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1 INTRODUCTION

The natural problem of integrating vector fields to obtain appropriate “flow
maps” on supermanifolds is considered in many articles and monographs (com-
pare, e.g., [17], [2], [19], [14] and [3]) but a “general answer” was to our knowl-
edge only given in the work of J. Monterde and co-workers (see [12] and [13]).
Let us consider a supermanifold M = (M, Onq) together with a vector field
X in Tm(M), and an initial condition ¢ in Mor(S, M), where S = (5, Os)
is an arbitrary supermanifold and Mor(S, M) denotes the set of morphisms
from S to M. The case of classical, ungraded, manifolds leads one to consider
the following question: does there exist a “low map” F' defined on an open
sub supermanifold ¥V € R'' x S and having values in M and an appropriate
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derivation on R!', D = 9; 4 0, + 7(ad; + bd, ), where J; = %, 0 = % and a,

b are real numbers, such that the following equations are fulfilled

Do F* = F*oX
Foinjfy.s = 6.

b

Of course, V should be a “flow domain”, i.e. an open sub supermanifold of
R'™ x S such that {0} x S is contained in the body V of V and for z in
S, the set I, C R defined by I, x {z} = (R x {z}) NV is an open interval.
Furthermore inj?{;O «s denotes the natural injection morphism of the closed
sub supermanifold {0} x S of V into V. Of course, we could concentrate on
the case § = M and ¢ = id, but it will be useful for our later arguments to
state all results in this (formally) more general setting.

Though for homogeneous vector fields (X = Xy or X = X;) system (II) does
always have a solution, in the general case (X = X+ X7 with Xy # 0 and X; #
0) the system is overdetermined. A simple example of an inhomogeneous vector

field such that () is not solvable is given by X = Xy + X; = (% + «f(%) +

(6% + E%) on M = R, The crucial novelty of [I3] is to consider instead of
() the following modified, weakened, problem

(¥ oDoF* = (iR ) oFrox

. 2)
Fomf{)o}xs = ¢, (

LRUT LRk . e
where 1nJE = 1n‘]§X st is again the natural injection (and where the above

*

more general derivation D could be replaced by 0y + 0; since (injﬁm) annihi-

lates germs of superfunctions of the type 7 - f, f € Orxs)-

In [13] (making indispensable use of [12]) it is shown that in the smooth
case ([2) has a unique maximal solution F', defined on the flow domain
V = (V,Ogij1s]v), where V.C R x S is the maximal flow domain for the flow

of the reduced vector field X = )70 on M with initial condition 5 Since the
results of [I2] are obtained by the use of a Batchelor model for M, i.e. a real
vector bundle E — M such that M = (M,I'%.), and a connection on E,
we follow here another road, closer to the classical, ungraded, case and also
applicable in the case of complex supermanifolds and holomorphic vector fields.

Our new method of integrating smooth vector fields on a supermanifold in Sec-
tion 2 consists in first locally solving a finite hierarchy of ordinary differential
equations, and is here partly inspired by the approach of [3], where the case
of homogeneous super vector fields on compact supermanifolds is treated. We
then show existence and unicity of solutions of (2)) on smooth supermanifolds
and easily deduce the results of [13] from our Lemmata 2] and
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A second beautiful result of [I3] (more precisely, Theorem 3.6 of that reference)
concerns the question if the flow F' solving ([2)) fulfills “flow equations”, as in the
ungraded case. Hereby, we mean the existence of a Lie supergroup structure
on R'" such that F is a local action of R on M (in case S = M, ¢ = id y).
Again, the answer is a little bit unexpected: in general, given X and its flow
F:RUY' x M DV — M, there is no Lie supergroup structure on R'" such
that F is a local R''-action (with regard to this structure). The condition for
the existence of such a structure on R' is equivalent to the condition that
(@) holds without the post-composition with (injﬁm)*, i.e. the overdetermined
system () is solvable. Furthermore, both conditions cited are equivalent to
the condition that RXy @ RX; is a sub Lie superalgebra of Ty (M), the Lie
superalgebra of all vector fields on M.

After discussing Lie supergroup structures and right invariant vector fields on
R, as well as local Lie group actions in the category of supermanifolds in
general, we show in Section 3 the equivalence of the above three conditions,
already given in [I3]. We include our proof here notably in order to be able to
apply it in the holomorphic case in Section 5 (see below) by simply indicating
how to adapt it to this context. Let us nevertheless observe that our result
is slightly more general since we do not need to ask for any normalization of
the supercommutators between X; and Xy resp. X, thus giving the criterion
some extra flexibility in applications.

In Section 4, we give several examples of vector fields on supermanifolds, homo-
geneous and inhomogeneous, and explain their integration to flows. Notably,
we construct an exponential morphism for an arbitrary finite-dimensional Lie
supergroup, via a canonically defined vector field and its flow. We comment
here also on the integration of what are usually called “(infinitesimal) super-
symmetries” in physics, i.e., purely odd vector fields having non-vanishing
self-commutators.

Finally, in Section 5 we adapt our method to obtain flows of vector fields
(compare Section 2 and notably Lemma 1)) to the case of holomorphic vector
fields on holomorphic supermanifolds. To avoid monodromy problems one has,
of course, to take care of the topology of the flow domains, and maximal flow
domains are -as already in the ungraded holomorphic case- no more unique.
Otherwise the analogues of all results in Section 2 and 3 continue to hold in
the holomorphic setting.

Throughout the whole article we will work in the ringed space-approach to
supermanifolds (see, e.g., [9], [10], [I1] and [15] for detailed accounts of this
approach). Given two supermanifolds M = (M,0Ox) and N = (N,Ox),

a “morphism” ¢ = (5, ¢*) : M — N is thus given by a continuous map
¢ : M — N between the “bodies” of the two supermanifolds and a sheaf
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homomophism ¢* : Opn — 5* On. The topological space M comes canonically
with a sheaf C37 = Oam/J, where J is the ideal sheaf generated by the germs
of odd superfunctions, such that (M,C$7) is a smooth real manifold. Then qz
is a smooth map from (M,C539) to (N,C). Let us recall that a (super) vector
field on M = (M, On) is, by definition, an element of the Lie superalgebra
Tm(M) = (Derg(Op))(M) and that X always induces a smooth vector field
X on (M,C33). For pin M and f+ J, € (C3})p = (Om/T)p one defines
)?,,(f + Jp) = Xo(f)(p), where Xy is the even part of X and for g € (On)p,
g(p) € R is the value of g in the point p of M.

