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ABSTRACT.

INTRODUCTION.

Let k£ be a global field of characteristic # 2. The classical Hasse-Minkowski
theorem states that if two quadratic forms become isomorphic over all the
completions of k, then they are isomorphic over k as well. It is natural to ask
whether this is true for G-quadratic forms, where G is a finite group. In the
case of number fields the Hasse principle for G—quadratic forms does not hold
in general, as shown by J. Morales [M 86]. The aim of the present paper is
to study this question when k is a global field of positive characteristic. We
give a sufficient criterion for the Hasse principle to hold (see th. 2.1.), and also
give counter—examples. These counter—examples are of a different nature than
those for number fields : indeed, if k£ is a global field of positive characteristic,
then the Hasse principle does hold for G—quadratic forms on projective k[G]—
modules (see cor. 2.3), and in particular if k[G] is semi—simple, then the Hasse
principle is true for G—quadratic forms, contrarily to what happens in the case
of number fields. On the other hand, there are counter—examples in the non
semi-simple case, as shown in §3. Note that the Hasse principle holds in all
generality for G—trace forms (cf. [BPS 13]).

The third named author is partially supported by National Science Foundation
grant DMS-1001872.

§1. DEFINITIONS, NOTATION AND BASIC FACTS

Let k& be a field of characteristic # 2. All modules are supposed to be left
modules.
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G—quadratic spaces

Let G be a finite group, and let k[G] be the associated group ring. A G-
quadratic space is a pair (V,q), where V is a k[G]-module that is a finite
dimensional k—vector space, and ¢ : V x V — k is a non—degenerate symmetric
bilinear form such that

(g9, 9y) = q(z,y)
for all z,y € V and all g € G.

Two G—quadratic spaces (V,q) and (V',q’) are isomorphic if there exists an
isomorphism of k[G]-modules f : V' — V' such that ¢'(f(x), f(y)) = ¢(x,y) for
all z,y € V. If this is the case, we write (V, q) ~¢ (V',¢'), or simply ¢ ~¢ ¢'.

Hermitian forms

Let R be a ring endowed with an involution r — 7. For any R-module M,
we denote by M* its dual Hompg(M, R). Then M* has an R—module structure
given by (rf)(z) = f(z)F forallr € R, x € M and f € M*. If M and N are
two R—modules and if f: M — N is a homomorphism of R—modules, then f
induces a homomorphism f*: N* — M* defined by f*(g) = gf for all g € N*,
called the adjoint of f.

A hermitian formis a pair (M, h) where M is an R—module and h: M xM — R
is biadditive, satisfying the following two conditions:

(1.1) h(rz,sy) = rh(z,y)s and h(z,y) = h(y,z) for all z,y € M and all
r,s € R.
(1.2) The homomorphism h : M — M* given by y — h( ,y) is an isomorphism.

Note that the existence of h implies that M is self-dual, i.e. isomorphic to its
dual.

If G is a finite group, then the group algebra R = k[G] has a natural k-linear
involution, characterized by the formula g = ¢! for every g € G. We have the
following dictionary (see for instance [BPS 13, 2.1, Example]

a) R—module M <= k-module M with a k-linear action of G;

b) R—dual M* <= k—dual of M, with the contragredient (i.e. dual) action of
G.

¢) hermitian space (M,h) <= symmetric bilinear form on M, which is G-
invariant and defines an isomorphism of M onto its k—dual.

Therefore a hermitian space over k[G] corresponds to a G—quadratic space, as
defined above.

Hermitian elements

Let E be a ring with an involution ¢ : £ — E and put
E'={:€ EX | o(z) =2}
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If z € EY, themap h, : Ex E — E defined by h.(x,y) = z.2.0(y) is a hermitian
space over F; conversely, every hermitian space over F with underlying module
E is isomorphic to h, for some z € EY.

Define an equivalence relation on E° by setting z = 2’ if there exists e € E
with 2z = o(e)ze; this is equivalent to (E,h,) ~ (E, h,). Let H(E, o) be the
quotient of E° by this equivalence relation. If 2 € E°, we denote by [z] its class
in H(E, o).

