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Abstract. A collection of n distinct hyperplanes Li = {li = 0} ⊂
P
n−1, the (n − 1)-dimensional projective space over an algebraically

closed field of characteristic not equal to 2, is a polar simplex of a
smooth quadric Qn−2 = {q = 0}, if each Li is the polar hyperplane
of the point pi =

⋂

j 6=i Lj , equivalently, if q = l21 + . . .+ l2n for suitable
choices of the linear forms li. In this paper we study the closure
V PS(Q,n) ⊂ Hilbn(P̌

n−1) of the variety of sums of powers presenting
Q from a global viewpoint: V PS(Q,n) is a smooth Fano variety of
index 2 and Picard number 1 when n < 6, and V PS(Q,n) is singular
when n ≥ 6.
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1. Introduction

Let Q = {q = 0} be a (n − 2)-dimensional smooth quadric defined over the
complex numbers, or any algebraically closed field of characteristic not equal to
2. We denote the projective space containing Q by P̌

n−1 because its dual space
P
n−1 plays the major role in this paper. A collection L1 = {l1 = 0}, . . . , Ln =

{ln = 0} of n hyperplanes is a polar simplex iff each Li is the polar of the point
pi =

⋂

j 6=i Lj, equivalently, iff the quadratic equation

q =

n
∑

i=1

l2i

holds for suitable choices of the linear forms li defining Li. In this paper we
study the collection of polar simplices, or equivalently, the variety of sums of
powers presenting q from a global viewpoint.
We may regard a polar simplex as a point in Hilbn(P

n−1). Let V PS(Q,n) ⊂
Hilbn(P

n−1) be the closure of the variety of sums of n squares presenting Q.
The first main result is:

Theorem 1.1. If 2 ≤ n ≤ 5, then V PS(Q,n) is a smooth rational
(

n
2

)

-
dimensional Fano variety of index 2 and Picard number 1. If n ≥ 6, then
V PS(Q,n) is a singular rational

(

n
2

)

-dimensional variety.

If n = 2, then V PS(Q,n) = P
1, and if n = 3, then V PS(Q,n) is a rational

Fano threefold of index 2 and degree 5 (cf.[Muk92]).
The quadratic form defines a collineation q : P̌n−1 → P

n−1, let q−1 : Pn−1 →
P̌
n−1 be the inverse collineation, and Q−1 = {q−1 = 0} ⊂ P

n−1 the corre-

sponding quadric. Consider the double Veronese embedding Q−1 → P
(n+1

2 )−2,
and let TQ−1 be the image by the Gauss map of tangent spaces Q−1 →
G(n− 1,

(

n+1
2

)

− 1). Our second main result is:

Theorem 1.2. V PS(Q,n) has a natural embedding in the Grassmannian va-
riety G(n−1,

(

n+1
2

)

−1) and contains the image TQ−1 of the Gauss map of the

quadric Q−1 in its Veronese embedding. When n = 4 or n = 5. the restriction
of the Plcker line bundle generates the Picard group of V PS(Q,n), and the
degree is 310, resp. 395780.

We denote the coordinate ring of Pn−1 by S = C[x1, . . . , xn] and the coordinate
ring of the dual P̌n−1 by T = C[y1, . . . , yn]. In particular S1 = (T1)

∗, so we
may set Pn−1 = P(T1), the projective space of 1-dimensional subspaces of T1
with coordinate functions in S, and P̌

n−1 = P(S1) with coordinate functions in
T . Let q ∈ T = C[y1, . . . , yn] be a quadratic form defining the smooth (n− 2)-
dimensional quadric Q ⊂ P̌

n−1 = P(S1). Regard [q] as a point in P(T2) and
consider the Veronese variety V2 ⊂ P(T2) of squares,

V2 = {[l2] ∈ P(T2)|l ∈ P(T1)}.

Then a polar simplex to Q is simply a collection of n points on V2 whose
linear span contains [q]. Any length n subscheme Γ ⊂ V2 whose span in P(T2)

Documenta Mathematica 18 (2013) 469–505



Variety of Polar Simplices 471

contains [q] is called an apolar subschemes of length n to Q. The closure
V PS(Q,n) of the polar simplices in Hilbn(P(T1)) consists of apolar subschemes
of length n. We denote by V APS(Q,n) the subset of Hilbn(P(T1)), with
reduced scheme structure, parameterizing all apolar subschemes of length n to
Q. Our third main result is:

Theorem 1.3. The algebraic set V APS(Q,n) is isomorphic to the complete
linear section

V APS(Q,n) = 〈TQ−1〉 ∩G(n− 1, T2/q) ⊂ P(∧n−1(T2/q))

in the Plücker space. For n ≤ 6 the two subschemes V PS(Q,n) and
V APS(Q,n) coincide. For n ≥ 24, the scheme V APS(Q,n) has more than
one component.

Notice that we do not claim that the linear section 〈TQ−1〉 ∩ G(n − 1, T2/q)
is reduced, only that its reduced structure coincides with V APS(Q,n). The
linear span 〈TQ−1〉 has dimension

(

2n−1
n−1

)

−
(

2n−3
n−2

)

−1, while the Grassmannian

has dimension (n−1)
(

n
2

)

in
((n+1

2 )−1

n−1

)

-dimensional Plücker space. So this linear

section is far from a proper linear section when n ≥ 4, i.e. the codimension
of V APS(Q,n) in the Grassmannian is much less than the codimension of its
linear span in the Plücker space.

We find a covering of V APS(Q,n) by affine subschemes V aff
h (n) that are con-

tractible to a point [Γp] ∈ V PS(Q,n) (Lemma 5.3). Therefore the apolar sub-
schemes Γp play a crucial point. Let us explain what they are: The projection of
the Veronese variety V2 ⊂ P(T2) from [q] ∈ P(T2) is a variety V2,q ⊂ P(T2/q).
Since a polar simplex to Q is a collection on n points on V2 whose span contains
[q], the variety V SP (Q,n) is naturally embedded in and in fact coincides with
the variety of (n− 2)-secant spaces of the projected Veronese variety V2,q. The
double Veronese embedding of Q−1 is a linearly normal subvariety in V2,q that
spans P(T2/q). For each point p ∈ Q−1 consider the tangent space to Q−1 in
this embedding. This tangent space intersects V2,q along the subscheme Γp,
and belong to the boundary of variety of (n− 2)-secant spaces of V2,q.

The affine subscheme V aff
h (n) is contractible to Γp, but depend only on a

hyperplane: It consists of the apolar subschemes that do not intersect a tangent
hyperplane h to Q−1. The point p is simply a point on Q−1 that does not lie
in this hyperplane.

Our computations show that the affine scheme V aff
h (n) and certain natural

subschemes has particularly interesting structure: V aff
h (n) is isomorphic to

an affine space when n < 6 while V aff
h (6) is isomorphic to a 15-dimensional

cone over the 10-dimensional spinor variety (Corollary 5.16). Why this spinor
variety appears is quite mysterious to us. Recall that Mukai showed that a
general canonical curve of genus 7 is a linear section of the spinor variety. Let
V loc
p (n) ⊂ V APS(Q,n) be the subscheme of apolar subschemes in V APS(Q,n)

with support at a single point p ∈ Q−1. The subscheme V loc
p (n) is naturally

contained in V sec
p (n), the variety of apolar subschemes in V aff

h (n) that contains
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the point p. We compute these subschemes with Macaulay2 [GS] when n < 6
and find that V loc

p (5) is isomorphic to a 3-dimensional cone over the tangent
developable of a rational normal sextic curve. This cone is a codimension 3
linear section of the scheme V sec

p (5), which is isomorphic to a 6-dimensional
cone over the intersection of the Grassmannian G(2, 5) with a quadric. Mukai
showed that a general canonical curve of genus 6 is a linear section of the
intersection of G(2, 5) with a quadric. The appearances in the cases n = 5, 6 of
a natural variety whose curve sections are canonical curves is both surprising
and unclear to us. The computational results are summarized in Table 1 in
Section 5.
By the very construction of polar simplices, it is clear that V PS(Q,n) has
dimension

(

n
2

)

. On the other hand, the special orthogonal group SO(n, q) that
preserves the quadratic form q, acts on the set of polar simplices: If we assume
that the symmetric matrix of q with respect to the variables in T is the identity
matrix, then regarding SO(n, q) as orthogonal matrices the rows define a polar
simplex. Matrix multiplication therefore defines a transitive action of SO(n, q)
on the set of polar simplices. By dimension count, this action has a finite
stabilizer at a polar simplex. This stabilizer is the subgroup H ⊂ SO(n, q)
of rotational symmetries of the hypercube [−1, 1]n ⊂ Rn of order 2n−1 · n! as
suggested by an anonymous referee. We get

Proposition 1.4. V PS(Q,n) is a compactification of the group SO(n, q)/H.

The linear representation of SO(n, q) on T2 decomposes

T2 = 〈q〉 ⊕ T2,q,

where the hyperplane P(T2,q) intersect the Veronese variety V2 along the
Veronese image of Q−1. Therefore we may identify T2/q = T2,q and the
projection from [q]: P(T2) 99K P(T2,q) is an SO(n, q)-equivariant projection.
Q−1 ⊂ P(T2,q) is a closed orbit, and similarly the image TQ−1 of the Gauss
map is a closed orbit for the induced representation on the Plücker space of
G(n − 1, T2,q). The linear span of this image is therefore the projectivization
of an irreducible representation of SO(n, q). The set of polar simplices form
an orbit for the action of SO(n, q), so the linear span of V PS(Q,n) is also the
projectivization of an irreducible representation of SO(n, q). Therefore

V PS(Q,n) ⊂ 〈TQ−1〉 ∩ G(n− 1, T2,q).

We show that the intersection 〈TQ−1〉∩ G(n−1, T2,q) parameterizes all apolar
subschemes of length n, hence Theorem 1.1.
The organization of the paper follows distinct approaches to V PS(Q,n). To
start with we introduce the classical notion of apolarity and regard polar sim-
plices as apolar subschemes in P(T1) of length n with respect to q. We use syzy-
gies to characterize these subschemes among elements of the Hilbert scheme. In
fact, polar simplices are characterized by their smoothness, the Betti numbers
of their resolution, and their apolarity with respect to q. Allowing singular
subschemes, we consider all apolar subschemes of length n. We show in Sec-
tion 2 that these subschemes naturally appear in the closure V PS(Q,n) of the
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set of polar simplices in the Hilbert scheme. For n > 6 there may be apolar
subschemes of length n that do not belong to the closure V PS(Q,n) of the
smooth ones. In fact, we show in Section 2 that at least for n ≥ 24, there are
nonsmoothable apolar subschemes of length n, i.e. that V PS(Q,n) is not the
only component of V APS(Q,n).
The variety V PS(Q,n), in its embedding in G(n − 1, T2,q), has order one,
i.e. through a general point in P(T2,q) there is a unique (n − 2)-dimensional
linear space that form the span of an apolar subscheme Γ of length n. This
is a generalization of the fact that a general symmetric n × n matrix has n
distinct eigenvalues. In Section 3 we use a geometric approach to characterize
the generality assumption.
The fact that V PS(Q,n) has order one, means that it is the image of a rational
map

γ : P(T2,q) 99K G(n− 1, T2,q).

In Section 4 we use a trilinear form introduced by Mukai to give equations for
the map γ. With respect to the variables in T we may associate a symmetric
matrix A to each quadratic form q′ ∈ T2,q. The Mukai form associates to q′ a
space of quadratic forms in S2 that vanish on all the projectivized eigenspaces
of the matrix A. For general q′ these quadratic forms generate the ideal of the
unique common polar simplex of q and q′. This is Proposition 4.2. The Mukai
form therefore defines the universal family of polar simplices, although it does
not extend to the whole boundary. Common apolar subschemes to q and q′,
when q′ has rank at most n− 2, form the exceptional locus of the map γ.
We do not compute the image of γ in G(n − 1, T2,q). Instead we compute
affine perturbations of [Γp] in G(n − 1, T2,q) that correspond to apolar sub-

schemes to Q. These perturbations form the affine subschemes V aff
h (n) that

cover V APS(Q,n). In Section 5 we make extensive computations of these affine
subschemes. Each once of them is contractible to a point [Γp] on the subvariety
TQ−1 ⊂ V PS(Q,n). The question of smoothness of V PS(Q,n) is reduced to

a question of smoothness of the affine scheme V aff
h (n) at the point [Γp]. For

n ≤ 5 we show that such a point is smooth, while for n ≥ 6, it is singular. The
main result of Section 5 is however Theorem 1.3, that V APS(Q,n) is a linear
section of the Grassmannian.
In the final Section 6 we return to the geometry of V PS(Q,n) and compute
the degree by a combinatorial argument for any n. The Fano-index is com-
puted using the natural Pn−2-bundle on V PS(Q,n), obtained by restricting
the incidence variety over the Grassmannian, and its birational morphism to
P(T2,q).
We thank Tony Iarrobino for sharing his insight on Artinian Gorenstein rings
with us, Francesco Zucconi for valuable comments on a previous version of this
paper.
Let us briefly summarize the notation:

• C denotes the field of complex numbers.
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• q ∈ T2 is a non-degenerate quadratic form, and defines a collineation
q : S1 → T1 and a linear form q : S2 → C.

