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Abstract. Magnitude is a real-valued invariant of metric spaces,
analogous to Euler characteristic of topological spaces and cardinality
of sets. The definition of magnitude is a special case of a general
categorical definition that clarifies the analogies between cardinality-
like invariants in mathematics. Although this motivation is a world
away from geometric measure, magnitude, when applied to subsets of
Rn, turns out to be intimately related to invariants such as volume,
surface area, perimeter and dimension. We describe several aspects
of this relationship, providing evidence for a conjecture (first stated
in joint work with Willerton) that magnitude encodes all the most
important invariants of classical integral geometry.
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Introduction

Many mathematical objects carry a canonical notion of size. Sets have cardinal-
ity, vector spaces have dimension, topological spaces have Euler characteristic,
and probability spaces have entropy. This work adds a new item to the list:
metric spaces have magnitude.
Already, several cardinality-like invariants are tied together by the notion of
the Euler characteristic of a category [21]. This is a rational-valued invariant
of finite categories. A network of theorems describes the close relationships
between this invariant and established cardinality-like invariants, including the
cardinality of sets and of groupoids [1], the Euler characteristic of topological
spaces and of posets, and even the Euler characteristic of orbifolds. (That
Euler characteristic deserves to be considered an analogue of cardinality was
first made clear by Schanuel [41, 42].) These results attest that for categories,
Euler characteristic is the fundamental notion of size.
Here we go further. Categories are a special case of the more general concept of
enriched category. Much of ordinary category theory generalizes to the enriched
setting, and this is true, in particular, of the Euler characteristic of categories.
Rebaptizing Euler characteristic as ‘magnitude’ to avoid a potential ambiguity
later, this gives a canonical definition of the magnitude of an enriched category.
Metric spaces, as well as categories, are examples of enriched categories:

(categories) ⊂ (enriched categories) ⊃ (metric spaces)

[19, 20]. The analogy between categories and metric spaces can be understood
in broad terms immediately. A category has objects; a metric space has points.
For any two objects there is a set (the maps between them); for any two points
there is a real number (the distance between them). For any three objects
there is an operation of composition; for any three points there is a triangle
inequality.
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Having generalized the definition of magnitude (or Euler characteristic) from
ordinary to enriched categories, we specialize it to metric spaces. This gives
our invariant. The fundamental role of the Euler characteristic of categories
strongly suggests that the magnitude of metric spaces should play a funda-
mental role too. Our faith is rewarded by a series of theorems showing that
magnitude is intimately related to the classical invariants of integral geometry:
dimension, perimeter, surface area, volume, . . . . This is despite the fact that
no concept of measure or integration goes into the definition of magnitude; they
arise spontaneously from the general categorical definition.

This, then, is part of the appeal of magnitude. It is motivated in abstract terms
that seem to have nothing to do with geometry or measure, and defined in the
very wide generality of enriched categories—yet when specialized to the context
of metric spaces, it turns out to have a great deal to say about geometry and
measure.

There is a further surprise. While the author’s motivation was category-
theoretic, magnitude had already arisen in work on the quantification of bi-
ological diversity. In 1994, Solow and Polasky [44] carried out a probabilistic
analysis of the benefits of high biodiversity, and isolated a particular quantity
that they called the ‘effective number of species’. It is the same as our mag-
nitude. This is no coincidence: the theoretical problem of how to maximize
diversity can be solved using the concept of magnitude and some of the results
presented here [23]. Indeed, under suitable circumstances, magnitude can be
interpreted as maximum diversity, a cousin to maximum entropy.

Our first step is to define the magnitude of an enriched category (Section 1).
This puts the notion of the magnitude of a metric space into a wide mathemati-
cal context, showing how analogous theories can be built in parts of mathemat-
ics far away from metric geometry. The reader interested only in geometry can,
however, avoid these general considerations without logical harm, and begin at
Section 2.

A topological space is not guaranteed to have a well-defined Euler characteristic
unless it satisfies some finiteness condition. Similarly, the magnitude of an
enriched category is defined under an assumption of finiteness; specializing to
metric spaces, the definition of magnitude is just for finite spaces (Section 2).
The magnitude of a finite metric space can be thought of as the ‘effective
number of points’. It deserves study partly because of its intrinsic interest,
partly because of its applications to the measurement of diversity, and partly
because it is used in the theory of magnitude of infinite metric spaces.

While categorical arguments do not (yet) furnish a definition of the magni-
tude of an infinite space, several methods for passing from finite to infinite
immediately suggest themselves. Meckes [31] has shown that they are largely
equivalent. Using the most elementary such method, coupled with some Fourier
analysis, we produce evidence for the following conjectural principle:
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magnitude encodes all the most important invariants of integral geometry

(Section 3). The most basic instance of this principle is the fact that a line
segment of length t has magnitude 1+ t/2, enabling one to recover length from
magnitude. Less basic is the notion of the magnitude dimension of a space A,
defined as the growth of the function t 7→ |tA|; here tA is A scaled up by a factor
of t, and |tA| is its magnitude. We show, for example, that a subset of RN with
nonzero Lebesgue measure has magnitude dimension N . Magnitude dimension
also appears to behave sensibly for fractals: for instance, Theorem 11 of [27]
implies that the magnitude dimension of the ternary Cantor set is the same as
its Hausdorff dimension (namely, log3 2).
It seems, moreover, that for any convex subset A of Euclidean space, all of
the intrinsic volumes of A can be recovered from the function t 7→ |tA|. This
was first conjectured in [27], and appears below as Conjecture 3.5.10. In two
dimensions, the conjectured formula is

|tA| = 1
2π area(A) · t2 + 1

4 perimeter(A) · t+ χ(A).

This resembles the theorem of Willerton [51] that for a compact homogeneous
Riemannian 2-manifold A,

|tA| = 1
2π area(A) · t2 + χ(A) +O(t−2)

as t→ ∞. This in turn resembles the celebrated tube formula of Weyl.
Review sections provide the necessary background on both enriched categories
and integral geometry. No expertise in category theory or integral geometry is
needed to read this paper.

Related work The basic ideas of this paper were first written up in a 2008
internet posting [22]. Several papers have already built on this. Leinster and
Willerton [27] studied the large-scale asymptotics of the magnitude of subsets of
Euclidean space, and stated the conjecture just mentioned. The precise form of
that conjecture was motivated by numerical evidence and heuristic arguments
found by Willerton [50]. Leinster [23] established magnitude as maximum
diversity. Meckes [31] proved, inter alia, the equivalence of several definitions
of the magnitude of compact metric spaces, and by using more subtle analytical
methods than are used here, extended some of the results of Section 3 below.
The magnitude of spheres is especially well understood [27, 51, 31].
In the literature on quantifying biodiversity, magnitude appears not only in
the paper of Solow and Polasky [44], but also in later papers such as [38]. The
approach to biodiversity measurement taken in [26] arose from the theory in
the present paper. This relationship is explored further in [23] and Section 2
of [31].
Geometry as the study of metric structures is developed in the books of Blu-
menthal [4] and Gromov [11], among others; representatives of the theory of
finite metric spaces are [4] and papers of Dress and collaborators [2, 6]. We
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will make contact with the theory of spaces of negative type, which goes back
to Menger [32] and Schoenberg [43]. This connection has been exploited by
Meckes [31]. It is notable that the complete bipartite graph K3,2 appears as a
minimal example in both [2] and Example 2.2.7 below.

Notation Given N ∈ N = {0, 1, 2, . . .}, we write RN for real N -dimensional
space as a set, topological space or vector space—but with no implied choice of
metric except when N = 1. The metric on a metric space A is denoted by d or
dA. We write #X for the cardinality of a finite set X . When C is a category,
C ∈ C means that C is an object of C .

Acknowledgements I have had countless useful conversations on magni-
tude with Mark Meckes and Simon Willerton. Their insights have played a
very important role, and I thank them for it. I also thank John Baez, Neal
Bez, Paul Blackwell, Yemon Choi, Christina Cobbold, David Corfield, Alastair
Craw, Jacques Distler, Joe Fu, Anton Geraschenko, Martin Hyland, David Jor-
dan, André Joyal, Joachim Kock, Christian Korff, Urs Schreiber, Josh Shadlen,
Ivan Smith, David Speyer, and Terry Tao. Two web resources have been crucial
to the progress of this work: The n-Category Café1 and MathOverflow.2 Parts
of this work were carried out at the Centre de Recerca Matemàtica (Barcelona)
and the School of Mathematics and Statistics at the University of Sheffield. I
thank them for their hospitality. This work was supported by an EPSRC Ad-
vanced Research Fellowship.

1 Enriched categories

This section describes the conceptual origins of the notion of magnitude.
We define the magnitude of an enriched category, in two steps. First we assign
a number to every matrix; then we assign a matrix to every enriched category.
We pause in between to recall some basic aspects of enriched category theory:
the definitions, and how a metric space can be viewed as an enriched category.

1.1 The magnitude of a matrix

A rig (or semiring) is a ring without negatives: a set k equipped with a com-
mutative monoid structure (+, 0) and a monoid structure (·, 1), the latter dis-
tributing over the former. For us, rig will mean commutative rig: one whose
multiplication is commutative.
It will be convenient to use matrices whose rows and columns are indexed by
abstract finite sets. Thus, for finite sets I and J , an I × J matrix over a rig k
is a function I ×J → k. The usual operations can be performed, e.g. an H × I
matrix can be multiplied by an I × J matrix to give an H × J matrix. The

1http://golem.ph.utexas.edu/category
2http://mathoverflow.net
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identity matrix is the Kronecker δ. An I × J matrix ζ has a J × I transpose
ζ∗.
Given a finite set I, we write uI ∈ kI for the column vector with uI(i) = 1 for
all i ∈ I.

Definition 1.1.1 Let ζ be an I × J matrix over a rig k. A weighting on ζ is
a column vector w ∈ kJ such that ζw = uI . A coweighting on ζ is a row vector
v ∈ kI such that vζ = u∗J .

A matrix may admit zero, one, or many (co)weightings, but their freedom is
subject to the following constraint.

Lemma 1.1.2 Let ζ be an I × J matrix over a rig, let w be a weighting on ζ,
and let v be a coweighting on ζ. Then

∑

j∈J

w(j) =
∑

i∈I

v(i).

Proof
∑

j w(j) = u∗Jw = vζw = vuI =
∑

i v(i). �

We refer to the entries w(j) ∈ k of a weighting w as weights, and similarly
coweights. The lemma implies that if a matrix ζ has both a weighting and a
coweighting, then the total weight is independent of the weighting chosen. This
makes the following definition possible.

Definition 1.1.3 A matrix ζ over a rig k has magnitude if it admits at least
one weighting and at least one coweighting. Its magnitude is then

|ζ| =
∑

j

w(j) =
∑

i

v(i) ∈ k

for any weighting w and coweighting v on ζ.

We will be concerned with square matrices ζ. If ζ is invertible then there are
a unique weighting and a unique coweighting. (Conversely, if k is a field then
a unique weighting or coweighting implies invertibility.) The weights are then
the sums of the rows of ζ−1, and the coweights are the sums of the columns.
Lemma 1.1.2 is obvious in this case, and there is an easy formula for the
magnitude:

Lemma 1.1.4 Let ζ be an invertible I × I matrix over a rig. Then ζ has
a unique weighting w, given by w(j) =

∑

i ζ
−1(j, i) (j ∈ I), and a unique

coweighting given by the dual formula. Moreover,

|ζ| =
∑

i,j∈I

ζ−1(j, i).

�

Often our matrix ζ will be symmetric, in which case weightings and coweight-
ings are essentially the same.
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1.2 Background on enriched categories

Here we review two standard notions: monoidal category, and category enriched
in a monoidal category.
A monoidal category is a category V equipped with an associative binary oper-
ation ⊗ (which is formally a functor V ×V → V ) and a unit object 1 ∈ V . The
associativity and unit axioms are only required to hold up to suitably coherent
isomorphism; see [28] for details.

Examples 1.2.1 i. V is the category Set of sets, ⊗ is cartesian product
×, and 1 is a one-element set {⋆}.

ii. V is the category Vect of vector spaces over some field K, the product
⊗ is the usual tensor product ⊗K , and 1 = K.

iii. A poset can be viewed as a category in which each hom-set has at most
one element. In particular, consider the poset ([0,∞],≥) of nonnegative
reals together with infinity. The objects of the resulting category are the
elements of [0,∞], there is one map x → y when x ≥ y, and there are
none otherwise. This is a monoidal category with ⊗ = + and 1 = 0.

iv. Let 2 be the category of Boolean truth values [19]: there are two objects,
f (‘false’) and t (‘true’), and a single non-identity map, f → t. Taking
⊗ to be conjunction and 1 = t makes 2 monoidal. Then 2 is a monoidal
subcategory of Set, identifying f with ∅ and t with {⋆}. It is also a
monoidal subcategory of [0,∞], identifying f with ∞ and t with 0.