Classifying hermitian spaces via hermitian elements

Let (M, hg) be a hermitian space over R. Set Ey; = End(M). Let 7: Eyp —
FEy; be the involution of Ey; induced by hg, i.e.

T(e) = ho_le*ho, for e € Ey,

where e* is the adjoint of e. If (M,h) is a hermitian space (with the same
underlying module M), we have 7(hg 'h) = ho ' (kg h)*ho = hg *h*(hg ') *ho =
hy'h. Hence hy'h is a hermitian element of (Eyr, 7); let [hy 'h] be its class in
H(EM, T).

LEMMA 1.1. (see for instance [BPS 13, lemma 3.8.1]) Sending a hermitian
space (M, h) to the element [hy'h] of H(Enr,T) induces a bijection between the
set of isomorphism classes of hermitian spaces (M, h) and the set H(Ey,T).

Components of algebras with involution

Let A be a finite dimensional k—algebra, and let + : A — A be a k—linear
involution. Let R4 be the radical of A. Then A/R, is a semi-simple k—
algebra, hence we have a decomposition A/Ry = [[,_, , My, (D;), where
Dy, ..., D, are division algebras. Let us denote by K; the center of D;, and let
D?® be the opposite algebra of D;.

Note that ¢«(R4) = Ra, hence ¢ induces an involution ¢ : A/Ry — A/Rj.
Therefore A/R4 decomposes into a product of involution invariant factors.
These can be of two types : either an involution invariant matrix algebra
M,,,(D;), or a product M,,(D;) x My, (Dj"), with M,,(D;) and M,,(D;")
exchanged by the involution. We say that a factor is unitary if the restriction
of the involution to its center is not the identity : in other words, either an
involution invariant M, (D;) with ¢|K; not the identity, or a product M, (D;) x
M,,,(Dj?) . Otherwise, the factor is said to be of the first kind. In this case,
the component is of the form M,,(D;) and the restriction of ¢ to K; is the
identity. We say that the component is orthogonal if after base change to a
separable closure ¢ is given by the transposition, and symplectic otherwise. A
component M,,(D;) is said to be split if D; is a commutative field.

Completions
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If k£ is a global field and if v is a place of k, we denote by k, the completion of
k at v. For any k—algebra E, set E, = E ® k,. If K/k is a field extension of
finite degree and if w is a place of K above v, then we use the notation w|v.

§2. HASSE PRINCIPLE

In this section, k£ will be a global field of characteristic # 2. Let us denote
by Xi the set of all places of k. The aim of this section is to give a sufficient
criterion for the Hasse principle for G—quadratic forms to hold. All modules
are left modules, and finite dimensional k—vector spaces.

THEOREM 2.1. Let V' be a k[G]-module , and let E = End(V'). Let Rg be the
radical of E, and set E = E/Rg. Suppose that all the orthogonal components
of E are split, and let (V,q), (V,q') be two G-forms. Then q ~¢ ¢ over k if
and only if ¢ ~g q' over all the completions of k.

This is announced in [BP 13], and replaces th. 3.5 of [BP 11]. The proof of th.
2.1 relies on the following proposition

PROPOSITION 2.2. Let E be a finite dimensional k-algebra endowed with a k-
linear involution o : E — E. Let R be the radical of E, and set E = E/Rg.
Suppose that all the orthogonal components of E are split. Then the canonical

map H(E,0) = [l,ex, H(Ey,0,) is injective.

PROOF. The case of a simple algebra. Suppose first that E is a simple k—
algebra. Let K be the center of FE, and let F' be the fixed field of ¢ in K. Let
Y r denote the set of all places of F. For all v € ¥, set E, = F ® k,, and
note that E, = Hw‘v By, therefore [[ ey H(Ey,00) = [yes, H(Ew,ow)-
By definition, H(F, o) is the set of isomorphism classes of one dimensional
hermitian forms over E. Moreover, if o is orthogonal, then the hypothesis
implies that F is split, in other words we have E ~ M, (F). Therefore the
conditions of [R 11, th. 3.3.1] are fulfilled, hence the Hasse principle holds for
hermitian forms over F with respect to . This implies that the canonical map

H(E,0) = [l,ex, H(Ey,0v) is injective.

