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1 Introduction

Let K be a number field. Artin conjectured that the L-series of any continu-
ous representation ρ : Gal(K/K) → GLn(C) of the absolute Galois group
Gal(K/K) of K is holomorphic except a possible pole at s = 1 when the trivial
representation is a constituent of ρ.
A result of Brauer (See [36]) about finite groups immediately implies that
L(ρ, s) has meromorphic continuation and satisfies a certain functional equa-
tion relating the values at s and 1 − s. Any such complex representation is
semi-simple, and because Artin showed that L(ρ1 + ρ2) = L(ρ1, s)L(ρ2, s), the
conjecture immediately follows from the case where ρ is irreducible. In the case
where ρ is irreducible, the strong form of this conjecture, known as the strong
Artin conjecture, asserts that there is a cuspidal automorphic representation π
of GLn(AK) such that L(π, s) = L(ρ, s), and Artin conjecture follows from the
strong Artin conjecture (See [22], Theorem 8.8 with its proof (p.286) attributed
to Ramakrishnan).
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When n = 2 and the image of the projective representation projρ :
Gal(K/K) → PGL2(C) = GL2(C)/C× is dihedral (D2n for some n ≥ 2),
ρ is induced from a character χ of the absolute Galois group Gal(K/M) of
a quadratic extension M of Q, and Artin himself proved the conjecture (the
holomorphy of L(ρ, s) = L(IndGKGMχ, s) = L(χ, s) follows from earlier work of
Hecke).
When n = 2 and the image of projρ is tetrahedral (A4) and when n = 2,
K = Q, ρ odd, and the projective image of ρ is octahedral (S4), Langlands
[23], using his theory of (cyclic) base change, “deduced” the strong Artin con-
jecture from the dihedral case. Tunnell, building on work of Langlands, com-
pleted the octahedral case n = 2 and general K. In the octahedral case, in
order to “descend” a cuspidal automorphic representation Π of GL2(AE) such
that L(Π, s) = L(ρ|Gal(K/E), s) to a cuspidal automorphic representation π of

GL2(AK), where E is the quadratic extension ofK corresponding to the unique
index 2 subgroup (≃ A4) of S4, Langlands uses a theorem of Deligne-Serre (and
therefore K = Q and ρ should be necessarily odd) whilst Tunnell uses cubic
base change to match up, for all but finitely many places v of K, the restriction
of ρ to the decomposition group at v and the local representation πv.
The icosahedral (A5) case had remained largely intractable until Buzzard-
Dickinson-Shepherd-Barron-Taylor [4] proved many new cases of the strong
Artin conjecture for odd ρ : Gal(Q/Q) → GL2(C).
[4] follows the program of Taylor ([37]), which may be succinctly described
as an approach to deduce results about weight one forms from results about
weight two forms (more specifically the idea of Wiles in [42]), and it is a cul-
mination of a series of work: “R = T theorem for 2-adic ordinary finite flat
representations” by Dickinson [10], “modularity of mod 2 icosahedral repres-
entations” by Shepherd-Barron and Taylor [33], and “modular lifting theorem
for two-dimensional p-adic Artin representations unramifed at p (for any prime
p)” by Buzzard and Taylor [5]. Buzzard [3] later extended [5] to treat almost all
two-dimensional p-adic Artin representations potentially unramifed at p (the
image of the inertia group at p is finite) and subsequently it led to modularity of
two-dimensional “5-adic” icosahedral Artin representations by Taylor [39]. The
strong Artin conjecture for odd two-dimensional representations of Gal(Q/Q)
is now completely proved by work of Khare-Wintenberger and Kisin on Serre’s
conjecture for odd two-dimensional mod p representations of Gal(Q/Q).
In this paper, we push through Taylor’s program and generalise them to treat
new cases of the strong Artin conjecture for two-dimensional, totally odd, ico-
sahedral Artin representations of the absolute Galois group of a totally real
field. More precisely, we prove the following theorems.

Theorem 1 Let F be a totally real field. Suppose that 5 splits completely in F .
Suppose that ρ : Gal(F/F ) → GL2(C) is a totally odd, irreducible, continuous
representation satisfying the following conditions.

• The image of the projective representation projρ of ρ is A5.
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• The projective image of the decomposition group at every place of F above
5 has order 2.

Then ρ arises from a holomorphic cuspidal Hilbert modular eigenform of weight
1 and the Artin L-function L(ρ, s) is entire.

Theorem 2 Let F be a totally real field. Suppose that 2 splits completely in
F and that [F (ζ5) : F ] = 4. Suppose that ρ : Gal(F/F ) → GL2(C) is a totally
odd, irreducible, continuous representation satisfying the following conditions.

• The image of the porjective representation projρ of ρ is A5.

• At every place p of F above 2, the projective representation of ρ is un-
ramified, and the image of Frobp has order 3.

Then ρ arises from a holomorphic cuspidal Hilbert modular eigenform of weight
1 and the Artin L-function L(ρ, s) is entire.

These are corollaries of the following theorems, first of which is about “if ρ :
Gal(F/F ) → GL2(Fp) is modular, then ρ : Gal(F/F ) → GL2(Qp) ≃ GL2(C)
is modular”:

Theorem 3 Let p be a rational prime. Let K be a finite extension of Qp with
ring O of integers and maximal ideal m. Let F be a totally real field. Suppose
that p splits completely in F . Let ρ : Gal(F/F ) → GL2(O) be a continuous
representation satisfying the following conditions.

• ρ ramifies at only finitely many primes.

• ρ = (ρ mod m) is absolutely irreducible when restricted to Gal(F/F (ζp)),
and has a modular lifting which is potentially ordinary and potentially
Barsotti-Tate at every prime of F above p.

• For every prime p of F above p, the restriction ρ|Gp
to the decomposition

group Gp at p is the direct sum of 1-dimensional characters χp,1 and χp,2

of Gp such that the images of the inertia subgroup at p are finite and
(χp,1 mod m) 6= (χp,2 mod m).

If p = 2, assume moreover the following conditions.

• The image of the complex conjugation, with respect to every embedding
of F into R, is not the identity matrix.

• ρ has insoluble image.

• For every prime p of F above 2, ρ is unramified at p.

Then there exists an embedding ι : K →֒ Qp ≃ C and a classical holomorphic
cuspidal Hilbert modular eigenform f of weight 1 such that ι ◦ ρ is isomorphic
to the representation associated to f by Rogawski-Tunnell [28].
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In proving the theorem, we shall firstly establish R = T theorems for Hida
p-ordinary families over a finite soluble totally real extension FΣ of F in which
p ≥ 2 remains split completely–for lack of reference we shall prove them. Since
ρ has a potentially p-Barsotti-Tate and potentially p-ordinary modular lifting,
one can deduce R = T in p-adic families from Kisin’s R = T theorems in
the p-Barsotti-Tate case. Note that, unfortunately, it is not possible to make
appeal to Geraghty’s R = T theorems in p-ordinary families as they assume
that p > 2 and that ρ is trivial at every prime of F above p. This is because
one can not eliminate the possibility that, upon ‘soluble’ base-changing to FΣ

to set ρ|Gal(F/FΣ) trivial at every prime of FΣ above p, FΣ may no longer be
split at p, which is crucial in constructing weight one forms in our approach.
In the light of [1], the condition about the existence of a potentially ordinary
Barsotti-Tate lifting of ρ can be weaker, more precisely, it suffices to assume
‘ρ is modular’. It is not necessary to make appeal to their results however.

The next two theorems are about modularity of ρ.

Theorem 4 Let F be a totally real field. Suppose that 5 is unramified in F .
Let ρ : Gal(F/F ) → GL2(F5) be a continuous representation of satisfying the
following conditions.

• ρ is totally odd.

• ρ has projective image A5.

The there exists a cuspidal Hilbert modular eigenform of weight 2 such that its
associated 5-adic Galois representation is potentially Barsotti-Tate and poten-
tially ordinary at every prime of F above 5, and its associated mod 5 Galois
representation is isomorphic to ρ.

The idea is exactly the same as that of Taylor–to prove modularity of ρ, one
firstly finds an elliptic curve E over a finite soluble totally real field extension
FΣ of F such that the action of Gal(F/FΣ) on the 5-torsion points of E is iso-
morphic to ρ|Gal(F/FΣ); secondly one proves E modular, therefore ρ|Gal(F/FΣ)

modular; and finally it follows from Khare-Wintenberger [18] and Kisin [20]
that ρ|Gal(F/FΣ) has a characteristic zero lifting which is modular. The ‘auto-

morphic descent’ works as in [39].
In proving E is modular, we make some technical improvements on a ‘naive’
generalisation over totally real fields of the main theorem of Taylor in [39]
by making appeal to the main result of Kisin [20] rather than the main
result of Skinner-Wiles [35]. While Taylor/Skinner-Wiles requires the mod 3
representation E[3](FΣ) of Gal(F/FΣ) to be reducible with distinct characters
on the diagonal at every prime of FΣ above 3, we no longer requires this and
consequently remove the ‘3-distinguishedness condition’ in the main theorems
of [39]. The key observation is that the weight 2 specialisation FH,2 of the Hida
family FH, whose weight 1 specialisation FH,1 renders E[3](FΣ) modular by
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Langlands-Tunnell, does indeed render the 3-adic Barsotti-Tate representation
T3E ‘strongly residually modular’ in the sense of Kisin [20] if E[3](FΣ) is
unramified at every prime above 3.

As is clear from its proof, what we are proving indeed is modularity of general
mod 5 representations Gal(F/F ) → GL2(F5), and this allows us to work with
the prime 2–proving modularity of ρ2 : Gal(F/F ) → SL2(F4) with projρ2 ≃
A5–instead of the prime 5, going back to the original approach of Buzzard-
Dickinson-Shepherd-Barron-Taylor; in [4] one firstly finds an abelian surface A
over F with real multiplication Z[(1+

√
5)/2] such that A(F )[2] ≃ ρ2; secondly

proves the mod 5 representation Gal(F/F ) → GL2(A(F )[
√
5]) ≃ GL2(F5) is

modular; and deduce A is modular by a modular lifting theorem.

Theorem 5 Let F be a totally real field. Suppose that [F (ζ5) : F ] = 4. Let
ρ : Gal(F/F ) → SL2(F4) be a continuous representation. Then there exists a
cuspidal Hilbert modular eigenform of weight 2 such that its associated 2-adic
Galois representation is potentially Barsotti-Tate and potentially unramified at
every prime of F above 2 and its associated mod 2 Galois representation is
isomorphic to ρ.

Lastly it might come in useful comparing our work and others. After the first
draft of this paper was written in 2010, Kassaei announced a result proving an
analogue of the main theorem 3 in the case when p is odd, p is unramified in F ,
and χp,1/χp,2 and χp,2/χp,1 are both unramified at every prime p of F above p.
Pilloni, on the other hand, seems to have proved a slightly stronger analogue in
which p is allowed to ramify a little in F . The fundamental ideas in both works
and ours are essentially the same and are due to Buzzard, more specifically
to Buzzard’s Theorem 9.1 in [3]. In forthcoming joint work with Kassaei and
Tian, we extend Kassaei’s work to the case where χp,1/χp,2 and χp,2/χp,1 are
of conductor p for every prime p of F above p (unramified in F ) and prove
many new cases of the strong Artin conjecture for ρ : Gal(F/F ) → GL2(C) in
the insoluble case as above.
To prove an analogue of the main theorem 3 in the case where χp,1/χp,2 and
χp,2/χp,1 are of conductor pr with r > 1 for every prime p of F above p,
one needs to know precise geometry of Hilbert modular varieties of level pr

and, unless p splits completely in F which we solve, this may not even be
possible. Calculating q-expansions at cusps to glue weight one forms does
not seem to depend on the ramification of p in F and, for that, this work is
very useful in general. On the other hand, in order to prove the general case
(p ramifies arbitrarily in F ), the author [30] considers new moduli spaces of
Hilbert-Blumenthal abelian varieties; and he expects to make progress in the
general case in his forthcoming work.

Acknowledgements The author would like to thank Kevin Buzzard, Fred
Dimanond, and Payman Kassaei for extremely helpful comments whilst the
author was preparing this paper. He would also like to thank David Geraghty
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The author was supported financially by EPSRC (UK) whilst he was preparing
the manuscript. He would like to thank their support. He would also like
to thank Institut Henri Poincaré (Paris, France) and King’s College London
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2 Modularity of mod 5 icosahedral representations of Gal(F/F )

Lemma 6 Let F be a totally real field. Suppose that 5 is unramified in F . Sup-
pose that ρ : Gal(F/F ) → GL2(F5) is a continuous representation satisfying
the following conditions.

• ρ is totally odd.

• ρ has projective image A5.

Then there is a finite soluble totally real field extension FΣ of F and an elliptic
curve E over FΣ such that

• F (
√
5) ⊂ FΣ ⊂ F , and

√
5 splits completely in FΣ;

• E has good ordinary reduction at every prime of F above 3 and has po-
tentially ordinary reduction at every prime of F above 5;

• ρE,5 : Gal(F/FΣ) → Aut(E(FΣ)[5]) is equivalent to a twist of
ρ|Gal(F/FΣ);

• ρE,3|Gal(F/FΣ(ζ3))
: Gal(F/FΣ(ζ3)) → Aut(E(FΣ)[3]) is absolutely irre-

ducible.

