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1 INTRODUCTION

Let K be a number field. Artin conjectured that the L-series of any continu-
ous representation p : Gal(K/K) — GL,(C) of the absolute Galois group
Gal(K/K) of K is holomorphic except a possible pole at s = 1 when the trivial
representation is a constituent of p.

A result of Brauer (See [36]) about finite groups immediately implies that
L(p, s) has meromorphic continuation and satisfies a certain functional equa-
tion relating the values at s and 1 — s. Any such complex representation is
semi-simple, and because Artin showed that L(p1 + p2) = L(p1, s)L(p2, s), the
conjecture immediately follows from the case where p is irreducible. In the case
where p is irreducible, the strong form of this conjecture, known as the strong
Artin conjecture, asserts that there is a cuspidal automorphic representation m
of GL,(Ak) such that L(m, s) = L(p, s), and Artin conjecture follows from the
strong Artin conjecture (See [22], Theorem 8.8 with its proof (p.286) attributed
to Ramakrishnan).
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When n = 2 and the image of the projective representation projp
Gal(K/K) — PGLy(C) = GLy(C)/C* is dihedral (Dg, for some n > 2),
p is induced from a character y of the absolute Galois group Gal(K /M) of
a quadratic extension M of Q, and Artin himself proved the conjecture (the
holomorphy of L(p, s) = L(Indgz X,s) = L(x, s) follows from earlier work of
Hecke).

When n = 2 and the image of projp is tetrahedral (44) and when n = 2,
K = Q, p odd, and the projective image of p is octahedral (S;), Langlands
[23], using his theory of (cyclic) base change, “deduced” the strong Artin con-
jecture from the dihedral case. Tunnell, building on work of Langlands, com-
pleted the octahedral case n = 2 and general K. In the octahedral case, in
order to “descend” a cuspidal automorphic representation IT of GL2(Ag) such
that L(II, s) = L(MGal(?/E)a s) to a cuspidal automorphic representation 7 of

GL2(Ak), where E is the quadratic extension of K corresponding to the unique
index 2 subgroup (~ Ay4) of S4, Langlands uses a theorem of Deligne-Serre (and
therefore K = Q and p should be necessarily odd) whilst Tunnell uses cubic
base change to match up, for all but finitely many places v of K, the restriction
of p to the decomposition group at v and the local representation .

The icosahedral (As) case had remained largely intractable until Buzzard-
Dickinson-Shepherd-Barron-Taylor [4] proved many new cases of the strong
Artin conjecture for odd p : Gal(Q/Q) — G L(C).

[4] follows the program of Taylor ([37]), which may be succinctly described
as an approach to deduce results about weight one forms from results about
weight two forms (more specifically the idea of Wiles in [42]), and it is a cul-
mination of a series of work: “R = T theorem for 2-adic ordinary finite flat
representations” by Dickinson [10], “modularity of mod 2 icosahedral repres-
entations” by Shepherd-Barron and Taylor [33], and “modular lifting theorem
for two-dimensional p-adic Artin representations unramifed at p (for any prime
p)” by Buzzard and Taylor [5]. Buzzard [3] later extended [5] to treat almost all
two-dimensional p-adic Artin representations potentially unramifed at p (the
image of the inertia group at p is finite) and subsequently it led to modularity of
two-dimensional “5-adic” icosahedral Artin representations by Taylor [39]. The
strong Artin conjecture for odd two-dimensional representations of Gal(Q/Q)
is now completely proved by work of Khare-Wintenberger and Kisin on Serre’s
conjecture for odd two-dimensional mod p representations of Gal(Q/Q).

In this paper, we push through Taylor’s program and generalise them to treat
new cases of the strong Artin conjecture for two-dimensional, totally odd, ico-
sahedral Artin representations of the absolute Galois group of a totally real
field. More precisely, we prove the following theorems.

THEOREM 1 Let F' be a totally real field. Suppose that 5 splits completely in F'.
Suppose that p : Gal(F/F) — GL2(C) is a totally odd, irreducible, continuous
representation satisfying the following conditions.

e The image of the projective representation projp of p is As.
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e The projective image of the decomposition group at every place of F' above

5 has order 2.

Then p arises from a holomorphic cuspidal Hilbert modular eigenform of weight
1 and the Artin L-function L(p, s) is entire.

THEOREM 2 Let F' be a totally real field. Suppose that 2 splits completely in
F and that [F((5) : F] = 4. Suppose that p : Gal(F/F) — GL2(C) is a totally

odd, irreducible, continuous representation satisfying the following conditions.
o The image of the porjective representation projp of p is As.
o At every place p of F above 2, the projective representation of p is un-

ramified, and the image of Frob, has order 3.

Then p arises from a holomorphic cuspidal Hilbert modular eigenform of weight
1 and the Artin L-function L(p, s) is entire.