The case of a semi-simple algebra. Suppose now that F is semi-simple. Then

E~FE x...xE.xAx AP,

where E1,..., E, are simple algebras which are stable under the involution o,
and where the restriction of o to A x A°P exchanges the two factors. Applying
[BPS 13, lemmas 3.7.1 and 3.7.2] we are reduced to the case where E is a simple
algebra, and we already know that the result is true in this case.
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General case. We have | E =FE /Rg. Then E is semi-simple, and o induces a
k—linear involution @ : E — E. We have the following commutative diagram

f
H(E,0) — HUEZk H(E,, o)

<

— ¥ -
H(Ea ) — H'Uei)k H(EU,O'),

Ql

where the vertical maps are induced by the projection £ — E. By [BPS_13,
lemma 3.7.3], these maps are bijective. As E is semi-simple, the map f is
injective, hence f is also injective. This concludes the proof.

PROOF OF TH. 2.1. It is clear that if ¢ ~¢ ¢’ over k, then ¢ ~¢ ¢’ over all the
completions of k. Let us prove the converse. Let (V,h) be the k[G]-hermitian
space corresponding to (V, q), and let o : E — E be the involution induced by
(V,h) asin §1. Let (V, ') be the k[G]-hermitian space corresponding to (V, ¢’),
and set u = h~'h/. Then u € E°, and by lemma 1.1. the element [u] € H(E, o)
determines the isomorphism class of (V,¢’); in other words, we have ¢ ~¢ ¢
if and only if [u] = [1] in H(E,0). Hence the theorem is a consequence of
proposition 2.2.

COROLLARY 2.3 Suppose that char(k) = p > 0, and let V be a projective k[G]-
module.. Let (V,q), (V,q') be two G—forms. Then q ~¢ ¢ over k if and only
if ¢ ~a ¢ over all the completions of k.

PROOF. Since V is projective, there exists a k[G]-module W and n € N
such that V @& W ~ k[G]". The endomorphism ring of k[G]|™ is M, (k[G]),
and as char(k) = p > 0, we have k[G] = F,[G] ®F, k. Hence M,(k[G]) is
isomorphic to M, (F,[G]) ®F, k. Let E = End(V), let R be the radical of
E, and let E = E/Rp. Let us show that all the components of E are split.
Let e be the idempotent endomorphism of V' & W which is the identity of V.
Set A = End(V @ W) and let Ry be the radical of A. Then eAe = E and
eRpye = Rp. Set A = A/Rj, and and let € be the image of e in A. Set k[G] =
k[G]/rad(k[G]). Then we have E ~ eAe ~ eM, (k[G])e. This implies that £
is a component of the semi-simple algebra M, (k[G]). Let us show that all the
components of M, (k[G]) are split. As F, is a finite field, F,[G]/(rad(F},[G])
is a product of matrix algebras over finite fields. Moreover, for any finite field
F of characteristic p, the tensor product F' ®p, k is a product of fields. This
shows that (F,,[G]/(rad(F},[G]))®F, k is a product of matrix algebras over finite
extensions of k; in particular, it is semi—simple. The natural isomorphism
F,|G] ®F, k — E[G] induces an isomorphism [F},[G]/(rad(F,[G]))] ®F, k —
k[G]/(rad(F,[G]).k[G]). Therefore rad(F,[G].k[G]) is the radical of k[G], and
we have an isomorphism [F},[G]/(rad(F},[G]))]®F, k — k[G]/(rad(k[G])). Hence
all the components of k[G]/(rad(k[G])) are split. This implies that all the
components of E are split as well. Therefore the corollary follows from th. 2.1.

The following corollary is well-known (see for instance [R 11, 3.3.1 (b)]).
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COROLLARY 2.4 Suppose that char(k) = p > 0, and that the order of G is
prime to p. Then two G—quadratic forms are isomorphic over k if and only if
they become isomorphic over all the completions of k.