Proof. Firstly, as in [39], find a biquadratic totally real extension K1 ⊂ F
of F , which is a quadratic totally real extension of F (

√
5) in which

√
5 splits

completely, such that projρ : Gal(F/K1) → PSL2(F5) ≃ A5 lifts to a repres-
entation ρ1 : Gal(F/K1) → GL2(F5) with determinant the mod 5 cyclotomic
character ǫ. Choose, by class field theory, a finite soluble totally real extension
K2 ⊂ F of K1 such that ρ1|Gal(F/K2)

is trivial when restricted to the decom-
position group at every prime of K2 above 3. Let FΣ denote the Galois closure
of K2 over F . Let ρΣ denote the restriction of ρ to Gal(F/FΣ).
As in section 1 of [33], let YρΣ/FΣ (resp. XρΣ/FΣ) denote the twist of the
(resp. compactified) modular curve Y5 (resp. X5) with full level 5 structure by
the cohomology class in H1(Gal(F/FΣ),AutX5) defined by an isomorphism
ρΣ ≃ (Z/5Z) × µ5 of the F5-vector spaces. As proved in Lemma 1.1 in [33],
the ‘twist’ cohomology class is indeed trivial, and therefore XρΣ ≃ X5 and YρΣ
is isomorphic over FΣ to a Zariski open subset of the projective line P1. In
particular, YρΣ has infinitely many rational points.
Let YρΣ,0(3) denote the degree 4 cover over YρΣ which parameterises isomorph-
ism classes of elliptic curves E equipped with an isomorphism E[5] ≃ ρΣ taking
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the Weil pairing on E[5] to ǫ : ∧2ρΣ → µ5 and a finite flat subgroup scheme
C ⊂ E[3] of order 3.
Let YρΣ,split(3) denote the étale cover over YρΣ which parameterises isomorph-
ism classes of elliptic curves E equipped with an isomorphism E[5] ≃ ρΣ tak-
ing the Weil pairing on E[5] to ǫ : ∧2ρΣ → µ5 and an unordered pair, fixed
by Gal(F/FΣ), of finite flat subgroup schemes C,D ⊂ E[3] of order 3 which
intersect trivially. Then it follows from Lemma 12 in [27] that YρΣ,split(3) and
YρΣ,0(3) has only finitely many rational points.
For every prime p of FΣ above 3, the elliptic curve y2 = x3 + x2 − x defines an
element of YρΣ(FΣ,p) with good ordinary reduction, and we let Up ⊂ YρΣ(FΣ,p)
denote a (non-empty) open neighbourhood (for the 3-adic topology) of the
point, consisting of elliptic curves with good ordinary reduction at p.
For every prime p of FΣ above 5, we define a non-empty open subset (for the
5-adic topology) Up ⊂ YρΣ(FΣ,p) as in the proof of Lemma 2.3 in [39].
By Hilbert irreducibility theorem (Theorem 1.3 in [11]; see also Theorem
3.5.7 in [32]), we may then find a rational point in YρΣ(FΣ) which lies in
Up for every p of FΣ above either 3 or 5 and does not lie in the images of
YρΣ,0(3)(FΣ) → YρΣ(FΣ) and YρΣ,split(3)(FΣ) → YρΣ(FΣ). The elliptic curve
over FΣ corresponding to the rational point is what we are looking for. �

Theorem 7 Let F be a totally real field. Suppose that 5 is unramified in F .
Let ρ : Gal(F/F ) → GL2(F5) be a continuous representation of satisfying the
following conditions.

• ρ is totally odd.

• ρ has projective image A5.

Then there exists a cuspidal Hilbert modular eigenform of weight 2 such that
its associated 5-adic Galois representation is potentially Barsotti-Tate and po-
tentially ordinary at every prime of F above 5 and its associated mod 5 Galois
representation is isomorphic to ρ.

Proof. Choose an elliptic curve over a finite soluble totally real extension FΣ

of F as in the lemma. Replace FΣ by its finite soluble totally real extension
if necessary to assume that the mod 3 representation ρE,3 of Gal(F/FΣ) on

E(FΣ)[3] is unramified when restricted to the decomposition subgroup at
every prime of FΣ above 3. By the Langlands-Tunnell theorem, there exists
a weight 1 holomorphic cuspidal Hilbert modular eigenform f1 which gives
rise to ρE,3. By 3-adic Hida theory [14], we may find a holomorphic cuspidal
Hilbert modular eigenform f2 of weight 2 and level prime to 3, ordinary at
every prime of FΣ above 3, which gives rise to ρE,3. As E is ordinary at 3, ρE,3
is strongly residually modular in the sense of Kisin [20] (3.5.4), and it follows
from Theorem 3.5.5 in [20] that T3E is modular. By Faltings’ isogeny theorem,
E is therefore modular. As ρE,5 is modular, ρ|Gal(F/FΣ) is modular. Since FΣ

is a soluble extension of F , ρΣ remains absolutely irreducible when restricted
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to Gal(F/FΣ(ζ)). Furthermore, since 5 is unramfied in F , the kernel of proj ρΣ
does not fix FΣ(ζ5). It then follows from results of Khare-Wintenberger [18]
and Kisin [20] that there exists a modular lifting of ρΣ. The ‘soluble descent’
to F is exactly as in [39]. �

Remark. In the forthcoming work with Kassaei and Tian, we remove the
assumption that 5 is unramified in F in Lemma 6, and thereby in Theorem 7.
Essentially the same argument works.

3 Modularity of mod 2 icosahedral representations of Gal(F/F )

Theorem 8 Let F be a totally real field. Suppose that [F (ζ5) : F ] = 4. Let
ρ : Gal(F/F ) → SL2(F4) be a continuous representation. Then there exists a
cuspidal Hilbert modular eigenform of weight 2 such that its associated 2-adic
Galois representation is potentially Barsotti-Tate and potentially unramified at
every prime of F above 2 and its associated mod 2 Galois representation is
isomorphic to ρ.

Proof. By Theorem 3.4 in [33], there exists a principally polarised abelian
surface A over F with real multiplication by Z[(1+

√
5)/2] compatible with the

polarisation such that the action of Gal(F/F ) on A(F )[2] ≃ F2
4 is equivalent to

ρ; and the action of Gal(F/F ) on A(F )[
√
5] ≃ F2

5 is given via a homomorphism

ρA,
√
5 : Gal(F/F ) → GL2(F5)

which is surjective and whose image contains SL2(F5). It suffices to prove that
A is modular.

Firstly, the Weil pairing on A(F )[
√
5] shows that detρA,

√
5 is the mod 5 cyc-

lotomic character. Since [F (ζ5) : F ] = 4, the determinant is indeed surjective,
and therefore ρA,

√
5 is absolutely irreducible.

If ρA,
√
5 is irreducible at some place of F above 5, the absolute irreducibility

of ρA,
√
5 implies the absolute irreducibility of its restriction to Gal(F/F (ζ5)).

Otherwise, ρA,
√
5 is reducible at every place of F above 5; in which case, it

is also equally easy to check that its restriction to Gal(F/F (
√
5)) of ρA,

√
5 is

absolutely irreducible (See Proposition 7 in [27], for example). It follows from
results of Khare-Wintenberger [16] and Kisin [20] that it is possible to construct
a modular lifting of ρA,

√
5; more precisely, ρA,

√
5 is strongly residually modular.

The modularity of ρA,
√
5 follows from Theorem 3.5.5 in [20] and [12]. �

4 Holomorphic Hilbert modular forms and Hida theory of mod-
ular Galois representations

Let F be a totally real field. We let OF denote the ring of integers, dF the
different of F , AF = A∞

F × F∞, and O∧
F denote OF ⊗Z Z∧ ⊂ A∞

F . Let S∞
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denote the set of infinite places of F . For an ideal n of OF , let Fn denote the
strict ray class field of conductor nS∞.

For an ideal n, let U1(n) (resp. U1(n)) denote the open compact sub-
group of GL2(O∧

F ) consisting of matrices which are congruent modulo nO∧
F

to matrices with first column (1, 0) (resp. the second row (0, 1)). Let In denote
A×
F /(F

×(A∞×
F ∩ U1(n))F+×

∞ ).

For k ∈ Z and an open compact subgroup U of GL2(O∧
F ) , let Sk(U) denote

the space, Sk,k/2(U) in the sense of Hida [14], of cuspidal holomorphic Hilbert
modular forms f of parallel weight k and level U with the Fourier coefficient
c(n, f) ∈ Z for all ideals n of OF . The spaces Sk(U

1(n)) and Sk(U1(n)) for an
ideal n of OF come equipped with an action of In via the diamond operator
〈 〉, and Hecke operators Tq for every prime q of OF not dividing n and Uq for
every prime of q dividing n.

Let hk(n) denote the sub Z-algebra of End(Sk(U
1(n)) generated over Z by

all these operators (See Proposition 2.3, Theorem 4.10, and Theorem 4.11 of
[14]). For every prime q not dividing n, let Sq = (NF/Qq)k−2〈q〉 ∈ hk(n); this
corresponds to the action of the scalar matrix with a uniformiser of OF at q on
the diagonal. Following [14], for every idealm ofOF , we may define Tm ∈ hk(n).

Let p be a rational prime and let SP denote the set of prime ideals of OF

dividing p. Fix an algebraic closure Qp, an isomorphism Qp ≃ C, and an

embedding Q → Qp.

For a ring R ⊂ Qp, we shall let Sk(U1(n))R denote Sk(U1(n))⊗ZR and hk(n)R
denote hk(n)⊗Z R; there is a pairing ( , ) : hk(n)R × Sk(U1(n))R → R defined
by (T, f) = c(OF , T f).

For a ray class character ψ : In → Q
×
p mod nS∞, let Sk,ψ(U1(n))Zp[ψ]

denote the submodule of Sk(U1(n1))Zp[ψ] consisting of cuspidal Hilbert mod-
ular forms of parallel weight k and level U1(n) with central character ψ–Sq

acts via ψ at q; the forms in Sk,ψ(U1(n))Zp[ψ] may be thought of as |In|-
tuple of classical Hilbert modular forms of ‘level Γ1(n)’ on the |In|-copies of
(GL2(R)/(R×SO2(R))Hom(F,R) with ‘Dirichlet character mod n’.

Fix an ideal n of OF coprime to p. For a finite extension K of Qp with ring
O of integers, Hida [14] defines the idempotent e and we set h0O(n) to be the
inverse limit with respect to r ∈ Z≥1 of h2(np

r)Zp ⊗Zp O. Let Inp∞ denote
the inverse limit of the Inpr and the diamond operators 〈 〉 : Inpr → eh2(np

r)O
induce

〈 〉 : Inp∞ → h0O(n)
×.

One can also see 〈 〉 as the action of (OF /n)
×× (OF ⊗ZZp)

× by the composite:

(OF /n)
× × (OF ⊗Z Zp)

× → Inp∞
〈 〉−→ h0O(n).
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We let Tornp∞ (resp. Frnp∞) denote the torsion subgroup (resp. the maximal
Zp free subgroup of rank 1 + δ with δ = 0 if the Leopoldt conjecture holds) of
Inp∞ ; let Λ denote the completed group algebra over Zp of Frnp∞ and ΛK =
Λ⊗Zp O. Then h0O(n) is a ΛK-module by 〈 〉. We will let

Art : A×
F /F

×F+×
∞ ≃ Gal(F/F )ab

denote the (global) Artin map, normalised compatibly with the local Artin
maps normalised to take uniformisers to arithmetic Frobenius elements. By
abuse of notation, we shall let Art also denote the induced homomorph-
ism Inp∞ → Gal(Fn(µp∞)/F ) and let ǫ denote the cyclotomic character
ǫ : Gal(Fn(µp∞)/F ) → Z×

p .

Hida [14] proves that h0O(n) is a torsion free ΛK-module and, for a charac-
ter ψ : Inp∞ → K which factors through Inpr for r ∈ Z≥1, if k ≥ 2, then
h0O(n)ker((ǫ◦Art)k−2ψ) is isomorphic to the subspace of eSk(U1(np

r))O where
〈 〉 = ψ on Frnp∞ .
We will let ǫcyclo denote the character

Gal(F/F ) ։ Gal(F/F )ab ։ Inp∞ →֒ O[[Inp∞ ]]× = ΛK [Tornp∞ ]×.

Note that q 7→ NqSq extends to NS : (OF /n)
× × (OF ⊗Z Zp)

× → Inp∞ →
h0O(n)

×. Let NSΣ (resp. NSP) denote the Σ (resp. the prime to SP) part∏
p∈ΣO×

Fp
→ h0O(n) (resp. (OF /n)

× → h0O(n)) for s subset Σ of SP.

If m is a maximal ideal of h0O(n) with residue field km, there is a continuous
representation

ρm : GF = Gal(F/F ) → GL2(km)

such that, for every prime ideal q of OF not dividing np, ρm is unramified at
q and trρm(Frobq) = Tq. Set S0

O(n) = HomΛK (h
0
O(n),ΛK). For a finite field

extension L of the field FracΛK of fractions of ΛK with its integral closure
OL of ΛK in L, Buzzard-Taylor [5] calls a ΛK-algebra homomorphism FH ∈
S0
O(n)⊗ΛK L = HomΛK (h

0
O, L) a Λ-adic eigenform (of level n).

If the unique maximal ideal m above kerFH ⊂ h0O(n) is non-Eisenstein, i.e., ρm
as above is absolutely irreducible, then there is a continuous representation

ρFH : GF → GL2(h
0
O(n)m)

FH→ GL2(OL)

which is unramified at every prime ideal q of OF not dividing np and satisfies
tr ρFH(Frobq) = Tq and det ρFH = (NS)◦ǫcyclo. Moreover, it is a result of Wiles
[43] that, for every place p of F above p, the restriction to the decomposition
group Gp at p of ρFH is of the form

(
χFH,p,2 ∗

0 χFH,p,1

)
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where χFH,p,1 is an unramified character of Gp such that χFH,p,1(Frobp) = Up

and χFH,p,1χFH,p,2 = (FH ◦NS) ◦ ǫcyclo|Gp
.

Definition. Following [5], we call two Λ-adic eigenforms FH,1 and FH,2 :
h0O(n) → OL of level n Λ-adic companion form with respect to primes ℘1

and ℘2 of OL which do not divide p, if there are embeddings ι1 : OL/℘1 →֒
Qp and ι2 : OL/℘2 →֒ Qp such that, for every ideal m of OF not di-
viding p, there exists a subset Σ of SP such that (FH,2(Tm) mod ℘2) =
(FH,1(Tm(NSΣ)(m)−1) mod ℘1); and such that, for every place p in Σ,
(FH,2(Up) mod ℘2) = (FH,1(U

−1
p (NSP )(p)) mod ℘1) while, for every p in

SP − Σ, (FH,2(Up) mod ℘2) = (FH,1(Up) mod ℘1).