2 FLOW OF A VECTOR FIELD ON A REAL SUPERMANIFOLD

In this section we give our main result on the integration of general (i.e. not
necessarily homogeneous) vector fields by a new method, avoiding auxiliary
choices of Batchelor models and connections, as in [12]. Our more direct
approach is inspired, e.g., by [3], where the case of homogeneous vector fields
on compact manifolds is treated, and it can be adapted to the holomorphic
case (see Section 4).

For the sake of readability we will often use the following shorthand: if P is
a supermanifold, we write inj Em for inj E;‘;XP. Furthermore, the canonical
coordinates of R will be denoted by ¢ and 7, with ensueing vector fields
0t=%and&:%.

LEMMA 2.1. Let U C R™™ and W C RPI be superdomains, X € Ty (W) be
a super vector field on W (not necessarily homogeneous) and ¢ € Mor(U, W),
and ty € R. Let furthermore H : V. — W be the mazimal flow of X € xX(W),
i.e. Qyo H* = H* o )~(, subject to the initial condition H (to,-) = (E: U—Ww.
Let now V be (V, Opinyyylv) and (t,7) the canonical coordinates on R'', then
there exists a unique F :V — W such that

(inj §") 0 (@ +0-) 0 F* = (injB) o F* o X and (3)
$. (4)

RY
Foing {toyxu

Moreover, F:VoW equals the underlying classical flow map H of the vector
field X with initial condition ¢.

PRrROOF. Let (u;) = (2, &) and (w;) = (y;,7s) denote the canonical coordinates
on R™™ and RPI9, respectively. Then there exist smooth functions aly € CR (W)

such that
p+aq

-3 (z a7,<y>nJ) b,
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q
where J = (f1,...,,) runs over the index set {0,1}4 and 1’ = H n5°. We
s=1

then have, of course,

Xo=3 | > | Ouresp. Xa=3 | D> ahlw’ | O,

J [J]=lw;] J [J]|=|w;[+1
Here, |J| equals 81+ - -4 3, mod 2 and |wj| is the parity of the coordinate func-
tion w;. The morphism F' determines and is uniquely determined by functions

f},g} € C3 g (V) tulfilling for each j € {1,....p+ ¢}
Frw) = > ftas+ Y gtz
[I]=|wj;| [I]=|w;|+1

(and f} = 0 if |I] # |wy|, g} = 01if |I| # |wj] + 1) as is well-known from the
standard theory of supermanifolds (compare, e.g., Thm. 4.3.1 in [20]). Here
and in the sequel I = (ai,...,q,) is an element of the set {0,1}" and &7
stands for the product £ - £52 ---£%». The notation |I| again denotes the
parity of I, i.e. |I| =a1+ -+ a, mod 2.

Equation (@) is equivalent to the following equations:
(inj Em)*oatoF* = (inj Em)*oF*oXo (5)
(i ") 00, 0 F* = (i B") o F ox, (6)

Applying (@) to the canonical coordinate functions on W, we get the following
system, which is equivalent to (@)):

Z atf}-glz Z F*(aJI)F*(nJ) for all j in {1,...,p+ q}, (7)

[1]=|w;] | J|=lw;]

and (@) is equivalent to

Z gl €l = Z F*(aﬂ)F*(n") forall jin {1,...,p+4q}, (8
[1]=[w;|+1 [J]=]w;]+1

where [ := F o inj Em V= (V, Orxulv) — W. Let us immediately observe
that the underlying smooth map of I’ equals F', the smooth map underlying
the morphism F.

Moreover the initial condition [ is equivalent to

Z F(to, x)E! = ¢ (w;) for all j in {1,...,p+q}. (9)

[1]=|w;]

We are going to show that () and (@) uniquely determine the functions f} on
V, i.e. the morphism F. Then the functions g7 are unambiguously given by
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@®) on V', and the morphism F' is fully determined.

Let us develop Equation (@) for a fixed j:

oo = Y Fra)[[Frm)” (10)

[ |=w,] |J|=w,] s=1
J=(B1,---,Bq)
ﬂs
and thus Z ofl el = Z F*(a?])H Zf£+s€L (11)
[ |=lw;| |J|=lw;| s=1 \|L|=1
J=(B1,.--,Bq)

For fixed j this is an equation of Grassmann algebra-valued maps in the
variables ¢ and x that can be split in a system of scalar equations as follows.
For K = (ai,...,a,) € {0,1}", we will denote the coefficient hg in front of
¢ of a superfunction h = 3", har(t, )M € Ogmirin compactly by (h|€5) in
the sequel of this proof.

Let us first describe the coefficients for F*(a’)) in (II):
(F(@y)le) =0 if K| =1 (12)
and, if |[K| =0,
(F*(a))|¢") = a0 F if K =(0,...,0),
and
o . P . ~ .
(B (@})I€5) = S0y, a)(F () - 1+ R (ah, (] sty caes)) - (13)
p=1
if deg(K) > 0.

Here for I = (aq,...,ay), deg(l) = a1 +- - -+ ay, and -more importantly- R =
Rj;, 7,k is a polynomial function in a’, and its derivatives in the y-variables up to
order ¢ included, and in the functions { f7|1 < v < p+q,0 < deg(I) < deg(K)}.
Equation ([I2)) is obvious since aﬂ is an even function, whereas equation (I3)
can be deduced from standard analysis on superdomains. More precisely, let a
be a smooth function on R” and 1) : R™+1" — RPIY 2 morphism (of course to
be applied to a = a’;,¢ = F). Then we can develop ¥*(a) as follows (compare
the proof of Theorem 4.3.1 in [20]):

V@) = 300 e 3 ) - 0 ) 5 )

= a@(t.z)+ Y (O a) ) [ > i |+
M#0
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P
% Yo By 0y )@t | D S DY A

o' =1 M0 M #£0
where Z M = (y,) — {/;*(yu) with f}; depending on ¢ and z. We
M#0

observe that the last RHS is a finite sum since we work in the framework of
finite-dimensional supermanifolds.

In order to get a contribution to (1*(a)|¢¥) we can either extract fl from
the “linear term” or from products coming from the higher order terms in the
above development. Thus

P
Z ) fK + R( (f]y)v,deg(l)<deg(K))7

where R is a polynomial as described after Equation (I3]).

Furthermore, for an element J = (f1,...,0,) with |[J| = 0 we have for
deg(K) >0
Bs
q .
I > e =R ((ﬁ)j,deg(IKdeg(K))' (14)
s=1 \|L|=1

And for an element J = (B1,..., ) with |J| =1 we get for deg(K) > 0

e+ ((f? )j,deg<1><deg<K>)
q o ifdeg(J)=1and l € {1,...,q}
H Z fp+5 Kl = such that 85 = ds; Vs, (15)

s=LA 1=t R((fg)j,deg(1)<deg(l())

if deg(J) > 1.

