overline{h(x, y)} = h(y, x)$ for all $x, y \in M$ and all $r, s \in R$.

(1.2) The homomorphism $h: M \to M^*$ given by $y \mapsto h(, y)$ is an isomorphism.

Note that the existence of h implies that M is *self-dual*, i.e. isomorphic to its dual.

If G is a finite group, then the group algebra R = k[G] has a natural k-linear involution, characterized by the formula $\overline{g} = g^{-1}$ for every $g \in G$. We have the following dictionary (see for instance [BPS 13, 2.1, Example]

a) R-module $M \iff k$ -module M with a k-linear action of G;

b) R-dual $M^* \iff k$ -dual of M, with the contragredient (i.e. dual) action of G.

c) hermitian space $(M, h) \iff$ symmetric bilinear form on M, which is G-invariant and defines an isomorphism of M onto its k-dual.

Therefore a hermitian space over k[G] corresponds to a G-quadratic space, as defined above.

Hermitian elements

Let E be a ring with an involution $\sigma: E \to E$ and put

$$E^0 = \{ z \in E^{\times} \mid \sigma(z) = z \}.$$

If $z \in E^0$, the map $h_z : E \times E \to E$ defined by $h_z(x, y) = x.z.\sigma(y)$ is a hermitian space over E; conversely, every hermitian space over E with underlying module E is isomorphic to h_z for some $z \in E^0$.

Define an equivalence relation on E^0 by setting $z \equiv z'$ if there exists $e \in E^{\times}$ with $z' = \sigma(e)ze$; this is equivalent to $(E, h_z) \simeq (E, h_{z'})$. Let $H(E, \sigma)$ be the quotient of E^0 by this equivalence relation. If $z \in E^0$, we denote by [z] its class in $H(E, \sigma)$.

Classifying hermitian spaces via hermitian elements

Let (M, h_0) be a hermitian space over R. Set $E_M = \text{End}(M)$. Let $\tau : E_M \to E_M$ be the involution of E_M induced by h_0 , i.e.

$$\tau(e) = h_0^{-1} e^* h_0, \quad \text{for } e \in E_M,$$

where e^* is the adjoint of e. If (M, h) is a hermitian space (with the same underlying module M), we have $\tau(h_0^{-1}h) = h_0^{-1}(h_0^{-1}h)^*h_0 = h_0^{-1}h^*(h_0^{-1})^*h_0 = h_0^{-1}h$. Hence $h_0^{-1}h$ is a hermitian element of (E_M, τ) ; let $[h_0^{-1}h]$ be its class in $H(E_M, \tau)$.

LEMMA 1.1. (see for instance [BPS 13, lemma 3.8.1]) Sending a hermitian space (M,h) to the element $[h_0^{-1}h]$ of $H(E_M,\tau)$ induces a bijection between the set of isomorphism classes of hermitian spaces (M,h) and the set $H(E_M,\tau)$.

Components of algebras with involution

Let A be a finite dimensional k-algebra, and let $\iota : A \to A$ be a k-linear involution. Let R_A be the radical of A. Then A/R_A is a semi-simple kalgebra, hence we have a decomposition $A/R_A = \prod_{i=1,...,r} M_{n_i}(D_i)$, where D_1, \ldots, D_r are division algebras. Let us denote by K_i the center of D_i , and let D_i^{op} be the opposite algebra of D_i .

Note that $\iota(R_A) = R_A$, hence ι induces an involution $\iota : A/R_A \to A/R_A$. Therefore A/R_A decomposes into a product of involution invariant factors. These can be of two types : either an involution invariant matrix algebra $M_{n_i}(D_i)$, or a product $M_{n_i}(D_i) \times M_{n_i}(D_i^{op})$, with $M_{n_i}(D_i)$ and $M_{n_i}(D_i^{op})$ exchanged by the involution. We say that a factor is unitary if the restriction of the involution to its center is not the identity : in other words, either an involution invariant $M_{n_i}(D_i)$ with $\iota|K_i$ not the identity, or a product $M_{n_i}(D_i) \times M_{n_i}(D_i^{op})$. Otherwise, the factor is said to be of the first kind. In this case, the component is of the form $M_{n_i}(D_i)$ and the restriction of ι to K_i is the identity. We say that the component is orthogonal if after base change to a separable closure ι is given by the transposition, and symplectic otherwise. A component $M_{n_i}(D_i)$ is said to be split if D_i is a commutative field.