• Q is the quadratic hypersurface {q = 0} ⊂ P(S1).
• q−1 ∈ S2 is a quadratic form, that defines the collineation q−1 : T1 →
S1 inverse to q and a linear form q−1 : T2 → C.

• Q−1 is the quadratic hypersurface {q−1 = 0} ⊂ P(T1).
• q⊥ ⊂ S2 is the kernel of the linear form q : S2 → C.
• T2,q is the kernel (q−1)⊥ of the linear form q−1 : T2 → C

• πq : P(T2) 99K P(T2,q) is the projection from [q] ∈ P(T2), and V2,q ⊂
P(T2,q) is the image under this projection of the Veronese variety V2 ⊂
P(T2).

2. Apolar subschemes of length n

We follow the approach of [RS00]: The apolarity action is defined as the action
of S = C[x1, . . . , xn] as polynomial differential forms on T = C[y1, . . . , yn] by
setting xi =

∂
∂yi

. This makes the duality between S1 and T1 explicit and, in

fact, defines a natural duality between Ti and Si. The form q ∈ T2 define the
smooth (n− 2)-dimensional quadric hypersurface

Q = { [
∑

aixi] | (
∑

ai
∂

∂yi
)2(q) = 0} ⊂ P(S1).

Apolarity defines a graded Artinian Gorenstein algebra associated to Q:

AQ = C[x1, . . . , xn]/(q
⊥)

where
q⊥ = {D ∈ S2 = C[x1, . . . , xn]2|D(q) = 0}.

A subscheme Y ⊂ P(T1) is apolar to Q, or equivalently apolar to q, if
the space of quadratic forms in its ideal IY,2 ⊂ q⊥. The apolarity lemma
(cf.[RS00] 1.3) says that any smooth Γ, [Γ] ∈ Hilbn(P(T1)) is a polar simplex
with respect to Q ⊂ P(S1) = P̌

n−1 if and only if IΓ,2 ⊂ q⊥ ⊂ S2, i.e. Γ is
apolar to Q. We drop, for the moment, the smoothness criterium and consider
any [Γ] ∈ Hilbn(P(T1)), such that Γ is apolar to Q. Notice that since Q is
nonsingular, Γ is nondegenerate. But more is known: The following are the
graded Betti numbers of AQ and Γ, given in Macaulay2 notation [GS].

Proposition 2.1. a) For a smooth quadric Q ⊂ P̌
n−1 the syzygies of the

apolar Artinian Gorenstein ring AQ are

1 − . . . − . . . − −

− n−1
n+1

(

n+2
2

)

. . . k(n−k)
n+1

(

n+2
k+1

)

. . . n−1
n+1

(

n+2
n

)

−
− − . . . − . . . − 1

b) A zero-dimensional nondegenerate scheme Γ ⊂ P
n−1 of length n has syzygies

1 − . . . − . . . − −
−

(

n
2

)

. . . k
(

n
k+1

)

. . . (n− 1)
(

n
n

)

−

Proof. Eg. [Beh81] and [ERS81] �
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Corollary 2.2. The natural morphism

V APS(Q,n) → G(

(

n

2

)

, q⊥); Γ 7→ IΓ,2 ⊂ q⊥

is injective. Equivalently, there is a natural injective morphism

V APS(Q,n) → G(n− 1, T2,q); Γ 7→ I⊥Γ,2 ⊂ T2,q

into the variety of (n − 2)-dimensional subspaces of P(T2,q) that intersect the
projected Veronese variety V2,q in a scheme of length n. In particular, the
Hilbert scheme and Grassmannian compactification in G(n − 1, T2,q) of the
variety of polar simplices coincide.

Proof. Apolarity defines a natural isomorphism q⊥ ∼= T ∗
2,q. Therefore the sub-

space IΓ,2 ⊂ q⊥ defines a (n− 1)-dimensional subspace I⊥Γ,2 ⊂ T2,q. The inter-

section P(I⊥Γ,2) ∩ V2,q with the projected Veronese variety is precisely πq(Γ).

The variety V PS(Q,n) ⊂ Hilbn(P
n−1) is the closure of the set of polar sim-

plices inside the set of apolar subschemes of length n. The former set is irre-
ducible, while the latter set is a closed variety defined by the condition that
the generators of the ideal of the subscheme lie in q⊥. By Proposition 2.1, the
map Γ 7→ IΓ,2 ⊂ q⊥ extends to all of V PS(Q,n) as an injective morphism. �

We relate apolarity to polarity with respect to a quadric hypersurface. The
classical notion of polarity is the composition of the linear map q−1 with apo-
larity: The polar to a point [l] ∈ P(T1) with respect to Q−1 is the hyperplane
hl = P(q−1(l)⊥) ⊂ P(T1), where

(q−1(l))⊥ = {l′ ∈ T1|l
′(q−1(l)) = q−1(l · l′) = 0}.

In particular, the polar hyperplane to l contains l if and only if q−1(l2) = 0,
i.e. the point [l] lies on the hypersurface Q−1.
Let Γ ⊂ P(T1) be a length n subscheme that contains [l] and is apolar to Q.
The subscheme Γ′ ⊂ Γ residual to [l] is defined by the quotient IΓ′ = IΓ : (l

⊥).
Since Γ is non degenerate, Γ′ spans a unique hyperplane. This hyperplane is
defined by a unique linear form u′ ∈ S1, and is characterized by the fact that
u′ · u(q) = u′q(u) = 0 for all u ∈ l⊥, so it is the hyperplane P(q(l⊥)). But

l′ ∈ q(l⊥) ⇔ 0 = q−1(l′)l = q−1(l · l′) = q−1(l)l′ ⇔ l′ ∈ (q−1(l))⊥,

so P(q(l⊥)) is the polar hyperplane P(q−1(l)⊥) to [l] with respect to Q−1.
Thus the subscheme Γ′ residual to [l] in Γ spans the polar hyperplane to [l]
with respect to Q−1.

Lemma 2.3. A component of an apolar subscheme has support on Q−1 if and
only if this component is nonreduced.

Proof. If a component is a reduced point, the residual is contained in the polar
hyperplane to this point, so by nondegeneracy the polar hyperplane cannot
contain the point. If a component is nonreduced, the residual to the point
supporting the component lies in the polar hyperplane to this point, so the
point is on Q−1. �
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Each component Γ0 of an apolar subscheme to q is apolar to a quadratic form
q0 defined on the span of Γ0 and uniquely determined as a summand q. This
is the content of the next proposition.

Proposition 2.4. Let Γ = Γ1 ∪ Γ2 be an apolar subscheme of length n to q
that decomposes into two disjoint subschemes Γ1 and Γ2 of length n1 and n2.
Let U1 ⊂ T1 and U2 ⊂ T1 be subspaces such that Γi spans P(Ui). Then there
is a unique decomposition q = q1 + q2 with qi ∈ (Ui)

2.
Furthermore, subschemes Γ1 ⊂ P(U1) and Γ2 ⊂ P(U2) of length n1 and n2 are
apolar to q1 and q2 respectively, if and only if Γ1 ∪ Γ2 is apolar to q.

Proof. Since Γ is nondegenerate, T1 = U1 ⊕ U2. Let U⊥
i ⊂ S1 be the space

of forms vanishing on Ui via apolarity. Then U⊥
1 are natural coordinates on

P(U2) and likewise, U⊥
2 are natural coordinates on P(U1). Let I1 ⊂ (U⊥

2 )2 be
the quadratic forms generating the ideal of Γ1 in P(U1), and likewise I2 the
quadratic forms generating the ideal of Γ2 inP(U2). Then I1⊕I2⊕(U⊥

1 )·(U⊥
2 ) ⊂

S2 is the space of quadratic forms in the ideal of Γ.
Consider the intersections, q⊥2 = q⊥ ∩ (U⊥

1 )2 and q⊥1 = q⊥ ∩ (U⊥
2 )2. Since q is

non degenerate, q⊥ does not contain either of the subspaces (U⊥
i )2. Therefore

q⊥2 is a codimension one subspace in (U⊥
1 )2 and is apolar to a quadratic form

q2 ∈ (U2)
2, unique up to scalar. Similarly, q⊥1 is apolar to a unique quadratic

from q1 ∈ (U1)
2. The space of quadratic forms q⊥1 ⊕q⊥2 ⊕(U⊥

1 )·(U⊥
2 ) is contained

in q⊥ and is apolar to the subspace 〈q1, q2〉 ⊂ T2. Therefore, there are unique
nonzero coefficients c1 and c2 such that q = c1q1 + c2q2. Furthermore, each Γi
is apolar to qi, i = 1, 2.
It remains only to show the last statement. Assume Γ1 and Γ2 are apolar to q1
and q2 respectively. Then Γ1∪Γ2 is non degenerate of length n. Let I1 ⊂ (U⊥

2 )2

be the generators of the ideal of Γ1 and I2 ⊂ (U⊥
1 )2 be the generators of the

ideal of Γ2. Then the quadratic forms in

I1 ⊕ I2 ⊕ (U1)
⊥ · (U2)

⊥

all lie in the ideal of Γ1 ∪Γ2. The dimension of this space of quadratic forms is
(

n1

2

)

+

(

n2

2

)

+ n1 · n2 =

(

n

2

)

,

so they generate the ideal of Γ1 ∪ Γ2. Since all these forms are apolar to
q = q1 + q2, the subscheme Γ1 ∪ Γ2 is apolar to q. �

Remark 2.5. By Proposition 2.4, the orbits of SO(n, q) in V ASP (Q,n) are
characterized by their components.

We shall return to the set of local apolar subschemes V loc
p (n) supported at a

point p ∈ Q−1 in section 5.
Here we show that apolar subschemes of length n to q are all locally Gorenstein.

Lemma 2.6. Let B be a local Artinian C = B/mB-algebra of length n and
Φ : SpecB → A

n−1 ⊂ P
n−1 the reembedding given by C-basis of mB. The

subscheme Im Φ is apolar to a full rank quadric if and only if B is Gorenstein.
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Proof. Let φ : A = C[x1, .., xn−1] → B be the ring homomorphism corre-
sponding to Φ. Thus φ is defined by a linear k-isomorphism φ1 = A≤1 =
〈1, x1, ..., xn−1〉 → B. Let π : B → (0 : mB) be the projection onto the socle of
B, let ψ : (0 : mB) → C be a linear form and consider the bilinear form

A×A
φ·φ
−−→ B

π
−→ (0 : mB)

ψ
−→ C,

where the first map is the composition of φ with multiplication. This map
extends to the tensor product A⊗A, and the restriction then to the symmetric
part

(A≤1)
2 ⊂ A≤1 ⊗A≤1

defines a linear form
βψ : (A≤1)

2 → C

and an associated quadratic form

qψ : A≤1 → C.

Clearly the kernel of βψ generate an ideal in A that is apolar to qψ. On the
other hand, B is Gorenstein if and only if the socle is 1-dimensional. So for the
lemma, it suffices to prove that qψ is non degenerate, i.e. has rank n, if and
only if the linear form ψ is an isomorphism.
But qψ is degenerate if and only if the kernel of βψ contains x · A≤1 for some
nonzero element x ∈ A≤1. Now, βψ(x · A≤1) = 0 if and only if φ(x) · B ∩ (0 :
mB) ⊂ kerψ. Since B is Artinian, φ(x) · B ∩ (0 : mB) is a nonzero subspace
of (0 : mB), so it suffices to consider elements x, which map to the socle. But
then the kernel of βψ contains x · A≤1 precisely when x is in the kernel of ψ
and the lemma follows. �

Corollary 2.7. V APS(Q,n) is reducible for n ≥ 24

Proof. Consider a general graded Artinian Gorenstein algebra B of embed-
ding dimension e and socle in degree 3. The length of B is 2e + 2. By the
Macaulay correspondence [Mac16], such algebras are in bijection with homo-
geneous forms, up to scalars, of degree 3 in e variables, hence depends on
(

e−1+3
3

)

= (e + 2)(e + 1)e/6− 1 variables. The family of smoothable algebras
have dimension at most e(2e + 2)− 1 So for e + 2 > 2 · 6 a general algebra B
cannot be smoothable, for trivial reason. In particular, e = 11 hence n = 24 is
enough. �

We do not believe the bound n ≥ 24 is sharp.

