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Abstract. Tate duality is a Pontryagin duality between the ith
Galois cohomology group of the absolute Galois group of a local field
with coefficents in a finite module and the (2− i)th cohomology group
of the Tate twist of the Pontryagin dual of the module. Poitou-Tate
duality has a similar formulation, but the duality now takes place
between Galois cohomology groups of a global field with restricted
ramification and compactly-supported cohomology groups. Nekovář
proved analogues of these in which the module in question is a finitely
generated module T over a complete commutative local Noetherian
ring R with a commuting Galois action, or a bounded complex thereof,
and the Pontryagin dual is replaced with the Grothendieck dual T ∗,
which is a bounded complex of the same form. The cochain complexes
computing the Galois cohomology groups of T and T ∗(1) are then
Grothendieck dual to each other in the derived category of finitely
generated R-modules. Given a p-adic Lie extension of the ground
field, we extend these to dualities between Galois cochain complexes
of induced modules of T and T ∗(1) in the derived category of finitely
generated modules over the possibly noncommutative Iwasawa algebra
with R-coefficients.
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1 Introduction

1.1 Duality

In [Nek], Nekovář gave formulations of analogues of Tate and Poitou-Tate dual-
ity for finitely generated modules over a complete commutative local Noetherian
ring R with finite residue field of characteristic a fixed prime p. In the usual
formulation of these dualities, one takes the Pontryagin dual, which does not
in general preserve the property of finite generation. Nekovář takes the dual
with respect to a dualizing complex of Grothendieck so as to have a duality
between bounded complexes of R-modules with finitely generated cohomology
groups. This paper is devoted to a generalization of this result to the setting
of nonabelian p-adic Lie extensions.

Recall that a dualizing complex ωR is a bounded complex ofR-modules with co-
homology finitely generated overR that has the property that for every complex
M of finitely generated R-modules, the Grothendieck dual RHomR(M,ωR) in
the derived category of R-modules D(ModR) has finitely generated cohomol-
ogy, and moreover, the canonical morphism

M −→ RHomR(RHomR(M,ωR), ωR)

is an isomorphism in D(ModR). Such a complex exists and is unique up to
quasi-isomorphism and translation (see [Har1]).

One can choose ωR to be a bounded complex of injectives, in which case the
derived homomorphism complexes are represented by the complexes of homo-
morphisms themselves. If R is regular, then R itself, as a complex concentrated
in degree 0, is a dualizing complex, but R is not in general R-injective. If
R = Zp, for instance, then the complex [Qp → Qp/Zp] concentrated in degrees
0 and 1 provides a complex of injective Zp-modules quasi-isomorphic to Zp.

Let us explain Nekovář’s theorem, and our generalization of it, in the setting
of Poitou-Tate duality. Let F be a global field with characteristic not equal to
p. Let S be a finite set of primes of F that, if F is a number field, contains
all primes over p and any real places, and let GF,S denote the Galois group of
the maximal unramified outside S extension of F . We remark that a finitely
generated R-module has a canonical topology arising from its filtration by
powers of the maximal ideal of R. Let T be a bounded complex in the category
of finitely generated (topological) R-modules with R-linear continuous GF,S-
actions. We use RΓ(GF,S , T ) to denote the object in D(ModR) corresponding
to the complex of continuous GF,S-cochains with coefficients in T , and we
use RΓ(c)(GF,S , T ) to denote the derived object attached to the complex of
continuous compactly supported cochains (using Tate groups for real places in
its definition as a cone: see Section 4.1).

There exists a bounded complex T ∗ of finitely generated R-modules with R-
linear continuous GF,S-actions that represents RHomR(T, ωR) in the derived
category of such modules. Nekovář’s duality theorem is then as follows (see
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Nekovář Duality 623

[Nek, Proposition 5.4.3(ii)]).1

Theorem (Nekovář). We have an isomorphism

RΓ(GF,S , T )
∼
−→ RHomR

(
RΓ(c)(GF,S , T

∗(1)), ωR

)
[−3]

in the derived category of finitely generated R-modules.

In this paper, we consider a generalization of this to the setting of noncom-
mutative Iwasawa theory. Suppose that F∞ is a p-adic Lie extension of F
contained in FS . We denote by Γ the Galois group of the extension F∞/F , and
we let Λ = RJΓK denote the resulting Iwasawa algebra over R. For a finitely
generated R-module T with a continuous R-linear GF,S-action, we define a
finitely generated Λ-module FΓ(T ) with a continuous Λ-linear GF,S-action by

FΓ(T ) = Λι ⊗R T,

where the superscript ι denotes that an element of Γ in Λ acts here on Λ
by right multiplication by its inverse, and where GF,S acts on Λ through the
quotient mapGF,S → Γ by left multiplication and then diagonally on the tensor
product.
The GF,S-cohomology of FΓ(T ) is interesting in that a version of Shapiro’s
lemma provides natural isomorphisms of continuous cohomology groups

Hn(GF,S ,FΓ(T )) ∼= lim
←−
α

Hn(GFα,S , T )

for every n ≥ 0, where the limit is taken over α indexing the finite Galois
extensions Fα of F that are contained in F∞ (cf. [Lim2, Lemma 5.3.1]). That
is, the cohomology groups of FΓ(T ) are the Iwasawa cohomology groups of
the module T itself for the extension F∞/F , and this identification is one of
Λ-modules. We also have the analogous statements for compactly supported
cohomology, as seen in [Lim2, Proposition 5.3.3]. Therefore, we can reduce the
question of finding dualities among Iwasawa cohomology groups of compact
modules to that of obtaining dualities among cohomology groups for GF,S

itself. Note that, however, it is not even a priori clear in this setting that
Hn(GF,S ,FΓ(T )) is a finitely generated Λ-module, let alone that we can find
such a duality of Λ-modules.
The following is our main theorem (cf. Theorem 4.5.1).

Theorem. We have isomorphisms

RΓ(GF,S,FΓ(T )) −→ RHomΛ◦

(
RΓ(c)(GF,S ,FΓ(T

∗)ι(1)),Λ⊗L

R ωR

)
[−3]

RΓ(c)(GF,S ,FΓ(T )) −→ RHomΛ◦

(
RΓ(GF,S ,FΓ(T

∗)ι(1)),Λ⊗L

R ωR

)
[−3]

in the derived category of finitely generated Λ-modules.

1 Actually, Nekovář’s longer treatise is particularly concerned with a generalization of this
duality that takes place between Selmer complexes, which we do not address in this article.
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624 Meng Fai Lim and Romyar T. Sharifi

Nekovář proves the above theorem in the case that Γ is abelian [Nek, Theorem
8.5.6]. In fact, in that case, it is an almost immediate consequence of his above-
mentioned theorem. That is, suppose for instance that Γ ∼= Zr

p for some r ≥ 1.
Then Λ is a complete commutative Noetherian local ring with finite residue field
of characteristic p. Moreover, its dualizing complex is isomorphic to Λ ⊗L

R ωR

in the derived category of Λ-modules [Nek, Lemma 8.4.5.6]. Therefore, the
commutative theory described above applies to Λ, and Nekovář is able to deduce
the result from this. On the other hand, since we are working with nonabelian Γ
and hence noncommutative Λ, we do not know that there exists a (nice enough)
dualizing complex, and so the proof of our main theorem takes a different route.
The idea is a simple one, though the proof is rather involved: after reducing
to the case that R is regular and Zp-flat, we perform an inductive argument,
using the grading on Λ arising from the powers of its augmentation ideal, to
deduce our result from Nekovář’s.

We remark that, in their manuscript on the noncommutative main conjecture,
Fukaya and Kato stated an analogue of our main theorem, with Λ replacing
Λ⊗L

R ωR [FK1, (1.6.12)], which in turn generalized a result of Burns and Flach
[BF, Lemma 12(b)] for a narrower class of rings. The result of Fukaya-Kato
applies to a more general class of (adic) rings Λ than ours and replaces FΓ(T )
and FΓ(T

∗)ι by a bounded complex of Λ[GF,S ]-modules X and its Λ-dual
HomΛ(X,Λ). However, in order to be able to work with the Λ-dual, they
assume that X consists of (finitely generated) projective Λ-modules. In the
case of Iwasawa cohomology that we study, the complex T need not be quasi-
isomorphic to a bounded complex of R[GF,S ]-modules that are projective and
finitely generated over R. Moreover, if R is Gorenstein, then R serves as an
R-dualizing complex, and our result reduces to a duality with respect to Λ
itself, as in the result of Fukaya-Kato. We also note that Vauclair proved a
noncommutative duality theorem for induced modules in the case that R = Zp

and T is Zp-free, via a rather different method [Vau, Theorem 6.4].

1.2 An application

Since applications of our main result are not discussed in the body of this paper,
we end the introduction with an indication of one setting in which our results
naturally apply. Fix N ≥ 1 not divisible by p, and suppose that p ≥ 5. Let
Zp,N denote the inverse limit of the rings Z/NprZ over r ≥ 1. Hida’s ordinary
cuspidal Zp-Hecke algebra h of level Np∞ is a direct product of local rings
that is free of finite rank over the subalgebra Ω = ZpJ1 + pZpK of the algebra
ZpJZ

×
p,N/〈−1〉K of diamond operators in h [Hid, Theorem 3.1]. Hida showed

that the h-module S of Ω-adic cusp forms is Ω-dual to h (see [Oht1, Theorem
2.5.3] for a proof), from which it follows that S is a dualizing complex for h.

The inverse limit

H = lim
←−
r

H1
ét(X1(Np

r)/Q̄,Zp(1))
ord
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of ordinary parts of étale cohomology groups of modular curves is an h[GQ,S ]-
module for the dual action of h, where S is the set of primes dividing Np∞. As
an h-module, Ohta showed in [Oht2] that H is an extension of S by h. Since
h is not always Gorenstein (in Eisenstein components: see [Oht3, Corollary
4.2.13] for conditions), it is not at all clear that H is quasi-isomorphic to a
bounded complex of h[GQ,S ]-modules that are finitely generated and projective
over h, precluding the use of the duality result of Fukaya-Kato. On the other
hand, there is a perfect, h-bilinear pairing H ×H → S(1) which is GQ,S-
equivariant for the action of σ ∈ GQ,S on S via the diamond operator 〈χ(σ)〉,
where χ : GQ,S → Z×

p,N is the cyclotomic character (see [FK2, Section 1.6],
where it is quickly derived from a pairing of Ohta’s [Oht1, Definition 4.1.17]).
Now fix a p-adic Lie extension F∞ of Q that is unramified outside S and con-
tains Q(µNp∞), and set Γ = Gal(F∞/Q). The complex RΓ(c)(GQ,S ,FΓ(H ))
is the subject of the noncommutative Tamagawa number conjecture of Fukaya
and Kato for H (though to be precise, said conjecture is only formulated in
the case that H is h-projective), which is directly related to the noncommu-
tative main conjecture for ordinary Ω-adic cusp forms (see [FK1, Sections 2.3
and 4.2]). It is also perhaps worth remarking that, in the commutative setting,
the first Iwasawa cohomology group H1(GQ,S ,FΓ(H )) contains zeta elements
constructed out of Kato’s Euler system (see [Kat, Section 12] or [FK2, Section
3.2]).
For a finitely generated Λ = hJΓK-module A, let us use A〈χ〉 to denote the
Λ-module that is A as an h-module but for which the original h-linear action
of γ ∈ Γ on A has been twisted by multiplication by the diamond operator
〈χ(γ̃)〉, for any lift γ̃ ∈ GQ,S of γ. Using the pairing on H , our main result
can be seen to yield two interesting isomorphisms in the derived category of
finitely generated modules over, including

RΓ(c)(GQ,S ,FΓ(H ))
∼
−→ RHomΛ◦(RΓ(GQ,S ,FΓ(H )ι),Λ ⊗L

h S)〈χ〉[−3].

Perhaps more concretely, we have a spectral sequence

ExtiΛ◦

(
H3−j(GQ,S ,FΓ(H )ι),Λ⊗h S

)
〈χ〉 =⇒ Hi+j

(c) (GQ,S ,FΓ(H )).

We remark that one has a similar result with X1(Np
r) replaced by Y1(Np

r):
in this case, the pairing on H to S is replaced by a pairing between ordinary
parts of cohomology and compactly supported cohomology groups to ordinary
Ω-adic modular forms. We also note that Fouquet has constructed an analogue
of Ohta’s pairing for towers of Shimura curves attached to indefinite quater-
nion algebras over totally real fields [Fou, Proposition 2.8], providing a related
setting for an application of our main result.

Acknowledgments. The material presented in this article forms a revised
and extended version of the part of the Ph.D. thesis [Lim1] of the first author
that was a collaboration between the two authors. The results of the rest of
the thesis can be found in the article [Lim2]. The first author would like to
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2 Preliminaries

In this section, we lay out some facts regarding modules over profinite rings that
we shall require later in the paper. Elsewhere in the paper, we use some of the
standard terminology and conventions regarding complexes, cones, shifts, total
complexes of homomorphisms and tensor products, and derived categories, as
can be found in [Nek], or in [Lim2] off of which this paper builds. In particular,
all sign conventions will be as in the latter two papers. For further background
on derived categories, we suggest the excellent book [Wei], as well as the more
advanced text [KS].

2.1 Tensor products and homomorphism groups

In this subsection, R is a commutative ring. By an R-algebra, we will mean
a ring with a given homomorphism from R to its center. In this section, we
construct derived bifunctors of homomorphism groups and tensor products for
bimodules over R-algebras and study a few isomorphisms that result from these
constructions.
We use Λ◦ to denote the opposite ring to an R-algebra Λ. Given two R-algebras
Λ and Σ, we are interested in a subclass of the class of Λ-Σ-bimodules, namely,
the class of Λ-Σ-bimodules with the extra property that the left R-action coin-
cides with the right R-action. We can (and shall) identify the category of such
Λ-Σ-bimodules with the category of Λ ⊗R Σ◦-modules, and there are natural
exact forgetful functors

resΛ : ModΛ⊗RΣ◦ −→ ModΛ and resΣ◦ : ModΛ⊗RΣ◦ −→ ModΣ◦ ,

which extend to exact functors on the derived categories. One observes that the
categories ModΛ⊗RR◦ and ModΛ are equivalent, as are ModR⊗RΣ◦ and ModΣ◦ .
We have following lemma, which extends [Yek, Lemma 2.1].

Lemma 2.1.1.

(a) If Σ is a projective (resp., flat) R-algebra, then resΛ preserves projective
(resp., flat) modules. Similarly, if Λ is a projective (resp., flat) R-algebra,
then resΣ◦ preserves projective (resp., flat) modules.

(b) If Σ is a flat R-algebra, then resΛ preserves injectives. Similarly, if Λ is
a flat R-algebra, then resΣ◦ preserves injectives.
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Nekovář Duality 627

Proof. (a) We prove the statements of the first sentence, those of the second
being a consequence. Suppose that Σ is a projectiveR-algebra. Since projective
modules are the summands of free modules, it suffices to show that Λ ⊗R Σ◦

is a projective Λ-module. Since Σ is a central R-algebra, we have Σ ∼= Σ◦ as
R-modules. Therefore, we have Σ◦ ⊕ P ∼= L for some projective R-module P
and free R-module L. Then Λ⊗R Σ◦ is a direct summand of Λ⊗R L, which is
a free Λ-module. Hence, Λ⊗R Σ◦ is a projective Λ-module.

Now suppose that Σ is flat over R. Since flat modules are direct limits of
finitely generated free modules (see [Lam, Theorem 4.34]) and tensor products
preserve direct limits, it suffices to show that Λ⊗RΣ◦ is a flat Λ-algebra. Since
Σ is flat over R, we have that Σ is a direct limit of finitely generated free R-
modules, which implies that Λ⊗R Σ◦ is a direct limit of finitely generated free
Λ-modules.

(b) We shall prove this for resΛ, the case of resΣ◦ being a consequence. The
functor from ModΛ to ModΛ⊗RΣ◦ sending M to M ⊗R Σ◦ is exact by our
assumption and is left adjoint to the functor resΛ. The conclusion then follows
from [Wei, Prop. 2.3.10].

Let us briefly introduce the notions of q-projective and q-injective complexes
of Λ-modules and several facts regarding them arising from the work of Spal-
tenstein, as can be found in [Spa], [Kel], [Lip, Section 2.3], and [KS, Chapter
14]. A complex P of Λ-modules is called q-projective if for every map g : P → B
and quasi-isomorphism s : A → B of complexes of Λ-modules, there exists a
map f : P → A of complexes of Λ-modules such that g and s ◦ f are homotopy
equivalent. We remark that P is q-projective if and only if it is homotopy
equivalent to a direct limit of bounded above complexes Pn of projective Λ-
modules via maps ιn : Pn → Pn+1 that are split injective in each degree with
quotients Pn+1/ιn(Pn) having zero differentials. In particular, bounded above
complexes of projectives are q-projective. If A is a complex of Λ-modules, then
there exists a quasi-isomorphism P → A with P q-projective.

We also have the dual notion of q-injective complexes. A complex I of Λ-
modules is q-injective if for every map f : A→ I and quasi-isomorphism s : A→
B of complexes of Λ-modules, there exists a map g : B → I such that f and g◦s
are homotopy equivalent. A complex I of Λ-modules is q-injective if and only
if it is homotopy equivalent to an inverse limit of bounded below complexes In
of injective Λ-modules via maps πn : In+1 → In that are split surjective in each
degree with kernels kerπn having zero differentials. In particular, bounded
below complexes of injective Λ-modules are q-injective. If A is a complex of
Λ-modules, then there exists a quasi-isomorphism A→ I with I q-injective.