Obviously, the coefficient of ¢& of the LHS of Equation () is given by

it ek | _ [ Ok i IK| = wj] o
|I|Z_|atf1 &€ —{ 0 if | K| = uw;| + 1 for1<j<p+gq.

Taking into account the above descriptions of the ¢X-coefficients, we
will show the existence (and uniqueness) of the solution functions
{flIl < j <p+gql € {0,1}"} for (t,x) € V by induction on deg(I)
and upon observing that all ordinary differential equations occuring are (inho-
mogeneous) linear equations for the unknown functions.
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Let us start with deg(/) = 0 that is I = (0,---,0). The “0-level” of the
equations () and (@) is 8tf(]07m70) = azo,---,o) o Fandf (to, x)

qb( ) for all j such that |w;| = 0. We remark that f(o,..., is sunply yj o F
and a(o o) is X(y;). Thus F is the flow of X with initial condition ¢ at
t = tp, i.e., F = H on V. Thus the claim is true for I = (0,---,0).

Suppose k£ > 0 and that the functions f} are uniquely defined on V for all
j and all I such that deg(I) < k. Let K be such that deg(K) = k. Let us
distinguish the two possible parities of k in order to determine f7. for all j.
Recall that f;( = 0 if the parities of K and j are different.

If k is even, ie., |K| = 0, we only have to consider j such that |w;| = 0.
Putting (I3) and ([ together, we find in this case

Bs
q
Oft = S @) ]| D] et | |
|J|=0 s=1 \|L|=1
J=(B1,.--,Bq)
q Bs
= | X FEp]l| X et
deg(J)=0 s=1 \|L|=1
J—(Bla- 7ﬂq)
q Bs
o2 Fp]l| 2ot |t
|7]=0 s=1 \|L|=1
deg(J)>0
J=(B1;--,Bq)
q ﬂS
il BRI D SR A CA 1§ DIR A I
|7]=0 s=1 \|L|=1
deg(J)>0
J=(B1;---,8q)
P
= Z(ay“a(o OF) fK+R((aJ)Ia(f[)udeg([)<deg(K))
p=1
Moreover, the initial condition gives fi-(to,z) = (4*(y;)|¢"), for all

jin{1,...,p}. Since the af', are the (given) coefficients of the vector field
X and the functions f; with deg(l) < k are known by the induction hypothe-
sis, we have a unique local solution function f ;( Since the ordinary differential
equation for f}( is linear its solution is already defined for all (¢,2) € V.

Thus in the case that k is even fg( is unambiguously defined on V for all
je{l,...,p+q} and for all K with deg(K) = k.
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Now, if k is odd, i.e., |K| = 1, we only have to consider j such that |w;| = 1.
Using ([I3) and (&), we find in this case:

Bs
q
ol = > ]I X et |ef
[J|=1 s=1 \|L|=1
JZ(Bla---vﬂq)
q Bs
S SRRt { Pora I
deg(J)=1 s=1 \|L|=1
JZ(Bla---vﬂq)
q Bs
2 ]I XA |ef
|J|=1 s=1 \|L|=1
deg(J)>1
J=(B1,-,Bq)
q
+s
- Z 615,--6%)) pr
s=1 |L|=1
q Bs
+ 2 )]l Xt |
[J|=1 s=1 \|L|=1
deg(J)>1
JZ(Bla---vﬂq)

4 . ~ .
= Z (azéls,m,aqs) © F) fp+6 + R ((G?J)Jv (f}')v,deg(l)<deg(K)) :

Moreover, the:initial condition gives
Fhe(to, ) = (67 (wy)|€¥) for all j in {p+1,....p+q}.

It follows as in the case of |K| = 0, that fJ exists uniquely for all (t,2) € V,
for all j € {1,...,p+ ¢} and for all K with deg(K) = k.

We conclude that the functions {f}|1 <j<p+gqI € {0,1}"} are uniquely
defined on the whole of V. Since the {gi|1 < j < p+ ¢, I € {0,1}"} are
determined by Equation () from the {f¥|1 < j < p+ q} via comparison of
coefficients, the morphism F': V — W is uniquely determined. O

We now consider the global problem of integrating a vector field on a super-

manifold. In order to prove that there exists a unique maximal flow of a vector
field, the following lemma will be crucial.
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LEMMA 2.2. Let M = (M,0Op) and S = (5,0s) be supermanifolds, X a
vector field in Tpm(M) and ¢ in Mor(S, M). Then

(i) there exists an open sub supermanifold V = (V, Ogiii«s|v) of R1 xS with
V open in R x S such that {0} x S CV and for all z in S, (Rx{z})NV
is an interval, and a morphism F :V — M satisfying:

(inj Em)* o(Oy+0;)0 F* = (ing Em)* oF*oX and (16)
Foinjfous = ¢- (17)

(i1) Let furthermore Fy : Vi — M and Fy : Vo — M be morphisms satisfying
(I8) and ([I7) where V; = (Vi, Ogii1 xslv,) with V; open in R x S such that
{0} xS CV; and for all x in S, (R x {a})NV; is an interval, fori=1,2.
Then Fy)y,, = Fopy,, on Via = (Viz, Ogingslvi,), where Vig = ViNVa.

PRrROOF. (i) Let ¢ : S — M denote the induced map of the underlying classical
manifolds. Given now s in S and coordinate domains Us of s and W of
@(s), isomorphic to superdomains U, ¢ R™™ resp. W, C RPI9, by Lemma
211 we get solutions of (I6) and (I7) near s (upon reducing the size of U if
necessary): R xS > RU xu, oV, LA Ws C M. It Vg, NV, # ) (compare
Figure 1) we know, again by Lemma 2] that F** and F*2 coincide on this

intersection. Thus, by taking the union V of V; for all s in S, we get a morphism
F:RM xS >V — M such that Fly, = F* for all s, and fulfilling (&) and

@.