3. A rational parameterization

In this section we show that through a general point in P(T2,q) there is a unique
n-secant (n− 2)-space to the projected Veronese variety V2,q. Furthermore, we
give a characterization of the points for which there are more than one, i.e.
infinitely many n-secant (n− 2)-spaces to V2,q.
If we choose basis a for T1 such that the symmetric matrix associated to q is
the identity matrix, then the eigenvectors of the symmetric matrix associated
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to a general quadric q′ are distinct. Thus, the symmetric matrices associated
to q and q′ have a unique set of n common 1-dimensional eigenspaces. Hodge
& Pedoe [HP52, XIII.8,Theorem II] and Gantmacher [Gan59, Chapter XII,
Theorem 3] found canonical forms for any pair of quadratic forms q, q′ as soon
as one of them is nonsingular. Here we are concerned with the simplex formed
by the set of common eigenspaces and give a geometric formulation and proof.

Proposition 3.1. Let q, q′ ∈ T2 be two general quadrics. Then there exists a
unique n−simplex {L1, . . . , Ln} polar to both q and q′.

Proof. By the above, it suffices to show the relation between the collection of
common eigenspaces of the associated symmetric matrices and the common
simplex. So we assume that q, q′ are quadrics of rank n and that

q =

n
∑

i=1

l2i , and q′ =

n
∑

i=1

λil
2
i ,

where the λi are pairwise distinct coefficients and Li = {li = 0}, i = 1, . . . , n.
Let

qi = λiq − q′, i = 1, . . . , n.

Then the qi are precisely the quadratic forms of the pencil generated by q and
q′ that have rank less than n. The rank of qi is exactly n− 1 since λi 6= λj for
i 6= j, so qi ∈ (Ui)

2 for a unique rank n− 1 subspace Ui ⊂ T1. The intersection
∩i6=jUi is the 1-dimensional subspace generated by the nonzero linear form lj .
These forms are therefore determined uniquely by the pencil generated by q
and q′. �

A precise condition for generality in the proposition is given by rank:

Lemma 3.2. A pencil of quadratic forms in n variables have a unique common
apolar subscheme of length n if and only if every quadric in the pencil have rank
at least n − 1 and some, hence the general quadric has rank n. Furthermore
the unique apolar subscheme is curvilinear, i.e. embeddable in a smooth curve.

Proof. Let

〈q′ + λq〉λ∈A1
C

be a pencil with discriminant ∆ ⊂ A
1
C
, a scheme of length n. Consider the

incidence

{(D,λ)|D(q′ + λq) = 0} ⊂ P(T1)×A
1
C

with projections pT and pC. Clearly the fibers of each projection are all lin-
ear. Now as in the proof of the proposition, a general length n subscheme of
pT (p

−1
C

(∆) is a common apolar subscheme to the pencil of quadratic forms.

Therefore, the common apolar subscheme is unique if and only if pT (p
−1
C

(∆)
is finite, i.e. the corank of any quadric in L is at most 1. In this case both
projections restricted to the incidence are isomorphisms onto their images. In
particular the apolar subscheme is isomorphic to ∆, so it is curvilinear. �
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Remark 3.3. The ideal of the curvilinear image Γ of the map

Spec C[t]/(tn) → P
n−1

t 7→ (1 : t : t2 : . . . : tn−1),

is generated by the 2× 2 minors of
(

x1 x2 . . . xn−1 xn
x2 x3 . . . xn 0

)

,

so the Γ is apolar to the maximal rank quadric
n
∑

k=1

ykyn+1−k.

This remark generalizes to a partial converse of Lemma 3.2.

Lemma 3.4. Any curvilinear nondegenerate zero-dimensional subscheme Γ ⊂
P
n−1 of length n is apolar to a quadric Q ⊂ P̌

n−1 of maximal rank.

Proof. Let Γ be a nondegenerated curvilinear subscheme with r components of
length n1, . . . , nr such that n1+ . . .+nr = n. Then Γ is projectively equivalent
to Γ′ = Γ1 ∪ . . . ∪ Γr, where Γi is the image of

Spec C[t]/(tni) → P(Cni) ⊂ P(Cn1 ⊕ . . .⊕ C
nr)

t 7→ (1 : t : t2 : . . . : tni−1),

where the nonzero coordinates in the image are xi,1, . . . , xi,ni
. The ideal of Γ′

is generated by the 2× 2 minors of the r matrices
(

x(1,1) . . . x(1,n1−1) x(1,n1)

x(1,2) . . . x(1,n1) 0

)

· · ·

(

x(r,1) . . . x(r,nr−1) x(r,nr)

x(r,2) . . . x(r,nr) 0

)

,

and the products

x(i,ki)x(j,kj) for 1 ≤ i < j ≤ r, 1 ≤ ki ≤ ni, 1 ≤ kj ≤ nj .

So Γ′ is apolar to the maximal rank quadric
r

∑

i=1

ni
∑

k=1

y(i,k)y(i,ni+1−k).

�

More important to us will be that rank n quadrics have apolar subschemes of
length n that are not curvilinear (when n > 3).

Remark 3.5. Consider the rank n quadric

q = 2y1yn + y22 + . . .+ y2n−1.

The subscheme Γp ⊂ P
n−1 defined by

(x21, x1x2, x
2
2 − x1xn, x1x3, . . . , x

2
n−1 − x1xn),

has degree n and is apolar to q, but it is clearly not curvilinear when n > 3. It
contains the tangency locus of the quadric {q−1 = 1

2x1xn+
1
4x

2
2+ . . .+

1
4x

2
n−1 =
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0} at the point [0 : 0 : ... : 1]. The tangency locus has length n−1 and is defined
by

(x1, (x
2
2 − x1xn, x2x3, ..., x

2
n−1 − x1xn)).

The subscheme Γp is itself not contained in the tangent hyperplane {x1 = 0},
but it is the unique apolar subscheme to q that contains the first order neigh-
borhood of [0 : 0 : ... : 1] on {q−1 = 0}. It will be the focus of our attention in
Section 5.

It follows immediately from Proposition 3.1 that there is a rational and domi-
nant map

γ : P(T2,q) 99K V PS(Q,n) ⊂ G(n− 1, T2,q)

whose general fiber is a n-secant (n−2)-space to the projected Veronese variety
V2,q. In the next section we find equations for this map.

4. The Mukai form

Mukai introduced in [Muk92] a trilinear form in his approach to varieties of
sums of powers of conics in particular, and to forms of even degree in general
(see also [Dol12, Sections 1.4 and 2.1.3]). In this section we show how this
form naturally gives equations for the map γ and for the universal family of
polar simplices. The main result of this section, Proposition 4.2, gives the
equations for the common apolar subscheme of length n of a pencil of quadrics
in n variables, whenever this subscheme is unique, cf. Lemma 3.2.
Both the quadratic form q ∈ T2 and the inverse q−1 ∈ S2 play a crucial role in
the definition of the Mukai form. Recall that the form q defines an invertible
linear map q : S1 → T1, and q

−1 defines the inverse map: q−1 : T1 → S1. In
coordinates, if q = (α1y

2
1 + ...+ αny

2
n), then q

−1 = ( 1
4α1

x21 + ...+ 1
4αn

x2n).
We will arrive at Mukai’s form from

τ ∈ Hom(∧2S1 ⊗ T2 ⊗ T2 ⊗ S2,C)

defined by

z1 ∧ z2 ⊗ q1 ⊗ q2 ⊗ α 7→ (z1(q1)z2(q2)− z2(q1)z1(q2))(α)

where f(g), as above, means f viewed as differential operator applied to g.
Interpreting ω = z1 ∧ z2 ∈ ∧2S1 ⊂ Hom(T1, S1), qj ∈ T2 ⊂ Hom(S1, T1) and
α ∈ S2 ⊂ Hom(T1, S1) the expression

(ω ⊗ q1 ⊗ q2 ⊗ α) 7→
1

2
trace (α ◦ q2 ◦ ω ◦ q1 − α ◦ q1 ◦ ω ◦ q2)

=
1

2
trace (ω ◦ q1 ◦ α ◦ q2 − α ◦ q1 ◦ ω ◦ q2)

gives an alternative description of τ . In fact f(g) = 1
2 (trace f ◦ g) holds for

f ⊗ g ∈ S2 ⊗ T2 ⊂ Hom(T1, S1)⊗Hom(S1, T1) and trace ((α ◦ q2) ◦ (ω ◦ q1)) =
trace ((ω ◦ q1) ◦ (α ◦ q2)). We now substitute α = q−1. Then 1

2 trace (ω ◦ q1 ◦
q−1 ◦ q2− q−1 ◦ q1 ◦ω ◦ q2) = 0 for q1 = q, and, since the first expression for τ is
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alternating on T2 ⊗ T2, we have 1
2 trace (ω ◦ q1 ◦ q−1 ◦ q2 − q−1 ◦ q1 ◦ω ◦ q2) = 0

for q2 = q as well. Thus τ induces a well defined trilinear form

τq ∈ Hom(∧2S1 ⊗ T2,q ⊗ T2,q,C)

on the quotient space T2,q = T2/〈q〉.
Since T ∗

2,q = q⊥ ⊂ S2 = T ∗
2 and

Hom(∧2S1 ⊗ T2,q ⊗ T2,q,C) ∼= Hom(T2,q,Hom(∧2S1, q
⊥))

we have a second interpretation of τq. With this interpretation, the image of
τq(q1) ∈ Hom(∧2S1, q

⊥) ⊂ Hom(∧2S1, S2) is defined by

ω 7→ [ω ◦ q1 ◦ q
−1 − q−1 ◦ q1 ◦ ω] ∈ q⊥ ⊂ S2 ⊂ Hom(T1, S1).

The form τ is alternating on T2⊗T2, so τ(ω, q′, q′, q−1) = 0 for every ω ∈ ∧2S1.
Therefore

τq(q
′)(∧2S1) ⊂ (q′)⊥.

If Q′ is the quadric {q′ = 0} ⊂ P(S1), we may therefore conclude:

Lemma 4.1. Any quadratic form in τq(q
′)(∧2S1) is apolar to both Q and Q′:

τq(q
′)(∧2S1) ⊂ q⊥ ∩ (q′)⊥.

�

Notice that the linear space of quadratic forms τq(q
′)(∧2S1) is not all of q

⊥ ∩
(q′)⊥. It is a special subspace of the intersection. Since τq(q) = 0, we have
τq(q

′) = τq(q
′ + λq) for any λ, so the space τq(q

′)(∧2S1) of quadratic forms
depends only on the pencil 〈q, q′〉.
If the pencil of quadratic forms 〈q, q′〉 ⊂ T2 contains no forms of corank at
least 2, then, by Lemma 3.2, there is a unique common apolar subscheme Γq′

of length n to q and q′. The significance of the form τq is

Proposition 4.2. Let q′ ∈ T2,q. Then the linear map

τq(q
′) : ∧2S → q⊥

is injective if and only if q and q′ have a unique common apolar subscheme of
length n. Furthermore, in this case the image generates the ideal in S of this
subscheme.

Proof. Our argument depends on several lemmas, in which we study
Im τq(q

′) ⊂ S2 by considering the symmetric matrices associated to these
quadratic forms with respect to a suitable basis. Thus, we choose coordinates
such that q = 1

2 (y
2
1 + y22 + ...+ y2n) and hence q−1 = 1

2 (x
2
1 + x22 + ...+ x2n). The

symmetric matrices of these quadratic forms with respect to the coordinate ba-
sis of T1 and S1 are both the identity matrix. We denote by A the symmetric
matrix of q′, i.e. q′ = 1

2 (y1, ..., yn)A(y1, ..., yn)
t. For a form ω ∈ ∧2S1 there

is similarly an associated skew symmetric matrix Λω. For a form l ∈ T1 we
denote by vl the column vector of its coordinates. The quadratic forms in the
image τq(q

′) are the forms associated to the symmetric bilinear forms

{ω ◦ q′ ◦ q−1 − q−1 ◦ q′ ◦ ω|ω ∈ ∧2S1},

Documenta Mathematica 18 (2013) 469–505



482 Kristian Ranestad and Frank-Olaf Schreyer

so their associated symmetric matrices are

{ΛωA−AΛω|ω ∈ ∧2S1}.

Lemma 4.3. Let [l] ∈ P(T1), then every quadric in τq(q
′)(∧2S) ⊂ q⊥ vanishes

at the point [l] if and only if there is a quadric qλ = q′ + λq for some λ ∈ C,
such that l lies in the kernel of the linear transformation qλ ◦ q−1 : T1 → T1.
Equivalently, in terms of matrices: If vl is the column coordinate vector of l,
then vtl (ΛωA−AΛω)vl = 0 for every ω ∈ ∧2S1 if and only if vl is an eigenvector
for the matrix A.

Proof. Note first that the matrix of the linear transformation qλ ◦ q−1 , with
respect to the coordinate basis of T1, is simply A + λI. Hence, the two parts
of the lemma are equivalent.
In the matrix notation, if vl is an eigenvector for A with eigenvalue λ, then

vtl (ΛωA−AΛω)vl = vtlΛωAvl − vtlAΛωvl

= vtlΛωλvl − λvtlΛωvl = 0,

so the if part follows.
Conversely, assume that

vtl (ΛωA− AΛω)vl = 0

for every skew symmetric n× n matrix Λω. Again

vtl (ΛωA−AΛω)vl = vtlΛωAvl − vtlΛωAvl,

and since A is symmetric and Λω is skewsymmetric, (vtlΛωAvl)
t = −vtlAΛωvl,

so we deduce that
vtlΛωAvl = 0.