5 Deformation rings and Hecke algebras

Let F be a totally real field of even degree in which p is unramified; if p = 2
assume furthermore that 2 splits completely in F . If p is odd, suppose p ≥ 5.
Let D be the quaternion algebra over F which ramifies exactly at a finite set
Σ of finite places of F not dividing p and the infinite places S∞ of F . Let OD

denote a maximal order and fix an isomorphism ODq ≃ M2(OFq
) for q not in

Σ. Let S denote the disjoint union of Σ, the set SP of places of F above p, and
the infinite places of F .
For a topological Zp-algebra R, let ψ : A∞,×

F /F → R× be a continuous char-
acter such that ψ|O×

Fp

is trivial for every place p of F above p, and, for an open

compact subgroup U =
∏

q
Uq ⊂ ∏

q
O×
Dq

, let SD2,ψ(U)R denote the R-module

of R-valued modular forms on D×\(D⊗F A∞
F )× of weight 2 and of level U in

the sense of Taylor [40].
Let nΣ denote the square-free product of the primes in Σ and define
UΣ ⊂ (D ⊗F A∞

F )× by UΣ,q = GL2(OFq) for q not in Σ; and UΣ,q = O×
Dq

for
q ∈ Σ.

We shall write SD2,ψ(nΣ) for SD2,ψ(UΣ) and hD2,ψ(nΣ)R for the R-subalgebra of

EndR(S
D
2,ψ(nΣ)R) generated by Tq and Sq for all q not in S; and Tp and Sp for

all p in SP.

Let K be a finite extension of Qp and O be the ring of integers with maximal
ideal m ad residue field k. Let

ρ : Gal(F/F ) → GL2(O)

be a continuous representation such that

• ρ = (ρ mod m) is unramified outside SP,

• ρ is not scalar at every place p above p,

• if p is odd, the restriction of ρ to Gal(F/F (ζp)) is absolutely irreducible;
if p = 2, ρ has insoluble image,
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• there exists a holomorphic automorphic representation π of (D⊗F AF )
×

generated by a cusp form in SD2,ψ(nΣ)O such that πq is unramified for
every q not in Σ∪SP, πp is ordinary at every p in SP, for every q ∈ Σ, πq
corresponds by the local Jacquet-Langlands correspondence to a special
representation of conductor q, and such that ρπ ≃ ρ,

• ρ ramifies at Σ and possibly at SP; for every p in SP

ρ|Gp
∼

(
∗ ∗
0 χp

)

with χp unramified; and for q ∈ Σ

ρ|Gq
∼

(
ǫχq ∗
0 χq

)

with χq unramified such that χ2
q = (ψ ◦Art)|Gq

.

Let A×
F = A×S

F × A×
FS for a finite subset S of the places of F . Let ψ be a

character of A×SP

F . For p = 2 let ψP,± denote the Zp-linear extension of the
norm N : (OF ⊗Z Z2)

× → Z×
2 followed by the character Z×

2 → Z×
p whose

restriction to (Z/4)× = {±1} sends −1 to ∓1 and whose restriction to (1 +
4Z2)

× is trivial. For p odd, let ψP denote the norm followed by the trivial
character on Z×

p .

5.1 (Framed) deformation rings R

p|p: if p is odd, let R�,ord
p (resp. R�,BT,ord

p ) denote the O-algebra which rep-
resents the p-ordinary (resp. Barsotti-Tate p-ordinary) framed deformations of
ρ|Gp

of the form (
∗ ∗
0 χur

p

)

with an unramified lifting χur
p of χp (resp. and its determinant is ǫψP ); if p = 2,

we shall write ‘±’ in shorthand to mean two independent cases– ‘+’ corresponds
to the 2-old case while ‘−’ corresponds to the 2-new case in the sense to be
made precise below, and let R�,ord

p,± (resp. R�,BT,ord
p,± ) denote the complete local

noetherian O-algebra which represents the p-ordinary (resp. Barsotti-Tate p-
ordinary) liftings of ρ|Gp

of the form

(
∗ ∗
0 χur

p

)

with an unramified lifting χur
p of χp, and with its determinant corresponding,

by the local class field theory, to the norm O×
Fp

→֒ (OF ⊗ZZ2)
× N→ Z×

2 followed

by the character Z×
2 → Z×

2 whose restriction to (Z/4)× = {±1} sends −1 to
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∓1 (resp. with its determinant ǫψP,±).

Let R�,ord
P =

⊗∧
p∈SP

R�,ord
p (resp. R�,BT,ord

P =
⊗∧

p∈SP
R�,BT,ord

p ) if p is odd;

and R�,ord
P,± =

⊗∧
p∈SP

R�,ord
p,± (resp. R�,BT,ord

P =
⊗∧

p∈SP
R�,BT,ord

p,± ) if p = 2.

q ∈ Σ: let R�,ψ
q denote the domain (see 2.6 in [20], or Proposition 2.12 and

3.3.4 in [18]) parameterising liftings of ρ|Gq
of the form

(
ǫχur

q ∗
0 χur

q

)

with χur
q an unramified lifting of χq such that (χur

q )2 = (ψ ◦Art−1)|Gq
.

Let R�,ψ
Σ denote the completed tensor product

⊗∧
q∈ΣR

�,ψ
q .

τ |∞: let R�,odd
τ denote the formally smooth ring which represents the liftings

of ρ|Gτ which, if p is odd, are odd ; and, if p = 2, the image of complex
conjugation in Gτ ≃ Gal(C/R) is not the identity matrix.

Let R�,odd
∞ denote the completed tensor product

⊗∧
τ |∞R�,odd

τ

Fix a k-basis of ρ and let

ρ�S : GF → GL2(R
�S)

denote the S-framed universal deformation ring. Let R�
S denote the completed

tensor product of the local framed deformation rings at places in S.

Let

R�,ord,ψ
S = R�S ⊗∧

R�
S

(R�,ord
P ⊗∧ R�,ψ

Σ ⊗∧ R�,odd
∞ )

R�,BT,ord,ψ
S = R�S ⊗∧

R�
S

(R�,BT,ord
P ⊗∧ R�,ψ

Σ ⊗∧ R�,odd
∞ )

if p is odd; and

R�,ord,ψ
S,± = R�S ⊗∧

R�
S

(R�,ord
P,± ⊗∧ R�,ψ

Σ ⊗∧ R�,odd
∞ )

R�,BT,ord,ψ
S,± = R�S ⊗∧

R�
S

(R�,BT,ord
P,± ⊗∧ R�,ψ

Σ ⊗∧ R�,odd
∞ )

if p = 2.

Let Rord,ψ
S (resp. Rord,BT,ψ

S ) denote the subring of R�,ord,ψ
S (resp. R�,BT,ord,ψ

S )

generated by the traces of ρ�S . Similarly define Rord,ψ
S,± and R�,BT,ord,ψ

S,± .
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5.2 Hecke algebras

Since ρ arises from a holomorphic cusp form in SD2 (nΣ, ψ)O on the qua-
ternion algebra D over FΣ by assumption, there exists a maximal ideal
mD ⊂ hD2 (nΣ, ψψP)O if p odd (resp. mD ⊂ hD2 (nΣ, ψψP,+)O if p = 2). It
then follows that there exists a maximal ideal m ⊂ h2(nΣp, ψψP)O such that

h2(nΣp, ψ)m ≃ hD2 (nΣ, ψψP)mD

if p odd (resp. m+ ⊂ h2(nΣ2, ψψP,+)O such that

h2(nΣ2, ψψP,+)m+ ≃ hD2 (nΣ, ψψP,+)mD

if p = 2). When p = 2, there also exists m− ⊂ h2(nΣ4, ψψP,−) such that

h2(nΣ4, ψψP,−)m−/(2) ≃ h2(nΣ2, ψψP,+)m+/(2)

This can be proved exactly as in the proof of Lemma 3.2 in [4]; instead use the
0-dimensional Shimura variety corresponding to D over FΣ.
For p = 2 define eBDST,± and let h0(n)± = eBDST,±h0(n). Let

h�2 (nΣp, ψψP )m = h2(nΣp, ψψP)m ⊗RBT,ord,ψ
S

R�,BT,ord,ψ
S

h0�(nΣ, ψ)m = h0(nS , ψψP)m ⊗Rord,ψ
S

R�,ord,ψ
S

if p is odd; and let

h�2 (nΣ4, ψψP,−)m− = h2(nΣ4, ψψP,−)m− ⊗RBT,ord,ψ
S,−

R�,BT,ord,ψ
S,−

h0�(nS , ψ)−,m− = h0(nΣ, ψψP)−,m ⊗Rord,ψ
S,−

R�,ord,ψ
S,−

if p = 2. It then follow from results of Kisin and Khare-Wintenberger that
there is a natural surjection

R�,BT,ord,ψ
S → h�2 (nΣp, ψψP)m

if p odd and

R�,BT,ord,ψ
S,− → h�2 (nΣ4, ψψP,−)m−

if p = 2, which induce isomorphisms

R�,BT,ord,ψ
S [1/p] ≃ h�2 (nΣp, ψψP)m[1/p]

if p odd and

R�,BT,ord,ψ
S,− [1/2] ≃ h�2 (nΣ4, ψψP,−)m− [1/2].

The determinant of ρ�S defines

NS : InΣp∞ → Rord,ψ
S
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and Rord,ψ
S /ker(S − (ψψP ◦ ǫcyclo)) ≃ RBT,ord,ψ

S if p odd, and

NS : InΣp∞ → Rord,ψ
S,−

induces Rord,ψ
S,− /ker(S − (ψψP,− ◦ ǫcyclo)) ≃ RBT,ord,ψ

S,− if p = 2. On

the other hand, h0(nΣ, ψ)m/ker(S − (ψψP ◦ ǫcyclo)) ≃ h2(nΣp, ψψP)m and
h0(nΣ, ψ)−,m−/ker(S − (ψψP,− ◦ ǫcyclo)) ≃ h2(nΣ4, ψψP,−)m− . Then the sur-
jective Λ-algebra homomorphisms

R�,ord,ψ
S → h0�(nΣ, ψ)m

if p odd and
R�,ord,ψ
S,− → h0�(nΣ, ψ)−,m−

if p = 2 induce the isomorphisms

R�,ord,ψ
S [1/p] ≃ h0�(nΣ, ψ)m[1/p]

and
R�,ord,ψ
S,− [1/2] ≃ h0�(nΣ, ψ)−,m− [1/2].

6 Companion forms mod p

Let F be a totally real field and p be a rational prime. Suppose that [F (ζp) :
F ] > 3 if p > 3 and that 2 splits completely in F if p = 2. Let f2 be a
holomorphic cuspidal Hilbert eigenform of weight 2 ≤ k2 ≤ p and of level
prime to p. Assume that the associated p-adic representation ρ2 of Gal(F/F )
is crystalline and ordinary at every prime p of F above p. It is a well-known
theorem of Wiles (Theorem 2.1.4 in [43]) that, for every prime p of F above p,
the restriction ρ|Gp

to the decomposition group Gp at p is of the form

ρ|Gp
≃

(
ǫk2−1χp,1 ∗

0 χp,2

)

where χp,1 and χp,2 are unramified characters of Gp, and χp,2(Frobp) is a unit
Up-eigenvalue of the p-stabilised newform of f2.

Theorem 9 Let f2 be a holomorphic cuspidal Hilbert eigenform of weight 2 ≤
k2 ≤ p and of level prime to p as above. Let k1

def
= p if k2 = p and k1

def
= p+1−k2

if 2 ≤ k2 < p. Suppose that

• if p > 2, the associated mod p representation ρ2 : Gal(F/F ) → GL2(Fp)
is absolutely irreducible when restricted to Gal(F/F (ζp)), and if p = 2,
ρ2 : Gal(F/F ) → GL2(Fp) has insoluble image;

• if p > 2 and if ǫk1−2χp,2 6= χp,1, the ramification index of Fp is strictly
less than p − 1 for every prime p of F above p, and if p = 2, ρ2 is
unramified at every prime of F above 2;
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• if p > 2, ǫk2−1χp,1 6= χp,2 and if p = 2, χp,2 6= χp,1

• ρ2 is the direct sum of the characters ǫk2−1χp,1 and χp,2 at every prime
p of F above p.

Then there exists a holomorphic cuspidal Hilbert eigenform of weight 2 ≤
k1 ≤ p and of level prime to p with its associated mod p representation
ρ1 : Gal(F/F ) → GL2(Fp) satisfying ρ1 ≃ ρ2 ⊗ ǫk1−1 if p > 2 and ρ1 ≃ ρ2
if p = 2, and the Up-eigenvalue of the p-stabilised new form is a lifting of
χp,1(Frobp).

Proof. For p > 2, this is a result of Gee (Theorem 2.1 [13]). Let p = 2; thus
k1 = k2 = 2. For clarity, let ρ denote ρ2 ⊗ ǫ where ǫ is the mod 4 cyclotomic
character. Clearly the twist of ρ2 by the Teichmuller lift of ǫ defines a modular
lifting of ρ potentially ordinary and potentially Barsotti-Tate at p. By class field
theory, find a finite totally real soluble extension FΣ ⊂ F of F of even degree
in which 2 remains split completely, and satisfies the following conditions:

• there exists a quaternion algebra D over FΣ ramified exactly at a finite
set Σ of finite primes of FΣ not dividing 2;

• ρ|Gal(F/FΣ) is ramified exactly at Σ and the infinite places, and , in par-

ticular, for every prime q ∈ Σ, ρ|Gal(F/FΣ) at q is an extension of an
unramified character by the twist of the character by ǫ at q;

• there exists a maximal open compact subgroup U ⊂ (D⊗FΣ A∞
FΣ

)× such

that Uq = GL2(OFΣq) for q 6∈ SD and Uq = O×
Dq

for q ∈ SD, and a

holomorphic cuspidal automorphic representation π2 of (D ⊗FΣ AFΣ)
×

with central character ψ such that ρ|Gal(F/FΣ) ≃ ρπ2
: Gal(F/FΣ) →

GL2(Fp) and detρ|Gal(F/FΣ) = ψǫ and such that π is unramified at every
prime of FΣ above 2.