Let V = (V ,⊗,1) be a monoidal category. The definition of category enriched
in V , or V -category, is obtained from the definition of ordinary category by
asking that the hom-sets are no longer sets but objects of V . Thus, a (small) V -
category A consists of a set obA of objects, an object Hom(a, b) of V for each
a, b ∈ obA, and operations of composition and identity satisfying appropriate
axioms [16]. The operation of composition consists of a map

Hom(a, b)⊗Hom(b, c) → Hom(a, c)

in V for each a, b, c ∈ obA, while the identities are provided by a map 1 →
Hom(a, a) for each a ∈ obA.
There is an accompanying notion of enriched functor. Given V -categories A

and A′, a V -functor F : A → A′ consists of a function obA → obA′, written
a 7→ F (a), together with a map

Hom(a, b) → Hom(F (a), F (b))

in V for each a, b ∈ obA, satisfying suitable axioms [16]. We write V -Cat for
the category of V -categories and V -functors.

Examples 1.2.2 i. Let V = Set. Then V -Cat is the category Cat of
(small) categories and functors.
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ii. Let V = Vect. Then V -Cat is the category of linear categories or
algebroids : categories equipped with a vector space structure on each
hom-set, such that composition is bilinear.

iii. Let V = [0,∞]. Then, as observed by Lawvere [19, 20], a V -category
is a generalized metric space. That is, a V -category consists of a set
A of objects or points together with, for each a, b ∈ A, a real number
Hom(a, b) = d(a, b) ∈ [0,∞], satisfying the axioms

d(a, b) + d(b, c) ≥ d(a, c), d(a, a) = 0

(a, b, c ∈ A). Such spaces are more general than classical metric spaces in
three ways: ∞ is permitted as a distance, the separation axiom d(a, b) =
0 ⇒ a = b is dropped, and, most significantly, the symmetry axiom
d(a, b) = d(b, a) is dropped.

A V -functor f : A → A′ between generalized metric spaces A and A′ is
a distance-decreasing map: one satisfying d(a, b) ≥ d(f(a), f(b)) for all
a, b ∈ A. Hence [0,∞]-Cat is the category MS of generalized metric
spaces and distance-decreasing maps. The isomorphisms in MS are the
isometries.

iv. Let V = 2. A V -category is a set equipped with a preorder (a reflexive
transitive relation), which up to equivalence of V -categories is the same
thing as a poset.

The embedding 2 →֒ Set of monoidal categories induces an embedding
2-Cat →֒ Set-Cat; this is the embedding Poset →֒ Cat of Exam-
ple 1.2.1(iii). Similarly, the embedding 2 →֒ [0,∞] induces an embed-
ding Poset →֒ MS: as observed in [19], a poset can be understood as a
non-symmetric metric space whose distances are all 0 or ∞.

1.3 The magnitude of an enriched category

Here we meet the definition on which the rest of this work is built.
Having already defined the magnitude of a matrix, we now assign a matrix to
each enriched category. To do this, we assume some further structure on the
base category V . In fact, we assume that we have a notion of size for objects
of V . This, then, will lead to a notion of size for categories enriched in V .
Let V be a monoidal category. We will suppose given a rig k and a monoid
homomorphism

| · | : (obV / ∼=,⊗,1) → (k, ·, 1).
(This is, deliberately, the same symbol as for magnitude; no confusion should
arise.) The domain here is the monoid of isomorphism classes of objects of V .

Examples 1.3.1 i. When V is the monoidal category FinSet of finite sets,
we take k = Q and |X | = #X .
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ii. When V is the monoidal category FDVect of finite-dimensional vector
spaces, we take k = Q and |X | = dimX .

iii. When V = [0,∞], we take k = R and |x| = e−x. (If | · | is to be
measurable3 then the only possibility is |x| = Cx for some constant C ≥
0.)

iv. When V = 2, we take k = Z, |f| = 0 and |t| = 1. This is a restriction of
the functions | · | of (i) and (iii) along the embeddings 2 →֒ FinSet and
2 →֒ [0,∞] of Example 1.2.1(iv).

Write V -cat (with a small ‘c’) for the category whose objects are the V -
categories with finite object-sets and whose maps are the V -functors between
them.

Definition 1.3.2 Let A ∈ V -cat.

i. The similarity matrix of A is the obA× obA matrix ζA over k defined
by ζA(a, b) = |Hom(a, b)| (a, b ∈ A).

ii. A (co)weighting on A is a (co)weighting on ζA.

iii. A has magnitude if ζA does; its magnitude is then |A| = |ζA|.

iv. A has Möbius inversion if ζA is invertible; its Möbius matrix is then
µA = ζ−1

A
.

Magnitude is, then, a partially-defined function | · | : V -cat 99K k.

Examples 1.3.3 i. When V = FinSet, we obtain a notion of the magni-
tude |A| ∈ Q of any (suitable) finite category A. This is also called the
Euler characteristic of A and written as χ(A) [21]. There are theorems
relating it to the Euler characteristics of topological spaces, of graphs, of
posets and of orbifolds, the cardinality of sets, and the order of groups.

Very many finite categories have Möbius inversion, or are equivalent to
some category with Möbius inversion; all such categories have Euler char-
acteristic. (This includes all finite posets, groupoids, monoids, categories
containing no nontrivial idempotents, and categories admitting an epi-
mono factorization system.) The Möbius matrix µA is a generalization
of Rota’s Möbius function for posets [40], which in turn generalizes the
classical Möbius function on integers. For details, see [21], and for fur-
ther material on Euler characteristic and Möbius inversion for categories,
see Berger and Leinster [3], Fiore, Lück and Sauer [7, 8], Jacobsen and
Møller [14], Leinster [25], and Noguchi [33, 34, 35, 36].

3I thank Mark Meckes for pointing out that the more obvious hypothesis of continuity
can be weakened to measurability [9]. In fact it suffices to assume that | · | is bounded on
some set of positive measure [18].
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ii. Similarly, taking V = FDVect gives an invariant χ(A) = |A| ∈ Q

of linear categories A with finitely many objects and finite-dimensional
hom-spaces.

iii. Taking V = [0,∞] gives the notion of the magnitude |A| ∈ R of a (gen-
eralized) finite metric space A. This is the main subject of this paper.

iv. Taking V = 2 gives a notion of the magnitude |A| ∈ Z of a finite poset
A. Under the name of Euler characteristic, this goes back to Rota [40];
see [46] for a modern account. It is always defined. Indeed, every poset
has Möbius inversion, and the Möbius matrix is the Möbius function of
Rota mentioned in (i).

We have noted that a poset can be viewed as a category, or alternatively
as a generalized metric space. The three notions of magnitude are com-
patible: the magnitude of a poset is the same as that of the corresponding
category or generalized metric space.

v. Let V be a category of topological spaces in which every object has a
well-defined Euler characteristic (e.g. finite CW-complexes). Taking |X |
to be the Euler characteristic of a space X , we obtain a notion of the
magnitude or Euler characteristic of a topologically-enriched category.

The definition of the magnitude of a V -category A is independent of the com-
position and identities in A, so could equally well be made in the generality
of V -graphs. (A V -graph G is a set obG of objects together with, for each
a, b ∈ obG, an object Hom(a, b) of V .) However, it is not clear that it is
fruitful to do so. Two theorems on the magnitude or Euler characteristic of
ordinary categories illuminate the general situation.
The first, Proposition 2.10 of [21], concerns directed graphs. The Euler charac-
teristic of a category A is not in general equal to the Euler characteristic of its
underlying graph U(A). But the functor U has a left adjoint F , assigning to
a graph G the category F (G) whose objects are the vertices and whose maps
are the paths in G. If G is finite and circuit-free then F (G) is finite, and the
theorem is that χ(F (G)) = χ(G). So the Euler characteristics of categories
and graphs are closely related, but not in the most obvious way.
The second theorem, Proposition 1.5 of [25], concerns the classifying space
|NA| of a category A (the geometric realization of its simplicial nerve NA).
Under a suitable finiteness condition, the topological space |NA| has a well-
defined Euler characteristic, and it is a theorem that χ(|NA|) = χ(A). It fol-
lows that if two categories have the same underlying graph but different compo-
sitions then their classifying spaces, although not usually homotopy equivalent,
have the same Euler characteristic. So if we wish the Euler characteristic of a
category to be defined in such a way that it is equal to the Euler characteristic
of its classifying space, it is destined to be independent of composition.
(At least, this is the case under the finiteness condition concerned. This states
that the simplicial nerve of A contains only finitely many nondegenerate sim-
plices, as in Proposition 2.11 of [21]. In a different setting, with a different
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definition of Euler characteristic, Fiore, Lück and Sauer have found a pair of
finite categories whose underlying graphs are the same but whose Euler char-
acteristics are different: see [7], after Theorem 1.14.)

1.4 Properties

Much of ordinary category theory generalizes smoothly to enriched categories.
This includes many of the properties of the Euler characteristic of cate-
gories [21]. We list some of those properties now, using the symbols V , k
and | · | as in the previous section.

There are notions of adjunction and equivalence between V -categories [16], gen-
eralizing the case V = Set of ordinary categories. We write ≃ for equivalence
of V -categories.

Proposition 1.4.1 Let A,B ∈ V -cat.

i. If there exist adjoint V -functors A ⇄ B, and A and B have magnitude,
then |A| = |B|.

ii. If A ≃ B, and A and B have magnitude, then |A| = |B|.

iii. If A ≃ B and n ·1 ∈ k has a multiplicative inverse for all positive integers
n, then A has magnitude if and only if B does.

Proof Part (i) has the same proof as Proposition 2.4(a) of [21], and part (ii)
follows immediately. Part (iii) has the same proof as Lemma 1.12 of [21]. �

For example, take a generalized metric space A and adjoin a new point at
distance zero from some existing point. Then the new space A′ is equivalent to
A. By Proposition 1.4.1, if A has magnitude then A′ does too, and |A| = |A′|.
On the other hand, the proposition is trivial for classical metric spaces A,B:
if there is an adjunction between A and B (and in particular if A ≃ B) then
in fact A and B are isometric.
So far, we have not used the multiplicativity of the function | · | on objects of
V . We now show that it implies a multiplicativity property of the function | · |
on V -categories.
Assume that the monoidal category V is symmetric, that is, equipped with
an isomorphism X ⊗ Y → Y ⊗ X for each pair X,Y of objects, satisfying
axioms [28]. There is a product on V -Cat, also denoted by ⊗, defined as
follows. Let A,B ∈ V -Cat. Then A ⊗ B is the V -category whose object-set
is obA× obB and whose hom-objects are given by

Hom((a, b), (a′, b′)) = Hom(a, a′)⊗Hom(b, b′).

Composition is defined with the aid of the symmetry [16]. The unit for this
product is the one-object V -category I whose single hom-object is 1 ∈ V .
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Examples 1.4.2 i. When V = Set, this is the ordinary product × of
categories.

ii. There is a one-parameter family of products on metric spaces. For 1 ≤
p ≤ ∞ and metric spaces A and B, let A⊗pB be the metric space whose
point-set is the product of the point-sets of A and B, and whose distances
are given by

d((a, b), (a′, b′)) =

{

(

d(a, a′)p + d(b, b′)p
)1/p

if p <∞
max{d(a, a′), d(b, b′)} if p = ∞.

Then the tensor product ⊗ defined above is ⊗1.

Proposition 1.4.3 Let A,B ∈ V -cat. If A and B have magnitude then so
does A⊗B, with

|A⊗B| = |A||B|.
Furthermore, the unit V -category I has magnitude 1.

Proof As for Proposition 2.6 of [21]. �

Magnitude is therefore a partially-defined monoid homomorphism

| · | : (V -cat/ ≃,⊗, I) 99K (k, ·, 1).

Under mild assumptions, coproducts of V -categories exist and interact well
with magnitude. Indeed, assume that V has an initial object 0, with X ⊗ 0 ∼=
0 ∼= 0 ⊗ X for all X ∈ V . Then for any two V -categories A and B, the
coproduct A + B in V -Cat exists. It is constructed by taking the disjoint
union of A and B and setting Hom(a, b) = Hom(b, a) = 0 whenever a ∈ A and
b ∈ B. There is also an initial V -category ∅, with no objects.
When V = [0,∞], the coproduct of metric spaces A and B is their distant
union, the disjoint union of A and B with d(a, b) = d(b, a) = ∞ whenever
a ∈ A and b ∈ B.
Assume also that |0| = 0, where the 0 on the left-hand side is the initial object
of V . This assumption and the previous ones hold in all of our examples.

Proposition 1.4.4 Let A,B ∈ V -cat. If A and B have magnitude then so
does A+B, with

|A+B| = |A|+ |B|.
Furthermore, the initial V -category ∅ has magnitude 0.