But vtlΛωu = 0 for every skew symmetric matrix Λω only if u is proportional
to vl, so we conclude that A(vl) = λvl for some λ. �

Remark 4.4. A point l ∈ T1 lies in the kernel of qλ ◦ q−1 if and only if q−1(l)
lies in the kernel of qλ : S1 → T1. Equivalently, {qλ = 0} ⊂ P(S1) is a singular
quadric and [q−1(l)] ∈ P(S1) lies in its singular locus.

Corollary 4.5. τq(q
′) is injective only if 〈q, q′〉 contains no quadratic form

of rank less than n− 1.

Proof. If the quadratic form qλ = q′ + λq has rank less than n− 1, then there
are independent forms l, l′ ∈ T1 such that 〈q−1(l), q−1(l′)〉 is contained in the
kernel of qλ : S1 → T1. In particular, viewed as differential operators applied
to qλ,

q−1(l)(qλ) = q−1(l′)(qλ) = 0 ∈ T1.

Let
ω = q−1(l) ∧ q−1(l′) ∈ ∧2S1 ⊂ Hom(T1, S1).

Then

ω⊗ qλ⊗ q2 ⊗ q−1 7→ [q−1(l)(qλ) · q
−1(l′)(q2)− q−1(l′)(qλ) · q

−1(l)(q2)](q
−1) = 0

for every q2 ∈ T2, so τq(q
′)(ω) = 0 and τq(q

′) is not injective. �
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To complete the proof of Proposition 4.2, we assume that q and q′ have a unique
common apolar subscheme Γ of length n, i.e. by Lemma 3.2, no quadratic form
in 〈q, q′〉 has rank less than n− 1. We want to show that τq(q

′) is injective and
that the image generates the ideal of Γ.
Let Γ = Γ1 ∪ ... ∪ Γr be a decomposition of Γ into its connected components.
Then each Γi is a finite local curvilinear scheme. Let ni be the length of Γi. By
Proposition 2.4, there is a decomposition T1 = ⊕iUi such that each Γi ⊂ P(Ui).
Furthermore Ui has dimension ni and q and q′ have unique decompositions
q = q1 + ... + qr and q′ = q′1 + ... + q′r with qi, q

′
i ∈ (Ui)

2 ⊂ T2. Denote by
U ′
i = ⊕j 6=iUj , and let (U ′

i)
⊥ be the orthogonal subspace of linear forms in S1.

Then
∑

i

U⊥
i · (U ′

i)
⊥ ⊂ S2

generate the ideal of ∪iP(Ui) ⊂ P(T1).
The linear forms q−1(Ui) ⊂ S1 are natural coordinates on P(Ui). Denote
by IΓi,2 the quadratic forms in these coordinates in the ideal of Γi. Then
IΓi,2 ⊂ (q−1(Ui))

2 ⊂ S2 and the space of quadratic forms in the ideal of Γ is

IΓ,2 =
∑

i

IΓi,2 +
∑

i

U⊥
i · (U ′

i)
⊥ ⊂ S2.

We

Claim 4.6.

Im τq(q
′) ⊃

∑

i

IΓi,2 +
∑

i

U⊥
i · (U ′

i)
⊥.

If the claim holds, τq(q
′) is injective, since dim ∧2 S1 = dimIΓ,2 (=

(

n
2

)

), so
the equality Im τq(q

′) = IΓ,2 holds and the proof of Proposition 4.2 is complete.
We use matrices to prove the claim. To interpret the decomposition of q and
q′ in terms of matrices, we choose a basis for each Ui such that the symmetric
matrix associated to each qi is the ni × ni identity matrix. Let Ai be the
symmetric ni × ni matrix associated to q′i. The union of the bases for the Ui
form a basis for T1 with respect to which the symmetric matrix A of q′ has r
diagonal blocks Ai and zeros elsewhere.
The matrices Ai each have a unique eigenvalue λi, and these eigenvalues are
pairwise distinct. Furthermore, eachAi has a 1-dimensional eigenspace, so their
Jordan form has a unique Jordan block, and we may write Ai = λiIni

+ Bi
with Bi a nilpotent symmetric matrix. (See ([DZ04, Theorem 2.3]) for a nice
normal form for the matrices Bi.)
By extending each Ai with zeros to n × n matrices, we may write A =

∑

Ai.
The decomposition T1 = ⊕iUi is then defined by Ui = ker(λiI −A)ni ⊂ T1.
Denote by U ′

i = ⊕j 6=iUj . Then P(Ui) and P(U ′
i) have complementary di-

mension in P(T1). We shall use the techniques applied by Gantmacher in the
analysis of commuting matrices ([Gan59, Chapter VIII]) to show

Lemma 4.7. Let A be the symmetric matrix of the quadratic form q′ ∈ T2,q as
above. Let T1 = Ui ⊕ U ′

i be the decomposition associated to the eigenvalue λi.
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Then

U⊥
i · (U ′

i)
⊥ ⊂ Im τq(q

′) ⊂ S2.

Proof. Set d = ni and λ = λi and choose coordinates such that Uλ = 〈y1, ..., yd〉
and U ′

λ = 〈yd+1, ..., yn〉. Then (U ′
λ)

⊥ = 〈x1, ..., xd〉 and (Uλ)
⊥ = 〈xd+1, ..., xn〉.

Consider the matrixB of the quadratic form τq(q
′)(xi∧xj) with i ≤ d and j > d.

The skew symmetric matrix Λ(ij) of xi ∧ xj has (ij)-th entry 1, consequently
(ji)-th entry −1, and 0 elsewhere, and

B = Λ(ij)A−AΛ(ij).

The nonzero entries in Λ(ij)A are in positions (i, k) with k > d and (j, k) with
k ≤ d, while the nonzero entries in AΛ(ij) are in positions (k, i) with k > d and
(k, j) with k ≤ d. Therefore the quadratic form τq(q

′)(xi ∧xj) lies in the space

〈xaxb〉a≤d<b = (U ′
λ)

⊥ · (Uλ)
⊥.

A linear relation between these quadratic forms would correspond to a skew
symmetric matrix Λ with nonzero entries only in the rectangular block (ij), i ≤
d, j > d, such that ΛA − AΛ = 0. Write A as a sum A = Aλ + Aµ1

+ ... +
Aµs

where the µi are the eigenvalues of A distinct from λ. Let Λ be a skew
symmetric matrix and let Λλ,µi

be the rectangular submatrix with rows equal
to the nonzero rows of Aλ and columns equal to the nonzero columns of Aµi

.
Then the corresponding submatrix

(ΛA−AΛ)λ,µi
= Λλ,µi

Aµi
−AλΛλ,µi

.

So ΛA−AΛ = 0 only if Λλ,µi
Aµi

−AλΛλ,µi
= 0 for each µi.

Let µ be one of the µi, and assume for simplicity Uµ = 〈yd+1, ..., yd+e〉. Let Id
be the diagonal matrix with 1 in the d first entries and 0 elsewhere, and let Ie be
the diagonal matrix with 1 in the entries d+1, ..., d+ e and 0 elsewhere. Then
the special summand Aλ of A can be written as a sum Aλ = λId+Bd where Bd
is nilpotent of order d. Likewise, Aµ = µIe+Be where Be is nilpotent of order
e. So we may write A = λId +Bd + µIe +Be + A′, where A′ = A−Aλ −Aµ.
But then (ΛA−AΛ)λ,µ = 0 only if

Λλ,µAµ −AλΛλ,µ = 0,

i.e. when

Λλ,µ(µIe +Be)− (λId +Bd)Λλ,µ = 0.

This is equivalent to

(λ− µ)Λλ,µ = Λλ,µBe −BdΛλ,µ.

Multiplying both sides by (λ − µ) and substituting on the right hand side
(λ− µ)Λλ,µ with Λλ,µBe −BdΛλ,µ we get

(λ− µ)2Λλ,µ = (Λλ,µBe −BdΛλ,µ)Be −Bd(Λλ,µBe −BdΛλ,µ)

= (Λλ,µ(Be)
2 − 2BdΛλ,µBe + (Bd)

2Λλ,µ).

Iterating m = d+ e− 1 times we get
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(λ − µ)mΛλ,µ =
∑

s+t=m

(−1)s
(

s+ t

t

)

(Bd)
sΛλ,µ(Be)

t.

But on the right hand side either (Bd)
s = 0 or (Be)

t = 0 when s+ t = d + e,
so Λλ,µ = 0.
Thus Λλ,µi

= 0 for all i, and the symmetric matrices AΛij − ΛijA with
i ≤ d, j > d are linearly independent. The corresponding quadratic forms
therefore are linearly independent in the space 〈x1, ..., xd〉×〈xd+1, ..., xn〉. Since
the dimensions coincides, the quadratic forms span this space, and the lemma
follows. �

Next, we consider the case when the symmetric matrix A only has one eigen-
value. Thus we assume that Γ has only one component, the symmetric matrix
A of q′ has only one eigenvalue and up to scalars only one nonzero eigenvector.
Hence 〈q, q′〉 contains exactly one quadratic form of rank n− 1. In particular,
by Lemma 3.2, Γ is curvilinear. Without loss of generality we may assume that
q′ has rank n − 1 i.e. that the eigenvalue is 0. Then A is nilpotent, and since
A is a one-dimensional eigenvector space, An = 0 and Ai 6= 0 for any i < n.

Lemma 4.8. Let q′ ∈ T2,q be a quadratic form whose associated n × n matrix
A is symmetric, nilpotent and has rank n− 1. Then the ideal generated by the
quadratic forms τq(q

′) ⊂ q⊥ is the ideal of the unique common apolar subscheme
Γ of length n of q and q′. Moreover Γ is a local curvilinear subscheme.

Proof. Let Λ be a skew symmetric n× n matrix and think of A and Λ as the
matrices of linear endomorphisms of a n-dimensional vector space V . Then
we may choose a basis v1, . . . , vn ∈ V such that Av1 = 0 and Avi = vi−1 for
i = 2, . . . , n. Let

ρ : Spec(C[t]/tn) → P(V ) : t 7→ [v1 + tv2 + . . .+ tn−1vn]

and set Γ = Im ρ. Then IΓ is generated by
(

n
2

)

quadratic forms. We shall
show that the symmetric matrices of these forms coincide with the matrices
ΛA−AΛ as Λ varies. We evaluate the quadratic form associated to ΛA−AΛ
on the vector v = v1 + tv2 + . . .+ tn−1vn:

vt(ΛA−AΛ)v = vtΛAv − vtAΛv.

But

vtΛAv = (v1 + tv2 + . . .+ tn−1vn)
tΛA(v1 + tv2 + . . .+ tn−1vn)

= (v1 + tv2 + . . .+ tn−1vn)
tΛ(tv1 + . . .+ tn−1vn−1)

= (v1 + . . .+ tn−2vn−1)
tΛ(v1 + . . .+ tn−2vn−1)t

+ tnvtnΛ(v1 + . . .+ tn−2vn−1)

= 0

since Λ is skew symmetric and tn = 0. Therefore the quadratic forms with
matrices ΛA − AΛ are in the ideal of Γ. They are independent and therefore
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generate the ideal unless ΛA − AΛ = 0 for some nontrivial Λ. But then Λ
and A commute, hence have common eigenvectors. Λ is nontrivial and skew
symmetric so it has at least 2 independent eigenvectors, while A has only one,
so this is impossible. Clearly, Γ is curvilinear, and any non degenerate local
curvilinear subscheme of length n in P(V ) is projectively equivalent to it, so
the lemma follows. �

To complete the proof of the claim 4.6 and the proof of Proposition 4.2, we
consider the common apolar subscheme Γ = Γ1 ∪ ... ∪ Γr to q and q′, and the
corresponding decompositions q =

∑

qi and q′ =
∑

q′i as above. By Lemma
4.7,

∑

i

U⊥
i · (U ′

i)
⊥ ⊂ Im τq(q

′).

Furthermore, applying Lemma 4.8 to each component qi and q′i, the image
of τqi(q

′
i) in (q−1(Ui))

2 is IΓi,2. But τqi(q
′
i) is the restriction of τq(q

′) to
∧2(q−1(Ui)), so

IΓi,2 ⊂ Im τq(q
′) i = 1, ..., r

and the claim and Proposition 4.2 follows. �

By Lemma 4.3, the quadratic forms in Im τq(q
′) vanish in every point on any

common apolar subscheme of length n to q and q′. Combined with Proposition
4.2 it may be reasonable to guess that Im τq(q

′) is precisely the quadratic forms
in the intersection of the ideals of these common apolar subschemes. We do
not have a clear answer and leave this as an open question.
We are now ready to analyze our main object V PS(Q,n) in its embedding in
G(n− 1, T2,q), i.e. as the image of the rational map

γ : P(T2,q) 99K G(n− 1, T2,q).