In addition to Λ and Σ, we now let Ω be an R-algebra. If A is a Λ ⊗R Ω◦-
module and B is a Λ ⊗R Σ◦-module, we give HomΛ(A,B) the structure of an
Ω⊗R Σ◦-module via the left Ω and right Σ-actions

(ω · f)(a) = f(aω) and (f · σ)(a) = f(a)σ
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for f ∈ HomΛ(A,B), a ∈ A, ω ∈ Ω, and σ ∈ Σ.
Moreover, if A is a complex of Λ⊗RΩ◦-modules and B is a complex of Λ⊗RΣ◦-
modules, we define a complex HomΛ(A,B) of Ω⊗R Σ◦-modules by

Homn
Λ(A,B) =

∏

i∈Z

HomΛ(A
i, Bi+n),

with the usual differentials, as in [Lim2, Section 2].

Proposition 2.1.2. Let A be a complex of Λ ⊗R Ω◦-modules, and let B be
a complex of Λ ⊗R Σ◦-modules. If Ω is a projective R-algebra or Σ is a flat
R-algebra, then we have a derived bifunctor

RHomΛ(−,−) : D(ModΛ⊗RΩ◦)◦ ×D(ModΛ⊗RΣ◦) −→ D(ModΩ⊗RΣ◦),

and HomΛ(A,B) represents RHomΛ(A,B) if A is q-projective as a complex of
Λ-modules and Ω is R-projective or B is q-injective as a complex of Λ-modules
and Σ is R-flat.

Proof. Let us first assume that Ω is a projectiveR-algebra. Since every complex
of Λ⊗R Ω◦-modules is quasi-isomorphic to a q-projective complex of Λ⊗R Ω◦-
modules, we have a derived functor

RHomΛ(−, B) : D(ModΛ⊗RΩ◦)◦ −→ D(ModΩ⊗RΣ◦)

(see [Lip, Corollary 2.3.2.3]). Suppose that f : B → B′ is a quasi-isomorphism
of complexes of Λ ⊗R Σ◦-modules. Let ε : P → A be a quasi-isomorphism of
complexes of Λ ⊗R Ω◦-modules, where P is q-projective. Then RHomΛ(P,B)
(resp., RHomΛ(P,B

′)) is represented by HomΛ(P,B) (resp., HomΛ(P,B
′)).

Applying Lemma 2.1.1(a), we see that P is also a q-projective complex of
Λ-modules, so by [Lip, Proposition 2.3.8], the induced map

f∗ : HomΛ(P,B) −→ HomΛ(P,B
′)

is a quasi-isomorphism of complexes of abelian groups. Since f∗ is a morphism
of complexes of Ω⊗RΣ◦-modules, it is a quasi-isomorphism of such complexes.
Hence, f induces isomorphisms

RHomΛ(A,B) −→ RHomΛ(A,B
′),

proving the existence of the derived bifunctor. Moreover, if A is q-projective
as a complex of Λ-modules, then

ε∗ : HomΛ(A,B) −→ HomΛ(P,B)

is a quasi-isomorphism of complexes of Σ◦-modules, hence of Ω⊗RΣ◦-modules
as well. Thus, HomΛ(A,B) represents RHomΛ(A,B), as desired.
If Σ is R-flat, the argument for the existence of the derived bifunctor and its
computation by HomΛ(A,B) in the case that B is q-injective as a complex of
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Λ-modules is the direct analogue of the above argument, employing Lemma
2.1.1(b). To see that the resulting derived functor agrees with that constructed
above in the case that both Ω is R-projective and Σ is R-flat, consider a quasi-
isomorphism ε : P → A as above and a quasi-isomorphism δ : B → I with I a
q-injective complex of Λ⊗R Σ◦-modules. As we have quasi-isomorphisms

HomΛ(P,B)
δ∗

// HomΛ(P, I) HomΛ(A, I)
ε∗

oo

of complexes of Ω⊗R Σ◦-modules, the derived functors coincide.

Note that one always has a map HomΛ(A,B)→ RHomΛ(A,B) (canonical up
to isomorphism in the derived category), induced either by a quasi-isomorphism
P → A with P q-projective or a quasi-isomorphism B → I with I q-injective.

Corollary 2.1.3. If Ω is a projective R-algebra, then we have a commutative
diagram

D(ModΛ⊗RΩ◦)◦ ×D(ModΛ⊗RΣ◦)

resΛ ×id

��

RHomΛ(−,−)
// D(ModΩ⊗RΣ◦)

resΣ◦

��

D(ModΛ)
◦ ×D(ModΛ⊗RΣ◦)

RHomΛ(−,−)
// D(ModΣ◦).

In the case that Σ is a flat R-algebra, we have a commutative diagram

D(ModΛ⊗RΩ◦)◦ ×D(ModΛ⊗RΣ◦)

id×resΛ

��

RHomΛ(−,−)
// D(ModΩ⊗RΣ◦)

resΩ

��

D(ModΛ⊗RΩ◦)◦ ×D(ModΛ)
RHomΛ(−,−)

// D(ModΩ).

If A is a complex of Ω⊗RΛ◦-modules and B is a complex of Λ⊗RΣ◦-modules,
we define a complex A⊗Λ B of Ω⊗R Σ◦-modules by

(A⊗Λ B)n =
⊕

i∈Z

Ai ⊗Λ B
n−i,

again with the usual differentials, as in [Lim2, Section 2].
We also have a notion of a q-flat complex of Λ◦-modules (see [Lip, Section
2.5] and [Spa, Section 5] in the case of commutative rings, the proofs being
identical); that is, a complex of Λ◦-modules A is said to be q-flat if for every
quasi-isomorphism B → C of complexes of Λ-modules, the resulting map A⊗Λ

B → A⊗ΛC is also a quasi-isomorphism. In particular, q-projective complexes
of Λ◦-modules are q-flat, any bounded above complex of flat Λ◦-modules is q-
flat, and any filtered direct limit of q-flat complexes is q-flat. As in the case of
homomorphism complexes, the total tensor product induces derived bifunctors
as follows. We omit the analogous proof.
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Proposition 2.1.4. Let A and B be complexes of Ω⊗R Λ◦-modules and Λ⊗R

Σ◦-modules, respectively. If either Ω or Σ is a flat R-algebra, then we have a
derived bifunctor

−⊗L

Λ − : D(ModΩ⊗RΛ◦)×D(ModΛ⊗RΣ◦) −→ D(ModΩ⊗RΣ◦),

and A⊗Λ B represents A ⊗L

Λ B if A is q-flat as a complex of Λ◦-modules and
Ω is R-flat or if B is q-flat as a complex of Λ-modules and Σ is R-flat.

Proposition 2.1.4 has the following direct corollary.

Corollary 2.1.5. If Ω is a flat R-algebra, then we have a commutative dia-
gram

D(ModΩ⊗RΛ◦)×D(ModΛ⊗RΣ◦)

resΛ◦ ×id

��

−⊗L

Λ −
// D(ModΩ⊗RΣ◦)

resΣ◦

��

D(ModΛ◦)×D(ModΛ⊗RΣ◦)
−⊗L

Λ −
// D(ModΣ◦),

and if Σ is a flat R-algebra, we have a commutative diagram

D(ModΩ⊗RΛ◦)×D(ModΛ⊗RΣ◦)

id×resΛ

��

−⊗L

Λ −
// D(ModΩ⊗RΣ◦)

resΩ

��

D(ModΩ⊗RΛ◦)×D(ModΛ)
−⊗L

Λ −
// D(ModΩ).

We end this section with some general lemmas regarding the passing of tensor
products through homomorphism groups and the resulting isomorphisms in the
derived categories. Let us use m̄ to denote the degree of an element m of a
term of a complex M of modules over a ring. We fix a fourth R-algebra Ξ.

Lemma 2.1.6. Suppose that Ξ is a flat R-algebra and Σ is a projective R-
algebra. Let A be a complex of Ω⊗RΛ◦-modules, let B be a complex of Λ⊗RΣ◦-
modules, and let C be a complex of Ω⊗RΞ◦-modules. Fix a quasi-isomorphism
Q → A of complexes of Ω ⊗R Λ◦-modules with Q q-flat over Λ◦, a quasi-
isomorphism P → B of complexes of Λ⊗RΣ◦-modules with P q-projective over
Λ, and a quasi-isomorphism C → I of complexes of Ω ⊗R Ξ◦-modules with I
q-injective over Ω. Then the adjunction isomorphism

HomΩ(A⊗Λ P, I) −→ HomΛ(P,HomΩ(A, I))

f 7→ (p 7→ (−1)āp̄f(a⊗ p))

induces an isomorphism

RHomΩ(A⊗
L

Λ B,C)
∼
−→ RHomΛ(B,RHomΩ(A,C))

in D(ModΣ⊗RΞ◦), as does the adjunction isomorphism

HomΩ(Q ⊗Λ B, I) −→ HomΛ(B,HomΩ(Q, I)).
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Proof. By Propositions 2.1.2 and 2.1.4, the complex HomΩ(A ⊗Λ P, I) rep-
resents RHomΩ(A ⊗

L

Λ B,C), and the complex HomΛ(P,HomΩ(A, I)) repre-
sents RHomΛ(B,RHomΩ(A,C)). Therefore, we are reduced for the first part
to showing that the adjunction map is an isomorphism of complexes, and this
is standard (see [Lim2, Lemma 2.2]). The second part follows easily from the
first part and the commutative diagram

HomΩ(Q ⊗Λ B, I)
∼

//

��

HomΛ(B,HomΩ(Q, I))

��

HomΩ(Q ⊗Λ P, I)
∼

// HomΛ(P,HomΩ(Q, I)),

in that the left-hand vertical map is a quasi-isomorphism.

We consider the next isomorphism first on the level of complexes.

Lemma 2.1.7. Let A be a bounded complex of Ω⊗RΣ◦-modules that are flat as
Σ◦-modules, let B be a complex of Ξ⊗R Λ◦-modules that are finitely presented
as Λ◦-modules, and let C be a complex of Σ⊗R Λ◦-modules. Suppose also that
either the terms of A are finitely presented as Σ◦-modules or at least one of B
and C is bounded above and at least one is bounded below. Then the map

A⊗Σ HomΛ◦(B,C) −→ HomΛ◦(B,A⊗Σ C)

a⊗ f 7→
(
b 7→ a⊗ f(b)

)

is an isomorphism of complexes of Ω⊗R Ξ◦-modules.

Proof. That the stated map is a map of complexes is an easy check of the
actions and signs. To see that it is an isomorphism, consider first the case that
A, B, and C are concentrated in degree 0 and take a presentation

F1 −→ F2 −→ B −→ 0

with F1 and F2 finitely generated free Λ◦-modules. Then the two rightmost
vertical arrows in the commutative diagram with exact (noting the Σ◦-flatness
of A) rows

0 // A⊗Σ HomΛ◦(B,C)

��

// A⊗Σ HomΛ◦(F2, C)

��

// A⊗Σ HomΛ◦(F1, C)

��

0 // HomΛ◦(B,A ⊗Σ C) // HomΛ◦(F2, A⊗Σ C) // HomΛ◦(F1, A⊗Σ C)

are isomorphisms of Ω-modules by universal property of the direct sum and
the commutativity of direct sums and tensor products, so the other is as well.
Since the latter map is a morphism of complexes of Ω⊗R Ξ◦-modules, we have
the result in the case of modules.
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In the general setting, we have that

Homn
Λ◦(B,A⊗Σ C) =

∏

j∈Z

HomΛ◦

(
Bj ,

⊕

i∈Z

Ai ⊗Σ C
n−i+j

)
.

Since Bj is finitely presented over Λ◦, the argument given above implies that
the latter group is naturally isomorphic to

∏

j∈Z

⊕

i∈Z

Ai ⊗Σ HomΛ◦(Bj , Cn−i+j).

On the other hand, we have

(A⊗Σ HomΛ◦(B,C))n =
⊕

i∈Z

Ai ⊗Σ

(∏

j∈Z

HomΛ◦(Bj , Cn−i+j)
)
.

If the terms of A are finitely presented over Σ◦, then we can use a finite pre-
sentation of Ai to see that the latter term is naturally isomorphic to

⊕

i∈Z

∏

j∈Z

Ai ⊗Σ HomΛ◦(Bj , Cn−i+j),

and the boundedness of A allows us to commute the direct product and direct
sum. Finally, if at least one of B and C is bounded above and at least one
is bounded below, then the products over j ∈ Z involve only finitely many
nonzero terms (again using that A is bounded), and the result follows as direct
sums commute with tensor products and each other.

In the derived category, we have the following generalization of [Ven, Proposi-
tion 6.1].

Lemma 2.1.8. Suppose that Ω is a flat R-algebra and Ξ is a projective R-
algebra. Let A be a bounded above complex of Ω ⊗R Σ◦-modules, let B be a
complex of Ξ ⊗R Λ◦-modules, and let C be a bounded below complex of Σ ⊗R

Λ◦-modules. Suppose that there exists a quasi-isomorphism Q → A of Ω ⊗R

Σ◦-modules, where Q is bounded and has terms that are flat as Σ◦-modules.
Suppose also that there is a quasi-isomorphism P → B of complexes of Ξ⊗RΛ

◦-
modules, where P is q-projective as a complex of Λ◦-modules with terms that
are finitely presented over Λ◦. We assume also that either C is bounded, P is
bounded above, or the terms of Q are finitely presented as Σ◦-modules. Then
the map

Q⊗Σ HomΛ◦(P,C) −→ HomΛ◦(P,Q ⊗Σ C)

gives rise to an isomorphism

A⊗L

Σ RHomΛ◦(B,C)
∼
−→ RHomΛ◦(B,A⊗L

Σ C)

in D(ModΩ⊗RΞ◦).
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Proof. By Propositions 2.1.2 and 2.1.4, the complex Q ⊗Σ HomΛ◦(P,C) rep-
resents A ⊗L

Σ RHomΛ◦(B,C) and the complex HomΛ◦(P,Q ⊗Σ C) represents
RHomΛ◦(B,A ⊗L

Σ C). That the stated map is an isomorphism follows from
Lemma 2.1.7.

Remark 2.1.9. In this article, we need only compute derived tensor products
in the case that at least one of the complexes is bounded above and derived ho-
momorphism complexes in the case that the target complex is bounded below.
However, in Section 4.5, we will nevertheless be forced to represent derived
homomorphism complexes using q-projective resolutions in an unbounded first
variable. Hence, we have given a general treatment.

2.2 Modules over group rings

In this subsection, we preserve the notation of Section 2.1, and in addition,
let G be a group. We begin by extending the notions of derived bifunctors of
homorphism groups and tensor products to incorporate an additional action of
G.
If A is a complex of Λ[G]-modules and B is a complex of (Λ⊗RΣ◦)[G]-modules,
we give HomΛ(A,B) the structure of a complex of Σ◦[G]-modules via the stan-
dard G-action

(g · f)(a) = g · f(g−1a)

for g ∈ G, a ∈ A, and f ∈ HomΛ(A,B). The following is then a slight
weakening of the natural analogue of Proposition 2.1.2, written in condensed
form.

Proposition 2.2.1. There is a derived bifunctor

RHomΛ(−,−) : D(ModΛ[G])
◦ ×D(ModΛ⊗RΣ◦[G]) −→ D(ModΣ◦[G]).

Moreover, RHomΛ(A,B) can be represented by HomΛ(A,B) if A is q-projective
as a complex of Λ-modules or, if Σ is R-flat, B is q-injective as a complex of
Λ-modules.

Proof. Proposition 2.1.2 (with Ω replaced by R[G]◦ and Σ replaced by Σ◦[G])
implies the existence of derived bifunctors with the desired properties that take
values in the category D(ModR[G]◦⊗RΣ◦[G]). There is a natural exact functor

ModR[G]◦⊗RΣ◦[G] −→ ModΣ◦[G]

taking M to the same Σ◦-module with new G-action

g ·m = (g−1 ⊗ g) ·m

for g ∈ G andm ∈M . This in turn induces a functor on derived categories, and
composition of the above derived functor with this functor yields the result.
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Next, if A is a complex of (Ω⊗R Λ◦)[G]-modules and B is a complex of (Λ⊗R

Σ◦)[G]-modules, we give A ⊗Λ B the structure of a complex of (Ω⊗R Σ◦)[G]-
modules via the G-action defined by g(a ⊗ b) = ga ⊗ gb for a ∈ A, b ∈ B,
and g ∈ G. We state a very slight weakening (for brevity) of the analogue of
Proposition 2.1.4.

Proposition 2.2.2. If Ω or Σ is a flat R-algebra, then we have a derived
bifunctor

−⊗L

Λ − : D(ModΩ⊗RΛ◦[G])×D(ModΛ⊗RΣ◦[G]) −→ D(ModΩ⊗RΣ◦[G]).

Moreover, A ⊗Λ B represents A ⊗L

Λ B if either Ω is R-flat and A is a q-flat
as a complex of Λ◦-modules or Σ is R-flat and B is q-flat as a complex of
Λ-modules.

Proof. Proposition 2.1.4 with Ω replaced by Ω[G] and Σ◦ replaced by Σ◦[G]
yields the existence of a derived bifunctor

−⊗L

Λ − : D(ModΩ⊗RΛ◦[G])×D(ModΛ⊗RΣ◦[G]) −→ D(ModΩ[G]⊗RΣ◦[G])

which has the desired properties. There is a natural exact functor

ModΩ[G]⊗RΣ◦[G] −→ Mod(Ω⊗RΣ◦)[G]

that takes an module M to the same Ω⊗R Σ◦-module with new G-action

g ·m = (g ⊗ g) ·m

for g ∈ G and m ∈ M , and the desired bifunctor is the resulting composition
of derived functors.

Suppose now that Λ is an R-algebra and that we are given a homomorphism
χ : G → AutΛ◦(Λ), allowing us to endow Λ with the structure of a Λ◦[G]-
module. We denote the resulting module by χΛ. (If χ is trivial, then we
continue to write Λ for χΛ.) We also have a map χ−1 : G → AutΛ(Λ) defined
by χ−1(g)(λ) = λ · χ(g−1)(1) for g ∈ G and λ ∈ Λ, so the resulting object Λχ

is a Λ[G]-module. The relationship between χΛ and Λχ can be expressed by
the evaluation-at-1 maps

HomΛ(Λχ,Λ) −→ χΛ and HomΛ◦(χΛ,Λ) −→ Λχ,

which are isomorphisms of Λ◦[G] and Λ[G]-modules, respectively.