Proof As for Proposition 2.6 of [21]. �

It might seem unsatisfactory that not every V -category with finite object-set
has magnitude. This can be resolved as follows.
Given A ∈ V -cat, there is an evident notion of (co)weighting on A with values
in a prescribed k-algebra. As in Lemma 1.1.2, the total weight is always equal
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to the total coweight. Let R(A) be the free k-algebra containing a weighting
w and a coweighting v for A. Then

∑

a w(a) =
∑

a v(a) = [A], say. This is
always defined, and we may call [A] ∈ R(A) the formal magnitude of A.
A homomorphism φ from R(A) to another k-algebra S amounts to a weighting
and a coweighting for A in S; moreover, φ([A]) ∈ S is independent of the
homomorphism φ chosen. In particular, A has magnitude in the original sense
if and only if there exists a k-algebra homomorphism φ : R(A) → k. In that
case, |A| = φ([A]) for any such φ.
This may lead to a more conceptually satisfactory theory, but at a price: the
magnitudes of different categories lie in different rigs, complicating results such
as those of the present section. In any case, we say no more about this approach.

2 Finite metric spaces

The definition of the magnitude of a finite metric space is a special case of the
definition for enriched categories. Its most basic properties are special cases
of general results. But metric spaces have many features not possessed by
enriched categories in general. By exploiting them, we uncover a geometrically
rich theory.
A crucial feature of metric spaces is that they can be rescaled. When handed a
space, we gain more information about it by considering the magnitudes of its
rescaled brothers and sisters than by taking it in isolation. This information is
encapsulated in the so-called magnitude function of the space.
For some spaces, the magnitude function exhibits wild behaviour: singularities,
negative magnitude, and so on. But for geometrically orthodox spaces such as
subsets of Euclidean space, it turns out to be rather tame. This is because they
belong to the important class of ‘positive definite’ spaces. Positive definiteness
will play a central role when we come to extend the definition of magnitude from
finite to infinite spaces. It is explored thoroughly in the paper of Meckes [31],
who also describes its relationship with the classical notion of negative type.
The term metric space will be used in its standard sense, except that ∞ is per-
mitted as a distance. Many of our theorems do hold for the generalized metric
spaces of Example 1.2.2(iii), with the same proofs; but to avoid cluttering the
exposition, we leave it to the reader to discern which.
Throughout, we use matrices whose rows and columns are indexed by abstract
finite sets (as in Section 1.1). The identity matrix is denoted by δ.

2.1 The magnitude of a finite metric space

We begin by restating the definitions from Section 1, without reference to
enriched categories. Let A be a finite metric space. Its similarity matrix ζA ∈
RA×A is defined by ζA(a, b) = e−d(a,b) (a, b ∈ A). A weighting on A is a
function w : A → R such that

∑

b ζA(a, b)w(b) = 1 for all a ∈ A. The space
A has magnitude if it admits at least one weighting; its magnitude is then
|A| = ∑

a w(a) for any weighting w, and is independent of the weighting chosen.
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Figure 1: The magnitude of a two-point space

A finite metric space A has Möbius inversion if ζA is invertible. Its Möbius
matrix is then µA = ζ−1

A . In that case, there is a unique weighting w given
by w(a) =

∑

b µ(a, b), and |A| = ∑

a,b µA(a, b) (Lemma 1.1.4). A generic real
square matrix is invertible, which suggests that most finite metric spaces should
have Möbius inversion. Proposition 2.2.6(i) makes this precise.
Here are some elementary examples.

Examples 2.1.1 i. The empty space has magnitude 0, and the one-point
space has magnitude 1.

ii. Let A be the space consisting of two points distance d apart. Then

ζA =

(

1 e−d

e−d 1

)

.

This is invertible, so A has Möbius inversion and its magnitude is the
sum of all four entries of µA = ζ−1

A :

|A| = 1 + tanh(d/2)

(Fig. 1). This can be interpreted as follows. When d is small, A closely
resembles a 1-point space; correspondingly, the magnitude is little more
than 1. As d grows, the points acquire increasingly separate identities
and the magnitude increases. In the extreme, when d = ∞, the two
points are entirely separate and the magnitude is 2.

iii. A metric space A is discrete [20] if d(a, b) = ∞ for all a 6= b in A. Let A
be a finite discrete space. Then ζA is the identity matrix δ, each point
has weight 1, and |A| = #A.

The definition of the magnitude of a metric space first appeared in a paper of
Solow and Polasky [44], although with almost no mathematical development.
They called it the ‘effective number of species’, since the points of their spaces
represented biological species and the distances represented inter-species dif-
ferences (e.g. genetic). We can view the magnitude of a metric space as the
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‘effective number of points’. Solow and Polasky also considered the magni-
tude of correlation matrices, making connections with the statistical concept
of effective sample size.
Three-point spaces have magnitude; the formula follows from the proof of
Proposition 2.4.15. Meckes [31, Theorem 3.6] has shown that four-point spaces
have magnitude. But spaces with five or more points need not have magnitude
(Example 2.2.7).
We now describe two classes of space for which the magnitude exists and is
given by an explicit formula.

Definition 2.1.2 A finite metric space A is scattered if d(a, b) > log((#A)−1)
for all distinct points a and b. (Vacuously, the empty space and one-point space
are scattered.)

Proposition 2.1.3 A scattered space has magnitude. Indeed, any scattered
space A has Möbius inversion, with Möbius matrix given by the infinite sum

µA(a, b) =

∞
∑

k=0

∑

a=a0 6=···6=ak=b

(−1)kζA(a0, a1) · · · ζA(ak−1, ak).

The inner sum is over all a0, . . . , ak ∈ A such that a0 = a, ak = b, and aj−1 6= aj
whenever 1 ≤ j ≤ k. That a scattered space has magnitude was also proved
in [27, Theorem 2], by a different method that does not produce a formula for
the Möbius matrix.

Proof Write n = #A. For a, b ∈ A and k ≥ 0, put

µA,k(a, b) =
∑

a=a0 6=···6=ak=b

ζA(a0, a1) · · · ζA(ak−1, ak).

(In particular, µA,0 is the identity matrix.) Write ε = mina 6=b d(a, b). Then

µA,k+1(a, b) =
∑

b′ : b′ 6=b

∑

a=a0 6=···6=ak=b′

ζA(a0, a1) · · · ζA(ak−1, b
′)ζA(b

′, b)

≤
∑

b′ : b′ 6=b

∑

a=a0 6=···6=ak=b′

ζA(a0, a1) · · · ζA(ak−1, b
′)e−ε

= e−ε
∑

b′ : b′ 6=b

µA,k(a, b
′).

The last sum is over (n− 1) terms, so by induction, µA,k(a, b) ≤
(

(n− 1)e−ε
)k

for all a, b ∈ A and k ≥ 0. But A is scattered, so (n − 1)e−ε < 1, so the sum
∑∞

k=0(−1)kµA,k(a, b) converges for all a, b ∈ A. A telescoping sum argument
finishes the proof. �

Definition 2.1.4 A metric space is homogeneous if its isometry group acts
transitively on points.
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Figure 2: tKn,n and its subspace 2tKn, shown for n = 3.

Proposition 2.1.5 (Speyer [45]) Every homogeneous finite metric space
has magnitude. Indeed, if A is a homogeneous space with n ≥ 1 points then

|A| = n2

∑

a,b e
−d(a,b)

=
n

∑

a e
−d(x,a)

for any x ∈ A. There is a weighting w on A given by w(a) = |A|/n for all
a ∈ A.

Proof By homogeneity, the sum S =
∑

a ζA(x, a) is independent of x ∈ A.
Hence there is a weighting w given by w(a) = 1/S for all a ∈ A. �

Example 2.1.6 For any (undirected) graph G and t ∈ (0,∞], there is a metric
space tG whose points are the vertices and whose distances are minimal path-
lengths, a single edge having length t. Write Kn for the complete graph on n
vertices. Then

|tKn| =
n

1 + (n− 1)e−t
.

In general, e−d(a,b) can be interpreted as the similarity or closeness of the points
a, b ∈ A [26, 44]. Proposition 2.1.5 states that the magnitude of a homogeneous
space is the reciprocal mean similarity.

Example 2.1.7 A subspace can have greater magnitude than the whole space.
LetKn,m be the graph with vertices a1, . . . , an, b1, . . . , bm and one edge between
ai and bj for each i and j. If n is large then the mean similarity between two
points of tKn,n is approximately 1

2 (e
−t + e−2t) (Fig. 2). On the other hand,

tKn,n has a subspace 2tKn = {a1, . . . , an} in which the mean similarity is
approximately e−2t. Since e−t > e−2t, the mean similarity between points of
tKn,n is greater than that of its subspace 2tKn; hence |tKn,n| < |2tKn|. In
fact, it can be shown using Proposition 2.1.5 that |tKn,n| < |2tKn| whenever
n > et + 1.
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2.2 Magnitude functions

In physical situations, distance depends on the choice of unit of length; making
a different choice rescales the metric by a constant factor. In the definition of |x|
as e−x (Example 1.3.1(iii)), the constant e−1 was chosen without justification;
choosing a different constant between 0 and 1 also amounts to rescaling the
metric. For both these reasons, every metric space should be seen as a member
of the one-parameter family of spaces obtained by rescaling it.

Definition 2.2.1 Let A be a metric space and t ∈ (0,∞). Then tA denotes
the metric space with the same points as A and dtA(a, b) = tdA(a, b) (a, b ∈ A).

Most familiar invariants of metric spaces behave in a predictable way when
the space is rescaled. This is true, for example, of topological invariants, di-
ameter, and Hausdorff measure of any dimension. But magnitude does not
behave predictably under rescaling. Graphing |tA| against t therefore gives
more information about A than is given by |A| alone.

Definition 2.2.2 Let A be a finite metric space. The magnitude function of
A is the partially-defined function t 7→ |tA|, defined for all t ∈ (0,∞) such that
tA has magnitude.

Examples 2.2.3 i. Let A be the space consisting of two points distance
d apart. By Example 2.1.1(ii), the magnitude function of A is defined
everywhere and given by t 7→ 1 + tanh(dt/2).

ii. Let A = {a1, . . . , an} be a nonempty homogeneous space, and write Ei =
d(a1, ai). By Proposition 2.1.5, the magnitude function of A is

t 7→ n
/

n
∑

i=1

e−Eit.

In the terminology of statistical mechanics, the denominator is the par-
tition function for the energies Ei at inverse temperature t.4

iii. Let R be a finite commutative ring. For a ∈ R, write

ν(a) = min{k ∈ N : ak+1 = 0} ∈ N ∪ {∞}.

There is a metric d on R given by d(a, b) = ν(b − a), and the resulting
metric space AR is homogeneous. Write q = e−t, and Nil(R) for the ideal
of nilpotent elements. By Proposition 2.1.5, AR has magnitude function

t 7→ |tAR| = #R
/

∑

a∈Nil(R)

qν(a) = #R
/

(1−q)
∞
∑

k=0

#{a ∈ R : ak+1 = 0}·qk

where the last expression is an element of the fieldQ((q)) of formal Laurent
series.

4I thank Simon Willerton for suggesting that some such relationship should exist.
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To establish the basic properties of magnitude functions, we need some aux-
iliary definitions and a lemma. A vector v ∈ RI is positive if v(i) > 0 for
all i ∈ I, and nonnegative if v(i) ≥ 0 for all i ∈ I. Recall the definition of
distance-decreasing map from Example 1.2.2(iii).

Definition 2.2.4 A metric space A is an expansion of a metric space B if
there exists a distance-decreasing surjection A→ B.

Lemma 2.2.5 Let A and B be finite metric spaces, each admitting a nonnega-
tive weighting. If A is an expansion of B then |A| ≥ |B|.

Proof Take a distance-decreasing surjection f : A → B. Choose a right
inverse function g : B → A (not necessarily distance-decreasing). Then
ζB(f(a), b) ≥ ζA(a, g(b)) for all a ∈ A and b ∈ B. Let wA and wB be nonnega-
tive weightings on A and B respectively. Then

|A| =
∑

a,b

wA(a)ζB(f(a), b)wB(b) ≥
∑

a,b

wA(a)ζA(a, g(b))wB(b) = |B|,

as required. �

Proposition 2.2.6 Let A be a finite metric space. Then:

i. tA has Möbius inversion (and therefore magnitude) for all but finitely
many t > 0.

ii. The magnitude function of A is analytic at all t > 0 such that tA has
Möbius inversion.

iii. For t≫ 0, there is a unique, positive, weighting on tA.

iv. For t≫ 0, the magnitude function of A is increasing.

v. |tA| → #A as t → ∞.