We identify the restriction of the Plücker divisor to V PS(Q,n).
Let h ⊂ P(T1) be a hyperplane, and denote by Hh ⊂ V SQ(Q,n) the set

Hh = {[Γ] ∈ V SQ(Q,n)|Γ ∩ h 6= ∅}.

Lemma 4.9. Hh is the restriction to V PS(Q,n) of a Plücker divisor on
G(n− 1, T2,q).

Proof. The hyperplane h ⊂ P(T1) is defined by some l ∈ S1. Let V (l) = {q′ ∈
T2|l(q′) = 0}, then V (l)⊥ = l · S1 = {l · l′|l′ ∈ S1} ⊂ S2.
For any nondegenerate subcheme Γ ⊂ P(T1) of length n, the ideal IΓ ⊂ S
contains a reducible quadric l1 ·l2 only if Γ intersects both hyperplanes {l1 = 0}
and {l2 = 0}. On the other hand the subspace of quadrics IΓ,2 ⊂ S2 has
codimension n, which coincides with the dimension of l · S1. Therefore

IΓ,2 ∩ l · S1 6= {0} ⊂ S2 if and only if (IΓ,2)
⊥ ∩ V (l) 6= {0} ⊂ T2.

Notice that P((IΓ,2)
⊥) equals the span 〈Γ〉 ⊂ P(T2) of Γ in the Veronese

embedding.
For the lemma we now consider apolar subschemes to q and the projection from
P(T2) to P(T2,q). Since q has maximal rank, l(q) 6= 0, i.e. q 6∈ V (l). Thus
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P(V (l)) is projected isomorphically to its image P(Vq(l)) ⊂ P(T2,q). For an
apolar subscheme Γ of length n the quadratic form q lies in the linear span of
Γ ⊂ P(T2), so this subspace is mapped to the (n− 2)-dimensional linear span
of Γ in P(T2,q). We therefore deduce from the above equivalence: If Γ is apolar
to q, then the linear span of Γ in P(T2,q) intersects the codimension n linear
space P(Vq(l)) if and only if Γ intersects the hyperplane h ⊂ P(T1).
But the set of (n− 2)-dimensional subspaces in P(T2,q) that intersect a linear
space of codimension n form a Plücker divisor, so the lemma follows. �

In the next section we use the special Plücker divisors Hh of this lemma to give
a local affine description of V PS(Q,n), or better, the variety V APS(Q,n) of
all apolar subschemes of length n.

5. An open affine subvariety

We use a standard basis approach to compute an open affine subvariety of
V APS(Q,n), the variety of all apolar subschemes of length n to Q. Of course
this will include our primary object of interest, namely V PS(Q,n). For small n
there will be no difference, but for larger n we have already seen that they do not
coincide. The distinction between the two will eventually be the main concern
in our analysis. The computations in this section extensively use Macaulay2
[GS]. In particular when we show, by direct computation, that V APS(Q, 6) is
irreducible and therefore coincides with V PS(Q, 6) (Corollary 5.16).
We choose coordinates such that

Q = {q = 2y1yn + y22 + . . .+ y2n−1 = 0},

and consider the apolar subscheme Γp to q defined by

x21, x1x2, x
2
2 − x1xn, x1x3, x2x3, . . . x

2
n−1 − x1xn.

It is of length n and corresponds in the setting of the previous section to the
intersection of the projected Veronese variety V2,q with the tangent space Tp to
v2(Q

−1) ⊂ P(T2,q) at the point v2(p) = [y2n] ∈ P(T2,q), where p = [yn] = [0 :
. . . : 1] ∈ P(T1). The tangent space to the Veronese variety V2 ⊂ P(T2) at [y

2
n]

is spanned by

〈y1yn, y2yn, ..., , yn−1yn, y
2
n〉.

The quadric Q−1 is defined by 1
2x1xn+

1
4 (x

2
2 + ...+x2n−1). Its tangent space in

P (T1) at [yn] is defined by x1, so its tangent space in P (T2) at [y
2
n] is defined

by x1 inside the tangent space to the Veronese variety. Therefore, the tangent
space Tp to v2(Q

−1) is spanned by

〈y2yn, ..., yn−1yn, y
2
n〉.

The orthogonal space of quadratic forms in S2 is spanned by

〈x21, x1x2, x
2
2, x1x3, x2x3, . . . x

2
n−1, x1xn〉

and intersect q⊥ precisely in the ideal of Γp given above.
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With reverse lexicographically order on the coordinates x1, ..., xn, the initial
ideal of Γp is generated by the monomials

x21, x1x2, x
2
2, x1x3, x2x3, . . . x

2
n−1.

In this monomial order, these monomials have the highest order in the ideal of
any apolar scheme Γ that does not intersect the hyperplane {xn = 0}. In fact,
if the initial ideal of Γ contains xixn, then xn divides a quadratic form in the
ideal of Γ. But if Γ does not intersect {xn = 0}, then Γ would be degenerate.

We therefore consider the open subvariety V aff
h (n) containing [Γp] in

V APS(Q,n), parametrizing apolar subschemes Γ of length n with support
in D(xn). This is the complement of the divisor Hh defined by h = {xn = 0},
the tangent hyperplane to Q−1 at [y1] = [1 : 0 : ... : 0] ∈ P(T1).

For Γ ∈ V aff
h (n) the initial terms of the generators of the ideal IΓ coincide with

those of IΓp
. More precisely, the generators of IΓ may be obtained by adding

suitable multiples of the monomials xixn, i ≥ 1 to these initial terms. We may
therefore write these generators in the form

x21 − a(11,1)x1xn − a(11,2)x2xn − a(11,2)x2xn − ...− a(11,n)x
2
n,

xixj − a(ij,1)x1xn − a(ij,2)x2xn − ...− a(ij,n)x
2
n, 1 ≤ i < j ≤ n− 1,

x2i − x1xn − a(ii,2)x2xn − ...− a(ii,n)x
2
n, 2 ≤ i ≤ n− 1.

Analyzing these equations of Γ further, we see that the apolarity condition,
i.e. that IΓ,2 ⊂ q⊥, means that a(11,1) = 0 and that a(ij,1) = 0 when i 6= j.
Therefore they take the form

f11 =x21 − a(11,2)x2xn − . . .− a(11,n)x
2
n,

f12 =x1x2 − a(12,2)x2xn − . . .− a(12,n)x
2
n,

f22 =(x22 − x1xn)− a(22,2)x2xn − . . .− a(22,n)x
2
n,

f13 =x1x3 − a(13,2)x2xn − . . .− a(13,n)x
2
n,(5.1)

f23 =x2x3 − a(23,2)x2xn − . . .− a(23,n)x
2
n,

f33 =(x23 − x1xn)− a(33,2)x2xn − . . .− a(33,n)x
2
n,

...
...

f(n−1)(n−1) =(x2n−1 − x1xn)− a((n−1)(n−1),2)x2xn − . . .− a((n−1)(n−1),n)x
2
n.

To insure that these perturbed equations actually define length n subschemes,
we ask that the first order relations or syzygies among the generators of IΓp

lift to the entire family. This is in fact precisely the requirement for the per-
turbation to define a flat family [Art76, Proposition 3.1], and will be pursued

below when we find equations for V aff
h (n).

Here, we introduce weights and a torus action on this family: We give

• xn and a(ij,k), where 2 ≤ i, j, k ≤ n− 1, weight 1,
• xi, where 2 ≤ i ≤ n− 1, and a(ij,n), where 2 ≤ i, j ≤ n− 1. weight 2,
• x1 and a(1i,n) and a(11,i), where 2 ≤ i ≤ n− 1, weight 3,
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• a(11,n) weight 4.

Notice that with these weights each generator fij is homogeneous. A C∗-action
defined by multiplying each parameter with a constant λw to the power of its
weight, acts on each generator by a scalar multiplication, i.e. on the total

family in P(T1) × V aff
h (n). This C∗- action induces an action on the family

V aff
h (n). In particular, if [a] = [a(ij,k)] ∈ V aff

h (n) defines a subscheme Γ[a],

then [λw(a)] = [λw(aij,k)] ∈ V aff
h (n) and defines a subscheme Γ[λwa], such that

p′ ∈ Γ[a] if and only if λw(p′) ∈ Γ[λwa].
Since limλ→0 λ

w(aij,k) = 0, the limit when λ→ 0 of the C∗- action is the point

in V aff
h (n) representing Γp. Thus we have shown

Lemma 5.1. The affine algebraic set V aff
h (n) of apolar subschemes of length

n contained in D(xn) coincides with the apolar schemes of length n whose
equations are affine perturbations of the equations of Γp.

Furthermore, the family V aff
h (n) is contractible to the point [Γp].

An immediate consequence is the

Corollary 5.2. The apolar subscheme Γp belongs to V PS(Q,n). In par-
ticular, the variety of tangent spaces TQ−1 ⊂ G(n − 1, Tq,2) to the Veronese
embedding of the quadric Q−1 ⊂ P(Tq,2) is a subvariety of V PS(Q,n).

Notice that V aff
h (n) depends only on h, and not on p. Only the coordinates

on V aff
h (n) depend on p. On the other hand, the contractible varieties V aff

h (n)
form a covering of V APS(Q,n):

Lemma 5.3. If hj = {lj = 0}, j = 1, ..., n2 is a collection of tangent hyper-
planes to Q−1, so that no subset of n of them have a common point, then the

open subvarieties V aff
hj

(lj) parametrizing apolar subschemes Z of length n with

support in D(lj) form a covering of V APS(Q,n) of isomorphic varieties.

Proof. If an apolar subscheme Γ has k ≤ n components, then the collection of
hyperplanes among the {lj = 0} that intersect Γ is at most k(n− 1) < n2, so

the V aff
hj

(lj) form a covering. The last part follows from the homogeneity. �

To find equations for the family V aff
h (n), we use the parameters for the gener-

ators in (5.1), i.e.

a(ij,k) i, j ∈ {1, . . . , n− 1}, 2 ≤ k ≤ n,

where we read the first index (ij) as an unordered pair.
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It will be useful to write the generators with matrices:













f11
f12
f22
...

f(n−1)(n−1)













=















1 0 ... 0 −a(11,2) ... −a(11,n)

0 1 ... 0 −a(12,2) ... −a(12,n)

0 0 ... 0 −a(22,2) ... −a(22,n)

...
...

...
...

...

0 0 ... 1
... ... −a((n−1)(n−1),n)















·



























x2
1

x1x2

x2
2 − x1xn

...
x2
n−1 − x1xn

x2xn

...
x2
n



























.

We denote by AF the
(

n
2

)

×(
(

n
2

)

+n−1)-dimensional coefficient matrix of these
generators. The maximal minors of AF are, of course, precisely the Plücker

coordinates for V aff
h (n) in G(

(

n
2

)

, q⊥), or equivalently in G(n− 1, T2,q).
We find the equations of the family by asking that the first order syzygies
among the generators of IΓp

lift to the entire family. By [Art76, Proposition
3.1], this is precisely the requirement for the perturbation to define a flat family.
We use a standard basis approach (cf. [Sch91]). The syzygies for a subscheme
Z in the family are all linear, and the initial terms are inherited from Γp.
Therefore, the difference between syzygies of Z and syzygies of Γp are only
multiples of xn. By the division theorem ([Sch91, Theorem A.3]), every syzygy
has the initial term xk(xixj), where k > j ≥ i, and has the form

xkfij =
∑

st

gstij fst

where fij is the generator with initial term xixj and gstij is a linear form such

that gstij fst has higher order than xk(xixj). More precisely, we therefore con-
sider products of the generators (fij) with a first order syzygy for Γp and add
precisely those multiples of xn in the syzygy that eliminates monomials xkxlxn
with k ≤ l < n in the product. The relations among the parameters required
for the lifting of the syzygies can then be read off as the coefficients of the
monomials xtx

2
n.

Theorem 5.4. The equations defining V aff
h (n) all lie in the linear span of the

2 × 2 minors of the coefficient matrix AF of the family of equations fij. In
particular V APS(Q,n) is a linear section of the Grassmannian G(n− 1, T2,q).

Remark 5.5. This generalizes the result of Mukai in case n = 3, cf. [Muk92].
For an exposition of different approaches to the n = 3 case, see [Dol12, Section
2.1.3].

Proof. Consider the following first order syzygies of Γp of rank 2 and 3:
Ri · Si(m), 1 < i < n,m = 1, 2 :

(

x21 x1xi x2i − x1xn
)

·





−xi xn
x1 −xi
0 x1



 = 0,

where Si(m) is the m-th column vector in the syzygy matrix Si,
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Rij · Sij(m), 1 < i < j < n,m = 1, . . . , 4 :

(

x2i − x1xn x1xi x1xj xixj x2j − x1xn
)

·













xj 0 0 0
0 xn xj 0
xn 0 −xi −xi
−xi −xj 0 x1
0 xi 0 0













= 0,

and
Rijk · Sijk(m), 1 < i < j < k < n,m = 1, 2 :

(

xixj xjxk xixk
)

·





−xk −xk
xi 0
0 xj



 = 0.