It then follows from work of Khare-Wintenberger (See Corollary 4.7 and The-
orem 10.1 in [18]) that there is a lifting ρ : Gal(F/FΣ) → GL2(Qp) of
ρ|Gal(F/FΣ), unramified outside SΣ,P

∐
Σ
∐
SΣ,∞ with detρ = ψǫ such that,

for every prime p of FΣ above 2, ρ is ordinary at p and Barsotti-Tate and is of
the form (

ǫχ̃p,2 ∗
0 χ̃p,1

)

where χ̃p,1 and χ̃p,2 are unramified liftings of χp,1|Gal(F/FΣ) and χp,2|Gal(F/FΣ)

respectively. It then follows from the main theorem of Kisin [19] and Khare-
Wintenberegr [18], and by soluble descent that there exists a holomorphic
cuspidal Hilbert eigenform f1 of weight k1 = 2 and of level prime to 2 such
that ρf1 |Gal(F/FΣ) ≃ ρ. �
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7 Λ-adic companion forms

Theorem 10 Let p be a rational prime. Let F be a totally real field. Suppose
that p splits completely in F . Let K be a finite extension of Qp with ring of
integers O and residue field k = O/m. Suppose that

ρ : Gal(F/F ) → GL2(O)

is a continuous representation satisfying

• ρ ramifies at only finite many primes;

• ρ = (ρ mod m) is absolutely irreducible when restricted to Gal(F/F (ζp),
and has a modular lifting which is potentially ordinary and potentially
Barsotti-Tate at every prime of F above p;

• for every prime ideal p of F above p, the restriction ρ|Gp
to the de-

composition group Gp at p is the direct sum of characters χp,1 and
χp,2 : Gp → O× such that the images of the inertia subgroup at p are
finite and (χp,1 mod m) 6= (χp,2 mod m);

If p = 2, assume furthermore that

• the image of the complex conjugation with respect to every embedding of
F into R is not the identity matrix;

• ρ has insoluble image;

• for every p of F above p, ρ is unramified at p.

Then there is a finite totally real soluble extension FΣ ⊂ F of F in which p
splits completely; a finite set Σ of finite places of FΣ (at which ρ|GΣ , where

GΣ
def
= Gal(F/FΣ) is ramified of conductor nΣ); an ideal n of OFΣ coprime to

p which nΣ divides; and, for every subset P of the set SΣ,P of places of FΣ

above p,

1. a character
χP : GΣ → O×

of finite order, unramified outside a finite set of places containing SΣ,P,
such that the restriction to the inertia subgroup of GΣ at p of χP equals
that of χp,1 (resp. χp,2) for all p in P (resp. SΣ,P − P );

2. a finite extension L of Frac ΛK and a Λ-adic form

FHida,P : h0O(nΣ) → L;

3. a homomorphism fP : h0O(n) → O if p > 2 while fP : h0O(n)− → O if
p = 2 satisfying
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• fP (Tq) = tr ρ(Frobq)/χP (Frobq) for all q not dividing np;

• fP (NqSq) = det ρ(Frobq)/χ
2
P (Frobq) for all q not dividing np;

• fP (Uq) = 0 for q dividing n but not dividing p;

• fP (Up) = (χp,1/χP )(Frobp) for every p in P and fP (Up) =
(χp,2/χP )(Frobp) for every p in SΣ,P − P .

Proof. Choose a finite soluble totally real extension FΣ of F in which p splits
completely such that the restriction of ρ is absolutely irreducible when restric-
ted to Gal(F/FΣ(ζp)), unramified outside a finite set Σ

∐
SΣ,P

∐
SΣ,∞ of finite

places q of FΣ such that ρ|GΣ is of of conductor 1 or q at q, and arises from–by
Jacquet-Langlands–a cuspidal automorphic representation, nearly ordinary at
every p ∈ SΣ,P and special at q ∈ Σ, of the quaternion algebra DΣ over FΣ as
in the previous section.
For every P ⊆ SΣ,P, it follows from class field theory that one can choose χP ,
of conductor 1 away from a finite set of places containing the set of places above
p, as asserted in the theorem.
Let ρP denote ρ ⊗Gal(F/FΣ) χ

−1
P and ρP denote (ρP mod m). If we let ρΣ

denote the modular lifting of ρ, then ρΣ ⊗ χ−1
P is a modular lifting of ρP ; in

fact it is ordinary at every p ∈ SΣ,P by Jarvis’ level lowering results [15]–by
which one shows ρΣ ⊗ χ−1

P is crystalline at p– followed by Fontaine-Laffaille
theory. Let mP denote the corresponding maximal ideal of eh2(nΣp)O if p > 2
and eh2(nΣ4)O,− if p = 2. It then follows from Hida theory [14] and results
from preceding sections that there exists a finite extension L in an algebraic
closure of FracΛK which we fix; and, for every P ⊆ SΣ,P, a Λ-adic eigenform
FH,P : h0O(nΣ) → h0O(nΣ)mP → OL, and a height one prime ℘P of OL such
that

• (ρFH mod ℘P ) ∼ ρP

• for every distinct subsets P and Q, (FH,P , ℘P ) and (FH,Q, ℘Q)
are in companion; more precisely, for every q not dividing nΣp,
(FH,Q(Tq) mod ℘Q) = (FH,P (TqS(P−(P∩Q))∪(Q−(P∩Q))(q)

−1) mod ℘P );
for p in (P ∩ Q) ∪ ((SΣ,P − P ) ∩ (SΣ,P − Q)), (FH,Q(Up) mod ℘Q) =
(FH,P (Up) mod ℘P ), while for p in (P ∩ (SΣ,P −Q)) ∪ ((SΣ,P − P ) ∩Q),
(FH,Q(Up) mod ℘Q) = (FH,P (U

−1
p SP (p)) mod ℘P ).

Let fP be the composite h0O(nΣ) → OL → OL/℘P ≃ O; if the image of Uq for
q dividing nΣ but not dividing p is not zero, we may increase the level at q if
necessary to assume the image of indeed zero (See [34] for example) . �

8 Models of Hilbert modular varieties

Let F be a totally real field–FΣ in the preceding section–of degree d = [F : Q]
with ring of integers OF . Fix a rational prime p and an ideal n of OF prime to
p. For every integer r ≥ 1, fix a pr-th primitive root ζpr of unity. For a prime
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p of F above p, let Fp denote the completion of F with respect to the absolute
value corresponding to p, kp the residue field of Fp, fp the residue class degree,
and ep the ramification index.
Fix embeddings Q → Q → Qp. Let K denote a finite extension of Qp which

contains the image of F by every embedding of F into Qp; and let O denote
its ring of integers and k denote the residue field.
For a fractional ideal I of F canonically ordered, let I+ denote the totally
positive elements. Fix a set T of representatives in A×

F of the strict ideal class
group A×

F /(F
×(OF ⊗ Z∧)×F+×

∞ ), and we shall let t also mean the fractional
ideal td corresponding to a representative t in T .

Definition. A t-polarised Hilbert-Blumenthal abelian variety (henceforth ab-
breviated as HBAV) with level Γ1(n)-structure over a O-scheme S is an abelian
variety A over S of relative dimension d together with

• i : OF → End(A/S);

• a homomorphism λ : (t, t+) → (Sym(A/S),Pol(A/S)) of ordered in-
vertible OF -modules, where Sym(A/S) (resp. Pol(A/S)) denotes the
invertible OF -module (via i) of symmetric homomorphisms (resp. polar-
isations), such that A ⊗OF t → A∨, induced by λ, is an isomorphism of
HBAVs–it is shown in [41] that this is equivalent to the condition that
there exists a prime-to-p polarisation A → A∨; and to the ‘determinant
condition’ on Lie(A) in the sense of Kottwitz;

• an OF /n-module morphism η : (OF /n)
∨ = (GL1 ⊗ d

−1
F )[n] → A[n].

Definition. Let YΓ1(n,t) (resp. YΓ1(n,t)∩Iw) denote the O-scheme represent-
ing the functor which sends an O-scheme S to the set of isomorphism classes
(A, i, λ, η) (resp. (A, i, λ, η, C)) of t-polarised HBAVs with level Γ1(n)-level
structure (resp. and a finite flat subgroup scheme C of A[p] with compatible
OF -action locally free of rank

∑
p
|OF /p|).

It follows from [27] and [8] that if n does not divide 2, nor 3, YΓ1(n,t) is a smooth
scheme over O of relative dimension [F : Q]. If n does divide 2, or 3, we let
YΓ1(n,t) denote the O-scheme

(Γ1(n, t)/Γ1(m, t))\YΓ1(m,t)

for an auxiliary ideal m of OF such that n|m and Γ1(m) small enough, i.e.,
torsion-free.

Let Y Γ1(n,t) denote the fibre over k of YΓ1(n,t); and let Let Y Γ1(n,t)∩Iw denote
the fibre over k of YΓ1(n,t)∩Iw.

It is a well-known result of Deligne-Ribet that the fibre Y Γ1(n,t) is irreducible
(Corollary 4.6 in [9]). It is a result of local model theory by Pappas that
Y Γ1(n,t)∩Iw is normal (Corollary 2.2.3 in [25]).
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Suppose that p splits completely in F . In which case, the p-divisible group of
a HBAV over the ring of integers of a finite extension of Qp decomposes as
the product of [F : Q] one-dimensional p-divisible groups, one for each prime
p of F above p, and this allows us to define ‘Katz-Mazur-Drinfeld’ higher level
structures at p by defining level structures at p on the ‘p-divisible group’ for
each p.

Definition. Let r be an integer ≥ 1. Define YΓ1(n,t)∩Γ1(pr) to be the
O-scheme representing the functor which sends an O-scheme S to the set
of isomorphism classes of the sextuples (A, i, λ, η, C, ηKM) over S where
(A, i, λ, η) is a t-polarised HBAV over S with Γ1(n)-level structure, C is a finite
flat subgroup scheme of A[pr] locally free of finite rank |OF /p

r| = ∑
p
|OF /p

r|
with compatible action of OF , and an OF -linear group homomorphism
ηKM : OF /p

r → Mor(S,C) ⊂ Mor(S,A[pr]) such that the image of ηKM defines
a ‘full set of sections’ in the sense of Katz-Mazur [17] (See 1.10.5 and 1.10.10
in [17]).

Definition. For every prime p of F above p, let YΓ1(n,t)∩Γ1(pr),Iwp,K denote
the fine moduli space over K of the septuples (A, i, λ, η, C, ηKM, Dp) where the
sextuple (A, i, λ, η, C, ηKM) defines a point of YΓ1(n,t)∩Γ1(pr) ×SpecOK SpecK,
and Dp is finite flat subgroup scheme of A[p] of rank |OF /p| which has trivial
intersection with C.

9 Compactification

By an unramified cusp C of YΓ1(n,t) over R, we shall mean a pair of fractional

ideals M1,M2 of F such that M1M
−1
2 ≃ t which comes equipped with

• an OF ⊗Z R-linear isomorphism λ :M−1
1 ⊗Z R ≃ OF ⊗Z R;

• an OF -linear embedding η : OF /n → n−1M−1
2 /M−1

2 .

For brevity, let M = M1M2, M
∨ = HomZ(M,Z) = HomOF (M, d−1

F ) ≃
cM−1

2 d
−1
F , and M∨+ ⊂ M∨ of the totally positive elements in (cM−1

2 d
−1
F )+.

Choose a rational polyhedral cone decomposition ΣC of (M∨+ ⊗Z R) ∪ {0}.
For a cone σ ⊂ (M∨+ ⊗Z R), we let σ∨ ⊂M ⊗Z R denote the dual cone.

Let Sn = SpecZ[qn
−1M ] and Sn →֒ Sn,σ denote the affine torus embed-

ding (see Theorem 2.5 in [6]) corresponding to the cone σ and let S∧
n,σ =

Spf Z[[qn
−1M∩σ∨

]] denote the formal completion of Sn,σ along the boundary

S∞
n,σ

def
= Sn,σ − Sn.

Let Tn,σ = SpecZ[[qn
−1M∩σ∨

]] and T 0
n,σ = Tn,σ − S∞

n,σ =

SpecZ[[qn
−1M∩σ∨

, q−n
−1M∩σ∨

]]. The henselisation of (Sn,σ, S
∞
n,σ) projects

onto an affine étale scheme Un,σ over Sn,σ which approximates S∧
n,σ in the

sense of Artin, and let U0
n,σ = Un,σ ×Tn,σ T

0
n,σ.
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The Mumford construction applied to the OF -linear ‘period’ map q : M2 →
GL1(Un,σ)⊗Z d

−1
F M−1

1 gives rise to a semi-abelian scheme

TateM1,M2(q)
def
= (GL1 ⊗Z d

−1M−1
1 )/qM2

over the complete ring Un,σ with action of OF , whose pull-back, which we shall
denote by Tate0M1,M2

(q) to U0
n,σ, is naturally a HBAV, t-polarised

TateM1,M2(q)⊗OF M1M
−1
2 ≃ (GL1 ⊗Z d−1M−1

2 )/qM1

||
TateM2,M1(q) ≃ TateM1,M2(q)

∨,

with level Γ1(n)-structure, and which gives rise to a map

U0
n,σ ×SpecZ SpecO → YΓ1(n,t).

We glue
∐
T/≃

∐
σ∈ΣC

Un,σ ×SpecZ SpecO along the map to get a toroidal

compactification XΓ1(n,t) over O of YΓ1(n,t) ([26]). Similarly, one can define a
compactification XΓ1(n,t)∩Iw over O of YΓ1(n,t)∩Iw with its choice of a rational
cone decomposition compatible with that of XΓ1(n,t).

Let
Tate0M1,M2,S(q)

def
= TateM1,M2(q)×SpecZ[[qM ,q−M ]] S

for a Z[[qM , q−M ]]-scheme S; it is t-polarised. Let S be a O ⊗Z Z[[qM , q−M ]]-
scheme. Then there is a ‘connected-étale’ exact sequence

0 → (GL1 ⊗Z d−1M−1
1 )[pr] → TateM1,M2,S(q)[p

r ] → (1/pr)M2/M2 → 0

of (OF /p
r)-modules schemes over S.

