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ABSTRACT. Suppose F' = W (k)[1/p] where W (k) is the ring of Witt
vectors with coefficients in algebraically closed field k of characteristic
p # 2. We construct integral theory of p-adic semi-stable represen-
tations of the absolute Galois group of F' with Hodge-Tate weights
from [0, p). This modification of Breuil’s theory results in the follow-
ing application in the spirit of the Shafarevich Conjecture. If YV is
a projective algebraic variety over Q with good reduction modulo all
primes [ # 3 and semi-stable reduction modulo 3 then for the Hodge
numbers of Ye =Y ®g C, one has h?(Yg) = hM (Ye).
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INTRODUCTION

Everywhere in the paper p is a fixed prime number, p # 2, k is algebraically
closed field of charactersitic p, F' is the fraction field of the ring of Witt vectors
W (k), F is a fixed algebraic closure of F' and I'r = Gal(F/F) is the absolute
Galois group of F.

Suppose Y is a projective algebraic variety over Q. Denote by Y the cor-
responding complex variety ¥ ®g C. For integers n,m > 0, set h"(Yg) =
dime H"(Yc, C) and ™™ (Yc) = dime H"(Q52)).

The main result of this paper can be stated as follows.

THEOREM 0.1. If Y has semi-stable reduction modulo 3 and good reduction
modulo all primes | # 3 then h*(Yc) = h'1(Ye).
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548 V. ABRASHKIN

Remind that a generalization of the Shafarevich Conjecture about the non-
existence of non-trivial abelian varieties over Q with everywhere good reduction
was proved by Fontaine [16] and the author [2], and states that

(0.1) rt(Ye) = h3(Ye) =0, h*(Ye) = h' (Ye)

if Y has everywhere good reduction. (The Shafarevich Conjecture appears
then as the equality h'(Yc) = 0.) This result became possible due to the
following two important achievements of Fontaine’s theory of p-adic crystalline
representations:

— the Fontaine-Messing theorem relating etale and de Rham cohomology of
smooth proper schemes over W (k) in dimensions [0, p), [15] (it was later proved
by Faltings in full generality, [12]);

— the Fontaine-Laffaille integral theory of crystalline representations of I'p
with Hodge-Tate weights from [0,p — 2], [13].

Note that the Fontaine-Laffaille theory works essentially for Hodge-Tate
weights from [0, p) but does not give all Galois invariant lattices in the cor-
responding crystalline representations. Nevertheless, this theory admits im-
provement developed by the author in [1]. As a result, there was obtained a
suitable integral theory for the case of Hodge-Tate weights from [0, p), which
allowed us to prove some extras to statements (0.1), in particular, that modulo
the Generalized Riemann Hypothesis one has h*(Yg) = h%2(Yg).

Since that time there was a huge progress in the study of semi-stable p-adic
representations. Tsuji [23] proved a semi-stable case of the relation between
etale and crystalline cohomology and Breuil [5, 6] developed an analogue of the
Fontaine-Laffaille theory in the context of semi-stable representations (even
for ramified basic fields). The papers [4] and [21] studied the problem of the
existence of abelian varieties over Q with only one prime of bad semi-stable
reduction. Note that the progress in this direction is quite restrictive because
our knowledge of algebraic number fields with prescribed ramification at a given
prime number p (and unramified outside p) is very far from to be complete.
Theorem 0.1 represents an exceptional situation where the standard tools: the
Odlyzko estimates of the minimal discriminants of algebraic number fields and
the modern computing facilities (SAGE) are sufficient to resolve upcoming
problems. In addition, the proof of this theorem requires a modification of
Breuil’s theory to work with semi-stable representations of I'r with Hodge-
Tate weights from [0, p).

The structure of this paper can be described as follows.

In Section 1 we introduce the category L* of filtered (p, N)-modules over Wy :=
E[[u]]. This is a special pre-abelian category, that is an additive category with
kernels, cokernels and sufficiently nice behaving short exact sequences. Note
that such categories play quite appreciable role in all our constructions. In
Section 2 we construct the functor V* from L* to the category of F,[I'r]-
modules MI' by introducing a “truncated” version of Fontaine’s ring of semi-
stable periods Ag. The functor V* is not fully faithful but by taking into
account the maximal etale subobjects of filtered modules from £* we define a
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modification CV* of V*. This functor gives already a fully faithful functor from
L to the category of cofiltered T’ p-modules CMI' . In Section 3 we give an
interpretation of Breuil’s theory in terms of W := W (k)[[u]]-modules (Breuil
worked with modules over the divided powers envelope of W) by introducing
the category of filtered (p, N)-modules L't over W. The advantage of this
construction is that the objects of this category appear as strict subquotients
of p-divisible groups in suitable pre-abelian category. This allows us to use
devissage despite that all involved categories are not abelian. We also introduce
the subcategories £7* and, resp., £L™7* of unipotent and, resp., multiplicative
objects in £7* and prove that any £ € £t is a canonical extension

(0.2) 0 —LY—L—L"—0

of a multiplicative object L™ by a unipotent object £*. In Section 4 we study
Breuil’s functor V/* : £/t — MTI' ;. in the situation of Hodge-Tate weights
from [0,p). We show that on the subcategory L% this functor is still fully
faithful by proving that on the subcategory of killed by p unipotent objects the
functors V/* and V* coincide. Then we show that for any killed by p object
L of L7, the functor V/* transforms the standard short exact sequence (0.2)
into a short exact sequence in MI' 5, which admits a functorial splitting. This

splitting is used then to construct a modified version éT/ft : Lf t s CMI o
of VIt which is already fully faithful. This gives us an efficient control on all
Galois invariant lattices of semi-stable representations with weights from [0, p).
Especially, we have an explicit description of all killed by p subquotients of
such lattices and the corresponding ramification estimates. Finally, in Section
5 we give a proof of Theorem 0.1 following the strategy from [2].

Essentially, we obtain the following result: if V' is a 3-adic representation of
I'gp = Gal(Q/Q) which is unramified outside 3 and is semi-stable at 3 then there
is a I'g-equivariant filtration by Qs-subspaces V =V, D Vi D Vo D V3 =0
such that for 0 < ¢ < 2, the I'g-module V;/Vit1 is isomorphic to the product of
finitely many copies of the Tate twist Q3(i). If V = HZ (Yr,Qs3) then looking
at the eigenvalues of the Frobenius morphisms of reductions modulo [ # 3, we
obtain that V = V; and V5 = 0, and this implies that h?(Yg) = hb1(Ye).

Note that our construction of the modification of Breuil’s functor gives auto-
matically the modification of the Fontaine-Laffaille functor, which essentially
coincides with the modification constructed in [1]. It is worth mentioning that
switching from Breuil’s S-modules to W-modules means moving in the direc-
tion of Kisin’s approach [18] and recent approach to integral theory of p-adic
representations by Liu [19, 20]. It would be also very interesting to study the
opportunity to modify Breuil’s functor over ramified base [8, 9] to the case
of Hodge-Tate weights from [0, p). Finally, mention quite surprising matching
of the ramification estimates for semi-stable representations and the Leopoldt
conjecture for the field Q(+/3, ), cf. Section 5.

ACKNOWLEDGEMENTS. The author is very grateful to Shin Hattori for numer-
ous and helpful discussions.
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~%  ~%k
1. THE CATEGORIES L , Ly, L*, L]

Remind that k is algebraically closed field of characteristic p > 2. Let W =
W (k)[[u]], where W (k) is the ring of Witt vectors with coefficients in k¥ and
u is an indeterminate. Denote by o the automorphism of W (k) induced by
the p-th power map on k and agree to use the same symbol for its continuous
extension to W such that o(u) = u”. Denote by N : W — W the continuous
W (k)-linear derivation such that N(u) = —u.

We shall often use below the following statement.

LEMMA 1.1. Suppose L is a finitely generated W-module and A is a o-linear
operator on L. Then the operator idy, — A is epimorphic. If, in addition, A is
nilpotent then idy, — A is bijective.

Proof. Part b) is obvious. In order to prove a) notice first that we can replace
L by L/uL and, therefore, assume that L is a finitely generated W (k)-module.
Clearly, it will be enough to consider the case pL = 0. Then there is a decompo-
sition of k-vector spaces L = L1 ® Lo, where A is invertible on L; and nilpotent
on L. It remains to note that L1 = Lo ®r, k, where Lg is a finite dimensional
F,-vector space such that A|r, = id. The existence of Ly is a standard fact of
o-linear algebra: if s = dimy L; and A € M,(k) is a matrix of A|z, in some
k-basis of Ly then Lo = {(z1,...,25) € k% | (2F,...,20)A = (21,...,24)};
the [Fp-linear space Lo has dimension s because the corresponding equations
determine an etale algebra of rank p*® over algebraically closed field k.

O

REMARK. In above Lemma and everywhere below we use the following agree-
ment: A is nilpotent on L iff it is “topologically nilpotent”, i.e. (,, A™(L) = 0.

1.1. DEFINITIONS AND GENERAL PROPERTIES. Let Wi = W/pW with induced
o, ¢ and N.

DEFINITION. The objects of the category EZ are the triples
L= (L,F(L),y), where

e I and F(L) are Wi-modules such that L D F(L);

e ¢:F(L) — L is a o-linear morphism of W;-modules; (Note that ¢(F(L))
is a (W )-submodule in L.)

If £y = (L1,F(L1),¢) is also an object of zz then the morphisms f €
Homzz (L1, L) are given by W -linear maps f : L1 — L such that f(F(L;1)) C
F(L) and fio = of.

DEFINITION. The objects of the category z* are the quadruples £ =
(L, F(L),p,N), where

o (L,F(L),p) is an object of the category ;3;

e N: L — L/u*L is a Wi-differentiation, i.e. for all w € Wy and [ € L,
N(wl) = N(w)(Imodu?’L) + wN(l);
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o if £y = (L1,F(L1),9,N) is another object of z* then the morphisms
Homgz- (L1, £) are given by f : (L1, F(L1),¢) — (L, F(L), ) from é:) such
that fN = Nf. (We use the same notation f for the reduction of f modulo
u?PL.)

The categories E* and zz are additive.

DEFINITION. The category L is a full subcategory of Z; consisting of the
objects £ = (L, F(L), ) such that

e [ is a free Wi-module of finite rank;

o (L) DuP™'L;

e the natural embedding ¢(F(L)) C L induces the identification
P(F(L)) @ (wy) Wi = L.

Note that ¢ induces a map F(L)/u?’L — L/u*L: use that u?*’L C
uPTF(L) C w?F(L) and ¢(u?F(L)) C u*L. We shall denote this map by
the same symbol .

DEFINITION. The category £ is a full subcategory of z* consisting of the
objects £ = (L, F(L), p, N) such that

o (LF(L),9) € L

e for all l € F(L), uN(l) € F(L)modu?”L and N(¢(1)) = p(uN(l)).

The categories L and L* are additive.

In the case of objects (L, F(L), ¢, N) of L* the morphism N can be uniquely
recovered from the W;-differentiation N7 = N mod u?L due to the following
property.

PROPOSITION 1.2. Suppose (L, F(L),¢) € L and N1 : L — L/uPL is a W;-
differentiation such that for any m € F(L), uNi(m) € F(L)modu?L and
Ni(p(1)) = p(uN1(l)). Then there is a unique Wh-differentiation N : L —
L/u®*L such that N moduP = Ny and (L, F(L),o,N) € L".

Proof. Choose a Wh-basis mq,...,mg of F(L). Then l; = p(m1), ..., ls =
©(myg) is a Wy-basis of L and a o(W;)-basis of p(F(L)).

Let N(;) :== ¢(uN1(m;)") € L/u®*’L, where Ny(m;) are some lifts of Nq(m;)
to L/u?’L. Clearly, the elements N (l;) € ¢(F(L)) C L/u®*’L are well-defined
(use that (uPt1L) C u?PL).

For any | = >, wil; € L, let N(I) := >, N(w;)l; + >, wiN(l;). Then N :
L — L/u®* is a Wi-differentiation and N modu? = N;. Clearly, N is the
only candidate to satisfy the requirements of our Proposition.

Now suppose m = Y wym; € F(L) with all w; € W;. Then N(¢(m)) =
>, 0(w;)l; mod u?. On the other hand, ¢(uN(m)) equals

Z uPo(N(w;))l; + Z e(w;uN(m;)) = Z o(w;)l; mod u?P
because all o(N(w;)) € uPa(W).
The proposition is proved. U
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REMARK. By above Proposition in the definition of objects of £* one can
replace N : L — L/u?’L by Ny = N moduPL and use N as a unique extension
of Nj if neccessary. An example of the situation where we do need to extend
Nj is described in Proposition 1.3 below. Another situation is related to the
definition of the truncated version RY, of A in Subsection 2. Here we need N
to be defined modulo some smaller module than uPL, e.g. uPT*L. Our choice
was done in favour of the module u?? L because it is the smallest possible module
where the definition of N makes sense.

PROPOSITION 1.3. L and L* are pre-abelian categories (cf. Appendiz A for
the concept of pre-abelian category).

Proof. Suppose S is an additive category and f € Homgs(A, B), A,B € S.
Then ¢ € Homg (K, A) is a kernel of f if for any D € S, the sequence of abelian
groups

0 — Homs(D, K) - Homs(D, A) -2 Homs(D, B)

is exact. Similarly, j € Homg(B,C), B,C € S, is a cokernel of f if for any
D € S, the sequence

0 — Homs(C, D) s Homgs(B, D) L Homs(A, D)

is exact.

Let FFyy, be the category of free Wi-modules with filtration. This category
is pre-abelian. More precisely, consider the objects £ = (L, F(L)) and M =
(M,F(M)) in FFy, and let f € HOIDFFW1 (E,M)

Then Kerpr,, f is a natural embedding iz : K = (K, F(K)) — L,
where K = Ker(f : L — M) and F(K) = K n F(L). The coim-
age Coimpp,, f = Cokerrp,, (Kerrp,, f) appears as a natural projection
je: L— L = (L',F(L"), where L' = f(L) and F(L") = f(F(L)).

Similarly, Cokerf is a natural projection jy : M — C = (C, F(C)), where
C=M/L")/(M/L")tor and F(C) = jpm(F(M)). Then the image Impp,, [ =
Kerrp,, (Cokerrr, f) is a natural embedding M' = (M', F(M')) — M,
where M’ is the kernel of jaog and F(M') = F(M) N M'.

As usually, there is a natural map £ — M’ induced by L' € M’. Note
that M/M' = C' is free and M’'/L’ is torsion Wj-modules and these properties
completely characterize M’ as a Wi-submodule of M.

Now suppose £ = (L, F(L),¢), M = (M,F(M),y) are objects of L and
f € Homg: (L, M). Use the obvious forgetful functor L; — FFy, and
the same notation for the corresponding images of £, M and f. Show that
K = Kerppwlf and C = Cokerppwlf have the natural structures of objects
of £ and with respect to this structure they become the kernel and, resp,
cokernel of f in L. Indeed, uP"'K = w»"'LNK C F(L)NK = F(K) =
Ker(f : F(L) — F(M)). Therefore, p(F(K)) C K N(F(L)) and there is a
natural embedding ¢ : p(F(K)) @sw, Wi C K. On the one hand,

tkow, p(F(K)) = rky, F(K) = rky, K.
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On the other hand, F(L)/F(K) C L/K = L’ have no W;-torsion. This implies
that the quotient @(F(L))/@(F(K)) has no oW;-torsion and the factor of
L = ¢(F(L)) ®;w, Wi by o(F(K)) ®;w, Wi also has no W;-torsion. So, ¢
becomes the equality ¢ (F(K))®@ow, W1 = K and K = (K, F(K), ) = Kerz; f.
The above description of Kerg: implies that w1 F(L),
A(F(L) = @(F(M)/¢(F(K)) and L' = p(F(L')) o, Wi. Tn other
words, £' = (L', F(L'), ) € L}.
Now note that for M’ = (M’, F(M')), we have

uP M = (WP TMYN M Cc F(M)NnM' = F(M’)
and, therefore, F(M')/F(L’) is torsion W;-module and
e (p(F(M")) ®w, W1)/L' is torsion Wi-module;

On the other hand, F(M)/F(M') = F(C) is torsion free Wi-module. This
implies that o(F(M))/e(F(M')) is torsion free cW;-module and, therefore,

o M/(p(F(M")) ®sw, Wi) is torsion free Wi-module.

The above two conditions completely characterize M’ as a submodule of
M. Therefore, p(F(M')) @owy, Wi = M', M' = (M',F(M'),¢) € L and
(M/M',F(M)/F(M'),¢) = (C,F(C),¢) =C € L. Now a formal verification
shows that C = Cokerg; f.

Again Coimg: f = (L', F(L'), ) and Img; f = (M', F(M’), ) together with
their natural embedding Coimgs f — Imgs f in Lj. As a matter of fact, these
two objects of the category L do not differ very much due to the following
Lemma.

LEMMA 1.4. o(F(L")) D uPp(F(M')) (and, therefore, L' D uPM').

Proof of Lemma. Otherwise, there is an [ € o(F(L")) \ uP¢(F (L)) such that
1 € u?Pp(F(M')).

Form the sequence I, € L’ such that [; =1 and for all n > 2, l,4+1 = p(u®"l,),
where a,, > 0 is such that v, € F(L')\ uF(L"). Clearly, all I,, ¢ uF (L") D
uPL'.

On the other hand, | € u?’(p(F(M')) C uPT'F(M') and, therefore, for alln > 1,
ln € " (u?*M') C uP"+*PM’. So, for n > 0, I,, € uPL’. The contradiction. [

Now suppose £ = (L, F(L),p, N) and M = (M, F(M), ¢, N) are objects of L”
and f € Homg- (L, M). Prove that the kernel (K, F(K), ) and the cokernel
(C,F(C),¢) of fin the category L have a natural structure of objects of the
category L*.

Clearly, N(K) C Ker (fmodu?® : L/u?’L — M/u?*M). The above Lemma
1.4 implies that uPL’ D u?’ M’ and we obtain the following natural maps

L' JuPL! < L' Ju®P M 25 M ju M’ 5 M/u® M.

Note that « is epimorphic but 8 and v are monomorphic. This implies that
N(K) c Ker(L/u?*L — L' /uPL') and

N(K)modu?L C Ker(L/u’L — L'/u’L") = K/u’K.
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Therefore, by Proposition 1.2, N (as a unique lift of Ny = N mod uP) maps K
to K/u??K and (K, F(K),p,N) € L.

The above property of Kerg« f implies that N(L') C L'/u?*L’. Now use that
uPM' C L', u?’ L' C u*’ M’ and N(uPM') C uP M /u*’ M to deduce that

NwPM')y C (L' Ju**M') N (uP M /u* M) = u? M’ Ju*’ M.

So, N modu? maps M’ to M'/uP M’ and again by Proposition 1.2 N(M') C
M'/u*M’. This means that the kernel of the above constructed Cokerf :
(M,F(M),p) — (C,F(C),p) is provided with the structure of object of
the category L*. Therefore, N induces the map N : C — C/u*C and
(C,F(C),p,N) € L*. The proposition is proved. O

The above proof shows that the kernels and cokernels in the category £L* appear
on the level of filtered modules as the kernel and cokernel of the corresponding
map of filtered modules (L1, F(L1)) to (L, F(L)) in the category of filtered
Wi-modules. Therefore, the category £ is special, cf. Appendix A, and we
can apply the corresponding formalism of short exact sequences. In particular,
if we take another object Lo = (Lo, F'(La), 9, N) € L* then

e i € Homg-(Ly, L) is strict monomorphism iff ¢ : L1 — L is injective and
i(L1) N F(L) = i(F(L1));

e j € Homg+ (L, L2) is strict epimorphism iff j : L — Ly is epimorphic and
J(F(L) = F(Ly).

As usually, cf. Appendix A, if a monomorphism ¢ is strict then the monomor-
phism j = Coker i is strict, and if an epimorphism j is strict then the monomor-
phism ¢ = Kerj is strict, and under these assumptions 0 — £; — £ —=»
Lo — 0 is short exact sequence.

With relation to the above result that the categories E and E are pre-
abelian, note that the situation with the categories L',O and £ is differ-
ent. Indeed, let FMyy, be the category of filtered (not necessarily free)
modules over W;. This category is pre-abelian: for M; = (M;, F(M;)),
i = 1,2, and f € Homppy,, (M1, M2), we have the following equalities
Kerpur,,, f = (Kerf,Kerf N F(M;)) (together with its natural embedding into
M) and Cokerpay,,, f = (Cokerf, F(Ma)/(f(Mi)NF(M2)) (together with the
natural projection from My).

Now suppose that M; = (M;,F(M,;),p) € zz, it = 1,2, and f €
Homgz- (My,My3). Then Ker;;f exists (and coincides on the level of fil-
tered modules with KelrFMW1 f) but Coker;z f exists (and coincides on the
level of filtered modules with Cokergys, f) only if we have f(F(Mp)) =
f(My) N F(Mz). In particular, on the level of filtered modules the composition
Cokerpasy,, (Kerpas,, f) always makes sense and coincides with the natural
projection My — (f(My), f(F(My)). Therefore, one can introduce the con-
cept of strict epimorphism in ES: f is strict epimorphism iff f(M;) = Ms and
f(F(My)) = F(My).
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The following situation will appear several times below.

LEMMA 1.5. Suppose M1, M5 € EO, ¢ € Homz (M1,M2) is a strict epimor-
phism and Kerz+1 = (K, K, ¢). Then for any E € Ly,
L

: Homz (E M) — Homz (E Ms)
is epimorphic. In addition, if @|k is nilpotent then * is bijective.

Proof. The structure of £ = (L,F(L),¢) can be given by a vector | =
(I1,...,1s) and a matrix C € Ms(W;) such that

— Iy, ...,1ls is a Wi-basis of L;

— if IC = m = (my,...,ms) then mq, ..., mg is a Wi-basis of F(L);

— l=¢(m) = (p(m),. .., p(ms)).

Suppose M1 = (Ml,F(Ml),(p> and MQ (MQ,F(MQ) )

Any f € Homgz- (L, My) is given by f(I) € M§ such that f(I)C € F(M,)* and
p(f(DC) = f(D). o .