These are corollaries of the following theorems, first of which is about “if p :
Gal(F'/F) — GLa(F)) is modular, then p: Gal(F/F) — GL2(Q,,) ~ GL2(C)

is modular”:

THEOREM 3 Let p be a rational prime. Let K be a finite extension of Q, with
ring O of integers and mazimal ideal m. Let F be a totally real field. Suppose
that p splits completely in F. Let p : Gal(F/F) — GL3(O) be a continuous
representation satisfying the following conditions.

e p ramifies at only finitely many primes.

e p = (p mod m) is absolutely irreducible when restricted to Gal(F/F((,)),
and has a modular lifting which is potentially ordinary and potentially
Barsotti-Tate at every prime of F' above p.

e For every prime p of F' above p, the restriction p|g, to the decomposition
group Gy at p is the direct sum of 1-dimensional characters xp,1 and xp 2
of Gy such that the images of the inertia subgroup at p are finite and

(Xp,1 mod m) # (xp,2 mod m).
If p = 2, assume moreover the following conditions.

o The image of the complex conjugation, with respect to every embedding
of F into R, is not the identity matriz.

® 0 has insoluble image.
o For every prime p of F' above 2, p is unramified at p.

Then there exists an embedding ¢ : K — Qp ~ C and a classical holomorphic
cuspidal Hilbert modular eigenform f of weight 1 such that v o p is isomorphic
to the representation associated to f by Rogawski- Tunnell [28].
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In proving the theorem, we shall firstly establish R = T theorems for Hida
p-ordinary families over a finite soluble totally real extension Fy of F' in which
p > 2 remains split completely—for lack of reference we shall prove them. Since
P has a potentially p-Barsotti-Tate and potentially p-ordinary modular lifting,
one can deduce R = T in p-adic families from Kisin’s R = T theorems in
the p-Barsotti-Tate case. Note that, unfortunately, it is not possible to make
appeal to Geraghty’s R = T theorems in p-ordinary families as they assume
that p > 2 and that p is trivial at every prime of F' above p. This is because
one can not eliminate the possibility that, upon ‘soluble’ base-changing to Fx
to set ﬁ|Gal(f /Fs) trivial at every prime of Fy above p, Fx;, may no longer be
split at p, which is crucial in constructing weight one forms in our approach.
In the light of [1], the condition about the existence of a potentially ordinary
Barsotti-Tate lifting of p can be weaker, more precisely, it suffices to assume
‘p is modular’. It is not necessary to make appeal to their results however.

The next two theorems are about modularity of 5.

THEOREM 4 Let F' be a totally real field. Suppose that 5 is unramified in F'.
Let p: Gal(F/F) — GLy(F5) be a continuous representation of satisfying the
following conditions.

e 7 is totally odd.
e 0 has projective image As.

The there exists a cuspidal Hilbert modular eigenform of weight 2 such that its
associated 5-adic Galois representation is potentially Barsotti-Tate and poten-
tially ordinary at every prime of F' above 5, and its associated mod 5 Galois
representation is isomorphic to p.

The idea is exactly the same as that of Taylor—to prove modularity of p, one
firstly finds an elliptic curve E over a finite soluble totally real field extension
Fy, of F such that the action of Gal(F/Fs) on the 5-torsion points of E is iso-
morphic to ﬁ|Gal(f JFs) secondly one proves F modular, therefore ﬁ|Gal(f /Fs)
modular; and finally it follows from Khare-Wintenberger [18] and Kisin [20]
that ﬁ|Gal(? /Fy) has a characteristic zero lifting which is modular. The ‘auto-
morphic descent’ works as in [39].

In proving E is modular, we make some technical improvements on a ‘naive’
generalisation over totally real fields of the main theorem of Taylor in [39]
by making appeal to the main result of Kisin [20] rather than the main
result of Skinner-Wiles [35]. While Taylor/Skinner-Wiles requires the mod 3
representation E[3](Fyx) of Gal(F/Fy) to be reducible with distinct characters
on the diagonal at every prime of Fx above 3, we no longer requires this and
consequently remove the ‘3-distinguishedness condition’ in the main theorems
of [39]. The key observation is that the weight 2 specialisation Fr o of the Hida
family Fy, whose weight 1 specialisation Fyi; renders E[3](Fs) modular by
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Langlands-Tunnell, does indeed render the 3-adic Barsotti-Tate representation
T3E ‘strongly residually modular’ in the sense of Kisin [20] if F[3](Fx) is
unramified at every prime above 3.

As is clear from its proof, what we are proving indeed is modularity of general
mod 5 representations Gal(F/F) — GL2(F5), and this allows us to work with
the prime 2-proving modularity of p, : Gal(F/F) — SLo(F4) with projp, ~
As—instead of the prime 5, going back to the original approach of Buzzard-
Dickinson-Shepherd-Barron-Taylor; in [4] one firstly finds an abelian surface A
over F with real multiplication Z[(1+4+/5)/2] such that A(F)[2] ~ py; secondly
proves the mod 5 representation Gal(F/F) — GLa(A(F)[v5]) ~ GLy(F5) is
modular; and deduce A is modular by a modular lifting theorem.