Completions

If k is a global field and if v is a place of k, we denote by k_v the completion of k at v. For any k-algebra E, set $E_v = E \otimes_k k_v$. If K/k is a field extension of finite degree and if w is a place of K above v, then we use the notation w|v.

§2. HASSE PRINCIPLE

In this section, k will be a global field of characteristic $\neq 2$. Let us denote by Σ_k the set of all places of k. The aim of this section is to give a sufficient criterion for the Hasse principle for G-quadratic forms to hold. All modules are left modules, and finite dimensional k-vector spaces.

THEOREM 2.1. Let V be a k[G]-module, and let E = End(V). Let R_E be the radical of E, and set $\overline{E} = E/R_E$. Suppose that all the orthogonal components of \overline{E} are split, and let (V,q), (V,q') be two G-forms. Then $q \simeq_G q'$ over k if and only if $q \simeq_G q'$ over all the completions of k.

This is announced in [BP 13], and replaces the 3.5 of [BP 11]. The proof of the 2.1 relies on the following proposition

PROPOSITION 2.2. Let E be a finite dimensional k-algebra endowed with a klinear involution $\sigma : E \to E$. Let R_E be the radical of E, and set $\overline{E} = E/R_E$. Suppose that all the orthogonal components of \overline{E} are split. Then the canonical map $H(E, \sigma) \to \prod_{v \in \Sigma_k} H(E_v, \sigma_v)$ is injective.

PROOF. The case of a simple algebra. Suppose first that E is a simple k-algebra. Let K be the center of E, and let F be the fixed field of σ in K. Let Σ_F denote the set of all places of F. For all $v \in \Sigma_k$, set $E_v = E \otimes_k k_v$, and note that $E_v = \prod_{w|v} E_w$, therefore $\prod_{v \in \Sigma_k} H(E_v, \sigma_v) = \prod_{w \in \Sigma_F} H(E_w, \sigma_w)$. By definition, $H(E, \sigma)$ is the set of isomorphism classes of one dimensional hermitian forms over E. Moreover, if σ is orthogonal, then the hypothesis implies that E is split, in other words we have $E \simeq M_n(F)$. Therefore the conditions of [R 11, th. 3.3.1] are fulfilled, hence the Hasse principle holds for hermitian forms over E with respect to σ . This implies that the canonical map $H(E, \sigma) \to \prod_{v \in \Sigma_k} H(E_v, \sigma_v)$ is injective.

The case of a semi-simple algebra. Suppose now that E is semi-simple. Then

$$E \simeq E_1 \times \ldots \times E_r \times A \times A^{\mathrm{op}},$$

where E_1, \ldots, E_r are simple algebras which are stable under the involution σ , and where the restriction of σ to $A \times A^{\text{op}}$ exchanges the two factors. Applying [BPS 13, lemmas 3.7.1 and 3.7.2] we are reduced to the case where E is a simple algebra, and we already know that the result is true in this case.

DOCUMENTA MATHEMATICA 18 (2013) 383-392

General case. We have $\overline{E} = E/R_E$. Then \overline{E} is semi-simple, and σ induces a k-linear involution $\overline{\sigma} : \overline{E} \to \overline{E}$. We have the following commutative diagram

$$\begin{array}{cccc} H(E,\sigma) & \stackrel{f}{\longrightarrow} & \prod_{v \in \Sigma_k} H(E_v,\sigma) \\ \downarrow & & \downarrow \\ H(\overline{E},\overline{\sigma}) & \stackrel{\overline{f}}{\longrightarrow} & \prod_{v \in \Sigma_k} H(\overline{E}_v,\overline{\sigma}), \end{array}$$

where the vertical maps are induced by the projection $E \to \overline{E}$. By [BPS 13, lemma 3.7.3], these maps are bijective. As \overline{E} is semi-simple, the map \overline{f} is injective, hence f is also injective. This concludes the proof.