Proof We use the space RA×A of real A × A matrices, and its open subset
GL(A) of invertible matrices. We also use the notions of weighting on, and
magnitude of, a matrix (Section 1.1). For ζ ∈ GL(A), the unique weighting wζ

on ζ and the magnitude of ζ are given by

wζ(a) =
∑

b∈A

ζ−1(a, b) =
∑

b∈A

(adj ζ)(a, b)/ det ζ, |ζ| =
∑

a∈A

wζ(a) (1)

(a ∈ A), where adj denotes the adjugate.
For (i), first note that ζtA → δ ∈ GL(A) as t → ∞; hence ζtA is invertible
for t ≫ 0. The matrix ζtA = (e−td(a,b)) is defined for all t ∈ C, and det ζtA is
analytic in t. But det ζtA 6= 0 for real t≫ 0, so by analyticity, det ζtA has only
finitely many zeros in (0,∞).
Part (ii) follows from equations (1).
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Figure 3: The magnitude function of the bipartite graph K3,2

For (iii), each of the functions ζ 7→ wζ(a) (a ∈ A) is continuous on GL(A)
by (1). But wδ(a) = 1 for all a ∈ A, so there is a neighbourhood U of δ in
GL(A) such that wζ(a) > 0 for all ζ ∈ U and a ∈ A. Since ζtA → δ as t→ ∞,
we have ζtA ∈ U for all t≫ 0.
Part (iv) follows from part (iii) and Lemma 2.2.5.
For (v), limt→∞ |tA| = | limt→∞ ζtA| = |δ| = #A. �

Part (i) implies that magnitude functions have only finitely many singularities.
Proposition 2.4.17 will provide an explicit lower bound for parts (iii) and (iv).
Part (v) also appeared as Theorem 3 of [27].
Many natural conjectures about magnitude are disproved by the following ex-
ample. Later we will see that subspaces of Euclidean space are less prone to
surprising behaviour.5

Example 2.2.7 Fig. 3 shows the magnitude function of the spaceK3,2 defined
in Example 2.1.7. It is given by

|tK3,2| =
5− 7e−t

(1 + e−t)(1− 2e−2t)

(t 6= log
√
2); the magnitude of (log

√
2)K3,2 is undefined. (One can compute

this directly or use Proposition 2.3.13.) Several features of the graph are appar-
ent. At some scales, the magnitude is negative; at others, it is greater than the
number of points. There are also intervals on which the magnitude function is
strictly decreasing. Furthermore, this example shows that a space with magni-
tude can have a subspace without magnitude: for (log

√
2)K3,2 is a subspace of

(log
√
2)K3,3, which, being homogeneous, has magnitude (Proposition 2.1.5).

5‘Our approach to general metric spaces bears the undeniable imprint of early exposure to
Euclidean geometry. We just love spaces sharing a common feature with Rn.’ (Gromov [11],
page xvi.)
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(The graph K3,2 is also a well-known counterexample in the theory of spaces of
negative type [10]. The connection is explained, in broad terms, by the remarks
in Section 2.4.)

The first example of a finite metric space with undefined magnitude was found
by Tao [48], and had 6 points. The first examples of n-point spaces with magni-
tude outside the interval [0, n] were found by the author and Simon Willerton,
and were again 6-point spaces.

Example 2.2.8 This is an example of a space A for which limt→0 |tA| 6= 1, due
to Willerton (personal communication, 2009). Let A be the graph K3,3 (Fig. 2)
with three new edges adjoined: one from bi to bj whenever 1 ≤ i < j ≤ 3. Then
|tA| = 6/(1 + 4e−t) → 6/5 as t→ 0.

2.3 New spaces from old

For each way of constructing a new metric space from old, we can ask: is the
magnitude of the new space determined by the magnitudes of the old ones?
Here we give a positive answer for four constructions: unions of a particular
type, tensor products, fibrations, and constant-distance gluing.

Unions

Let X be a metric space with subspaces A and B. The magnitude of A ∪B is
not in general determined by the magnitudes of A, B and A∩B: consider one-
point spaces. In this respect, magnitude of metric spaces is unlike cardinality of
sets, for which there is the inclusion-exclusion formula. We do, however, have
an inclusion-exclusion formula for magnitude when the union is of a special
type.

Definition 2.3.1 Let X be a metric space and A,B ⊆ X . Then A projects
to B if for all a ∈ A there exists π(a) ∈ A ∩B such that for all b ∈ B,

d(a, b) = d(a, π(a)) + d(π(a), b).

In this situation, d(a, π(a)) = infb∈B d(a, b). If all distances in X are finite then
π(a) is unique for a.

Proposition 2.3.2 Let X be a finite metric space and A,B ⊆ X. Suppose
that A projects to B and B projects to A. If A, B and A ∩B have magnitude
then so does A ∪B, with

|A ∪B| = |A|+ |B| − |A ∩B|.
Indeed, if wA, wB and wA∩B are weightings on A, B and A ∩ B respectively
then there is a weighting w on A ∪B defined by

w(x) =











wA(x) if x ∈ A \B
wB(x) if x ∈ B \A
wA(x) + wB(x) − wA∩B(x) if x ∈ A ∩B.
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Proof Let a ∈ A \B. Choose a point π(a) as in Definition 2.3.1. Then

∑

x∈A∪B

ζ(a, x)w(x)

=
∑

a′∈A

ζ(a, a′)wA(a
′) +

∑

b∈B

ζ(a, b)wB(b)−
∑

c∈A∩B

ζ(a, c)wA∩B(c)

= 1 + ζ(a, π(a))

{

∑

b∈B

ζ(π(a), b)wB(b)−
∑

c∈A∩B

ζ(π(a), c)wA∩B(c)

}

= 1.

Similar arguments apply when we start with a point of B \ A or A ∩ B. This
proves that w is a weighting, and the result follows. �

It can similarly be shown that if A, B and A ∩ B all have Möbius inversion
then so does A ∪B. The proof is left to the reader; we just need the following
special case.

Corollary 2.3.3 Let X be a finite metric space and A,B ⊆ X. Suppose that
A ∩B is a singleton {c}, that for all a ∈ A and b ∈ B,

d(a, b) = d(a, c) + d(c, b),

and that A and B have magnitude. Then A ∪ B has magnitude |A|+ |B| − 1.
Moreover, if A and B have Möbius inversion then so does A ∪B, with

µA∪B(x, y) =



















µA(x, y) if x, y ∈ A and (x, y) 6= (c, c)

µB(x, y) if x, y ∈ B and (x, y) 6= (c, c)

µA(c, c) + µB(c, c)− 1 if (x, y) = (c, c)

0 otherwise.

Proof The first statement follows from Proposition 2.3.2, and the second is
easily checked. �

Corollary 2.3.4 Every finite subspace of R has Möbius inversion. If A =
{a0 < · · · < an} ⊆ R then, writing di = ai − ai−1,

|A| = 1 +

n
∑

i=1

tanh
di
2
.

The weighting w on A is given by

w(ai) =
1

2

(

tanh
di
2

+ tanh
di+1

2

)

(0 ≤ i ≤ n), where by convention d0 = dn+1 = ∞ and tanh∞ = 1.

Proof This follows by induction from Example 2.1.1(ii), Proposition 2.3.2
and Corollary 2.3.3. (An alternative proof is given in [27, Theorem 4].) �
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Thus, in a finite subspace of R, the weight of a point depends only on the
distances to its neighbours. This is reminiscent of the Ising model in statistical
mechanics [5], although whether there is a substantial connection remains to
be seen.

Example 2.3.5 The magnitude function is not a complete invariant of finite
metric spaces. Indeed, let X = {0, 1, 2, 3} ⊆ R. Let Y be the four-vertex
Y-shaped graph, viewed as a metric space as in Example 2.1.6. I claim that X
and Y have the same magnitude function, even though they are not isometric.
For put A = {0, 1, 2} ⊆ R and B = {0, 1} ⊆ R. Both tX and tY can be
expressed as unions, satisfying the hypotheses of Corollary 2.3.3, of isometric
copies of tA and tB. Hence |tX | = |tA|+ |tB| − 1 = |tY | for all t > 0.

Tensor products

Recall from Example 1.4.2(ii) the definition of the tensor product of metric
spaces. Proposition 1.4.3 implies (and it is easy to prove directly):

Proposition 2.3.6 If A and B are finite metric spaces with magnitude then
A⊗B has magnitude, given by |A⊗B| = |A||B|. �

Example 2.3.7 Let q be a prime power, and denote by Fq the field of q ele-
ments metrized by d(a, b) = 1 whenever a 6= b. Then for N ∈ N, the metric
tensor product F⊗N

q is the set FN
q with the Hamming metric. Its magnitude

function is

t 7→ |tFq|N =

(

q

1 + (q − 1)e−t

)N

by Example 2.1.6 and Proposition 2.3.6.
More generally, a linear code is a vector subspace C of FN

q [29]. Its (single-

variable) weight enumerator is the polynomial WC(x) =
∑N

i=0 Ai(C)x
i ∈ Z[x],

where Ai(C) is the number of elements of C whose Hamming distance from
0 is i. Since C is homogeneous, Proposition 2.1.5 implies that its magnitude
function is

t 7→ (#C)/WC(e
−t).

The magnitude function of a linear code therefore carries the same, important,
information as its weight enumerator.

Similarly, if A and B are finite metric spaces with magnitude then their co-
product or distant union A+B (Section 1.4) has magnitude |A+B| = |A|+|B|.

Fibrations

A fundamental property of the Euler characteristic of topological spaces is its
behaviour with respect to fibrations. If a space A is fibred over a connected
base B, with fibre F , then under suitable hypotheses, χ(A) = χ(B)χ(F ).
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Figure 4: Metric fibration

An analogous formula holds for the Euler characteristic of a fibred category
(Proposition 2.8 of [21] and, in a different context, Theorem 7.7 of [7]).
Apparently no general notion of fibration of enriched categories has yet been
formulated. Nevertheless, we define here a notion of fibration of metric spaces
sharing common features with the categorical and topological notions, and we
prove an analogous theorem on magnitude.

Definition 2.3.8 Let A and B be metric spaces. A (metric) fibration from
A to B is a distance-decreasing map p : A → B with the following property
(Fig. 4): for all a ∈ A and b′ ∈ B with d(p(a), b′) <∞, there exists ab′ ∈ p−1(b′)
such that for all a′ ∈ p−1(b′),

d(a, a′) = d(p(a), b′) + d(ab′ , a
′). (2)

Example 2.3.9 Let Ct be the circle of circumference t, metrized non-
symmetrically by taking d(a, b) to be the length of the anticlockwise arc from
a to b. (This is a generalized metric space in the sense of Example 1.2.2(iii).)
Let k be a positive integer. Then the k-fold covering Ckt → Ct, locally an
isometry, is a fibration.

Lemma 2.3.10 Let p : A → B be a fibration of metric spaces. Let b, b′ ∈ B
with d(b, b′) <∞. Then the fibres p−1(b) and p−1(b′) are isometric.

Proof Equation (2) and finiteness of d(b, b′) imply that ab′ is unique for a ∈
p−1(b), so we may define a function γb,b′ : p

−1(b) → p−1(b′) by γb,b′(a) = ab′ .
It is distance-decreasing: for if a, c ∈ p−1(b) then

d(b, b′) + d(γb,b′(a), γb,b′(c)) = d(a, γb,b′(c))

≤ d(a, c) + d(c, γb,b′(c)) = d(a, c) + d(b, b′),

giving d(γb,b′(a), γb,b′(c)) ≤ d(a, c) by finiteness of d(b, b′).
There is a distance-decreasing map γb′,b : p

−1(b′) → p−1(b) defined in the same
way. It is readily shown that γb,b′ and γb′,b are mutually inverse; hence they
are isometries. �
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Let B be a nonempty metric space all of whose distances are finite, and let
p : A→ B be a fibration. The fibre of p is any of the spaces p−1(b) (b ∈ B); it
is well-defined up to isometry.

Theorem 2.3.11 Let p : A→ B be a fibration of finite metric spaces. Suppose
that B is nonempty with d(b, b′) <∞ for all b, b′ ∈ B, and that B and the fibre
F of p both have magnitude. Then A has magnitude, given by |A| = |B||F |.

Proof Choose a weighting wB on B. Choose, for each b ∈ B, a weighting
wb on the space p−1(b). For a ∈ A, put wA(a) = wp(a)(a)wB(p(a)). It is
straightforward to check that wA is a weighting, and the theorem follows. �

Examples 2.3.12 i. A trivial example of a fibration is a product-
projection B ⊗ F → B. In that case, Theorem 2.3.11 reduces to Propo-
sition 2.3.6.

ii. Let B be a finite metric space in which the triangle inequality holds
strictly for every triple of distinct points. Let F be a finite metric space
of small diameter:

diam(F ) ≤ min
{

d(b, b′) + d(b′, b′′)− d(b, b′′) : b, b′, b′′ ∈ B, b 6= b′ 6= b′′
}

.

Choose for each b, b′ ∈ B an isometry γb,b′ : F → F , in such a way that
γb,b is the identity and γb′,b = γ−1

b,b′ . Then the set A = B × F can be
metrized by putting

d((b, c), (b′, c′)) = d(b, b′) + d(γb,b′(c), c
′)

(b, b′ ∈ B, c, c′ ∈ F ). The projection A → B is a fibration (but not a
product-projection unless γb′,b′′ ◦γb,b′ = γb,b′′ for all b, b

′, b′′). So if B and
F have magnitude, |A| = |B||F |.