THEOREM 5 Let F be a totally real field. Suppose that [F((5) : F] = 4. Let
p: Gal(F/F) — SLy(F4) be a continuous representation. Then there exists a
cuspidal Hilbert modular eigenform of weight 2 such that its associated 2-adic
Galois representation is potentially Barsotti- Tate and potentially unramified at
every prime of F above 2 and its associated mod 2 Galois representation is
isomorphic to p.

Lastly it might come in useful comparing our work and others. After the first
draft of this paper was written in 2010, Kassaei announced a result proving an
analogue of the main theorem 3 in the case when p is odd, p is unramified in F,
and Xp,1/Xp,2 and xp,2/Xp,1 are both unramified at every prime p of F' above p.
Pilloni, on the other hand, seems to have proved a slightly stronger analogue in
which p is allowed to ramify a little in F'. The fundamental ideas in both works
and ours are essentially the same and are due to Buzzard, more specifically
to Buzzard’s Theorem 9.1 in [3]. In forthcoming joint work with Kassaei and
Tian, we extend Kassaei’s work to the case where xp,1/xp,2 and xp.2/Xp,1 are
of conductor p for every prime p of F above p (unramified in F) and prove
many new cases of the strong Artin conjecture for p : Gal(F/F) — GL2(C) in
the insoluble case as above.

To prove an analogue of the main theorem 3 in the case where X, 1/Xp,2 and
Xp,2/Xp,1 are of conductor p” with r» > 1 for every prime p of F above p,
one needs to know precise geometry of Hilbert modular varieties of level p”
and, unless p splits completely in F' which we solve, this may not even be
possible. Calculating g-expansions at cusps to glue weight one forms does
not seem to depend on the ramification of p in F' and, for that, this work is
very useful in general. On the other hand, in order to prove the general case
(p ramifies arbitrarily in F'), the author [30] considers new moduli spaces of
Hilbert-Blumenthal abelian varieties; and he expects to make progress in the
general case in his forthcoming work.
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2  MODULARITY OF MOD 5 ICOSAHEDRAL REPRESENTATIONS OF Gal(F/F)

LEMMA 6 Let F' be a totally real field. Suppose that 5 is unramified in F'. Sup-
pose that p : Gal(F/F) — GLy(F5) is a continuous representation satisfying
the following conditions.

e p is totally odd.
e 0 has projective image As.

Then there is a finite soluble totally real field extension Fx of F' and an elliptic
curve E over Fx, such that

e F(\/5) C Fg CF, and \/5 splits completely in Fx;

o E has good ordinary reduction at every prime of F' above 3 and has po-
tentially ordinary reduction at every prime of F above 5;

® pps : Gal(F/Fy) — Auwt(E(Fx)[5]) is equivalent to a twist of
plGal(f/Fg);

° (_PiE,3‘|b(l;a1(f/FE(<s)) : Gal(F/Fx(G)) — Aut(E(Fx)[3]) is absolutely irre-
ucible.

Proof. Firstly, as in [39], find a biquadratic totally real extension K; C F
of F, which is a quadratic totally real extension of F' (\/5) in which /5 splits
completely, such that projp : Gal(F/K;) — PSLy(F5) ~ As lifts to a repres-
entation p; : Gal(F/K;) — GLo(F5) with determinant the mod 5 cyclotomic
character e. Choose, by class field theory, a finite soluble totally real extension
K5 C F of Ky such that ﬁl|Ga1(?/K2) is trivial when restricted to the decom-
position group at every prime of K5 above 3. Let Fyx; denote the Galois closure
of K over F. Let Py, denote the restriction of p to Gal(F/Fy).

As in section 1 of [33], let Y;_ /Fx (resp. X, /Fx) denote the twist of the
(resp. compactified) modular curve Y5 (resp. X5) with full level 5 structure by
the cohomology class in H'(Gal(F/Fs), Aut X5) defined by an isomorphism
Ps =~ (Z/5Z) x ps of the Fs-vector spaces. As proved in Lemma 1.1 in [33],
the ‘twist” cohomology class is indeed trivial, and therefore X5, ~ X5 and Y5,
is isomorphic over Fy to a Zariski open subset of the projective line P'. In
particular, Y7 has infinitely many rational points.

Let Y5, 0(3) denote the degree 4 cover over Y5, which parameterises isomorph-
ism classes of elliptic curves E equipped with an isomorphism E[5] ~ py, taking
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the Weil pairing on E[5] to € : A%ps; — ps and a finite flat subgroup scheme
C C EJ[3] of order 3.

Let Y5_ split (3) denote the étale cover over Y5, which parameterises isomorph-
ism classes of elliptic curves F equipped with an isomorphism E[5] ~ py, tak-
ing the Weil pairing on E[5] to € : A?ps, — us and an unordered pair, fixed
by Gal(F/Fs), of finite flat subgroup schemes C, D C E[3] of order 3 which
intersect trivially. Then it follows from Lemma 12 in [27] that Y5 sp1it(3) and
Y5,.,0(3) has only finitely many rational points.

For every prime p of Fx above 3, the elliptic curve y? = 23 + 22 — 2 defines an
element of Y;_ (Fx p) with good ordinary reduction, and we let U, C Y;_(Fxp)
denote a (non-empty) open neighbourhood (for the 3-adic topology) of the
point, consisting of elliptic curves with good ordinary reduction at p.