PRrOOF. This follows immediately from cor. 2.3.

83. COUNTER—EXAMPLES TO THE HASSE PRINCIPLE

Let k be a field of characteristic p > 0, let C}, be the cyclic group of order p,
and let G = C), x Cp x Cp,. In this section we give counter-examples to the
Hasse principle for G x G—quadratic forms over k in the case where k is a global
field. We start with some constructions that are valid for any field of positive
characteristic.

3.1 A CONSTRUCTION

Let D be a division algebra over k. It is well-known that there exist indecom-
posable k[G]-modules such that their endomorphism ring modulo the radical
is isomorphic to D. We recall here such a constuction, brought to our attention
by R. Guralnick, in order to use it in 3.2 in the case of quaternion algebras.

The algebra D can be generated by two elements (see for instance [J 64, Chapter
VII, §12, th. 3, p. 182]). Let us choose i,j € D be two such elements.
Let us denote by D°P the opposite algebra of D, and let d be the degree
of D. Then we have D ®j D°P ~ My2(k). Let us choose an isomorphism
f i D®; DP ~ Mg(k), and set a1 = f(1®1) =1, ae = f(i ® 1) and
a3 = f(j®1).

Let g1,92,93 € G be three elements of order p such that the set {g1, 92,93}
generates G.and let us define a representation G — GLyg2 (k) by sending gy, to

the matrix
I apm
0 I

for all m = 1,2,3. Note that this is well-defined because char(k) = p. This
endowes k27" with a structure of k[G]-module. Let us denote by N this k[G]-
module, and let En be its endomorphism ring. Then

EN{<S Z) | & € D°P C Mg (k), yEMdz(k)},

and its radical is

hence En /Ry ~ D°P.
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3.2. THE CASE OF A QUATERNION ALGEBRA

Let H be a quaternion algebra over k. Then by 3.1, we get a k[G]-module
N = Ny with endomorphism ring Ex such that Ey/Ry ~ H°P, where Ry is
the radical of Ey. We now construct a G—quadratic form g over N in such a way
that the involution it induces on Ex /Ry ~ H°P is the canonical involution.

Let i,j € H such that 2,52 € k* and that ij = —ji. Let 7 : H — H be the
orthogonal involution of H obtained by composing the canonical involution of
H with Int(ij). Let o : H°® — H°P be the canonical involution of H°P. Let us
consider the tensor product of algebras with involution

(H,7)© (H?, 0) = (Ma(k), p).

Then p is a symplectic involution of My (k) satisfying p(am,) = a., for all m =
1,2,3, since (i) = (ij)(—)(ij)"" =i, 7(j) = (()(=j)(ij) "' = j. Let a €
My(k) be a skew—symmetric matrix such that for all x € My(k), we have

—a 0
Then AT = A. Let ¢ : N x N — k be the symmetric bilinear form defined by
A:

p(r) = a=tzTa, where 27 denotes the transpose of x. Set A = ( 0 a>.

q(v,w) = vT Aw
for all v,w € N. Let v : Mg(k) — Ms(k) be the involution adjoint to ¢, that is
y(X)=A""XxTA

for all X € Mg(k), i.e. ¢(fv,w) = q(v,v(f)w) for all f € Mg(k) and all v,w €
N. The involution v restricts to an involution of Ey, as for all 2,y € My(k),

we have
T Y\ a 27 —a‘lyTa
TNo z)~ 0 azTa )
It also sends Ry to itself, and induces an involution 5 on H°P ~ Ex /Ry that
coincides with the canonical involution of H°P.