Arguments similar to Lemma 2.3.10 show that a fibration over B amounts
to a family (Ab)b∈B of metric spaces together with a distance-decreasing map
γb,b′ : Ab → Ab′ for each b, b

′ ∈ B such that d(b, b′) <∞, satisfying the following
three conditions. First, γb,b is the identity for all b ∈ B. Second, γb′,b = γ−1

b,b′ .
Third,

sup
a∈Ab

d
(

γb′,b′′γb,b′(a), γb,b′′ (a)
)

≤ d(b, b′) + d(b′, b′′)− d(b, b′′)

for all b, b′, b′′ ∈ B such that d(b, b′), d(b′, b′′) <∞.

Constant-distance gluing

Given metric spaces A and B and a real number D ≥ max{diamA, diamB}/2,
there is a metric space A +D B defined as follows. As a set, it is the disjoint
union of A and B. The metric restricted to A is the original metric on A;
similarly for B; and d(a, b) = d(b, a) = D for all a ∈ A and b ∈ B.
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Proposition 2.3.13 Let A and B be finite metric spaces, and take D as above.
Suppose that A and B have magnitude, with |A||B| 6= e2D. Then A +D B has
magnitude

|A|+ |B| − 2e−D|A||B|
1− e−2D|A||B| .

Proof Given weightings wA on A and wB on B, there is a weighting w on
A+D B defined by

w(a) =
1− e−D|B|

1− e−2D|A||B|wA(a), w(b) =
1− e−D|A|

1− e−2D|A||B|wB(b)

(a ∈ A, b ∈ B). The result follows. �

This provides an easy way to compute the magnitude functions in Exam-
ples 2.2.7 and 2.2.8.

2.4 Positive definite spaces

We saw in Example 2.2.7 that the magnitude of a finite metric space may be
undefined, or smaller than the magnitude of one of its subspaces, or even neg-
ative. We now introduce a class of spaces for which no such behaviour occurs.
Very many spaces of interest—including all subsets of Euclidean space—belong
to this class. It has been studied in greater depth by Meckes [31].

Definition 2.4.1 A finite metric space A is positive definite if the matrix ζA
is positive definite.

We emphasize that positive definiteness of a matrix is meant in the strict sense.

Lemma 2.4.2 i. A positive definite space has Möbius inversion.

ii. The tensor product of positive definite spaces is positive definite.

iii. A subspace of a positive definite space is positive definite.

Proof Parts (i) and (iii) are elementary. For (ii), ζA⊗B is the Kronecker
product ζA ⊗ ζB, and the Kronecker product of positive definite matrices is
positive definite. �

In particular, a positive definite space has magnitude and a unique weighting.

Proposition 2.4.3 Let A be a positive definite finite metric space. Then

|A| = sup
v 6=0

(
∑

a∈A v(a)
)2

v∗ζAv

where the supremum is over v ∈ RA \ {0} and v∗ denotes the transpose of v. A
vector v attains the supremum if and only if it is a nonzero scalar multiple of
the unique weighting on A.
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Proof Since ζA is positive definite, we have the Cauchy–Schwarz inequality:

(v∗ζAv) · (w∗ζAw) ≥ (v∗ζAw)
2

for all v, w ∈ RA, with equality if and only if one of v and w is a scalar multiple
of the other. Taking w to be the unique weighting on A gives the result. �

Corollary 2.4.4 If A is a positive definite finite metric space and B ⊆ A,
then |B| ≤ |A|. �

Corollary 2.4.5 A nonempty positive definite finite metric space has mag-
nitude ≥ 1. �

For any finite metric space A, the set Sing(A) = {t ∈ (0,∞) : ζtA is singular}
is finite (Proposition 2.2.6(i)). When Sing(A) = ∅, put sup(Sing(A)) = 0.

Proposition 2.4.6 Let A be a finite metric space. Then tA is positive definite
for all t > sup(Sing(A)). In particular, tA is positive definite for all t ≫ 0.

Proof Write λmin(ξ) for the minimum eigenvalue of a real symmetric A×A
matrix ξ. Then λmin(ξ) is continuous in ξ. Also λmin(ξ) > 0 if and only if ξ is
positive definite, and if λmin(ξ) = 0 then ξ is singular.
Now ζtA → δ as t → ∞, and λmin(δ) = 1, so λmin(ζtA) > 0 for all t ≫ 0.
On the other hand, λmin(ζtA) is continuous and nonzero for t > sup(Sing(A)).
Hence λmin(ζtA) > 0 for all t > sup(Sing(A)). �

It follows that a space with Möbius inversion at all scales also satisfies an
apparently stronger condition.

Definition 2.4.7 A finite metric space A is stably positive definite if tA is
positive definite for all t > 0.

Corollary 2.4.8 Let A be a finite metric space. Then tA has Möbius inver-
sion for all t > 0 if and only if A is stably positive definite. �

Example 2.4.9 Let A be the space of Example 2.2.8. It is readily shown that
tA has a unique weighting for all t > 0. By the remarks after Definition 1.1.3,
tA has Möbius inversion for all t > 0, so A is stably positive definite. Hence
magnitude is not continuous with respect to the Gromov–Hausdorffmetric even
when restricted to stably positive definite finite spaces. (Theorem 2.6 of [31]
implies that it is, however, lower semicontinuous.)

Meckes [31, Theorem 3.3] has shown that a finite metric space is stably positive
definite if and only if it is of negative type. By definition, a finite metric space
A is of negative type if

∑

a,b v(a)d(a, b)v(b) ≤ 0 for all v ∈ RA such that
∑

a v(a) = 0. A general metric space A is of negative type if every finite
subspace is of negative type, or equivalently if (A,

√
dA) embeds isometrically

into some Hilbert space [43]. Many of the most commonly encountered spaces

Documenta Mathematica 18 (2013) 857–905



The Magnitude of Metric Spaces 883

are of negative type, including those that we prove below to be stably positive
definite; see [31, Theorem 3.6] for a list. But whereas the classical results on
negative type typically rely on embedding theorems, we are able to prove our
results directly.
Lemma 2.2.5 gave additional hypotheses on finite metric spaces A and B guar-
anteeing that if A is an expansion of B then |A| ≥ |B|. Some additional
hypotheses are needed, since not every magnitude function is increasing (Ex-
ample 2.2.7). The following will also do.

Lemma 2.4.10 Let A and B be finite metric spaces. Suppose that A is positive
definite and B admits a nonnegative weighting. If A is an expansion of B then
|A| ≥ |B|.

Proof First consider a distance-decreasing bijection f : A → B. Choose a
nonnegative weighting wB on B. Without loss of generality, f is the identity
as a map of sets; thus, ζA(a, a

′) ≤ ζB(a, a
′) for all points a, a′. Hence

|A| ≥ (
∑

wB(a))
2

w∗
BζAwB

≥ (
∑

wB(a))
2

w∗
BζBwB

= |B|,

by Proposition 2.4.3.
Now consider the general case of a distance-decreasing surjection from A to B.
We may choose a subspace A′ ⊆ A and a distance-decreasing bijection A′ → B.
The space A′ is positive definite, so |A′| ≥ |B| by the previous argument; but
also |A| ≥ |A′| by Corollary 2.4.4. �

A positive definite space cannot have negative magnitude, but the following
example shows that it can have magnitude greater than the number of points.

Example 2.4.11 Take the spaceK3,2 of Example 2.2.7. It is easily shown that
Sing(K3,2) = {log

√
2}. Choose u > log

√
2 such that |uK3,2| > 5 (say, u =

0.35): then A = uK3,2 is positive definite by Proposition 2.4.6, and |A| > #A.
This example also shows that a positive definite expansion of a positive definite
space may have smaller magnitude: for if s > 1 then sA is an expansion of A,
but |sA| < |A| (Fig. 3).

A different positivity condition is sometimes useful: the existence of a nonneg-
ative weighting.

Lemma 2.4.12 Let A be a finite metric space admitting a nonnegative weight-
ing. Then 0 ≤ |A| ≤ #A.

Proof Choose a nonnegative weighting w on A. For all a ∈ A we have
0 ≤ w(a) ≤ (ζAw)(a) = 1, so 0 ≤ w(a) ≤ 1. Summing, 0 ≤ |A| ≤ #A. �

We now list some sufficient conditions for a space to be positive definite, or
have a positive weighting, or both.
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Proposition 2.4.13 Every finite subspace of R is positive definite with posi-
tive weighting.

Proof Let us temporarily say that a finite metric space A is good if it has
Möbius inversion and for all v ∈ RA,

v∗µAv ≥ max
a∈A

v(a)2.

I claim that if A∪B is a union of the type in Corollary 2.3.3 and A and B are
both good, then A ∪B is good. Indeed, let v ∈ RA∪B. By Corollary 2.3.3,

v∗µA∪Bv = v|∗AµAv|A + v|∗BµBv|B − v(c)2

where v|A is the restriction of v to A. Now let x ∈ A ∪ B. Without loss
of generality, x ∈ A. Since A is good, v|∗AµAv|A ≥ v(x)2. Since B is good,
v|∗BµBv|B ≥ v(c)2. Hence v∗µA∪Bv ≥ v(x)2, proving the claim.
Every metric space with 0, 1 or 2 points is good. Every finite subset of R
with 3 or more points can be expressed nontrivially as a union of the type in
Corollary 2.3.3. It follows by induction that every finite subset of R is good
and therefore positive definite.
Positivity of the weighting is immediate from Corollary 2.3.4. �

For N ∈ N and 1 ≤ p ≤ ∞, write ℓNp = R⊗pN , where ⊗p is as defined in

Example 1.4.2(ii). Thus, ℓNp is RN with the metric induced by the p-norm,

‖x‖p = (
∑

r |xr |p)1/p.

Theorem 2.4.14 Every finite subspace of ℓN1 is positive definite.

Proof Let A be a finite subspace of ℓN1 . Write pr1, . . . , prN : ℓN1 → R for
the projections. Each space prrA is positive definite by Proposition 2.4.13, so
∏N

r=1 prrA ⊆ ℓN1 is positive definite by Lemma 2.4.2(ii), so A is positive definite
by Lemma 2.4.2(iii). �

We prove the same result for Euclidean space in the next section.
In the category of metric spaces and distance-decreasing maps (Exam-
ple 1.2.2(iii)), the categorical product × is ⊗∞. The class of positive definite
spaces is not closed under ×. For if it were then, by an argument similar to the
proof of Theorem 2.4.14, every finite subspace of ℓN∞ would be positive definite.
But in fact, every finite metric space embeds isometrically into ℓN∞ for some N
([43], p.535), whereas not every finite metric space is positive definite. Compre-
hensive results on (non-)preservation of positive definiteness by the products
⊗p have been proved by Meckes [31, Section 3.2].

Proposition 2.4.15 Every space with 3 or fewer points is positive definite
with positive weighting.
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Proof The proposition is trivial for spaces with 2 or fewer points. Now take
a 3-point space A = {a1, a2, a3}, writing Zij = ζ(ai, aj). We use Sylvester’s
criterion: a symmetric real n × n matrix is positive definite if and only if the
upper-left m × m submatrix has positive determinant whenever 1 ≤ m ≤ n.
This holds for Z when m = 1 or m = 2, and

detZ = (1 − Z12)(1− Z23)(1 − Z31) + (1 − Z12)(Z12 − Z13Z32)

+ (1− Z23)(Z23 − Z21Z13) + (1− Z31)(Z31 − Z32Z21)

which is positive by the triangle inequality. The unique weighting is v/ detZ,
where

v1 = (1− Z12)(1 − Z23)(1− Z31) + (1 − Z23)(Z23 − Z21Z13) > 0

and similarly v2 and v3. �

Meckes [31, Theorem 3.6] has shown that 4-point spaces are also positive defi-
nite. By Example 2.2.7, his result is optimal.

Example 2.4.16 The weighting on a 4-point space may have negative compo-
nents, as may the weighting on a finite subspace of ℓN1 . Indeed, using Proposi-
tion 2.3.2 one can show that in the space {(0, 0), (t, 0), (0, t), (−t, 0)} ⊆ ℓ21, the
weight at (0, 0) is negative whenever t < log 2.

Every finite metric space, when scaled up sufficiently, becomes positive definite
with positive weighting (Propositions 2.2.6 and 2.4.6). The following result
provides an alternative, quantitative proof, using the notion of scattered space
(Definition 2.1.2).

Proposition 2.4.17 Every scattered space is positive definite with positive
weighting.