For every prime p of Fyx above 5, we define a non-empty open subset (for the
5-adic topology) U, C Y5, (Fx,p) as in the proof of Lemma 2.3 in [39].

By Hilbert irreducibility theorem (Theorem 1.3 in [11]; see also Theorem
3.5.7 in [32]), we may then find a rational point in Y5 (Fx) which lies in
U, for every p of Fx above either 3 or 5 and does not lie in the images of
Y5..003)(Fx) = Y5, (Fx) and Y5 op1it(3)(Fx) — Y3, (Fx). The elliptic curve
over Fy, corresponding to the rational point is what we are looking for. [

THEOREM 7 Let F' be a totally real field. Suppose that 5 is unramified in F'.
Let p: Gal(F/F) — GL3(F5) be a continuous representation of satisfying the
following conditions.

e p is totally odd.
e 0 has projective image As.

Then there exists a cuspidal Hilbert modular eigenform of weight 2 such that
its associated 5-adic Galois representation is potentially Barsotti-Tate and po-
tentially ordinary at every prime of F' above 5 and its associated mod 5 Galois
representation is isomorphic to p.

Proof. Choose an elliptic curve over a finite soluble totally real extension Fx
of F' as in the lemma. Replace Fx by its finite soluble totally real extension
if necessary to assume that the mod 3 representation 5 of Gal(F/Fx) on
E(Fs)[3] is unramified when restricted to the decomposition subgroup at
every prime of Fy above 3. By the Langlands-Tunnell theorem, there exists
a weight 1 holomorphic cuspidal Hilbert modular eigenform f; which gives
rise to pg 3. By 3-adic Hida theory [14], we may find a holomorphic cuspidal
Hilbert modular eigenform fy of weight 2 and level prime to 3, ordinary at
every prime of Fy above 3, which gives rise to pg 3. As F is ordinary at 3, pg 3
is strongly residually modular in the sense of Kisin [20] (3.5.4), and it follows
from Theorem 3.5.5 in [20] that T5E is modular. By Faltings’ isogeny theorem,
E is therefore modular. As pg, 5 is modular, ﬁ|Ga1(f/FE) is modular. Since F¥,
is a soluble extension of F', by, remains absolutely irreducible when restricted
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to Gal(F/Fx(¢)). Furthermore, since 5 is unramfied in F, the kernel of proj ps,
does not fix Fx((5). It then follows from results of Khare-Wintenberger [18]
and Kisin [20] that there exists a modular lifting of p5;. The ‘soluble descent’
to F' is exactly as in [39]. O

REMARK. In the forthcoming work with Kassaei and Tian, we remove the
assumption that 5 is unramified in F' in Lemma 6, and thereby in Theorem 7.
Essentially the same argument works.

3  MODULARITY OF MOD 2 ICOSAHEDRAL REPRESENTATIONS OF Gal(F/F)

THEOREM 8 Let F be a totally real field. Suppose that [F((s) : F] = 4. Let
p: Gal(F/F) — SLo(F4) be a continuous representation. Then there exists a
cuspidal Hilbert modular eigenform of weight 2 such that its associated 2-adic
Galois representation is potentially Barsotti- Tate and potentially unramified at
every prime of F' above 2 and its associated mod 2 Galois representation is
isomorphic to p.

Proof. By Theorem 3.4 in [33], there exists a principally polarised abelian
surface A over F with real multiplication by Z[(1++/5)/2] compatible with the
polarisation such that the action of Gal(F/F) on A(F)[2] ~ F? is equivalent to
7; and the action of Gal(F/F) on A(F)[v/5] ~ F? is given via a homomorphism

ﬁA,\/g : Gal(F/F) — GLQ(F5)

which is surjective and whose image contains SLs(F5). It suffices to prove that
A is modular.

Firstly, the Weil pairing on A(F)[v/5] shows that detp A.v5 s the mod 5 cyc-
lotomic character. Since [F((5) : F| = 4, the determinant is indeed surjective,
and therefore p, /= is absolutely irreducible.

Ifp A5 18 irreducible at some place of F' above 5, the absolute irreducibility
of p, /5 implies the absolute irreducibility of its restriction to Gal(F/F((5))-
Otherwise, p A5 18 reducible at every place of F' above 5; in which case, it
is also equally easy to check that its restriction to Gal(F/F(v/5)) of Pans s
absolutely irreducible (See Proposition 7 in [27], for example). It follows from
results of Khare-Wintenberger [16] and Kisin [20] that it is possible to construct
a modular lifting of p, | /z; more precisely, p 4 /5 is strongly residually modular.
The modularity of p, sz follows from Theorem 3.5.5 in [20] and [12]. O

4 HOLOMORPHIC HILBERT MODULAR FORMS AND HIDA THEORY OF MOD-
ULAR (GALOIS REPRESENTATIONS

Let F be a totally real field. We let O denote the ring of integers, dp the
different of F, Ap = A¥ x F, and Of denote Op ®z Z" C A¥. Let S
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denote the set of infinite places of F. For an ideal n of Op, let F,, denote the
strict ray class field of conductor nS..