Lemma 11 Fix an integer r ≥ 1. Let S be a connected O ⊗Z Z[[qM , q−M ]]-
scheme. Suppose that C is an OF -stable finite flat subgroup scheme of
Tate0M1,M2,S(q)[p

r] of order |OF /p
r|. Then for every τ = τp, there exists a

unique pair of non-negative integers ρτ,1, ρτ,2 such that ρτ,1+ρτ,2 = r and such
that

Cp ∩ (GL1 ⊗Z d
−1M−1

1 )[pr] ≃ (GL1 ⊗Z d
−1M−1

1 )[pρτ,1 ]

and the image of Cp in (1/pr)M2/M2 is isomorphic to p−ρτ,2M2/M2.

Proof. This is essentially Proposition 13.6.2 in [17]. �

By a cusp of C of YΓ1(n,t)∩Γ1(pr) over R, we shall mean a pair of fractional

ideals M1,M2 of F such that M1M
−1
2 ≃ t which comes equipped with

• an OF ⊗Z R-linear isomorphism λ :M−1
1 ⊗Z R ≃ OF ⊗Z R;

• an OF -linear embedding η : OF /n → n−1M−1
2 /M−1

2 .
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• an OF -linear isomorphism ηKM : OF /p
r ≃ p−rM2/M2.

Let M = M1M2 as above. Fix an integer r ≥ 1. Suppose that S is an
O ⊗Z Z[ζpr ][[q

(1/pr)M,−(1/pr)M ]]-scheme.
Definition Let ζr denote the image of 1 by

ζKM,r : (OF /p
r) ≃ d−1/prd−1 ≃ GL1[p

r]⊗Z d−1 ≃ (GL1 ⊗Z d−1)[pr]

and ζr,τ denote its τ = τp component. We often allow ζr and ζr,τ to mean their
images in (GL1 ⊗Z d−1)(S) and TateM1,M2,S(q)(S).
Let ηétr denote the image of 1 by

ηétKM,r : (OF /p
r)

ηKM≃ p−rM2/M2
q→ qp

−rM2/M2

defining a point of TateM1,M2(q)(S) of exact order |OF /p
r|. Let ηétr,τ denote its

τ = τp component.

Lemma 12 Fix an integer r ≥ 1. Let S be a connected O ⊗Z Z[[qM , q−M ]]-
scheme. Suppose that C is an OF -stable finite flat subgroup scheme of
Tate0M1,M2,S(q)[p

r] of order |OF /p
r|. Suppose that C is of type ρ = (ρτ,1, ρτ,2)τ .

Let PKM ∈ C(S) denote a point of exact order |OF /p
r|. Then for every τ = τp,

PKM,τ is of the form ζ
στ,1
r,τ η

ét,στ,2
r,τ for a pair of integers 0 ≤ στ,1 ≤ ρτ,1 and

0 ≤ στ,2 ≤ ρτ,2 such that both στ,1 and στ,2 are coprime to p.

proof. This is essentially 13.6.3 in [17]. �

10 Generic fibres

With n fixed, for every integer r ≥ 1, let Ur denote the quotient group of the
totally positive units of F by the subgroup of elements which are squares of
elements in OF which are congruent to 1 mod npr. If r = 0, we simply write U.

Let YΓ1(n), XΓ1(n), YΓ1(n)∩Iw, XΓ1(n)∩Iw, YΓ1(n)∩Γ1(pr), YΓ1(n)∩Γ1(pr),Iwp,K

respectively denote the disjoint unions, t ranging over T , of
YΓ1(n,t), XΓ1(n,t), YΓ1(n,t)∩Iw, XΓ1(n,t)∩Iw, YΓ1(n,t)∩Γ1(pr), YΓ1(n,t)∩Γ1(pr),Iwp,K .

Let XΓ1(n),K , XΓ1(n)∩Iw,K respectively denote the generic fibres over K of the
OK-schemes XΓ1(n), XΓ1(n)∩Iw.

Let XΓ1(n)∩Γ1(pr),K , XΓ1(n)∩Γ1(pr),Iwp,K respectively denote the toroidal com-
pactifications of the K-schemes YΓ1(n)∩Γ1(pr),K , YΓ1(n)∩Γ1(pr),Iwp,K .

Let Y ∧
Γ1(n,t)

, X∧
Γ1(n,t)

, Y ∧
Γ1(n,t)∩Iw, X

∧
Γ1(n,t)∩Iw respectively denote the

formal completions of YΓ1(n,t), XΓ1(n,t), YΓ1(n,t)∩Iw, XΓ1(n,t)∩Iw along

their closed k-fibres Y Γ1(n,t), XΓ1(n,t), Y Γ1(n,t)∩Iw, XΓ1(n,t)∩Iw. Let
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Y ∧
Γ1(n)

, X∧
Γ1(n)

, Y ∧
Γ1(n)∩Iw, X

∧
Γ1(n)∩Iw denote their disjoint unions over T .

Finally, let Y rig
Γ1(n)

, Xrig
Γ1(n)

, Y rig
Γ1(n)∩Iw, X

rig
Γ1(n)∩Iw respectively denote the Raynaud

rigid generic fibres of Y ∧
Γ1(n)

, X∧
Γ1(n)

, Y ∧
Γ1(n)∩Iw, X

∧
Γ1(n)∩Iw.

11 p-adic classical Hilbert modular forms

Suppose that (k =
∑

τ∈Hom(F,K) kτ τ, w =
∑
τ∈Hom(F,K)wτ τ) ∈ ZHom(F,K) ×

ZHom(F,K) is such that w = 2wτ − kτ is independent of τ (this is Taylor’s µ in
[38]).

For S ∈ {YΓ1(n),K , YΓ1(n)∩Iw,K , YΓ1(n)∩Γ1(pr),K}, let Lie∨(A/S) (resp.
H1

dR(A/S)) denote the pull-back by the identity section of the sheaf of
relative differentials of the universal HBAV A over S (resp. the higher direct
image of the relative de Rham complex). By the decomposition,

OF ⊗Z O ≃
∏

τ∈Hom(F,K)

Oτ

where Oτ is O into which F embeds by τ , we have

Lie∨(A/S) =
⊕

τ∈Hom(F,K)

Lie∨(A/S)τ , H
1
dR(A/S) =

⊕

τ∈Hom(F,K)

H1
dR(A/S)τ

where Lie∨(A/S) and H1
dR(A/S) are locally free sheaves of OS-modules of rank

1 and 2 respectively. Following Hida [14], let

L(k,w) =
⊗

τ∈Hom(F,K)

(
∧
H1

dR(A/S)τ )
⊗w/2 ⊗OS (Lie∨(A/S))⊗kττ

If k is parallel, more precisely, if (k, w) = ((k, . . . , k), (k/2, . . . , k/2)), we will
often write Lk for L(k,w). We shall also let L(k,w) denote its extension to the
compactification.

Let π1 (resp. π2,p) denote the degeneracy map

XΓ1(n)∩Γ1(pr),Iwp,K −→ XΓ1(n)∩Γ1(pr),K

defined, on the non-cuspdail points, by

(A, i, λ, η, C, ηKM, Dp) 7→ (A, i, λ, η, C, ηKM)

(resp. (A/Dp, (i mod Dp), (λ mod Dp), (η mod Dp), (ηKM mod Dp)).
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12 Canonical subgroups for one-dimensional formal groups

Let L be a finite extension of K, and let valL be a valuation on L normal-
ised so that valL(p) = 1. Let G be a one-dimensional principally polarised
p-divisible/Barsotti-Tate group over OL.

Definition. The identity component G∧ of G is a one-dimensional formal
group, and define Ha(G) to be valL(a) for a as defined in Proposition 3.6.6,
[16] (see also [29]).

By definition, G is ordinary if and only if Ha(G) = 0.

Let C be a finite flat subgroup scheme of G[p] of order p.

Definition. Define deg(G,C) to be 1 − valL(Ann(coker(Lie
∨(G/C) →

Lie∨(G)))).

It follows immediately from the definition that deg(G,C)+deg(G/C,G[p]/C) =
1.

Suppose that deg(G,C) < p/(p + 1). Then there exists a canonical subgroup
H(G) of G. If C = H(G), then deg(G,C) = Ha(G). To see this, note that
H(G)(L) consists of 0 and p− 1 points P of the formal group G∧ of valuation
(1−Ha(G))/(p− 1) (Theorem 3.10.7, [16]). Since deg(G,C) = 1−∏

P val(P )
(Lemma 1.3 [24]), deg(G,C) = Ha(G).

Lemma 13 Let r be a rational number < p/(p + 1). Suppose that G is not
ordinary. Then

{(G,C) |Ha(G) ≤ r}
divides into two disjoint subsets, namely

{(G,C) |C = H(G) and deg(G,C) ∈ (0, r]}

and
{(G,C) |C 6= H(G) and deg(G,C) ∈ [1− r/p, 1)}.

On the other hand,
{(G,C) |Ha(G/C) ≤ r}

divides into two disjoint subsets, namely

{(G,C) | deg(G,C) ∈ (0, r/p], C = H(G), and Ha(G) < 1/(p+ 1) }
∪ {(G,C) | deg(G,C) ∈ (0, r/p], C 6= H(G), and Ha(G) < p/(p+ 1) }

and

{(G,C) | deg(G,C) ∈ [1− r, 1), C = H(G), 1/(p+ 1) < Ha(G) < p/(p+ 1)}

∪ {(G,C) | deg(G,C) ∈ [1− r, 1), C 6= H(G), Ha(G) ≥ p/(p+ 1)}.
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Proof. This follows from canonical subgroup theorem in [29]. �

Fix an integer n ≥ 1 and suppose furthermore that deg(G,C) ≤ p1−n/(p+1) <
p/(p + 1). Then define subgroup Hn = Hn(G) of G order pn inductively as
follows: If n = 1, set H1 = D. If n > 1, then let Hn to be the pre-image by
the map G→ G/H(G) of Hn−1(G/H(G)) ⊂ G/H(G).

Proposition 14 Suppose that one-dimensional principally polarised p-
divisible group G over OL has a subgroup Hn(G) as defined above. Suppse
that m ≥ 1 is an integer. Suppose that Cm is a subgroup of G of or-
der pm such that Hn(G) ∩ Cm = {0}, and suppose that Dm+n is a
cyclic subgroup of G of order pm+n such that Hn(G) ⊆ Dm+n. Then
deg(G/Cm) < p1−(m+n)/(p + 1) and G/Cm has the subgroup Hm+n(G/Cm).
Indeed, Hm+n(G/Cm) = (Dm+n + Cm)/Cm.

Proof. This can be proved as in Proposition 3.5 in [3]. �

13 p-adic overconvergent Hilbert modular forms

Let Xan
Γ1(n),K

, Xan
Γ1(n)∩Iw,K , X

an
Γ1(n)∩Γ1(pr),K

respectively denote the rigid

analytic spaces in the sense of Tate ([2]) associated to the K-schemes
XΓ1(n),K , XΓ1(n)∩Iw,K , XΓ1(n)∩Γ1(pr),K .

Given a closed point of Y rig
Γ1(n)

, it corresponds to a point (A, λ, η) defined over

the integer OL of a finite extension L of K. We then define degτ (A), for
τ = τp for a place p of F above p, to be ‘deg’ as in the previous section with
the (one-dimension) Barsotti-Tate group of p-power torsions of A in place of ‘G’.

The O-scheme XΓ1(n) is of finite type, hence Xrig
Γ1(n)

is quasi-compact. There

exists a finitely many sufficiently small affine formal schemes U∧ such that
their generic fibres U rig form an admissible covering of Xrig

Γ1(n)
. Let U∧

good

denote the smooth formal scheme U∧∩Y ∧
Γ1(n)

and let i : U∧
good →֒ U∧. On each

U∧
good, there is a function whose corresponding rigid function has its valuation

degp; indeed, apply the construction to the formal completion of the ‘universal’
semi-abelian scheme over XΓ1(n) along the underlying scheme of U∧

good. We
may think of the function on U∧

good as a lift of the Hasse invariant at p, and it
follows from Kocher’s principle that i∗OU∧

good
= OU∧ , i.e., the function extends

to U∧. The valuation of its induced function on the generic fibre U rig extends
the function on U rig

good. Glue these functions on U rig’s, there is a rigid function

on Xrig
Γ1(n)

≃ Xan
Γ1(n)

that defines deg.

Definition. If I ⊂ [0, 1) is a closed, open, or half open interval with endpoint
in Q, define the rigid space Xan

Γ1(n),K
I =

∐
tX

an
Γ1(n,t),K

I to be the admissible
open set of points whose degrees are all in the range I.
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For every t, Xan
Γ1(n,t),K

I is connected; this follows from the fact that Xrig
Γ1(n,t),K

is connected (since XΓ1(n,t) is irreducible) and its ordinary locus is open, dense,
and connected.

Similarly, given a closed point of Y rig
Γ1(n)∩Iw, it corresponds to a point (A, λ, η, C)

defined over the integer OL of a finite extension L of K. Let B = A/C and S =
SpecOL; let valS denote the valuation on L normalised such that valS(p) = 1.
Then the OF -equivariant map of OS-modules

Lie∨(B/S) −→ Lie∨(A/S)

decomposes into

Lie∨(B/S)τ −→ Lie∨(A/S)τ

for every τ ∈ Hom(F,K), and, for the unique prime p of F above p corres-
ponding to τ , let degp((A,C)) denote 1 − valS(Ann(Coker(Lie

∨(B/S)τ →
Lie∨(A/S)τ ))). Applying the construction to the universal HBAV over

Y rig
Γ1(n)∩Iw, we locally have functions on Y rig

Γ1(n)∩Iw whose valuations define the

degrees. As for deg(A), Kocher’s principle allows us to extend the function to

Xrig
Γ1(n)∩Iw ≃ Xan

Γ1(n)∩Iw

Definition. If S1 and S2 are disjoint subsets of Hom(F,K) and if
I, I1, I2 ⊆ [0, 1] are closed, open, or half open intervals with endpoints in
Q, define the rigid space (Xan

Γ1(n)∩Iw,KI), I1S1
I2S2

to be the admissible open

set of points whose degree at τ ∈ Hom(F,K)− S1 − S2 (resp. S1, resp. S2) is
in the range I (resp. I1, resp. I2).