Lemma 2.2.3. Suppose that Λ is a flat R-algebra, and let χ : G→ AutΛ◦(Λ) be
a homomorphism. For any bounded above complex A of R[G]-modules that are
finitely presented over R and any bounded below complex B of R-modules, the
two maps

θ : χΛ⊗R HomR(A,B) −→ HomΛ(Λχ ⊗R A,Λ⊗R B)

θ′ : Λχ ⊗R HomR(A,B) −→ HomΛ◦(χΛ⊗R A,Λ⊗R B)
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defined by θ(λ ⊗ f)(µ ⊗ x) = µλ ⊗ f(x) and θ′(λ ⊗ f)(µ ⊗ x) = λµ ⊗ f(x)
are isomorphisms of complexes of Λ◦[G]-modules and of complexes of Λ[G]-
modules, respectively.

Proof. We focus on the case of θ, as the other case follows from it. Since χΛ is
R-flat, Lemma 2.1.7 (with Ω = Λ◦[G] and Ξ = R[G]) implies that the natural
map

χΛ⊗R HomR(A,B)
∼
−→ HomR(A, χΛ⊗R B)

is an isomorphism of complexes of Λ◦[G] ⊗R R[G]-modules if we take the ac-
tions of G independently, and hence of Λ◦[G]-modules if we take the G-actions
prescribed earlier in this subsection. The inverse of the isomorphism provided
by the evaluation map provides the first of the isomorphisms of complexes of
Λ◦[G]-modules

χΛ⊗R B
∼
−→ HomΛ(Λχ,Λ)⊗R B

∼
−→ HomΛ(Λχ,Λ⊗R B),

the canonical second map being an isomorphism as Λχ is free of rank 1 over Λ.
We therefore have an isomorphism

HomR(A, χΛ⊗R B)
∼
−→ HomR(A,HomΛ(Λχ,Λ⊗R B)).

Finally, the inverse of the adjoint morphism is an isomorphism

HomR(A,HomΛ(Λχ,Λ⊗R B))
∼
−→ HomΛ(Λχ ⊗R A,Λ⊗R B)

of complexes of Λ◦[G]-modules, and the resulting composite of three isomor-
phisms is easily computed to be θ.

2.3 Projective modules over a profinite ring

Let Λ be a profinite ring, and fix a directed fundamental system I of open neigh-
borhoods of zero consisting of two-sided ideals of Λ. We say that a topological
Λ-module M is endowed with the I-adic topology if the collection {AM}A∈I

forms a fundamental system of neighborhoods of zero. It was shown in [Lim2,
Section 3.1] that any finitely generated compact (Hausdorff) Λ-module nec-
essarily has the I-adic topology, and, moreover, any homomorphism between
such modules is necessarily continuous.
In this subsection, we recall several facts about projective Λ-modules that will
be of use to us. We denote the abelian category of compact Λ-modules by CΛ.
The free profinite Λ-module on a set X is canonically isomorphic to the topo-
logical direct product of one copy of Λ for each element of X [Wil, Proposition
7.4.1], and a profinite Λ-module P is projective if and only if it is continu-
ously isomorphic to a direct summand of the free profinite module on a set
of generators of P [Wil, Proposition 7.4.7]. In particular, the category CΛ has
enough projectives. Any projective object in CΛ that is finitely generated over
Λ is a projective Λ-module, and conversely, any finitely generated projective
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Λ-module endowed with the I-adic topology is a projective object in CΛ [Lim2,
Proposition 3.1.8].
Recall that the projective dimension of an abstract Λ-module M is the mini-
mum integer n (if it exists) such that there is a resolution of M by projective
Λ-modules

0 −→ P−n −→ · · · −→ P−1 −→ P 0 −→M −→ 0.

The topological projective dimension of a compact Λ-module is defined simi-
larly, replacing projective Λ-modules by projective objects in CΛ.
For the remainder of the subsection, we suppose that Λ is left Noetherian. Note
that any projective resolution P of a finitely generated Λ-module M is quasi-
isomorphic to a projective resolution Q of M by finitely generated Λ-modules
via a map Q→ P compatible with the augmentations to M . In particular, the
projective dimension ofM is the length of its shortest resolution by projectives
in the category of finitely generated Λ-modules. It follows that the notions of
projective dimension and topological projective dimension coincide on finitely
generated (compact) Λ-modules.
In general, if C is a category with objects that are Λ-modules, we will use
CΛ−ft to denote the full subcategory of objects that are finitely generated (i.e.,
of finite type) over Λ. Since ModΛ−ft

Λ has enough projectives, the equivalent
category CΛ−ft

Λ also has enough projectives. Denote by D−
Λ−ft(ModΛ) the full

subcategory of the bounded above derived category D−(ModΛ) which has as
its objects those bounded above complexes X of Λ-modules for which all of the
Hi(X) are finitely generated Λ-modules. The following standard lemma tells
us that any such complex is quasi-isomorphic to a complex of finitely generated
modules. (See [Nek, Proposition 3.2.6] for an analogous statement, which has
a similar proof.)

Lemma 2.3.1. Let Ω be a left Noetherian ring. Every bounded above complex
X of Ω-modules for which every Hi(X) is a finitely generated Ω-module has a
quasi-isomorphic subcomplex of finitely generated Ω-modules.

In sum, we have equivalences of categories

D−(CΛ−ft
Λ )

∼
−→ D−(ModΛ−ft

Λ )
∼
−→ D−

Λ−ft(ModΛ),

the first being induced by the forgetful functor and the second by the inclusion
of categories ModΛ−ft

Λ →֒ ModΛ. We use these equivalences to identify these
categories with each other.

2.4 Completed tensor products

In this subsection, we review some basic facts about completed tensor products
and briefly study their derived functors. Let R be a commutative profinite ring,
and let Λ, Ω, and Σ be profinite R-algebras, by which we shall mean that they
are profinite and the maps from R to their centers are continuous.
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Let I (resp., J ) denote a directed fundamental system of open neighborhoods
of zero consisting of two-sided ideals of Λ (resp., Ω). We then define a completed
tensor product algebra by

Ω ⊗̂R Λ◦ = lim
←−

A∈I, B∈J

Ω/B⊗R (Λ/A)◦.

This is clearly a profinite R-algebra.
We shall denote the category of compact Ω ⊗̂R Λ◦-modules by CΩ−Λ. Let M
be an object of CΩ−Λ, and let N be an object of CΛ−Σ. By [RZ, Lemma
5.1.1(a)], we have that the set of open, finite index Ω ⊗̂R Λ◦-submodules (resp.,
Λ ⊗̂R Σ◦-submodules) of M (resp., N) forms a basis of neighborhoods of zero
on M (resp., N). We define the completed tensor product to be the compact
Ω ⊗̂R Σ◦-module

M ⊗̂ΛN = lim
←−

M ′,N ′

M/M ′ ⊗Λ N/N
′,

where M ′ and N ′ run through the respective bases for M and N , with the
topology defined by the inverse limit. The completed tensor product is asso-
ciative and commutative (i.e., M ⊗̂ΛN ∼= N ⊗̂Λ◦ M) in the same sense as the
usual tensor product.
Note that the canonical Λ-balanced map

t : M ×N −→M ⊗̂ΛN

induces a homomorphism

M ⊗Λ N −→M ⊗̂ΛN

of Ω ⊗R Σ◦-modules that has dense image. The completed tensor product of
M and N then satisfies the following universal property (see [RZ, Section 5.5]
in the case that Ω = Σ = R).

Lemma 2.4.1. For any compact Ω ⊗̂Λ Σ◦-module L and any continuous, Λ-
balanced, left Ω-linear and right Σ-linear map f : M×N → L, there is a unique
continuous map f̂ : M ⊗̂ΛN → L of Ω ⊗̂ΛΣ◦-modules such that f̂ ◦ t = f .

It follows that, in defining the completed tensor product, it suffices to
run through a basis of neighborhoods of zero consisting of open Ω ⊗̂R Λ◦-
submodules of M and a basis of neighborhoods of zero consisting of open
Λ ⊗̂R Σ◦-submodules of N .
The following is also standard.

Lemma 2.4.2. Let M and N be objects of CΩ−Λ and CΛ−Σ, respectively.

(a) Suppose that M = lim
←−

Mα and N = lim
←−

Nβ, where each Mα (resp., Nβ)

is a compact Ω ⊗̂R Λ◦-module (resp., compact Λ ⊗̂R Σ◦-module). Then
there is an isomorphism

M ⊗̂ΛN ∼= lim
←−
α,β

Mα ⊗̂ΛNβ

of compact Ω ⊗̂R Σ◦-modules.
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(b) The canonical map M ⊗Λ N → M ⊗̂ΛN is an isomorphism if either
M is finitely generated as a Λ◦-module or N is finitely generated as a
Λ-module.

(c) The functor

M ⊗̂Λ− : CΛ−Σ −→ CΩ−Σ

is right exact.

The next lemma describes connections between projective objects in different
categories of compact modules and flat objects in categories of abstract mod-
ules. A ring is said to be left (resp., right) coherent if all its finitely generated
left (resp., right) ideals are finitely presented.

Lemma 2.4.3.

(a) If Λ is left (resp., right) coherent, then every projective object in CΛ◦

(resp., CΛ) is flat with respect to the usual left (resp., right) tensor product
over Λ.

(b) If Ω (resp., Λ) is a projective object of CR, then every projective object in
CΩ−Λ is a projective object in CΛ◦ (resp., CΩ).

Proof. (a) Since every projective object in CΛ◦ is continuously isomorphic to a
direct summand of a direct product of copies of Λ◦, it suffices to show that any
direct product of copies of Λ is flat as an abstract Λ◦-module. By a theorem
of Chase (cf. [Lam, Theorem 4.47]), this is equivalent to the fact that Λ is left
coherent.

(b) Suppose that Ω is projective in CR, so Ω is continuously isomorphic to a
direct summand of a direct product of copies of R. Lemma 2.4.2(a) then tells
us that Ω ⊗̂R Λ◦ is topologically a direct summand of a direct product of copies
of Λ◦, hence is projective.

Let G be a profinite group. We use CΛ,G to denote the category of compact
Λ-modules with a continuous commuting action of G, the morphisms being
continuous homomorphisms of Λ[G]-modules. Note the following.

Remark 2.4.4. The category CΛ,G is equivalent to the category CΛJGK, where
ΛJGK is given the profinite topology defined by

ΛJGK ∼= lim
←−
A∈I

lim
←−
N

(Λ/A)[G/N ],

where N runs over the open normal subgroups of G.

Consequently, CΛ,G is an abelian category with enough projectives, and ev-
ery element of CΛ,G is an inverse limit of finite Λ[G]-quotients (see also [Lim2,
Section 3.2]). Moreover, ΛJGK is a projective object of CΛ by [RZ, Lemma
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5.3.5(d)], so the forgetful functor CΛ,G → CΛ takes projective objects to pro-
jective objects. To shorten notation, we use CΩ−Λ,G to denote the category
CΩ ⊗̂R Λ◦,G.
We remark that if M and N are, respectively, objects of CΩ−Λ,G and CΛ−Σ,G,
possibly with trivial G-actions, we may giveM ⊗̂ΛN the structure of an object
of CΩ−Σ,G via the diagonal action of G. That is, the G-action is defined by
choosing bases of open (Ω ⊗̂R Λ◦)[G]-submodules of M (resp., (Λ ⊗̂R Σ◦)[G]-
submodules of N) and taking the inverse limits of the tensor products of the
finite quotients.

Remark 2.4.5. The analogous result to Lemma 2.4.2 holds, as a consequence
of said lemma, if we take M and N to be objects of CΩ−Λ,G and CΛ−Σ,G,
respectively. (That is, in part (a), one must take Mα and Nβ to be objects
of these categories to attain an isomorphism in CΩ−Σ,G, and in part (c), the
functor is now a functor from CΛ−Σ,G to CΩ−Σ,G.)

Note that we may form completed tensor products of bounded above complexes,
or of a bounded complex with any complex, as with the usual tensor products.

Proposition 2.4.6. If Ω is projective in CR, then the completed tensor product
induces the following derived bifunctor

−⊗̂L

Λ− : D−(CΩ−Λ,G)×D−(CΛ−Σ,G) −→ D−(CΩ−Σ,G),

where A ⊗̂ΛB represents A ⊗̂L

ΛB if the terms of A are projective as objects in
CΛ◦ . Furthermore, there is a commutative diagram

D−(CΩ−Λ,G)×D−(CΛ−Σ,G)

��

−⊗̂L

Λ −
// D−(CΩ−Σ,G)

��

D−(CΛ◦,G)×D−(CΛ−Σ,G)
−⊗̂L

Λ −
// D−(CΣ◦,G)

in which the vertical arrows are induced by forgetful functors, and if Λ is left
Noetherian, there is a commutative diagram

D−(CΩ−Λ,G)×D−(CΛ−Σ,G)
− ⊗̂

L

Λ −
// D−(CΩ−Σ,G)

��

D−(CΩ−Λ,G)×D−(CΛ−ft
Λ−Σ,G)

OO

��

D−(Mod(Ω⊗RΛ◦)[G])×D−(Mod(Λ⊗RΣ◦)[G])
−⊗L

Λ−
// D−(Mod(Ω⊗RΣ◦)[G])

in which the vertical arrows are induced by forgetful functors and embeddings
of categories.
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Proof. The proof of the first part and the commutativity of the first set of
diagrams follow by similar arguments to those of Propositions 2.1.2 and 2.2.2,
making use of Lemma 2.4.3(b) (using bounded above complexes of projective
objects in place of q-projective complexes). The commutativity of the final
diagram then follows from Lemmas 2.4.2(b) and 2.4.3.

Let ChbΛ◦−perf(CΩ−Λ,G) denote the category of bounded complexes in CΩ−Λ,G

that are quasi-isomorphic to bounded complexes in CΩ−Λ,G of objects that are
projective in CΛ◦ , and let Db

Λ◦−perf(CΩ−Λ,G) denote its derived category.

Proposition 2.4.7. If Ω is projective in CR, then we have a derived bifunctor

−⊗̂L

Λ− : Db
Λ◦−perf(CΩ−Λ,G)×D(CΛ−Σ,G) −→ D(CΩ−Σ,G),

where A ⊗̂ΛB represents A ⊗̂L

ΛB if A is a bounded complex with terms that are
projectives in CΛ◦ .

Proof. Let B be a complex of objects of CΩ−Λ,G. Since every object of

ChbΛ◦−perf(CΩ−Λ,G) is by definition quasi-isomorphic to a bounded complex

of objects that are acyclic for the functor −⊗̂ΛB, we have a derived functor
−⊗̂L

ΛB. Let A be a bounded complex in CΩ−Λ,G of projectives in CΛ◦ and
f : B → B′ be a quasi-isomorphism. Then f induces isomorphisms between
the E2-terms of the convergent spectral sequence

Ei,j
2 (B) = Hi(A ⊗̂ΛH

j(B))⇒ Hi+j(A ⊗̂ΛB)

and its analogue for B′, and therefore it induces isomorphisms on the abut-
ments.

2.5 Ind-admissible modules

The notion of an ind-admissible R[G]-module was introduced in [Nek, Section
3.3] for a complete commutative Noetherian local ring R with finite residue field
and a profinite group G. An R[G]-module is ind-admissible if it can be written
as a union of R[G]-submodules that are finitely generated over R and on which
G acts continuously with respect to the topology defined by the maximal ideal
of R. In this section, we discuss an analogous construction of ind-admissible
modules over noncommutative profinite rings.
As in Nekovář’s treatment, we do not consider the seemingly delicate issue
of placing topologies on ind-admissible modules, as it proves unnecessary. In
particular, it is still possible to define the continuous cochain complex of an
ind-admissible module as a direct limit.
We maintain the notation of Section 2.4. Moreover, we suppose that Ω is left
Noetherian and Λ is right Noetherian. For an (Ω ⊗R Λ◦)[G]-module M , we
denote by S(M) the set of (Ω ⊗R Λ◦)[G]-submodules of M that are finitely
generated as Λ◦-modules and on which Ω and G act continuously with respect
to the I-adic topology. The following is a straightforward generalization of
[Nek, Lemma 3.3.2].
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Lemma 2.5.1. Let M be an (Ω⊗R Λ◦)[G]-module.

(a) If M ′ ∈ S(M), then N ∈ S(M) for every (Ω⊗R Λ◦)[G]-submodule N of
M ′.

(b) If f : M → N is a homomorphism of (Ω ⊗R Λ◦)[G]-modules and M ′ ∈
S(M), then f(M ′) ∈ S(N).

(c) If M ′, M ′′ ∈ S(M), then M ′ +M ′′ ∈ S(M).

Proof. For part (a), Corollary 3.1.6 and Proposition 3.1.7 of [Lim2] imply that
the subspace topology on N from the I-adic topology on M ′ agrees with the
I-adic topology on N , which implies that Ω and G act continuously on N . In
(b), the continuity of the Ω and G-actions on the finitely generated Λ◦-module
f(M ′) is a consequence of the fact that the map M ′ → f(M ′) is a continuous
quotient map with respect to the I-adic topology (as follows from Corollary
3.1.5 and Proposition 3.1.7 of [Lim2]). Part (c) follows from (b), using the
addition map M ×M →M .

Note that Lemma 2.5.1(c) implies that S(M) is a directed set with respect to
inclusion. We say that an (Ω⊗R Λ◦)[G]-module M is (right) ind-admissible if

M =
⋃

N∈S(M)

N.