S
V;l \ (Ov 31)
VS ‘ (07 82)
0 RY
FIGURE 1

(ii) We define A as the set of points (¢,2) € Viz such that there exists e =
€(t,0) > 0 and U = U, ) an open sub supermanifold of S, such that its body U
contains z and for V = V(s o) = (Vis,2), Oritins) = (] — €, +€[xU, Opijiis) we
have Fyjy = Fyy. Of course, if t < 0 the interval will be of the type |t — ¢, €]
(See Figure 2). The claim of the Lemma is now equivalent to A = Vi5. The
set A is obviously open.
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177,

ea ) R

FIGURE 2

By an easy application of Lemma I A contains {0} x S. The assumptions
imply that for all z € S, the set I, C R, defined by (Rx {z})NVis = I, x{z}, is
an open interval containing 0. The definition of A implies that the set J, C I,
such that (R x {a}) N A = J, x {x} is an open interval containing 0 as well.
Assuming now that A # Vi, then there exists a point (¢,z9) € Vi2\A such
that Jg, # I,. Without loss of generality we can assume that ¢ > 0 and that
for 0 <t/ <t, (t',x09) € A. Let Uy be an open coordinate neighborhood of
in S and § > 0 such that, with Vj :=]t — 6, ¢+ 6[xUy C Via, H(Vy) C W, where
W = (W, Orw) is a coordinate patch of M and H is the maximal flow of X
as in Lemma 2.1. Choose tg €]t — §,t[. Then (to,x¢) € A and thus there exists
€ > 0 and U an open sub supermanifold of Uy = (Up, Os|u,) containing xg such
that

Fijy = Fyy, where V =] —e,to—l—e[x[Roll XU C Via. (18)

On V' =]t —0,t + (5[><[R0‘1 X U C Via, Fi and F, are defined and for 7 = 1,2
the maps F; o inj}{}to}xu coincide by ([I8) (Compare Figure 3 for the relative
positions of the underlying topological spaces of these open sub supermanifolds
of R x S).

FIGURE 3
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By Lemma 1] we have Fyy, = Fyy. Thus F1 = F on VUV, and we
conclude that (¢,x¢) € A. This contradiction shows that V3o = A. O

REMARKS. (1) Obviously, Lemma holds true for an arbitrary tg € R re-
placing ty = 0.

(2) Let us call a “flow domain for X with initial condition ¢ € Mor(S, M)
(with respect to to € R)” a domain V C R x & such that {to} x S € V and
for all sin S, (R x {s}) NV is connected, i.e. an interval (times {s}) and such
that a solution F' (a “flow”) of (I8) and (7)) exists on V. By the preceding
lemma there exists such “flow domains”.

THEOREM 2.3. Let M and S be supermanifolds, X be a vector field in Ty (M),
¢ in Mor(S, M) and ty in R. Then there exists a unique map F :V — M such
that

(inj & )* 0 (8, + 8,) 0 F* (inj &) 0o F* 0o X and
Foinj{yxs = @,

where V = (V, Ogii1 wylv) is the mazimal flow domain for X with the given
initial condition. B

Moreover, F : V. — M is the mazimal flow of X € X (M) subject to the initial
condition 5 at t = tg.

PRrROOF. The proof of the theorem follows immediately from the Lemmata 2]
and [Z2, upon taking the union of all flow domains and flows for X as defined
in the preceding remark. O

3  SUPERVECTOR FIELDS AND LOCAL R!'-AcTiONS

Given a vector field on a classical, ungraded, manifold, the flow map F (for
S=M, ;5 = idyy) is always a local action of R with its usual (and unique up to
isomorphism) Lie group structure, the standard addition. The flow maps for
vector fields described in the preceding section (taking here S = M, ¢ = idnq),
do not always have the analogous property of being local actions of R with
an appropriate Lie supergroup structure. Two characterizations of those vector
fields X = X+ X that generate a local R'I'-action were found by J. Monterde
and O. A. Sanchez-Valenzuela. We will give in this section a short proof of a
slightly more general result, whose condition (iii) seems to be more easily veri-
fied in practice than those given in [I3] (compare Thm. 3.6 and its proof there).

Let us begin by giving a useful two-parameter family of Lie supergroup struc-
tures on the supermanifold R'* and their right invariant vector fields.

LEMMA 3.1. Let a and b be real numbers such that a -b =0 and pqp = -
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RUL x R — R be defined by

ati,ta) = t1+to,
M*(t) = tl +t2+0/7’17'2,
W) = mtdhn

Then

(i) there exists a unique Lie supergroup structure on RUY such that the mul-
tiplication morphism is given by fiq.p,

1 e right invariant vector fields on , Map) are given by the grade
ji) the right invariant vect ld RY p1a, ven by th ded
vector space RDg ¢ RDy, where

Dy:=0;+b-79; and Dy := 0> +a - 704,
and they obey (Do, Do) = 0, [Do, D1] = —bD; and [D1, D1] = 2aD,.

Proor. Both assertions follow by straightforward verifications. O

REMARKS. (1) It can easily be checked that the above family yields only
three non-isomorphic Lie supergroup structures on R'", since ([R”l, Ha,0) With
a # 0 is isomorphic to (R, 111 9) and (R, yi9 ) with b # 0 is isomorphic to
([Rm, to,1) and the three multiplications jg 0, p1,0 and po,1 correspond to non-
isomorphic Lie supergroup structures on R'. Nevertheless it is very convenient
to work here with the more flexible two-parameter family of multiplications.
(2) In fact, all Lie supergroup structures on R*!! are equivalent to p 0, pt1,0 or
po1- See, e.g., [] for a direct approach to the classification of all Lie supergroup
structures on R,

DEFINITION 3.2. Let G = (G,Og) resp. M = (M,On) be a Lie supergroup
with multiplication morphism p and unit element e resp. a supermanifold. A
“local action of G on M7 is given by the following data:

a collection I1 of pairs of open subsets m = (Ur, Wy) of M, where U, is relatively
compact in Wr, with associated open sub supermanifolds U, C W, C M such
that {Ux|m € T} is an open covering of M, and for all = in II an open sub
supermanifold G, C G, containing the neutral element e and a morphism

Q.G XU = Wi
fulfilling
(1) @, 0 (e xidy,) = idy,, where e : {pt} — G is viewed as a morphism,
(2) @0 (pxidp) = Pro(idg X ®r), where both sides are defined,

(3) if Up N UL 7& Q], b, =D, on (gﬂ ﬁgw/) X (UW ﬁZ/lW/).
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PROPOSITION 3.3. Let G = (G,Og) resp. M = (M,Ox) be a Lie supergroup
resp. a supermanifold. Then

(i) a local G-action on M, specified by a set II and morphisms
{Ur, Wi, Gy, ®r)|m € 1}, gives rise to an open sub supermanifold
V C G x M containing {e} x M and a morphism ®y :V — M such that

Dy o (1 X idp) = Py o (idg x Py), (%)
where both sides are defined and such that

O =Dy on (Gr xUx) NV, Vr €11, (%)

(ii) an open sub supermanifold V C G x M containing {e} x M and a mor-
phism ® : V — M such that () is fulfilled, where it makes sense, yields
a local G-action on M such that (&H) holds.