Definition. Let π1 (resp. π2,p) denote the degeneracy map

Xan
Γ1(n)∩Iw,K −→ Xan

Γ1(n),K

which, on the non-cuspidal points, is defined by

(A, i, λ, η, C) 7→ (A, i, λ, η)

(resp. (A, i, λ, η, C) 7→ (A/Cp, (i mod Cp), (λ mod Cp), (η mod Cp))

Definition. Let π denote the degeneracy map

Xan
Γ1(n)∩Γ1(pr),K

−→ Xan
Γ1(n)∩Iw,K

which, on the non-cuspidal points, is defined by

(A, i, λ, η, ηKM) 7→
(A/〈pPηKM 〉, (i mod 〈pPηKM〉), (λ mod 〈pPηKM〉), (η mod 〈pPηKM〉).
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where by PηKM , we mean the image of 1 by ηKM.

Definition. Define (Xan
Γ1(n)∩Γ1(pr),K

I)I1S1
I2S2

to be the preimage by π of

(Xan
Γ1(n)∩Iw,KI, )I1S1

I2S2
.

For 0 ≤ r ≤ p/(p+ 1), it follows from the previous section that

π−1
1 (Xan

Γ1(n),K
[0, r]) ≃ Xan

Γ1(n)∩Iw,K [0, r]
∐

Xan
Γ1(n)∩Iw,K [1− r/p, 1];

and for τ = τp

π−1
2,p(X

an
Γ1(n),K

[0, r])

≃ (Xan
Γ1(n)∩Iw,K [0, r])τ [0, r/p]

∐
(Xan

Γ1(n)∩Iw,K [0, r])τ [1− r, 1].

The theory of canonical subgroups provides rigid sections:

π1 : Xan
Γ1(n)∩Iw,K [0, r]

≃−→ Xan
Γ1(n),K

[0, r]

and
π2,p : Xan

Γ1(n)∩Iw,K [1− r, 1]
≃−→ Xan

Γ1(n),K
[0, r].

On the other hand,

π1 : Xan
Γ1(n)∩Iw,K [1− r/p, 1]−→Xan

Γ1(n),K
[0, r]

is finite flat of degree |OF /p|, and

π2,p : Xan
Γ1(n)∩Iw,K [0, r/p]−→Xan

Γ1(n),K
[0, r]

is finite flat of degree |OF /p|.

Hida [14] proves (Theorem 5.6 in [14]) that, for a character ψ : Frnp∞ →
K× which factors through Inpr and k ≥ 2, an element FH : h0O(n) → L of
S0
O(n) ⊗ L defines, modulo(ker(ǫ ◦ Art)k−2ψ), a cusp eigenform of weight k

and level Γ1(np
r) which is an eigenform with its Tm-eigenvalue FH(Tm) mod

(ker(ǫ ◦ Art)k−2ψ) and S acting by (ǫ ◦ Art)k−2ψ. Indeed Inp∞ -action defines
the character of FH mod (ker(ǫ ◦Art)k−2ψ), i.e,

(FH mod (ker(ǫ ◦Art)k−2ψ))(〈 〉)
= ψ(ψFH mod (ker(ǫ ◦Art)k−2ψ))(ψT ◦ ǫ2−k)

where ψFH is the composite Tornp∞ →֒ Inp∞
〈 〉→ h0O(n) followed by

FH : h0O(n) → L; and ψT is the ‘Teichmuller character’, the projection
from Z×

p to its torsion subgroup of finite order. We shall prove that the

specialisation FH mod ker(ǫ ◦ Art)k−2ψ defines a p-ordinary overconvergent
eigenform of weight k and of level Γ1(np

r) for any k = 1.
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For ǫ such that 0 ≤ ǫ < 1/(pr−2(p + 1)), the theory of canonical
subgroups in [29] (see also Proposition 2.3.1 and 2.4.1 in [21]) shows

that Up
def
=

∏
p
Up defines a completely continuous endomorphism on

H0(Xan
Γ1(n)∩Γ1(pr),K

[0, ǫ], Lk(cusps))
U, where Xan

Γ1(n)∩Γ1(pr),K
[0, ǫ] is the pre-

image by the forgetful morphism of Xan
Γ1(n),K

[0, ǫ]. We remark that, when

F = Q, this is proved in [4] Lemma 2.3 as a result of calculations with
q-expansions.

By Serre’s theory [31], there is an idempotent e commuting with Up by which
we may write

H0(Xan
Γ1(n)∩Γ1(pr),K

[0, ǫ], Lk(cusps))
U

= eH0(Xan
Γ1(n)∩Γ1(pr),K

[0, ǫ], Lk(cusps))
U

+(1− e)H0(Xan
Γ1(n)∩Γ1(pr),K

[0, ǫ], Lk(cusps))
U

where eH0(Xan
Γ1(n)∩Γ1(pr),K

[0, ǫ], Lk(cusps))
U is finite-dimensional K-vector

space and all the generalised eigenvalues of Up are units, while Up is
topologically nilpotent on the complement. It is well-known that e =

e|H0(Xan
Γ1(n)∩Γ1(pr),K

[0, ǫ], Lk(cusps))
U.

Lemma 15 For any integer k, the p-adic eigenform FH mod (ker(ǫ◦Art)k−2ψ)
as above is overconvergent of weight k and of level Γ1(np

r).

Proof. This can be proved as in Lemma 1 in [5]; replace the Eisenstein
series ‘E’ of weight (p − 1) therein by the pull-back to Xan

Γ1(n)∩Γ1(pr),K
of a

characteristic zero lifting of a sufficiently large power of the Hasse invariant. �

It follows from the theorem in the previous section that, given a p-adic repres-
entation

ρ : Gal(F/F ) → GL2(O)

as in the main theorem, there are

1. a finite soluble totally real field extension FΣ ⊂ F of F in which p splits
completely,

2. a finite set S = Σ
∐
SΣ,P

∐
SΣ,∞ of places in FΣ, where SΣ,P denotes the

set of places of F above p and SΣ,∞ denotes the set of infinite places of
FΣ,

3. an ideal n of OF divisible by nΣ =
∏

q∈Σ q,

4. 2|SΣ,P| characters χP : Gal(F/FΣ) → O× of finite order and 2|SΣ,P| weight
one p-ordinary overconvergent cuspidal Hilbert modular eigenforms fP of
‘tame level’ n, one for every subset P of SΣ,P, such that:
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• fP is the weight one specialisation of the Λ-adic companion form

FHida,P : h0O(n) → K, with character ψP = ψ
SΣ,P

P ψP,SΣ,P of
(OFΣ/n)

× × (OFΣ/p)
×

• the Galois representation ρP associated to fP is ρ|Gal(F/FΣ)⊗χP−1,

• ρP is unramified outside S and ordinary at every place in SΣ,P,

and the fP ’s are ‘in companion’ in the sense that

• c(OFΣ , fP ) = 1, and c(m, fP ) = 0 if m is not coprime to n;

• c(q, fP ) = tr ρ(Frobq)/χP (Frobq) for every prime ideal q not divid-
ing np;

• for p in P , c(m, fP )(χP ◦ Art)(m) = c(m, fP−{p})(χP−{p} ◦Art)(m)
for every ideal m coprime to np;

• for p in P , the character of fP at p is χP−{p}χ
−1
P while for p ∈

SΣ,P − P , the character of fP at p is χP∪{p}χ
−1
P ;

• for p in P , (χ
SΣ,P

P ◦Art)(p) = (ψ
SΣ,P

P−{p} ◦Art)(p);

• for a place p of P , the Up-eigenvalue of fP is (χp,1χ
−1
P )(Frobp) while

for p in SΣ,P − P , the Up-eigenvalue of fP is (χp,2χ
−1
P )(Frobp).

14 Analytic continuation of overconvergent eigenforms

Fix τ = τp throughout the section (except the last two assertions).

Definition. Fix t. For brevity, let XΓ1(n,t)∩Iw,τ denote
(XΓ1(n,t)∩Iw,K [0, r])[0, 1)τ ; and for an integer n ≥ 0, let XΓ1(n,t)∩Iw,τ,n

denote (XΓ1(n,t)∩Iw,K [0, r])[0, 1− 1/pn(p+ 1)]τ .
Let XΓ1(n)∩Iw,τ (resp. XΓ1(n)∩Iw,τ,n) denote the disjoint union over T of
XΓ1(n,t)∩Iw,τ (resp. XΓ1(n,t)∩Iw,τ,n).

Proposition 16 For every integer n ≥ 0, XΓ1(n)∩Iw,τ,n is an admissible open
subset of XΓ1(n)∩Iw,τ , and the XΓ1(n)∩Iw,τ,n form an admissible covering of
XΓ1(n)∩Iw,τ . For every t and every n ∈ Z≥0, XΓ1(n,t)∩Iw,τ,n is connected.

Proof. Clear. �

Definition. Let XΓ1(n,t)∩Γ1(pr),τ (resp. XΓ1(n,t)∩Γ1(pr),τ,n) denote the pre-
image by the degeneracy morphism

π : Xan
Γ1(n,t)∩Γ1(pr),K

→ Xan
Γ1(n,t)∩Iw,K

of XΓ1(n,t)∩Iw,τ (resp. XΓ1(n,t)∩Iw,τ,n).
Let XΓ1(n)∩Γ1(pr),τ (resp. XΓ1(n)∩Γ1(pr),τ,n) denote the disjoint union over T of
XΓ1(n,t)∩Γ1(pr),τ (resp. XΓ1(n,t)∩Γ1(pr),τ,n).
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Proposition 17 For every integer n ≥ 0, XΓ1(n)∩Γ1(pr),τ,n is an admissible
open subset of XΓ1(n)∩Γ1(pr),τ , and the XΓ1(n)∩Γ1(pr),τ,n form an admissible
covering of XΓ1(n)∩Γ1(pr),τ . For every t and an integer n ≥ 0, XΓ1(n,t)∩Γ1(pr),τ,n

is connected.

Proof. Analogous to the proposition above. �

Corollary 18 We have π−1
1 (XΓ1(n)∩Γ1(pr),τ,n+1) ⊂ π−1

2,p(XΓ1(n)∩Γ1(pr),τ,n).

Proof. This follows from [29]. �

Let (TateM1,M2(q) = (GL1 ⊗Z d−1M−1
1 )/qM2 , i, λ, η, ηKM : 1 7→ ζr) over O ⊗

Z((qM1M
−1
2 )) for the pair M1,M2 of the fractional ideals such that M1M

−1
2 ≃

t be a family of HBAVs around a cusp of XΓ1(n,t)∩Γ1(pr),n. Choose (non-
canonically) once for all a basis of the pull-back by Max (O ⊗Z Z((qM ))) →
Xan

Γ1(n)∩Γ1(pr),K
of the line bundle Lk, since a subgroup of TateM1,M2(q)[p]

of order |OF /p|, disjoint from ηr, is of the form ζη + qM2 where ζ ranges

over the |OF /p| points of (GL1 ⊗Z d−1M−1
1 )(S)[p] and η = ηét1,p ∈ qp

−1M2/M2 ,
Up(f)(TateM1,M2(q), i, λ, η, ηKM) is:

|OF /p|−1
∑

ζ

f(((GL1 ⊗Z d−1M−1
1 )/qM2)/(ζη))

= |OF /p|−1
∑

ζ

f((GL1 ⊗Z d
−1M−1

1 )/(ζqη)
p
−1M2)

= |OF /p|−1
∑

ζ

|OF /t1|−1
∑

ν∈(p−1M)+

c(pM−1ν, f)(ζqη)
ν

= |OF /p|−1|OF /tp|−1
∑

ν∈(p−1M)+

(
∑

ζ

ζν)c(pM−1ν, f)qνη

= |OF /p|−1|OF /tp|−1
∑

ν∈M+

|OF /p|c(pM−1ν, f)qν

where qη denotes a representative in qp
−1M2 of the class η ∈ qp

−1M2/M2 =

qp
−1M2/qM2 defined earlier; and tp represents the class of pt ≃ pM1M

−1
2 .

Theorem 19 Suppose that f ∈ H0((XΓ1(n)∩Γ1(pr),K)τ [0, ǫ], Lk) is an eigen-
form for Up with non-zero eigenvalue, then f extends to XΓ1(n)∩Γ1(pr),τ =
(XΓ1(n)∩Γ1(pr))τ [0, 1).

Definition. Let

X
[0]
Γ1(n,t)∩Γ1(pr),τ

⊂ X
[1]
Γ1(n,t)∩Γ1(pr),τ

⊂ · · · ⊂ X
[r−1]
Γ1(n,t)∩Γ1(pr),τ

||
XΓ1(n,t)∩Γ1(pr),τ

denote the admissible open subsets of Xan
Γ1(n,t)∩Γ1(pr)

defined in such a way

that the non-cuspidal S-points of X
[s]
Γ1(n,t)∩Γ1(pr),τ

parameterises (A/S, i, λ, η)
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equipped with a point PηKM of exact of order
∑

p
|OF /p

r| where A/S is either p-
non-ordinary, or it is p-ordinary and Hr−s(A[p]) equals the subgroup generated
by |OF /p|sPηKM,p.

For every 0 ≤ s ≤ r − 1, X
[s]
Γ1(n,t)∩Γ1(pr),τ

is connected since it is the pre-image

of a closed subset of the union of irreducible components intersecting precisely
at the p-non-ordinary locus of XΓ1(n,t)∩Γ1(pr),τ .

Theorem 20 If r is an integer ≥ 2 and suppose that f ∈
H0(XΓ1(n)∩Γ1(pr),τ , Lk) is an eigenform for Up with non-zero eigenvalue.

Then f extends to X
[r−1]
Γ1(n,t)∩Γ1(pr),τ

.