We list some basic properties of the full subcategory IΩ−Λ,G of Mod(Ω⊗RΛ◦)[G]

with objects the ind-admissible (Ω⊗R Λ◦)[G]-modules.

Lemma 2.5.2.

(a) The category IΩ−Λ,G is abelian and stable under subobjects, quotients
and colimits.

(b) The embedding functor

i : IΩ−Λ,G →֒ Mod(Ω⊗RΛ◦)[G]

is exact and is left adjoint to the functor

j : Mod(Ω⊗RΛ◦)[G] → IΩ−Λ,G

that takes a module M to the union of the elements of S(M).

(c) The category IΩ−Λ,G has enough injectives.

(d) Let M be an ind-admissible (Ω⊗R Λ◦)[G]-module, and let N be a finitely
generated Λ◦-submodule ofM . Then (Ω⊗RΛ

◦)[G]·N is an ind-admissible
(Ω⊗R Λ◦)[G]-module which is a finitely generated Λ◦-module.
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(e) Let M be an (Ω ⊗R Λ◦)[G]-module. Then M ∈ S(M) if and only if M
is an ind-admissible (Ω ⊗R Λ◦)[G]-module which is finitely generated as
a Λ◦-module.

Proof. For parts (a), (b) and (c), similar arguments to those of [Nek, Proposi-
tion 3.3.5] apply. The “only if” direction of (e) is obvious. For (d), since N is
Λ◦-finitely generated, we can find a finite subset {M1, . . . ,Mn} of S(M) such
that

N ⊆M1 + · · ·+Mn.

The assertion then follows from Lemma 2.5.1(c) and the “only if” direction of
(e). The “if” direction of (e) follows from (d), since M = (Ω⊗RΛ◦)[G] ·M .

If G is trivial, we write IΩ−Λ for IΩ−Λ,G. We leave to the reader the proof of
the following.

Lemma 2.5.3.

(a) Let M be an (Ω ⊗R Λ◦)[G]-module. If N is an (Ω ⊗R Λ◦)[G]-submodule

of M , then N ∈ S(M) if and only if N is an object of CΛ
◦−ft

Ω−Λ,G.

(b) The category IΩ−Λ,G is equivalent to the ind-category of CΛ
◦−ft

Ω−Λ,G.

(c) The category IΩ−Λ is equivalent to the full subcategory of IΩ−Λ,G with
objects the modules on which G acts trivially.

Remark 2.5.4. In the case that Ω = R, we denote IR−Λ,G by IΛ◦,G, and the

latter category is equivalent to the ind-category of CΛ
◦−ft

Λ◦,G . The subcategory
IΛ◦ is simply ModΛ◦ .

Lemma 2.5.5. Let A be an object of CΩ−ft
Ω,G , and let B be an object of CΛ

◦−ft
Ω−Λ,G.

Then HomΩ(A,B) with the I-adic topology is an object of CΛ
◦−ft

Λ◦,G .

Proof. Since A is finitely generated over Ω and B is a compact Ω-module, we
have by [Lim2, Lemma 3.1.4(3)] that HomΩ(A,B) = HomΩ,cts(A,B), where the
latter group is the group of continuous homomorphisms of Ω-modules. Note
that Λ◦ acts continuously on HomΩ(A,B) with respect to the compact-open
topology by [Flo, Proposition 3(a)], and similarly G acts continuously on it
as a consequence of [Flo, Lemma 2]. We have a continuous isomorphism of
Λ◦[G]-modules

HomΩ(A,B)
∼
−→ lim
←−
β

HomΩ(A,Bβ),

where Bβ runs over the finite Hausdorff (Ω ⊗̂R Λ◦)[G]-quotients of B. As Bβ

is finite and therefore discrete, the group HomΩ(A,Bβ) is finite and discrete as
well, so HomΩ(A,B) is compact.
Note that HomΩ(A,B) injects into HomΩ(Ω

r, B) ∼= Br for some r ≥ 0, since
A is Ω-finitely generated. We therefore have that HomΩ(A,B) is Λ◦-finitely
generated. Finally, [Lim2, Proposition 3.1.7] then implies that the compact-
open topology on HomΩ(A,B) agrees with the I-adic topology.

Documenta Mathematica 18 (2013) 621–678
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We define
HomΩ,cts(−,−) : CΩ,G ×IΩ−Λ,G −→ IΛ◦,G.

by
HomΩ,cts(A,B) = lim

−→
α

lim
−→
β

HomΩ(Aα, Bβ),

upon making the identifications A = lim
←−

Aα, where Aα runs over the quotients

of A in CΩ−ft
Ω,G , and B = lim

−→
Bβ , where Bβ runs over the elements of S(B), i.e.,

by Lemma 2.5.3, the subobjects of B that lie in CΛ
◦−ft

Ω−Λ,G. Note that it actually
suffices to let Aα and Bβ run over cofinal subsets.

Remark 2.5.6. We note that

HomΩ,cts(A,B) ∼= lim
−→
β

HomΩ,cts(A,Bβ),

where HomΩ,cts(A,Bβ) here is the (Ω⊗RΛ
◦)[G]-module of continuous Ω-module

homomorphisms in the usual sense.

We also note the following.

Lemma 2.5.7. Let A be an object of CΩ−ft
Ω,G , and let B be an object of IΩ−Λ,G.

Then we have
HomΩ,cts(A,B) = HomΩ(A,B).

Proof. This follows from the computation

HomΩ,cts(A,B) ∼= lim
−→
β

HomΩ,cts(A,Bβ) = lim
−→
β

HomΩ(A,Bβ) ∼= HomΩ(A,B),

the latter isomorphism following from the case in which A is free of finite rank,
since A is finitely presented over Ω.

As usual, we may extend our definition to consider the complex of continuous
homomorphisms from a complex of compact modules to a complex of ind-
admissible modules, supposing that at least one of these complexes is bounded
above and at least one is bounded below.

Proposition 2.5.8. There is a derived bifunctor

RHomΩ,cts(−,−) : D
−(CΩ,G)

◦ ×D+(IΩ−Λ,G) −→ D+(IΛ◦,G),

and RHomΩ,cts(A,B) can be represented by HomΩ,cts(A,B) if the terms of A
are projective as objects of CΩ. Moreover, we have a commutative diagram

D−(CΩ,G)◦ ×D+(IΩ−Λ,G)
RHomΩ,cts(−,−)

// D+(IΛ◦,G)

��

D−(CΩ−ft
Ω,G )◦ ×D+(IΩ−Λ,G)

OO

��

D−(ModΩ[G])
◦ ×D+(Mod(Ω⊗RΛ◦)[G])

RHomΩ(−,−)
// D+(ModΛ◦[G])
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in which the vertical arrows arise from forgetful functors and the natural em-
beddings of abelian categories.

Proof. The existence of the derived bifunctor in question follows from an ar-
gument similar to that of Proposition 2.1.2, and the second statement is a
consequence of the fact that a projective object in CΩ,G is a projective object
of CΩ, noting Remark 2.5.6.

Let A be a bounded above complex of objects of CΩ−ft
Ω,G , and let B be a bounded

below complex of objects of IΩ−Λ,G. Choose bounded above complexes L, P

and Q, consisting of projective objects in CΩ,G, ModΩ[G] and ModΩ−ft
Ω (i.e.,

CΩ−ft
Ω ) respectively, with quasi-isomorphisms to A of complexes in the respec-

tive categories. Projectivity yields maps Q → L, Q → P and P → L of com-
plexes in CΩ, ModΩ and ModΩ[G], respectively. We then have a commutative
diagram

HomΩ,cts(L,B) //

��

HomΩ,cts(Q,B)

��

HomΩ(P,B) // HomΩ(Q,B).

Here, the right-hand vertical arrow is the identity map by Lemma 2.5.7 (view-
ing Q as a complex of objects in CΩ−ft

Ω,G with trivial G-action), and the lower
horizontal map is a quasi-isomorphism as a consequence of Proposition 2.2.1,
as Ω[G] is Ω-free. We want to show that the left-hand vertical arrow is a
quasi-isomorphism of complexes of Λ◦[G]-modules, and we will be done if we
can show the upper horizontal arrow is a quasi-isomorphism of complexes of
Λ◦-modules.
In the case that B is a module, exactness of direct limit reduces us to the case
that B is an object of CΛ

◦−ft
Ω−Λ,G, hence of CΩ. In this case, since both L and Q are

complexes of projectives in CΩ, we obtain that the map is a quasi-isomorphism.

In the general setting, since L and Q are bounded above and B is bounded
below, we have

Homn
Ω,cts(X,B) =

⊕

j∈Z

HomΩ,cts(X
j , Bj+n)

for X = L and X = Q, and the direct sum commutes with direct limits. As
B is the direct limit of its truncations τ≤iB (with ith terms ker diB), we may
therefore assume that B is bounded with Bj = 0 for j > i. In this case, brutal
truncations (i.e., σ≤iB having ith term Bi) provide an exact triangle

(σ≤i−1B)[i − 1] −→ Bi −→ (σ≤iB)[i] −→ (σ≤i−1B)[i],

and we are reduced recursively to the above-proven case of a module.

The following analogue of Lemma 2.2.3 will be of later use.
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Lemma 2.5.9. Suppose that Λ is a flat, Noetherian R-algebra, and let χ : G→
AutΛ◦(Λ) be a homomorphism. Let A be a bounded above complex of objects
in CR,G, and let B be a bounded below complex of R-modules. Then there are
isomorphisms

θ : χΛ⊗R HomR,cts(A,B) −→ HomΛ,cts(Λχ ⊗̂R A,Λ⊗R B)

θ′ : Λχ ⊗R HomR,cts(A,B) −→ HomΛ◦,cts(χΛ ⊗̂R A,Λ⊗R B)

that arise as direct limits of the maps in Lemma 2.2.3.

Proof. Write A = lim
←−

Aα with Aα an object of CR−ft
R,G and B = lim

−→
Bβ with Bβ

an object of CR−ft
R . Note that

Λχ ⊗̂RA ∼= lim
←−
α

(Λχ ⊗R Aα),

so, applying Lemma 2.2.3, we have

HomΛ,cts(Λχ ⊗̂R A,Λ⊗R B) = lim
−→
α,β

HomΛ(Λχ ⊗R Aα,Λ⊗R Bβ)

∼= lim
−→
α,β

χΛ⊗R HomR(Aα, Bβ)

∼= χΛ⊗R HomR,cts(A,B).

This yields the first isomorphism, and the argument for the second is similar.

Let M be an ind-admissible (Ω ⊗R Λ◦)[G]-module. The continuous cochain
complex of G with values in M is the complex of Ω⊗R Λ◦-modules that is the
direct limit of complexes

C(G,M) = lim
−→

N∈S(M)

C(G,N),

where C(G,N) is the usual complex of (inhomogeneous) continuous cochains,
with N given the I-adic topology.
We remark that, in this definition, it clearly suffices to take the direct limit
over a cofinal subset of S(M). In particular, if M itself is finitely generated
over Λ◦, then by Lemma 2.5.2(e) the above definition of C(G,M) as a direct
limit agrees with its definition as continuous cochains, considering M as an
object of CΩ−Λ,G. Finally, we can extend the above definition to consider the
total cochain complex of a complex M of ind-admissible modules, which has
kth term

Ck(G,M) =
⊕

i+j=k

Ci(G,M j)

and differentials as in [Nek, (3.4.1.3)], and the cochain functor induces a functor

RΓ(G,−) : D+(IΩ−Λ,G) −→ D+(ModΩ⊗RΛ◦)

between derived categories.
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3 Cohomology groups of induced modules

In this paper, we are interested in the case that our profinite ring Λ is the
Iwasawa algebra of a compact p-adic Lie group. With this in mind, we introduce
some notation that will be used from this point forward. Fix a prime p. Let
R be a commutative complete Noetherian local ring with maximal ideal m and
residue field k, where k is finite of characteristic p. We let Γ denote a compact
p-adic Lie group. We are interested in the completed group ring Λ = RJΓK.
We note that Λ is a profinite ring, endowed with the topology given by the
canonical isomorphism

Λ
∼
−→ lim

←−
U∈U

lim
←−
n≥1

R/mn[Γ/U ],

where U denotes the set of open normal subgroups of Γ. In fact, it is a
projective object in CR (cf. [RZ, Lemma 5.3.5(d)]). Moreover, we have the
following (cf. [Wil, Theorem 8.7.8]).

Proposition 3.0.1. The ring Λ is Noetherian.

Proof. As R is a complete local Noetherian ring with finite residue field k, the
Cohen structure theorem [Coh, Theorem 12] implies that it is isomorphic to a
quotient of a power series ring S in n = dimk m/m

2 variables over the ring of
Witt vectorsO of k. Therefore, RJΓK is a quotient of SJΓK, so it suffices to prove
that SJΓK is Noetherian. Since SJΓK ∼= OJZn

p × ΓK and Zn
p × Γ is a compact

p-adic Lie group, we have that SJΓK is Noetherian by a mild extension of a
classical theorem of Lazard’s (cf. [Ven2, Corollary 2.4] and [Laz, Proposition
V.2.2.4]).

Since Noetherian rings are necessarily coherent, we may apply Lemma 2.4.3(a)
to conclude from Proposition 3.0.1 that Λ is a flat R-algebra.

3.1 Induced modules and descent

In this subsection, we will exhibit an interesting spectral sequence relating the
cohomology of an induced module over an Iwasawa algebra to the cohomology
of the module itself. We start work in a more general setting.
Let G be a profinite group. Let Σ be a left coherent and right Noetherian profi-
nite R-algebra. For a complex M of objects in CΣ,G, we let C(G,M) denote
its total direct sum complex of continuous G-cochains (cf. the end of Section
2.5), we let RΓ(G,M) denote the corresponding object in D(ModΣ), and we
let Hi(G,M) denote its ith continuous G-cohomology (or, more precisely, hy-
percohomology) group. As in [Lim2, Proposition 3.2.11], the functor

RΓ(G,−) : D+(CΣ,G) −→ D+(ModΣ)

is well-defined and exact. (While CΣ,G may not have enough injectives, the
treatment of [KS] asserts the existence of D+(CΣ,G) and D(CΣ,G) under certain
set-theoretic assumptions, which we make here.)
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In the case that G has finite p-cohomological dimension, we can do better. For
a double complex X (or, by abuse of notation, its total complex) and n ∈ Z, we
let τII≥n(X) (resp., τII≤n(X)) be the total complex of the quotient complex (resp.,

subcomplex) of X with jth row equal to τ≥n(X
•j) (resp., τ≤n(X

•j)). For lack
of a sufficiently precise reference, we provide a short proof of the following.

Lemma 3.1.1. Suppose that G has finite p-cohomological dimension. Then we
have a convergent hypercohomology spectral sequence

Ei,j
2 = Hi(G,Hj(M))⇒ Hi+j(G,M)

for any complex M of objects in CΣ,G.

Proof. Since G has finite cohomological dimension, for sufficiently large k we
have a convergent hypercohomology spectral sequence

Ei,j
2 = Hi(G,Hj(M))⇒ Hi+j(τII≤kC(G,M))

arising from the filtration on rows of the indicated truncation of the double
G-cochain complex of M (cf. [NSW, §II.2]). As C(G,M) is the direct limit
of the complexes τ lI≤kC(G,M) under maps that are quasi-isomorphisms by the
above convergence, the natural map

Hi+j(τII≤kC(G,M))→ Hi+j(G,M)

is an isomorphism by exactness of the direct limit.

As quasi-isomorphisms of complexes induce isomorphisms on the truncated
double complexes defining their hypercohomology spectral sequences, we have
the following corollary.

Corollary 3.1.2. Suppose that G has finite p-cohomological dimension. The
functor C(G,−) preserves quasi-isomorphisms of chain complexes and induces
an exact functor

RΓ(G,−) : D(CΣ,G)→ D(ModΣ).

Fix a profinite R-algebra Ω that is a projective object of CR for the remainder
of the section. We now derive the following spectral sequence.

Proposition 3.1.3. Let Y be a complex of objects in CΣ,G, and let N be a

bounded above complex of objects in CΣ
◦−ft

Ω−Σ . Consider the conditions

(1) G has finite p-cohomological dimension,

(2) N is bounded with terms of finite projective dimension over Σ◦.

If (1) holds and Y is bounded above, (2) holds and Y is bounded below, or both
(1) and (2) hold, then we have an isomorphism

N ⊗L

Σ RΓ(G, Y )
∼
−→ RΓ(G,N ⊗̂L

Σ Y )

in D(ModΩ).
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Proof. Let L be a bounded above complex of projective objects in CΩ−Σ map-
ping quasi-isomorphically to N . If (1) holds and Y is bounded above, we set
P = L, and we have by Proposition 2.4.6 that P ⊗̂Σ Y represents N ⊗̂L

Σ Y in
D−(CΩ,G). Otherwise, there exists a quasi-isomorphic bounded quotient com-
plex P = τ≥nL of L of objects in CΩ−Σ, through which the quasi-isomorphism
L → N factors, such that the terms of P are projective in CΣ◦ . Proposition
2.4.7 then tells us that P ⊗̂Σ Y represents N ⊗̂L

Σ Y in D(CΩ,G). In all cases, the
terms of P are flat Σ◦-modules by Lemma 2.4.3, so Proposition 2.1.4 tells us
that P ⊗Σ C(G, Y ) represents N ⊗L

Σ RΓ(G, Y ) in D(ModΩ).

We have a map of complexes of Ω-modules

P ⊗Σ C(G, Y ) −→ C(G,P ⊗̂Σ Y )

with sign conventions as in [Nek, Proposition 3.4.4]. (The continuity of the
cochains in the image is insured, for instance, by the fact that any term of P
is a topological direct summand of a direct product of copies of Σ.) It suffices
to show that this map is a quasi-isomorphism.