PROOF. As in the classical case of ungraded manifolds and Lie groups. O

THEOREM 3.4. Let M be a supermanifold, X a vector field on M and V C
R x M the domain of the mazimal flow F : V — M satisfying

(injgm)*O(at—l—@T)OF* = (injgm)*OF*OX and
Foinj{pnom = idpm

Let a and b be real numbers such that a -b = 0. Then the following assertions
are equivalent:

(i) the map F fulfills

(O 4+ 07 + 1(a0y +b0;)) o F* = F* 0 X

(ii) the map F is a local (R, ju4.3)-action on M,

(i) RXg @ RXy is a sub Lie superalgebra of Tp(M) with commutators
[X(),Xl] = 7bX1 and [Xl,Xl] = 2(1X0.

Proor. Recall that F' fulfills
(i B 000 F* = (inj&")*0F 00X, and
(i B 00, 0 F* = (inj &) o F*oX).

Denoting the projection from R to R by p, we have

. .. R . . R
idgin = pro(injg )" +7-pio(injg ) od;
which we will write more succinctly as
. . RYT & . RY\x
idgon = (injg )" +7-(njg ) 0. (19)
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Using relation ([9) and the equations fulfilled by F* we get

FroX = (i 'E )*oF*oX—l—T-(injﬁm)*o@ToF*oX
= @B 0@ +0)oF +7- (B ) o F o X, 0X
= (i § ) 0@ +0) 0 F*
R\ « *
+ (HIJR ) oF*o [Xl,X0]+XO0X1+ [Xl,Xl]
Since
(ij B ) o F* o Xgo X1 = (inj B ) 00, 0F* 0X;

= 0Oy o (inj Em)* oF*o X,
= 0Oy o (inj Em)* 00,0 F*

= 0;00;0F"
- a‘roaifolf*a
we arrive at
FfoX = (m‘][R ) o0 (0 +0;)0 F*+

1
- F* ([X17X0]+§[X1,X1]) +T'87—OatOF*. (20)

On the other hand, if a and b are real numbers, we have, again using ([I9)
(Or + 0 + 1(ady + b0;)) o F*
= (g E") 47 §)* 00 ) 0 (80 +0r) 0 P
+7 - (a. (inj Em)* 00 +b-(inj Em)* oa,r) o F*
= (inj Em)*o(at—l—@T)oF*—|—T.8ToatoF*
+T'F*O(aXo+bX1).
Thus we have

Oy + 0 + 7(ady + b0,)) o F* — F* 0 X

1 21
:T-F*O(aXo—a[Xl,Xl]—i-le—[Xl,Xo]). ( )

Since F satisfies the initial condition (inj ‘{)O}XM)* o F* = idp, 7 F* is
injective and thus Equation (ZI)) easily implies the equivalence of (7) and (iii).

We remark that, in this case, we automatically have a - b =

0
since the Jacobi identity implies that [X1,[X1,X1]] = [[X1, X1], X1] +
(=DM X0, (X1, X4])s de, 2a-0- Xy = [X3, [X1, X4]] = 0.
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Assume now that a and b are real numbers such that (i) satisfied, and let
= pap be as in Lemma BIl We have to show that F' is a local action of

(R, p).
Let us define

G := Fo (idgip x F) : RM x (RM x M) = M
and
H:=Fo(uxidy): (RN x R1Y) x M= RU x (RM x M) — M.

In order to prove that F is a R'/'-action on, we have to show that G = H.
We observe that G is the integral curve of X subject to the initial condition
F € Mor(R' x M, M).

Let us prove that the morphism H satisfies the following conditions:

o RUI(RYT M)« * o RUTX(RM X M)\ # *
(inj [Rx([:l(\lx/\fl) )) o (0 +0-)0H" = (inj RX(El(HX,/\i) )) oH" o X (22)
. RYL (R M)
H oinj (O} x(RUTx M) = F. (23)

Then by the unicity of integral curves we have H = G.

RUL R

Equation (23] holds true since p o inj (0} xRN = idgu -

Defining D := Do + Dy = 0, + 07, + 11(adt, + b0y,) and writing inj |, for
. RYL (R M)
W Ry (R x M)
follows

and using right invariance of D, we arrive at equation (22) as

L RYL(RUT M), N
(an [R><(ﬂ>?<1(‘1></\i) )) O(atl +871)OH

Thus we obtain that () implies (i1).

Assume now that (i7) is satisfied, i.e., there exists a Lie supergroup structure
on R!" with multiplication  such that

FO(id[Rlu XF):FO(MXK‘IM) (24)

Since F'is a flow for X, with initial condition ¢ = id o, the LHS of the preceding
equality is a flow for X with initial condition ¢ = F', ([24)) implies

(inj |t1)* o (0, + 0r,) o (* x id),) o F* = (inj |t1)* o (p* xidy,) o F* o X. (25)
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By Equation (20), the RHS gives for ¢; = 0:
(inj p,—0)" o (0" xidjy) o F* o X = F'oX
= (i &) 0 (@ +0) 0 F*

1
+7 - {F o ([Xl,Xo] + 5

2[X1,X1]> +0700t0F*} :

Moreover, we have by direct comparison
(B, +0r)op™ = (Dp, + Or ) (" (1)) - (1" 0 D)
+(0r, + 7)) (7 (7)) - (1" 0 0r).
Thus, if p: RU" x RUT — RU is given by
wr(t) [ty t2) + alty, ta) 172
pi(r) = Blti,t2)m + (1, t2)72,

. o RUT R4 « © 1%
and upon using (inj (0} xR )* o p* = idga1, we have

(inj 50 A8 @0y +0,) 0" = (0 7)(0.8) +a(0,1)7) - )
+ (ﬁ(ov t) + (atlfy)((h t)T) - Or.
Using again ([Id)), we have

8 oF* = (injE"

O, 0 F* = (in]

Y*oF*oXg+7-0,00;0F" and
)*OF*OXl.

[Rl 1
R

RLIL
R

Then the LHS of ([28) at t; = 0 is
(0 11,—0)" © (s +0r) 0 (" x id}y) 0 F*
~ . RULL .
= (atll’[/)(oat) . (II’IJ E ) o F*o XO
+8(0,1) - (inj B 0 F* o X3
+7 - (8, 2)(0,t) - O 0 Dy 0 F*

+a(0,t) - F* 0 X,
+(06,7)(0,) - F* 0 X1).