PROOF OF TH. 2.1. It is clear that if $q \simeq_G q'$ over k, then $q \simeq_G q'$ over all the completions of k. Let us prove the converse. Let (V, h) be the k[G]-hermitian space corresponding to (V, q), and let $\sigma : E \to E$ be the involution induced by (V, h) as in §1. Let (V, h') be the k[G]-hermitian space corresponding to (V, q'), and set $u = h^{-1}h'$. Then $u \in E^0$, and by lemma 1.1. the element $[u] \in H(E, \sigma)$ determines the isomorphism class of (V, q'); in other words, we have $q \simeq_G q'$ if and only if [u] = [1] in $H(E, \sigma)$. Hence the theorem is a consequence of proposition 2.2.

COROLLARY 2.3 Suppose that $\operatorname{char}(k) = p > 0$, and let V be a projective k[G]-module.. Let (V,q), (V,q') be two G-forms. Then $q \simeq_G q'$ over k if and only if $q \simeq_G q'$ over all the completions of k.

PROOF. Since V is projective, there exists a k[G]-module W and $n \in N$ such that $V \oplus W \simeq k[G]^n$. The endomorphism ring of $k[G]^n$ is $M_n(k[G])$, and as char(k) = p > 0, we have $k[G] = F_p[G] \otimes_{F_p} k$. Hence $M_n(k[G])$ is isomorphic to $M_n(F_p[G]) \otimes_{F_p} k$. Let E = End(V), let R_E be the radical of E, and let $\overline{E} = E/R_E$. Let us show that all the components of \overline{E} are split. Let e be the idempotent endomorphism of $V \oplus W$ which is the identity of V. Set $\Lambda = \operatorname{End}(V \oplus W)$ and let R_{Λ} be the radical of Λ . Then $e\Lambda e = E$ and $eR_{\Lambda}e = R_E$. Set $\overline{\Lambda} = \Lambda/R_{\Lambda}$, and and let \overline{e} be the image of e in $\overline{\Lambda}$. Set k[G] = $k[G]/\mathrm{rad}(k[G])$. Then we have $\overline{E} \simeq \overline{e}\overline{\Lambda}\overline{e} \simeq \overline{e}M_n(\overline{k[G]})\overline{e}$. This implies that \overline{E} is a component of the semi-simple algebra $M_n(k[G])$. Let us show that all the components of $M_n(\overline{k[G]})$ are split. As F_p is a finite field, $F_p[G]/(\operatorname{rad}(F_p[G]))$ is a product of matrix algebras over finite fields. Moreover, for any finite field F of characteristic p, the tensor product $F \otimes_{F_p} k$ is a product of fields. This shows that $(F_p[G]/(\operatorname{rad}(F_p[G])) \otimes_{F_p} k$ is a product of matrix algebras over finite extensions of k; in particular, it is semi-simple. The natural isomorphism $F_p[G] \otimes_{F_p} k \to k[G]$ induces an isomorphism $[F_p[G]/(\mathrm{rad}(F_p[G]))] \otimes_{F_p} k \to K$ $k[G]/(\operatorname{rad}(F_p[G]).k[G])$. Therefore $\operatorname{rad}(F_p[G].k[G])$ is the radical of k[G], and we have an isomorphism $[F_p[G]/(\operatorname{rad}(F_p[G]))] \otimes_{F_p} k \to k[G]/(\operatorname{rad}(k[G]))$. Hence all the components of k[G]/(rad(k[G])) are split. This implies that all the components of \overline{E} are split as well. Therefore the corollary follows from the 2.1.

The following corollary is well-known (see for instance [R 11, 3.3.1 (b)]).

COROLLARY 2.4 Suppose that char(k) = p > 0, and that the order of G is prime to p. Then two G-quadratic forms are isomorphic over k if and only if they become isomorphic over all the completions of k.

PROOF. This follows immediately from cor. 2.3.

$\S3.$ Counter-examples to the Hasse principle

Let k be a field of characteristic p > 0, let C_p be the cyclic group of order p, and let $G = C_p \times C_p \times C_p$. In this section we give counter–examples to the Hasse principle for $G \times G$ –quadratic forms over k in the case where k is a global field. We start with some constructions that are valid for any field of positive characteristic.