Choose an f(I) € M7 such that f(I )modK = f(I). Then f(I)C modulo K
belongs to F(Ms)* and, therefore, f(I)C € F(M;)*. Clearly, we have that

ko := o(f()C)— f(I) € K*. We must prove the existence of k; € K* such that

@((f(l) +k1)C) f(_) + k1. This is equivalent to

]_Cl - (p(l_€10> = ]}O

and the existence of k; follows from Lemma 1.1. This proves that ¢* is surjec-
tive. If |k is nilpotent then the bijectivity of ¢* follows in a similar way from
part b) of Lemma 1.1. O

1.2. STANDARD EXACT SEQUENCES. Suppose £ = (L, F(L),p,N) € L*. In-
troduce a o-linear map ¢ : L — L by ¢ : | — @(uP~11).

DEFINITION. The object L is etale (resp., connected) if ¢ modu is invertible
(resp., nilpotent) on L/uL.

Let £(0) = Wi, WiuP~t o, N) € L*, where p(uP™!) = 1 and N(1) =
uP modu?P. Then L£(0) is etale. As a matter of fact, it is the simplest etale
object of L* due to the following Lemma.

LEMMA 1.6. Suppose L = (L, F(L),o,N) € L* is etale. Then L is a product
of finitely many copies of L(0).

Proof. 1t Ly = {l € L/uL | ¢(I) = 1} then L/uL = Lo ®g, k. Then there is a
unique [Fp-submodule L of L such that @, =id and L = Ly ®r, Wi.

Suppose I € Lo. Then ouP~tl) = [ and N(I) = N(pP~l)) =
o(uNwP~)) = p(uP(Imodu?) + uPN(l)) = wPlmodu?’L. Therefore, if
€1,...,¢es is an Fy-basis of Ly then all (Wlel,Wlup le;) determine the sub-
objects[, ~ L(0 )ofﬁand[, Ly X% Ls. O
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PROPOSITION 1.7. Any L € L* contains a unique mazximal etale subobject
(L£)4¢) and a unique mazimal connected quotient object (LS, j¢) and the se-

et -c
quence 0 — L 2 L 2 £¢— 0 is short ezact.

Proof. Let L = (L,F(L),, N) and, as earlier, let ¢ : L — L be such that
for any [ € L, ¢(I) = o(uP~tl). Then for L= L/uL, we have the k-linear
subspaces Eei and Ei in ;lv/ such that q; := ¢ mod u is invertible on L° and
nilpotent on L€ and L = L¢ @ L°.

Then there is a unique Wi-submodule L of L such that ¢|r.: is invertible and
L juLe = L°. The filtered submodule (L, uP~'L®) determines an etale
subobject ¢ : L — L. Clearly, uP~1L C LN F(L). If the inverse
embedding does not take place then there is an [ € L\ uL® such that uP~1 €
uF(L). Therefore, ¢(l) = p(uP~1l) € uPL but ¢|re is invertible. So, 1 is
strict monomorphism and we can consider Coker (¢t = j¢: £ — L¢. Clearly,
L€ is connected. The maximality properties of £ and £¢ are formally implied
by the following easy statement:

if L1 € L” is etale and Lo € L™ is connected then Homg+ (L1, L2) = 0. O

Suppose £ = (L, F(L),o,N) € L*. Then o(F(L)) is a o(W;)-module and
L = ¢(F(L)) ®ym) Wi. If L € L and for 0 < i < p, IV € F(L) are such
that I = > ¢, e(1D) @ u?, set V(1) = 19, Then Vmodu is a o~ !-linear
endomorphism of the k-vector space L/uL.

DEFINITION. The module £ is multiplicative (resp., unipotent) if V = Vmodu
is invertible (resp., nilpotent) on L := L/uL.

Let £(1) = Wi, W1, 9, N) € L*, where ¢(1) =1 and N(1) = 0. Then £(1) is
multiplicative. As a matter of fact, it is the simplest multiplicative object of
L* due to the following Lemma.

LEMMA 1.8. Suppose L = (L, F(L), o, N) € L* is multiplicative, then L is the
product of finitely many copies of L(1).

Proof. Clearly, the embedding F'(L) L induces the identification
F(L)/uF(L) = L/uL and, therefore, F(L) = L.

Let Ly C L be such that V|, = id. If I € L is such that Imod uL € Lo
then ¢(I) = IlmoduL. This implies the existence of a unique I’ € L such that
"=1lmodulL and ¢(I') =1'. In other words, there is an Fp-submodule L in
L such that L = Lo ®r, W1 and ¢|r, = id.

If | € Ly then N(I) = N(¢(1)) = p(uN(l)) = uPp(N(l)) = 0. So, if eq,...,e;s
is an [Fp-basis of Ly then the filtered modules (W;e;, Wie;) determine the sub-
objects L£; ~ L(1) of L and L ~ L1 x -+ x L. O

PROPOSITION 1.9. Any L = (L, M,p, N) € L* contains a unique mazimal mul-
tiplicative quotient object (L™, j™) and a unique mazimal unipotent subobject
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(L*,3%) and the sequence
0— L clsem—0
15 exact.

Proof. Let L = L/uL, M = M/uM and L = L™ & L", where V := V mod u is
invertible on L™ and nilpotent on L.

Note that ¢ induces a o-linear isomorphism ¢ : M —s L. Denote by 7 :
M — L the k-linear ~morphism induced by the embedding M C L. With this
notation, for any [ € L, V(l) (ga’l(l)).

Consider the filtration L* > VL* D ... > VSL¥ = {0} and set for 1 <@ < s+1,
M; = g~ 1(Vi=1L%). Then M1 D M2 - D M D Ms+1 = {O} and for
1<i1<s

(1.1) (M) = VIL" = (M),

For 1 <i < s+ 1, introduce the Wi-submodules MZ-(O) of M such that Ml(o) D

MQ(O) 5 o> MO > Ms(g_)l = 0 and Mi(o)/uMi(O) — M, with respect to

the natural projection M —» M. Then conditions (1.1) imply that for all ¢,
M < (ML) @y, Wi +ulL.

Let Mm™ = @1 (L™) and let M™ C M be a W,;-submodule such that
M™[uM™ = M’" with respect to the natural projection M — M. Then
(1.2) M™+ul = (M™) Qow, W1+ uL

and M = M™ @ M.

Prove the existence of “more precise” lifts Mi(n) of M;, where 0 < i < s+1
and n > 1.

LEMMA 1.10. For alln > 1 and 0 < i < s+ 1, there are Wi-modules Mi(n)
such that

a) M > MM > - o M™ o> M, = {0} and M juM = M; with
respect to the natural projection M — M,

b) M € o(ML")) @owy, Wi + up(M) @ gy, Wh + 0+ L

c) M}"f” +urM =M™ 4 unM.

Proof of Lemma. The modules Mi(o), 0 < i < s+ 1, satisfy the requirements
a) and b) of our Lemma. Therefore, we can assume that the modules Mi(n)
satisfying the requirements a)-c) have been already constructed for n = N —1,
where N > 1.

Note that M = M™ @ Ml(Nfl) (it is known for N = 1 and follows from c) for

N > 1). Therefore, (1.2) implies that
L = o(M™) @, Wi +o(M{" V) @ow, Wi
C M™ + o(MN D) @y, Wi + ulL.
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Therefore, for 1 < ¢ < s (use b) for n =N — 1),

MND - @(Mi(ﬁfl)) Rewy, Wi + utp(Ml(Nfl)) Qowy, Wi +uN M™ + N

K2

and we can define the submodules M) in such a way that the property c)

holds for n = N '

(1.3) M N = MY N

and

(14) M oMY @owy Wi+ up(MN D) @, Wi + uN L.

Note that (1.3) implies that o(M™N) + u PL = (MN™Y) 4 uNPL and,
therefore, we can replace @(Mi(N_l)) and ga(Ml(N_l)) by @(Mi(N)) and, resp.
ga(Ml(N)) in (1.4). The lemma is proved. O

Let M“ = ﬂnZO(Ml(n) +u"t1M). Then M*/uM® = M" with respect to the

natural projection M — M and M = M™ @ M".
Let L* = o(M™) ®@,w, Wi. Then rkyy, L* = rkyy, M™ and

L= () (") @, Wy +u+07L) 5 M

n=0
(use Lemma 1.10b)). On the other hand,
L= (p(Mm b Mu) QoW Wi=M"qL"

implies that M* D wP~'L* and L* N M = M*". Therefore, the filtered module
(L™, M™) defines a unipotent subobject £* of £ in the category L and the
natural embedding £* — L is strict.

Suppose | € M" and N(l) = lgp + Iy moduPL, where l[p € M™ and l; € L".
Then uN(l) = ulp + uly € (M™ ® M*)moduPL and N(p(l)) = (uN(l)) =
¢(uly) mod uP L implies that N(L*) C L* mod P L. Then from Proposition 1.2
it follows that £* is a subobject of £ in the category £*. Clearly, the quotient
L/L% := L™ is multiplicative.

The maximality of £L* and L™ are formally implied by the following easy prop-
erty of objects L1,Ls € L:

if L1 is unipotent and Lo is multiplicative then Homg«(Ly, L2) = 0. |

Using the above results we can introduce the subcategories £*¢*, £*¢, L*™, L**
in £*. They consist of, resp., etale, connected, multiplicative and unipotent
objects of the cattegory £*. The correspondences £+ L, L+ L6, L+ L™,
L — L£" determine the natural exact functors from £* to, resp., £L*, £*¢, L*™
and £
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1.3. THE CATEGORY L.

PROPOSITION 1.11. Suppose L = (L, F(L),o,N) € L*. Then the following
conditions are equivalent:

(a) N(F(L)) C F(L)modu*L;

(b) N(o(F(L))) C uPL mod u®L.

Proof. (a) = (b): if for any [ € F(L), N(I) € F(L)modu?’L then N(p(l)) =
o(uN(l)) = uPo(N(l)) € uPL mod u?’L.

(b) = (a): for any I € F(L), p(uN(l)) = N(p(l)) € uPLmodu?L; now use
that ¢ induces embedding of F(L)/uF (L) into L/uPL to deduce that uN(l) €
uF(L)modu?*L, i.e. N(I) € F(L)modu? L (use that uP~'L C F(L)). O

DEFINITION. The category L. is a full subcategory of L* consisting of
(L,F(L),,N) such that N : L — L satisfies the equivalent conditions from

Proposition 1.11.

REMARK. a) If £ = (L,F(L),p,N) € L, then N; = Nmodu” is a unique
Wi -differentiation Ny : L — L/uP whose restriction to ¢(F (L)) is the zero
map. Therefore, any £ € L] has at most one structure of object of the category
L*.

b) Any etale or multiplicative object from L£* belongs to L.

¢) If f is a morphism in L. then Kerg-f = Kerg: f and Cokerg«f =
Cokerg= f. In particular, we can introduce the full subcategories Lt e,

L2, LY of, resp., etale, connected, multiplicative and unipotent objects of

Ll

PROPOSITION 1.12. Suppose L = (L,F(L),o,N) € L. Then there is a
o(Wr)-basis 11, ...,1ls of o(F(L)) and integers 0 < ¢; < p, where 1 < i < s,
such that u®ly, ..., uls is a Wi-basis of F(L).

Proof. Choose a W;j-basis my,...,ms of L such that for suitable integers
C1,...,Cs, the elements utmy,...,umg form a W;-basis of F(L). Clearly
all 0 < ¢ < p.

For1<i<sandj>0,let l;; € p(F(L)) be such that m; =3, u’l;j. Note
that {lio | 1 < i < s} is a o(W))-basis of o(F (L)) and it will be sufficient to
prove that all u%l;,y € F(L) because then the elements I; := l;o will satisfy the
requirements of our proposition.

For all 1 <7 < s, the element

N(u®m;) = — Z(] + ¢;)u? T (1;; mod u?P L) + ZujJrciN(lij)
j J
belongs to F(L) modu?”L if and only if - (j + ¢;)u’Tl;; € F(L). (Use that
uPL C uF'(L).) This implies that for all integers k >0, 3°,(j + ci)kuiteil;; €
F(L). Therefore, for any « € Z/pZ,

Z UjJrcilij S F(L)
(j+ci)modp=a
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In particular, taking oo = ¢;mod p and using that «”l;; € F(L), we obtain that
u¢l;o € F(L). O

REMARK. a) Suppose £ = (L, F(L),y) € L; and satisfies the conclusion of
Proposition 1.12. Define the W;-differentiation Ny : L — L/uPL by setting
Ni(l;) =---=N(ls) =0. If N : L — L/u?PL is the extension of N; given by
Propostion 1.2 then (L, F(L), ¢, N) € L. In other words, Proposition 1.12
characterizes the objects of L coming from L.

b) For an object (L,F(L),p,N) € L. ., Proposition 1.12 implies that if

=cer?

Y o<icpy Wi € F(L), where all I; € p(F(L)), then all u'l; € F(L).

Consider the category of filtered Fontaine-Laffaille modules MF,,_; from [13].
The objects of this category are finite dimensional k-vector spaces M with
decreasing filtration of length p by subspaces M = M° > M! > ... > MP~1 >
MP = 0 and o-linear maps ; : M* — M such that Kery; D M, where
0<i<p,and ) ,Imy;, = M. The morphisms in MF,_; are the morphisms
of filtered vector spaces which commute with the corresponding morphisms ¢;,
0t <p.

The category MF,_; is abelian. The object M of MF,_, is:

— etale (resp., multiplicative) if M! = 0 (resp., M = MP~1);

— connected (resp., unipotent) if M has no etale (resp., multiplicative) sub-
quotient.

Introduce the full subcategories m;ﬂl, ME" |, MES ; and ME]_; of, resp.,
etale, multiplicative, connected and unippotent objects in MF,_,. These sub-
categories are closed under the operations of taking subobjects and quotient ob-
jects and, therefore, are also abelian. For any M € MF,_,, there are standard
exact sequences 0 —» M¢ — M — M¢ — 0 and 0 — M“ — M —
M™ — 0, where M€ (resp., M) is the maximal etale (resp., unipotent) sub-
object and M€ (resp., M™) is the maximal connected (resp., multiplicative)
quotient object.

The categories L, and MF,,_; do not differ very much.

Indeed, introduce the functor Md : E* — Zk induced on the level of filtered
modules by (L,F (L)) — (L/uPL,F(L)/uPL). Denote by Md(L},) the full
subcategory of L consisting of the objects Md(L), where £ € L.

Define the functor F : MF, ; — z* as follows. Let M € MF,_; with the
corresponding filtration M* and o-linear morphisms ¢;, 0 < ¢ < p. Then on the
level of objects, F(M) = (L, F(L), ¢, N), where L = M & Wy /uPW,, F(L) =
> o<i<p uP~ 1= W (M* ® 1) and for any m € M;, (uP~ "'m;) = p;(m;). One
can easily see that F is equivalence of the categories ME, ; and Md(L;,).
Now the difference between the categories L., and MF,_, is described by the
following Proposition.

PROPOSITION 1.13. For Li,Ls € L:., Md induces a surjection from

=er?

Homg: (£1,£2) to Homz«(Md(Ly1),Md(L2)) and its kernel coincides with
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(iLqx ojzl)HomQ( moLEY), where ig, : LS8 — Lo (resp., jr, 2 L1 — L) is

the mazimal etale subobject in Lo (resp., multiplicative quotient object for L4 ).

Proof. For Lo = (L2, F(La),o,N), let ¢ : Ls — Lo be such that ¢(I) =

@(uP~) for any | € Ly. Let L = {l € Ly | ¢(I)" — 0} and let £}, € L
n—o0

be the filtered module (Lo /uP L¢, F(Ly)/uPLS) with ¢ and N induced from Ls.
Then there are natural strict epimorphisms

Lo %5 £y 2 Md(L),
where Ker « is associated with the filtered module (uPL§, uPL§) and Ker f —

with (uP Lo /uP LS, uP Lo /uPL§).
Clearly, ¢|u» g is nilpotent and then by Lemma 1.5,

o, : Homg- (L1, £2) — Homg- (L1, L5)

is bijective. Note that the natural embedding L§' — Lo induces the iden-
tification uPLo/uPLy = uPL§t/uPTILS. Let L£§ = (uPLa,uPLy) € L* with
induced ¢ and N. Then £ is multiplicative and there is a natural projection
v : LY — Ker 3 such that Ker+ is associated with (uPT1LS!, uPT1LS!). Note
that ¢ is nilpotent on uPT1LS!. Applying Lemma 1.5 we obtain that

ﬂ* : HOHI;* (El, ,6/2) — HOHI;* (El, Md(ﬁg))
is surjective and
Ker 3, = Homz~ (L1, Ker3) = Homz+ (L1, L") ~ Hom (LT, L3).

It remains to note that Homz- (L7, £5) = Homg- (LT, £5) via the natural
embedding of £” into LS. a

COROLLARY 1.14. The functor Md o F~1 induces equivalence of the categories
Ly (resp., L)) and ME, _ (resp., MEp_, ).

1.4. SIMPLE OBJECTS IN L.

DEFINITION. An object £ of £* is simple if any strict monomorphism ¢ : £; —
L in L£* is either isomorphism or the zero morphism. Equivalently, £ is simple
iff any strict epimorphism j : £ — Lo is either isomorphism or the zero
morphism.

All simple objects in £L* can be described as follows.

Let [0,1], = {r €e Q| 0 < r < 1,v,(r) = 0}, where v, is a p-adic valuation.
Then any r € [0,1], can be uniquely written as r = >, a;p~t, where the
digits 0 < a; = a;(r) < p form a periodic sequence. The minimal positive
period of this sequence will be denoted by s(r).

Let # =1—7. Then 7 € [0,1], and 7 = 3,5, a;p~", where for all i > 1, the
digits a; = a;(¥) are such that a; + a; =p — 1.
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DEFINITION. For r € [0,1],, let £L(r) = (L(r), F(L(r)), ¢, N) be the following
object of the category L,.:

o L(r) = @icz/s(ryWili;

e ['(L(r)) = Ziez/s(r) Wiu®ily;

o for i € Z/s(r), p(u®il;) = l;y1.

e N is uniquely recovered from the condition N|¢(F(L)) = 0mod u?, cf. Propo-
sition 1.2.

REMARK. If r = 0 or » = 1 we obtain the objects £(0) and £(1) introduced
in Subsection 1.2. Note also that £(r) is connected iff » # 0 and unipotent iff

r# 1.

For n € N and 7 € [0,1],, set 7(n) = Y., @iyn(r)p~. Extend this definition
to any n € Z by setting r(n) := r(n + Ns(r)) for a sufficiently large N € N.

PROPOSITION 1.15. a) If r € [0,1], then L(r) is simple;

b) if ri,m2 € [0,1], then L(r1) =~ L(r2) if and only if there is an n € Z such
that r1 = ro(n);

¢) if L is a simple object of the category L™ then there is an r € [0,1], such
that L ~ L(r).

Proof. Lemma 1.16 below implies that the simple objects in the categories L.,
and £* are the same. By Corollary 1.14, the functor Md o F~! transforms
simple objects of L* to simple objects in MF,_;. It remains to note that an
analogue of our Proposition for the category ME, _; is proved in [13]. O

LEMMA 1.16. For any £ € L*, there is an L € L, and a strict monomor-
phism 1°" € Homg- (L, L) such that if /' € Homg- (L', L) is a strict monomor-
phism and L' € L. then there is a strict monomorphism o : L' — L such
that i/ = 1°" o cu.

Proof of Lemma. Suppose L = (L, F(L),p, N). Consider the k-linear space
M = @(F(L))/uPeo(F(L)). Let L = M ® W1 /uPW,) = L/uPL, F =
F(L)/uPL and ¢ : F —3 M be the map induced by .

Proceed by induction to define for all ¢ > 1, the subspaces M; C M and the
Wi -submodules E C L as follows.

From the definition of N : L — L/u?PL it follows easily that N induces a
k-linear map Nl : M — M and Kf{’ = 0. Therefore, My := Kerﬁl is a
non-trivial subspace in M.

Suppose ¢ > 1 and M; has been already defined. Let 13Z be the submodule of
the elements of the form u®l in M ®j (W1 /uPWy), where a > 0, 1 € M; and
u®l € F. Then set My = @(ﬁ)

Verify that for all indices i, M;41 C M;. If i = 1 we must prove that
Nl(Mg) = 0. Indeed, Ms is spanned by ¢(u®l), where | € M; and u®l € 131.
But N(p(ul)) = p(uN(u)) = o(—u +u*tN(1)) € uPL. If i > 1 then
we can assume by induction that M; 1 C M;. This implies that 131-,1 C E and
M; C Mi—i—l-
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We obtained a decreasing sequence of non-trivial finite dimensional k-linear
spaces {M; | i > 1}. For i > 1, these spaces become a non-trivial constant space
Me C M such that if F" = {u%l € F | a > 0,1 € M} then ¢(F°) = Me".
This subspace M°" has the maximality property: if M’ C M is such that for
F'={uleF|a>0lecM?} GF)=M then M' C M. Indeed, show
as earlier that M’ C M; and then proceed by induction proving that M’ C M;
for all 7 > 1.

Now in notation from Subsection 1.3, there is an £ € L}, such that Md(L®") =
(Me™ @5, (W1 /uPWy), F", &, N), where N|pyer = 0. Then from Proposition
1.13 it follows the existence of a strict monomorphism " : £ — L. If
L= (L,F(L),o,N) — L is strict monomorphism and £ € L, then
Md(L') is associated with the filtered module (M’ ®y (W1 /uPWy), F’) and by
the above maximality property of M<", M’ is a subspace in M<" and Md (L")
is a strict subobject of Md(L£"). This gives the required strict embedding «.
The Lemma is proved. O

1.5. EXTENSIONS IN £*. Suppose 71,72 € [0,1],. Choose an s € N which is
divisible by s(r1) and s(r2) and introduce the objects £1 = (L1, F(L1),, N)
and Lo = (L2, F(L2), ¢, N) of the category L. as follows:

Ly = @iez/swllgl), F(Ly) = ZiEZ/s Wluailgl), where 1 = Zi>1 a;p~"t with
the digits 0 < a; < p, @; = (p — 1) — a; and for all i € Z/s, @(uailgl)) = lgr)l;
Ly = @jeZ/SW11§2), F(Ly) = ZjGZ/s Wlubfl](?), where 72 = 37, bjp~ with

the digits 0 < b; < p, by = (p— 1) — by, and for all j € Z/s, p(ub1?) = 1{7,.