For an ideal n, let U'(n) (resp. Uji(n)) denote the open compact sub-
group of GL2(O%) consisting of matrices which are congruent modulo nO%
to matrices with first column (1, 0) (resp. the second row (0,1)). Let I, denote
AL/ (F(AFX U () FE),

For k € Z and an open compact subgroup U of GLy(O%) , let Si(U) denote
the space, Sy 1/2(U) in the sense of Hida [14], of cuspidal holomorphic Hilbert
modular forms f of parallel weight k& and level U with the Fourier coefficient
c(n, f) € Z for all ideals n of Op. The spaces S,(U'(n)) and Sy(Uy(n)) for an
ideal n of Of come equipped with an action of I,; via the diamond operator
(), and Hecke operators T, for every prime q of Op not dividing n and U, for
every prime of q dividing n.

Let hi(n) denote the sub Z-algebra of End(Sk(U!(n)) generated over Z by
all these operators (See Proposition 2.3, Theorem 4.10, and Theorem 4.11 of
[14]). For every prime q not dividing n, let Sq = (Np/qq)*2(q) € hy(n); this
corresponds to the action of the scalar matrix with a uniformiser of Or at q on
the diagonal. Following [14], for every ideal m of O, we may define Ty, € hy(n).

Let p be a rational prime and let Sp denote the set of prime ideals of Op
dividing p. Fix an algebraic closure Q,, an isomorphism Q, ~ C, and an

embedding Q — Qp.

I

For aring R C Q,,, we shall let S, (U1(n))r denote Sg(Uy(n)) @z R and hi(n)g
denote hy(n) ®z R; there is a pairing (, ) : hx(n)r X Sp(U1(n))r — R defined
by (T, f) = ¢(Or, Tf).

For a ray class character v : I, — 6; mod nSe., let Sy 4 (Ur(n))z, [y
denote the submodule of Sy (Ui(n1))z, [y consisting of cuspidal Hilbert mod-
ular forms of parallel weight k and level U;(n) with central character )-S5,
acts via ¢ at q; the forms in Sy (Ui(n))z, [y may be thought of as |I4]-
tuple of classical Hilbert modular forms of ‘level I'1(n)’ on the |I,|-copies of
(GL2(R)/(R* SO (R))Hom(FR) with ‘Dirichlet character mod n’.

Fix an ideal n of O coprime to p. For a finite extension K of Q, with ring
O of integers, Hida [14] defines the idempotent e and we set h)(n) to be the
inverse limit with respect to r € Zxy of ha(np”)z, ®z, O. Let Iy~ denote
the inverse limit of the I,,» and the diamond operators ( ) : In,r — eha(np”)o
induce

()t Inpee — W (n)*.
One can also see ( ) as the action of (Op/n)* X (Op ®zZ,)* by the composite:
(Or/0)* % (OF @7 Zp)* = Tnpee ~5 B (n).
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We let Torppes (resp. Frypeo) denote the torsion subgroup (resp. the maximal
Z,, free subgroup of rank 1 4 ¢ with ¢ = 0 if the Leopoldt conjecture holds) of
Tope; let A denote the completed group algebra over Zj, of Frype and Ag =
A ®z, O. Then h)(n) is a Ag-module by (). We will let

Art: AY/FXFE* ~ Gal(F/F)*

denote the (global) Artin map, normalised compatibly with the local Artin
maps normalised to take uniformisers to arithmetic Frobenius elements. By
abuse of notation, we shall let Art also denote the induced homomorph-
ism Inpeo — Gal(Fn(up<)/F) and let € denote the cyclotomic character
€: Gal(Fy(up=)/F) — Z).

Hida [14] proves that hd(n) is a torsion free Agx-module and, for a charac-
ter ¢ : Iypee — K which factors through I, for r € Z>q, if & > 2, then
W (W) er((eoArt)i—2y) 1S isomorphic to the subspace of eSk(Ui(np”))o where
() =1 on Frype.

We will let €Y¢!° denote the character

Cal(F/F) — Gal(F/F)™ — Ly = O[[Inp]]* = Ag[Torpye]™

Note that q — NgS, extends to NS : (Op/n)* x (Op ®z Zp)* — ILypo —
hd(n)*. Let NSy (resp. NSP) denote the X (resp. the prime to Sp) part
[lyes OF, — h&(n) (resp. (Op/n)* — hd(n)) for s subset X of Sp.

If m is a maximal ideal of hl,(n) with residue field kn, there is a continuous
representation

Pm i G = Gal(F/F) — GLa(kw)

such that, for every prime ideal q of O not dividing np, p,, is unramified at
q and trp,, (Frobg) = Ty. Set S (n) = Homy, (hd(n), Ak). For a finite field
extension L of the field Frac Ax of fractions of Ax with its integral closure
O, of Ak in L, Buzzard-Taylor [5] calls a Ag-algebra homomorphism Fy €
S%(n) @ax L = Homa, (hd, L) a A-adic eigenform (of level n).