Proof. This can be proved as Lemma 6.1 in [3] �

Corollary 21 If f ∈ H0(Xan
Γ1(n)∩Iw,K [0, ǫ], Lk) for some 0 < ǫ < 1 is

an eigenform for every Up, p|p, with non-zero eigenvalue, then f extends to
H0(XΓ1(n)∩Iw,K [0, 1), Lk). Similarly, if f ∈ H0(Xan

Γ1(n)∩Γ1(pr),K
[0, ǫ], Lk), for

some 0 < ǫ < 1 is an eigenform for every Up, p|p, with non-zero eigenvalue,
then g extends to H0(XΓ1(n)∩Γ1(pr),K [0, 1), Lk).

15 Gluing eigenforms

15.1 The Iwahori case

Definition. For every subset P of the set of places of F above p, let wP
denote the automorphism of Xan

Γ1(n)∩Iw,K defined by a composite (independent

of ordering) of the wp for all p in P .

Theorem 22 For every subset P of the set S = SP of places of F above p,
suppose fP ∈ H0(Xan

Γ1(n),K
, Lk) is an overconvergent modular form of parallel

weight k =
∑

τ∈Hom(F,K) kτ ∈ Z and of level Γ1(n). Assume furthermore that

• the Fourier coefficient c(fP ,OF ) = 1;

• for every place p of F above p,there exist αp, βp ∈ K such that αp 6= βp
and such that, for every P , fP is an eigenform for Up with eigenvalue αp

if p ∈ P whilst with eigenvalue βp if p 6∈ P ;

• for all ideal m of OF coprime to p, c(m, fP ) are equal for every P .

Then every fP is a classical Hilbert modular eigenform of weight k and of level
Γ1(n) ∩ Iw.

Proof. By the isomorphism

π1 : Xan
Γ1(n)∩Iw,K [0, r]

≃−→ Xan
Γ1(n),K

[0, r]

for r < p/(p+1) given by the canonical subgroups theorem [29], we may think
of fP as an element of H0(Xan

Γ1(n)∩Iw,K [0, r], Lk). It follows from results in [29]
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that π∗
1fP extends to a section over Xan

Γ1(n)∩Iw,K [0, 1). For brevity, we shall

only show that fP , with P the (full) set S of places of F above p, is classical;
the general case follows by changing the roles of αp and βp.
Choose a rational number r ∈ Q with 1/2 < r < p/(p + 1). Suppose
that fS extends to a section of Lk over (XΓ1(n)∩Iw,K [0, r])[0, 1]S−P for some
P ⊆ S. Fix a prime p ∈ P . It suffices to show that fS extends to
(XΓ1(n)∩Iw,K [0, r])[0, 1]S−(P−{p}).
For f ∈ H0(XΓ1(n),K [0, r], Lk) and for every subset Q ⊆ S − P , let fQ denote
the restriction of f to (XΓ1(n)∩Iw,K [0, r])[1 − r, 1]Q[0, r](S−P )−Q by the map
π1 ◦ wQ which defines an isomorphism

(XΓ1(n)∩Iw,K [0, r])[1− r, 1]Q, [0, r](S−P )−Q ≃ XΓ1(n),K [0, r]
||

(XΓ1(n)∩Iw,K [0, r])[1− r, 1]Q .

The pre-image by π2,p ◦ wQ of (XΓ1(n),K [0, r])(0, r)p is the union of two com-
ponents

(XΓ1(n)∩Iw,K [0, r])[1 − r, 1]Q(1− r, 1)p
∐

(XΓ1(n)∩Iw,K [0, r])[1− r, 1]Q(0, r/p)p

and it induces an isomorphism

(XΓ1(n)∩Iw,K [0, r])[1− r, 1]Q(1 − r, 1)p ≃ (XΓ1(n),K [0, r])(0, r)p

on the one component and a finite flat morphism of degree |OF /p|

(XΓ1(n)∩Iw,K [0, r])[1− r, 1]Q(0, r/p)p −→ (XΓ1(n),K [0, r])(0, r)p

on the other.
We are going to glue fS and fS−{p}; more precisely glue fQS and fQS−{p}.

Let F denote the section

(αpf
Q
S − βpf

Q
S−{p})/(αp − βp) ∈ H0((XΓ1(n),K [0, r])(0, r)p, Lk)

and G denote the section

|OF /p|〈p〉((fQS −fQS−{p})/(αp−βp) ∈ H0((XΓ1(n)∩Iw,K [0, r])[1−r, 1]Q(0, r)p, Lk)

Since one can show readily the q-expansions of π∗
2,pF and G are equal

at around C = (TateM1,M2(q), . . . , 〈ζ1〉), we shall glue π∗
2,pF and G at

(XΓ1(n)∩Iw,K [0, r])[1− r]Q(0, r/p)p to construct an extension F ′ of F to a sec-

tion over (XΓ1(n),K [0, r])[0, 1)p; this extension constructs an extension of fQS
(and fQS−{p}) to (XΓ1(n)∩Iw,K [0, r])[1 − r, 1]Q[0, r](S−P )−Q[0, 1]p and therefore

to (XΓ1(n)∩Iw,K [0, r])[0, 1]S−(P−{p}) (by assumption, there is an extension ‘over
[0, 1]’ at S − P )
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Gluing of π∗
2,pF and G is analogous to [3] since we have a commutative diagram

(XΓ1(n)∩Iw,K [0, r])[1 − r]Q(0, r/p)p −→ (XΓ1(n)∩Iw,K [0, r])[1− r]Q(0, 1)py y
(XΓ1(n),K [0, r])(0, r)p −→ (XΓ1(n),K [0, r])(0, 1)p

where the vertical arrows are π2,p ◦ wQ but of degree |OF /p| on the left and
1 + |OF /p| on the right.�

15.2 The Γ1(p) case

For evert t in T and for every subset P of the set S = SP of places of F above
p, we well let

(XΓ1(n,t)∩Γ1(p),Iwp,K [0, 1))(0, 1]S−P
def
= π−1

1 (XΓ1(n,t)∩Γ1(p),K [0, 1)(0, 1]S−P ) ⊂ Xan
Γ1(n,t)∩Γ1(p),Iwp,K

.

Let wP denote the composite of the wζp for all p ∈ P . Note that

(XΓ1(n,t)∩Γ1(p),Iwp,K [0, 1))(0, 1]S−P
≃→ w−1

S−PXΓ1(n,t)∩Γ1(p),Iwp,K [0, 1)

and each (XΓ1(n,t)∩Γ1(p),Iwp,K [0, 1))(0, 1]S−P is connected since it is iso-
morphic to XΓ1(n,t)∩Γ1(p),OK [0, 1) and the latter is connected since it is the
pre-image of a connected component in the Zariski topology of the closed
fibre. Let (XΓ1(n)∩Γ1(p),Iwp,K [0, 1))(0, 1]S−P denote the disjoint union over T
of (XΓ1(n,t)∩Γ1(p),Iwp,K [0, 1))(0, 1]S−P .

Definition. If f is a section of Lk over XΓ1(n)∩Γ1(p),K [0, 1), then

w∗
S−P f is a section of w∗

S−PLk over w−1
S−P (XΓ1(n)∩Γ1(p),K , [0, 1)) =

(XΓ1(n)∩Γ1(p),K [0, 1))(0, 1]S−P . Because p is inverted, the natural morph-
ism of invertible sheaves

Lk|(XΓ1(n)∩Γ1(p),K [0, 1))(0, 1]S−P
≃→ w∗

S−P (Lk|XΓ1(n)∩Γ1(p),K [0, 1))

is an isomorphism and we let f |wP denote the section of Lk over
(XΓ1(n)∩Γ1(p),K [0, 1))(0, 1]P−S corresponding to w∗

S−P f by the isomorph-
ism.

Theorem 23 For every subset P of S = SP, let fP ∈
H0(XΓ1(n)∩Γ1(p),K [0, 1), Lk)

U1 be an overconvergent Hilbert modular form
of parallel weight k =

∑
τ∈Hom(F,K) kτ ∈ Z and of level Γ1(np). For every

subset P of S, suppose that fP has a Hecke character

ψP
def
= ψSPψS,P : (OF /np)

× ≃ (OF /n)
× × (OF /p)

× −→ O×;

and that ψSP (p) = ψSP−{p}(p) for every p in P . Suppose that
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• the Fourier coefficients c(OF , fP ) = 1 and c(m, fP ) = 0 if m and n are
not coprime,

• for every p ∈ P , c(m, fP ) = ψP,p(m)c(m, fP−{p}) for every ideal m

coprime to np, where by ψP,p we mean the p-component of ψP,S which
we assume non-trivial,

• for every p in S, fP is an Up-eigenform with non-zero eigenvalue
α(p, fP ), and for every p ∈ P , α(p, fP )α(p, fP−{p}) = ψSP (p)|OF /p|k−1 =

ψSP−{p}(p)|OF /p|k−1.

Then fP is a section of Lk over Xan
Γ1(n)∩Γ1(p),OK .

Proof. For every subset P of S, let gP denote fP |wP ∈
H0((XΓ1(n)∩Γ1(p),K [0, 1))(0, 1]S−P , Lk). Clearly gS = fS . We shall prove
that fS is classical.
Fix an integer 0 ≤ n ≤ |S| and suppose that the gP with P ⊆ S such that
|P | ≥ n glue together to define sections, which will again be denoted by gP ,
over ⋃

P⊂S,|P |≥n
(XΓ1(n)∩Γ1(p),K [0, 1))(0, 1]P−S.

Fix a subset P ⊆ S with #P = n and fix p ∈ P . It suffice to show that
gP (≃ w∗

S−P fP ) and (a constant multiple of) gP−{p}(≃ w∗
S−(P−{p})fP−{p} =

w∗
{p}w

∗
S−P fP−{p}) glue.

Let αp (resp. βp) denote the Up-eigenvalue α(p, fP ) (resp. α(p, fP−{p})).
Fix a p-th root ζ1 of unity. Let (TateM1,M2(q), . . . , ηKM : 1 7→ ζ1). be a point
around a cusp C. By abuse of notation, we call it C.
There is a morphism

π1 : Xan
Γ1(n,t)∩Γ1(p),Iwp,K

−→ Xan
Γ1(n,t)∩Γ1(p),K

defined, on the non-cuspidal points, by

(A, i, λ, η, ηKM, Dp) 7→ (A, i, λ, η, ηKM)

and, for γ ∈ (OF /p)
×,

π2,γ : Xan
Γ1(n,t)∩Γ1(p),Iwp,K

−→ Xan
Γ1(n,t)∩Γ1(p),K

defined, on the non-cuspidal points, by

(A, i, λ, η, ηKM, Dp) 7→ (A/(γηKM(1)p+Dp), . . . , (ηKM mod (γηKM(1)p+Dp))).

To single out, let

π2,p : Xan
Γ1(n,t)∩Γ1(p),Iwp,K

−→ Xan
Γ1(n,t)∩Γ1(p),K
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denote the morphism ‘γ = 0 in OF /p’ which takes (A, i, λ, η, ηKM, Dp) to
(A/Dp, . . . , (ηKM mod Dp)).

By abuse of notation, let C also denote the pre-image

(TateM1,M2(q), . . . , ηKM : 1 7→ ζ1, 〈ηet1 〉) ∈ Xan
Γ1(n,t)∩Γ1(p),Iwp,K

by π1 above of C = (TateM1,M2(q) . . . , ζ1) for (M1,M2) = (OF , t
−1) and M =

M1M2 = t−1; and let CP ∈ (XΓ1(n,t)∩Γ1(p),Iwp,K [0, 1))(0, 1]S−P denote the cups
w∗
S−PC. Then

(gP |π1)(CP ) = pr∗f(TateM1,M2(q), . . . , ζ1) = |OF /t|−1
∑

ν∈M+

c(νM−1, fP )q
ν

On the other hand, for γ ∈ (OF /p)
×,

(gP |π2,γ)(CP )
= (fP |π2,γ)(TateM1,M2(q), . . . , ζ1)
= pr∗fP (TateM1,M2(q)/(ζ

γη), . . . ) where η := ηet1,p and ζ := ζ1,p
= pr∗fP ((GL1 ⊗Z d−1M−1

1 )/(ζγqη)
p
−1M2 , . . . )

= |OF /tp|−1
∑
ν∈(p−1M)+ c(νpM

−1, fP )ζ
γνqνη

where tp is one of the (fixed) representatives of the narrow class group of F

representing the class of tp, and where qη denote a representative in qp
−1M2 of

the class η ∈ qp
−1M2/qM2 . Finally

(gP |π2,p)(CP ) = pr∗(fP |π2,p)(TateM1,M2(q), . . . , ζp)
= |OF /tp|−1

∑
ν∈(p−1M)+ c(νpM

−1, fP )q
ν
η

For brevity, let S denote the ‘Gauss sum’

S
def
=

∑

γ∈(OF/p)×
ζγψP,p(γ)

for (M1,M2) = (OF , t
−1). Then for ν ∈ (p−1M)+ such that νpM−1 ⊂ O+

F is
not divisible by p,

S =
∑

γ∈(OF/p)×
ζγνpM

−1

ψP,p(γνpM
−1) = ψP,p(νpM

−1)
∑

γ∈(OF /p)×
ζγνψP,p(γ).
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It then follows that

∑
γ∈(OF/p)× ψP,p(γ)(gP |π2,γ)(CP )

=
∑
γ∈(OF/p)× ψP,p(γ)|OF /tp|−1

∑
ν∈(p−1M)+ c(νpM

−1, fP )ζ
γνqνη

= |OF /tp|−1
∑

ν∈(p−1M)+ c(νpM
−1, fP )q

ν
η

∑
γ∈(OF/p) ψP,p(γ)ζ

γν

= S|OF /tp|−1
∑

ν∈(p−1M)+,p∤νpM−1 c(νpM−1, fP )ψ
−1
P,p(νpM

−1)qνη
= S|OF /tp|−1

∑
ν∈(p−1M)+,p∤νpM−1 c(νpM−1, fP−{p})q

ν
η

= S|OF /tp|−1
∑

ν∈(p−1M)+ c(νpM
−1, fP−{p})q

ν
η

−S|OF/tp|−1
∑
ν∈(p−1M)+,p|νpM−1 c(νpM−1, fP−{p})q

ν
η

= S|OF /tp|−1
∑

ν∈(p−1M)+ c(νpM
−1, fP−{p})q

ν
η

−S|OF/tp|−1
∑
ν∈M+ c(νM, fP−{p})q

ν
η

= S(|OF /tp|−1
∑

ν∈(p−1M)+ c(νpM
−1, fP−{p})q

ν
η − (UpgP−{p}|π1)(CP ))

= S(gP−{p}|π2,p − βpgP−{p}|π1)(CP )

By the connectedness of (XΓ1(n,t)∩Γ1(p),K [0, 1))(0, 1]S−P ,

∑

γ∈(OF/p)×
ψP,p(γ)(gP |π2,γ) = S(gP−{p}|π2,p − βpgP−{p}|π1)

on (XΓ1(n,t)∩Γ1(p),K [0, 1))(0, 1]S−P .