Using the obtained identities for its LHS and RHS, the “7-part” of Equation
@3) at t; = 0 gives us:

1
T [F* ° ([XlaXO] + §[X1,X1]) + 0r 0 0 OF*]
=T [(atllj)(o7t) 'aTOGtOF* +Oé(0,t) - F o Xo + (8t1’7)(0,t) FT OXl]'
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Since fi(t1,0) = t1, we have (94, 12)(0,0) = 1 and therefore the preceding equa-
tion evaluated at t = 0 yields

1
[ X1, Xo] + 5[X1, X1] = (9,7)(0,0) - X1 + a(0,0) - Xo
finishing the proof that (éi) implies (7i). O

4 EXAMPLES AND APPLICATIONS

(4.1) If X = X, is an even vector field, the fact that it integrates to a (local)
action of R = R is almost folkloristic. The relatively recent proof of B3] - in
the case of compact supermanifolds - is close to our approach. A non-trivial
(local) action of R!I® can obviously be extended to a (local) action of (R, 11, 3)
if and only if @ = 0. Of course, the ensueing action of R!/! will not even be
almost-effective, since the positive-dimensional sub Lie supergroup RI' acts
trivially.

(4.2) Our preferred example of an even vector field gives rise to the exponential
map on Lie supergroups.

Let us first recall that an even vector field X on a supermanifold M corresponds
to a section ox of the tangent bundle TM — M (see, e.g., Sections 7 and 8 of
[15] for a construction of 7'M and a proof of this statement, and compare also
the remark after Thm. 2.19 in [5]). Given an auxiliary supermanifold S and a
morphism ¢ : S — M, one calls for i € {0, 1}

Dery, (Op(M), Os(S))i :=
{D: Om(M) — Os(5)|D is R-linear and Vf, g € O (M) homogeneous,
D(f-g)=D(f)-¥"(g) + (=1)"Vly*(f) - D(g)},

the “space of derivations of parity ¢ along v¢”. In category-theoretical terms
the tangent bundle T'M represents then the functor from supermanifolds to
sets given by S — {(¢, D)|¢p € Mor(S, M) and D € Dery,(Om(M), Os(S))o}
(compare, e.g., Section 3 of [6]).

Let now G = (G,0Og) be a Lie supergroup with multiplication p=p9 and
neutral element e. We define X in Der (Ogxr.¢(G x TeG)) to be the
even vector field on G x T.G corresponding to the following section ox
of TG x T(T.G) =2 T(G x T.G) — G x T.G. We denote the zero-section
of TG — G by op and the canonical inclusion T.G — TG by i.. Then
ox = (Tpo (o9 X i.),0), where Ty : TG x TG = T(G x G) — TG is the
tangential morphism associated to the multiplication morphism. (For sim-
plicity, we write 0 for the zero-section of T'(T.G) — T.G here and in the sequel.)
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Let us recall that for & an arbitrary supermanifold, and ¢ : M — N a
morphism between supermanifolds, we have an induced map ¢(S) : M(S) =
Mor(S, M) — Mor(S,N) = N(S), ¢(S)(¥)) = ¢ o). Given a finite-
dimensional Lie superalgebra g or a Lie supergroup G, one easily checks
that for all & > 0, g(R) resp. G(RY¥) is a finite-dimensional classical (i.e.
even) Lie algebra resp. Lie group. Furthermore, T.(G(R%¥)) is canonically
isomorphic to (T.G)(R°*), where the first e is the obvious constant morphism
from RO* to G and the second e denotes the neutral element of G. (Compare,
e.g., [I6] for more information on the superpoint approach to Lie supergroups.)

LEMMA 4.1. Let G be a Lie supergroup with multiplication p, and the vector
field X as above. Then

(i) the induced vector field X on the underlying manifold G x T.G is given
as
Xge) = (£5(9),0) V(9,6 € G x T..G,

(ii) the (even) vector fields X and X are complete.

Proor. (i) For & > 0, let ox(R%) be the section of T(G(RV¥)) x
T(T.G(R°*)) — G(R*) x T,G(RY¥) induced by ox, and let X* be the corre-
sponding derivation on G(R%*) x T.G(R*). Since G(RY*) x (T.G)(R0) is an
ungraded manifold,

X([Rolk)(gag)

(Tpd o (00 x ie) 0 (g % §),0)
(Tpf o (0 % €),0)

() 40:).0
(@™ ).0).0).

where ug(RO‘k) is the multiplication on G(R°*) and is the left-
multiplication by the element g of the group G(R°*). We conclude that
ox (R°%)(g,&) (or equivalently X(kg,g)) corresponds to (££(g),0), where &% is
the unique left-invariant vector field on G(R%¥) such that its value in e is &.
(Observe that G(R*) is a classical Lie group and not only a group object in
the category of supermanifolds, allowing us to argue “point-wise”.)

(ii) The flows of X* are simply given by FX" R x G(RO*) x (T.G)(ROIF) —
G(ROF) x (TL.G)(ROF), (t,9,€) > (g - exp9®"™)(t€),£). All fields X* are thus
complete, in particular this holds for X =X 0. the induced vector field on
G = g([RO|O). By Theorem 3] the flow FX : R x G x T.G — G x T.G is then
global as well, i.e. X is complete. O

lg(ko‘k)

DEFINITION 4.2. Let G = (G,Qg) be a Lie supergroup with multiplication u
and neutral element e, and with the even vector field X and its flow morphism
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F = FX as above. Then the “exponential morphism of G” is given by exp9 =
projloFoinj{l[';i%ézeg g TG — G, where proj, : GxT.G — G is the projection

on the first factor. Diagrammatically, one has

RxGxT.GD {1} x{e} xT.§ —— G xT.G

%]\ \projl

T.g ——— G.
exrp
THEOREM 4.3. The exponential morphism exp® : T.G — G for a Lie supergroup
G fulfills and is uniquely determined by the following condition: for all k > 0,
expd(RY*) : T.G(RO®) — G(RO*) is the exponential map e:npg([RO‘k) of the
finite-dimensional, ungraded Lie group G(R°F).

ProOOF. Using the notations of LemmalLT] a straightforward calculation shows
that the flow FX" of X* on (G x T.G)(RVF) is given as follows (¢, (g,£))
FX oinj, o (g x £) and, notably, we have FX" oinj(y ) (§) = FX oinjo(ex§) =
F¥ oinj; .y o&. Hence

expd®(&) = proj, o F¥" oinjiy (&)
proj, o FX oinjy 0 &
exp¥ of

= (exp)(RY¥)(9).

On the other hand, it is clear that the subcategory of superpoints with objects
{RO¥|k > 0} generates the category of supermanifolds in the following sense:
given two different morphisms ¢1, ¢ : M — N between supermanifolds, there
exists a k > 0 and a morphism ¢ : RO* — M such that ¢, 09 # ¢ 01). Thus
it follows that the family {exp?(R%*)|k > 0} uniquely fixes exp9. O

(4.3) Part of our interest in the integration of supervector fields stemmed from
the construction of a geodesic flow in [5] . Given a homogeneous (i.e., even or
odd) Riemannian metric on a supermanifold M, the associated geodesic flow
is, in fact, defined as the flow of an appropriate Hamiltonian vector field on its
(co-)tangent bundle.