Proof Let A be a scattered space with n ≥ 2 points. Positive definiteness fol-
lows from a version of the Levy–Desplanques theorem (Theorem 6.1.10 of [13]),
but since the argument is simple, we repeat it here. Let v ∈ RA. Then

v∗ζAv =
∑

a

v(a)2 +
∑

a 6=b

v(a)ζA(a, b)v(b) ≥
∑

a

v(a)2 − 1

n− 1

∑

a 6=b

|v(a)||v(b)|

=
1

2(n− 1)

∑

a 6=b

(

|v(a)| − |v(b)|
)2 ≥ 0.

The inequality ζA(a, b) < 1/(n−1) (a 6= b) is strict, so if v∗ζAv = 0 then v = 0.
To show that the unique weighting wA on A is positive, we use the proof of
Proposition 2.1.3. There we showed that A has Möbius inversion and that the
Möbius matrix is a sum µA =

∑∞
k=0(−1)kµA,k, where the matrices µA,k satisfy

µA,k+1(a, b) <
1

n− 1

∑

b′ : b′ 6=b

µA,k(a, b
′) (3)
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for all a, b. Hence wA =
∑∞

k=0(−1)kwA,k, where wA,k(a) =
∑

b µA,k(a, b).
Summing (3) over all b ∈ A gives

wA,k+1(a) <
1

n− 1

∑

b,b′ : b′ 6=b

µA,k(a, b
′) = wA,k(a)

(a ∈ A). Hence wA(a) =
∑∞

k=0(−1)kwA,k(a) > 0 for all a ∈ A. �

A metric space A is ultrametric if max{d(a, b), d(b, c)} ≥ d(a, c) for all a, b, c ∈
A.

Proposition 2.4.18 Every finite ultrametric space is positive definite with
positive weighting.

Positive definiteness was proved by Varga and Nabben [49], and positivity of
the weighting (rather indirectly) by Pavoine, Ollier and Pontier [38]. Another
proof of positive definiteness is given by Meckes [31, Theorem 3.6]. Both parts
of the following proof are different from those cited.

Proof Let Ω be the set of symmetric matrices Z over [0,∞) such that Zik ≥
min{Zij, Zjk} for all i, j, k and Zii > maxj 6=k Zjk for all i. (For a 1× 1 matrix,
this maximum is to be interpreted as 0.) We show by induction that every
matrix in Ω is positive definite and that its unique weighting (Definition 1.1.1)
is positive. The proposition will follow immediately.
The result is trivial for 0 × 0 and 1 × 1 matrices. Now let Z ∈ Ω be an n× n
matrix with n ≥ 2. Put z = mini,j Zij . There is an equivalence relation ∼ on
{1, . . . , n} defined by i ∼ j if and only if Zij > z.
It is not the case that i ∼ j for all i, j. Hence we may partition {1, . . . , n}
into two nonempty subsets that are each a union of equivalence classes: say
{1, . . . ,m} and {m+ 1, . . . n}. We have Zij = z whenever i ≤ m < j, so Z is a
block sum

Z =

(

Z ′ zUn−m
m

zUm
n−m Z ′′

)

where U ℓ
k denotes the k × ℓ matrix all of whose entries are 1. Since Z ′ ∈ Ω

and Z ′
ij = Zij ≥ z for all i, j ≤ m, we have Y ′ = Z ′ − zUm

m ∈ Ω. Similarly,

Y ′′ = Z ′′ − zUn−m
n−m ∈ Ω, and

Z = zUn
n +

(

Y ′ 0
0 Y ′′

)

.

The first summand is positive semidefinite. By inductive hypothesis, Y ′ and
Y ′′ are positive definite, so the second summand is positive definite. Hence Z
is positive definite.
Also by inductive hypothesis, Y ′ and Y ′′ have positive weightings v′ and v′′

respectively. Let v be the concatenation of v′ and v′′. It is straightforward to
verify that

v

z(|Y ′|+ |Y ′′|) + 1
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is a weighting on Z, and it is positive since v′ and v′′ are positive and
z, |Y ′|, |Y ′′| ≥ 0. �

Corollary 2.4.19 If A is a finite ultrametric space then |A| ≤ ediamA.

Proof Let ∆ be the metric space with the same point-set as A and d(a, b) =
diamA for all distinct points a, b. By Proposition 2.1.5, |∆| ≤ ediamA and
∆ has a positive weighting. But ∆ is an expansion of A, so |A| ≤ |∆| by
Lemma 2.2.5. �

A homogeneous space always has a positive weighting, by Proposition 2.1.5.
However, Example 2.1.7 and Corollary 2.4.4 together show that a homogeneous
space need not be positive definite. A homogeneous space need not even have
Möbius inversion: (log 2)K3,3 is an example. In particular, a finite metric space
may have magnitude but not Möbius inversion.
Magnitude can be understood in terms of entropy or diversity. For every finite
metric space A and q ∈ [0,∞], there is a function qDA assigning to each proba-
bility distribution p on A a real number qDA(p), the diversity of order q of the
distribution [26]. An ecological community can be modelled as a finite metric
space A (as explained in Section 2.1) together with a probability distribution
p on A (representing the relative abundances of the species). Then qDA(p) is
a measure of the biodiversity of the community. In the special case that A is
discrete, the diversities are the exponentials of the Rényi entropies [39], and in
particular, the diversity of order 1 is the exponential of the Shannon entropy.
It is a theorem [23] that for each finite metric space A, there is some probability
distribution p maximizing qDA(p) for all q ∈ [0,∞] simultaneously. Moreover,
the maximal value of qDA(p) is independent of q; call it Dmax(A). If A is
positive definite with nonnegative weighting then, in fact, |A| = Dmax(A):
magnitude is maximum diversity.

2.5 Subsets of Euclidean space

Here we show that every finite subspace of Euclidean space ℓN2 is positive
definite. In particular, every such space has well-defined magnitude.
Write L1(R

N ) for the space of Lebesgue-integrable complex-valued functions

on RN . Define the Fourier transform f̂ of f ∈ L1(R
N ) by

f̂(ξ) =

∫

RN

e−2πi〈ξ,x〉f(x) dx

(ξ ∈ RN ). Define functions g and ψ on RN by

g(x) = e−‖x‖2 , ψ(ξ) = CN/(1 + 4π2‖ξ‖22)(N+1)/2

where CN is the constant 2Nπ(N−1)/2Γ((N + 1)/2) > 0.

Lemma 2.5.1 ψ ∈ L1(R
N ) and ψ̂ = g.
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Proof The first statement is straightforward. Theorem 1.14 of [47] states
that ĝ = ψ; but g is continuous and even, so the second statement follows by
Fourier inversion. �

The next lemma is elementary and standard (e.g. [15], Theorem VI.2.8).

Lemma 2.5.2 Let φ ∈ L1(R
N ), let A be a finite subset of RN , and let v ∈ RA.

Then
∑

a,b∈A

v(a)φ̂(a− b)v(b) =

∫

RN

∣

∣

∣

∣

∑

a∈A

v(a)e−2πi〈ξ,a〉
∣

∣

∣

∣

2

φ(ξ) dξ.

�

In analytic language, our task is to show that the function g is strictly positive
definite. This would follow from the easy half of Bochner’s theorem [15], except
that Bochner’s theorem concerns non-strict positive definiteness. We therefore
need to refine the argument slightly.

Theorem 2.5.3 Every finite subspace of Euclidean space is positive definite.

Proof Let A be a finite subspace of ℓN2 . Let v ∈ RA. Then

v∗ζAv =
∑

a,b∈A

v(a)g(a− b)v(b) =

∫

RN

∣

∣

∣

∣

∑

a∈A

v(a)e−2πi〈ξ,a〉
∣

∣

∣

∣

2

ψ(ξ) dξ ≥ 0

by Lemmas 2.5.1 and 2.5.2. Suppose that v 6= 0. The characters e−2πi〈·,a〉

(a ∈ A) are linearly independent, so the squared term is positive (that is,
strictly positive) for some ξ ∈ RN . By continuity, the squared term is positive
for all ξ in some nonempty open subset of RN . Moreover, ψ is continuous and
everywhere positive. So the integral is positive, as required. �

On the other hand, some of the weights on a finite subspace of Euclidean space
can be negative; see Willerton [50] for examples.

Corollary 2.5.4 Every finite subspace of Euclidean space has magnitude. �

A similar argument gives an alternative proof of Theorem 2.4.14, that finite
subspaces of ℓN1 are positive definite. For this we use the explicit formula for the
Fourier transform of x 7→ e−‖x‖1 . For p 6= 1, 2 there is no known formula for the
Fourier transform of e−‖x‖p , so matters become more difficult. Nevertheless,
Meckes [31, Section 3] has shown that every finite subspace of ℓNp is positive
definite whenever 0 < p ≤ 2, and that this is false for p > 2.
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3 Compact metric spaces

To extend the notion of magnitude from finite to infinite spaces, there are
broadly speaking two strategies.

In the first, we approximate an infinite space by finite spaces. As an initial
attempt, given a compact metric space A, we might take a sequence (Ak) of
finite metric spaces converging to A in the Gromov–Hausdorff metric, and try
to define |A| as the limit of the sequence (|Ak|). However, this ‘definition’
is inconsistent; recall Example 2.2.8. We might respond by constraining the
sequence (Ak): for example, by taking (Ak) to be a sequence of subsets of A
converging to A in the Hausdorff metric.

The second strategy is to work directly with the infinite space, replacing finite
sums by integrals. Weightings are now measures, or perhaps distributions. For
example, a weight measure on a metric space A is a finite signed Borel measure
w such that

∫

A
e−d(a,b)dw(b) = 1 for all a ∈ A. If A admits a weight measure

w then an argument similar to Lemma 1.1.2 shows that w(A) is independent
of the choice of w, and we may define the magnitude of A to be w(A). This
was the definition used by Willerton in [51].

Meckes [31] has shown that to a large extent, these different approaches produce
the same result. Here we implement the first strategy, defining the magnitude
of a space to be the supremum of the magnitudes of its finite subspaces. This
works well when the space is compact and its finite subspaces are positive
definite.

3.1 The magnitude of a positive definite compact metric space

Definition 3.1.1 A metric space is positive definite if every finite subspace is
positive definite. The magnitude of a compact positive definite space A is

|A| = sup{|B| : B is a finite subspace of A} ∈ [0,∞].

These definitions are consistent with the definitions for finite metric spaces, by
Lemma 2.4.2(iii) and Corollary 2.4.4.

There may even be non-compact spaces for which this definition of magnitude
is sensible. For example, let t > 0, and let A be a space with infinitely many
points and d(a, b) = t for all a 6= b; then every finite subspace of A is positive
definite, and the supremum of their magnitudes is et < ∞. In any case, we
confine ourselves to compact spaces.

A metric space A is stably positive definite if tA is positive definite for all t > 0,
or equivalently if every finite subspace of A is stably positive definite. (A fur-
ther equivalent condition, due to Meckes, is that A is of negative type [31,
Theorem 3.3].) We already know that ℓN1 and ℓN2 are stably positive definite;
much of the rest of this paper concerns the magnitudes of their compact sub-
spaces. Ultrametric spaces are also stably positive definite (Proposition 2.4.18),
and, if compact, have finite magnitude (Corollary 2.4.19). Many other com-
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monly occurring spaces, such as hyperbolic space, are stably positive definite
too; see [31, Theorem 3.6].

Definition 3.1.2 Let A be a stably positive definite compact metric space.
The magnitude function of A is the function

(0,∞) → [0,∞]
t 7→ |tA|.

Lemma 3.1.3 Let A be a positive definite compact metric space. Then:

i. Every closed subspace B of A is positive definite, and |B| ≤ |A|.

ii. If A is nonempty then |A| ≥ 1. �

Proposition 3.1.4 Let A and B be positive definite compact spaces. Then
A⊗B is positive definite and compact, and |A⊗B| = |A||B|.

In the case A = ∅ and |B| = ∞, we interpret 0 · ∞ as 0.

Proof Let C be a finite subspace of A ⊗ B. Then C ⊆ A′ ⊗ B′ for some
finite subspaces A′ ⊆ A and B′ ⊆ B. Since A and B are positive definite, so
are A′ and B′. By Lemma 2.4.2, A′ ⊗ B′ is positive definite, so C is positive
definite. Hence A ⊗ B is positive definite. A similar argument shows that
|A⊗B| = |A||B|, using Proposition 2.3.6 and Corollary 2.4.4. �

Similarly, Proposition 2.3.2 on unions extends to the compact setting.

Proposition 3.1.5 Let X be a metric space and A,B ⊆ X, with A and B
compact and A ∪ B positive definite. Suppose that A projects to B and B
projects to A. Then

|A ∪B|+ |A ∩B| = |A|+ |B|.

Proof Let ε > 0. Choose finite sets E ⊆ A ∪ B and H ⊆ A ∩ B such
that |A ∪ B| ≤ |E| + ε and |A ∩ B| ≤ |H | + ε. For each a ∈ E ∩ A, choose
πA(a) ∈ A∩B satisfying the condition of Definition 2.3.1, and similarly πB(b)
for b ∈ E ∩B. Put

H ′ = H ∪ πA(E ∩ A) ∪ πB(E ∩B), F = (E ∩ A) ∪H ′, G = (E ∩B) ∪H ′.