3.1 A CONSTRUCTION

Let D be a division algebra over k. It is well-known that there exist indecomposable k[G]-modules such that their endomorphism ring modulo the radical is isomorphic to D. We recall here such a construction, brought to our attention by R. Guralnick, in order to use it in 3.2 in the case of quaternion algebras.

The algebra D can be generated by two elements (see for instance [J 64, Chapter VII, §12, th. 3, p. 182]). Let us choose $i, j \in D$ be two such elements. Let us denote by D^{op} the opposite algebra of D, and let d be the degree of D. Then we have $D \otimes_k D^{\text{op}} \simeq M_{d^2}(k)$. Let us choose an isomorphism $f: D \otimes_k D^{\text{op}} \simeq M_{d^2}(k)$, and set $a_1 = f(1 \otimes 1) = 1$, $a_2 = f(i \otimes 1)$ and $a_3 = f(j \otimes 1)$.

Let $g_1, g_2, g_3 \in G$ be three elements of order p such that the set $\{g_1, g_2, g_3\}$ generates G and let us define a representation $G \to \operatorname{GL}_{2d^2}(k)$ by sending g_m to the matrix

$$\begin{pmatrix} I & a_m \\ 0 & I \end{pmatrix}$$

for all m = 1, 2, 3. Note that this is well-defined because $\operatorname{char}(k) = p$. This endowes k^{2d^2} with a structure of k[G]-module. Let us denote by N this k[G]-module, and let E_N be its endomorphism ring. Then

$$E_N = \left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \mid x \in D^{\mathrm{op}} \subset M_{d^2}(k), \ y \in M_{d^2}(k) \right\},$$

and its radical is

$$R_N = \left\{ \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \mid y \in M_{d^2}(k) \right\},\,$$

hence $E_N/R_N \simeq D^{\text{op}}$.

DOCUMENTA MATHEMATICA 18 (2013) 383-392

3.2. The case of a quaternion algebra

Let H be a quaternion algebra over k. Then by 3.1, we get a k[G]-module $N = N_H$ with endomorphism ring E_N such that $E_N/R_N \simeq H^{\text{op}}$, where R_N is the radical of E_N . We now construct a G-quadratic form q over N in such a way that the involution it induces on $E_N/R_N \simeq H^{\text{op}}$ is the canonical involution.

Let $i, j \in H$ such that $i^2, j^2 \in k^{\times}$ and that ij = -ji. Let $\tau : H \to H$ be the orthogonal involution of H obtained by composing the canonical involution of H with $\operatorname{Int}(ij)$. Let $\sigma : H^{\operatorname{op}} \to H^{\operatorname{op}}$ be the canonical involution of H^{op} . Let us consider the tensor product of algebras with involution

$$(H, \tau) \otimes (H^{\mathrm{op}}, \sigma) = (M_4(k), \rho).$$

Then ρ is a symplectic involution of $M_4(k)$ satisfying $\rho(a_m) = a_m$ for all m = 1, 2, 3, since $\tau(i) = (ij)(-i)(ij)^{-1} = i$, $\tau(j) = (ij)(-j)(ij)^{-1} = j$. Let $\alpha \in M_4(k)$ be a skew-symmetric matrix such that for all $x \in M_4(k)$, we have $\rho(x) = \alpha^{-1}x^T\alpha$, where x^T denotes the transpose of x. Set $A = \begin{pmatrix} 0 & \alpha \\ -\alpha & 0 \end{pmatrix}$. Then $A^T = A$. Let $q : N \times N \to k$ be the symmetric bilinear form defined by A:

$$q(v,w) = v^T A w$$

for all $v, w \in N$. Let $\gamma: M_8(k) \to M_8(k)$ be the involution adjoint to q, that is

$$\gamma(X) = A^{-1}X^T A$$

for all $X \in M_8(k)$, i.e. $q(fv, w) = q(v, \gamma(f)w)$ for all $f \in M_8(k)$ and all $v, w \in N$. The involution γ restricts to an involution of E_N , as for all $x, y \in M_4(k)$, we have

$$\gamma \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = \begin{pmatrix} \alpha^{-1} x^T \alpha & -\alpha^{-1} y^T \alpha \\ 0 & \alpha^{-1} x^T \alpha \end{pmatrix}.$$

It also sends R_N to itself, and induces an involution $\overline{\gamma}$ on $H^{\text{op}} \simeq E_N/R_N$ that coincides with the canonical involution of H^{op} .