LEMMA 1.17. For k = 1,2, L, is isomorphic to the product of s/s(rs) copies
of the (simple) object L(ry).
Proof. Take k = 1. For v € T, and 7 € Z/s(r1), let mz(y) =

Y imod s(r)—: @ (MY and M(y) = Yiep/uoy Waims(y) € L1, Then all
M) = (M(y),M(v) N F(L1),o,N) with induced ¢ and N are subob-
jects of L1 isomorphic to L£(r1). If v1,...,74 is an Fs(rp)-basis of Fps then
M(y1) X -+ x M(v4) is isomorphic to £y. (Use that d = s/s(r1) and
det(c'(v;)) # 0, where for a given 7, i is such that imods(r;) = 7 and
1<j<d) O

IfL£=(L,F(L),o,N) € L then we shall use the same notation £ for the image
(L,F(L), ¢) of £ under the forgetful functor from L* to L. Clearly, this forget-
ful functor induces a group homomorphism Extz-(Lg, £1) — Extz: (L2, L1).
Suppose £ = (L, F(L),p) € Extes (L2, L1). Consider a o(W;)-linear section

S lj(?) — l;, j € Z/s, of the corresponding epimorphic map ¢(F(L)) —

©(F(L3)). Then

a) L=1L1 & (Djez/sWil));

b) for all indices j € Z/s, there are unique elements v; € Ly, such that F'(L) =
F(L) + 3 jezye Wi(ubil + v;) and @(ubil; +v;) = 11
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¢) F(L) D wP~'L if and only if for all j € Z/s, ubiv; € F(Ly);

d)if 8" : 17 s 1} = I+ p(wj_1), where j € Z/s and w;_; € F(Ly), is another
section of the epimorphism p(F'(L)) — ¢(F'(L2)) then for the corresponding
elements v € Ly, vf — vj = w; — u® p(w;_1).

The constructions from above items a)-d) can be summarized as follows.
LEMMA 1.18. Let Z(L2,L£1) = {(v;)jezss € Li | uPv; € F(L1)} be a subgroup
in L] and let

B(La, L1) = {(wj — u" p(wj-1))jenss | wj € F(L1)}
be a subgroup of Z(Ls,L1). Then there is a natural isomorphism of abelian
groups Z(La, L1)/B(La, L1) ~ Extrs (L2, L1).

PROPOSITION 1.19. Any L € Extgs (L2, L1) appears from a system of factors
(vj)jezss € Z(La, L1) satisfying the following normalization condition

(C1) ifvy; = Zi,t 'yijtutlgl) with vi¢ € k, then Vijb;, = 0.

Proof. Choose a section S of the projection ¢(F(L)) — @(F(Lz2)) with the
minimal set v(S) = {(4,74,b;) | Vish, # 0}. Suppose (S) # 0 (otherwise, the
proposition is proved) and let (v;);cz/s be the corresponding system of factors.
Suppose (ig, jo, bj,) € v(S) and v = Viodobsy
system (v});jez/s via the elements w; € F(L1) such that w; = 0if j # jo — 1

. Replace (v;) ez, by an equivalent

— G171
and wj,_1 = o~ (y)uio 1150)71.
1
If v} = Ziﬁt%ﬁutlf ) then

!
iojobjo

- )
! — 51 . . ~ .
— Yio—1,5o—1,dig—1 — © (v) + Yio—1,j0—1,ai5—15
I, Vo
— for all remaining indices v;;; = Yij-

Then v(S") € ¥(S) \{(é0, o, bjo) } U{(io — 1, 5o — 1, @iy—1)} and the minimality
condition for S implies (ip — 1,50 — 1, Gi,—1) € v(S") \7(S). Therefore, a;,—1 =
bjofla Yio—1,jo—1,aip—1 — 0, 7;0_17j0_175j071 = 071(7)7 and the new section S’
again satisfies the minimality condition. }
Repeating the above procedure we obtain for all n € Z/s, that @;,—n = bjo—n,
that is fl(lo) = 7:2(]0)

Choose 8 € k such that o°(3) — 8 = ~ and consider w; € F(Lq) such that
forall 0 < n < s, Wjgqn = o"(ﬁ)ubm*"lgin. Then for the corresponding new

system of factors (v});ez/s, where

v = v 4+ wj — ubip(w; 1) = Z%{jt“tlgl)’
1,t

one has 72 b = 0, and vije = v, if (i,4,t) # (io,jo,l;jo). This contradicts
0,J0,b;
to the minimali%y condition for S. 0
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PROPOSITION 1.20. Any L € Exte« (L2, L1) can be described via a system of
factors (vj)jcz/s, satisfying the above condition (C1) and the normalization
condition

(C2) the coefficients vijt = 0 if t > a;.
Proof. Suppose v(¥) = (v;) ¢z, is such that v, = 'yut“lgj) with v € k, to > a4,

and for j # jo, v; = 0. It will be sufficient to prove that any such system of
factors is trivial.

Take the elements w;_o)’ j € Z/s, such that wj(-g) = —yutolg) and w§-0) =0
if j # jo. Then the corresponding equivalent system (U;—l))jez/s is such that
v]m =0if j # jo + 1, and vﬁii_l = 'yputllgi_l, where t; = Bj[r‘rl + (to — aiy)p-

This implies that t1 > p > di0+1, tq —di0+1 >ty —Zlio, and t; —Zli0+1 >ty _dio
unless bj,11 =0,t =p and a;y41 =p— 1.

Repeat this procedure by using for all n > 0, the appropriate elements w]("),

Jj € Z/s, to obtain the equivalent systems of factors (v§")

,U§n) =0if j # jo +n, and UJ(:J)rn = 'anutnlz(:zrn'
If (72,71,t0) # (0,1,p) then ¢, — oo and we can use the elements w; =

0).

)jez/s such that

Zn%) w§"), j € Z/s, to trivialize the original system of factors v(
If (79,71,%0) = (0,1,p), we can trivialize v(*) via the elements w;, j € Z/s,
where for 0 < n < s, Wjj4n = /ﬁpnuplgolzrn and k € k is such that o°(k) — k =

5. O

PrOPOSITION 1.21. Suppose L = (L, F(L),p) € Extg: (L2, L1) is given via a
system of factors (vj);cz/s satisfying the normalization condition (C1). Then
L comes from L, if and only if all v; € F(Ly).
Proof. Let N1 : L — L/uPL be a W;-differentiation such that for all j € Z/s,
Ni(l;) = 0 (and, of course, Nl(lj(-l)) =0). If all v; € F(L1), F(L) is generated
by the elements ubi l; and us l](l), j €Z/s. If mis any of these elements then
the basic identity N1(¢(m)) = ¢(uN1(m)) is, clearly, satisfied. By Proposition
1.2, N7 can be extended to a unique W;-differentiation N : L — L/u* and
L= (L, F(L),o,N)eL,.
Suppose now that £ = (L,F(L),¢,N) € L7, and for all j € Z/s, v; =
Ziyt%jtutlgl) with Vijh, = 0. Consider the following congruence (use that
—ubi l; =vjmod F(L))
(15) Nl +v) = ielb; — u'l + ub N(l;)mod F(L).

it
The condition £ € L, implies that N(ui’i lj+v;) € F(L)modu?”L and N(l;) €
uPLmod u*L C F(L)modu2P L. This means that all (b; —t)7,;,utl") € F(Ly).
Therefore, for t # b;, %jtutlgl) € F(Ly), and v; € F(L;). The proposition is
proved. (|

—_
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DEFINITION. A pair (ig,jo) € (Z/s)? is (r1,72)er-admissible if @;, # bj, and
there is an mg = me,(io, jo) € N such that for 1 < m < mo, Gig+m = Djo+m
but Qig+mo > bjo-i-mo'

REMARK. For any (71, r2)cr-admissible pair of indices (io, jo), one has 7 (ig) >
72(jo) (or, equivalently, r1(io) < r2(jo))-
DEFINITION. For (ig,jo) € (Z/s)? and v € k, denote by E..(io,jo,7) the

extension £ € Extg- (L2,L£1) given by the system of factors (v;);ez/s such
)

that v, = vuf“t)li0 and v; = 0 if j # jo.

PROPOSITION 1.22. Any element L € Extgs (L2, L1) can be obtained as a sum
of Ecr(i,j,7ij), where (i,7) € (Z/s)? runs over the set of (r1,72)er-admissible
pairs and all coefficients v;; € k.

Proof. Propositions 1.19-1.21 imply that any £ = (L, F(L),p,N) from the
group Extg« (L2,L£1) can be presented as a sum of extensions Ee.(i, ,7ij),
where i,j € Z/s are such that a; # l;j, and v;; € k.

If mp € N is such that for 1 < m < mg, one has a;4+,, = l;jer but G;4m, <
I;j+m0, then the extension Eg,(i,7,7;) is trivial, cf. the proof of Proposition
1.20. The proposition is proved. (|

The above proposition describes the subgroup Extg: (L£2,£1) of
Extg«(L2,£1). In particular, working modulo this subgroup we can de-
scribe the extensions in the whole category L£* via the systems of factors
(vj)jezss € Z(L2,L1) such that all v; = Ziﬁt%jtutlgl) satisfy the normaliza-
tion conditions (C1) and

PROPOSITION 1.23. Suppose the system of factors (vj)jez,s satisfies the condi-
tions (C1) and (C3). If it determines L = (L, F (L), p) € Extzs (L2, L1) from
the image of Exte« (Lo, L1) then:

a) Yijt = 0 th <a; —1;

b) if t = a; — 1 and there is an mo € N such that for all 1 < m < my,
ZlH_m —1= bj+m but di-l-mo —-1> bj+m0, then Yijt = 0;

c)ift=a;—1 and for allm € Z/s, Gitm — 1 = I;j+m then 7yt = 0.

Proof. Suppose L = (L,F(L),p,N) € Extg«(L2,L1) and (vj);ez/s describes
the image of £ in Extz; (L2, £1). By the definition of N, ulN (ubil;+v;) € F(L),
and this implies that v;;; =0if t < a; — 1, ¢t # l;j (use congruence (1.5)). This
proves a).

Now we can set for all indices ¢ and j, v;j := Vi j,a;~1-

Let k;j € k be such that N(l;) =3, Hijlgl)mOdUpL and suppose 7;; 7# 0 (this
implies that b; # a; — 1). For m > 0, consider the relations

(1.6) N(ljrm+1) = @uN (U™ U + 0j1m))-
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If m = 0 then (1.6) implies ;41 j+1 = 7;;(bj — @;+1). Suppose that there is an
mg = 0 such that for all 1 <m < mo, de —-1= Z;jer but (NIZ'erO —1 7é Bjero'
Then (1.6) together with (1.5) (where j is replaced by j 4+ m) imply that for
1 <m < mo,

P pmtt T o
Ritmtljtm+1 = Kipm jpm = Yy (0j — @i +1).

In particular, N (lj4m,)mod uPL contains lﬁ)mo with the coefficient ijmo (b; —

a; +1). Therefore, ulN (ubi+m0; o + Vj1m, )mod uP L contains lﬁ)mo with the
coefficient u5j+m0+1'yfjm0 (b; —a;+1). But this monomial must belong to F(Ly).
This proves that if v;; # 0 then bj1my + 1 > Gitmy-

Finally, suppose that for all m > 1, Gj4m —1 = bj4p. Then a; —1 = G445 —1 =
bjrs = bj and vij = Vi ja,-1 = Yigh, = 0 ]

REMARK. With notation from the proof of above proposition the elements
vj =, 'yiju&ifllgl) determine a system of factors from Z(La, £1) iff v;; = 0
when either a; = 0 or b; = p — 1 (in this case v; should belong to F'(L)).

DEFINITION. A pair (io, jo) € (Z/s)? is (r1,72)s-admissible if:

e bj, #p—1and a;, #0, cf. above remark;

°a;, —1# Bjo; B

e there is an mgo = My (io, jo) € Nsuch that for 1 < m < mo, Gig+m—1 = bjo+m
but di0+m0 —-1< I;j0+m0.

DEFINITION. A pair (ig,jo) € (Z/s)? is (r1,72)sp-admissible if i = 0 and for
allm e Z/s, am — 1 = bjym.

ProOPOSITION 1.24. a) If (ig,jo) is an (ri,72)st-admissible pair then
r1(io) +1/(p — 1) > r2(jo);
b) if (0, 7o) is an (r1,re)sp-admissible pair then r1 +1/(p — 1) = ra(jo).

Proof. a) Here for 1 < m < mo, Gig+m + 1 = bjotm and Gigtme = Djo+me-
Therefore,
ri(io) +1/(p—1)> > (Gigrm +1)p " >

1<m<mo
Z bjo-‘rmp_m + Z (P - 1)p—m = r2(j0)-
I<m<mo m>mgo

The part b) can be obtained similarly. a

Using the calculations from the proof of Proposition 1.23 we obtain the follow-
ing two statements.

PROPOSITION 1.25. Suppose (io, jo) € (Z/s)? is (r1,72)st-admissible and v € k.
Then there is a unique Egs(io, jo,7y) € Exte-(L2, L1) given by the system of
factors (vj)jcz/s such that vj, = 'yuf“o_llgj) and v; = 0 if j # jo, and the map
N, which is uniquely determined by the condition:
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o if j = jo+m with 1 <m < ms(io, jo) then
7 - 1
N(ljorm) =" (bjy — @iy + 1)11( _),_mmod uPL
and, otherwise, N(l;) = 0moduPL.

PROPOSITION 1.26. Suppose (0,50) € (Z/s)* is (r1,72)sp-admissible and v €
F,, g = p®. Then there is a unique Esp(jo,7v) € Exte« (Lo, L1) given by the
zero system of factors and the map N, which is uniquely determined by the

condition:
o N(ljo+m) = vpml,(,pmod(upl/), m e Z/s.

The following proposition gives the uniqueness property of the decomposition
of elements of Extz« (L2, £1) into a sum of standard extensions.

PROPOSITION 1.27. Any element £ € Exte-(Lq, L£1) appears as a unique sum of
the extensions Eer (i, 7,77 ), Est(i,5,7;f) and Eg(j, Yo;)s where all vf7 ek
but ’ygf €Fy, and vij =0, resp. 'yfjt =0, ’ygf =0, if the corresponding pair of
lower indices is not (r1,72)cr-admissible, resp. (r1,7r2)st-admissible, (r1,72)sp-
admissible.

Proof. By Proposition 1.23, any £ € Extg-(L2,£1) can be decomposed as a
sum of the above special extensions. To prove the uniqueness of such decompo-
sition, assume that £ represents a trivial element of Extz«(Ls,£1) and prove
that all involved coefficients /7, 77/ and 75} are equal to 0.
The image of £ in Extz; (L2, £1) is given by the system of factors (v§"+v3") ez /s
such that

Z ’YCT U«zl(l

Z ’Y‘St al—ll(l)

Let w; € F(L1) be such that for all j, v; = w; — ubi e(wj—1).

If w; = 3, ki;u® 1M mod uF (L) with k,; € k, then for all i and 7,
(1.7) YUt 4y u® T = Ryju® — mfﬁlyjflugfmod utL,

Suppose (ig, jo) is (rl, r9)st-admissible. Then dm —1# 530 and comparing the
coefficients for u®o~! in (1.7) we deduce that %, = 0. Therefore, all v;f = 0.
Suppose (io, jo) is (r1,72)cr-admissible. Then for mo = me,(io, jo), @i, # bjos
Gigtm = bjorm if 1 < m < mo, and @iyrmg > bjormo- Then (1.7) implies
that Vi = Kigjo, Figtm.jotm = fo_Hn Liotm—1 for 1. < m < mg, and
Kig+mo—1,jo+mo—1 = 0. Therefore, v i = =0.

Finally, £ is the trivial element of the group Extz« (L2, £1) and, therefore, for
all j, N(I;) € uPL. Then from the description of standard extensions Ej,(J, 70] )
in Proposition 1.26 it follows that all 57 = 0. O
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2. THE FUNCTOR CV*: L — CMTI'
2.1. Tur oBimcT RY € L. Let R = 1im(O/p), be Fontaine’s ring; it

has a natural structure of k-algebra via the map k& — R given by a —
@([0‘”a]modp), where for any v € k, [y] € W(k) C O is the Teichmiiller
representative of «. Let mp be the maximal ideal of R.

Choose zp = (zg") mod p)nso € R and € = (¢™modp),>o such that for all
n =0, xgnﬂ)p = xén) and e VP = (M) with xéo) = —p, e® =1but eV # 1.

We shall denote by vg the valution on R such that vg(zg) = 1.

Let Y be an indeterminate.

Consider the divided power envelope R(Y) of R[Y] with respect to the ideal
(Y). If for j > 0, v,;(Y) is the j-th divided power of Y then R(Y) =
©;>0R7;(Y). Denote by Ry the completion [[;5 Rv;(Y) of R(Y) and set,
Fil’PRy = pr Rv;(Y). Define the o-linear morphism of the R-algebra R
by the correspondence Y — z{Y’; it will be denoted below by the same symbol
o.

Introduce a Wi-module structure on Ry by the k-algebra morphism W; —
Rt such that u Yu) == zoexp(—Y) = @0 Y ;50(—1)77;(Y). Set F(Rs) =
Zong acg_l_lR%(Y) + FilPR,;. Define the continuous o-linear mo.rphism of
R-modules ¢ : F(Rs) — Rg: by setting for 0 < i < p, p(ah ' 7'yi(Y)) =
YY) — (i/2)2fY), and for i > p, ¢(7:(Y)) = 0. Let N be a unique R-
differentiation of Ry such that N(Y) = 1.

PROPOSITION 2.1. a) Ifa € Rgt and b € F(Rst) then
o(ab) = o(a)e(b) mod 2 Ryy;

b) ¢ mod x%pRst is a o-linear morphism of Wi-modules;
c) for any b € Rs and w € Wy, N(wb) = N(w)b+ wN(b);
d) for anyl € F(Rs), uN(l) € F(Rs) and

N(p(1)) = o(uN (1)) mod z” Ry

Proof. a) It is sufficient to verify it for a =Y and b = :Cgflfi%-(Y), 0<i<p.

b) Use that the multiplication by o(u) = u? comes as the multiplication by
Wu)P = xh = xb exp(—xhY) = o(v(u)) mod 3P Ry

c¢) Use that N(c(u)) = —u(u).

d) Tt will be enough to check the identity for I = 5~ ~*4;(Y) with 1 < i < p.
Then N(p(1)) = vi—1(Y)(1 — (1/2)(i + 1)25Y). On the other hand, uN(l) =

:618717(1'71)%_1(5/) exp(—Y) and p(uN(1)) is equal to
i+1
Yi—1(Y) (1 - 2

17—

2

1
ng> exp(—2fY) =~i—1(Y) <1 — ng) mod 25"
U
2/ (p—1
r /=1 p

Introduce a I' p-action on Rg; mod x st as follows.
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For any 7 € I‘F, let k(7) € Z be such that 7(zo) = e*("xq and let lgf/g(l +X)=
X —X?/24---— XP71/(p — 1) be the truncated logarithm. For any 7 € I'f,
define a linear map 7: Ry — Rst by extending the natural action of 7 on R
and setting for 7 € I'p and j > 0,

T(y(Y)) = Z Wj—i(Y)Wi(ff;SE)-

0<i<min{j,p—1}

Note that the cocycle relation e#(™) (1)) = ™) where 11,7 € T, im-
plies the cocycle relation

k(r1)loge + k(r)log(r1(€)) = k(ry7)loge mod 2% /=Y.

(Use that log(1 + X)* = klog(1 + X) mod(X?) and ¢ = Imodz?/®" ") In
addition, for any k € Z, the obvious congruence

(1+ X)* = exp(klog(1 + X)) = exp(klog(1 + X)) mod(X?)

implies that for any 7 € I'r, 7(x¢ exp(—Y)) = zo exp(—Y) mod z{ /1)
Therefore, the correspondences v;(Y) — 7(v;(Y)) induce a I' p-action on W;-

P /=) pp

algebra R, mod z st, which extends the natural I"z-action on R.

PROPOSITION 2.2. For any 7 € I'p,

a) 7(F(Rst)) = F(Rst);

b) for any a € F(Ru). 7(2(a)) = p(r(a) mod af ™/ 7™V Ryy;

c) for any b € Rs, T(N(b)) = N(7(b)).

Proof. The proof is straightforward in cases a) and ¢). Part b) follows by direct
calculation from the following Lemma. a

LEMMA 2.3. J(loﬂé‘s)/x 1og€mod:cp+1/(p UR.

Proof. Consider Fontaine’s element

tt = log[s] — Z(_l)n 1 ([ ] 1) Z p nm Aer

n>1 mEZ

where all 7,, € R. Then t* € Fil'A,, and ot™ = pt*. This implies for all

m € Z, that nn, = o~ ™no.

Consider H C A, consisting of the elements of the form }_ ., p™[r,] such

that for m < 0, vg(rm,) > /( 1) (this is automatic for m < —2), vg(r1) =
p?/(p—1) —1 and vg(rs) > p?/(p—1) —2. Then H is an additive subgroup in

Acr

Verify that

o foralln>=p, (] —1)"/neH.
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Indeed, the congruence [¢] = 1 + [ag] mod pW (R) (where ag = € — 1) implies
that [¢] = lim,, 00 (1 4 [0~ ™ag])?". Therefore,

el = 1= lamlp™ = [ac) | 1+ D p™[bwm] | .
m=0 m2>1
where vg(am) = p'~™/(p — 1), vr(b1) = —1 and vg(b2) = —1 — 1/p.
If n # Omodp then ([¢] — 1)" = [aon] + plain] + p?laz,]) mod p> W (R) with
vr(aon) = vr(ain) + 1 = wvg(az,) +2 = pn/(p — 1). This proves that
([e] = 1)™/n € H for all n # Omodp, n > p.
As for all remaining n > p, just note that for all M > 1,

(] = 17" = ool (14 P ] + M 2 ban)]) mod p* HW(R),
where vg(bapy ) = —2.
The above calculations mean that ¢+ = loﬂé‘[s] mod H. Therefore, if
log[e] = [wo] + plun] + p?[wz] mod p* W (R)

then wo = 10}5 =10 mod xgz/(pfl)R

)

—~ 2
wi=m =0 ‘ny=oc tloge mod z}) /p=D-1p

and wa = 12 mod ng/(p71)72R

Now note that log[e] € Fil' Ao (YW (R), that is loge] is divisible by [zo] + p
in W(R). The division algorithm gives (w1 — wo/xo)/x0 = we mod zé/(p_l)R.
Therefore, o(w1) = o(wp)/zh mod 2o (w2)R. The lemma is proved. O

By above results we can introduce R?, = (R%,, F(RY%,),, N) € L, where R?, =
Ry modzfmp and F(RY,) = F(Rs)modzhmp with induced o-linear map
¢ and W;-differentiation N. The above defined I'm-action on R°mod xng
respects the structure of RY, as an object of the category E* In our setting

the filtered Galois module R?, plays a role of Fontaine’s ring As;.