Then F and G are finite subsets of X , each projecting to the other. Also
E ⊆ F ∪ G and H ⊆ F ∩ G. Applying Proposition 2.3.2 to F and G gives
|A ∪B|+ |A ∩B| ≤ |A|+ |B|+ 2ε. Since ε was arbitrary, |A ∪B|+ |A ∩B| ≤
|A|+ |B|.
For the opposite inequality, again let ε > 0, and choose finite sets F ⊆ A and
G ⊆ B such that |A| ≤ |F | + ε and |B| ≤ |G| + ε. For each a ∈ F , choose
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πA(a) ∈ A∩B satisfying the condition of Definition 2.3.1, and similarly πB(b)
for b ∈ G. Put

F ′ = F ∪ πAF ∪ πBG, G′ = G ∪ πAF ∪ πBG.

Then F ′ and G′ are finite subsets of X , each projecting to the other; also
F ⊆ F ′ ⊆ A and G ⊆ G′ ⊆ B. A similar argument proves that |A| + |B| ≤
|A ∪B|+ |A ∩B|+ 2ε. �

3.2 Subsets of the real line

As soon as we ask about the magnitude of real intervals, connections with
geometric measure begin to appear.

Proposition 3.2.1 Let t ≥ 0 and let (Ak) be a sequence of finite subsets of R
converging to [0, t] in the Hausdorff metric. Then (|Ak|) converges to 1 + t/2.

This result was announced in [22], and also appears, with a different proof, as
Proposition 6 of [27].

Proof Given A = {a0 < · · · < an} ⊆ R, we have

(1 + t/2)− |A| =
n
∑

i=1

{ai − ai−1

2
− tanh

(ai − ai−1

2

)}

+
t− (an − a0)

2

by Corollary 2.3.4. The result will follow from the facts that tanh(0) = 0 and
tanh′(0) = 1. Indeed, write f(x) = (x−tanh(x))/x, so that f(x) → 0 as x→ 0.
Then

∣

∣(1 + t/2)− |A|
∣

∣ ≤
(an − a0

2

)

max
1≤i≤n

∣

∣

∣
f
(ai − ai−1

2

)∣

∣

∣
+
∣

∣

∣

t− (an − a0)

2

∣

∣

∣
.

But maxi(ai−ai−1) → 0 and an−a0 → t as A→ [0, t], proving the proposition.
�

Theorem 3.2.2 The magnitude of a closed interval [0, t] is 1 + t/2.

Proof Proposition 3.2.1 immediately implies that |[0, t]| ≥ 1+ t/2. Now let A
be a finite subset of [0, t]. We may choose a sequence (Ak) of finite subsets of R
such that limk→∞ Ak = [0, t] and A ⊆ Ak for all k. Then |A| ≤ |Ak| → 1+ t/2
as k → ∞, so |A| ≤ 1 + t/2. �

Schanuel [41] argued from basic geometric intuition that the ‘size’ of a closed
interval of length t inches ought to be (t inches + 1). Ignoring the factor of
1/2 (which is purely a product of convention), Theorem 3.2.2 makes his idea
rigorous.
As noted by Willerton [51], there is a weight measure on [0, t]. It is w =
(δ0 + λ+ δt)/2, where δx is the Dirac measure at x and λ is Lebesgue measure
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on [0, t]. Then w([0, t]) = 1 + t/2. Hence w([0, t]) = |[0, t]|, as guaranteed by
Theorems 2.3 and 2.4 of Meckes [31].

The magnitude of subsets of R is also described by the following formula, which
has no known analogue in higher dimensions.

Proposition 3.2.3 Let A be a compact subspace of R. Then

|A| = 1

2

∫

R

sech2 d(x,A) dx

where d(x,A) = infa∈A d(x, a).

Proof First we prove the identity for finite spaces A ⊆ R, by induction on
n = #A. It is elementary when n ≤ 2. Now suppose that n ≥ 3, writing the
points of A as a1 < · · · < an. Put B = {a1, . . . , an−1} and C = {an−1, an}.
Then

1

2

∫

R

sech2 d(x,A) dx =
1

2

∫ an−1

−∞
sech2 d(x,B) dx +

1

2

∫ ∞

an−1

sech2 d(x,C) dx.

Since
∫∞
0

sech2 u du = 1, this in turn is equal to

1

2

(

∫

R

sech2 d(x,B) dx − 1
)

+
1

2

(

∫

R

sech2 d(x,C) dx − 1
)

which by inductive hypothesis is |B| + |C| − 1. On the other hand, |A| =
|B|+ |C| − 1 by Corollary 2.3.3. This completes the induction.

Now take a compact space A ⊆ R. We know that

|A| = sup
{1

2

∫

R

sech2 d(x,B) dx : B is a finite subset of A
}

.

Since sech2 is decreasing on [0,∞), this implies that

|A| ≤ 1

2

∫

R

sech2 d(x,A) dx.

To prove the opposite inequality, choose a sequence (Bk) of finite subsets of
A converging to A in the Hausdorff metric. We have 0 ≤ sech2 d(x,Bk) ≤
sech2 d(x,A) for all x and k, so

lim
k→∞

∫

R

sech2 d(x,Bk) dx =

∫

R

sech2 d(x,A) dx

by the dominated convergence theorem. The result follows. �
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3.3 Background on integral geometry

To go further, we need some concepts and results from integral geometry. Those
concerning ℓN2 can be found in standard texts such as [17]. Those concerning
ℓN1 can be found in [24].
Write KN for the set of compact convex subsets of RN . A valuation on KN is
a function φ : KN → R such that

φ(∅) = 0, φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B) (4)

whenever A,B,A∪B ∈ KN . It is continuous if continuous with respect to the
Hausdorff metric on KN , and invariant if φ(gA) = φ(A) for all A ∈ KN and
isometries g : ℓN2 → ℓN2 (not necessarily fixing the origin).

Examples 3.3.1 i. N -dimensional Lebesgue measure is a continuous in-
variant valuation on KN , denoted by Vol.

ii. Euler characteristic χ is a continuous invariant valuation on KN . Since
the sets are convex, χ(A) is 0 or 1 according as A is empty or not.

The continuous invariant valuations on KN form a real vector space, ValN .
When A ⊆ ℓNp and t > 0, the abstract metric space tA can be interpreted as

the subspace {ta : a ∈ A} of ℓNp . A valuation φ is homogeneous of degree i if

φ(tA) = tiφ(A) for all A ∈ KN and t > 0.

Theorem 3.3.2 (Hadwiger [12]) The vector space ValN has dimension
N + 1 and a basis V0, . . . , VN where Vi is homogeneous of degree i. �

This description determines the valuations Vi uniquely up to scale factor. They
can be uniquely normalized to satisfy two conditions. First, VN (A) = Vol(A)
for A ∈ KN . Second, whenever ℓN2 is embedded isometrically into ℓN+1

2 and
0 ≤ i ≤ N , the value Vi(A) is the same whether A is regarded as a subset of
ℓN2 or of ℓN+1

2 . With this normalization, Vi is called the ith intrinsic volume.
For example, V0 = χ. When A ∈ K2, V1(A) is half of the perimeter of A; when
A ∈ K3, V2(A) is half of the surface area.
Here is a general formula for the intrinsic volumes. For each 0 ≤ i ≤ N , there
is an O(N)-invariant measure νN,i on the Grassmannian GrN,i, unique up to
scale factor. Given P ∈ GrN,i, write πP : RN → P for orthogonal projection.
Then for A ∈ KN ,

Vi(A) = cN,i

∫

GrN,i

Vol(πPA) dνN,i(P )

where cN,i is a positive constant chosen so that the normalizing conditions are
satisfied.
Hadwiger’s theorem solves the classification problem for valuations on ℓN2 . More
generally, we can try to classify the valuations on any metric space, in the
following sense.
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A metric space A is geodesic [37] if for all a, b ∈ A there exists an isometry
γ : [0, d(a, b)] → A with γ(0) = a and γ(d(a, b)) = b. Given a metric space X ,
write K (X) for the set of compact subsets of X that are geodesic with respect
to the subspace metric. For example, K (ℓN2 ) = KN .

A valuation on K (X) is a function φ : K (X) → R satisfying equations (4)
whenever A,B,A ∪ B,A ∩ B ∈ K (X). It is continuous if continuous with
respect to the Hausdorff metric, and invariant if φ(gA) = φ(A) for all isometries
g of X . Write Val(X) for the vector space of continuous invariant valuations
on K (X). For example, Val(ℓN2 ) = ValN .

Given any metric spaceX , one can attempt to describe the vector space Val(X).
Here we will need to know the answer for ℓN1 , as well as ℓN2 . To state it, we
write K ′

N = K (ℓN1 ) and call its elements compact ℓ1-convex sets; similarly, we
write Val′N = Val(ℓN1 ).
There are far more ℓ1-convex sets than convex sets. On the other hand, there
are far fewer isometries of ℓN1 than of ℓN2 ; they are generated by translations,
coordinate permutations, and reflections in coordinate hyperplanes. The fol-
lowing Hadwiger-type theorem is proved in [24].

Theorem 3.3.3 The vector space Val′N has dimension N + 1 and a basis
V ′
0 , . . . , V

′
N where V ′

i is homogeneous of degree i. �

Again, this determines the valuations V ′
i uniquely up to scaling. They can be

described as follows. For 0 ≤ i ≤ N , let Gr′N,i be the set of i-dimensional vector

subspaces of RN spanned by some subset of the standard basis. For A ∈ K ′
N ,

put

V ′
i (A) =

∑

P∈Gr′
N,i

Vol(πPA).

These valuations V ′
0 , . . . , V

′
N are called the ℓ1-intrinsic volumes, and satisfy two

normalization conditions analogous to those in the Euclidean case.

The intrinsic volumes of a product space are given by the following formula,
proved in [24, Proposition 8.1] and precisely analogous to the classical Euclidean
formula [17, Theorem 9.7.1].

Proposition 3.3.4 Let A ∈ K ′
M and B ∈ K ′

N . Then A×B ∈ K ′
M+N , and

V ′
k(A×B) =

∑

i+j=k

V ′
i (A)V

′
j (B)

whenever 0 ≤ k ≤M +N . �

3.4 Subsets of ℓN1

Our investigation of the magnitude of subsets of ℓN1 begins with sets of a par-
ticularly amenable type.
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Definition 3.4.1 A cuboid in ℓN1 is a subspace of the form [x1, y1] × · · · ×
[xN , yN ], where xr, yr ∈ R with xr ≤ yr.

As an abstract metric space, a cuboid is a tensor product [x1, y1]⊗· · ·⊗[xN , yN ].

Theorem 3.4.2 For cuboids A ⊆ ℓN1 ,

|A| =
N
∑

i=0

2−iV ′
i (A). (5)

Proof First let I = [x, y] ⊆ R be a nonempty interval. By Theorem 3.2.2,

|I| = 1 + (y − x)/2 = χ(I) + Vol(I)/2 = V ′
0(I) + 2−1V ′

1(I).

This proves the theorem for N = 1. The theorem also holds for N = 0.
It now suffices to show that if A ∈ K ′

M and B ∈ K ′
N satisfy (5) then so does

A×B ∈ K ′
M+N . Indeed, as a metric space, A×B ⊆ ℓM+N

1 is A⊗B, and the
result follows from Propositions 3.1.4 and 3.3.4. �

In fact, V ′
i (
∏

[xr , yr]) is the ith elementary symmetric polynomial in (yr −
xr)

N
r=1, again by Proposition 3.3.4. It is also equal to Vi(

∏

[xr, yr]), the Eu-
clidean intrinsic volume. But in general, the Euclidean and ℓ1-intrinsic volumes
of a convex set are not equal.

Corollary 3.4.3 The magnitude function of a cuboid A ⊆ ℓN1 is given by

|tA| =
N
∑

i=0

2−iV ′
i (A)t

i.

In particular, the magnitude function of a cuboid A is a polynomial whose
degree is the dimension of A, and whose coefficients are proportional to the
ℓ1-intrinsic volumes of A. �

The moral is that for spaces belonging to this small class, the dimension and
all of the ℓ1-intrinsic volumes can be recovered from the magnitude function.
In this sense, magnitude encodes those invariants. For the rest of this work we
advance the conjectural principle—first set out in [27]—that the same is true
for a much larger class of spaces, in both ℓN1 and ℓN2 .
We begin by showing that the principle holds for subspaces of ℓN1 when the
invariant concerned is dimension.

Definition 3.4.4 The growth of a function f : (0,∞) → R is

inf{ν ∈ R : f(t)/tν is bounded for t≫ 0} ∈ [−∞,∞].

For example, the growth of a polynomial is its degree.
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Definition 3.4.5 The (magnitude) dimension dimA of a stably positive def-
inite compact metric space A is the growth of its magnitude function.