Let Q be a bounded above complex of finitely generated projective Σ◦-modules
mapping quasi-isomorphically to N , which we take to be bounded if (2) holds.
We then have a map of complexes of R-modules

Q⊗Σ C(G, Y )
∼
−→ C(G,Q ⊗Σ Y )

that, much as in [Nek, Proposition 3.4.4], is an isomorphism. (To see that it
is an isomorphism, note that it is immediate if Q is a finitely generated free
Σ◦-module, and therefore also for direct summands of such, i.e., the finitely
generated projective Σ◦-modules. The case of a complex is then immediate.)
By the projectivity of Q in both the categories of abstract and compact Σ◦-
modules, we have a commutative diagram

Q⊗Σ C(G, Y )
∼

//

��

C(G,Q ⊗Σ Y )

��

P ⊗Σ C(G, Y ) // C(G,P ⊗̂Σ Y )

in which the vertical arrows are quasi-isomorphisms of complexes of R-modules,
noting Lemma 2.4.2(b) and, when (1) holds, Corollary 3.1.2. It follows that
the lower horizontal arrow is a quasi-isomorphism as well.

We make a couple of remarks.

Remark 3.1.4. Suppose that G is a finite group. The proof of Proposition 3.1.3
under condition (2) then goes through word-for-word for bounded Y , with Tate
cochains and the resulting derived complexes replacing the usual cochains of G
and its derived complexes.
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Remark 3.1.5. In [FK1, Proposition 1.6.5(3)], an identical isomorphism to
that of Proposition 3.1.3 is proved for a very general class of “adic” rings Ω
and Λ, with stronger conditions on G, N , and Y .

From now on, we focus on case that Σ is the Iwasawa algebra Λ = RJΓK.
Fix a continuous homomorphism χ : G → Γ of profinite groups. Since Γ may
be viewed as a subgroup of AutΛ◦(Λ) by left multiplication, we may define
the Λ◦[G]-module χΛ as in Section 2.2. If A is a Λ ⊗R Λ◦-module, we then
set χA = χΛ ⊗Λ A and Aχ = A ⊗Λ Λχ, which are Λ◦[G] and Λ[G]-modules,
respectively.
Let M be a R[G]-module. As in [Lim2, Section 5.1], we define a Λ[G]-module
FΓ(M) by

FΓ(M) = lim
←−
U∈U

(R[Γ/U ]χ ⊗R M)

with G acting diagonally and Λ acting on the left on the terms in the inverse
limit. This construction applied to compact modules provides a functor

FΓ : CR,G −→ CΛ,G,

which is exact as R[Γ/U ] is R-flat and the inverse limit is exact on inverse
systems in CΛ,G. We extend this to an exact functor on complexes in the
obvious fashion.
Given an complex T of objects in CR,G, we have, noting Lemma 2.4.2(a), a
natural continuous isomorphism

FΓ(T ) ∼= Λχ ⊗̂R T

of complexes in CΛ,G. We may therefore use Lemma 2.4.2(b) to note that FΓ

takes a complex T of objects in CR−ft
R,G to the complex Λχ ⊗R T of objects in

CΛ−ft
Λ,G . We make the latter identification freely.

We now supply a key ingredient for descent.

Lemma 3.1.6. Let T be a complex in CR,G. Let Γ
′ be a quotient of Γ by a closed

normal subgroup, and set Λ′ = RJΓ′K. Let N be a bounded above complex of
objects of CΩ−Λ′ . Then N can be viewed as a complex of objects in CΩ−Λ via
the quotient map π : Λ ։ Λ′. Suppose either that T is bounded above or that N
is bounded and its terms have finite projective dimension in CΛ◦ and in C(Λ′)◦.
Then π induces an isomorphism

N ⊗̂L

Λ FΓ(T )
∼
−→ N ⊗̂L

Λ′ FΓ′(T )

in D−(CΩ,G).

Proof. Let Q→ N be a quasi-isomorphism, where Q is a bounded above com-
plex of CΩ−Λ′ -projectives, and note that its terms are projective objects of C(Λ′)◦

by Lemma 2.4.3(b). If N is bounded with terms of finite projective dimension
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in C(Λ′)◦ , then for sufficiently small n, the truncation τ≥nQ also consists of pro-
jectives in C(Λ′)◦ , so we may assume in that case that Q is bounded. Next, and
similarly, let P → Q be a quasi-isomorphism in CΩ−Λ with P a bounded above
complex in CΩ−Λ of projectives in CΛ◦ , and suppose that P is bounded if N
is bounded with terms having finite projective dimension in CΛ◦ . The derived
completed tensor products in question are then represented by P ⊗̂Λ Λχ ⊗̂R T
and Q ⊗̂Λ′ Λ′

χ ⊗̂R T , respectively, by Propositions 2.4.6 and 2.4.7. Since the in-

duced map P ⊗̂Λ Λχ → Q ⊗̂Λ′ Λ′
χ is clearly a quasi-isomorphism and the terms

of these complexes are projective in CR, we have by the same propositions the
desired quasi-isomorphism between the two complexes.

We are particularly interested in the case that the complex N above is the
Iwasawa algebra of a quotient of Γ, for which the following lemma is crucial.

Lemma 3.1.7. Let Γ0 be a closed normal subgroup of Γ with no elements of order
p. Set Γ′ = Γ/Γ0 and Λ′ = RJΓ′K. Then Λ′ has finite projective dimension
over Λ.

Proof. Let c-TorΞi (−,−) denote the ith derived bifunctor of the completed ten-
sor product over a profinite R-algebra Ξ. A standard argument yields a con-
vergent spectral sequence

Hi(Γ, c-Tor
R
j (Λ

′, Z))⇒ c-TorΛi+j(Λ
′, Z)

for any compact Λ-module Z, as in [NSW, §V.2, Exercise 3], where elements of
Γ act inversely on Λ◦-modules and diagonally on completed R-tensor products.
Since Λ′ is a projective object in CR, the spectral sequence degenerates to yield
isomorphisms

Hn(Γ,Λ
′ ⊗̂R Z) ∼= c-TorΛn(Λ

′, Z).

Moreover, by a standard extension of Shapiro’s lemma [RZ, Theorem 6.10.9],
we have

Hn(Γ0, Z) ∼= Hn(Γ,Λ
′ ⊗̂R Z).

Since Γ0 has finite p-cohomological dimension by [Ser, Corollaire 1], there then
exists n0 ≥ 0 independent of Z such that c-TorΛn(Λ

′, Z) = 0 for every n > n0. It
follows from [NSW, Proposition 5.2.11] that Λ′ has finite topological projective
dimension as a compact Λ-module, so it has finite projective dimension over Λ
by the discussion of Section 2.3.

The following descent spectral sequence is reduced by the above results to a
special case of Proposition 3.1.3.

Theorem 3.1.8. Let T be a complex in CR,G. Let Γ′ be a quotient of Γ by a
closed normal subgroup Γ0, and set Λ′ = RJΓ′K. Consider the conditions

(1) G has finite cohomological dimension,

(2) Γ0 contains no elements of order p.
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Suppose that (1) holds and T is bounded above, (2) holds and T is bounded
below, or both (1) and (2) hold. Then we have an isomorphism

Λ′ ⊗L

Λ RΓ(G,FΓ(T ))
∼
−→ RΓ(G,FΓ′(T ))

in D(ModΛ′).

Proof. This is simply Proposition 3.1.3 for N = Λ′ and Y = FΓ(T ), noting
Lemma 3.1.7 and applying the isomorphism of Lemma 3.1.6.

3.2 Finite generation of cohomology groups

In this subsection, we shall show that the cohomology groups of induced mod-
ules are finitely generated under a certain assumption on the group. We main-
tain the notation of the previous subsection. In particular, Γ is a compact
p-adic Lie group, R is a complete commutative local Noetherian ring with fi-
nite residue field of characteristic p, and Λ = RJΓK. Moreover, we are given a
continuous homomorphism χ : G→ Γ from a profinite group G.

Lemma 3.2.1. Suppose that Γ is pro-p. Let M be a compact Λ-module. Then
M is finitely generated over Λ if and only if R⊗ΛM is finitely generated over
R.

Proof. Since Γ is pro-p, the Jacobson radical M of Λ is mΛ+ I, where I is the
augmentation ideal of Λ (see [NSW, Proposition 5.2.16(iii)]). This implies that

M/MM ∼=MΓ/mMΓ,

where MΓ = M/IM . Therefore, Nakayama’s lemma tells us that MΓ is
finitely generated over R if and only if M/MM is finite. On the other hand,
Nakayama’s lemma for compact Λ-modules (cf. [NSW, Lemma 5.2.18(ii)]) tells
us that M is finitely generated over Λ if and only if M/MM is finite.

Lemma 3.2.1 requires a compact Λ-module. Therefore, we give a sufficient
condition for an abstract Λ-module to be a compact Λ-module under an ap-
propriate topology.

Lemma 3.2.2. Suppose that M is an abstract Λ-module which is the inverse
limit of an inverse system of finite quotient modules. Then M is a compact
Λ-module with respect to the resulting profinite topology.

Proof. We need only to show that the Λ-action

θ : Λ×M −→M

is continuous with respect to the topology given by the inverse limit. Suppose
first that M is finite. Let M denote the Jacobson radical of Λ. Then MnM
stabilizes, and it follows from Nakayama’s lemma that we have MnM = 0 for
large enough n. By [NSW, Corollary 5.2.19], there exist r ≥ 0 and U ∈ U
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such that mrΛ + I(U) ⊆Mn, where I(U) denotes the ideal of Λ generated by
the augmentation ideal in RJUK. Hence, θ is continuous with respect to the
discrete topology on M .
In general, we can write M ∼= lim

←−
M/Mα, where {Mα} is a directed system of

Λ-submodules of finite index. Let (λ, x) ∈ θ−1(y+Mα) for λ ∈ Λ and x, y ∈M .
Since M/Mα is finite, it follows from the above discussion that there exist r
and U such that

(λ+mrΛ + I(U)) · (x+Mα) ⊆ y +Mα,

as desired.

We shall also require the following lemma.

Lemma 3.2.3. IfM is a finitely generated Λ-module, then TorΛi (R,M) is finitely
generated over R for every i ≥ 0.

Proof. To see this, we first choose a resolution P of M consisting of finitely
generated projective Λ-modules. Then R⊗ΛP is a complex of finitely generated
R-modules. Therefore, the homology groups TorΛi (R,M) of the latter complex
are finitely generated over R.

We recall from [Nek, Proposition 4.2.3] that if G is a profinite group such
that Hi(G,M) is finite for every finite G-module M of p-power order and
i ≥ 0, then Hi(G, T ) is a finitely generated R-module for every T ∈ CR−ft

R,G and
i ≥ 0. We will refer to a profinite group G as p-cohomologically finite if there
exists an integer n such that, for every finite G-module M of p-power order,
Hi(G,M) = 0 for all i > n and Hi(G,M) is finite for all i. We remark that if
G is p-cohomologically finite, then so is every open subgroup of G, as follows
directly from Shapiro’s lemma.

Theorem 3.2.4. Suppose that G is p-cohomologically finite. Let T be a complex
of objects in CR−ft

R,G . Then the cohomology groups Hi(G,FΓ(T )) are finitely
generated over Λ for all i. That is, RΓ(G,FΓ(T )) is an object of DΛ−ft(ModΛ).

Proof. Suppose for now that T is concentrated in degree 0. Let Γ0 be an open
uniform normal pro-p subgroup of Γ, and set H = χ−1(Γ0). Fix a set of double
coset representatives γ1, . . . , γt of Γ0\Γ/χ(G). For each i, define χi : G→ Γ by
χi(g) = γigγ

−1
i . The reader may check that

t⊕

i=1

(
Z[G]⊗Z[H] RJΓ0Kχi

)
∼
−→ Λχ

(g ⊗ λ0)i 7→ λ0γiχ(g)
−1

is an isomorphism of RJΓ0K[G]-modules. Given this, Shapiro’s lemma induces
isomorphisms

Hj(G,FΓ(T )) ∼=

t⊕

i=1

Hj(H,RJΓ0Kχi
⊗R T )
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of RJΓ0K-modules. The finite generation of Hj(G,FΓ(T )) over Λ then reduces
to the finite generation of each Hj(H,RJΓ0Kχi

⊗R T ) over RJΓ0K. Thus, we
can and do assume that Γ has no elements of finite order.
Since R has finite projective dimension over Λ by Lemma 3.1.7, Theorem 3.1.8
provides the convergent spectral sequence

Er,s
2 = TorΛ−r(R,H

s(G,FΓ(T )))⇒ Hr+s(G, T ).

Since G has finite p-cohomological dimension, say n, we may suppose induc-
tively that Hi(G,FΓ(T )) is a finitely generated Λ-module for all i greater than
some j ≤ n. Note that E0,j

∞ is a quotient of E0,j
2 and that Hj(G, T ) is a finitely

generated R-module by [Nek, Proposition 4.2.3]. Since E0,j
∞ is a subquotient of

Hj(G, T ), it is also a finitely generated R-module. On the other hand, it follows
from the definition of E0,j

∞ that the kernel of the surjective map E0,j
2 → E0,j

∞

is isomorphic to a subquotient of the finite direct sum

n⊕

i=j+1

Ej−i−1,i
2 =

n⊕

i=j+1

TorΛi−j+1(R,H
i(G,FΓ(T ))).

By our induction hypothesis and Lemma 3.2.3, the above module is a finitely
generated R-module. It follows that

E0,j
2
∼= R⊗Λ H

j(G,FΓ(T ))

is a finitely generated R-module. As Hj(G,FΓ(T )) is an inverse limit of finite
Λ-modules by [Lim2, Proposition 5.2.4], Lemma 3.2.2 gives it the structure of
a compact Λ-module, and we may therefore apply Lemma 3.2.1 to conclude
that Hj(G,FΓ(T )) is finitely generated over Λ.
Now let us work without condition on Γ or the complex T . By Lemma 3.1.1 and
the exactness of FΓ(−), we have the convergent spectral sequence of Λ-modules

Hr(G,FΓ(H
s(T )))⇒ Hr+s(G,FΓ(T )).

Thus, Hi(G,FΓ(T )) has a filtration consisting of subquotients of the finitely
generated Λ-modules Hj(G,FΓ(H

i−j(T ))) with 0 ≤ j ≤ n. Consequently,
Hi(G,FΓ(T )) is also a finitely generated Λ-module.

Remark 3.2.5. In the case that Γ is abelian, Theorem 3.2.4 for bounded below
T is essentially [Nek, Proposition 4.2.3], as RJΓ0K for an open pro-p, torsion-
free subgroup Γ0 is itself a commutative complete local Noetherian ring with
finite residue field. In the case that T is a bounded complex of R-projectives,
it is a corollary of [FK1, Proposition 1.6.5(2)].

3.3 Duals of induced modules

In this subsection, we describe the pairings and the resulting cup products
that will be used in proving a duality theorem for the cohomology of induced
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modules. Key to our discussion is the following lemma, which we record for
convenience. We let Ω and Σ denote auxiliary Iwasawa algebras: e.g., Ω = RJΦK
for some compact p-adic Lie group Φ.

Lemma 3.3.1. Suppose thatM is a bounded above complex of objects of CΩ−Λ,G,
let N be a bounded above complex of objects of CΛ−Σ,G, and let L be a bounded
above complex of objects of CΩ−Σ,G. Then any map

φ : M ⊗̂ΛN −→ L

of complexes in CΩ−Σ,G gives rise to a cup product morphism

∪ : C(G,M)⊗Λ C(G,N) −→ C(G,L)

of complexes of Ω⊗Λ Σ◦-modules.

Proof. Briefly, the point is that to give such a map φ is equivalent to producing
a collection of continuous, Λ-balanced, G-equivariant, left Ω-linear, and right
Σ-linear pairings

〈−,−〉mn : M
m ×Nn −→ Lm+n

that are compatible with coboundaries in the sense of [Lim2, Section 3.3]. The
cup product ∪ then arises from the induced cup products

∪ijmn : C
i(G,Mm)⊗Λ C

j(G,Nn) −→ Ci+j(G,Lm+n)

by combining them to a map of the total complexes with appropriate signs as
in [Nek, (3.4.5.2)]: ∪ = ((−1)in∪ijmn).

Let us fix some notation. Let ι : Λ→ Λ denote the unique continuous R-algebra
homomophism that satisfies ι(γ) = γ−1 for all γ ∈ Γ. If A is a Λ[G]-module,
we let Aι denote the Λ◦[G]-module that is A as an R[G]-module but on which
any λ ∈ Λ now acts by left multiplication by ι(λ). We extend this to complexes
in the obvious fashion. Of particular interest to us is FΓ(T )

ι for a complex T
of objects in CR,G. Since ι induces a continuous isomorphism of Λ◦[G]-modules

χΛ
∼
−→ Λι

χ, we can and will make the identification

FΓ(T )
ι = χΛ ⊗̂R T,

of complexes in CΛ◦,G from this point forward.

Lemma 3.3.2. For objects M and N in CR,G, the pairing

〈−,−〉 : FΓ(M)×FΓ(N)ι −→ Λ ⊗̂R (M ⊗̂RN)

(λ⊗m,µ⊗ n) 7→ λµ⊗m⊗ n

is continuous, R-balanced, G-equivariant with respect to the trivial action on Λ
in the target, and is left and right Λ-linear. Moreover, if M and N are bounded
above complexes of objects in CR,G, we have a morphism

φ : FΓ(M) ⊗̂R FΓ(N)ι −→ Λ ⊗̂R (M ⊗̂RN)

of complexes in CΛ−Λ,G.
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Proof. We begin by remarking that by Lemma 2.4.1, it makes sense to define
the pairing on pairs of tensors, identified with their images in the completed
tensor product. The pairing is clearly R-balanced, and the reader can check the
statements on the Λ, Λ◦, and G-actions. The continuity of the pairing reduces
immediately to the continuity of multiplication on Λ. The second statement
follows easily.