2.2. THE FUNCTOR V*. If £ = (L,F(L),p,N) € L then the triple
(L, F(L), ) is an object of EE which will be denoted below by the same symbol
L.

DEFINITION. Let R® = (R®, F(RC),¢) € Ly, where R® = R/zlmp, F(R") =
ZEg_lRO, the Wi-module structure on R is given via u — zg and ¢ is induced

by the map r r/xg(p_l), reR.

For any £ = (L,F(L),po,N) € L*, consider the I'p-module V*(£) =
Homgz-«(£,RY,). If f € V*(£) and i > 0, introduce the k-linear morphisms
fi : L — R° such that for any | € L, f(I) = 3,5 fi(1)7:(Y). The corre-

spondence f + fo gives the homomorphism of abelian groups pr, : V*(£) —
Vi (£) = Homg (L, RY).
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PROPOSITION 2.4. pr is tsomorphism of abelian groups.

Proof. Clearly, prg is additive. Suppose f € Kerpry. Then for all 7 > 0 and

Le L, fi(l) = fo(N'(1))) =0, ie. f=0.
Suppose g € Homjz (E RY). This means that g : L — R? is a o-linear

morphism of W;- modules g(F(L)) € F(RY) and for any | € F(L), g(¢(l)) =

(9(t) /b~

Set for any I € L, f(1) = g(I) + g(ND)y(Y) +- -+ g(N))v(Y) +. ... Then for
any l € L, f(N(l )) N(f(1)) and our Proposition is implied by the following
Lemma. U

LEMMA 2.5. a) For anyl € L, f(ul) = zgexp(=Y) f(l);
b) for any I € F(L)), «(f(1)) = f(e(1))-

Proof of Lemma. a) For any | € L, f(ul) = Zi>og(Ni(ul))%-(Y) =

(¥ =0 U) =03 (-1 = (1))

>0
= 1 Z(*l)jg(Nsl)%(Y)%'(Y) = zo exp(=Y) f(I).
b) Let I € L. Prove by induction on i > 1 that
N (o)) = (N (1) = ~ o Dupoui= N1 0) + ot N ).

2
Then

o (o)) =~ My (g(“z . (l”) + (—9(“%”)>
and £(p(1)) s equal to 0 gV (p(0)): (V) =

> (458) (vn- 1 ) = s,
To

i>0

O

COROLLARY 2.6. a) If rkyy, L = s then |V*(L)| = p%;
b) the correspondence L — V*(L) induces an exact functor V* from L* to the
category of Fp[[ p]-modules.

Proof. a) Proceed as in [1, 3]. Suppose the structure of the filtered @-module

L is given by a choice of a W;-basis my,...,ms of F(L) and a non-degenerate
matrix A € MS(Wl) such that (mq,...,ms) = (p(m1),...,o(ms))A. Let
X = (Xi1,...,Xs) be a vector with s independent variables and let Ry =

Frac R. Consider the quotient A; of the polynomial ring Ry[X] by the ideal
generated by the coordinates of the vector (X A)®) — (p VX, (For a matrix

C the matrix C®) is obtained by raising all elements of C to p-th power.)
Then A is etale Rp-algebra of rank p® (use that (uP~'I,)A~! € M,(W1))
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and all its Ry-points give rise to elements of the group Homz« (£, R), where
Ly

R = (R,al 'R,¢) € E; is such that for any r € R, p(zh~'r) = rP. Tt
remains to note that <p|mng is nilpotent, by Lemma 1.5, the natural projection
R — RY induces bijection from Homg- (L,R) to Homg- (L,RY) =V§(L) and
by Proposition 2.4, Vi (L£)| = [V*(£)].

b) This follows from a) because the functor £ — V(L) is left exact. O

Introduce the ideal J = > o<i<p ah'mpv;(Y) + FilPR%, of R%. Then
F(R%) > J and gl 7 is nilpotent. For RY, = (RY,/J, F(RY,)/J, pmod J) € Ly,
there is a natural projection RY, — RY, in L, and for any £ € L,
Hom- (L,RY,) = Hom- (£,RY%). This implies the following description of
the I'p-modules V*(£) where £ € L* (use the identification pr, of Proposition
2.4).

COROLLARY 2.7.

VL) =1 > NT(fo)yi(Y)mod J | fo € Homg: (£, R°)

0<i<p

REMARK. a) In the above description of V*(L), for any | € L, N*(fo)(1)
fo(N(1)). In addition, all N*i(fy)v;(Y) depend just on N3 = N mod uPL.
b) If £ € L* then in the above Corollary we can replace R° and J
by, respectively, R* = (R/ahR,2h "'R/2hR, ) € ES and the ideal J* =
Zogi <p Rzgfifyi(Y) + Fil?RY,. In particular, for unipotent modules the whole
theory can be developed in the context of k[u]/uP-modules.

2.3. THE CATEGORY CMI', AND THE FUNCTOR CV*.

DEFINITION. The objects of the category CMI 1. are the triples H = (H, H?, j),
where H, H° are finite Z,[I" r]-modules, I'r acts trivially on H° and j : H —»
HY is an epimorphic map of Z,[['r]-modules. If H; = (Hiy, HY,j1) € CMLp
then Homgwmr , (H1,H) consists of the couples (f, f%), where f : H; — H and
f0: HY — H° are morphisms of I'z-modules such that jf = f%j.

The category CMI' is pre-abelian, cf. Appendix A, and its objects have
a natural group structure. In particular, with above notation, Ker(f, f°) =
(Kerf, j1(Kerf)) together with the natural embedding to ;. Similarly,
Coker(f, f°) = (H/f(H1),H°/j(f(Hy))). For example, the map (id,0) :
(H,H) — (H,0) has the trivial kernel and cokernel. In addition, the
monomorphism (f1, f2) : Hi — H is strict if and only if fi(Kerj;) =
fi(Hy) N Kerj. Suppose Ho = (Hz, HY, j2) and (f2, f) : H — Ha is an
epimorphism. Then it is strict if and only if f9 induces epimorphic map from
Kerj to Ker jo. In CMI' we can use formalism of short exact sequenes and the
corresponding 6-terms Homcmr, — Extcur,, exact sequences, cf. Appendix A.
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DEFINITION. Suppose £ € L£* and ¢ : £¢% — L is the maximal etale
subobject. Then CV* : L — CMI', is the functor such that CV*(L) =
(VH(L), V¥ (L), V™ (i)).

The simple objects in CMT - are of the form either (H,0,0), where H is a simple
Zy [T p]-module, or (F,,F,,id), where F, is provided with the trivial I p-action.
In this context it will be very convenient to use the following formalism.

For s € N, consider Serre’s fundamental characters x5 : I'r — k*. Here for
7 € Tp, xs(7) = (125)/zs mod x5, where z, € R is such that 22 ~! = . If
X is any continuous (1-dimensional) character of I'p then there are s,m € N
such that 0 < m < p* — 1 and x = x7. Set r(x) = m/(p® — 1). Then r(x)
depends only on x and the correspondence x — r(x) gives a bijection from the
set of all continuous (1-dimensional) characters of I'p with values in k* to the
set [0,1], \ {0}.

For r € [0,1],, 7 # 0, introduce the I'r-module F(r) such that F(r) = F .,
where s(r) is the period of the p-digit expansion of r, cf. Subsection 1.2, with
the I'p-action given by the character y such that r(x) = r. We have:

— all F(r) are simple Z,[I" r]-modules;

— I'p-modules F(r;) and F(ry) are isomorphic if and only if there is an n € Z
such that ry = ra(n);

— any simple Z,[I' p]-module is isomorphic to some F(r).

It will be natural to set F(r) := (F(r),0,0) for all » € (0,1],, and to set
separately F(0) := (Fp, Fp,id).

With above notation we have the following property, where the objects L(r)
were introduced in Subsection 1.3.

PROPOSITION 2.8. For any r € [0, 1],, CV*(L(r)) = F(r).

Proof. The proof goes along the lines of Subsection 4.2 of [1], cf. also the
beginning of Subsection 2.4 below. O

2.4. A CRITERION. Suppose L1, Lo are given in notation of Subsection 1.4 and
q = p°. Then for i = 1,2, V*(L;) = V; are 1-dimensional vector spaces over
F, with I'p-action given by the character x; : I'r — k* such that r(x;) = r;.
(Note that (¢—1)r; € Z and, therefore, x;(I'r) C F;.) Choose g € F such that
741 = —p. Then Fy = F(7,) is a tamely ramified extension of F of degree ¢—1
and all points of V; are defined over Fs;. We can identify V; with the F,[['r]-
module Fqﬁgq_l)” C O/pO, where T, = ms modp. These identifications allow
us to fix the points h? = ﬁgqfl)” € V; and to identify V; with the I' m-module
{ah? | a € F,}.

Suppose h; € Vj. Define the homomorphism

Fp, : Bxty 0, (V1,V2) — Z'(Tr,,Fq) = Hom(T'p,, Fy),

where I'p, = Gal(F/Fy), as follows. If V € Extp, r,)(V1,V2) and h € V is a
lift of hy then for any 7 € T'r, Fy, (V)(7) = a, € F,, where Th — h = a.hS3.
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Clearly, Fy, (V') does not depend on a choice of h and it is the zero function if
and only if the projection V. — V; admits a I'p-equivariant section. In other
words, we have the following criterion.

PROPOSITION 2.9. V' is the trivial extension if and only if for all hy € Vi, one
has Fy, (V) = 0.

2.5. GALOIS MODULES V*(E,.(io, jo,7)). Suppose we have an object £ =
(L,F(L),,N) of the category L. Then there is a special o(W;)-basis
l1,...,1s of o(F(L)) such that for some integers 0 < c¢1,...,¢s < p and a
matrix A € GL4(k), the elements u®ly,...,u%l, form a Wj-basis of F(L) and
(p(url),...,ouls)) = (lh,...,ls)A.

For 1 <i<s,set ¢ = (p—1)—¢;. The following Proposition is a special case
of Corollary 2.7 (remind that R° = R/zfmg).

PROPOSITION 2.10. With above notation, V*(L) is the Fy[I'r]-module of all
(61,...,05) modzbmp € (R%)* such that

(67 )b, .. 0P ah®) = (6y,...,0,)A.

REMARK. In [1, 2] it was proved (in the context of the Fontaine-Laffaille theory)
that the family of F,[I'r]-modules V*(L£), where £ € L., coincides with the
family of all killed by p subquotients of crystalline representations of I'p with
weights from [0, p). This result can be also extracted from Subsection 4, where
we establish that the family of F,[I'p]-modules V*(L), where £ € L*, coincides
with the family of all killed by p subquotients of semi-stable representations of

I'r with weights from [0, p).

For an (r1,72)-admissible pair (ig,j0) € (Z/s)? and v € k, use the de-
scription of E..(ig, jo,7y) from Subsection 1.4. Then by Corollary 2.7, V =
V*(Eer(i0, jo, 7)) is identified with the additive group of all taken modulo zfmp
solutions in R of the following system of equations

XP jgpar = Xi(Jlr)l, for all i € Z/s;
Xf/xgbj = X]’Jrl — 5]']'0’pr1'(01-)|-17 for all ] S Z/S

Note that the first group of equations describes V4 = V*(£;) and the corre-
spondences Xi(l) — 0 and X; — X](-Q) with ¢, j € Z/s, define the map V' — V53,
where Vo = V*(L5) is associated with all taken modulo zimpg solutions in R of
the equations X§2)p/x€b1 = Xﬁ_)l, j € Z/s. As it was noted in Subsection 2.2,
the corresponding I' p-action on V, V; and V5 comes from the natural I'p-action
on RC.

Take xs € R such that acg_l = 29 and zs — msmod p under the natural iden-
tification R/xfR ~ O/pO. (This identification is given by the correspondence

. W) o pi o B" - @ _ (-
T ]%1(7*" mod p) — i : nl;ngorn+1.) Fori,j € Z/s, set z'"" = x5

and zgz(j) = ¢07I20) 414 introduce the variables ZZ-(l) = xap”(i)Xi(l),
Zj = xap”(])Xj, ZJ@) = zo_p”(J)XJ@). Then the elements of V' appear as

)
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the taken modulo mp solutions in Ry := Frac(R) of the following system of
equations
AR = z4), for all i € Z/s;
Z}D = Zj+1, for a.Hj 75 jo + 1;
1 7r1(20)—72(Ji
TR AR

Note that for the points h(f € Vi and hg € V5 chosen in Subsection 2.4, one has
ZM((09) = 22 (1) =1, where i € Z/s.

Suppose a € F, and hy = ah{ € V;.

Let Fs = k((xs)) C Ry = FracR. The field-of-norms functor gives a natural
embedding of the absolute Galois group I'z, of F, into I'p,, where Fs = F(m).
Then the restriction Fy, (V)|r,, of the cocycle

{En, (V)(1) = Ar.a(io, jo,v) €Fq | T €TR}

from Subsection 2.4 can be described as follows.
Let U € Ry be such that U — U? = vz (0)=r200) " Then for any 7 € 'z,
07 (Az.a(io, jo, 7)) = 0™ (a)(7(U) = U) and therefore

Ar.o(io, jo,7) = o7 ()9 (U — U).
The following Lemma is an immediate consequence of the definition of

(r1,72)er-admissible pairs.

LEMMA 2.11. With above notation let C = —(q — 1)(r1(ig) — r2(jo)). Then C
is a prime to p integer and 1 < C < g — 1.

2.6. GALOIS MODULES V*(Eg(io,jo,7)). For an (ry,rs)s-admissible pair
(i0,j0) € (Z/s)? and v € k, use the description of Ey(ig, jo,) from Subsection
1.5.

By Subsection 2.2, V' = V*(Es(i0,jo,7)) is identified (as an abelian group)
with the solutions ({X}” lieZ/s},{X;|je€ Z/s}) € R? of the following

system of equations

(2.1) x P gpai = Xi(}r)l, for all i € Z/s;
' XP[af” + 855,77 X7 [2"0 T = X, forall j € Z/s

The structure of V' as an element of Extr p,)(V1,V2) can be described along
the lines of SuNbsection 2.5. The action of I'r on V comes from the natural
' p-action on RY,, and the embedding of V into (RY,)?¢ given by the following
correspondences:

—if 4 € Z/s then Xi(l) — Xi(l) mod zfmpg;

—ifj ¢ {jo+1,...,j0 +mo} then X; — X; mod zfimpg;

— for 1 < m < mo, ng-i—m — on-i-m + ’ypm(?)jo - dio + 1)X(1)

p
iomY mod zompg.

Similarly to Subsection 2.5, introduce new variables by the relations Zi(l) =
xaph(Z)Xi(l), Zi = xaPW(%)Xi and ZZ-(Q) = xap”(z)Xi(Q), i € Z/s, and rewrite

DOCUMENTA MATHEMATICA 18 (2013) 547-619



VARIETIES WITH BAD REDUCTION AT 3 ONLY 577

system of equations (2.1) in the following form:

z'” = Zit1, for all i € Z/s;
Zf = Zjta, for all j # jo + 1;
1 r1(¢ o 1
Zjox1 — 25 1 = ZZ(OJ)r p(r1(io)=r2(jo)=1)

If « € F, and hy = ah{ € Vi, then the restriction to 'z, of the cocycle
{Fn,(V)(1) = Ar a(i0,7J0,7) | 7 € T, } can be described as follows. Let U € Ry
be such that
U—-Ul= ’yxgl(io)_TQ(jo)_l,

Then for any 7 € I'x,, 07°(A; 4 (io, jo,7)) = 0 (a)(7U — U). Thus

A‘r,a(iOajOa ’7) = o-io—jo (a)a-—jo (TU - U)
The following Lemma is a direct consequence of the definition of (r1,72)st-
admissible pairs, cf. also Proposition 1.24

LEMMA 2.12. Let C = —(q — 1)(r1(ig) — r2(jo) — 1). Then C is a prime to p
integer such that 1 < C < (¢—1)(1+1/(p—1)).

2.7. GALOIS MODULES Eg,(jo,7). In this subsection (0, jo) is some (r1,72)sp-
admissible pair (i.e. 7 +1/(p — 1) = ro(jo)) and v € Fy. Then V =
V*(Esp(jo,7)) is identified as an abelian group with the solutions

(X liez/sy (X | j e Z/s}) € R

of the following system of equations

xPjabr = X[ foralli € Z/s,
Xt = XD, for all j € Z/s.

The corresponding I' p-action comes from the natural I'p-action on RO o and
the embedding of V into (RY,)?* given by the following correspondences:

—if i € Z/s then XV X" mod 28mp;

—if m € Z/s then X;Qim — X;Qim + 'yme,(,%)Y mod zfmpg.

If o € Fy and hy = ah? € V1 then the cocycle
{Fh, (V)(7) = AF,(Jo,7) | T €TR,}

can be described as follows. Note that the pomt h1 corresponds to the collection
{0 ()22 Vi € Z/s}, {o"=9(ay)al )Y |i € Z/s}). Then for T € Tx,,
7(h1) orresponds to the collection

({o'(@)zh @ | i € z/s}, {09 (am)ah (Y + k(r)loge) | i € Z/s}).
Therefore, 7(h1) — h1 corresponds to the collection

({0 ]i€Z/sh o™ (an)at k(r) | i € Z/5}),

which corresponds to 07 (ay)h9. Therefore, A% (jo,7) = o~ 7° (ay)k(7).
Notice that for any 7 € 'z, C I'r,, A, (jo,7) = 0.
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2.8. FULLY FAITHFULNESS OF CV*.
In this subsection we prove the following important property.

PRrROPOSITION 2.13. The functor CV* is fully faithful.

Proof. We must prove that for all £1,£s € L*, the functor CV* induces a
bijective map

H(ﬁl, £2) : Homg (,CQ, ,Cl) — HomMF (CV*(ﬁl),CV*(ﬁg))

By induction on lengths of composition series for £; and L9 it will be sufficient
to verify that for any two simple objects £1 and Ls:

e II(Lq, L2) is bijective;
e the functor CV* induces injective map
EII (,Cl, £2) : EXté* (Eg, El) — EXtMF (CV*(El), CV*(EQ))

The first fact has been already checked in Subsection 2.3.
In order to verify the second property, notice that for any two objects L1, Lo €
L, the natural map

EXtMF (CV* ([,1), (A% ([,2)) — EXth (V* (ﬁl)), V* (EQ))

is injective. Therefore, we can prove injectivity of EII(L1, L) on the level of
functor V*. In addition, for ni,ng € N, Exte- (L5, L1?) = Exte- (Lo, £1)™7?
(the formation of Ext is compatible with direct sums). So, by Lemma 1.17, we
can replace £1 and Lo by the objects introduced in Subsection 1.5 (where they
are denoted also by £1 and L5).

By Proposition 1.27, any element of Extz- (L2, £1) appears as a sum of standard
extensions of the form E..(i,,%ij), Est(i,7,7;) and Egp(j, ;7). Here: a)
(i,j) € (Z/s)? is either (ry,rs)e-admissible or (r1,rs)s-admissible and all
Yij € k; b) j € Z/s is such that (0,j) is (r1,72)sp-admissible and v;* € F,.

REMARK. A couple (i,5) can’t be both (r1,r2)c-admissible and (r1,72)g-
admissible, but it can be (r1,72)cr-admissible and (r1,72)sp-admissible at the
same time.

By Subsections 2.5-2.7, we can attach to these standard extensions the 1-
cocycles A; o(i,7,7:;) and Ai?a(j,'yjp ), where 7 € T'p,. It remains to prove
that the sum of these cocycles is trivial only if all corresponding coefficients -;;
and ;" are equal to 0.

First, we need the following lemma.

LEMMA 2.14. Suppose for all (i,j) € (Z/s)?, the elements U;; € Ry = Frac R
are such that U;; — Uiqj = vijxs 7, where all v;; € k and all C;j are prime to
p natural numbers. For 7 € T'x,, let B;(i,,7vij) = 7(Uij) — Uiy € Fy. If for all

aclF,andallTr el F,,

(22) Z o-iij(a)onijBT(iaja’Yij) =0
©,J,€Z/s
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then all v;; = 0.

Proof of Lemma. For different prime to p natural numbers C;; the extensions
Fs(Uij) behave independently. Therefore, we can assume that all C;; = C are
the same.

Let jo = jo(j) be such that 0 < jo < s and jo = —jmods. Then (2.2) means
that for any o € Iy,

B, = Z o' () (Ui;) € Fs.

©,JEZL/s
Then

B, — Bl = Z Z Jiij(oz)’yfjﬂ x;pmc.
jez)s \icz/s
Looking at the Laurent series of B, € F, we conclude that all B, € IF,. This
means that for all j € Z/s and o € Fy, 37,07/ o'(a)vij = 0 and, therefore, all
vi5 = 0. The lemma is proved ]

Now suppose that for all & € F, and 7 € I'p,, the sum of cocycles A, (%, 7,vij)
and A3, (j,7;") is zero. Restrict this sum to the subgroup I'z,. Then all sp-
terms will disappear and by above Lemma 2.14 all v;; = 0. So, for all 7 € I'g,
and a € Fg, D ez o~/ (av;") =0, and this implies that all 77 = 0. O

COROLLARY 2.15. The functor V* is fully faithful on the subcategories of unipo-
tent objects L™ and of connected objects L*C.

Proof. Indeed, on both categories the map II(L1, £2) is already bijective on the
level of functor V*. 0

2.9. RAMIFICATION ESTIMATES. Suppose £ € L* and H = V*(L£). For any

rational number v > 0, denote by Fg’) the ramification subgroup of I'r in
upper numbering, [22].

PrOPOSITION 2.16. Ifv > 2 — % then ng) acts trivially on H.