These syzygies are clearly linearly independent, and their cardinality, 2
(

n
3

)

,
coincides with the dimension of the space of first order syzygies, according to
Proposition 2.1, so they form a basis.
We lift these syzygies by adding the multiples of xn in the syzygy matrix, that
reduces the product to cubic polynomials with monomials only of the form
xix

2
n. We denote by S̃i(j) the syzygies obtained from Si(j) this way. Likewise

we denote by R̃i the row vector obtained from Ri by substituting the entries
xsxt by fst. Similarly we get row vectors R̃ij , R̃ijk and column vectors S̃ij(r)

and S̃ijk(r).
For example, with i = 2 and n = 4 we get

R̃2 · S̃2(1) =
(

f11 f12 f22 f13 f23 f33
)

·

















−x2
x1 + a(12,2)x4
−a(11,2)x4
a(12,3)x4
−a(11,3)x4

0

















= (−a(12,4) + a(11,2))x1x
2
4

+(a(11,4) − a2(12,2) + a(22,2)a(11,2) − a(13,2)a(12,3) + a(23,2)a(11,3))x2x
2
4

+(−a(12,3)a(12,2) + a(22,3)a(11,2) − a(13,3)a(12,3) + a(23,3)a(11,3))x3x
2
4

+(−a(12,4)a(12,2) + a(22,4)a(11,2) − a(13,4)a(12,3) + a(23,4)a(11,3))x
3
4.

For general i and n we get (with the first pair in the index unordered to simplify
presentation of the summation)

R̃i · S̃i(1) = (a(11,i) − a(1i,n))x1x
2
n + a(11,n)xix

2
n

+
∑n
j=2(

∑n−1
k=2 (a(11,k)a(ik,j) − a(1i,k)a(1k,j))xjx

2
n.
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Similarly

R̃i · S̃i(2) = (a(1i,i) − a(ii,n))x1x
2
n + a(1i,n)xix

2
n

+
∑n

j=2(−a(11,j) +
∑n−1

k=2 (a(1i,k)a(ik,j) − a(ii,k)a(1k,j)))xjx
2
n,

R̃ij · S̃ij(1) = (a(ij,i) − a(ii,j))x1x
2
n + a(ij,n)xix

2
n − a(ii,n)xjx

2
n

+
∑n

k=2(−a(1j,k) +
∑n−1

m=2(a(ij,m)a(im,k) − a(ii,m)a(jm,k)))xkx
2
n,

R̃ij · S̃ij(2) = (a(ij,j) − a(jj,i))x1x
2
n − a(jj,n)xix

2
n + a(ij,n)xjx

2
n

+
∑n

k=2(−a(1i,k) +
∑n−1

m=2(a(ij,m)a(jm,k) − a(jj,m)a(im,k)))xkx
2
n,

R̃ij · S̃ij(3) = (a(1j,i) − a(1i,j))x1x
2
n + a(1j,n)xix

2
n − a(1i,n)xjx

2
n

+
∑n

k=2(
∑n−1

m=2(a(1j,m)a(im,k) − a(1i,m)a(jm,k)))xkx
2
n,

R̃ij · S̃ij(4) = (a(1j,i) − a(ij,n))x1x
2
n − a(1j,n)xix

2
n

+
∑n

k=2(
∑n−1

m=2(a(1j,m)a(im,k) − a(ij,m)a(1m,k)))xkx
2
n,

R̃ijk · S̃ijk(1) = (a(ij,k) − a(jk,i))x1x
2
n − a(jk,n)xix

2
n + a(ij,n)xkx

2
n

+
∑n

l=2(
∑n−1

m=2(a(ij,m)a(km,l) − a(jk,m)a(im,l)))xlx
2
n,

R̃ijk · S̃ijk(2) = (a(ij,k) − a(ik,j))x1x
2
n − a(ik,n)xjx

2
n + a(ij,n)xkx

2
n

+
∑n

l=2(
∑n−1

m=2(a(ij,m)a(km,l) − a(ik,m)a(jm,l)))xlx
2
n.

The linear relations in the parameters of the family V aff
h (n) are precisely the

coefficients of x1x
2
n in these products:

Lemma 5.6. The space of linear forms in the ideal of V aff
h (n) is generated

by the following forms, where {i, j, k} is any subset of distinct elements in
{2, . . . , n− 1}

a(11,i) − a(1i,n), a(1i,i) − a(ii,n), a(1j,i) − a(ij,n), a(ij,j) − a(jj,i), a(ij,k) − a(jk,i).

�

Notice that only the first two occur when n = 3, and only the first four occur
when n = 4.
Using these linear relations, the quadratic ones all become linear in the 2 ×
2 minors of the matrix AF of coefficients a(ij,k), i.e. linear in the Plücker
coordinates. In fact, by a straightforward but tedious derivation from the

above presentation, we may write the generators of the ideal V aff
h (n) as linear

combinations of 2× 2 minors in the coefficient matrix AF (cf. the documented
computer algebra code to perform the computation of ideal generators [RS11]):

Lemma 5.7. Modulo the linear forms the ideal of V aff
h (3) is generated by

a(11,3) + a(12,3)a(22,2) − a(12,2)a(22,3).

�

Lemma 5.8. Modulo the linear forms the ideal of V aff
h (4) is generated by

−a(12,2)−a(13,3)+(a(23,2)a(22,3)−a(22,2)a(23,3))+(a(33,2)a(23,3)−a(23,2)a(33,3)),

−a(11,2) + (a(12,3)a(23,2) − a(23,3)a(12,2)) + (a(13,3)a(33,2) − a(33,3)a(13,2)),

−a(11,3) + (a(12,2)a(22,3) − a(22,2)a(12,3)) + (a(13,2)a(23,3) − a(23,2)a(13,3)),

(a(11,2)a(22,3) − a(12,2)a(12,3)) + (a(11,3)a(23,3) − a(12,3)a(13,3)),

a(11,4) + (a(12,4)a(22,2) − a(22,4)a(12,2)) + (a(13,4)a(23,2) − a(23,4)a(13,2)),

a(11,4) + (a(12,4)a(23,3) − a(23,4)a(12,3)) + (a(13,4)a(33,3) − a(33,4)a(13,3)).
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�

Lemma 5.9. Modulo the linear forms the ideal of V aff
h (n), when n > 4, is

generated by the following forms:
For i ∈ {2, . . . , n− 1},

a(11,n) −
n−1
∑

m=2

(a(im,n)a(1m,i) − a(1m,n)a(im,i)),

for any subset {i, j} ⊂ {2, . . . , n− 1},

a(11,i) −
n−1
∑

m=2

(a(jm,n)a(im,j) − a(im,n)a(jm,j)),

n−1
∑

m=2

(a(1m,n)a(im,j) − a(im,n)a(1m,j))

and

a(1i,i) + a(1j,j) −
n−1
∑

m=2

(a(jm,i)a(im,j) − a(im,i)a(jm,j)),

for any subset {i, j, k} ⊂ {2, . . . , n− 1},

a(1j,k) −
n−1
∑

m=2

(a(jm,i)a(im,k) − a(im,i)a(jm,k))

and
n−1
∑

m=2

(a(jm,n)a(im,k) − a(im,n)a(jm,k)),

and for any subset {i, j, k, l} ⊂ {2, . . . , n− 1},

n−1
∑

m=2

(a(im,j)a(km,l) − a(km,j)a(im,l)).

�

Since the open affine sets V aff
h (n) cover V APS(Q,n), we conclude that

V APS(Q,n) is a linear section of the Grassmannian G(
(

n
2

)

, q⊥). Equivalently,
V APS(Q,n) is projectively equivalent to a linear section of G(n − 1, T2,q) in
its Plücker embedding. This concludes the proof of Theorem 5.4. �

Using the linear relations we may reduce the number of variables, when n > 4,
and use as indices the following unordered three element sets:

I = {{11k}|1 < k ≤ n} ∪ {{1jk}|1 < j ≤ k < n} ∪ {{ijk}|1 < i ≤ j ≤ k < n}.

Let R = C[aI |I ∈ I]. We substitute a11k = a11,k, a1jk = a1j,k, aijk = aij,k and
get:
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Lemma 5.10. The ideal of V aff
h (n), when n > 4, is generated by the following

polynomials in R: For i ∈ {2, . . . , n− 1},

a11n −
n−1
∑

m=2

(a21im − a11maiim),

for any subset {i, j} ⊂ {2, . . . , n− 1},

a11i −
n−1
∑

m=2

(a1jmaijm − a1imajjm),

n−1
∑

m=2

(a11maijm − a1ima1jm), a1ii + a1jj −
n−1
∑

m=2

(a2ijm − aiimajjm),

for any subset {i, j, k} ⊂ {2, . . . , n− 1},

a1jk −
n−1
∑

m=2

(aijmaikm − aiimajkm),

n−1
∑

m=2

(a1jmaikm − a1imajkm),

and for any subset {i, j, k, l} ⊂ {2, . . . , n− 1},

n−1
∑

m=2

(aijmaklm − ajkmailm).

�

Notice that these generators are all homogeneous in the weights introduced
above. The linear parts of the ideal generators define the tangent space of

the family V aff
h (n) at [Γp], so another consequence of our computations is the

tangent space dimension.

Proposition 5.11. Let L(n) be the space of linear forms spanned by the linear

parts of the generators in the ideal of V aff
h (n). Then L(3) is spanned by

a(11,3), a(11,2) − a(12,3) and a(12,2) − a(22,3).

L(4) is spanned by

a(11,4), a(11,2), a(12,4), a(11,3), a(13,4),

a(12,2) − a(22,4), a(13,3) − a(33,4), a(12,2) + a(13,3),

a(12,3) − a(23,4), a(13,2) − a(12,3), a(23,3) − a(33,2) and a(22,3) − a(23,2).

L(n), when n > 4, is spanned by a(11,n) and for any i ∈ {2, . . . , n− 1},

a(11,i), a(1i,n), a(1i,i), a(ii,n),

for any subset {i, j} ⊂ {2, . . . , n− 1},

a(1j,i), a(ij,n), a(ii,j) − a(ij,i),

and for any subset {i, j, k} ⊂ {2, . . . , n− 1},

a(ij,k) − a(jk,i).
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In particular

V aff
h (3) ∼= A

3, V aff
p (4) ∼= A

6, V aff
h (5) ∼= A

10.

Proof. The linear parts of the generators can be read off Lemma 5.6 and Lem-
mas 5.7, 5.8 and 5.9. Notice only that the two term forms

a(12,2) − a(22,4), a(13,3) − a(33,4), a(12,2) + a(13,3)

span a three dimensional space, while

a(1i,i) − a(ii,n), a(1j,j) − a(jj,n), a(1i,i) + a(1j,j), for 1 < i < j < n

span the space generated by

a(1i,i), a(ii,n), 1 < i < n

when n > 4.
For n = 3, the family V aff

h (3) has 6 parameters, while there are three indepen-
dent linear forms in the relations so the tangent space at [Γp] has dimension

6− 3 = 3 as expected. In fact V aff
h (3) ∼= A

3 with parameters

a(11,2), a(12,2), a(22,2).

For n = 4 the family V aff
h (4) has 18 parameters, while the linear forms in the

relations are generated by 12 independent forms, so the tangent space at [Γp]

has dimension 18− 12 = 6. In fact V aff
h (4) ∼= A

6 with parameters

a(12,2), a(12,3), a(23,3), a(22,3), a(22,2), a(33,3).

For n > 4 we see that all parameters with a 1 or an n in the index are indepen-

dent forms in the space of linear parts of ideal generators in V aff
h (n). Further-

more, the other linear parts, simply expresses that {(ijk)|1 < i ≤ j ≤ k < n}
form a natural index set for representatives of the parameters. The cardinality
of this index set is simply the cardinality of monomials of degree 3 in n − 2

variables, i.e.
(

n
3

)

. In case n = 5 we again conclude that V aff
h (5) ∼= A

10 with
parameters

{aijk|2 ≤ i ≤ j ≤ k ≤ 4}.

�

Corollary 5.12. The tangent space dimension of V APS(Q,n) at [Γp] is
(

n
3

)

when n > 5. When n ≤ 5, V APS(Q,n) has a finite cover of affine spaces, in
particular V APS(Q,n) is smooth and coincides with V PS(Q,n). �

Remark 5.13. Let Γ be a smooth apolar subscheme to Q consisting of n distinct
points. Any subset of n − 2 points in Γ is contained in a pencil of apolar
subschemes that form a line in V PS(Q,n) through [Γ]. Thus

(

n
2

)

lines in
V PS(Q,n) through [Γ] is contained in the tangent space at [Γ].