We next apply these pairings to study a duality between induced modules. As
described in the introduction, the dualizing complex for R is an object ωR of
Db

R−ft(ModR) with the property that for every object M of D(ModR−ft
R ), the

object RHomR(M,ωR) lies in DR−ft(ModR) and the canonical morphism

M −→ RHomR(RHomR(M,ωR), ωR)

is an isomorphism in D(ModR). A dualizing complex exists for R and is unique
up to translation and isomorphism in Db

R−ft(ModR) (see [Har1, Ch. V]). We
choose a bounded complex JR of injective R-modules which represents a choice
of the dualizing complex in D(ModR). (See [Nek, Section 0.4], or Section 4.3
below, for the construction of such a complex.)
Let T be a bounded complex of objects in CR−ft

R,G . Then HomR(T, JR) is a
bounded complex of “admissible” R[G]-modules with cohomology groups that
are finitely generated over R (see [Nek, (4.3.2)]). By [Nek, Proposition 3.3.9],
there is a subcomplex T ∗ of HomR(T, JR) which is a complex of objects in
CR−ft
R,G (giving said objects the m-adic topology) and is quasi-isomorphic to

HomR(T, JR) via the inclusion map.
We have a composite morphism

π : T ⊗R T
∗ −→ T ⊗R HomR(T, JR) −→ JR

of complexes of R[G]-modules, the first morphism being induced by the inclu-
sion and the second being the usual evaluation map. By Lemma 3.3.2, this in
turn induces a composite map

π : FΓ(T ) ⊗̂R FΓ(T
∗)ι

φ
−→ Λ ⊗R T ⊗R T

∗ id⊗π
−→ Λ⊗R JR

of complexes of (Λ ⊗R Λ◦)[G]-modules. Twisting π by the identity map on

an auxilliary bounded above complex of objects of CΛ
◦−ft

Ω−Λ , Lemma 3.3.1 now
provides the cup product morphisms of the following lemma, which will be
used in the next section. For a continuous character κ : G→ R× and an R[G]-
module M , we let M(κ) denote the R-module M with the new commuting
G-action given by the twist of the original by κ. (In addition, M(κ) will be
taken to maintain any topology and actions of profinite R-algebras with which
M may be endowed.)

Lemma 3.3.3. Let A be a bounded above complex of objects in CΛ
◦−ft

Ω−Λ , and let
κ : G→ R× be a continuous homomorphism. The map π defined above induces
a map

πA : A⊗Λ FΓ(T ) ⊗̂R FΓ(T
∗)ι −→ A⊗R JR
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and, in turn, a well-defined cup product

C(G,A⊗Λ FΓ(T ))⊗R C(G,FΓ(T
∗)ι(κ)) −→ C(G,A⊗R JR(κ)),

which is a map of complexes of Ω⊗R Λ◦-modules.

Note that, by definition, the adjoint maps (defined as in [Lim2, Lemma 2.2])

adj(π) : T ∗ −→ HomR(T, JR) and adj′(π) : T −→ HomR(T
∗, JR)

of π are quasi-isomorphisms, the first being simply the inclusion of complexes
already defined. Since the terms of JR are injective R-modules, it follows from
Proposition 2.2.1 that the derived adjoint maps

adj(π) : T ∗ −→ RHomR(T, ωR) and adj′(π) : T −→ RHomR(T
∗, ωR)

are isomorphisms in Db
R−ft(ModR[G]), hence in Db

R−ft(IR,G), considering the
restriction of RHomR(−,−) to a bifunctor

D−(CR−ft
R,G )◦ ×D+(ModR) −→ D+(IR,G),

(see [Nek, (3.5.9)]).
Though we shall not use it later, we feel it important to note that the derived
adjoint maps of π are also isomorphisms. While this is easy enough to prove
in the bounded below derived category D+(ModΛ◦[G]) of abstract modules (in
the case of adj(π)), we are interested in G-cohomology groups, so we want such
an isomorphism in D+(IΛ◦,G).

Theorem 3.3.4. For any bounded complexes T and T ∗ of objects in CR−ft
R,G such

that T ∗ sits quasi-isomorphically as a subcomplex of the dual HomR(T, JR), the
derived adjoint maps

adj(π) : FΓ(T
∗)ι −→ RHomΛ,cts(FΓ(T ),Λ⊗

L

R ωR)(
resp., adj′(π) : FΓ(T ) −→ RHomΛ◦,cts(FΓ(T

∗)ι,Λ⊗L

R ωR)
)

are isomorphisms in D+(IΛ◦,G) (resp., D+(IΛ,G)). Moreover, the derived
object RHomΛ,cts(FΓ(T ),Λ⊗

L

RωR) (resp., RHomΛ◦,cts(FΓ(T
∗)ι,Λ⊗L

RωR)) can
be represented by HomΛ(FΓ(T ),Λ⊗R JR) (resp., HomΛ◦(FΓ(T

∗)ι,Λ⊗R JR)).

Proof. Let X = RHomΛ,cts(FΓ(T ),Λ ⊗
L

R ωR). Since JR is a complex of R-
injectives and χΛ is flat over R, Lemma 2.5.9 implies that the functor F given
by

HomΛ,cts(Λχ ⊗̂R−,Λ⊗R JR) : Ch
−(CR,G)

◦ −→ Ch+(IΛ◦,G)

is exact. In particular, if P → T is a quasi-isomorphism with P a bounded
above complex of projective objects in CR,G, then F (T ) → F (P ) is a quasi-
isomorphism. As Λχ ⊗̂R P is a complex of objects in CΛ,G that are projective
in CΛ, we then have that F (T ) represents X by Proposition 2.5.8.
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By Lemmas 2.4.2(b) and 2.5.7, the functor F equals HomΛ(Λχ⊗R−,Λ⊗R JR)
on Ch−(CR−ft

R,G )◦. Therefore, X is represented by HomΛ(FΓ(T ),Λ ⊗R JR) in

D+(IΛ◦,G). Finally, since the map

T ∗ −→ HomR(T, JR)

is a quasi-isomorphism, the adjoint map of complexes

χΛ⊗R T
∗ −→ HomΛ(Λχ ⊗R T,Λ⊗R JR)

is a quasi-isomorphism of complexes of Λ◦[G]-modules by Lemma 2.2.3. There-
fore, we have the result for adj(π), and the proof for adj′(π) is analogous.

4 Duality over p-adic Lie extensions

We now turn to arithmetic. Here, we fix the notation that we shall use through-
out this section. To start, let p be a prime. We let F be a global field of
characteristic not equal to p. Let S be a finite set of primes of F that, in the
case that F is a number field, contains all primes above p and all real places.
Let Sf (resp., SR) denote the set of finite places (resp., real places) in S. Let
GF,S denote the Galois group of the maximal unramified outside S extension
of F . For a place v of F , let Fv denote the completion of F at v, and let Gv

denote a fixed decomposition group for v in the absolute Galois group of F .
We fix a p-adic Lie extension F∞ of F that is unramified outside S, and we
let Γ denote its Galois group. We let R denote a complete commutative local
Noetherian ring with finite residue field of characteristic p, and we set Λ =
RJΓK. We take the homomorphism χ : GF,S → Γ of Section 3.1 to be restriction.

4.1 Iwasawa cohomology

We recall the following facts, all of which can all be found in [NSW, Chapters
VII-VIII]. The GF,S-cohomology groups of a finite GF,S-module of p-power
order are all finite. If p is odd or F has no real places, then GF,S has p-
cohomological dimension at most 2 and so is p-cohomologically finite in the
sense of Section 3.2. If v is a nonarchimedean place of F , then Gv has p-
cohomological dimension equal to 2, and the Gv-cohomology groups of a finite
Gv-module of p-power order are finite as well. Of course, the Gv-cohomology
groups of a finite module are also finite for archimedean v, since Gv is of order
dividing 2 for such places.
Recall (e.g., from [Nek, (5.7.2)]) that, for any profinite ring Ω, the (Tate) com-
pactly supported GF,S-cochain complex of a complex of objects M in CΩ,GF,S

is defined as

C(c)(GF,S ,M) = Cone

(
C(GF,S ,M)→

⊕

v∈Sf

C(Gv,M)⊕
⊕

v∈SR

Ĉ(Gv,M)

)
[−1],
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where Ĉ(Gv,M) is defined as in [Lim2, Section 3.4] and denotes the standard
complete complex of Tate Gv-cochains for M .
We remark that, in Nekovář’s notation, C(c)(GF,S ,M) is denoted Ĉc(GF,S ,M).
We use the notation of [FK1], where parentheses are used to distinguish the
latter group from the compactly supported cochains Cc(GF,S ,M), for which
one uses the usual cohomology groups at real places. For archimedean v, we
will abuse notation and useRΓ(Gv,M) to denote the derived object of the Tate

cochains Ĉ(Gv,M). These cochains may as well be taken to be zero for complex
places or for real places if p is odd, RΓ(Gv,M) being a zero object in the derived
category. We denote the derived object corresponding to C(c)(GF,S ,M) by
RΓ(c)(GF,S ,M) and its ith cohomology group byHi

(c)(GF,S ,M). By definition,

we have an exact triangle2

RΓ(c)(GF,S ,M) −→ RΓ(GF,S ,M) −→
⊕

v∈S

RΓ(Gv,M)

in D(ModΩ). The results of and methods used in Section 3.1 allow us to prove
the following descent result for such an exact triangle with induced coefficients.

Proposition 4.1.1. Let Γ′ = Gal(F ′
∞/F ) be a quotient of Γ by a closed normal

subgroup, and set Λ′ = RJΓ′K. Let T be a bounded above complex of objects in
CR,GF,S

. Suppose that at least one of the following holds: (i) p is odd, (ii) F ′
∞

has no real places, or (iii) T is bounded and F ′
∞ has no real places that become

complex in F∞. Then we have an isomorphism of exact triangles

Λ′ ⊗L

Λ RΓ(c)(GF,S ,FΓ(T ))
∼

//

��

RΓ(c)(GF,S ,FΓ′(T ))

��

Λ′ ⊗L

Λ RΓ(GF,S,FΓ(T ))
∼

//

��

RΓ(GF,S ,FΓ′(T ))

��

Λ′ ⊗L

Λ

⊕
v∈S RΓ(Gv,FΓ(T ))

∼
//
⊕

v∈S RΓ(Gv,FΓ′(T ))

in D(ModΛ′).

Proof. We need only show that the lower and upper horizontal morphisms
are isomorphisms. The upper morphism exists and is an isomorphism for T
bounded above without additional assumption. That is, recall that the com-
pactly supported cohomology groups of a module vanish in dimension greater
than 3 [Nek, Lemma 5.7.3]. The hypercohomology spectral sequence for com-
pactly supported cohomology therefore converges for bounded above complexes,
yielding the existence of a functor

RΓ(c)(GF,S ,−) : D
−(CΛ,GF,S

)→ D−(ModΛ).

2We write an exact triangle A → B → C → A[1] more compactly as A → B → C

throughout.

Documenta Mathematica 18 (2013) 621–678
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The analogous result to Proposition 3.1.3 then holds by the original argument
(in the case that (1) holds and Y is bounded above). That the upper morphism
exists and is an isomorphism follows immediately as in Theorem 3.1.8.
The summands of the lower morphism corresponding to nonarchimedean v are
isomorphisms, again for T bounded above without further assumption, by The-
orem 3.1.8. For a real place v of F , the functor RΓ(Gv,−) is well-defined only
on the bounded derived category. However, if v becomes complex in F ′

∞, then
the relevant hypercohomology spectral sequence implies that the composite
functor RΓ(Gv,FΓ′(−)) is both well-defined and zero on D(CR,Gv

). So, the
v-summand of the lower horizontal morphism is trivially an isomorphism. If
v splits completely in F∞/F , then the modules Λχ and χΛ have trivial Gv-
actions, so we have isomorphisms FΓ(T ) ∼= Λ ⊗R T and FΓ(T

∗)ι ∼= Λ ⊗R T ∗

of complexes in CΛ,Gv
and CΛ◦,Gv

, respectively. Since Gv is finite, the terms of

Ĉ(Gv,M) for a Gv-module M are each naturally isomorphic to a finite direct
sum of copies of M . With these identifications, the canonical map

Λ ⊗R Ĉ(Gv, T )
∼
−→ Ĉ(Gv,Λ⊗R T )

agrees with the identity map, so is an isomorphism. Of course, we have the
corresponding result for Λ′, and the isomorphism

Λ′ ⊗L

Λ (Λ⊗R Ĉ(Gv, T ))
∼
−→ Λ′ ⊗L

R Ĉ(Gv, T )

in D(ModΛ′) provides the v-summand of the lower isomorphism.

Remark 4.1.2. Proposition 4.1.1 holds with “bounded above” removed if we
suppose that the kernel of Γ → Γ′ has no elements of order p. This follows
quickly if p is odd or F has no real places, but it requires some work in the
remaining case that F ′

∞ has no real places but F does. We omit this for
purposes of brevity.

The next proposition shows in particular that if T is a bounded complex of ob-
jects of CR−ft

R,GF,S
, then the global, local, and compactly supported cohomology

groups of FΓ(T ) are finitely generated Λ-modules. (Here, we implicitly iden-
tify cochain complexes with their quasi-isomorphic truncations in the derived
category.)

Proposition 4.1.3. Let T be a complex of objects of CR−ft
R,GF,S

.

(a) The complex RΓ(c)(GF,S ,FΓ(T )) lies in DΛ−ft(ModΛ) if F∞ has no real

places or p is odd and in D−
Λ−ft(ModΛ) if T is bounded above.

(b) The complex RΓ(GF,S,FΓ(T )) for v ∈ Sf lies in DΛ−ft(ModΛ) if F∞

has no real places or p is odd and in D+
Λ−ft(ModΛ) if T is bounded below.

(c) If T is bounded and either F∞ has no real places or p is odd, then
RΓ(c)(GF,S ,FΓ(T )) and RΓ(GF,S,FΓ(T )) lie in Db

Λ−ft(ModΛ).
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(d) For v ∈ Sf , the complex RΓ(Gv,FΓ(T )) lies in DΛ−ft(ModΛ) and in
Db

Λ−ft(ModΛ) if T is bounded.

(e) The complex RΓ(Gv,FΓ(T )) for v ∈ SR lies in DΛ−ft(ModΛ) if T is
bounded.

Proof. For real v, any i ∈ Z and T concentrated in degree 0, the Tate coho-
mology group Ĥi(Gv,FΓ(T )) is a 2-torsion subquotient of FΓ(T ), as Gv has
order 2. Hence, it is finitely generated over Λ as FΓ(T ) is. The hypercohomol-
ogy spectral sequence allows one to pass to the case of a bounded complex T ,
and therefore RΓ(Gv,FΓ(T )) lies in DΛ−ft(ModΛ), hence (e). Recall also that
RΓ(Gv,FΓ(T )) is a zero object for all complexes T if v extends to a complex
place of F∞.
If v ∈ S is nonarchimedean, then Gv is p-cohomologically finite by our
above remarks, and hence Theorem 3.2.4 implies that RΓ(Gv,FΓ(T )) lies in
DΛ−ft(ModΛ). In the case that p is odd or F∞ has no real places, Theorem
3.2.4 again implies that RΓ(GF,S ,FΓ(T )) lies in DΛ−ft(ModΛ). (For this, note
that if p = 2 and F has a real place that becomes complex in F∞, it will al-
ready have become complex in any extension with Galois group Γ/Γ0, where
Γ0 is an open uniform pro-p subgroup of Γ.) In this case, it follows from the
above-mentioned exact triangle that RΓ(c)(GF,S ,FΓ(T )) is in DΛ−ft(ModΛ).
If T is bounded, then clearly all of the above complexes will additionally lie in
the bounded derived category. In particular, we have (c) and (d) and part of
each of (a) and (b).
The analogue of Theorem 3.2.4 for compactly supported cohomology holds for
bounded above T since Hi

(c)(GF,S ,FΓ(T )) vanishes for sufficiently large i. The
proof is essentially identical but uses the semilocal version of Shapiro’s lemma
[Nek, (8.5.3.2)] in the first step and the relevant hypercohomology spectral
sequence in the last. Thus we have (a).
Finally, if T is concentrated in degree 0, the exact triangle tells us that
Hi(GF,S ,FΓ(T )) is finitely generated over FΓ(T ) for sufficiently large i. Thus,
we are still able to perform the inductive step in the proof of Theorem 3.2.4
to obtain that RΓ(GF,S,FΓ(T )) sits in D+

Λ−ft(ModΛ) for such T , and then for
bounded below T via the hypercohomology spectral sequence. Thus, we have
(b).

Remark 4.1.4. Part (d) of Proposition 4.1.3 makes sense and holds more gen-
erally for any complex T in CR−ft

R,Gv
, as Λχ has a Gv-action through the composite

with the canonical map Gv → GF,S .

Remark 4.1.5. We may also consider the setting in which we take F itself
to be a nonarchimedean local field of characteristic not equal to p. We then
let GF be its absolute Galois group, let Γ denote the Galois group of a p-adic
Lie extension of F , and as before, set Λ = RJΓK. In this case, we obtain
immediately from Theorem 3.2.4 that the cohomology groups Hj(GF ,FΓ(T ))
are finitely generated Λ-modules for all j and any complex of objects of T of
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CR−ft
R,GF

, and consequently, that RΓ(GF ,FΓ(T )) is an object of DΛ−ft(ModΛ)

for any complex T of objects in CR−ft
R,GF

.

4.2 Duality over local fields

In this subsection, we will state a version of Tate duality for Γ-induced mod-
ules with Λ⊗L

R ωR for a dualizing complex ωR replacing Qp/Zp. Fix a nonar-
chimedean prime v ∈ S. We continue to suppose that Γ is a compact p-adic
Lie group that is a quotient of GF,S defining an extension F∞, though as we
remark later, we could just as well assume it to be a quotient of Gv. Let T be
a bounded complex of objects in CR−ft

R,Gv
. As before, we let JR denote a complex

of injective R-modules that represents ωR, and we let T ∗ be a quasi-isomorphic
subcomplex of HomR(T, JR) consisting of objects of CR−ft

R,Gv
.