A proof can be obtained along the lines of the paper [17] (which adjusts
Fontaine’s approach from [14]). Alternatively, one can apply author’s method
from [3]: if 7 € T() with v > 2 — 1/p then there is an automorphism 1 of
R such that ¢¥(zg) = 7(z¢) and ¢ induces the trivial action on H; therefore
we can assume that 7 comes from the absolute Galois group of k((x)) and
the characteristic p approach from [3] gives the ramification estimate which
coincides with the required by the theory of field-of-norms.

COROLLARY 2.17. If F is the common field-of-definition of points of F,[Trl]-
modules V(L) for all L € L, then v,(D(F/F)) < 3 — %, where D(F/F) is the
different of the field extension ﬁ/F
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3. SEMISTABLE REPRESENTATIONS WITH WEIGHTS FROM [0, p) AND
FILTERED VW-MODULES

3.1. THE RING S. Let v = u+p € W and let S be the p-adic closure of the
divided power envelope of W with respect to the ideal generated by v. Use
the same symbols o and N for natural continuous extensions of o and N from
W to S. For i > 0, denote by Fil‘S the i-th divided power of the ideal (v) in
S. Then for 0 < i < p, there are o-linear morphisms ¢; = o /p' : Fil'S — 8.
Note that ¢g = o and agree to use the notation ¢ for ¢,_1. One can see also
that S is the p-adic closure of W (k)[vo,v1,...,Vn,...]|, where vg = v and for
alln >0, vy, /p=vy.

Consider the ideals mg = (p,v,v1,...,0n,...), I = (p,v1,v2,...) and J =
(p, V10, V2, ..., Up,...) of S. Then

— myg is the maximal ideal in S;

— I =Fil’S + pS D J;

— o(I) C S and p(J) C pS;

— (wP71) =1 —v1(mod J) and ¢(v1) = 1(mod J).

3.2. THE RING OF SEMI-STABLE PERIODS Ast. Let R be Fontaine’s ring and
let zg,e € R be the elements chosen in Subsection 2.1.

Denote by A., the Fontaine crystalline ring. It is the p-adic closure of the
divided power envelope of W (R) with respect to the ideal ([zo] + p) of W(R),
where [z9] € W(R) is the Teichmiiller representative of xy. Then for i > 0,
Fil'A., is the i-th divided power of the ideal ([zo] + p) in Agr. Denote by
o : Aer —> Agr the natural morphism induced by the p-th power on R. Then
for 0 < i < p, there are o-linear maps ¢; = o/p’ : Fil'A.. — A.,. We shall
often use the simpler notation ¢ = ¢p_1 and F(A.-) = Fil’~'A,,. Notice that
A, is provided with the natural continuous I' z-action.

Let X be an indeterminate. Then Ag is the p-adic closure of the ring
Acr[vi(X) | i 2 0] € Aer[X] ®z, Qp, where for all ¢ > 0, %(X) = X*/il.
The ring Ay has the following additional structures:

e the S-module structure given by the natural W (k)-algebra structure and the
correspondence u — [zg]/(1 + X);

e the ring endomorphism o, which is the extension of the above defined endo-
morphism o of A, via the condition o(X) = (1 + X)? — 1;

e the continuous A.,.-derivation N : Ay, —> Ay such that N X)=X+1;

e for any ¢ > 0, the ideal Fili/ist, which is the closure of the ideal
Zi1+z‘22i (Fﬂ“ Acr) Yio (X);

e the action of I'r, which is the extension of the I'z-action on A, such that
for all 7 € Tp, 7(X) = []*7)(X + 1) — 1. Here all k() € Z, are such that
7(x0) = ey,

Note that for 0 < m < p, U(Filmflst) C pmflst and, as earlier, we can set

Om = pimJ|Fi1mrAst and introduce the simpler notation ¢ = ¢,_1 and F(A) =
FilP ™' Ag,.
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3.3. CONSTRUCTION OF SEMI-STABLE REPRESENTATIONS OF I'p WITH
WEIGHTS FROM [0,p). For 0 < m < p, consider the category S,, of
quadruples M = (M,Fil" M, ¢, N), where Fil"M C M are S-modules,
¢m : FiI"M — M is a o-linear map and N : M — M is a W(k)-linear
endomorphism such that for any s € S and m € M, N(sz) = N(s)z + sN(x)
The morphisms of the category S, are S-linear morphisms of filtered modules
commuting with the corresponding morphisms ¢,, and N. Notice that for
0<m<p, Ay has a natural structure of the object of the category §m. As
carlier, we shall use the simpler notation ¢ = ¢,_; and F(M) = Fil*~'M.
For 0 < m < p, the Breuil category S,, of strongly divisible S-modules
of weight < m is a full subcategory of S consisting of the objects M =
(M,Fil"™ M, ¢, N) such that

) (Fil™S)M C Fil™M;

) (Fil™ M) N pM = pFil™ M;

) ¢m(Fil™ M) spans M over S;
)

For M € S, let T2 (M) be the T p-module of all S-linear and commuting with
¢m and N, maps f : M — Ay such that f(Fil" M) C Fil™ Ag. Then one has
the following two basic facts:

o T} (M) is a continuous Z,[I'p]-module without p-torsion, its Z,-rank equals
tk sM, and V(M) = T3 (M) ®z, Q, is semi-stable I'p-module with Hodge-
Tate weights from [0, m];

e any semi-stable representation of I'p with Hodge-Tate weights from [0, m],
0 < m < p, appears in the form V(M) for a suitable M € S,,.

By Theorem 1.3 [6] these facts follow from the existence of strongly divisible
lattices in S ®yy F-modules associated with weakly admissible (¢g, N)-modules
with filtration of length m. Breuil proved this for all m < p — 2 but his method
can be easily extended to cover the case m = p — 1 as well, cf. also [7].

3.4. THE CATEGORY £7. In this section we introduce W-analogues of Breuil’s
S-modules from the category S,—1 and prove that they can be also used to con-
struct semi-stable representations of I'r with Hodge-Tate weights from [0, p).

DEFINITION. Let £ be the category of £ = (L, F(L),, Ng), where L > F(L)
are W-modules, ¢ : F(L) — L is a o-linear morphism of W-modules and
Ng: L — Lg := L ®w S is such that for all w € W and | € L, Ng(wl) =
N(w)l + (w ® 1)Ng(l). For £1 = (L1,F(Ly),p,Ng) € L, the morphisms
Homz (L, £1) are W-linear f : L — Ly such that f(F(L)) C F(L1), fo=¢f
and fNS = Ns(f X 1).
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Let Ay = (/ist,F(Ast),ga,NS), where Ng = N ® 1. Then Ay is an object of
the category L.

Suppose £ = (L, F(L), ¢, Ng) € L.

Set Ls :=L®w S, F(Ls) = (F(L)®1)S+ (L®1)Fil’S, and pg : F(Lg) —
F(Ls) is a unique o-linear map such that ¢s|p)g1 = ¢ ® 1 and for any
seFiPSandl € L, ps(l®s) = (p(vP71) @ 1)p(s)/p(vP~1).

DEFINITION. Denote by L7 the full subcategory in z consisting of the quadru-
ples £ = (L, F(L), ¢, Ng) such that

e [ is a free WW-module of finite rank;

e P 1L C F(L), F(L)NpL = pF(L) and L = p(F(L)) @, W;

e for any I € F(L), vNg(l) € F(Lg) and ¢g(vN(l)) = c¢Ns(p(l)), where
c=14uP/p.

It can be easily seen that for £ = (L, F(L),,Ns) € £/ and the map N =
Ns®1:Lg — Lg, the quadruple Lg = (Lg, F(Ls), ¢s, N) is the object of
the category Sp—1

The main result of this Subsection is the following statement.

PROPOSITION 3.1. For any M = (M,F(M),p,N) € Sp—1, there is an L =
(L, F(L),,Ns) € L' such that M = Lg.

COROLLARY 3.2. a) If L € LI and T%(L) = Homz (L, Ay) with the in-
duced structure of Zy[T p]-module then V(L) = T7(L) @z, Qp is a semi-stable
Qp[I'r]-module with Hodge-Tate weights from [0,p) and dimg, V(L) = rky L.
b) For any semi-stable Q,[I'p]-module V; with Hodge-Tate weights from [0, p),
there is an £ € LT such that Vi ~ V(L).

Proof of Proposition 3.1. Let d be a rank of M over S. If L C M is a free
W-submodule of rank d and M is generated by the elements of L over S we
say that L is W-structural (with respect to M).

Let F(L)=F(M)N L.

LEMMA 3.3. If L is W-structural for M then

a) F(L) DvP~tL;

b) F(L)NpL = pF(L);

c) F(L) is a free W-module of rank d.

Proof. a) v*~'L C (FilP"'SYM NL c F(M)NL = F(L).

b) F(L)NpL = LNF(M)NpL = F(M)NpL = F(M)NpMnpL = pF(M)NpL =
pF(L).

¢) F(L) has no p-torsion. Therefore, it will be sufficient to prove that
F(L)/pF(L) is a free k[[u]]-module of rank d. Consider the following natu-
ral embeddings of k[[v]]-modules

L/pL > F(L)/pF(L) > v’ L/pvP™ L ~ L/pL
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(Use b) and that pL NvP~!L = pvP~1L.) It remains to note that L/pL is free
of rank d over k[[v]].
The Lemma is proved. O

Suppose L is W-structural for M.
LEMMA 3.4. If L is W-structural then o(F (L)) spans M over S.

Proof. The equality S = W + Fil’S implies that M = L 4+ (Fil’S)L = L +
(Fil?S)M. Therefore,

F(M) = F(M)N L+ (Fil’S)M = F(L) + (Fil’S) L
(use that F'(M) D (Fil’S)M) and in notation of Subsection 3.1 one has
F(M)=F(L)+v L+ JM.
This implies that o(F(L)), ¢(v1Ll) and ¢(JM) span M over S. But for
any 1 € L, p(vil) = @(v)e(P ) /p@™h) = (1 = v)) te(r™l) =

o(vP~)mod mgM. For similar reasons, p(JM) C pM C mgM. This means
that ¢(F (L)) spans M modulo mgM. The lemma is proved. O

By above lemma it remains to prove the existence of a VW-structural L for M
such that o(F (L)) C L.

Let ¢o be a o-linear endomorphism of the S-module M € S,_; such that
for all m € M, ¢o(m) = (wP~tm)/p(vP~1). Clearly, ¢o(msM) C mgM
and, therefore, it induces a o-linear endomorphism oy of the k-vector space
My, = M/mgM.

LEMMA 3.5. Suppose n € Zxo, L is W-structural and o(F(L)) C L+ p™M.
Then there is a W-structural L' for M such that o(F(L')) C L' +p"JM.

Proof. Denote by F(L), the image of F(L) in the k-vector space
M/msM = L/(mg N W)L = Ly. Let s = dimy F(L)z, then s < d = dimy L.
Choose a W-basis eV, ..., e(® of L and a W-basis f(I, ..., f(@ of F(L) such
that
efor1<i<s, fO=¢e® andfors<i<d f* evL.
It will be convenient to use the following vector notation: € = (&1, é2), where
€1 :Ee(l), coe®)and &g = (et e and f = (f1, f2), where fi; = ¢&;
and fy = (f+, ), o
Then in obvious notation one has (p(f1),o(f2)) = (é1,é2)C, where C €
GL4(S). Clearly, C = Cy + p"v1Cimodp"J with Cy € GLg(W) and
Cy € Mg(W). Clearly, p(F(L)) € L+ p"JM iff C; = Omodmg. Choose
G =(71,92) € L% and set
& =W, ) =e +p(o —v" Hg

él2 - (el(s+1)7 R e/(d)) =é2+ pn(vl - Up_l)fj?
Clearly, the coordinates of & = (&],€}) give an S-basis of M and we can
introduce the structural W-module L' = 3~ We'(") for M.
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Prove that the elements ¢V, 1 < i < s, and f(), s < i < d, generate
F(L)modp™JM. Indeed, we have

(3.1) L+p"IM =L +p"IM

and this implies that the image F(L)j of F(L) in Ly, coincides with its analogue
F(L)g. In addition, for 1 < i < s,

Therefore, it would be sufficient to prove that (vL') N F (L) mod p™JM is gen-
erated by the images of ve/, 1 < i < s, and f6TD, ... £ But relation
(3.1) implies that vL + p"JM = oL’ + p"JM and

(vL’YN F(L)Ymod p"JM = (vL) N F(L) mod p" JM.

It remains to note that for 1 <4 < s, ve’® = ve® mod p™J M. B
Therefore, we can define special bases for L’ and F'(L') by the relations f] = €
and f} = fo and obtain that

(e(f1), e(f3)) = (e(f1),0(f2)) + p"v1(00g1,0) mod p" J M
and
((f1), e(f3)) = (€1, 85)Co + p"v"~ (g1, §2)Co+

+pnv1((él, 62)01 — (gl, §2)Co + (O'gl, 0)) mod p"J M
So, p(F(L')) € L'+ p"JM if and only if there is an g = (g1, g2) € L% such
that (60g1,0) = (g1, §2)Co + hmod (mg N W)L, where h = (é1,é2)Cy € L and
Comodmg € GL4(k). The existence of such vector g is implied by Lemma 3.6
below. O

LEMMA 3.6. Suppose V is a d-dimensional vector space over k with a o-linear
endomorphism oo : V. — V and @ = (a1,a2) € V%, where a; € V* and
ay € VI=5. Then for any C € GLg4(k) there is an § = (g1,92) € V¢ with
g1 € VS and Go € V45 such that

(32) (O’Ogl,O) = gC’er
~1_ (D11 D2\ _. ) .
Proof. Let C~" = with the block matrices of sizes s x s, (d—s) X s,
D31 Do
sx (d—s)and (d —s) x (d—s). Then the equality (3.2) can be rewritten as
(00g1)D11 = g1+ay
(00g1)D21 = G2+ ay

where (@}, a%) = aC~!. Clearly, it will be sufficient to solve the first equation
in g1, but this is a special case of Lemma 1.1. O

LEMMA 3.7. Suppose n > 0 and L is W-structural for M such that o(F(L)) C
L+ p"JM. Then there is a W-structural L' for M such that o(F(L")) C
LI +pn+1M.
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Proof. Suppose the coordinates of & € M? form a W-basis of L and D €
Mg(W) is such that the coordinates of f = €D form a W-basis of F(L). Then
©(f) = €+ p"h, where h = Omod JM. Let & = &+ p™h and let L’ be a W-
submodule in M spanned by the coordinates of &. Clearly, L’ is W-structural.
Prove that F(L’) is spanned by the coordinates of &' D. Indeed, suppose &
and & have the coordinates e and, resp., ¢/(¥), 1 < i < s. Then for all 4,
/) = ) £ prh()  where K € JM C (Fil’S)M. This means that a W-linear
combination of e belongs to F(M) if and only if the same linear combination
of €'V belongs to F(M). This implies that & D spans F(L') over W because
eD spans F(L) over W. Then @(F(L')) C L' + p"*'M because ¢(h) € pM
(use that ¢(J) C pS) and

©(@D) = p(eD + p"hD) = & + p"h + p™p(h)o(D) = &modp™ ™' M
|

It remains to notice that applying above Lemmas 3.6 and 3.7 one after another
we shall obtain a sequence of W-structural modules L,, such that for all n > 0,
L,+p" "M = L, 1+p" ™ M, where Lo®yy S = M. Therefore, L = @Ln/p”

is W-structural and ¢(L) C L.
The proposition is completely proved. O

3.5. THE CATEGORIES L' AND L7t

DEFINITION. W-module L is p-strict if it is isomorphic to ®1<i<sWW/p™, where
Niy...,Ns € N.

In particular, if L is p-strict and pL = 0 then L is a free Wj-module. The
p-strict modules can be efficiently studied via devissage due to the following
property.

LEMMA 3.8. L is p-strict if and only if pL and L/pL are p-strict.

Proof. Specify Breuil’s proof of a similar statement but for more complicated
ring S = WPF from [6]. O

DEFINITION. Denote by £' the full subcategory in ; consisting of the quadru-
ples £ = (L, F(L), ¢, Ng) such that

e [ is p-strict;

e P 1L C F(L), F(L)NpL = pF(L) and L = ¢(F(L)) @, W;

e for any I € F(L), vNg(l) € F(Lg) and ¢s(vNg(l)) = ¢Ng(p(l)), where
c=14uP/p.

DEFINITION. Denote by L£'[1] the full subcategory in L', which consists of
objects killed by p.

The category £'[1] is not very far from the category £* introduced in Section
1. Indeed, suppose £ = (L, F(L), ¢, Ns) € L'[1]. Note that Ns(L) C Lg, :=
L®w, S1 = L/uPL @ (L®1)Fil’S;. (Remind that S; = S/pS = Wy /uPW; @
Fil?S;.) With this notation we have the following property.
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PROPOSITION 3.9. There is a unique N : L — L/u?" such that
a) for anyl € L, N(I) ® 1 = ¢Ng(l) in Lg,, where c=1+uP/p € S*;
b) (L, F(L), ¢, N) € L".

Proof. Let Ny :=cNg: L — Lg,. Then for any w € W; and | € L, one has
Ny (wl) = N(w)l+wNy (1) (use that N(c) = 01in S7) and there is a commutative
diagram (use that o(c) =1 in Sy)

F(L)——1p,

| LNI

F(L)s == Lg,

Prove that N1(¢(F(L)) C L/uPL and, therefore, Ny(L) C L/uPL.

Indeed, (ulN1)(F(L)) < wuNy(L) N F(L)s < (uL/uPL® (uL)Fil?Sy)
N(F(L)/uPL ® LFil?S;) C F(L)/uPL @ (uL)Fil’S;.  This implies that
Ni(p(F(L)) C ws(uN1(F(L))) C L/uPL because pg(uFil’S;) = 0. So, by
Proposition 1.3 there is a unique N : L — L/u?" such that Nmodu? = N;
and (L, F(L),p,N) € L". O

COROLLARY 3.10. With above notation the correspondence
(LaF(L)a(paNS) = (LaF(L)’(paN)
induces the equivalence of categories II : L'[1] — L.

Proof. We must verify that our correspondence is surjective on objects and
bijective on morphisms. The first holds because Ng = ¢ !N mod uP and the
second — because a Wj-linear map f commutes with N iff it commutes with
N moduP (use Proposition 1.2) iff f ®yy, S1 commutes with Ng. O

COROLLARY 3.11. The category L' is preabelian.

Proof. Corollary 3.10 and Proposition 1.3 imply that £'[1] is pre-abelian. This
can be extended then to the whole category £ by Breuil’s method from [6] via
above Lemma 3.8. O

Note that if £ = (L,F(L),p, Ng) and M = (M, F(M),p, Ng) are objects of
L' and f € Homg (£, M) then:

e Kerf = (K,F(K),p,Ng), where K = Ker(f : L — M) and F(K) =
F(L) N K with induced ¢ and Ng;

e Cokerf = (C,F(C), ¢, Ng), where C = M/M’', M’ is equal to (f(L) ®w
Wlu=t)N M and F(C) = F(M)/(M' N F(M)) with induced ¢ and Ng;

e f is strict monomorphic means that f : L — M is monomorphism of W-
modules, (f(L) @y W[u=t])NM = f(L) (or, equivalently, M/ f(L) is p-strict)
and f(F(L))=LNF(M);

e f is strict epimorphic means that f is epimorphism of p-strict modules and
f(F(L)) = F(M).
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According to Appendix A, we can use the concept of p-divisible group
{£™ i} >0 in £ In this case £ = (L, F(L,),¢, Ns), where all L,
are free W/p™-modules of the same rank equal to the height of this p-divisible
group. We have obvious equivalence of the category L7 and the category of
p-divisible groups of finite height in £

DEFINITION. Denote by £f* the full subcategory in £, which consists of strict
subobjects of p-divisible groups in L. By c’ “[1] we denote the full subcategory
in £7* consisting of all objects killed by p.

It is easy to see that L7 contains all strict subquotients of the corresponding
p-divisible groups. Contrary to the case of filtered modules coming from crys-
talline representations, the categories £/ and £ do not coincide but they have
the same simple objects.

Note that the functor II from Corollary 3.10 identifies simple objects of the
categories £' and £* and for any two objects £1, Ly € Lt[l], we have a natural
isomorphism Ext ze[1)(£1, L2) = Exte- (II(Ly),II(L2)). One can use the meth-
ods of Subsection 1.2 to extend the concepts of etale, connected, unipotent and
multiplicative objects to the whole category £'. The starting point for this
extension is the case of W (k)-modules, which is well-known from the classical
Dieudonne theory [10]. Then we obtain the following standard properties:

e for any £ € L', there are a unique maximal etale subobject (£,i) and a
unique maximal connected quotient object (£¢,j¢) in £" such that the sequence

,L-et

0— £t £ 25 £¢ 4 0is exact and the correspondences £ — £ and
L +— L¢ are functorial; if £ € Lt then £¢ and £° are also objects of Lft;

e for any £ € L', there are a unique maximal unipotent subobject (L£¥,i%)
and a unique maximal multiplicative quotient object (£™,5™) in £' such that

U

the sequence 0 — L% — L I0 L™ 5 0 s exact and the correspondences

L+— L% and £ — L™ are functorial; if £ € L't then £¥ and £* are also objects

of LI,

Denote by £, £, £%" and £™" the full subcategories in £' consisting of,

resp., etale, connected, unipotent and multiplicative objects. We have also the
. . et,ft c, ft u, ft m,ft . ft

corresponding full subcategories L/, L%/" L and £ in £7°.

The results of Subsection 1.5 and Appendix A imply that in the category L't

e there is a unique etale p-divisible group £>°(0) := {£(0), i, }n>0 of height
1 such that £ (0) = £(0);
e there is a unique multiplicative p-divisible group of height 1,
L£2(1) := {LM(1),in }ns0 such that LD (1) = £(1);
o for any p-divisible group £ there are functorial exact sequences of p-divisible
groups

0 — Lo — L — Lo%¢
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0 — L — L — LT — 0
Here £°°¢* and £>°™ are products of several copies of £>°(0) and, resp., £L>(1),

and £%¢ and L>" are p-divisible groups in the categories LSt and, resp.,
éu,ft.