Let (A, i, λ, η, ηKM, Dp = 〈Qp〉) be a non-cuspidal point of Xan
Γ1(n,t)∩Γ1(p),Iwp,K

and let P = ηKM(1) = P p × Pp and Q = P p ×Qp. Then

|OF /p|αpgP (A, i, λ, η,Q)− pr∗gP (A/〈Pp〉, . . . , η, Q))

where η := η mod 〈Pp〉, and Q := Q mod 〈Pp〉 is:

= |OF /p|UpgP (A, i, λ, η, Q)− pr∗gP (A/〈Pp〉, . . . , η,Q)
=

∑
Cp⊂A[p],Cp 6=〈Pp〉,〈Qp〉 pr

∗gP (A/Cp, . . . , (Q mod Cp))

=
∑

Cp=〈γPp+Qp〉,γ∈(OF /p)× pr∗gP (A/〈γPp +Qp〉, . . . , (Q mod 〈γPp +Qp〉))

=
∑

γ∈(OF /p)× ψP,p(−γ)pr
∗gP (A/〈γPp +Qp〉, . . . , (P p × Pp mod 〈γPp +Qp〉)

= ψP,p(−1)
∑

γ∈(OF /p)× ψp,P (γ)(gP |π2,γ)(A, . . . , η, P )

= ψP,p(−1)S(gP−{p}|π2,p − βpgP−{p}|π1)(A, . . . , η, P )
= ψP,p(−1)S(pr∗gP−{p}(A/〈Qp〉, . . . , P mod 〈Qp〉) − βpgP−{p}(A, . . . , P )
= ψP,p(−1)S((gP−{p}|wζp)(A, . . . , P

p × (−Qp))

−α−1
p ψS

P (p)|OF /p|pr
∗(gP−{p}|wζp)(A/〈Pp〉, . . . , p−1η, (P p × (−Qp) mod 〈Pp〉))

= S((gP−{p}|wζp)(A, . . . , Q)− |OF /p|
−1α−1

p pr∗(gP−{p}|wζp)(A/〈Pp〉, . . . , Q).

Therefore

(|OF /p|αpgP − S(gP−{p}|wζp ))(A, . . . , Q)
= (|OF /p|αp)

−1pr∗(|OF /p|αpgP − S(gP−{p}|wζp ))(A/〈Pp〉, . . . , (Q mod 〈Pp〉))

It suffices to show that |OF /p|αpgP−S(gP−{p}|wζp) is identically zero; in which
case, one can glue gP and (|OF /p|αp)

−1S(gP−{p}|wζp) as desired. Showing that
it is identically zero is exactly as in [3]. �
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15.3 The Γ1(p
r), r ≥ 2, case

Theorem 24 Let S denote the set SP of places of F above p. For any set

P ⊆ S, let fP ∈ H0(XΓ1(n)∩Γ1(pr),K [0, 1), Lk)
Ur be an overconvergent modular

form of weight k =
∑
τ∈Hom(F,K) kτ ∈ Z and of level Γ1(np

r).

Suppose that, for every P ⊆ S, fP has a character ψSPψS,P of (OF /np
r)× ≃

(OF /n)
××(OF /p

r)×. Suppose furthermore that fP is an eigenform for Up with
non-zero eigenvalue for every p ∈ S. Suppose finally that, for every P ⊆ S,

• c(OF , fP ) = 1;

• c(m, fP ) = 0 if m and n are not coprime;

• for every p ∈ P , c(m, fP ) = ψp,P (m)c(m, fP−{p}) for every ideal m

coprime to np, where ψp,P is the p-component of ψS,P .

Then the fP are classical Hilbert modular forms in H0(Xan
Γ1(n)∩Γ1(pr),K

, Lk)
Ur .

Proof. As in the previous subsection, we shall prove the theorem
by induction. For every subset P of S, let gP denote fP |wP ∈
H0(XΓ1(n)∩Γ1(pr),K [0, 1))(0, 1]S−P , Lk). We shall prove that fS is classical.
Fix an integer 0 ≤ n ≤ |S| and suppose that the gP with P ⊆ S such that
|P | ≥ n glue together to define sections, which will again be denoted by gP ,
over ⋃

P⊂S,|P |≥n
XΓ1(n)∩Γ1(pr),K [0, 1)(0, 1]S−P .

Fix a subset P ⊆ S with #P = n, and fix p ∈ P . It suffice to show that gP
and (a constant multiple of) gP−{p} glue.
Let C denote a point (TateM1,M2(q), i, λ, η, P ) around a cusp (M1,M2) =
(OF , t

−1) where

P = ηKM(1) = P p × Pp ∈ TateM1,M2(q)(O ⊗Z Z((qM )))

where P p def
=

∏
q|p,q6=p

ζ1,q and Pp

def
= ζ1,pη

et
1,p.

For brevity, let µ denote ζp
r−1

r , and µp its p-component.

We shall compute q-expansions of gP and gP−{p} at the cusp CP
def
= w∗

S−PC.
Let αp denote the Up-eigenvalue of fP .

|OF /p|αpgP (CP )
= |OF /p|UpgP (CP )
=

∑
Cp⊂Tate(q)[p],Cp 6=〈µp〉 pr

∗fP (TateM1,M2(q)/Cp, . . . , (P mod Cp))

=
∑

γ∈(OF /p)× pr
∗fP ((GL1 ⊗Z d

−1M−1
1 )/(µγ

pqη)
p
−1M2 , . . . , P )

=
∑

γ pr
∗fP ((GL1 ⊗Z d−1M−1

1 )/(µγ
pqη)

p
−1M2 , . . . , P p × {ζr,pµ

−γ
p })

=
∑

γ pr
∗fP ((GL1 ⊗Z d

−1M−1
1 )/(µγ

pqη)
p
−1M2 , . . . , P p × {ζ1−pr−1γ

r,p })

=
∑

γ ψp,P ((1− pr−1γ)pM−1)pr∗fP ((GL1 ⊗Z d
−1M−1

1 )/(µγ
p qη)

p
−1M2 , . . . , ζr)

=
∑

γ ψp,P ((1− pr−1γ)pM−1)
∑

ν∈(p−1M)+ c(νpM
−1, fP )(µ

γ
pqη)

ν

=
∑

ν∈(p−1M)+ c(νpM
−1, fP )q

ν
η

∑
γ ψp,P ((1− pr−1γ)pM−1)µγν

p .
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We know that ψS,P has a conductor pr, and hence ψS,P ((1+p
r−1)pM−1) = µν1

for some integer 0 < ν1 < p (not that 1 + pr−1 is thought of as an element of

p−1M2

pM−1
2 M1

։ M1 ։M1/p
rM1 ≃ OF /p

r); it therefore follows that ψp,P ((1 +
pr−1)pM−1) = µν1p . In particular, ψp,P ((1 − pr−1γ)pM−1) = µ−γν1

p . Hence

∑

γ

ψp,P ((1− pr−1γ)pM−1)µγνp =
∑

γ

µ
γ(ν−ν1)
p =

{
|OF /p| if p|(ν − ν1)
0 otherwise

Therefore,

gP (CP ) = (αp|OF /p|)−1|OF /p|
∑

ν∈(p−1M)+,p|(ν−ν1)
c(νpM−1, fP )q

ν
η .

We now calculate the q-expansion of gP−{p}|wζp at CP . Firstly, note that

(gP−{p}|wζp)(CP ) = pr∗gP−{p}(TateM1,M2(q)/(ζr,pη
et
1,p), . . . , P

p ×Qp)

where Qp is defined by 〈ζr,pηet1,p, Qp〉 = ζp. Tensoring over OF with pr−1 on

GL1 ⊗ d−1M−1
1 induces an isomorphism

(GL1 ⊗ d−1M−1
1 )/〈qM2 , ζr,pq〉

≃ (GL1 ⊗ d−1M−1
1 )/〈qpr−1M2 , ζr−(r−1),pq

p
r−2M2〉

≃ (GL1 ⊗ d−1M−1
1 )/(ζ1,pq)

p
r−2M2

The HBAV

TateM1,pr−2M2
(ζ1,pq)

def
= (GL1 ⊗ d

−1M−1
1 )/(ζ1,pq)

p
r−2M2

is naturally tp2−r(≃ (pr−2M2)
−1M1)-polarised, and comes equipped with the

level structure 〈p〉r−1η and the point P p×{ηet1,p} of order |OF /p
r|; it defines a

point of X
[r−1]
Γ1(n)∩Γ1(pr),τ

. For a point (A, i, λ, η, P ) of X
[r−1]
Γ1(n,t)∩Γ1(pr),τ

,

(|OF /p|βp)r−1gP−{p}(A, i, λ, η, P )
= (|OF /p|Up)

r−1gP−{p}(A, i, λ, η, P )
=

∑
Cp⊂A[p],|Cp|=|OF /pr−1|,Cp∩P={1} pr

∗gP−{p}(A/Cp, . . . , (P mod Cp))

In which case, observe that (A/Cp, . . . , (P mod Cp)) ∈ X
[0]
Γ1(n,t)∩Γ1(pr),τ

and

that it allows one to extend finite slope Up-eigenforms over X
[0]
Γ1(n,t)∩Γ1(pr),τ

to

Up-eigenforms over X
[r−1]
Γ1(n,t)∩Γ1(pr),τ

by ‘analytic continuation’. If we let

(A, i, λ, η, P ) = (TateM1,pr−2M2
(ζ1,pq), . . . , 〈p〉r−1η, P p × {ηet1,p})

then the cyclic subgroups Cp of order |OF /p
r−1|, disjoint from

the subgroup of order |OF /p| generated by ηet1,p, are of the form
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(ζr,pζ
νr−1

r−1,pη
et,p−1M2

1,p )/(ζ1,pq
p
r−2M2) for νr−1 ∈ M1/p

r−1M1 ≃ OF /p
r−1.

Then

((GL1 ⊗ d−1M−1
1 )/(ζ1,pq

p
r−2M2))/((ζr,pζ

νr−1

r−1,pη
et,p−1M2

1,p )/(ζ1,pq
p
r−2M2))

≃ (GL1 ⊗Z d−1M1)/(ζr,pζ
νr−1

r−1,pη
et,p−1M2

1,p )

≃ (GL1 ⊗Z d−1M1)/(ζ
1+pνr−1
r,p qη)

p
−1M2 ,

where qη is a representative in qp
−1M2 of ηet1,p ∈ qp

−1M2/qM2 , is naturally
(p−1M2)

−1M1 ≃ pt-polarised. Then there exists a non-zero constant κ1 such
that

(gP−{p}|wζp
)(CP )

=
∑
νr−1

pr∗gP−{p}((GL1 ⊗Z d−1M1)/ζr,pζ
νr−1
r−1,p

η
et,p−1M2
1,p

), ..., 〈p〉r−1η, Pp × {ηet1,p}))

= ψS(pr−1)
∑
νr−1

pr∗gP−{p}((GL1 ⊗Z d−1M1)/(ζ
1+pνr−1
r,p η

et,p−1M2
1,p

), ..., η, Pp × {q
et,−1
1,p

}))

= ψS(−pr−1)
∑
νr−1

pr∗gP−{p}((GL1 ⊗Z d−1M1)/(ζ
1+pνr−1
r,p η

et,p−1M2
1,p

), ..., η, Pp × {ζ
1+pνr−1
r,p }))

= κ1
∑
νr−1

ψp,P ((1 + pνr−1)pM−1)−1pr∗gP−{p}((GL1 ⊗Z d−1M1)/(ζ
1+pνr−1
r,p η

et,p−1M2
1,p

), ..., ζr))

= κ1
∑
νr−1

ψp,P ((1 + pνr−1)pM−1)−1 ∑

ν∈(p−1M)+
c(νpM−1, fP−{p})(ζ

1+pνr−1
r,p qη)ν

= κ1
∑
ν c(νpM

−1, fP−{p})qνη
∑
νr−1

ψp,P ((1 + pνr−1)pM−1)−1ζ
(1+pνr−1)ν
r,p

where νr−1 ranges over ∈ (OF /p
r−1). For brevity, let Sν

def
=∑

νr−1∈(OF/pr−1) ψp,P ((1 + pνr−1)pM
−1)−1ζ

(1+pνr−1)ν
r,p . As in the proof of

Theorem 11.1 in [3], one can deduce that

Sν = µν−ν1p Sν

where ν1 is defined by ψp,P ((1 + pr−1)pM−1) = µν1p , and therefore Sν = 0
unless p|(ν− ν1); one also deduces that, for ν ∈ (p−1M)+ such that p|(ν− ν1),

Sνν′ = ψp,P (ν
′pM−1)Sν

for ν′ ∈ (p−1M)+ such that ν′pM−1 ≡ 1 mod p and therefore
Sνν′/ψp,P ((νpM

−1)(ν′pM−1)) = Sν/ψp,P (νpM
−1). Consequently, there

is a non-zero constant κ2 such that

(gP−{p}|wζp)(CP ) = κ1
∑
ν∈(p−1M)+,p|(ν−ν2) c(νp

−1M, fP−{p})Sνq
ν
η

= κ2
∑
ν,p|(ν−ν2) c(νp

−1M, fP−{p})ψp,P (νpM
−1)qνη

= κ2
∑
ν,p|(ν−ν2) c(νp

−1M, fP )q
ν
η .

Therefore αpgP and κ−1
2 gP−{p} agree at CP and hence fP and (αpκ2)

−1gP−{p}
glue together. �
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