The cup product of Lemma 3.3.3 yields a map

C(Gv,FΓ(T ))⊗R C(Gv,FΓ(T
∗)ι(1)) −→ τII≥2C(Gv ,Λ⊗R JR(1))

of Λ⊗RΛ◦-modules. Taking adjoints, we have the following maps of complexes
of Λ-modules and Λ◦-modules, respectively:

C(Gv,FΓ(T )) −→ HomΛ◦

(
C(Gv,FΓ(T

∗)ι(1)), τII≥2C(Gv,Λ⊗R JR(1))
)
,

C(Gv,FΓ(T
∗)ι(1)) −→ HomΛ

(
C(Gv,FΓ(T )), τ

II
≥2C(Gv,Λ⊗R JR(1))

)
.

From now on, we use M∨ to denote the Pontryagin dual of a locally compact
abelian group M . We have the following analogue of [Nek, (5.2.1)].

Lemma 4.2.1. Let A be a bounded complex in CΛ
◦−ft

Λ−Λ with terms that are flat
as R-modules. Then there exists a quasi-isomorphism

qA : (A⊗R JR)[−2] −→ τII≥2C(Gv, A⊗R JR(1)),

natural in A, of chain complexes of Λ⊗R Λ◦-modules.

Proof. We first note that if M is any finitely generated R-module with a triv-
ial action of Gv, then Tate local duality as in [Lim2, Theorem 4.1.2] yields
isomorphisms

H2(Gv, A⊗R M(1)) ∼= H0(Gv, (A⊗R M)∨)∨ ∼= A⊗R M,

of Λ ⊗R Λ◦-modules. Now suppose that M is any (ind-admissible) R[Gv]-
module with trivial Gv-action, and writeM =

⋃
Mα, where theMα are finitely

generated R-submodules of M . Since the terms of A are R-flat, Ai ⊗R M is
the union of the Ai ⊗R Mα for any i ∈ Z, so

H2(Gv, A⊗R M(1)) ∼= lim
−→

H2(Gv, A⊗R Mα(1)) ∼= lim
−→

A⊗R Mα
∼= A⊗R M.
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AsGv is of p-cohomological dimension 2, we therefore have a quasi-isomorphism

A⊗R M [−2] −→ τII≥2C(Gv, A⊗R M(1)),

of complexes of Λ ⊗R Λ◦-modules. The case of a bounded complex M of
ind-admissible R-modules, e.g. M = JR, then follows easily. Naturality is
immediate from the construction.

Combining Lemma 4.2.1 for A = Λ with the morphisms constructed above
and passing to the derived category, we obtain morphisms as in the following
theorem.

Theorem 4.2.2. Let T be a bounded complex in CR−ft
R,Gv

. Then the morphisms

RΓ(Gv,FΓ(T )) −→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ ⊗L

R ωR

)
[−2]

RΓ(Gv,FΓ(T
∗)ι(1)) −→ RHomΛ

(
RΓ(Gv,FΓ(T )),Λ⊗

L

R ωR

)
[−2]

in DΛ−ft(ModΛ) and DΛ−ft(ModΛ◦), respectively, are isomorphisms.

Over the course of the next two subsections, we will show that the first of the
morphisms of Theorem 4.2.2 is an isomorphism. The proof that the second is
an isomorphism is completely analogous. By an argument similar to that in
[Nek, Lemma 5.2.5], it suffices to prove the theorem for a particular translate
of the dualizing complex. In view of this, we will assume that our choice of the
dualizing complex satisfies [Nek, (2.5)(i)] throughout the next two subsections.

Remark 4.2.3. In the setting that F is a nonarchimedean local field of charac-
teristic not equal to p, that F∞ is any p-adic Lie extension of F , and that T is
a bounded complex of objects in CR−ft

R,GF
, the argument we are about to describe

also carries over as in Remark 4.1.5 to prove the direct analogue of Theorem
4.2.2 with Gv replaced by GF .

4.3 Change of rings

Recall that R is a complete commutative local Noetherian ring with maximal
idealm and finite residue field k. In this subsection, we shall show that it suffices
to prove Theorem 4.2.2 for any complete commutative local Noetherian ring
S that has R as a quotient. (In this subsection only, S denotes such a ring,
rather than the set of primes chosen above, which is used only implicitly.)
We suppose given a surjection ψ : S → R, which necessarily induces an isomor-
phism on residue fields. We use mS to denote the maximal ideal of S, and we
set

d = dimk mS/m
2
S − dimk m/m

2.

Note that if A is any complex of S-modules, then HomS(R,A) is isomorphic
to the subcomplex of A with terms the torsion submodules under kerψ. In
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particular, if B is a complex of R-modules, then the resulting inclusion map
induces an isomorphism

HomR(B,HomS(R,A))
∼
−→ HomS(B,A),

as is easy enough to see by the usual adjointness principle. In particular, we
have

HomR(B,R
∨)

∼
−→ HomS(B,S

∨).

With this comparison of Matlis duals with respect to R and S in hand, we
now compare Grothendieck duals with respect to these rings (see also [Har2]).
For this, we choose particular dualizing complexes JR and JS of injectives as
follows. Let x̄1, . . . , x̄r ∈ m with images forming a k-basis of m/m2. Recall (cf.
[Nek, Section 0.4]) that we may take JR to be the Matlis dual of CR[r], where
CR is defined to be the complex

[
R −→

⊕

i

Rx̄i
−→

⊕

i<j

Rx̄ix̄j
−→ · · · −→ Rx̄1···x̄r

]

in degrees [0, r], with the usual Čech differentials, which is to say that

JR = HomR(CR[r], R
∨).

Note that JR is a complex of R-injectives by the R-flatness of the terms of CR

and the R-injectivity of R∨.
We lift x̄1, . . . , x̄r to elements x1, . . . , xr of mS and extend to a sequence
x1, . . . , xs such that the images of x1, . . . , xs form a basis of mS/m

2
S and the

elements xr+1, . . . , xs map trivially to m/m2. Modifying each xi with i > r
by an element of m2

S if necessary, we may choose these elements so that they
in fact map trivially to m. We use this sequence to define CS , and we set
JS = HomS(CS [s], S

∨).

Lemma 4.3.1. Let T be a bounded complex in CR−ft
R,Gv

, which we view also as a

complex in CS−ft
S,Gv

via ψ. Then ψ induces a natural map JR → JS [d] and in
turn an isomorphism

HomR(T, JR)
∼
−→ HomS(T, JS)[d]

of complexes in IS,Gv
.

Proof. The natural map CS → CR factors through an isomorphism R⊗SCS
∼
−→

CR. This induces an isomorphism

JR
∼
−→ HomS(R, JS)[d],

which is given by the following composition of isomorphisms

HomR(CR[r], R
∨)

∼
−→ HomS(CR[r], S

∨)
∼
−→ HomS(R⊗S CS [r], S

∨)
∼
−→ HomS(R,HomS(CS [r], S

∨))
∼
−→ HomS(R,HomS(CS [s], S

∨))[d],
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where the latter natural map is defined as in [Nek, (1.2.15)] (noting [Nek,
(1.2.5)]). The result then follows from the isomorphisms

HomR(T, JR)
∼
−→ HomR(T,HomS(R, JS))[d]

∼
−→ HomS(T, JS)[d].

We now proceed to the reductive step.

Proposition 4.3.2. Let T be a bounded complex in CR−ft
R,Gv

. Setting Ω = SJΓK,
there is a commutative diagram of natural morphisms

RΓ(Gv,FΓ(T )) //

≀

��

RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ⊗L

R ωR

)
[−2]

≀

��

RΓ(Gv,Ωχ ⊗S T ) // RHomΩ◦

(
RΓ(Gv, χΩ⊗S T

∗(1)),Ω⊗L

S ωS[d]
)
[−2]

in which the horizontal morphisms are as in Theorem 4.2.2 and the vertical
arrows are isomorphisms in D(ModΩ). In particular, Theorem 4.2.2 holds for
R if it holds for S.

Proof. Note that we have

Ωχ ⊗S T ∼= Λχ ⊗R T (resp., χΩ⊗S T
∗ ∼= χΛ⊗R T

∗)

so RΓ(Gv,FΓ(T )) (resp., RΓ(Gv,FΓ(T
∗)ι(1))) is the same complex for R and

for S. By Lemma 4.3.1, and employing the S-flatness of Ω in applying Lemma
2.1.7, we have canonical isomorphisms

Λ⊗R JR
∼
−→ Ω⊗S JR

∼
−→ Ω⊗S HomS(R, JS)[d]

∼
−→ HomS(R,Ω⊗S JS)[d],

of complexes of Ω◦ ⊗S R ∼= Λ◦-modules, and the composition of the composite
isomorphism with the natural inclusion

HomS(R,Ω⊗S JS)[d] −→ Ω⊗S JS [d]

induces the right-hand vertical map in the proposition. That the diagram
commutes then follows directly from the definition of the cup product in Lemma
3.3.3.
Let us fix a quasi-isomorphism ι : Ω⊗S JS → K, where K is a bounded below
complex of injective Ω◦-modules. We check that the map

ιR : HomS(R,Ω⊗S JS) −→ HomS(R,K)

induced by ι is a quasi-isomorphism, which implies that HomS(R,Ω ⊗S JS)
represents RHomS(R,Ω⊗

L

S ωS) in D(ModΛ◦). Let ε : P → R be a resolution of
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R by a complex P of finitely generated free S-modules. We have a commutative
diagram

Ω⊗S HomS(R, JS)
φR

//

id⊗ε∗J
��

HomS(R,Ω⊗S JS)
ιR

//

ε∗Ω⊗J

��

HomS(R,K)

ε∗K
��

ψR
// HomΩ◦(Ω⊗S R,K)

(id⊗ε)∗K
��

Ω⊗S HomS(P, JS)
φP

// HomS(P,Ω⊗S JS)
ιP

// HomS(P,K)
ψP

// HomΩ◦(Ω⊗S P,K)

in which the vertical maps are all induced by ε. Moreover, note that the
upper horizontal morphisms are of complexes of Λ◦-modules and the others
are of complexes of Ω◦-modules. The maps φP and φR are isomorphisms, and
the map id ⊗ ε∗J is a quasi-isomorphism by the S-injectivity of JS and the S-
flatness of Ω, so ε∗Ω⊗J is also a quasi-isomorphism. The maps ψR and ψP are
isomorphisms by the usual adjointness of Hom and the tensor product, and the
map (id ⊗ ε)∗K is a quasi-isomorphism by the Ω◦-injectivity of K, so ε∗K is a
quasi-isomorphism as well. Finally, the map ιP is a quasi-isomorphism by the
S-projectivity of P , and it follows that ιR is a quasi-isomorphism.
To finish the proof, we need only show that the morphism

RHomΛ◦

(
X,RHomS(R,Ω⊗

L

S ωS)
)
−→ RHomΩ◦(X,Ω⊗L

S ωS)

is an isomorphism for X = C(Gv,FΓ(T
∗)ι(1)) . It is easy to see that

HomS(R,K) is a complex of injective Λ◦-modules. Moreover, every Ω◦-
homomorphism from the complex X of Λ◦-modules to K must factor through

HomΩ◦(Λ,K) ∼= HomΩ◦(Ω⊗S R,K) ∼= HomS(R,K)

of K, so the map

HomΛ◦(X,HomS(R,K)) −→ HomΩ◦(X,K)

induced by inclusion is an isomorphism, as desired.

4.4 Duality over flat Zp-algebras

In this subsection, we will prove Theorem 4.2.2. As remarked in the proof
of Proposition 3.0.1, every complete commutative Noetherian local ring with
finite residue field of characteristic p is a quotient of a power series ring in
finitely many variables over an unramified extension of Zp. Proposition 4.3.2
then allows us to reduce Theorem 4.2.2 to the case of such power series rings.
We therefore can and do assume that R is Zp-flat throughout this subsection.
We will require a bit more general of a derived adjoint map than the one we
wish to prove is an isomorphism. The construction is found in the following
easy lemma.

Lemma 4.4.1. Let A be a bounded complex of R-flat objects in CΛ
◦−ft

Λ−Λ . Then
we have a morphism

RΓ(Gv, A⊗Λ FΓ(T )) −→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)), A⊗L

R ωR

)
[−2]
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in D(ModΛ) that is natural in the complex A.

Proof. This is simply the derived adjoint of the composition of the cup product
in Lemma 3.3.3 with the map to the truncation τII≥2C(Gv, A⊗RJR(1)), which is
quasi-isomorphic to (A⊗R JR)[−2] by Lemma 4.2.1. Naturality is immediate.

We will mostly be interested in complexes of length 2, so we introduce the
following notation. Suppose that B is an object in CΛ

◦−ft
Λ−Λ and that A is a

subobject of B, which is to say that it is a closed Λ ⊗̂R Λ◦-submodule with the
subspace topology. Then for any bounded complex T of objects in CR−ft

R,Gv
, we

define a complex
FB/A(T ) = [A→ B]⊗Λ FΓ(T ),

of objects in CΛ,Gv
, where A and B are in degree -1 and 0 respectively.

Let I = I(Γ) denote the augmentation ideal of Λ. We then have the following
lemmas. Recall for the first that we assume that R is Zp-flat in this subsection.

Lemma 4.4.2. The following statements hold for any n ≥ 0.

(a) The ideal In is a flat R-module.

(b) The module In/In+1 is finitely generated and of finite projective dimen-
sion over R.

Proof. (a) Suppose first that Γ is finite, and let I denote the augmentation
ideal in Zp[Γ]. As Zp[Γ] is finitely generated and free over Zp, so is In. Since
R is Zp-flat, the natural surjection R ⊗Zp

In → In is an isomorphism, and
therefore In is free over R.
In the general case, Γ ∼= lim

←−
Γ′, where Γ′ runs over the Galois groups of the

finite Galois extensions of F in F∞, and In is the inverse limit of the nth
powers of the augmentation ideals I(Γ′) of the R[Γ′]. As I(Γ′)n ∼= In⊗ΛR[Γ

′],
an application of Lemma 2.4.2 yields an isomorphism

In ⊗R B
∼
−→ lim
←−
Γ′

(I(Γ′)n ⊗R B)

for any ideal B of R. The left exactness of the inverse limit and the R-flatness
of I(Γ′)n then imply that the canonical map In ⊗R B → In is an injection,
proving the flatness of In.

(b) Let I denote the augmentation ideal in ZpJΓK. For each n, the composition

R ⊗̂Zp
In −→ R ⊗̂Zp

ZpJΓK
∼
−→ RJΓK

induces a surjection R ⊗̂Zp
In ։ In that fits into the following commutative

diagram with exact rows:

R ⊗̂Zp
In+1

����

// R ⊗̂Zp
In

����

// R ⊗̂Zp
(In/In+1)

��

// 0

0 // In+1 // In // In/In+1 // 0.
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Since the two vertical maps on the left are surjections, so is the one on the
right. Note that In/In+1 is a quotient of nth tensor power of the maximal
abelian pro-p quotient of Γ, a finitely generated Zp-module. Therefore, the
existence of the above surjection implies that In/In+1 is finitely generated
over R. To see that the last assertion holds, we note that it follows from
(a) that In/In+1 has finite flat dimension. Since flat dimension coincides with
projective dimension for every finitely generated module over a Noetherian ring
(see [Wei, Proposition 4.1.5]), we have our assertion.

Lemma 4.4.3. Let T be a bounded complex of objects in CR−ft
R,Gv

. Then we have
a quasi-isomorphism

Cone
(
FIn/In+1(T ) −→ FΛ/In+1(T )

)
∼
−→ FΛ/In(T )

of complexes in CΛ−ft
Λ,Gv

. Moreover, we have an exact triangle

In/In+1 ⊗L

R ωR −→ Λ/In+1 ⊗L

R ωR −→ Λ/In ⊗L

R ωR

in Db(ModΛ⊗RΛ◦).

Proof. Since the powers of I are R-flat by Lemma 4.4.2(a), it suffices in both
cases to show that there is a quasi-isomorphism

Cone
(
[In+1 → In] −→ [In+1 → Λ]

) ∼
−→ [In → Λ].

Note that the latter cone is precisely the complex

In+1 f
−→ In+1 ⊕ In

g
−→ Λ,

where f(x) = (x,−x) and g(x, y) = x + y for x ∈ In+1 and y ∈ In. One can
now easily check that the diagram

In+1

��

f
// In+1 ⊕ In

ν

��

g
// Λ

0 // In // Λ

commutes, where ν is given by ν(x, y) = x + y for x ∈ In+1 and y ∈ In, and
the vertical maps induce isomorphisms on cohomology.

We are now able to prove the following proposition, which is an important
ingredient in the proof of Theorem 4.2.2.
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Proposition 4.4.4. Let T be a bounded complex of objects in CR−ft
R,Gv

. Then we
have the following morphism of exact triangles

RΓ(Gv ,FIn/In+1(T ))

��

// RHomΛ◦

(

RΓ(Gv,FΓ(T
∗)ι(1)), In/In+1

⊗
L

R ωR
)

[−2]

��

RΓ(Gv,FΛ/In+1(T ))

��

// RHomΛ◦

(

RΓ(Gv ,FΓ(T
∗)ι(1)),Λ/In+1

⊗
L

R ωR
)

[−2]

��

RΓ(Gv,FΛ/In (T )) // RHomΛ◦

(

RΓ(Gv,FΓ(T
∗)ι(1)),Λ/In ⊗

L

R ωR
)

[−2]

in D(ModΛ).

Proof. By Lemma 4.4.2(a), we see that In/In+1 ⊗L

R ωR and Λ/In ⊗L

R ωR are
represented by [In+1 → In]⊗RJR and [In → Λ]⊗RJR respectively. Therefore,
the commutativity of the diagram in the proposition follows from the naturality
in Lemma 4.4.1. By Lemma 4.4.3, both columns are exact triangles.