4. SEMISTABLE MODULAR REPRESENTATIONS WITH WEIGHTS [0, p)

In this section we prove that all killed by p subquotients of Galois invariant
lattices of semistable Q,[I'r]-modules with Hodge-Tate weights [0,p) can be
obtained via the functor V* from Section 2.

4.1. THE FUNCTOR V' : L' — MTI',. For n > 1, introduce the objects
At = (Ast,n,F(/lst_n),go,Ns) of the category L, with Ast,n = /lst/p”flst,
F(flst’n) = F(flst)/p”F(Ast) and induced ¢ and Ng. Let Agoo =
(Ast 00, F(Ast,0), 9, Ng) be the inductive limit of all Ay .

For £ € L', set V(L) = Homz (L, Ast,oo) With the induced structure of I'p-
module. This gives the functor V* : £ — MI',. We shall use the same
notation for its restriction to the category £/t

PROPOSITION 4.1. Suppose L = (L, F(L),,Ng) € L. Then Nslo(rry) is
nilpotent.

By devissage and Corollary 3.10 this is implied by the following statement for
the objects of the category L*.

LeMMA 4.2. If £ = (L, F(L),,N) € L* then N?(o(F(L)) C uPL.

Proof. For any | € F(L), N(¢(1)) = ¢(uN(l)). Use induction to prove that for
1<m<p, N (o)) = o(u™N™(l))mod uP L and use then that p(uP? N?(l)) €
e(uF(L)) C uPL. O

PROPOSITION 4.3. Forn > 1, @j>0Acrny;(log(l + X)) is the mazimal W (k)-
submodule of Agt n where N is nilpotent.

Proof. For any j > 1, one has N(v;(log(1 + X)) = vj_1(log(1 + X)) and N is
nilpotent on @;>0Aern7y;(log(l 4+ X)). Therefore, it will be sufficient to prove
that
Ker (Np|,4 ¢ ) = @ Agav(log(l+X)).
t/0gg<p
Let C = Fp(X) be the divided power envelope of F,[X] with respect to the
ideal (X). Then C = F,[Xo,X1,...,Xn,...]<p is the ring of polynomials in
X :=,i(X), where for all : >0, X? = 0.
Let m¢c be the maximal ideal of C' and ¥ = log(1 + X) € C. Then Y =
X — X1modmg and for all j >0, 7, (Y) = X; — X411 mod m. This implies
that with Y; = ~v;(Y") for all j > 0,
C=Fp[X0,Y0,..., Y, ... ]xp = Fp(Y)[X]cp = & Fp(Y)7(X).

0<i<p
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So, ASM = EB Aer17:(X)y;(Y). Remind N(X) = X + 1 and for j > 1,
720
0<i<p

N(;(Y)) = vj—1(Y). Using that N? is an A, 1-derivation, NP(X) = X + 1
and Np( Yj+p(Y)) = 7;(Y), we obtain that for any P = 3, ;i Xy (Y) €
Fp(Y)[X]<p with a;; € Fp,

NP(P) = ayiX 'y (V) + Y (i 4+ Daira v (V)X 4+ i jp X'y (V).
i,j i,j g
If P € KerN? then for all involved indices 1, j,
iog + (i + Dovigaj + @jp = 0.

This implies that a;; = 0 if either ¢ # 0 or j > p.

Indeed, take ¢ = p — 1. Then —ap_1,; + op—1,j4p = 0. Because for j > 0,
ay—1,5 = 0 it implies that all o,—1 ; = 0. Then proceed similarly with ¢ = p—2
and so on. This proves that all a;; = 0 if 7 # 0. It remains to note that for
i = 0, our relations give ag j4, = 0 for all 7 > 0. O

As earlier, consider the category ;0- Remind that its objects are the triples
(L,F(L),p), where L O F(L) are W-modules and ¢ : F(L) — L is a o-linear
morphism. For any object £ = (L, F(L),p, Ng) € L, agree to use the same
notation £ for the corresponding object (L, F(L), @) € L,.

For all n > 0, set Aern = (Aepms F(Aern), @) € Ly With Agpry = Agr/p™ Acr,
F(Aern) = F(Aer)/p"F(Aer) and induced ¢. Here the W-module structure
on Aerp is defined by the morphism of W (k)-algebras W — A,,.,, such that
u > [zo]. Denote by A oo the inductive limit of all Ae; .

Suppose £ € L' and f € Hom~ (E Ast.n). Then by Propositions 4.1 and 4.3,

Fle(F(L))) C jGQOACT,n%‘ (log(1 + X)).

Consider the formal embedding of the algebra A , into the completion
[Tj50 Acrnvi(log(l + X)) of @jz04crnvy;(log(l + X)) such that X —
> j>17i(log(1+X)). Then any element of Ay, can be uniquely written in the
form 3, a;v;(log(l + X)), where all a; € Acy.n. Note that the YW-module
structure on Ay ., is given via the map

i [20]/(1+ X) = [20] ) (~1)77;(log(1 + X)).
Jj=20
For j > 0, introduce the W (k)-linear maps f; € Hom(L, A, ) such that for

any | € L, one has f(I) =35, fj(1)v;(log(1 + X)). Then using methods from
[6] obtain the following property.

PROPOSITION 4.4. a) The correspondence f — fo induces isomorphism of
abelian groups V*(L) = Homz (L, Aer.n);
Lo

b) for any j =0 and l € L, f;(1) = fo(NI(1)).

COROLLARY 4.5. The functor V* is ezact.

DOCUMENTA MATHEMATICA 18 (2013) 547-619



590 V. ABRASHKIN

Proof. Let L} be the full subcategory of ;0 consisting of the triples (L, F'(L), ¢)
coming from all £ = (L,F(L),p,N) € L' By Proposition 4.4 it will be
sufficient to prove that the functor V§ : L — (Ab), such that V(L) =
Hom;U (L, Acr.00), is exact. The verification can be done by devissage along

the lines of paper [13]. O

REMARK. One can simplify the verification of above corollary by replac-
ing Acr1 by the corresponding object ACM related to the module Acrl =
(R/xf)Th ® (R/xf) introduced in Subsection 4.2 below.

COROLLARY 4.6. For £ € L7, let {£M) i} nso be the corresponding p-divisible
group in the category L't Then in notation of Corollary 3.2, TH(L) =
@V’f(ﬁ(")).

4.2. THE FUNCTOR V[1]*. Note the following case of Proposition 4.4.

PROPOSITION 4.7. Suppose L = (L,F(L),p,N) € L'[1]. Then there is
an isomorphism of abelian groups V(L) =~ Horn;0 (L, Aer1).  In addition,
Tr acts on VY(L) wvia its natural action on Ase1 and the identification vz :
Hom;0 (L, Aer1) — Hom;([,,Asm) such that if fo € Hom;g (L, Acr1) then
foranyl e L,

=" fo(N7(1))v; (log(1 + X))

330
Introduce the functor V[1]* := V¥|zejoll=! : L — MI'j,, where IT : L*[1] —
L™ is the equivalence of categories from Corollary 3.10.
PROPOSITION 4.8. On the subcategory of unipotent objects L of L™ the func-
tors V[1]* and V* coincide.
Proof. The definition of A., implies that A..1 = (R/25)[T1, T, ...]<p, where
for all indices @ > 1, T; comes from ~,:([zo] + p) and T} = 0. Set F(Acr1) =
Fil’ ' A, = (#5"'R/28R) ® (R/x5)I1, where the ideal I is generated by all
T;. Then the corresponding map ¢ : F(Aer1) — Aer1 is uniquely determined
by the conditions @(z8™") = 1 —T1, o(Ty) = 1 and o(T;) = 0 if i > 2. In
particular, p(Acr1) C (R/25)Th @ (R/xh).
Let Avcr,l = Acr1/J1 with the induced structure of filtered ¢-module chl,
where the ideal J; of A, is generated by the elements Tlxzo’ and T; with ¢ > 2.
Then the projection Agr1 — /Tcnl induces for any object £ = (L, F(L), ¢, N)
of the category L*, the identification (use that ¢|; = 0)

Homz (£, Acr,1) = Homg (£, Acr,y).

Introduce ap,a—y € Hom(L,R/xf) such that for any m € L, fo(m) =
—1(m)T1 + ap(m). Note that ap and a_; are Ws-linear, where the multi-

plication by u on L correspondes to the multiplication by zg in R/xj.

Then for any m € F(L), the requirement fo(p(m)) = ¢(fo(m)) is equivalent

to the conditions
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anlpm) = as(mp + 2000
(4.1) amp
ar(p(m) — —2)
T

Note that these conditions depend only on m = m mod u” L.

Consider the operator V' : L — L from Subsection 1.5. Clearly, V(uPL) C
uwF(L) and for L := L/uPL, we obtain the induced operator V : L — L (use
that F(L)/uF (L) C L/uPL).

For any m € L, relations (4.1) can be rewritten as follows:

ao(Vm)P —

aon (m) = T_l) + a_l(Vm)p
Lo~ _
ag(Vm)P
ai(m) = - £<p_1>
Lo

Therefore, if £ is unipotent then for any m € L,
a_1(m) = —ap(m) + a_1(Vm)? = —ag(m) + a,l(f/Qm)p2 == —agp(m).

This implies that for any m € F(L), ao(p(m)) = ao(m)p/xg(pfl). In other
words, we have a natural identification

HomzU (L, RY) = Hom;0 (L, Avcr,l )

coming from the map of filtered @-modules RY —» jcm given by the R-
linear map R/zh — Ay = (R/2B)T) & (R/ab) such that for any r € R/5,
7 (—rTy,r). (For the definition of R € £{ cf. Subsection 2.2.)

This implies that for all unipotent £ € £L*“, there is a natural identification of
I'p-modules V[1]*(£) = V*(£). Indeed, the above embedding R/z% — Aeps
can be extended to the embedding of Ry /xRy to

Avst,l = H Avcr,1'7j(10g(1 + X)),
j=0

which induces the above identification. O

4.3. SPLITTINGS © AND O. Suppose £ = (L, F(L), ¢, N) € £*. Then there is
a standard short exact sequence

(4.2) 0— L -t rm o,

where (£*,4) is the maximal unipotent subobject and (£™,j) is the maximal
multiplicative quotient of L.

If £ = (L™, F(L™),, N) then F(L™) = L™ = Ly ®, Wy, where Ly = {l €
L™ | o(I) =1}. Suppose S : L™ — F(L) C L is a Wj-linear section. Then for
any lg € Lo, S(lo) = ¢(S(lo)) + g(lp), where g € Hom(Lg, L™). If 8’ : L™ —

DOCUMENTA MATHEMATICA 18 (2013) 547-619



592 V. ABRASHKIN

F(L) is another Wj-linear section then for any ly € Lo, S'(lo) = ©(S'(lo)) +
g'(lp). Here ¢’ € Hom(Lg, L") is such that for some h € Hom(Lg, L"), one has

(9" = 9)lo) = h(lo) — o (h(lo)).

PROPOSITION 4.9. a) There is a section S such that g(Lo) C uL™.
b) If g(Lo), g'(Lo) C uL™ then h(Lg) C uF(L").

Proof. a) It will be sufficient to prove that for any [ € L*, there is an h € F(L%)
such that I = h — p(h) mod uL".

Suppose ng > 1 is such that V™ (L") C wF(L*). Then for all n > ny,
V(L") C uF(L"). Let h = —(VI+ V2l 4+ V")), By the definition of the
operator V for all 1 <i < ng + 1, Vil € F(L*) and o(Vil) = V=Y mod uL".
Therefore, h € F(L") and ¢(h) = =(I+VI+---+V"™]) = -]+ hmoduL™.
b) We must prove that if h € F(L*) and h — ¢(h) € uL" then h € uF(L").
Indeed, we have V(h) — h € V(uL*) C uF(L*) and for all n > 1, V™(h)
hmod wF (L") implies that h € uL*. Therefore, p(h) € uL* and h € uF(L"

~—

O

ProprosITION 4.10. With above notation the short exact sequence
0 — V[1]*(L™) — V1] (L) — V[1]* (L") — 0

obtained from (4.2) by applying V[1]*, has a canonical functorial splittings © :
V[1]*(LY) — V[1]*(L) and © : V[1]*(L) — V[D)]*(L™) in the category ML L.

Proof. Tt will be sufficient to prove the existence of a functorial splitting

© : Homz (LY, Aer1) — Homz (L, Acr1)

of the epimorphism Hom;U (L, .Zcr,l) — Hom;U (L, jcm), obtained from exact
sequence (4.2).

Suppose fo = (a—1,a0) : L* — (R/xf)Th @ (R/xf) belongs to
Homzo(ﬁu,zml). Here a_1,a0 € Homyy, (L*, R/zf) and for any | € L,
a_1(l) = —ap(l), cf. Subsection 4.2.

Let S : L™ — L be a W;-linear section such that for any | € Lo, S(lp) =
©(S(l)) + g(lo), where g € Hom(Lg, uL").

Extend fo to ©(fo) = (a—1,a0) : L — (R/xf)Th @ (R/xf) by setting
ao(S(lp)) = —a—1(S(lp)) = X, where X is a unique element of R/z} such that
X —xr/2b® Y = 44(g(lp)). One can prove that ©(fy) € Homg (L, Aer1) by
verifying relations (4.1) with m = S(lp). O

4.4. A MODIFICATION OF BREUIL’S FUNCTOR. Remind that Breuil’s func-
tor V¢ £ — MI',, attaches to any £ € Lt the I'p-module V(L) =
Homz (L, Ast 00 )-

PROPOSITION 4.11. The functor V* is fully faithful on the subcategory of unipo-
tent objects L.
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Proof. Indeed, by Subsection 2.3, V[1]* is fully faithful. Then the exactitude
of V! together with Proposition 4.8 implies that V*|zu.« is fully faithful. 0

Proposition 4.10 implies that V! is very far from to be fully faithful on the
whole L": if £ € £'[1] and 0 — L% — L — L™ — 0 is the standard exact
sequence then the corresponding sequence of I'p-modules admits a functorial
splitting.

Introduce a modification VI* Lt —s MTI' of Breuil’s functor.

Suppose L € L', From the definition of the category £’ in Subsection 3 it
follows the existence of £/ € £* such that p£’ = £. More precisely, there are
a strict monomorphism iz : £ — £ and a strict epimorphism jor : L' — L
such that pidg =iz 0 jer. (Note that jo oig = pide.)

Consider the following short exact sequences

(4.3) 0L S o
(4.4) 0— L, %20

and consider the corresponding sequence of I' m-modules and their morphisms

VL) -2 Vi) S v Y v ) s v,
As earlier, for any L € ' ! L£" is the maximal unipotent subobject and £™ is
the maximal multiplicative quotient object for L.

LEMMA 4.12. Ker(© o Vi(K,)) D Im(VH(C,) 0 ©).

Proof. The section © depends functorially on objects of the category £'[1] D
L'[1]. Therefore, we have the following commutative diagram

vi(y )
D —_—

l@
V(L)
and © o VH(K,) o VI(C,) 00 = (000) 0 VH(CY o K¥) = 0. 0

le

ViH(CpoKyp) Vt(EI )
p

DEFINITION. Set V4, (L) = Ker(© o VI(K},))/Im (VH(C,) 0 ©).

ProprosITION 4.13. With above notation one has:

a) V& (L) = Coker V!(C,) = VH(L) if £ € L“T;

b) Vi, (L) = Ker V(K,) = VI(L) if L e L™,

c) for any L € L, we have the induced exact sequence of T p-modules
0 — VH(L™) — VL (L) — VH(LY) — 0. This sequence depends func-
torially on the pair (L, L').
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Proof. The parts a) and b) are obtained directly from definitions. In order to
prove c), note that pL’ = £ implies that pL™ = L* and pL™ = L£™. This
gives a functorial sequence

0— Vi (L™) — V(L) — Vi (L") — 0.

Then standard diagram chasing proves that this sequence is exact. O

PROPOSITION 4.14. Suppose for a gwen L € L', the objects L', L" € LI are
such that pL’" = pL" = L. Then there is a natural isomorphism f(L', L") of
I'r-modules such that the following diagram is commutative

lid lf(ﬁ/,ﬁ”) lid

0——= V(L") —= Vi (L) —= V(L") —=0
(The lines of this diagram are given by Prop 4.13)
Proof. By replacing £ by L'[]L"” with respect to strict epimorphisms j and
L

jrr, we can assume that there is a map f : £’ — £’ which induces the
identity map pL” = L — pL’ = L. Then the existence of f(L', L") follows
from functoriality and diagram chasing implies that it induces the identity
maps on V(L") and V(L™). O

DEFINITION. For £, £ € £ such that p£’ = L, set V(L) = VL (L).

The correspondence £ — VIH(L) induces the additive exact functor
Vit Ll — M.

4.5. @-FILTERED MODULE ng € Lo. Let & = [x9] +p € W(R) C A, and
for n € N, 1a(€) = £"/n

LEMMA 4.15. If n > 2p then o(vn(€)) € p*Aer.

Proof. We have ¢(v,(€)) = (p" P /n!)([zo]?/p + 1)™. Therefore, it will be
sufficient to verify that for n > 2p, v,(n!) +p + 1 < n. Using the estimate
vp(n!) < n/(p— 1) we obtain that the required inequality holds for p > 5 if
n = p+ 3 and for p = 3 if n > 8. It remains to check that our inequality holds
for p =3 and n € {6,7}. O

Let Jo be the closed ideal in A., generated by [x0]P&?/p and all £™/n! with
n > 2p. Then Jy C F(A.) and o(J2) C p?A.. Introduce AVCT,Q =
Aer/(J2 + p?A..) and consider the corresponding induced filtered ¢-module
,ZCT,Q = (AVCT,Q,F(AVCT,Q),(‘D) € EO. Clearly, for any £ € Lg, the natu-

ral projection A2 — A2 induces the identification Homz (£, Aer2) =
Lo
Hom;U (L, Acr.2).

Consider the structure of ,ng more closely.
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Let T7 = &P/p. With obvious notation the elements of /Lng can be written
uniquely modulo the subgroup [#5R|Ty + [25P R] + plzhR] + p?W(R) in the
form [r_q1]Th + [ro] + p[r1], where r_1,79,71 € R. Informally, we shall use
that r_1,r1 € R/z5 and rg € R/xZ’. The W(R)-module structure on A is
induced by usual operations on Teichmuller’s representatives and the relation
pTy = [w0]P mod p?W (R). (Use that T} = [x0]?/p + p[zo]P " mod p? W (R).)
The S-module structure on /Lng is induced by the W (k)-algebra morphism
S —s W(R) such that u s [zo]. Then F(Ag.2) is generated over W(R) by
the images of 71 and £P~1. Note that £&P~! = [29]P~1 — p[ag]P~2 mod p? W (R).
The map ¢ : F (AVCTQ) — Ecng is uniquely determined by the knowledge of
©(T1) and p(€P~1). Note that

» =1+ [SC()]p HlOd(J +p2Acr,2 +p[mR])

o) = (

p—1y _ [2o]? P - 2
p(EP™H) = 1+7 =1-—Timod (J + p“Acr2 + plmg))

Suppose £ € £7'[1] and £’ € £ is such that p£’ = £. Consider short exact
sequences (4.3) and (4.4). Then the points f € V!(,£’) and V*(C,)(f) € V(L)

are related via the commutative diagram

VIO ~
L— Acr,?

[,

, ~
PE Acr, 1

where the right vertical arrow is induced by the correspondence
[r_1]T1 + [ro] + plr1] = [r—1]Th + [ro mod z).

Similarly, the points g € V*(£’) and V'(K,)(g) € V*(L}) are related via the
commutative diagram

El Acr,?

2 T

VHEp)(9)  ~
‘C; 4!]) Acr,l

where the right vertical arrow is induced by the correspondence

[r—1]T1 + [ro] = [r—120] + p[ro].
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4.6. FILTERED ¢-MODULES A

cr,1

AND A 5. Let AQ., be the W(R)-
submodule of A..o consisting of elements [r_,]T) + [ro] + p[ri] such that
r_1 = 77’0 mod (. Then F(AD, ;) = F(Acr2) N AD, 5 is generated over W(R)
by [¢h~" )Ty + €~ and the congruence

o([ah "y + €771 = =Ty + 1mod (Jo + p*Aer2 + plmp))
implies that o(F (A2

cr?)) - ASTZ and Acr2 (A(C)TQ’ (A(C)TZ) ) ez0'
Note that pA?, , = (pAL, 5, pF (AL, 5),¢) € L,. Then in notation from Subsec-
tion 4.4, one has:

e ImO = Homgz (L', pAL 2);

¢ V{(Cp)(ImO) = HomL (L', pAY,);

o Ker® = Homﬁo( 7p¢4m« 2);

e Ker(© o Vt(K;)) Homz (ﬁ' A% o).

Therefore, V/1(L) = Ve (L) = Homz (£ Ay a/PA, L) =
Homgz (L, A2, /A2, 2)

4.7. THE FUNCTOR éT/ft. Let £ € £t and let i° : £¢8 — £ be the maximal
etale subobject of L.

DEFINITION. CAf)ft Lt — CMI' is the functor induced by the correspon-
dence £ OV’ (L) = (DFH(L), VIH(Let), DI (i),

~ ft
The functor CVf is not very far from Breuil’s functor V? but it satisfies the
following important property.

— ft
PROPOSITION 4.16. The functor CVf is fully faithful.

Proof. By standard devissage it will be sufficient to verify this property for the
5o ft .- . . . .
restriction CV |£ft[1]. Due to Proposition 2.13 it will be sufficient to verify

that the functor V' e fe[1] © II-! coincides with the functor V* from Subsection
2.2. This can be proved similarly to the proof of the corresponding fact for
unipotent objects in Subsection 4.2 as follows.

Let

A = [T A% 2750081+ X)) € Agro = [ [Aer2vs(log(1 + X))
720 720

with induced structures of the objects Agm and .Zsm of the category L. Then
from Subsection 4.6 it follows that

V'(L) = Homg (E Aot 2/pAst 2)-
One can see easily that the correspondence

[ro mod | Th + [ro] + p[r1] — (ro + 2hr1) mod zfmpg
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induces the morphism A?, ,/pA2, , — R in the category L,. This morphism
induces a unique identification of the abelian groups V*(£) and Hom(£, RY) =
V*(L). Now going to a suitable factor of the object A9, ,/pAY, , we obtain that
this identification is compatible with the I'p-actions on both abelian groups.