If the unique maximal ideal m above ker Fiy C h)(n) is non-Eisenstein, i.e., py,
as above is absolutely irreducible, then there is a continuous representation

PFy - GF — GLQ(h%(ﬂ)m) Fg GLQ(OL)

which is unramified at every prime ideal q of O not dividing np and satisfies
tr pry (Frobg) = Ty and det pr, = (NS)oe¥ele. Moreover, it is a result of Wiles
[43] that, for every place p of F above p, the restriction to the decomposition
group G, at p of pp, is of the form

XFu,p,2 *
0 XFu,p,1
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where Xy p,1 1S an unramified character of G, such that x gy p,1(Frob,) = U,
and X Fy,p1 X Fu,p,2 = (Fi o NS) 0 e .

DEFINITION. Following [5], we call two A-adic eigenforms Fyq and Fyo :
h%(n) — Op of level n A-adic companion form with respect to primes (q
and po of O which do not divide p, if there are embeddings ¢; : Op/p1 <
Qp and 2 : Op/ps — Qp such that, for every ideal m of Op not di-
viding p, there exists a subset ¥ of Sp such that (Fu2(Twm) mod o) =
(Fi1(Tn(NSs)(m)~!) mod g1); and such that, for every place p in %,
(Fu,2(Uy) mod @9) = (FHJ(UP_I(NSP)(]J)) mod ;) while, for every p in
Sp — Z, (FH,Q(U)J) mod p2) = (FH,I(Up) mod pl)

5 DEFORMATION RINGS AND HECKE ALGEBRAS

Let F be a totally real field of even degree in which p is unramified; if p = 2
assume furthermore that 2 splits completely in F. If p is odd, suppose p > 5.
Let D be the quaternion algebra over F' which ramifies exactly at a finite set
Y of finite places of F' not dividing p and the infinite places So, of F. Let Op
denote a maximal order and fix an isomorphism Opq ~ M3(OF,) for q not in
3. Let S denote the disjoint union of 3, the set Sp of places of F' above p, and
the infinite places of F.

For a topological Zy-algebra R, let 1) : A?’X/F — R* be a continuous char-
acter such that 1/)|O;p is trivial for every place p of F' above p, and, for an open

compact subgroup U =[], Ug C [, O}, let wa(U)R denote the R-module
of R-valued modular forms on D*\(D ®p A¥)* of weight 2 and of level U in
the sense of Taylor [40].

Let ny denote the square-free product of the primes in ¥ and define
Us C (D®pr AP)* by Us,q = GL2(Opq) for q not in ¥; and Us, g = qu for
qe .

We shall write Sﬁb(ng) for S%%(Ug) and hgw(ng)R for the R-subalgebra of
Endg (S5, (ns)r) generated by Ty and Sq for all g not in S; and T, and S, for
all p in Sp.

Let K be a finite extension of Q, and O be the ring of integers with maximal
ideal m ad residue field k. Let
p:Gal(F/F) — GLy(O)
be a continuous representation such that
e 0 = (p mod m) is unramified outside Sp,
e p is not scalar at every place p above p,
e if p is odd, the restriction of p to Gal(F/F((,)) is absolutely irreducible;

if p = 2, p has insoluble image,
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e there exists a holomorphic automorphic representation 7 of (D @ p Ap)*
generated by a cusp form in 521:7)1/1(“2)0 such that 7y is unramified for
every q not in XU Sp, 7, is ordinary at every p in Sp, for every q € X, m,
corresponds by the local Jacquet-Langlands correspondence to a special
representation of conductor q, and such that p, ~ p,

e p ramifies at ¥ and possibly at Sp; for every p in Sp

* *
Play ~ 0 Xxp

with x, unramified; and for q € X

€x *
p|Gc| ~ < Oq Xq)

with x4 unramified such that x3 = (¢ o Art)|q, .

Let AY = A% x A% for a finite subset S of the places of F. Let ¢ be a
character of A;SP. For p = 2 let ¢p 4+ denote the Z,-linear extension of the
norm N : (Op ®z Zs)* — ZJ followed by the character Z; — Z) whose
restriction to (Z/4)* = {£1} sends —1 to F1 and whose restriction to (1 +
475)* is trivial. For p odd, let i)p denote the norm followed by the trivial
character on Z.

5.1 (FRAMED) DEFORMATION RINGS R

plp: if p is odd, let RE’Ord (resp. RE’BT’OYd) denote the O-algebra which rep-
resents the p-ordinary (resp. Barsotti-Tate p-ordinary) framed deformations of

pla, of the form
0

with an unramified lifting X" of x, (resp. and its determinant is ey p); if p = 2,
we shall write ‘+’ in shorthand to mean two independent cases— ‘4’ corresponds

to the 2-old case while ‘—’ corresponds to the 2-new case in the sense to be
made precise below, and let REfd (resp. REfT’Ord) denote the complete local

noetherian O-algebra which represents the p-ordinary (resp. Barsotti-Tate p-
ordinary) liftings of p|g, of the form

o i)
0

with an unramified lifting x," of xp, and with its determinant corresponding,

by the local class field theory, to the norm (’);p — (Op®zZ2)* N Z5 followed
by the character Z5 — ZJ whose restriction to (Z/4)* = {£1} sends —1 to
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F1 (resp. with its determinant ep 1).