(4.4) An odd vector field X; on a supermanifold M is called “homological”
if Xj0X; = %[Xl,Xl] = 0. Its flow is given by the following R°'-action
O R x M = M, @ (f) = f+71-X1(f),Vf € Op(M). This action can, of
course, be extended to a (not almost-effective) (R, 4 5)-action if and only if
b=0.

Typical examples arise as follows: let £ — M be a vector bundle over a
classical manifold and 7" be an “appropriate” R-linear operator on sections of
AE*, then T yields a vector field on IIE := (M,T'%%.), the supermanifold
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associated to £ — M by the Batchelor construction. If £ = TM — M, we
have T'%. = Q3,(M), the sheaf of differential forms on M, with its natural
Z/27-grading. Taking T = d, we get an odd vector field that is obviously
homological. Taking 1" = t¢, the contraction of differential forms with a vector
field ¢ on the (here classical) base manifold M, we again get a homological
vector field on IIT'M. Since t¢ o 1,y + 1y 0 1g = 0, the vector space of all vector
fields on M is realized as a commutative, purely odd sub Lie superalgebra of
all vector fields on IIT'M. More generally, a section s of E — M always gives
rise to a contraction ¢y : I'S%. (M) — I'S%. (M) that is an odd derivation (i.e.
an anti-derivation of degree -1 in more classical language). Furthermore, given
two sections s and t of F, the associated odd vector fields commute. In the
article [I] this construction is studied in the special case that E is the spinor
bundle over a classical spin manifold M.

(4.5) If G is a Lie group acting on a classical manifold M, then the action
can of course be lifted to an action on the total space of the tangent and the
cotangent bundle of M. The induced vector fields on IIT' M are even and &
in g = Lie(G), the Lie algebra of G, acts on Onrar by Le, the Lie derivative
with respect to the fundamental vector field on M associated to &. Putting
together these fields and the contractions constructed in Example (4[]), we get
a Lie superalgebra with underlying vector space g & g, the first resp. second
summand being the even resp. odd part. The commutators in g @ g are given
as follows: [L¢, Ly] = Lig ;s [te, tn] = 0 and [Le, 1y] = tje ) for all §,n € g. In
fact, the above can be interpreted as an action of the Lie supergroup IIT'G on
1T M.

The Lie algebra g @& g can be extended by a one-dimensional odd direction
generated by the exterior derivative d. The extended algebra g (g®R-d), still
a sub Lie superalgebra of Tripar (M), has the following additional commutators:

[Le,d] =0 and [d, 1] = L¢ for all € € g.

(4.6) If M = R'' with coordinates (z,¢), the vector field X; = ¢ + £0, is
obviously odd and non-homological since X; o X; = 0,. Direct inspection
shows that the map ® : RO x M — M, ®*(f) = f+ 7 X1(f) (compare
Example (4[])) does not fulfill 9, o ®* = ®* o X;. Nevertheless, the trivial
extension of ® to a morphism F : R x M — M is the flow of X; in the
sense of Theorem 23] fulfilling the initial condition ¢ = idys. We underline
that this map is not an action of R'I". Upon extending X; to X := Xy + X3
with X, = %[Xl,Xl] = X, o X1, we obtain by Theorem [3.4] an action of
([Rm,ul,o) as the flow map of X. Let us observe that the above vector field
X1 (and not X) is the prototype of what is called a “supersymmetry” in the
physics literature (compare, e.g., [2I] and the other relevant texts in these
volumes.). More recently, the associated Lie supergroup structure on R (and
an analogous structure on [R2|1) were introduced by S. Stolz and P. Teichner
into their program to geometrize the cocycles of elliptic cohomology (compare
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[ and [I8)).

Obviously, one can generalize this construction to R”!" (m,n > 1) with co-
ordinates (21,...,Zm,&1,...,&,) by setting for 1 <k <m, 1 <a<n

Da,k = aﬁa + ga : aazk

We then have [Dqk, Dgi] = 6,8 - (O, + Oz,) and [Dqx, 0y, = 0. Taking
X1 =D, and Xy = 0, we reproduce a copy of the preceding situation.

(4.7) The vector field X = Xo + X; on M = R with Xy = 0, + £ - 9 and
X1 = 0¢+&-0;, already mentioned in the introduction, is a very simple example
of an inhomogeneous vector field not generating any local R''-action, since,
e.g., condition (iii) in Theorem B4l is violated. Thus integration of X is only
possible in the sense of Theorem[2.3] i.e. upon using the evaluation map. Let us
observe that the sub Lie superalgebra g of Ta((M) generated by X, i.e. by Xo
and X since sub Lie superalgebras are by definition graded sub vector spaces,
is four-dimensional with two even generators Z,W and two odd generators
D, @ such that: Z is central, [W,D] = Q, [W,Q] = D, D* = —Q? = Z and
[D,Q] = 0. (This amounts in physical interpretation to the presence of two
commuting supersymmetries D and (), generating the same supersymmetric
Hamiltonian Z plus an even symmetry commuting with the Hamiltonian and
exchanging the supersymmetries D and @.)

5 FLOW OF A HOLOMORPHIC VECTOR FIELD ON A HOLOMORPHIC SUPER-
MANIFOLD

In this section we extend our results to the holomorphic case. We will always
denote the canonical coordinates on C'1' by z and ¢ and write 9, resp. O¢ for
% resp. 8%. All “auxiliary” supermanifolds S and morphisms having these as
sources will be assumed to be holomorphic in this section.

DEFINITION 5.1. Let M = (M,Ox) be a holomorphic supermanifold and X

a holomorphic vector field on M and S a supermanifold with a morphism ¢ €
Mor(S, M) and z in C.

(1) A “flow for X (with initial condition ¢ and with respect to zy)” is an open
sub supermanifold V C C'' x S, such that {2} x S C V (S and V the
bodies of S and V) and such that for all s in S, (Cx {s})NV is connected,
together with a morphism of holomorphic supermanifolds F :V — M such
that

(injgu)*O(@z—i—@g)OF* = (injgu)*OF*OX and
Foinjlyvs = ¢

Sometimes we call the supermanifold V (or abusively its body V') the “flow
domain” of X.
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(2) A flow domain V of a flow (V,F) for X is called “fibrewise 1-connected
(relative to the projection ¥V — S)” (or “fibrewise 1-connected over 8”) if
for all s in S, (C x {s}) NV is connected and simply connected.