O

Now we can describe all Galois invariant lattices of semi-stable Q,[I" 7]-modules
with weights from [0, p).

COROLLARY 4.17. Suppose V is a semi-stable representation of I' p with weights
from [0,p), dimg,V = s and T is a I'p-invariant lattice in V. Then there is

a p-diisible group {L™ i, }nso of height s in L7 such that @@ft(ﬁ(")) =
(T, T¢, i) € CMT .

5. PROOF OF THEOREM 0.1.

As earlier, p is a fixed prime number, p # 2. Starting Subsection 5.2 we assume
p=3.

5.1. For all prime numbers I, choose embeddings of algebraic closures Q C Q;
and use them to identify the inertia groups I, = Gal(Q;/Qj ur), where Q.
is the maximal unramified extension of Q;, with the appropriate subgroups in
Ig = Gal(Q/Q). )

Introduce the category M}f@ Its objects are the pairs Hg = (H, Hy;), where H
is a finite Z, [['g]-module unramified outside p and H, = (Hg, HY, i) € CMI'$!,

st

where H|;, = Hy, F = W(F,)[1/p] and CMI'} is the image of the functor

~— ft

C Vf from Subsection 4.7. The morphisms in Mf@ are compatible morphisms of
Salois modules. Clearly, the category m@ is special pre-abelian, cf. Appendix
Let Mb[l] be the full suibcategory of killed by p objects in M_E‘b Denote by
K(p) an algebraic extension of Q such that for any Hy = (H, Hys) € ﬂf@[l],
Tic(p) = Gal(Q/K(p)) acts trivially on H. In other words, K(p) can be taken
as a common field-of-definition of points of all such I'g-modules H.

Now assume that

(C) K(p) is totally ramified at p.

Under this assumption we have a natural identification Gal(K(p)/Q) =
Gal(K(p)F/F), that is the Galois group of the global extension (p)/Q comes
as the Galois group of its completion over F. Therefore, we can identify
M&[l] with the full subcategory of CMI'%", consisting of (H, H%,4) such
that pHs = 0 and all points of Hy; are defined over K(p)F. In other words,
the objects of MI'*[1] can be described via our local results about killed by p
subquotients of semistable representations of I'p.
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Denote by M{;[l] a full subcategory in M@[l] which consists of killed by p
subquotients of p-divisible groups in the category M@

Let F’ be the maximal tamely ramified extension of F' in K(p)F. Then
Gal(F’/F) is abelian group of order prime to p (use that the residue field of F
is algebraically closed) and Gal(K(p)F/F’) is a p-group. This gives an abelian
extension K’ of Q in K(p) of prime-to-p degree and such that K(p)/K’ is a
p-extension. This extension is unramified outside p and, therefore, it coincides
(use class field theory) with Q((,). In particular, all simple objects in M@[l]
are of the form F(j) = (Fp(4),0,0) if 1 < j < p and F(0) = (F,(0),F,(0),id)
if j = 0.

Let éét[l] and L{[1] be the full subcategories of £’[1] mapped by the functor
éT}ft to the objects of mg[l] and, resp., MI'G[1]. Clearly, Qét[l] is a full
subcategory in £f “[1] and the only simple objects in these categories are £(r),
wherer € {j/(p—1)|7=0,1,...,p—1}.

Suppose H® = {H("), in}n>0 is a p-divisible group in the category M(t@ Here
all Hé") = (H(”),I;'S(?)) are objects of the category m@ Let £ € é(g[l]

be such that CAT)ft(E) = flé(tl) Note that the maximal etale subobject £
of £ is isomorphic to £(0)™, where ne; = net(L) € Zso, and L£/L has no
simple subquotients isomorphic to £(0). Similarly, the corresponding maximal
multiplicative quotient £™ is isomorphic to £(1)"™, where 1, = N (L) € Z>o,
and the kernel of the canonical projection £ — L™ has no simple subquotients
isomorphic to £(1). Therefore, for any M € Lg[l],

Ext g pepyy (£(0), M) = Exctppepy (M, £(1)) =

This implies that for any H € mg[l],

Extypse 1y (H, F(0)) = Extypeg (F(1), H) = 0.

Therefore, by Theorem A.5 of Appendix A there is an embedding of p-divisible
groups H™ C H>, where HM)™ = F(1)®, and there is a projection of
p-divisible groups H> — H>¢ where HM = F(0)met,

For similar reasons,

Bxtypsey (F(0), F(0)) = Exctypse ) (F(1), F(1)) = 0

and by Theorem A.4 of Appendix A, the corresponding p-divisible groups Héo o

and Héo “" are unique. Therefore they coincide with the products of trivial p-

divisible groups (Qp/Z,)(p — 1) and, resp., (Qp/Z)(0).
We state this result in the following form.

PROPOSITION 5.1. Under assumption (C), for any p-divisible group H™ in the
category M& there is a filtration of p-divisible groups

H* D H® D H
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such that H® = (Qp/Zy)(p — 1), H®/H° = (Qp/Zy)(0)™* and all simple
subquotients of H{°/HG® belong to {Fy(j)|1 < j <p—2}.

5.2. Assume that p = 3.
LEMMA 5.2. K(3) = Q(3/3, o), where (g is 9-th primitive root of 1.

This Lemma will be proved in Subsection 5.3 below.
In particular, K(3) satisfies the assumption (C).

ProprosSITION 5.3. If H*® is a 3-divisible group in mf@ then in its filtration
from Proposition 5.1 the 3-divisible group H> = H/HS® is a product of
finitely many trivial 3-divisible groups (Qs/Z3)(1).

Proof. Let 2@ be the full subcategory of Qét[l] consisting of objects £ such that

L™ = £° = 0. This category has only one simple object £(1/2). Let @Q
— ft

be the full subcategory in Mg[l] consisting of the objects CVf (L), where

Le EQ. Then E@ and @Q are antiequivalent categories and D ¢ M@- By
Theorems A.4 and A.5 our Proposition is implied by the following result. [

PROPOSITION 5.4. Extég(ﬁ(l/Q),E(l/Q)) =0.

Proof. Consider the equivalence of the categories IT : £ — £* from Corollary

— ft
3.10. This equivalence transforms the functor CVf into the functor CV* from
Section 2, cf. the proof of Proposition 4.16. Therefore, the objects £ of the
category H(L@) := Lg are characterised by the condition that all points of

V*(L) are defined over the field K(3)F. The objects L of the category H(EQ) =

E{} are characterised by the additional properties: they are all obtained by
subsequent extensions via £(1/2) and V*(L) appears as a subquotient of semi-
stable representation of I'p with Hodge-Tate weights from [0,2].

Introduce the object £(1/2,1/2) = (L, F(L),, N) of the category L* as fol-
lows:

o L =Wl d Wil

e F(L) is spanned by uly and ul + Iy;

o p(uly) =11, elul +1;) =1;

e N(l1) =0moduL, N(I) = l; mod u®L.

Clearly, £(1/2,1/2) has a natural structure of an element of the group
Exte«(£(1/2), £(1/2)).

LEMMA 5.5. a) £(1/2,1/2) € Ly;

b) Extry (£(1/2),£(1/2)) = Z/3 and is generated by the class of £(1/2,1/2);

c) Extes (£(1/2),£(1/2,1/2)) = Extey (£(1/2,1/2), £(1/2)) = 0.

This Lemma will be proved in Subsection 5.4 below.

Lemma 5.5 implies that Extz:(£(1/2,1/2),£(1/2,1/2)) = 0 and, therefore,
any object £ of Ly is the product of several copies of £(1/2) and £(1/2,1/2).
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Suppose £ = L; x L(1/2,1/2) € E(E, Then there is a 3-divisible
group H*™ in ML} such that H = H' x H(1/2,1/2), where H'
and H(1/2,1/2) = CV*(L(1/2,1/2)) belong to MI'g. Clearly, we have
EXtmét[l] (H',H(1/2,1/2)) = 0 and applying Theorem A.5 we obtain a 3-

divisible group H*® in MLy, such that H®) = H(1/2,1/2). This implies the
existence of 2-dimensional semi-stable (and non-crystalline) representation of
I'r with the only simple subquotient Fs(1), that is for any Galois invariant
lattice T' of such representation, the I'p-module T'/3T has semi-simple enve-
lope F3(1) x F3(1). This situation appears as a very special case of Breuil’s
description of 2-dimensional semi-stable (and non-crystalline) representations.
According to Theorem 6.1.1.2 of [5] the corresponding semi-simple envelope is
either F5(0) x F3(1) or F3(1) x F5(2). The proposition is proved. O

Now our main Theorem appears as the following Corollary.

COROLLARY 5.6. IfY is a projective variety with semi-stable reduction modulo
3 and good reduction modulo all primes | # 3 then h*(Yc) = h*(Yc).

Proof. Indeed, let V be the Qs[I"'r]-module of 2-dimensional etale cohomology
of Y. Then it is a semi-stable representation of F' and its I'p-invariant lattice
determines a 3-divisible group in the category M}f@ By Proposition 5.3 this 3-
divisible group can be built from the Tate twists (Q3/Z3)(4), i = 0, 1, 2. Equiva-
lently, all I’ p-equivariant subquotients of V are Qs(z) with ¢ = 0, 1,2. Applying
the Riemann Conjecture (proved by Deligne) to the reductions Y mod! with
1 # 3, we obtain that Q(0) and Q(2) do not appear. Therefore, V is the product
of finitely many Q3(1) and h?(Yg) = hbV1(Ye). O

5.3. PROOF OF LEMMA 5.2. Use the ramification estimate from Subsection
2.9 to deduce that the normalized discriminant of /C(3) over Q satisfies the in-
equality |D(K(3)/Q)|K®:@™" < 33-1/3 — 18.72075. Then Odlyzko estimates
imply that [K(3) : Q] < 230 [11].

Let Ko = Q(() and K1 = Q(3/3, (). Then K is the maximal abelian exten-
sion of Q in K(3) and K7 C K(3). We have also the inequality [[C(3) : K] < 60
and, therefore, Gal(K(3)/Q) is soluble.

Prove that K1 = K(3).

Suppose the field K is the maximal abelian extension of K in /(3). One
can apply the computer package SAGE to prove that the group of classes of
K, is trivial. Therefore, K5 is totally ramified at 3 and Gal(K3/Q) coin-
cides with the Galois group of the corresponding 3-completions. In particular,
the maximal tamely ramified subextension of these completions comes from
Q(¢3) and, therefore, Ko/K; is 3-extension. Therefore, there is an 7 € Of,
such that K;(¢mn) C K>. Then a routine computation shows that the nor-
malized discriminant for K;(¢/7) over Q is less than 3°71/3 if and only if
n = 1mod O3 (1 + 30k, )*. The Lemma will be proved if we show that such
nE O}g’l. (This is equivalent to the Leopoldt Conjecture for the field K;.) This
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was proved via a SAGE computer program written by R.Henderson (Summer-
2009 Project at Durham University supported by Nuffield Foundation). This
program, cf. Appendix B, constructed a basis ¢;mod 0}31, 1 <4 <9, of
Ok, /O}g’l such that 18vs(e; —1) takes values in the set {1,2,4,5,7,8,10,13,16}.
In other words, v3(n — 1) > 1 > 16/18 implies that n € O3 .

Lemma 5.2 is proved.

5.4. PROOF OF LEMMA 5.5. a) Use the notation from the definition of the
functor V* in Subsection 4.

If fo € V¥(£(1/2,1/2)) then the correspondence fo + (fo(l1), fo(l)) identi-
fies V'(L£(1/2,1/2)) with the Fz-module of couples (X0, Xo) € (R/x§)? such
that X%O/Z'g = X10 and (X03 + Xl())/icg = Xo. Then the Fg[FF]—module
VH(L£(1/2,1/2)) is identified with the module formed by the images of all
(X107 Xo + X10Y) S (R8t>2 in Rgt = Rgt/(xng + SC(Q)IHRY + SC()InRYQ).

In particular, the corresponding I' p-action on V*(£(1/2,1/2)) comes from the
natural I'z-action on the residues of X719 and Xy modulo acng. Notice there
is a natural I' p-equivariant identification

t:mpg/(ximpg) — m/3m,

where m is the maximal ideal of the valuation ring of Q3. This isomorphism ¢
comes from the map r — ), where for r = ]gl(rn mod p), r(V) = nliﬁn;orfﬁrl.

Then Hensel’s Lemma implies the existence of Snique Z10, Zy € m such that the
following equalities hold ¢(X10 mod x3mpg) = Z19 mod 3m, ¢(Xomod z3mpg) =
ZO mod -?)ﬁl, Z‘13)0 + 3210 =0 and Zg + 3Z0 = 7210.

Clearly, F(Z10,Zo) = F({9). Therefore, if 7 € ' is such that 7({y) = (o then
T(Xlo) = X10 and T(Xo) = Xo.

Finally, it follows directly from definitions that if 7({/3) = /3 then 7 acts as
identity on the image of ¥ in égt. The part a) of the Lemma is proved.

b) Suppose L = (L, F(L), ¢, N) € Ext: (£(1), £(1)). Then L = Wil & Wi,
there is an w € Wy such that F(L) is spanned by ul; and ul+wly over Wy, and
one has p(uly) = l1, p(ul +wly) =1, N(I;) € u3L and N(l1) = w3l mod u3L.
Notice that £ splits in £* iff w € uW;. Therefore, we can assume that w =
o€k

Then the field-of-definition of all points of V(L) contains the field-of-definition
of all solutions (X1, X)modzimp € (R/z3mpg)? of the following congruences:
X3 /23 = X1mod xdmp and (X3 + o®X1) /23 = X mod z3mp.

Let 21 € R be such that 23 = 2. Then we can take X; = 23 and for T' = X /23
one has the following Artin-Schreier-type congruence:

7% —T = —a*/2° mod mp.
Using calculations from above part a) we can conclude that £ € Ly if and only if
the field-of-definition of T'mod mpg over k((z1)) belongs to the field-of-definition

of Ty mod mp over k((z1)), where T — Tp = —z; * mod mp. By Artin-Schreier
theory this happens if and only if o € F5 and,therefore, £ ~ £(1/2,1/2).
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¢) Suppose £ = (L, F(L),p,N) € Ext%(ﬁ(l/2),£(1/2, 1/2)).

Then we can assume that:

— L=Wile Wil & Wim;

— F(L) is spanned over Wy by uly, ul+1; and um—+wl+wily with w,w; € Wh;
— o(uly) =11, e(ul + 1) =1 and p(um + wl + wyly) = m.

Then the condition u?m € F(L) implies that wl; € F(L), or w € uW; and
we can assume that w = 0. Then the submodule Wim + Wjl; determines a
subobject L' of £, L' € Ly and using calculations from b) we conclude that
wy € FzmoduW;. Therefore, we can assume that w; = a € F3 and for
m’ =m—al we have m’ € F(L) and p(um’) =m’, i.e. Lis a trivial extension.
Now suppose £ = (L, FI(L), ¢, N) € Extz: (£(1/2,1/2),£(1/2)).

Then we can assume that:

— L=Wim & Wimy & Wil;

— F(L) is spanned over W, by ul, umi 4wl and um-+mi+w1l with w, w; € Wh;
— o(ul) =1, p(umi + wl) = my and p(um + my + wil) = m.

Again, the condition u?>m € F(L) implies that w € uW; and, therefore, we can
assume that w = 0. Then the quotient module L/W;m; is the quotient of £
in the category £*. This quotient must belong to the subcategory Ly. This
implies that w; € F3moduW, and, as earlier, £ becomes a trivial extension.
The Lemma is completely proved.

APPENDIX A. p-DIVISIBLE GROUPS IN PRE-ABELIAN CATEGORIES

A.1. SHORT EXACT SEQUENCES IN PRE-ABELIAN CATEGORIES.

A.1.1. Pre-abelian categories. Introduce the concept of special pre-abelian cat-
egory following mainly [28], cf. also [25, 26, 29]. Remind that a category
S is pre-abelian if it is additive and for any morphism v € Homg(A, B),
there exist Keru = (A4;,i) and Cokeru = (By,j), where i € Homg (A1, A)
and j € Homgs(B, By). For any objects A,B € S, let A[[B and A[]B be
their product and coproduct, respectively. There is a canonical isomorphism
AJ[ B~ A]J] B in S. More generally, for given morphisms:

e o € Homg(C,A), 8 € Homs(C,B), there is a fibered coproduct
(Al B,ia,iB), with iy € Homs(A, A]]. B), ip € Homs(B, A][, B) which

completes the diagram A «— C %, B to a cocartesian square;

e f € Homs(A,C) and ¢ € Homg(B,C), there is a fibered product
(AHCBapAapB)v with pa € HOHlS(AHCB,A), pB € HOHlS(AHCB,B),

which completes the diagram A N C <2~ B to a cartesian square.

Suppose i € Homgs(A1, A), f € Homg(A1,B) and (B HA1 Ajia,ip) is their
fibered coproduct. If (As2,j) = Cokeri then there is a morphism jp

DOCUMENTA MATHEMATICA 18 (2013) 547-619



VARIETIES WITH BAD REDUCTION AT 3 ONLY 603

B[], A— Az such that the following diagram

Ay : A Ay
l/f liA l/id
B iB BHAl A JiB AQ

is commutative (use the zero morphism from B to As). A formal verification
shows that (As, jp) = Cokerig.

Suppose j € Homs(A, Az), g € Homs(B, A2) and (B[]4, A,p5,pa) is their
fibered product. If (Ay,i) = Kerj then there is an ip : A7 — B]_[A2 A (use
the zero map from A; to B) such that the following diagram

Ay : A ! Ao
idT pA T QT
Al iB B HA2 A PB B

is commutative and (A1,ip) = Ker pp.

A.1.2. Strict morphisms. A morphism u € Homgs(A, B) is strict if the canon-
ical morphism Coim u = Coker(Ker u) — Imu = Ker(Coker u) is isomorphism.
One can verify that always Keru = (Aj,4) is a strict monomorphism and
Cokeru = (By, j) is a strict epimorphism. By definition, a sequence of objects
and morphisms

(A1) 0— A -5 AL 4, —0

in S is short exact if (A;,7) = Kerj and (As,j) = Cokeri. In particular, any
strict monomorphism (resp. strict epimorphism) can be included in a short
exact sequence.

DEFINITION. A pre-abelian category is special if it satisfies the following two

axioms:

SP1. if a: C' — A is strict monomorphism then ip : B — A[[B is also strict
C

monomorphism;
SP2. if f : A — C is strict epimorphism then pp : A[[B — B is also strict
C

epimorphism.

REMARK. A typical example of pre-abelian special category is the category of
modules with filtration.
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Consider short exact sequence (A.1) in S. If f € Homg(A;, B) then we have
the following commutative diagram

(A.2) 0 Ay : A Ay 0
if liA l/id
0 B iB AHAl B iB AQ 0

Then jp = Cokerip is strict epimorphism and by axiom SP1, ip is strict
monomorphism. Then Ker jp = Ker(Cokerip) = Imip = (B,ip) and, there-
fore, the lower row of the above diagram is exact.

Dually, for any g € Homg(B, As) there is a commutative diagram

J

(A.3) 0 A : A A, 0
idT PAT QT
0 Ay ‘s A HAZ B b B 0

where i = Ker jp is strict monomorphism, by Axiom SP2, pp is strict epi-
morphism and the lower row of this diagram is exact.
With relation to above diagram (A.2) we have the following ptoperties.

LEMMA A.1. a) The natural map 6 : Ker f — Keriy is isomorphism;
b) if f is strict epimorphism then Keriy is also strict epimorphism.

Proof. a) Suppose that Ker f = (Kj,a1) and Keriy = (K,a). Then 6 :
Ker f — Keriy appears from the universal property of (K, «) because i4 o
toa; =igo foa; = 0. The relation joa = jgpoig o a = 0 implies the
existence of @ : K — A; such that ioa =«. Thenigo foa=i40a =0
and fod = 0 (use that ip is monomorphism). By the universal property of
(K1, 1) this gives the map 1 : K — K; such that a3 o §; = & and this map
is inverse to 4. B

b) Suppose f is a strict epimorphism, then (B, f) = Cokerca;. Let (C,]) =
Coker a. By functoriality, there is ¢ : B — C such that € o f =704 Then j
and ¢ define a unique w : A]_[A1 B — C such that woip=cand woig =].
But i4 o @ = 0 implies by the universal property of (C~',j) the map w; : C—»
ATl 4, B and one can verify that it is inverse to w. O

REMARK. If f is strict monomorphism then i4 is also strict monomorphism
by axiom SP2.

With relation to diagram (A.3) we have the following Lemma which is dual to
above Lemma A.1.

LEMMA A.2. a) The natural map Coker py — Coker g is isomorphism; b) if
g 1s strict epimorphism then pa is also strict epimorphism.

Proof. The proof is dual to the proof of Lemma A.1. O

DOCUMENTA MATHEMATICA 18 (2013) 547-619



VARIETIES WITH BAD REDUCTION AT 3 ONLY 605

LEMMA A.3. A composition of two strict monomorphisms (resp., epimor-
phisms) is again strict monomorphism (resp., epimorphism).

Proof. Tt will be sufficient to consider only the case of monomorphisms. Sup-
pose i € Homg(A;, A) and i1 € Homg(A, B) are two strict monomorphisms.
Construct the following commutative diagram:

(A4) 0—> Ay —> g —? A2 0
0 © . p—2 4 L[A B——=0
t lﬂ'

Cy

Here j = Cokeri is strict epimorphism and the upper right square is co-
cartesian. Therefore, ip is strict epimorphism and we obtain the second line
which is short exact. The morphisms ¢; and ¢4, are strict monomorphisms and
we can complete our diagram by (C1,j1) = Cokeri; and (C,j) = Cokeria,.
The maps  and ~ are obtained by functoriality and we have proved that they
are isomorphisms. Therefore, i; o i = o « is strict (use that « = Kerip is
strict). O

A.1.3. Bifunctor Exts. If S is pre-abelian category then in the following com-
mutative diagram with exact rows

0 Ay A Ao 0
lid Lf lid
0 Ay A As 0

the morphism f is isomorphism. Therefore, we can introduce the set of equiv-
alence classes of short exact sequences Exts(Az, A1). This set is functorial in
both arguments due to axioms SP1 and SP2.