We claim that $q: N \times N \to k$ is a *G*-quadratic form. To check this, it suffices to show that $q(g_m v, g_m w) = q(v, w)$ for all $v, w \in N$ and for all m = 1, 2, 3. Since $\rho(a_m) = a_m$ for all m = 1, 2, 3, we have

$$\gamma \begin{pmatrix} I & a_m \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & a_m \\ 0 & I \end{pmatrix}^{-1}$$

and hence

$$q(g_m v, g_m w) = q(v, \gamma(g_m)g_m w) = q(v, w)$$

for all m = 1, 2, 3 and all $v, w \in N$. Thus q is a G-quadratic form, and by construction, the involution of E_N induced by q is the restriction of γ to E_N .

3.3. Two quaternion algebras

Let H_1 and H_2 be two quaternion algebras over k. By the construction of 3.2, we obtain two indecomposable k[G]-modules N_1 and N_2 . Set $E_1 = E_{N_1}$ and $E_2 = E_{N_2}$. Let R_i be the radical of E_i for i = 1, 2, and set $\overline{E}_i = E_i/R_i$. We also obtain G-quadratic spaces $q_i : N_i \times N_i \to k$ inducing involutions $\gamma_i : E_i \to E_i$ such that the involutions $\overline{\gamma}_i : \overline{E}_i \to \overline{E}_i$ coincide with the canonical involution of H_i^{op} , for all i = 1, 2.

Let us consider the tensor product $(N, q) = (N_1, q_1) \otimes_k (N_2, q_2)$. Then (N, q) is a $G \times G$ -quadratic space. Set $E = \operatorname{End}_{k[G \times G]}(N_1 \otimes N_2)$. Then $E \simeq E_1 \otimes E_2$. Let I be the ideal of E generated by R_1 and R_2 . Then there is a natural isomorphism $f: E_1 \otimes E_2 \to E$ with $f(I) = R_E$, where R_E is the radical of E. Set $\overline{E} = E/R_E$. Then $\overline{E} \simeq \overline{E_1} \otimes \overline{E_2} \simeq H_1^{\operatorname{op}} \otimes H_2^{\operatorname{op}}$.

Set $\gamma = \gamma_1 \otimes \gamma_2$. Then $\gamma : E \to E$ is the involution induced by the $G \times G$ quadratic space (N,q). We obtain an involution $\overline{\gamma} : \overline{E} \to \overline{E}$, and $\overline{\gamma} = \overline{\gamma}_1 \otimes \overline{\gamma}_2$. Let us recall that $\overline{E}_i = H_i^{\text{op}}$ for i = 1, 2, and that $\overline{\gamma}_i$ is the canonical involution of H_i^{op} . Hence $\overline{\gamma} : \overline{E} \to \overline{E}$ is an orthogonal involution.

3.4. A Counter-example to the Hasse principle

Suppose now that k is a global field of characteristic p, with p > 2, and suppose that H_i is ramified at exactly two places v_i, v'_i of k, such that v_1, v'_1, v_2, v'_2 are all distinct. We have $H_1^{\text{op}} \otimes H_2^{\text{op}} \simeq M_2(Q)$ where Q is a quaternion division algebra over k, and Q is ramified exactly at the places v_1, v'_1, v_2, v'_2 of k. Recall that the involution $\overline{\gamma} : M_2(Q) \to M_2(Q)$ is the tensor product of the canonical involutions of H_i^{op} . In particular, $\overline{\gamma}$ is of orthogonal type. Note that at all $v \in \Sigma_k$, one of the algebras H_1^{op} or H_2^{op} is split. This implies that at all $v \in \Sigma_k$, the involution $\overline{\gamma}$ is hyperbolic.