REMARK. We avoid the term “complex supermanifold” here, since it is often
used to describe supermanifolds that are, as ringed spaces, locally isomorphic
to open sets D C R* with structure sheaf C% ®g AC'. “Holomorphic super-
manifolds” are of course locally isomorphic to open sets D C C* with structure
sheaf Op @¢ AC!, where Op denotes the sheaf of holomorphic functions on D.

Let us first give the holomorphic analogue of Lemma 211

LEMMA 5.2. Let U C C™™ and W C CP19 be superdomains, X a holomorphic

vector field on W (not necessarily homogeneous), ¢ in Mor(U, W) and zy in C.
Then

(i) it exists a holomorphic flow (V, F) for the reduced holomorphic vector
field X on U with initial condition d) and with respect to zo such that the
flow domain V. C C x U 1is fibrewise 1-connected over U. Furthermore on
every flow domain in the sense of Definition [5 1 the holomorphic flow is
unique.

(ii) Let now (V,F) be a fibrewise 1-connected flow domain for X over U.
Then there exists a unique holomorphic flow F :V — W for X, with V
the open sub supermanifold of CH' x U with body equal to V.

REMARK. The example of the holomorphic vector field X = (w? + w3§1£2)%

on W = C'1? with coordinates (w, &1, &2) shows that the condition of fibrewise
1-connectivity of V_is not only a technical assumption to our proof. The under-

lying vector field X = w? 8?11 on C, with initial condition <Z) id : C — C with

respect to zo = 0, can be integrated to the flow F:V=C\{z-w=1} - C,
F(z,w) = 1/ - for w # 0 and F(z,0) = 0. Obviously, for w # 0, (Cx {w})NV
is connected, but not simply connected. Direct inspection now shows that the

flow F' of X with initial condition ¢ = id and with respect to zg = 0 cannot be
defined on the whole of V = (V, O¢1j1 12|V )-

PROOF OF LEMMA (i) The existence (and the stated unicity property) of
aflow (V, F) for X, with {20} x U C V C € x U fulfilling the initial condition
25 with respect to zg € C is of course a classical application of the existence of
solutions of holomorphic ordinary differential equations (see, e.g., [§]). Upon re-
ducing the size of V' we always find flow domains that are fibrewise 1-connected.

(ii) The induction procedure of the proof of Lemma [Z1] can be applied here

upon recalling the following standard facts from the theory of holomorphic
linear ordinary differential equations (compare, e.g., [§]):
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Fact 1. Let Q C C be open and 1-connected (i.e. connected and simply con-
nected), and 2o € Q. If A: Q — Mat(N x N,C) and b: Q — CV are holomor-
phic and 1o € CV, then there exists a unique holomorphic map ¢ : Q — CN

fulfilling

0
S U(2) = A()() +b(2)

such that ¥ (zo) = to.

Fact 2. Let Q and zo be as in Fact 1, and let P be a holomorphic manifold (“a
parameter space”), and let A : Q x P — Mat(N x N,C), b: Q x P — CV,
as well as 1o : P — CN be holomorphic maps. Then there exists a unique
holomorphic map 1 : Q x P — CN fulfilling

0
al/f(zvﬂf) = A(va)w(zax) + b(Z,’JJ)
such that ¥ (zo,x) = o (x), Vo € P.

Obviously, to apply these facts in our context, we need the fibrewise 1-
connectivity of the “underlying flow domain” V for X. (|

Before stating and proving our central result in the holomorphic case, we give
the following useful shorthand.

DEFINITION 5.3. Let S be a supermanifold, zo in C and N' C C'' x S be an
open sub supermanifold containing {20} X S. Then N*° is defined as the open

sub supermanifold of N = (N, Onr) whose body equals ]e_[s (Cx{s}n N)(Z"’S),

where ((C x {s})N N)(Z"’S) is the connected component of (C x {s})N N con-
taining (2o, s).

REMARK. A flow domain V in the sense of Definition EI)1) is always open
and contains {zp} x S. Furthermore for all s in S the section (C x {s}) NV
is connected. The preceding definition will in fact be useful for discussing
intersections of flow domains in the next theorem.

THEOREM 5.4. Let M be a holomorphic supermanifold and X a holomorphic
vector field on M, and let S be a holomorphic supermanifold with a holomorphic
morphism ¥ : S — M, and zo € C. Then

(i) there exists a flow (V, F) for the reduced vector field X with initial condi-

tion ¢ with respect to zg such that the flow domain V-C Cx S is fibrewise
1-connected over S,

(ii) if (V,F) is as in (i), then there exists a unique flow for X with initial
condition ¢ with respect to zg, F : V — M, where ¥ C CI' x S is the
open sub supermanifold with body V,
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(iii) if V1, F1) and (Va, Fy) are two flows for X, both with initial condition ¢
with respect to zg, then Fy = Fy on the flow domain (V1 N Vy)™,

(iv) there exists mazximal flow domains for X and the germs of their flows
coincide on {zo} X S.

ProoF. (i) and (ii). It easily follows from Lemma that & can
be covered by open sub supermanifolds {U/*|a € A} such that Xjy.
has a holomorphic flow with initial condition ¢y, with respect to zo,
Fo . v* = A, (z) x CO" x U* — M, where r, > 0, and for r > 0,
A, (z9) is the open disc of radius r centred in zy. Since F¢ = F?# on
V>N VP by the unicity part of Lemma [5.2] we can glue these flows to obtain

Cl'x8S>V:= UAVO‘ N M, a flow for X on M with initial condition ¢
[e1S

with respect to zg. Obviously, the “fibres” (C x {s}) NV are 1-connected for
all s in S, i.e., the flow domain V is fibrewise 1-connected over S.

Note that if we have a flow F' for the reduced vector field X on a flow domain
V' that is fibrewise 1-connected over S, then part (ii) of Lemma yields a
flow for X defined on V = (V, O¢1j1 4 s|v)-

(iii) The body of (V4 NV3)* has as a strong deformation retract the body of
{#z0} x §. Without loss of generality we can assume that S and thus (V1 NVs)*°
are connected. The local unicity in Lemma together with the identity
principle for holomorphic morphisms of holomorphic supermanifolds imply
that |, = F5 on (Vl N VQ)ZO.

(iv) By Zorn’s lemma we get maximal flow domains and by part (iii) the
corresponding flows coincide near {zp} x S. O

REMARKS. (1) The non-unicity of maximal flow domains for holomorphic
vector fields is a well-known phenomenon already in the ungraded case. A
simple example for this is the vector field X on C* such that X (w) = L2 for
all w in C*.

(2) Given the above theorem, the analogues of Lemma B Proposition
and Theorem [34] can now without difficulty be proven to hold for holomorphic
supermanifolds.
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