Suppose the objects of S are provided with commutative group structure re-
spected by morphisms of S. Then for any A,B € S, Exts(A,B) has a
natural group structure, where the class of split short exact sequences plays
a role of neutral element. Remind that the sum &1 + 2 of two extensions

04)1414)14/;}1424)0311(:152.0—)141*}AH*)AQHO
is the lower line of the following commutative diagram relating the rows
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=e1 @ ey, V(1) and (+),V*(1),

110 AT A arpar U A 114, ——0
S
. i/ Hi// , /I]/ Hj//
V(1) 10— A [[ Ay —= A'T[,, A Ay 0
A |
(+)«V*(1) : 0 Ay A" As 0

Here V is the diagonal morphism, + is the morphism of the group structure
on §. For any f € Homg(A;1,B) and ¢ € Homg(B, A3) the correspond-
ing morphisms f. : Exts(As, A1) — Exts(As, B) and ¢* : Exts(Az2,41) —
Exts(B, A1) are homomorphisms of abelian groups. The proof is completely
formal and goes along the lines of [27].

Suppose ¢ € Extgs(Asz, A1), then the extension €+ (—id)*e splits. We shall need
below the following explicit description of this splitting.

Lete:0— Ay — A -5 Ay — 0. Then & + (—id)*e is the lower row in the
following diagram

0 A TT A S AT, 492 4, .

L

0 A Ao Ay 0

where the left vertical arrow is the cokernel of the diagonal embedding V :
A; — A1 ] Ai. One can see that the epimorphic map Ag — Aj, which splits
the lower exact sequence, is induced by the morphism p; —ps : A[] 4, A— A
Finally, one can apply Serre’s arguments [30] to obtain for any short exact

sequence 0 — A; — A -5 Ay — 0 and any B € S, the following standard
6-terms exact sequences of abelian groups

0 — Homg(B, A1) ~= Homg (B, A) > Homg(B, As)

%5 Exts(B, A1) - Exts(B, A) 25 Exts(B, A,)

0 —» Homg(As, B) 2 Homg(A, B) - Homs(A,, B)

%, Bxts(As, B) ~ Exts(A, B) 2 Exts(A,, B)
A.2. p-DIVISIBLE GROUPS. In this section S is a special pre-abelian category
consisting of group objects. Denote by S; the full subcategory of objects killed
by p in S, where p is a fixed prime number. Clearly, S; is again special pre-

abelian.
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A.2.1. Basic definitions. Consider an inductive system (C™ (™), 4 of ob-
jects of S, where C(© = 0 and all i(®) : (™ — C("+1) are strict monomor-
phisms. Let for all n > m > 0, imp = 1D o ... 0 imt) o i(m) ¢
HomS(C(m), C(")). Then all i, are strict monomorphisms. Follow Tate’s pa-
per [Ta] to define a p-divisible group in S as an inductive system (C™ (™), 5,
such that for all 0 < m < n,

a) Coker iy, = (C(”_m),jmn_m), i.e. there are short exact sequences:

0 — O(m) Iy ) Inngm on=m) __,
b) there are commutative diagrams

pm'idc(n)

cm) cm)

C(n—m)

The above definition implies the existence of the following commutative dia-
grams with exact rows (where m < n < ny):

0 —> Olm) —™ o o) — 2 nem) ——
lid linnl linnL,nlnL
0 —— Clm) — o Gm) — T S —m) > )
0 cm e Cln) — T en) s
ljnm J{jnl,mmln lid
0 Clm) — L ey ) T ) s

Also, for all n > m > 0, one has

e (C™ i) = Ker(p™idem), (CU, jpm) = Coker (p" ™ idem));

® imn =TUn—1,mn0...0%mmt+1 a0 Jnm = Jm+1,m © ... 0 Jnn—1.

The set of p-divisible groups in § has a natural structure of category. This
category is pre-abelian. In particular,

n) .(n n n) :(n On n) .(n
0 — (O i{)pz0 22 (@™ i), 50 L (D) i5),150 — 0

is a short exact sequence of p-divisible groups iff for all n > 1, there are the
following commutative diagrams with short exact rows in S

On

Tn

0 ci cm o 0

\ng") LM) ligm
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A.2.2. A property of uniqueness of p-divisible groups.

THEOREM A.4. Let D be an object of &1 such that Exts, (D,D) = 0. If
(C™ i), 5o and (O{”’,zﬁ”))n}o are p-divisible groups in S such that C(V) ~
Cfl) ~ D then these p-divisible groups are isomorphic.

Proof. We must prove that for all n > 1, there are isomorphisms
fn: C) = Cf") such that ign) 0 fu = fap1 0i™. Suppose ng > 1 and
all such isomorphisms have been constructed for 1 < n < ng. Therefore,
we can assume that C(" = C{") for 1 < n < ng. Consider the following
commutative duagrams with exact rows:

(A5) Eng+1 - 0 C(l) il C(n0+1) L) C(no) —
idT Z—(no)T i(nol)T

Eng : 0 o) — s (o) — L= no-1) —=

(A.6) Enotl 0 o a C{”UH) LN o) —=0

idT igno)T Z-(n,ol)T

Eng * 0 o) — s (o) —L s (no-1) —

Here in standard notation of Subsection A.2.1, i1 = i1 pnot1, ¥ = ] 5115
T = 1ngs J = Jnono—1s J1 = Jno+1,no a0d ji = j,’mH’nO (the dash means that the
corresponding morphism is related to the second p-divisible group). We must
construct an isomorphism fy, 41 : C"0+1) — C’f""ﬂ) such that fp,,104("%0) =
ig"(’). Consider the following commutative diagram obtained from above two
diagrams

(A7)

i1 [T4) C(no+1) H C§"0+1) (41,31)

0= O] CO) Cm)

C'(no)

id] i(n0) HiY‘U)T i(no—1)

i[14 C(no) I1 C(no) (4,9)

0— O[O ——— oAb Cno=1) _y

Notice that the morphisms of multiplication by p in C™+1 and C’f""ﬂ) can
be factored as follows

p p

C(no+1) C(no+1) clrot) clrot)

C/(no) C/(no)
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Therefore, we obtain the following commutative diagram

(A.8) C{ ) Mgy C0+D) . i [ C0+D

l(a‘i,jl) i{mo) Hz‘”ﬂ)T

C) [Tetme-1 C)

C'(no)

(here V is the diagonal morphism). Let a : CJ]CM — €M be the cok-
ernel of the diagonal morphism V : C) — COJICM. Clearly, V and «
are, resp., strict monomorphism and strict epimorphism. Set (D, +1,01) =
Coker ((i1 [[#}) o V) and (D, ag) = Coker ((: []¢) o V). Applying a. to dia-
gram (A.7) obtain the two lower rows of the following diagram

(A.9) 0 oW Dy cm 0
idT sT jnOlT

0 c® D1 —— (o) ——=0
§ e

0 c Dy, Cno—1) ——

Note that the middle line of this diagram equals en,41 — €,,41 €
Ext (C() C(M), and at the third row we have a trivial extension. This
implies the existence of the first row of our diagram. As it was pointed out
earlier, a splitting of the third line can be done via the morphism f from the
commutative diagram

(Alo) C(nO) HC(nofl) C’("o)
O(l) f D’no

(Notice that the morphism s : Dy 41 — Dy is the cokernel of the composition
Kerf — Dy, — Dpgt1. )

Above diagram (A.8) means that the morphism of multiplication by p on
C’f""ﬂ) [Teme CMoFY factors through the diagonal embedding of C(™) into
C"0) [T ptme—1 €M), From diagram (A.10) it follows that pidp factors

ng+1
through the embedding Kerf — D, — D,,+1. Therefore, pDy = 0 i.e. the
first line in diagram (A.9) is an element of the trivial group Exts, (C(V), C() =
0. So, the second row in (A.9) is a trivial extension, i.e. the extensions ey,,11
and ¢, ., from diagrams (A.5) and (A.6) are equivalent. This implies the
existence of isomorphism fp,+1. O

A.2.3. Splitting of extensions of p-divisible groups.
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THEOREM A.5. Suppose (C™ i), 5o is a p-divisible group in the cate-
gory S and there are Di,Dy € S; such that CV) € Exts, (D2, D1) and
Exts, (D1, D2) = 0. Then there is an exact sequence of p-divisible groups

0 — (C1, i1 )nz0 — (€™, i™),50 — (€55 )nz0 — 0
in S such that C{l) =D and Cg(l) =

Proof. We have the exact sequence 0 — D, o Ly Dy — 0. We
must show for all n > 1, the existence of objects C’( ), strict monomorphlsms
Yo 01 — Ccm and zgn) : C{ Cf"“ such that (Cf" ,il )),@0 is a p-
divisible group, the system (7n)n>0 defines an embedding of this p-divisible
group into the original p-divisible group (C™),i(™),,5, Cfl) = D; and y; = 1.
Agree to use for all 0 < m < n, the notation 4,,, and j,, from Subsection
A.2.1 for the original p-divisible group and set C™) = C.

Ilustrate the idea of proof by considering the case n = 2. Set C;; = D; and
(1)

consider the following commutative diagram with exact rows e and €5~ = i*¢a:
(A.ll) Eg . 0 ClO e CQO 2 010 0
1 iz sy
Eg )20 Cio Co1 Cn 0

Then 'y( )Opid021 :pidcmo*yé ) — = 1120421075 (1) _ 112OZO]( ) — fyé )oz( OZOj( )

By Lemma A.2 'yé ) is (strict) monomorphism. Therefore, pide,, = zél)owjé}).
Then the morphism j, : Exts(C11,C19) = Exts(Ci1, D2) induces the following

commutative diagram

(1) (1)

0 Cio L Ca 2 Cin 0
lj J{f \Lid
0 Dy = Doy Ci1 0

Here pidp,,of = fopide,, = foz12 ozogél) = anOZO]él) = 0. By Lemma A.1,
f is (strictly) epimorphic. Therefore, pidp,, = 0, i.e. Doy € Exts, (C11, D2) =
0. Then the exact sequence Homs — Exts implies the commutative diagram

(1) (1)

0 Cho L Co 721 Cn 0
iT @”T idT
i 8
0 Ci Cao Cn 0

Verify that one can set C£2) = Cy and %, = 1522) Indeed,

757 o pide,, = pidey, 0%” = (i1 o) o (i) 015”) =57 0133 0 7
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and because 752) is monomorphism (use axiom SP1), pidg,, = 1522) 0j21. Thus,

n) .(n)

we constructed a segment of length 2 of the p-divisible group (C}", 4] ' )n>0-

Consider the general case.

LEMMA A.6. In the category S there are the following commutative diagrams
with exact lines:

o fork>1,
1207)1 k j;iol)
E}:0——=Ck-1p0 Cro Cho 0
idT 'y](cl)T zT
igjl k ]';(cll)
0—— Ck—l,O Cm 011 0
e for 2 <t <k,
i;ﬂt—ll)k =D
—1, k1
Ef:0——=Cr142 Cr -1 Ci 0
v,(fll)T v,(f) id
igf) 1,k j(t)
—1, k1
00— Ch_1,4-1 Cht Ci1 0
o for 1 <t<k,
igf)1 k 38
c— 1L,k k1
Al 0 ——=Cro11 Cht Cn 0
s 1 id
i o it
c—2,k—1 —1,1
0——=Cr_2t—1 Cr-14 Ci 0
e for 1 <t<k,
(t) (t)
Tk fr
Q0 Chrt Crt—1 D, 0
(1) (t—1 .
]k’klt Jk,k)ll zdl
'71(21 122)1
0 Cr—1, Cr—1,t-1 Dy 0

where for all indices k, Cro = C'F), il(c?,)cﬂ =), j,(;jr)M = jrkt+1,1 and j,(c(l)lﬁk =

Jk+1,k-

Proof. Construct the diagram E} by setting 7%1) = 1, jg) = idey,, jﬁ) =

idc,,. Then for any k > 2, the upper row of E} is the short exact sequence
e € Exts(Cho, Cr—1,0) from the original p-divisible group (Cho, i(k))kzo. Then
Ej} is just a standard diagram relating 5 and i*ej. For any k > 2, we have
(Jk,k—1) €k = €k—1, therefore, (jr x—1).(i*ex) = i*ex_1 and we obtain A}C. The
upper row of 2} is obtained from the middle column of E} because Coker 'y,il) ~
Cokeri = (Da, j). Similarly, the lower row of €2}, is obtained from E} ,. The
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left square of 2} is commutative by the definition of j,glll_l. The right square

is commutative because Q. relates diagrams E} and E}_;.
Suppose now we are given integers kg > 2 and tg < kg such that the required
diagrams Ejf, Al and Qf have been already constructed for all k < ko with all

relevant ¢ and for k = ky with 1 < ¢ < ¢y. Clearly, all ) and ’y(t) are strict

Yik—1 k
monomorphisms and all j](ctl), jl(ctchl and f,gt) are strict epimorphisms.

Constructing E,tc?)Jrl. Apply (f,gi[)jl)* to E,tc?)

i(to) (to)
ko —1,kq Tkt

EI(CZO) 10— Cro—1,60-1 ————— Co 1o Cn 0
f’izo)ll L idt
0 Dy D Cu 0

Then Ker (Cy,t, — D*) = (Ckoflytoai](gioll ko © fy,ii”_)l). Consider the strict

l(ci) 0...0 7,(;)“) ¢ Choto — Croo and its analogue

. : 2 t
Vho—1,to—1 : Ckg—l,tp—l % Cro—1,0- Because ty # ko, the diagrams Q) and By
give the commutative diagram

monomorphism Y., = 7

Ykoto

Choto Croo
.| N .|
Cro—1,t0 e Cho—1,t0—1 Tromtito? Cro—1,0
z-;f:n,kol <>l

Tkoto
Ck()t() —— Ckoo

. (0 (0 T (¢ ¢ (0
Then pide, , = Z](%)_Lko og,(%),ko_l implies pid¢, , = (Zl(gooll,ko O'Y;io"_)ﬂojl(co?ko—l’
ie pidg,,, factors through Ker(Cky, — D*) and pidp- = 0. Then
Exts, (C11, D2) = 0 implies (f,gi”_)l)*s,(ci") =0, and 6-terms Homg — Extgs exact
sequence gives E,i‘;“:

;(t0) (to)

ko—1,kg kg1
0——= Clhy—1,t9—1 Choto C11 0
(to) (to+1) ,
’Ykoo—l 'Ykoo id
;(to+1D) j(f0+1)
kg —1,kq kol
00— Cro—140 Chro to+1 Ci1 0
. . (tg) (t0+1)
We shall denote the rows of this diagram by £, and £, 7" .
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Constructing A};‘;"’l. Assume that tg + 1 < k9. The above extension s,(ci"ﬂ) is

not uniquely defined by s,(ci"). Show that its choice can be done in such a way
that the diagram AZ‘;H commutes. Consider the short exact sequences from

Q;“O_l. They give rise to the following exact sequences of abelian groups, where
H .= Hom(CH, D2> and F := EXt(Cll, DQ)

(A.12)
(to)
ko —1x
H —— Ext(C11, Cro—1,10) Ext(Ci1,Cro—1,60-1) —= F
. (t0) (to—1) )
id ]kgofl,kU—Z* Jkoo,l’kO,Q* \{zd
(to)
7,600,2*

H—— Ext(C11, Cry—2,10) Ext(C11,Cry—-2,t0-1) —= F

As we saw earlier, the commutativity of Ei‘;ﬂ is equivalent to the following
relation

(A.13) O etV = el

0

From AZ“O it follows that 5,(;0021 = (j,(ctoojlly;cod)*sé?), and from E,tczfll it follows
that (’7;(:00,)2)*5;(;;0:1) = 55;031- Then (A.12) implies that 5&0-’_1) from (A.13)

(to) )*E(toJrl) _ &_goo:rll)_

can be chosen in such a way that (jkrl ko—2) ko This gives the

. to+1
diagram A7

Constructing QZ“OH. The above arguments imply that the left squares of dia-
grams Ei‘;” and E,tc?ﬁ , are related via the following commutative diagram
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(o)

7
ko—1,kg
Cro—1,t0—1 Choto
(to)
Tk, kg—1
;(to—1)
ko—2,kg—1
Cro—1,t0—2 Cro—1,t0—1
(to—1) (to—1) (to) (to+1)
ko—1 Tkg—2 Vg —1 Tko
{8
0—2,kp—1
Clro—2,t0—1 Cro—1,t0
(tg+1)
Tkg kg —1
;(to+1)
ko—2,kg—1
Cro—1,t0 Cro.to+1

From diagrams QZ“ E,i““ and E,i"i1 it follows that the induced map
0 0 0

—1

Cokerv,itoﬁl) — Cokew,if)“ll ~ Dy is isomorphism. This is equivalent to the
existence of diagram QZ‘Lﬂ. The lemma is proved. O
For any k > 1, set Cyi = C’fk),igc_)l k= igk). Then use diagrams E,’j to define

the inductive system (ka),igk))kw. Denote by % the strict monomorphism

715;1) 0...0 fy,(ck) : ka) — O From diagrams Ef, 1 < t < k, obtain the
following commutative diagrams:

i) Jk1

(A.14) 0—— k-1 o) cm 0

’Yle 'YkT ’YlT
(k) (k)

Jk1
0—cY o) — oM 0

It remains only to prove that the inductive system (C’f") , Z'gn))nzo is a p-divisible

group in S. From diagrams E} and A’,fl obtain the following commutative
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diagrams with exact rows

(k) (k)
"k-1,k Ik
(A15) 0——>Ck-1k-1 Crk Cn 0
(k-2 (k—1) (k—1) (k) )
Jk71,1172°7k71 Tk, k—1°Tk id
i}(ek—ll)e jék—l)
2 k-1 —1,1
0——=Ch—2,k—2 Cr—1,k-1 Cn 0

If k£ = 3 then the left vertical morphism of this diagram is equal to jg) o 752) =

jg) and is a strict monomorphism. By induction all morphisms j, ,_; :=

j ](vkk__li o fy,(vk) are strict epimorphisms and are included in the following commu-

tative diagrams

Jk,k—1

(A.16) o) — 5 k-1)

’YkT ’Yle
-/

oW — L o)

For 0 <m < n, set j,, = Jrup1m O+ Odnp_q and iy, =i, 1 ,0...00, .
Composing diagrams (A.15) obtain the following commutative diagram with
exact rows

i i(n)
0 C’fnil) 7’n—l,n C’fn) Ini 051) 0
Jn—1m—1 Trm id
i J(m)
Ym—1,m JIm
0— (™Y ™ —— Y 0
Thus, 4;,_,,, induces the isomorphism Kerj;, ,,,; =~ Kerj;,,. Therefore,
Kerj! = (C\"™™), in—m.n) if we prove that
(A.17) Ker jiy = (CF7 i1

As we noticed earlier, j;; = jo1 0...0 jpg—1. Therefore, diagrams (A.16)

imply that jg1 o y% = 71 0 jj,;. Now diagram (A.14) implies that v; o j,(ﬁ) =
71 0y, and, therefore, j,(ﬁ) = Jjj.; because 71 is monomorphism. Hence equality

. olows from diagram (A. an ;41 )n>0 satisfies the part a) o
A.17) folows from diagram (A.14) and (C\™,i{™), 5 satisfies th f
the definition of p-divisible groups.
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From diagrams (A.14) and (A.16) one can easily obtain for all indices
0 < m < n, the commutativity of the following diagrams

In,n—m tn—m,n

cm) cn—m) —— (n)

./ -7

Jnn—m _ n—m.n
Because 7, is monomorphism, the equality ¢,,—y,n © jn,n—m = p"idg) implies
the equality = p™id This gives the part b) of the definition

-/
n—m,nojn,n—m

CYI) .

of p-divisible groups for (Cfn)7 z‘§”>)n>0. The proposition is proved. O

APPENDIX B. SAGE PROGRAM

This program computes the class number of the field Q(¥/3, (y) and finds the
basis f1, fa,..., fo of the 3-subgroup of units in this field such that for the
normalized 3-adic valuation vs and all 1 < ¢ < 9, the natural numbers a; =
18vs(f; = 1) are prime to 3 and 1 < a1 < ag < --- < ag. The result appears as
the vector af = (a1,aq,...,a9) = (1,2,4,5,7,8,10,13, 16).

sage: L.<b>=NumberField(x"3-3);
sage: R.<t>=L[]
sage: M.<c>=L.extension(t~6+t~3+1);
sage: X.<d>=M.absolute_field();
sage: h=X.class_number();
sage: e=list(X.unit_group().gens())
sage: def p(x):

for i in range(1,3):

if valuation(norm(X(x+2%i-3)),3)!=0:
break
return valuation(norm(X(x+2*i-3)),3)

sage: a=[p(x) for x in el
sage: f=[e.pop(a.index(min(a)))]
sage: while len(e)!=0:
a=[p(x) for x in €]
i0=a.index(min(a))

for j in range(len(f)):
for k in range(5):
s=0
if p(£[j]1~(3"k))>p(e[i0]):
break
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if p(el[i10])==p(£[j1~(3"k)):
s=1
break

if s==1:
for i in range(1,3):
if p(eli0])<p(el[i0]/(£[jI1~(i*3"k))):
e[i0]=e[i0]/(£[j]1~(i*3"k))
break

break
if j+i==len(f) and s==0:
f.append(e.pop(i0))

sage: af=[p(x) for x in f];
sage: print h

sage: print af

1

(1, 2, 4, 5, 7, 8, 10, 13, 16]

REMARK. First 4 lines introduce the field X = Q(+/3, (y); its elements appear
as polynomials in variable d of degree < 17. Then we find the class number of X
and form the array e = (e[1], ..., e[9]) of minimal generators of the group U/U?3,
where U is the group of units in X. Next block gives a standard procedure to
determine for any x € U the maximal natural number p(z) such that x £1 is
divisible precisely by 77(*), where m € X, (7'®) = (3). The remaining part of
the program is based on a standard technique from Linear algebra to rearrange
the given system of generators e into a new system f with required properties.
As a matter of fact, we use that the class number of X is prime to 3 (it equals
1) by allowing k& < 5 on line 21. (Any unit x = 1modz?® is a cube in the
3-completion of X by Hensel’s Lemma and, therefore, is a cube in X.) The
last two lines contain the values of the class number of X and the exponents

(a(f[1); - -, a(£[9)))-
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