We extend this remark and give a conceptual reason for the dimension of the
tangent space to V APS(Q,n) at [Γp].
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Proposition 5.14. Let [Γp] ∈ V PS(Q,n) ⊂ G(n − 1, T2,q) be a point on the
subvariety TQ−1 in its Grassmannian embedding. Then V PS(Q,n) contains
the cone over a 3-uple embedding of Pn−3 with vertex at [Γp].

Proof. We first identify a cone over a 3-uple embedding of P
n−3 inside

V APS(Q,n), and then give an explicit description of the apolar subschemes
parameterized by this cone in order to show that the cone is contained in
V PS(Q,n).

Consider the subvariety V vero
p (n) ⊂ V aff

h (n) parameterizing ideals IΓ with co-
efficient matrix AF (Γ) = (I A) where the submatrix A = (a(ij,k)) has rank
at most 1 and has nonzero entries only in the submatrix A0 ⊂ A with entries
{a(ij,k)|1 < i ≤ j < n, 1 < k < n}. As above, using the linear relations, we
may substitute the parameters a(ij,k) with parameters aijk whose indices are
unordered triples (ijk). In these new parameters the matrix A0 takes the form:

A0 =

















a222 a223 ... a22(n−1)

a223 a233 ... a23(n−1)

... ... ... ...
a22(n−1) a23(n−1) ... a2(n−1)(n−1)

... ... ... ...
a2(n−1)(n−1) a3(n−1)(n−1) ... a(n−1)(n−1)(n−1)

















.

By Theorem 5.4, the equations of V aff
h (n) are linear in the 2× 2 minors of the

coefficient matrix A, so any rank 1 matrix A0 defines a point on V vero
p (n). The

symmetry in the indices explains why the 2 × 2 minors of the matrix define
the 3-uple embedding of Pn−3. Since the ideal of Γp correspond to the zero
matrix, we conclude that the subvariety V vero

p (n) in V APS(Q,n) is the cone
over this 3-uple embedding.
To see that V vero

p (n) is contained in V PS(Q,n) we show that a general point
on V vero

p (n) lies in the closure of smooth apolar subscheme to Q. For this, we

describe for each general point s ∈ P
n−3 an apolar subscheme Γs belonging to

V vero
p (n). It has two components Γs = Γs,0∪ps, the first one Γs,0 of length n−1

and supported at p, while the second component ps is a closed point. We shall
show that q has a decomposition q = ql + q(l)2 ∈ T2 where [q(l)] = ps ∈ P(T1)
and ql ∈ (l⊥)2. The subscheme Γs,0 is apolar to ql and contains the first order

neighborhood of p inside the quadric {q−1
l = 0} ⊂ P(l⊥) in the hyperplane

polar to ps. Then Γs,0 lies in the closure of smooth apolar subschemes to ql.
We conclude by applying Proposition 2.4.
Let s = [s2 : .. : sn−1] ∈ P

n−3 and let

||s||2 = s22 + . . .+ s2n−1, 〈s, x〉 =
n−1
∑

i=2

sixi, 〈s, y〉 =
n−1
∑

i=2

siyi,

then

x21, . . . , x1xn−1,

x2i − x1xn − s2i 〈s, x〉xn 1 < i < n, xixj − sisj〈s, x〉xn 1 < i < j < n
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defines a subscheme Γs that belongs to V vero
p (n). When ||s||2 6= 0, then Γs

contains the point

ps = [q(||s||2〈s, x〉+ x1)] = [||s||2〈s, y〉+ yn] ∈ P(T1)

Consider the linear subspace Ls = {x1 = 0} ∩ {〈s, x〉 = 0}. The intersection
Γs ∩ Ls is the subscheme defined by

x22 = x2x3 = . . . = x2n−1 = 0.

This subscheme has length n−2. The union ps∪(Γs∩Ls) spans the hyperplane
{x1 = 0}, so the residual point in Γs is the pole, with respect to Q−1, of this
hyperplane, i.e. the point p. Therefore the subscheme Γs,0 = Γs \ps has length
n− 1, is supported in p, and contains the first order neighborhood of p in the
codimension two linear space Ls.
The subscheme Γs,0 is apolar to the quadric

qs = (||s||2〈s, y〉+ yn)
2 − ||s||6(2y1yn + y22 + ...+ y2n−1).

Let l = ||s||2〈s, x〉 + x1. Then ps = [q(l)], while

l⊥ = 〈y2 − ||s||2siy1, ..., yn−1 − ||s||2siy1, yn〉.

Then qs ∈ (l⊥)2 < 2 and

(q(l))2 − qs = ||s||6 · q ∈ T2.

According to Proposition 2.4 a subscheme Γ0 inP(l⊥) of length n−1 is apolar to
qs if and only if Γ = Γ0∪ps is apolar to q. Now, Γs,0 is apolar to qs and contains
a first order neighborhood of a point on the smooth quadric {qs−1 = 0} in
P(l⊥) ⊂ P(T1). By Remark 3.5, the subscheme Γs,0 is a subscheme like Γp, with
respect to qs. Therefore Γs,0 lies in the closure of smooth apolar subschemes
to qs. But then Γs must lie in the closure of smooth apolar subschemes to q.
Hence [Γs] ∈ V PS(q, n).

�

Corollary 5.15. V PS(Q,n) is singular when n ≥ 6.

Proof. The cone with vertex at [Γp] ∈ TQ−1 over the 3-uple embedding of
P
n−3 is contained in the tangent space of V PS(Q,n) at [Γp], i.e. also in the

tangent space of V APS(Q,n). Since the span of the cone and the tangent
space of the latter have the same dimension, they coincide. In particular the
tangent space of V PS(Q,n) at [Γp] has dimension

(

n
3

)

. When n ≥ 6, then
(

n
3

)

>
(

n
2

)

= dimV PS(Q,n) so V PS(Q,n) is singular. �

We pursue the case n = 6 a bit further and show that V APS(Q, 6) and
V PS(Q, 6) coincide. We use the symmetric variables

aijk = a(ij,k), 1 ≤ i, j, k ≤ 6

for any permutation of the letters i, j, k. According to Lemma 5.10 we may list
the generators explicitly. This list is however not minimal. In fact, a minimal
set of generators is given by the following twenty generators in weight 2, four
generators in weight 3 and one generator in weight 4. The twenty generators
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of weight 2 are the generators of weight 2 in Lemma 5.10: For each 1 < k < 6,
and each pair {i, j} ⊂ {2, 3, 4, 5} \ {k} the generator

−aij6 +
5

∑

m=2

(aikmajkm − aijmakkm),

for each pair {i, j} ⊂ {2, 3, 4, 5} the generator

−aii6 − ajj6 +
5

∑

m=2

(aijmaijm − aiimajjm),

and additionally the two generators

5
∑

m=2

(a23ma45m − a24ma35m) and

5
∑

m=2

(a23ma45m − a25ma34m).

The last five generators are computed from the list of Lemma 5.10 using
Macaulay2 [GS], see the documented code in [RS11].
Of weight 3 we find, for i = 2, 3, 4:

a11i −
5

∑

m=2

(aim6am55 − am56aim5)

and

a115 −
5

∑

m=2

(am46am45 − am56am44).

The generator of weight 4 is

a116 −
5

∑

m=2

a2m56 +
5

∑

m=2

a11mam55.

The ten parameters with 6 in the index appear linearly in the 20 generators
of weight 2, while the five parameters with 11 in the index appear linearly in
the five generators of weights 3 and 4. The remaining 10 generators of weight
2 therefore depend only on 20 parameters aI . In fact they depend only on 16
linear forms. It is a remarkable fact that these ten quadratic forms define the
10-dimensional spinor variety. To see this we choose and rename the following
16 forms:

x1234 = −a353 + a252, x15 = −a555 + a454 + a353 + a252, x34 = a453,

x1235 = a554 − a444 + a343 + a242, x14 = a343 − a242, x35 = a553 − a232,

x1245 = −a553 − a443 + a333 − a232, x13 = a553 − a443, x24 = a452,

x1345 = a552 + a442 + a332 − a222, x12 = a552 − a442, x23 = a352,

x2345 = a454 − a353, x45 = a554 − a242, x25 = −a442 + a332, x0 = a342.

In these variables the ten quadratic generators takes the form

q0 = x25x34 − x35x24 + x45x23 + x2345x0,

q1 = −x45x13 + x14x35 − x15x34 + x1345x0,
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q2 = x45x12 + x14x25 + x15x24 + x1245x0,

q3 = −x35x12 + x13x25 − x15x23 + x1235x0,

q4 = x12x34 − x13x24 + x14x23 + x1234x0,

q5 = x1345x12 + x1245x13 + x1235x14 + x15x1234,

q6 = −x2345x12 + x1245x23 + x1235x24 + x1234x25,

q7 = −x2345x13 − x1345x23 + x1235x34 + x1234x35,

q8 = −x2345x14 − x1345x24 − x1245x34 + x1234x45,

q9 = −x15x2345 − x1345x25 − x1245x35 − x1235x45.

The first five express (when x0 = 1) the variables xijkl as quadratic Pfaffians
in the xst, while the last five quadrics express the linear syzygies among these
Pfaffians. The ten quadratic forms satisfy the following quadratic relation

q0q5 + q1q6 + q2q7 + q3q8 + q4q9 = 0.

In fact the ten quadratic forms generate the ideal of the 10-dimensional spinor
variety embedded in P

15 by its spinor coordinates [RS00, Section 6],[Muk95].

Corollary 5.16. V aff
h (6) is isomorphic to a cone over the ten-dimensional

spinor variety embedded in P
15 by its spinor coordinates. In particular

V APS(Q, 6) is singular, irreducible and coincides with V PS(Q, 6). �

We end this section summarizing some computational results, for small n, of
some natural subschemes of V APS(Q,n). The first is the punctual part V loc

p (n)
of V APS(Q,n), i.e. the variety of apolar subschemes in V APS(Q,n) with
support at a single point p. The support p of a local apolar subscheme must lie
on Q−1 by Lemma 2.3. Therefore we may assume that p = [0 : 0 : ... : 1], and
use the equations 5.1. Of course, [Γp] is then in V loc

p (n). Furthermore, V loc
p (n)

is naturally contained in a second natural subscheme of V APS(Q,n), namely

V sec
p (n), the variety of apolar subschemes in V aff

h (n) that contains the point p.
We will do the explicit computation in the cases where V APS(Q,n) =

V PS(Q,n) is smooth, i.e. when n < 6. An apolar subscheme in V aff
h (n)

lies in V sec
p (n) if and only if the term x2n does not appear in any equation, so

V sec
p (n) is defined by the equations a(ij,n) = 0 for 1 ≤ i ≤ j < n in V aff

h (n).
The linear relations then imply that a(1i,j) = 0 for all i and j, and as before that
each parameter a(ij,k) with 1 < i, j, k < n may be represented by a parameter

aijk with 1 < i ≤ j ≤ k < n.

In particular for n = 3 the only parameter left is a222, and V
sec
p (3) is isomorphic

to the affine line. The equations x21 = x1x2 = x22 − x1x3 − a222x2x3 define a
scheme supported at p only if a222 = 0, so V loc

p (n) is a point in the case n = 3.
The computation of V sec

p (n) follow the same procedure for every n. For a local

scheme Γ in V loc
p (n) we may set xn = 1 in the equations.

Lemma 5.17. A local scheme Γ supported at p, that belongs to V loc
p (n), is

Gorenstein. The maximal ideal of its affine coordinate ring is spanned by
x2, . . . , xn−1, x1, and its socle is generated by x1.
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Proof. The scheme Γ is Gorenstein by Lemma 2.6. The maximal ideal is cer-
tainly generated by x1, x2, . . . , xn−1, and since Γ is nondegenerate these are
linearly independent. Finally, x1xi = 0 for all i by the apolarity condition as
soon as p ∈ Γ, so the socle is generated by x1. �

We may now get explicit equations for V loc
p (n). If [Γ] ∈ V loc

p (n), then by
definition mn

p = 0. But the maximal ideal is generated by x1, x2, . . . , xn−1,
so this means that any monomial of degree n in the xi must vanish in the
coordinate ring of Γ.
On the other hand, the equations for Γ define the products

xixj =

n−1
∑

k=2

aijkxk and x2i = x1 +

n−1
∑

k=2

aiikxk

in this ring. Therefore, by iteration, we get polynomial relations in the param-
eters aijk. Imposing the apolarity condition, symmetrizing the parameters and
adding the equations for V sec

p (n), then after, possibly, saturation we get set

theoretic equations for V loc
p (n).

When n = 4 we have the parameters a222, a223, a233, a333 for V sec
p (4) and the

relation
a2223 − a222a233 + a2233 − a223a333.

Thus V sec
p (4) is a quadric hypersurface in A

4.

For V loc
p (4) we first get the subscheme defined by the equations

x21 = x1x2 = x1x3 = 0

and

x22 = x1 + a222x2 + a223x3, x2x3 = a223x2 + a233x3, x
2
3 = x1 + a233x2 + a333x3.