Oyord A O,ord 0O,BT,ord __ A O,BT,ordy - . .
Let Rp™" = Qpesp By (resp. Rp = Qpesy iy ) if p is odd;
d ord A O,ord 0,BT,ord 0,BT,ordy _
and Rp'Y" = Qpes, [0 (resp. Rp = ®pesp R,y ) if p=2.

qeX: let RqD’w denote the domain (see 2.6 in [20], or Proposition 2.12 and
3.3.4 in [18]) parameterising liftings of p|c, of the form

(5 %)

0 Xy

with xg" an unramified lifting of X, such that (X;")Q =(o Art_l)|gq
Let Ry, 5% denote the completed tensor product ® D v

qEE

Tloo: let R'T:"Odd denote the formally smooth ring which represents the liftings
of p|g, which, if p is odd, are odd ; and, if p = 2, the image of complex
conjugation in G, ~ Gal(C/R) is not the identity matrix.

Let RY°49 denote the completed tensor product ®¢|OO RUedd

Fix a k-basis of p and let

2% Gp — GLy(RP%)

denote the S-framed universal deformation ring. Let RE denote the completed
tensor product of the local framed deformation rings at places in S.

Let
RE@Tdﬂl) — RDS ® (RD ,ord N RSJ/J N REO,odd)
RE,BT,ord,w _ RDS ®/\ (RD BT,ord N Rgﬂl) N REO,odd)

if p is odd; and

RD ord, ¢y _ RES ®/\ (RD ,ord N RD P N RE odd)
RY
RD BT ord,w _ RDS ® (RD BT,ord ®/\ Rg K7 ®/\ REO’Odd)

if p=2.

Let RYY (resp. RE“PTY) denote the subring of RD oY (resp. RD Blordwy
generated by the traces of p™5. Similarly define Rord’w and RE iBT o *,
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5.2 HECKE ALGEBRAS

Since p arises from a holomorphic cusp form in S¥(nsg,9)o on the qua-
ternion algebra D over Fy by assumption, there exists a maximal ideal
mP C P (ny,vp)o if p odd (resp. mP C hP(ng,¢bp )o if p = 2). It
then follows that there exists a maximal ideal m C ha(nsp, ¥p)o such that

h2 (nzpa Q/J)m ~ h? (nEa wa)mD

if p odd (resp. my C ha(ng2,¥9p 4)o such that

ho(n5:2, Y 4 )m, = h2 (ns, Yp 4 )mp

if p=2). When p = 2, there also exists m_ C ha(nx4, ¢3pp,_) such that

ho(nsd, Yop, —)m_/(2) = ha(ns2,¥¢p 4+ )m, /(2)

This can be proved exactly as in the proof of Lemma 3.2 in [4]; instead use the
0-dimensional Shimura variety corresponding to D over F¥.
For p = 2 define egpst, + and let h®(n)y = eppsr,+h°(n). Let

WP (nsp, bp)m = ha(nsp, Yibp)m ©guroan Rg DT oY

Wz, ) = hO(ns, e )m @ goraw Rg oY

if p is odd; and let

O T
ha(nsd, Yibp, - )m_ @ gronw Rg DT oMY

" p0,ord
ho(“Ev ’l/)wl:’)*,m ®Pf§rd;¢ Rs,fr o

hS (nsd, Yhp,— )m_
hOD (n57 1/))—,m,

if p = 2. It then follow from results of Kisin and Khare-Wintenberger that
there is a natural surjection

o
RS’BT’Ord’dJ — h5 (nsp, YYp)m

if p odd and
RGPToM 5 b (nsd, b,

if p = 2, which induce isomorphisms
0,BT,ord,
Rg™PT 1 /p) = b3 (nsp, vioe)wm(1/p]

if p odd and
RGP 11/2) ~ b5 (nsd, gvop ) [1/2).

The determinant of p=° defines

rd,
NS : Ingpe — BRI
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and RZY [ker(S — (ibp 0 €¥10)) o RS if p odd, and
NS : Iyypee — RGY

induces Rosri’w/ker(S — (YYp — o e¥elo)) ~ R?,T_’OYd’d’ if p = 2. On
the other hand, h%(ng,)m/ker(S — (Yihp o €¥I0)) ~ ho(ngp, Pihp)m and

BO(s, 1) /er(S — (Yipp, 0 €¥¥I9)) = hy(nsd, tbp, )m_. Then the sur-
jective A-algebra homomorphisms

RE’Ord’w = b (g, Y)m

if p odd and
R 5 1O (g, )

—,m_

if p = 2 induce the isomorphisms

RS [1/p] =~ h%P(ng, ¢)m[1/]

and
R (1/2) = P (ns, 1) m[1/2].