Examples 3.4.6 i. The magnitude dimension of a cuboid in ℓN1 is its di-
mension in the usual sense, by Corollary 3.4.3.

ii. The magnitude dimension of a nonempty finite space is 0, by Proposi-
tion 2.2.6(v).

Lemma 3.4.7 Let A be a stably positive definite compact space. Then:

i. Every closed subspace B ⊆ A satisfies dimB ≤ dimA.

ii. If A 6= ∅ then dimA ≥ 0.

Proof For (i), we have 0 ≤ |tB| ≤ |tA| for all t > 0, so dimB ≤ dimA.
For (ii), take B to be a one-point subspace of A. �

Recall that the magnitude of a positive definite compact space can in principle
be infinite (although there are no known examples).

Theorem 3.4.8 Let A be a compact subset of ℓN1 . Then:

i. |A| <∞.

ii. dimA ≤ N , with equality if A has nonempty interior.

We will show in Theorem 3.5.8 that the hypothesis ‘nonempty interior’ can be
relaxed to ‘nonzero measure’.

Proof A is a subset of some cuboid B ⊆ ℓN1 , which has finite magnitude by
Theorem 3.4.2, so |A| ≤ |B| < ∞. Also dimA ≤ dimB ≤ N by Lemma 3.4.7
and Example 3.4.6(i). If A has nonempty interior then it contains an N -
dimensional cuboid, giving dimA ≥ N . �

We now ask whether the ℓ1-intrinsic volumes of an ℓ1-convex set can be ex-
tracted from its magnitude function.

Let CN be the smallest class of compact subsets of ℓN1 containing all cuboids
and closed under unions of the type in Proposition 3.1.5. By that proposition
and Theorem 3.4.2, equation (5) holds for all A ∈ CN .

Example 3.4.9 Let T be a solid, compact triangle in ℓ21 with two edges parallel
to the coordinate axes. We compute |T | by exhaustion. For each k ≥ 1, let
Ik be the union of k rectangles approximating T from the inside as in Fig. 5;
similarly, let Ek be the exterior approximation by k rectangles. Then T , Ik
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T I10 E10

Figure 5: Triangle T ⊆ ℓ21, with interior and exterior approximations I10, E10

and Ek are all ℓ1-convex with Ik, Ek ∈ C2, and limk→∞ Ik = T = limk→∞ Ek,
so

lim
k→∞

|Ik| = lim
k→∞

2
∑

i=0

2−iV ′
i (Ik) =

2
∑

i=0

2−iV ′
i (T )

= lim
k→∞

2
∑

i=0

2−iV ′
i (Ek) = lim

k→∞
|Ek|

(using continuity of V ′
i in the second and third equalities). But |Ik| ≤ |T | ≤ |Ek|

for all k, so |T | = ∑2
i=0 2

−iV ′
i (T ). Similar arguments prove this identity for all

compact convex polygons in ℓ21.

These and other examples suggest the following conjecture.

Conjecture 3.4.10 Let A be a compact ℓ1-convex subspace of ℓN1 . Then

|A| =
N
∑

i=0

2−iV ′
i (A).

If the conjecture holds then |tA| = ∑N
i=0 2

−iV ′
i (A)t

i for all t > 0 and A ∈ K ′
N .

Hence we can recover all of the ℓ1-intrinsic volumes of an ℓ1-convex set from
its magnitude function.

3.5 Subsets of Euclidean space

We now prove results for ℓN2 similar to some of those for ℓN1 . Our first task is
to prove that the magnitude of a compact subset of Euclidean space is finite.
Given A ⊆ RN , write

S (A) = {Schwartz functions φ : RN → R such that φ̂(a− b) = 1

for all a, b ∈ A}.

Lemma 3.5.1 Let A ⊆ RN be a bounded set. Then S (A) 6= ∅.
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Proof Since A is bounded, there is a real even Schwartz function f such that
f(a − b) = 1 for all a, b ∈ A; then there is a unique real Schwartz function φ

such that φ̂ = f . �

The rest of the proof uses the function ψ from Section 2.5. For a Schwartz
function φ on RN , write

c(φ) = sup
ξ∈RN

|φ(ξ)/ψ(ξ)| <∞.

Lemma 3.5.2 Let A be a compact subspace of ℓN2 and φ ∈ S (A). Then |A| ≤
c(φ).

Proof Let B be a finite subset of A; thus, B is positive definite by Theo-
rem 2.5.3. Then for all v ∈ RB, using Lemma 2.5.2 twice,

c(φ) · v∗ζBv = c(φ)

∫

RN

∣

∣

∣

∣

∑

a∈B

v(a)e−2πi〈ξ,a〉
∣

∣

∣

∣

2

ψ(ξ) dξ

≥
∫

RN

∣

∣

∣

∣

∑

a∈B

v(a)e−2πi〈ξ,a〉
∣

∣

∣

∣

2

φ(ξ) dξ

=
∑

a,b∈B

v(a)φ̂(a− b)v(b) =
(

∑

a∈B

v(a)
)2

.

Taking v to be the unique weighting on B gives c(φ) ≥ |B|. �

Proposition 3.5.3 The magnitude of a compact subspace of ℓN2 is finite. �

We can extract more from the argument. For a compact set A ⊆ RN , write

〈A〉 = inf{c(φ) : φ ∈ S (A)} <∞.

Lemma 3.5.2 states that |A| ≤ 〈A〉.

Lemma 3.5.4 Let A be a compact subset of RN and t ≥ 1. Then 〈tA〉 ≤ tN 〈A〉.

Proof Let φ ∈ S (A). Define θ : RN → R by θ(ξ) = tNφ(tξ). Then θ is

Schwartz, and if a, b ∈ tA then θ̂(a− b) = φ̂((a− b)/t) = 1. Hence θ ∈ S (tA).
I now claim that c(θ) ≤ tNc(φ). Indeed, using the fact that ψ(ξ) ≥ ψ(tξ) for
all ξ ∈ RN ,

c(θ) = tN sup
ξ∈RN

∣

∣

∣

∣

φ(tξ)

ψ(ξ)

∣

∣

∣

∣

≤ tN sup
ξ∈RN

∣

∣

∣

∣

φ(tξ)

ψ(tξ)

∣

∣

∣

∣

= tNc(φ).

This proves the claim, and the result follows. �

Theorem 3.5.5 A compact subspace of ℓN2 has dimension at most N .
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Proof For compact A ⊆ ℓN2 and t ≥ 1, we have |tA| ≤ 〈tA〉 ≤ tN 〈A〉; hence
dimA ≤ N . �

The same proof can be adapted to ℓN1 , although we already have a much more
elementary proof (Theorem 3.4.8).

Having bounded magnitude from above, we now bound it from below.

Theorem 3.5.6 Let ‖ · ‖ be a norm on RN whose induced metric is positive
definite. Write B = {x ∈ RN : ‖x‖ ≤ 1}. For a compact set A ⊆ RN , equipped
with the subspace metric,

|A| ≥ Vol(A)

N ! Vol(B)
.

Before proving this, we state some consequences. Write ωN for the volume of
the unit Euclidean N -ball.

Corollary 3.5.7 Let A be a compact subset of RN .

i. If A is given the subspace metric from ℓN2 then |A| ≥ Vol(A)/N !ωN .

ii. If A is given the subspace metric from ℓN1 then |A| ≥ Vol(A)/2N .

Proof Part (i) is immediate. Part (ii) follows from the fact that the unit ball
in ℓN1 has volume 2N/N !, or can be derived from Lemma 3.5.9 below. �

Theorem 3.5.8 Let p ∈ {1, 2} and let A be a compact subspace of ℓNp . Then
dimA ≤ N , with equality if A has nonzero Lebesgue measure.

Proof The inequality follows from Theorems 3.4.8 and 3.5.5. Now suppose
that Vol(A) > 0. By Corollary 3.5.7, there is a constant KA > 0 such that
|tA| ≥ KAt

N for all t > 0, giving dimA ≥ N . �

Generalizations of these theorems have been proved by Meckes, using more so-
phisticated methods ([31], Theorems 4.4 and 4.5). In particular, Theorem 3.5.8
is extended to ℓNp for all p ∈ [1, 2].

To prove Theorem 3.5.6, we first need a standard calculation.

Lemma 3.5.9 Let ‖ · ‖ be a norm on RN . Write B for the unit ball. Then

∫

RN

e−‖x‖ dx = N ! Vol(B).

Proof

∫

RN

e−‖x‖ dx =

∫ ∞

r=0

e−r d(Vol(rB)) =

∫ ∞

0

e−rNrN−1 Vol(B) dr =

N ! Vol(B). �
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Proof of Theorem 3.5.6 We use the result of Meckes [31, Theorem 2.4]
that for a compact positive definite space A and a finite Borel measure v on A,

|A| ≥ v(A)2
/

∫

A

∫

A

e−d(a,b) dv(a) dv(b).

Let A ⊆ RN be a compact set and take v to be Lebesgue measure: then

|A| ≥ Vol(A)2
∫

A

∫

A
e−‖a−b‖ da db

≥ Vol(A)2
∫

A

∫

RN e−‖a−b‖ da db

=
Vol(A)2

∫

A

∫

RN e−‖x‖ dx db
=

Vol(A)
∫

RN e−‖x‖ dx
.

The theorem follows from Lemma 3.5.9. �

This proof is a rigorous rendition of part of Willerton’s bulk approximation
argument [50]. There is an alternative proof in the same spirit, not depending
on the results of Meckes but instead working with finite approximations. We
sketch it now.

Alternative proof of Theorem 3.5.6 For δ > 0, write

Sδ =
{

x ∈ δZN : A ∩
N
∏

r=1

[xr, xr + δ) 6= ∅
}

.

Define α : δZN → RN by choosing for each x ∈ Sδ an element α(x) ∈ A ∩
∏

[xr, xr + δ), and putting α(x) = x for x ∈ δZn \ Sδ.
A calculation similar to that in the first proof of Theorem 3.5.6 shows that for
all δ > 0,

|A| ≥ #Sδ
∑

x∈δZN Eδ(x)

where

Eδ(x) =
1

#Sδ

∑

y∈Sδ

e−‖α(x+y)−α(y)‖ (

≈ e−‖x‖).

(Apply Proposition 2.4.3 to the finite space αSδ.) Since Lebesgue measure is
outer regular, limδ→0(δ

N (#Sδ)) = Vol(A). From the fact that ‖α(x) − x‖ ≤
diam([0, δ)N ) for all δ > 0 and x ∈ δZN , it also follows that

lim
δ→0

(

δN
∑

x∈δZN

Eδ(x)
)

=

∫

RN

e−‖x‖ dx.

The theorem now follows from Lemma 3.5.9. �

These results suggest the following conjecture, first stated in [27]:
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Conjecture 3.5.10 Let A be a compact convex subspace of ℓN2 . Then

|A| =
N
∑

i=0

1

i!ωi
Vi(A).

Assuming the conjecture, the magnitude function of a compact convex set
A ⊆ ℓN2 is a polynomial:

|tA| =
N
∑

i=0

1

i!ωi
Vi(A)t

i. (6)

All of the intrinsic volumes, as well as the dimension, can therefore be recovered
from the magnitude function.
The evidence for Conjecture 3.5.10 is as follows.

• The two sides of equation (6) have the same growth (by Theorem 3.5.8).

• The left-hand side of (6) is greater than or equal to the leading term of
the right-hand side (by Corollary 3.5.7).

• Both sides of (6) are monotone increasing in A (by Lemma 3.1.3).

• The conjecture holds for N = 1 (by Theorem 3.2.2).

• It is closely analogous to Conjecture 3.4.10, which, while itself a conjec-
ture, is known to hold for a nontrivial class of examples. (To see the
analogy, note that in both cases the ith coefficient is 1/i! Vol(Bi), where
Bi is the i-dimensional unit ball.)

• There is good numerical evidence, due to Willerton [50], when A is a disk,
square or cube.

One strategy for proving Conjecture 3.5.10 would be to apply Hadwiger’s the-
orem (3.3.2). There are currently two obstacles. First, it is not known that
magnitude is a valuation on compact convex sets. Certainly it is not a valuation
on all compact subsets of ℓN2 : consider the union of two points.
Second, even if we knew that magnitude was a valuation on convex sets, the
conjecture would still not be proved. We would know that magnitude was
an invariant valuation, monotone and therefore continuous by Theorem 8 of
McMullen [30]. By Hadwiger’s theorem, there would be constants ci such that
|A| = ∑

ciVi(A) for all convex sets A. However, current techniques provide no
way of computing those constants. Knowing the magnitude of balls or cubes
would be enough; but apart from subsets of the line, there is not a single convex
subset of Euclidean space whose magnitude is known.
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Springer, Berlin, 1957.

[13] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, Cambridge, 1985.

[14] M. W. Jacobsen and J. Møller. Euler characteristics and Möbius algebras
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