The coefficient of x1 using these relations iteratively to compute x42, . . . , x
4
3,

must vanish, so it yields the equations a222+a233 = a223+a333 = a2233+a
2
223 =

0. The other coefficients give no additional relations, and neither does the
equations for V sec

p (4), so V loc
p (4) is 1-dimensional and consists of a pair of

affine intersecting lines.
When n = 5, the computation becomes a bit more involved. There are ten
parameters aijk. The equations of V sec

p (5) are

a2234 − a233a244 + a2334 − a333a344 + a2344 − a334a444 = 0,

a224a234 − a223a244 + a234a334 − a233a344 + a244a344 − a234a444 = 0,

a224a233 − a223a234 + a234a333 − a233a334 + a244a334 − a234a344 = 0,

a2234 + a2224 − a222a244 + a2244 − a223a344 − a224a444 = 0,

a223a224 − a222a234 + a233a234 + a234a244 − a223a334 − a224a344 = 0,

a2223 − a222a233 + a2233 − a223a333 − a224a334 + a2234 = 0.

They define in A
10 the affine cone over the intersection of the Grassmannian

variety G(2, 5) with a quadric. For V loc
p (5) there are additional equations defin-

ing the cone over the tangent developable of a rational normal sextic curve, a
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n V loc
p (n) V sec

p (n) V aff
h (n)

dim degree dim degree dim degree
3 0 1 1 1 3 1

point A
1

A
3

4 1 2 3 2 6 1
two lines Quadric 3-fold A

6

5 3 10 6 10 10 1
cone over tangent developable cone over G(2, 5) ∩Q A

10

of a rational sextic curve
6 15 12

cone over S10

Table 1.

codimension 3 linear section of V sec
p (5). The cone over the rational normal

curve parameterizes local apolar subschemes that are not curvilinear. For the
computations in Macaulay2 [GS], see the documented code in [RS11].
The findings are summarized in Table 1.

6. Global invariants of V PS(Q,n)

We consider V PS(Q,n) as a subscheme of G(n− 1, T2,q), and the incidence

IV PSQ = {([q′], [Γ])|[q′] ⊂ 〈Γ〉} ⊂ P(T2,q)× V PS(Q,n).

The incidence is a projective bundle,

IV PSQ = P(EQ)
π
−→ V PS(Q,n),

while the first projection is birational (the rational map γ : P(T2,q) 99K

V PS(Q,n) factors through the inverse of this projection). Denote by L the
tautological divisor on P(EQ). It is the pullback of the hyperplane divisor on
P(T2,q). When V PS(Q,n) is smooth,

Pic(IV PSQ ) ∼= Pic(V PS(Q,n))⊕ Z[L].

Recall from Lemma 4.9, that the set Hh ⊂ V PS(Q,n) of subschemes Γ
that intersects a hyperplane h ⊂ P(T1) form a Plücker divisor restricted to
V PS(Q,n). Therefore the class of the Plücker divisor coincides with the first
Chern class c1(EQ).

Theorem 6.1. i) Pic(V PS(Q, 4) ∼= Pic(V PS(Q, 5)) ∼= Z.
ii) The ample generator H is very ample, and V PS(Q, 4) and V PS(Q, 5) are
Fano-manifolds of index 2.
iii) The boundary in V PS(Q,n) consisting of singular apolar subschemes is,
when n ≤ 5, an anticanonical divisor.

Proof. i) Let n = 4 or n = 5. Then the Plücker divisor H is very ample by
the above. Furthermore, the complement V aff

p of the special Plücker divisor

defined by a tangent hyperplane to Q−1 ⊂ P(T1), the divisor H{xn=0} in the
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above notation, is isomorphic to affine space by Proposition 5.11. Therefore the
Picard group has rank 1 as soon as this special Plücker divisor is irreducible.
The tangent hyperplanes to Q−1 cover all of P(T1), so the corresponding
Plücker divisors cover V PS(Q,n). Furthermore, for any subscheme Γ in
V PS(Q,n), there is tangent hyperplane that does not meet Γ, so these special
Plücker divisors have no common point on V PS(Q,n). Assume that the special
Plücker divisors are reducible, then we may write H = H1 + H2, where both
H1 and H2 moves without base points on V PS(Q,n). Since H · l = 1 for every
line on V PS(Q,n), only one of the two components can have positive intersec-
tion with a line. The other, say H2, must therefore contain every line that it
intersects. But this is impossible, since H2 must contain all of V PS(Q,n), by
the following lemma:

Lemma 6.2. Any two polar simplices Γ and Γ′ are connected by a sequence of
lines in V PS(Q,n).

Proof. This is immediate when n = 2. For n > 2, let [l] ∈ Γ and [l′] ∈ Γ′,
and let P(U) = hl ∩hl′ ⊂ P(T1) be the intersection of their polar hyperplanes.
Then q = l2 + l21 + qU = (l′)2 + (l′1)

2 + qU for qU ∈ U2 and suitable l1 and l′1.
Let ΓU be a polar simplex for qU . Then Γ is line connected to ΓU ∪{[l1], [l]} by
induction hypothesis. Likewise Γ is line connected to ΓU ∪ {[l′1], [l

′]}. Finally
ΓU ∪ {[l1], [l]} and ΓU ∪ {[l′1], [l

′]} span a line in V PS(Q,n), which completes
the induction. �

ii) Since Pic(IV PSQ ) ∼= Pic(V PS(Q,n))⊕Z[L] we deduce from i) that the bira-
tional morphism

σ : IV PSQ → P(T2,q)

has an irreducible exceptional divisor. Let E ∈ Pic(IV PSQ ) be the class of this

exceptional divisor. Then, since the map γ : P(T2,q) 99K G(n− 1, T2,q) is
defined by polynomials of degree

(

n
2

)

, the size of the minors in the Mukai form,
we have

π∗H =

(

n

2

)

L− E and KIV PS
Q

= −(

(

n+ 1

2

)

− 1)L+ E.

On the other hand H = c1(EQ) where IV PSQ = P(EQ) is a projective bundle

over V PS(Q,n) so

−(

(

n+ 1

2

)

− 1)L+ E = KIV PS
Q

= π∗KV PS + π∗(c1(EQ))− (n− 1)L.

Therefore −KV PS(Q,n) = 2H . Finally, since V PS(Q,n) ⊂ G(n− 1, T2,q) con-
tains lines, H is not divisible.
iii) The boundary in V PS(Q,n) consisting of singular apolar subschemes, co-
incides, by Lemma 2.3, with the set of subschemes Γ ⊂ P(T1) that intersect
quadric Q−1. The Plücker divisor H is represented by the divisor of sub-
schemes Γ that intersect a hyperplane in P(T1), so −K = 2H is represented
by the boundary. �
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Theorem 6.3. Let n > 2 and let V PS(Q,n) ⊂ G(n− 1, T2,q) be the variety of
polar simplices in its Grassmannian embedding, with Plücker divisor H. The
V PS(Q,n) has degree

Hm =
∑

λ⊢m

(

m

λ

)

/(λ∗!) · dλ

where the sum runs over all partitions λ = (λ1, . . . , λn) of m =
(

n
2

)

=
dimV PS(Q,n) into integers n − 1 ≥ λ1 ≥ . . . ≥ λn ≥ 0. Here λ∗ =
(λ∗1, . . . , λ

∗
n−1) denotes the sequence λ∗i =| {j | λj = i} | and λ∗! = Πλ∗i !.

Finally

dλ =
∏

1≤i<j≤n

(Di +Dj)

is the intersection number of m divisors on the product

P
n−1−λ1 × . . .×P

n−1−λn

with Di the pullback of the hyperplane class on the ith component.

Proof. We first show that for
(

n
2

)

general hyperplanes hi ⊂ P(T1), the cor-
responding Plücker divisors Hhi

has a proper transverse intersection on the
smooth part of V PS(Q,n). Therefore, by properness, the intersection is finite,
and, by transversality, it is smooth, so it is a finite set of points. The cardinality
is the degree of V PS(Q,n).
First, let λ = (λ1, . . . , λn) be a partition of m and consider the partition
h11, . . . , h1λ1

, . . . , hn1, . . . , hnλn
of m general hyperplanes into n sets of size

λ1, . . . , λn. Let Li = ∩jhij , it is a linear space of dimension n− 1 − λi. Con-
sider the product of these linear spaces in the product P(T1)

n:

L1 × · · · × Ln ⊂ P(T1)× · · · ×P(T1).

Let ∆ ∈ P(T1)
n be the union of all diagonals and let Lo = L1× · · · ×Ln \∆ ⊂

P(T1)
n. Then Lo parameterizes n-tuples of points Γ = {p1, . . . , pn} ⊂ P(T1),

with pi ∈ Li. Of course, Lo has a natural map to the Hilbert scheme of P(T1)
that forgets the ordering, so we will identify elements in Lo with their image
in the Hilbert scheme.
Consider the incidence between subschemes Γ ∈ Lo and quadratic forms q ∈ T2:

IL = {(Γ, [q])|IΓ ⊂ q⊥} ⊂ Lo ×P(T2).

This variety is defined by the equations hij(pi) = 0 and the apolarity, q(IΓ) = 0.
Clearly L is a smooth scheme of dimension

(

n
2

)

. The fibers of the projection
IL → L are (n − 1)-dimensional projective spaces, so IL is a smooth variety
of dimension equal to dimP(T2). The projection IL → P(T2) is clearly onto,
so the fibers are finite. Since both spaces are smooth, the general fiber is
smooth. Now, Γ ⊂ Lo lies in the fiber over [q], precisely when IΓ ⊂ q⊥, i.e.
[Γ] ∈ V PS(Q,n) and hij(pi) = 0, i.e. [Γ] lies in the intersection of all the
Plücker hyperplanes Hhij

. Since the general fibers are smooth the divisors
Hhij

intersect transversally in V PS(Q,n), where Q = {q = 0}, and have an
isolated intersection point at each point [Γ]. Turning the argument around and
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considering all partitions, we get that for general hyperplanes h1, . . . , hm in
P(T1) the Plücker hyperplanes Hhi

has a transversal intersection at a finite
number of points in V PS(Q,n) corresponding to smooth apolar subschemes.
We proceed to compute the cardinality of the intersection, i.e. the formula
given in the theorem. Let [Γ] = [{p1, . . . , pn}] ∈ V PS(Q,n) be a point in
the intersection of the hyperplanes Hhj

. Then each hj contains some pi ∈ Γ,
by the definition of Hhj

. For each i let λi be the number of hyperplanes hj
that contains pi. The set of positive integers {λ1, ..., λn} must add up to m:
It is at least m by definition, and at most m by the generality assumption
discussed above. Therefore the point [Γ] defines a unique partition of the set

of hyperplanes {hj}mj=1 into subsets {hij}
λi

j=1 of cardinality λi, as above.

The factor
(

m
λ

)

in the degree formula counts the number of ordered partitions of
m hyperplanes into subsets of cardinality λi, while λ

∗! counts the permutations
of the subsets of the same cardinality, i.e. the number of ordered partitions
determined by [Γ]. Therefore the remaining factor dλ for each partition should
count the number of polar simplices Γ that intersect the n linear subspaces
Li = ∩jhij ⊂ P(T1) of codimension λi, i = 1, ..., n.
Let [Γ] = [{p1, ..., pn}] ∈ V PS(Q,n) and assume that (p1, ..., pn) ∈ L1×· · ·×Ln.
For each pair of linear spaces Li, Lj the bilinear form associated to the quadratic
form q restricts to a linear form on the product Li×Lj that vanishes on (pi, pj).
This linear form defines a divisor Hij in the divisor class Hi +Hj , where Hi is
the pullback to the product of the hyperplane class on Li. If Dij and Di are
the pullbacks of Hij , respectively Hi, to the product ΠiLi, then Γ ⊂ ΠiLi lies
in the intersection ∩i<jDij .
Conversely, consider a point (p1, . . . , pn) ∈ L1 × · · · × Ln that lies in the in-
tersection of the divisors ∩i<jDij . The projection of this point into P(T1) is a
collection of n points Γ = {p1, . . . , pn}. Let pi = [vi], vi ∈ T1, then the bilinear
form q : T1×T1 → C, (q−1(vi)(q))(vj) = 0 for every i 6= j, so the hyperplanes
p⊥i ⊂ P(S1) form a polar simplex to Q. Hence [Γ] is a point in V PS(Q,n).
Thus dλ counts the number of polar simplices Γ that intersect the n linear
subspaces Li and the degree formula follows.

�

The Theorem 1.1 in the introduction follows from Corollary 5.12, Corollary
5.15 and Theorem 6.1. Theorem 1.2 follows from Corollary 2.2, Corollary 5.2,
Theorem 6.1 and the degree is computed from Theorem 6.3. Theorem 1.3
follows from Theorem 5.4, Corollary 5.16 and Corollary 2.7.
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