We now describe the idea of the proof of Theorem 4.2.2. We shall first prove
that the morphism

RΓ(Gv,FΛ/In(T )) −→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ/In ⊗L

R ωR

)
[−2]

is an isomorphism for all n. Then, Theorem 4.2.2 will follow from this by a
limit argument. To show that above morphism is an isomorphism, we will
utilize Proposition 4.4.4. Note that if any two of the horizontal morphisms in
Proposition 4.4.4 is a quasi-isomorphism, so is the third one. Therefore, by an
inductive argument, we are reduced to showing that the morphism

RΓ(Gv,FIn/In+1(T ))→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)), In/In+1⊗L

R ωR

)
[−2]

is an isomorphism for all n ≥ 0.
Note that Γ acts trivially on In/In+1. Therefore, one may view In/In+1 as
a Λ◦-module via the augmentation map Λ → R. We now have the following
lemma.

Lemma 4.4.5. Let T be a bounded complex of objects in CR−ft
R,Gv

. Then we have
the following isomorphisms

FIn/In+1(T )
∼
←− In/In+1 ⊗̂L

Λ FΓ(T )
∼
−→ In/In+1 ⊗̂L

R T

in Db(CΛ,Gv
). Therefore, we have an isomorphism

RΓ(Gv,FIn/In+1(T ))
∼
−→ RΓ(Gv, I

n/In+1 ⊗̂L

R T )

in D(ModΛ).
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Proof. Let P be a resolution of In/In+1 consisting of projective objects in
CΛ−Λ. Then there is a quasi-isomorphism P → [In+1 → In] of complexes in
CΛ−Λ which lifts the identity map on In/In+1. By Lemmas 2.4.3 and 4.4.2(a)
this induces a quasi-isomorphism

P ⊗Λ Λχ ⊗R T −→ [In+1 → In]⊗Λ Λχ ⊗R T

of bounded above complexes in CΛ,Gv
, proving the first isomorphism. The

second isomorphism is a special case of Lemma 3.1.6 with N = In/In+1 and
Γ′ trivial. Note that both quasi-isomorphisms of complexes factor through a
quasi-isomorphic truncation of P ⊗Λ Λχ ⊗R T , so they may be seen in the
bounded derived category.

Lemma 4.4.6. For each n, there is a commutative diagram

In/In+1
⊗

L

R RΓ(Gv , T )

≀

��

// In/In+1
⊗

L

R RHomR

(

RΓ(Gv , T
∗(1)), ωR

)

[−2]

≀

��

RΓ(Gv , I
n/In+1

⊗̂
L

R T )

≀

��

// RHomR

(

RΓ(Gv, T
∗(1)), In/In+1

⊗
L

R ωR
)

[−2]

≀

��

RHomR

(

RΓ(Gv,FΓ(T
∗)ι(1))⊗L

Λ R, In/In+1
⊗

L

R ωR
)

[−2]

≀

��

RΓ(Gv,FIn/In+1(T )) // RHomΛ◦

(

RΓ(Gv ,FΓ(T
∗)ι(1)), In/In+1

⊗
L

R ωR
)

[−2],

where the vertical morphisms are isomorphisms in D(ModR).

Proof. By Lemma 4.4.2(b), we may choose a bounded resolution Q of In/In+1

by finitely generated projective R-modules. By [Nek, Proposition 3.4.4], we
have an isomorphism of complexes

α : Q⊗R C(Gv, T )
∼
−→ C(Gv, Q⊗R T )

that fits into the commutative diagram

Q⊗R C(Gv, T )⊗R C(Gv , T
∗(1))

α⊗id

��

// Q⊗R C(Gv, JR(1))

α′

��

C(Gv , Q⊗R T )⊗R C(Gv , T
∗(1)) // C(Gv, Q⊗R JR(1)),

where α′ is defined analogously to α and is also an isomorphism. Since JR is a
bounded complex of R-injectives, we may find homotopy inverses to the quasi-
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isomorphisms qR and qQ of Lemma 4.2.1 that fit in a commutative diagram

Q ⊗R C(Gv, JR(1))

α′

��

// Q⊗R τ
II
≥2C(Gv, JR(1))

��

// Q⊗R JR[−2]

C(Gv , Q⊗R JR(1)) // τII≥2C(Gv, Q⊗R JR(1)) // Q⊗R JR[−2].

We obtain the top commutative square in the lemma and the fact that the
vertical morphisms therein are isomorphisms, the one on the right by Lemma
2.1.8 and [Nek, Proposition 4.2.3].
Let P be a resolution of In/In+1 consisting of finitely generated projective Λ◦-
modules. We may view Q as a resolution of Λ◦-modules via the augmentation
map Λ→ R. Then, by Proposition 2.4.6, the map

P ⊗Λ FΓ(T ) = P ⊗Λ Λχ ⊗R T −→ Q⊗Λ Λχ ⊗R T ∼= Q⊗R T

is a quasi-isomorphism of complexes of objects in CR,Gv
, and we let f denote

its induced map on cochains. Let L be a resolution of R consisting of finitely
generated projective Λ-modules. Then, by an opposite version of Theorem
3.1.8, we have a quasi-isomorphism

g : C(Gv,FΓ(T
∗)ι(1))⊗Λ L −→ C(Gv, T

∗(1))

of complexes of R-modules. Noting Lemma 3.3.3, we have a commutative
diagram

C(Gv, P ⊗Λ FΓ(T ))⊗R C(Gv,FΓ(T
∗)ι(1))⊗Λ L

f⊗g
��

// C(Gv, P ⊗R JR(1))⊗Λ L

ε

��

C(Gv, Q⊗R T )⊗R C(Gv, T
∗(1)) // C(Gv , Q⊗R JR(1)),

where ε is induced by the augmentation L→ R and the map P → Q.
Taking adjoints and applying the homotopy inverse to qQ as above, we obtain
the commutative diagram

C(Gv, Q⊗R T ) // HomR

(

C(Gv, T
∗(1)), Q⊗R JR

)

[−2]

��

C(Gv, P ⊗Λ FΓ(T ))

OO

// HomR

(

C(Gv,FΓ(T
∗)ι(1))⊗Λ L,Q⊗R JR

)

[−2]

≀

��

C(Gv, P ⊗Λ FΓ(T )) // HomΛ◦

(

C(Gv,FΓ(T
∗)ι(1)),HomR(L,Q⊗R JR)

)

[−2],

which yields upon passage to the derived category the lower part of the di-
agram in the statement of the lemma, the vertical morphisms therein being
isomorphisms by Theorem 3.1.8, Lemma 4.4.5 and Lemma 2.1.6.
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Lemma 4.4.7. The morphisms

RΓ(Gv,FIn/In+1(T ))→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)), In/In+1⊗L

R ωR

)
[−2]

in D(ModΛ) are isomorphisms for every n ≥ 0.

Proof. By Corollary 2.1.3, it suffices to show that the above morphism is an
isomorphism in D(ModR). The morphism

RΓ(Gv, T ) −→ RHomR

(
RΓ(Gv, T

∗(1)), ωR

)
[−2]

in D(ModR) is an isomorphism by [Nek, Proposition 5.2.4(ii)], and so the
top morphism of the diagram in Lemma 4.4.6 is an isomorphism. Since all the
vertical morphisms in the diagram are isomorphisms, it follows that the bottom
morphism is also an isomorphism, as required.

Proposition 4.4.8. The morphisms

RΓ(Gv,FΛ/In(T )) −→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ/In ⊗L

R ωR

)
[−2]

in D(ModΛ) are isomorphisms for every n ≥ 1.

Proof. As seen in the above discussion, the preceding lemma allows us to per-
form an inductive argument using the morphism of exact triangles in Proposi-
tion 4.4.4 to obtain the required conclusion.

We finish the proof of Theorem 4.2.2 by passing to the inverse limit.

Proof of Theorem 4.2.2. By Remark 4.1.4, there exists a quasi-isomorphism

W −→ C(Gv,FΓ(T
∗)ι(1))

with W a bounded above complex of finitely generated projective Λ◦-modules.
Since JR has cohomology groups which are finitely generated over R, Lemma
2.3.1 implies the existence of a subcomplex C of JR such that C is a com-
plex of finitely generated R-modules and the inclusion i : C →֒ JR is a quasi-
isomorphism. We fix such a C and write Xn for [In → Λ]. The complex
HomΛ◦(W,Xn ⊗R C) represents

RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ/In ⊗L

R ωR

)
,

and HomΛ◦(W,Λ⊗R C) represents

RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ ⊗L

R ωR

)
,
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since Xn is a complex of flat R-modules by Lemma 4.4.2(a). Now, for each n,
we have a commutative diagram

RΓ(Gv,FΓ(T ))

��

// RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ⊗L

R ωR

)
[−2]

��

RΓ(Gv,FΛ/In(T )) // RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ/In ⊗L

R ωR

)
[−2]

which induces a commutative diagram

Hi(Gv,FΓ(T ))

��

// H2−i(HomΛ◦(W,Λ⊗R C))

��

Hi(Gv,FΛ/In(T )) // H2−i(HomΛ◦(W,Xn ⊗R C))

of cohomology groups. Since the maps in this diagram are compatible as we
vary n, we obtain the commutative diagram

Hi(Gv,FΓ(T ))

��

// H2−i(HomΛ◦(W,Λ⊗R C))

��

lim
←−
n

Hi(Gv,FΛ/In(T )) // lim
←−
n

H2−i(HomΛ◦(W,Xn ⊗R C)).

It remains to show that the upper horizontal map in the latter diagram is an
isomorphism. By Proposition 4.4.8, we know that the lower horizonal map is
one. Noting that the maps Xn+1⊗RC → Xn⊗RC are injections of complexes
with intersection Λ⊗R C over all n, we have an isomorphism

lim
←−
n

HomΛ◦(W,Xn ⊗R C) ∼= HomΛ◦(W,Λ⊗R C)

of complexes of finitely generated Λ-modules. Since inverse limits are exact for
finitely generated Λ-modules (being that they are compact), after taking coho-
mology groups, we have that the vertical map on the right is an isomorphism.
On the other hand, we also have an isomorphism

lim
←−
n

(Xn ⊗Λ FΓ(T )) ∼= FΓ(T )

of complexes of objects in CΛ−ft
Λ,Gv

and hence an isomorphism

lim
←−
n

C(Gv, Xn ⊗Λ FΓ(T )) ∼= C(Gv ,FΓ(T )).
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By [Lim2, Proposition 3.2.13], we then have

lim
←−
n

Hj(Gv, Xn ⊗Λ FΓ(T )) ∼= Hj(Gv,FΓ(T )).

Therefore, the vertical map on the left is also an isomorphism. Hence, the top
map is an isomorphism, as required.

4.5 Duality over global fields

We end this paper by describing the global analog of Theorem 4.2.2 that is our
main result. Let T be a bounded complex of objects in CR−ft

R,GF,S
, and we choose

T ∗ in CR−ft
R,GF,S

as in Section 3.3. As in [Nek, (5.3.3)], we define two morphisms
of complexes of Λ⊗R Λ◦-modules

c∪ : C(c)(GF,S ,FΓ(T ))⊗R C(GF,S ,FΓ(T
∗)ι(1))→ C(c)(GF,S ,Λ⊗R JR(1))

∪c : C(GF,S ,FΓ(T ))⊗R C(c)(GF,S ,FΓ(T
∗)ι(1))→ C(c)(GF,S ,Λ⊗R JR(1))

which are given by the formulas

(a, aS) c∪ b = (a ∪ b, aS ∪S resS(b))

a ∪c (b, bS) = (a ∪ b, (−1)ā resS(a) ∪S bS),

where ā denotes the degree of a, the direct sum of the restrictions to the primes
in S is denoted resS , the symbol ∪ is the total cup product

C(GF,S ,FΓ(T ))⊗R C(GF,S ,FΓ(T
∗)ι(1)) −→ C(GF,S ,Λ⊗R JR(1))

of Lemma 3.3.3, and ∪S is the direct sum of the corresponding local cup prod-
ucts. Much as in Lemma 4.2.1 (but now analogously to [Nek, Lemma 5.7.3]),
we have a quasi-isomorphism

Λ⊗R JR −→ τII>3C(c)(GF,S ,Λ⊗R JR(1))

of complexes of Λ⊗RΛ◦-modules, which allows us to use adjoints to define the
morphisms in the following theorem.

Theorem 4.5.1. Let T be a bounded complex of objects in CR−ft
R,GF,S

. Then we
have an isomorphism

RΓ(c)(GF,S ,FΓ(T ))
∼

//

��

RHomΛ◦

(
RΓ(GF,S,FΓ(T

∗)ι(1)),Λ ⊗L

R ωR

)
[−3]

��

RΓ(GF,S ,FΓ(T ))
∼

//

��

RHomΛ◦

(
RΓ(c)(GF,S ,FΓ(T

∗)ι(1)),Λ⊗L

R ωR

)
[−3]

��⊕

v∈S

RΓ(Gv,FΓ(T ))
∼

//
⊕

v∈S

RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ⊗L

R ωR

)
[−2]

of exact triangles in DΛ−ft(ModΛ).
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Proof. The morphism of exact triangles can be constructed as in [Lim2, The-
orem 4.2.6]. We remark that it suffices to prove that any two of the three hor-
izontal morphisms is an isomorphism, and we focus on the second and third.
By an analogous result to Proposition 4.3.2, we may assume that R is regular
and Zp-flat. That the second of the morphisms is an isomorphism follows as
in proof of Theorem 4.2.2. In fact, aside from the obvious changes of notation
for cochains and other objects, there are no significant changes to the proof.
As for the third, note that for a nonarchimedean prime v in S, the map

τII≥2C(Gv,Λ⊗R JR(1)) −→ τII≥2

(
C(c)(GF,S ,Λ⊗R JR(1))[1]

)

is a quasi-isomorphism that induces the identity maps on the cohomology
groups of each complex. Under this identification, the map on the v-summand
in the lower horizontal morphism in the statement is exactly the first isomor-
phism of Theorem 4.2.2.

It remains to prove that, for a real place v, the morphisms

RΓ(Gv,FΓ(T )) −→ RHomΛ◦

(
RΓ(Gv,FΓ(T

∗)ι(1)),Λ ⊗L

R ωR

)
[−2]

are isomorphisms in DΛ−ft(ModΛ). There are two cases: either v extends to a
complex place or splits completely in F∞. However, if v becomes complex, then
both Ĉ(Gv,FΓ(T )) and Ĉ(Gv,FΓ(T

∗)ι(1)) are acyclic, and there is nothing
to prove.

If v splits completely in F∞, then the adjoint map of interest is identified (as
in the proof of Proposition 4.1.1) with

Λ⊗R Ĉ(Gv, T ) −→ HomΛ◦

(
Λ⊗R Ĉ(Gv, T

∗(1)),Λ⊗R JR

)
[−2],

λ⊗ f 7→ (µ⊗ g 7→ λµ⊗ f ∪ g),

where

∪ : Ĉ(Gv, T )⊗R Ĉ(Gv, T
∗(1)) −→ JR[−2]

is given by cup product followed by the maps

Ĉ(Gv, JR(1))→ τII≥2Ĉ(Gv, JR(1))→ τII≥2

(
C(c)(GF,S , JR(1))[1]

)
→ JR[−2],

the latter being a homotopy inverse to the inclusion of complexes.

Suppose now that we have a quasi-isomorphism D → Ĉ(Gv, T
∗(1)) with D

a q-projective complex of finitely generated R-modules. In the commutative
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diagram

HomΛ◦

(
Λ⊗R Ĉ(Gv, T

∗(1)),Λ ⊗R JR

)

≀

��

// HomΛ◦(Λ ⊗R D,Λ⊗R JR)

≀

��

HomR

(
Ĉ(Gv, T

∗(1)),Λ⊗R JR

)

��

// HomR(D,Λ ⊗R JR)

≀

��

Λ⊗R HomR

(
Ĉ(Gv, T

∗(1)), JR

)
// Λ⊗R HomR(D, JR),

of canonical maps, the lower right vertical map is an isomorphism by Lemma
2.1.7 (the terms of D being finitely generated over R), and the lower horizontal
morphism is a quasi-isomorphism by the R-injectivity of the terms of JR and
the R-flatness of Λ. It follows that the derived adjoint morphism is represented
by a morphism

Λ⊗R Ĉ(Gv, T ) −→ Λ⊗R HomR

(
Ĉ(Gv, T

∗(1)), JR

)
[−2]

that by construction takes λ⊗f to λ⊗ (g 7→ f ∪g), which is the tensor product
of the identity map with the derived adjoint that is already known to be a
quasi-isomorphism by [Nek, (5.7.5)].
We are left to construct D, the existence of which is not so obvious as
Ĉ(Gv, T

∗(1)) need not have bounded cohomology. However, as is seen in [Spa,
Lemma 3.3] (see also [Kel, Appendix]), such a complex may be constructed as
a direct limit lim

−→
Dn using maps αn : Dn → Dn+1 that are split injective in

each degree, and where

D0 −→ τII≤0Ĉ(Gv, T
∗(1))

is a quasi-isomorphism from a bounded above complex of finitely generated
R-projectives and En = Dn/αn−1(Dn−1) for n ≥ 1 is chosen to be quasi-
isomorphic to

Cone
(
τII≤n−1Ĉ(Gv, T

∗(1)) −→ τII≤nĈ(Gv, T
∗(1))

)
,

which has bounded, R-finitely generated cohomology. Since R has finite global
dimension, we may choose the En as bounded complexes of finitely generated
projective R-modules such that, for each k, only finitely many Ek

n are nonzero,
which is what was needed.

We end with a straightforward remark.

Remark 4.5.2. There is also an analogous diagram and isomorphisms for the
other adjoint, with morphisms as in the second map in Theorem 4.2.2, and this
follows, for instance, by a nearly identical argument.
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