Let $\delta: Q \to Q$ be an orthogonal involution of the division algebra Q. Then $\overline{\gamma}$ is induced by some hermitian space $h: Q^2 \times Q^2 \to Q$ with respect to the involution δ . As for all $v \in \Sigma_k$, the involution $\overline{\gamma}$ is hyperbolic at v, the hermitian form h is also hyperbolic at v. By lemma 1.1 the set of isomorphism classes of hermitian spaces on Q^2 is in bijection with the set $H(\overline{E},\overline{\gamma})$, the hermitian space (Q^2, h) corresponding to the element $[1] \in H(\overline{E},\overline{\gamma})$.

Let (Q^2, h') be a hermitian space which becomes isomorphic to (Q^2, h) over Q_v for all $v \in \Sigma_k$, but is not isomorphic to (Q^2, h) over Q (this is possible by [Sch 85, 10.4.6]). Let $u \in \overline{E}^0$ such that $[u] \in H(\overline{E}, \overline{\gamma})$ corresponds to (Q^2, h') by the bijection of lemma 1.1. Then $[u] \neq [1] \in H(\overline{E}, \overline{\gamma})$, and the images of [u] and [1] coincide in $\prod_{v \in \Sigma_k} H(\overline{E}_v, \overline{\gamma})$.

Recall that $H(E, \gamma)$ is in bijection with the isomorphism classes of $(G \times G)$ quadratic forms over N, the element $[1] \in H(E, \gamma)$ corresponding to the isomorphism class of (N, q). Let $\pi : E \to \overline{E}$ be the projection, and let $\tilde{u} \in E^0$ be

such that $\pi(\tilde{u}) = u$ (cf. lemma 1.1). Let (N, q') be a $(G \times G)$ -quadratic form corresponding to \tilde{u} . The diagram

$$\begin{array}{cccc} H(E,\gamma) & \stackrel{f}{\longrightarrow} & \prod_{v \in \Sigma_k} H(E_v,\gamma) \\ \downarrow & & \downarrow \\ H(\overline{E},\overline{\gamma}) & \stackrel{\overline{f}}{\longrightarrow} & \prod_{v \in \Sigma_k} H(\overline{E}_v,\overline{\gamma}), \end{array}$$

is commutative, and the vertical maps are bijective by [BPS 13, lemma 3.7.3]. Hence (N, q) and (N, q') are become isomorphic over all the completions of k, but are not isomorphic over k.

BIBLIOGRAPHY

[BP 11] E. Bayer–Fluckiger, R. Parimala, Galois algebras, Hasse principle and induction–restriction methods, *Documenta Math.* 16 (2011), 677–707.

[BP 13] E. Bayer–Fluckiger, R. Parimala, Correction to : Galois algebras, Hasse principle and induction–restriction methods, *Documenta Math.* 16 (2011), 677–707 (to appear).

[BPS 13] E. Bayer–Fluckiger, R. Parimala and J-P. Serre, Hasse principle for G-trace forms, *Izvestia Math.* (2013), to appear.

[J 64] N. Jacobson, Structure of rings, AMS Colloquium Series XXXVII (1964).

[KMRT 98] M. Knus, A. Merkurjev, M. Rost & J–P. Tignol, *The Book of Involutions*, AMS Colloquium Publications 44, 1998.

[M 86] J. Morales, Integral bilinear forms with a group action, *J. Algebra* 98 (1986), 470 - 484.

[R 11] C.R. Riehm, Introduction to Orthogonal, Symplectic and Unitary Representations of Finite Groups, Fields Institute Monographies 28, AMS, 2011.

[Sch 85] W. Scharlau, *Quadratic and Hermitian Forms*, Grundlehren der Math. Wiss, Springer–Verlag (1985).

392 E. BAYER-FLUCKIGER, N. BHASKHAR, AND R. PARIMALA

Eva Bayer–Fluckiger École Polytechnique Fédérale de Lausanne EPFL/FSB/MATHGEOM/CSAG Station 8 1015 Lausanne, Switzerland eva.bayer@epfl.ch Nivedita Bhaskhar Department of Mathematics & Computer Science Emory University Atlanta, GA 30322, USA. nbhaskh@emory.edu

Raman Parimala Department of Mathematics & Computer Science Emory University Atlanta, GA 30322, USA. parimala@mathcs.emory.edu