We claim that ¢ : N x N — k is a G—quadratic form. To check this, it suffices

to show that q(gmv, gmw) = ¢(v,w) for all v,w € N and for all m = 1,2,3.
Since p(am) = an, for all m = 1,2,3, we have

Iam_Iam_1
Mo 1) Vo 1

4(gmv, gmw) = q(v,Y(gm)gmw) = q(v, w)

and hence

for all m = 1,2,3 and all v,w € N. Thus ¢ is a G—quadratic form, and by
construction, the involution of E induced by ¢ is the restriction of vy to Ey.
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3.3. TWO QUATERNION ALGEBRAS

Let H; and Hs be two quaternion algebras over k. By the construction of 3.2,
we obtain two indecomposable k[G]-modules N7 and N». Set Ey = Ey, and
Ey = E,. Let R; be the radical of E; fori = 1,2, and set E; = E;/R;. We also
obtain G—quadratic spaces ¢; : N; X N; — k inducing involutions ~; : E; — F;
such that the involutions 7, : E; — E; coincide with the canonical involution
of H?, for all i =1,2.

Let us consider the tensor product (N, q) = (N1, ¢1) Qk (N2, ¢2). Then (N, q) is
a G x G—quadratic space. Set E' = Endyjgxq)(N1 ® Na). Then E ~ Ey ® Es.
Let I be the ideal of E generated by Ry and Rs. Then there is a natural
isomorphism f : F1 ® By — E with f(I) = Rg, where Rg is the radical of E.
Set E = E/Rg. Then E ~ E; ® By ~ H{® @ H5P.

Set v = 1 ® v2. Then v : E — FE is the involution induced by the G x G-
quadratic space (NV, ). We obtain an involution 7 : E — E, and 7 = 7, ® 7,.
Let us recall that E; = H 7P for i = 1,2, and that 7, is the canonical involution
of H;P. Hence 7 : E — E is an orthogonal involution.

3.4. A COUNTER-EXAMPLE TO THE HASSE PRINCIPLE

Suppose now that k is a global field of characteristic p, with p > 2, and suppose
that H; is ramified at exactly two places v;, v] of k, such that vy, v], vs, v} are
all distinct. We have H{® ® Hy" ~ M5(Q) where Q is a quaternion division
algebra over k, and @ is ramified exactly at the places vy, v}, v2, v of k. Recall
that the involution ¥ : M3(Q) — M2(Q) is the tensor product of the canonical
involutions of H;P. In particular, 7 is of orthogonal type. Note that at all
v € X, one of the algebras Hy¥ or Hy® is split. This implies that at all
v € X, the involution 7 is hyperbolic.

Let § : @ — @ be an orthogonal involution of the division algebra @. Then
% is induced by some hermitian space h : Q2 x Q% — @ with respect to the
involution 8. As for all v € ¥, the involution 7 is hyperbolic at v, the hermitian
form h is also hyperbolic at v. By lemma 1.1 the set of isomorphism classes
of hermitian spaces on Q2 is in bijection with the set H(E,7), the hermitian
space (@2, h) corresponding to the element [1] € H(E,7).

Let (Q2, h') be a hermitian space which becomes isomorphic to (Q?, h) over Q,
for all v € 3y, but is not isomorphic to (Q2, h) over @ (this is possible by [Sch

85, 10.4.6]). Let u € E" such that [u] € H(E,7) corresponds to (Q*,h) by the
bijection of lemma 1.1. Then [u] # [1] € H(E,7), and the images of [u] and [1]
coincide in [[, ey, H(Ey,7).

Recall that H(E,~) is in bijection with the isomorphism classes of (G x G)-
quadratic forms over N, the element [1] € H(E,~) corresponding to the iso-

morphism class of (N, q). Let 7 : E — E be the projection, and let % € E° be

DOCUMENTA MATHEMATICA 18 (2013) 383-392



HASSE PRINCIPLE FOR G-QUADRATIC FORMS 391

such that 7(@) = u (cf. lemma 1.1). Let (N, ¢') be a (G x G)—quadratic form
corresponding to @. The diagram

HE ) L [lew, HE7)
1

I

— i = -
H(an/) — HvGEk H(Eva’y)a

is commutative, and the vertical maps are bijective by [BPS 13, lemma 3.7.3].
Hence (N, q) and (N, q’) are become isomorphic over all the completions of &,
but are not isomorphic over k.
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