6 COMPANION FORMS MOD p

Let F be a totally real field and p be a rational prime. Suppose that [F((p) :
F] > 3 if p > 3 and that 2 splits completely in F if p = 2. Let f3 be a
holomorphic cuspidal Hilbert eigenform of weight 2 < ko < p and of level
prime to p. Assume that the associated p-adic representation ps of Gal(F/F)
is crystalline and ordinary at every prime p of F' above p. It is a well-known
theorem of Wiles (Theorem 2.1.4 in [43]) that, for every prime p of F above p,
the restriction p|g, to the decomposition group Gy at p is of the form

G PR
/)|Gp =~ 0 Xp.2

where xp,1 and xp,2 are unramified characters of Gy, and xp 2(Froby) is a unit
U,-eigenvalue of the p-stabilised newform of fs.

THEOREM 9 Let fo be a holomorphic cuspidal Hilbert eigenform of weight 2 <
ko < p and of level prime to p as above. Let kq défp ifke =pandky def p+1—ko
if 2 < ko < p. Suppose that

e if p > 2, the associated mod p representation ﬁQ_:Gal(F/F) — GLy(F,)
is absolutely irreducible when restricted to Gal(F/F((p)), and if p = 2,
Po : Gal(F'/F) — GL3(F,) has insoluble image;

e if p > 2 and if Ekl*QYpQ # Xp,1, the ramification index of Fy is strictly
less than p — 1 for every prime p of F above p, and if p = 2, py is
unramified at every prime of F above 2;
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o ifp>2,€27I%, | # X0 and if p=2, X2 # Xp1

e D, is the direct sum of the characters

p of F above p.

71?;3 1 and X, o at every prime

Then there exists a holomorphic cuspidal Hilbert eigenform of weight 2 <
k1 < p and of level prime to p with its associated mod p representation
p1: Gal(F/F) — GLy(F,) satisfying p; ~ py @ €171 if p > 2 and p; ~ P,
if p = 2, and the Up-eigenvalue of the p-stabilised new form is a lifting of
Xp,1(Froby).

Proof. For p > 2, this is a result of Gee (Theorem 2.1 [13]). Let p = 2; thus
k1 = ko = 2. For clarity, let p denote p, ® € where € is the mod 4 cyclotomic
character. Clearly the twist of po by the Teichmuller lift of € defines a modular
lifting of p potentially ordinary and potentially Barsotti-Tate at p. By class field
theory, find a finite totally real soluble extension Fyx; C F of F of even degree
in which 2 remains split completely, and satisfies the following conditions:

e there exists a quaternion algebra D over Fy ramified exactly at a finite
set X of finite primes of Fx, not dividing 2;

o 7| Gal(F/Fy,) is ramified exactly at 3 and the infinite places, and , in par-
ticular, for every prime q € X, ﬁ|Gal(F/Fz) at q is an extension of an
unramified character by the twist of the character by € at q;

e there exists a maximal open compact subgroup U C (D ®p, A, )* such
that Uy = GL2(Opyq) for q ¢ SP and Uy = (’)gq for ¢ € SP, and a
holomorphic cuspidal automorphic representation 72 of (D Qp, Apg)™
with central character ¢ such that Dl 7/ py) ~ Pr, + Gal(F/Fy) —
GL»(F,) and detp| o7 ) = 1€ and such that 7 is unramified at every
prime of Fx, above 2.

It then follows from work of Khare-Wintenberger (See Corollary 4.7 and The-
orem 10.1 in [18]) that there is a lifting p : Gal(F/Fy) — GLQ(QP) of
ﬁlGal(f/Fg)’ unramified outside Sy, p [[X]] Sx.00 with detp = e such that,
for every prime p of Fy; above 2, p is ordinary at p and Barsotti-Tate and is of

the form
6;%2 %
0 Xp,1

where Xp.1 and Xp 2 are unramified liftings of X, 1[ga#, ) @04 Xp 2lGal(F/ 5y
respectively. It then follows from the main theorem of Kisin [19] and Khare-
Wintenberegr [18], and by soluble descent that there exists a holomorphic
cuspidal Hilbert eigenform f; of weight k; = 2 and of level prime to 2 such

that pf1|Ga1(f/FE) ~p. O
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7 A-ADIC COMPANION FORMS

THEOREM 10 Let p be a rational prime. Let F' be a totally real field. Suppose
that p splits completely in F'. Let K be a finite extension of Q, with ring of
integers O and residue field k = O/m. Suppose that

p: Gal(F/F) — GLy(0)
s a continuous representation satisfying
e p ramifies at only finite many primes;

e 5= (p mod m) is absolutely irreducible when restricted to Gal(F /F((p),
and has a modular lifting which is potentially ordinary and potentially
Barsotti-Tate at every prime of F above p;

o for every prime ideal p of F above p, the restriction plg, to the de-
composition group G, at p is the direct sum of characters x,1 and
Xp,2 1 Gp = O such that the images of the inertia subgroup at p are
finite and (xp,1 mod m) # (xp,2 mod m);

If p = 2, assume furthermore that

e the image of the complex conjugation with respect to every embedding of
F into R is not the identity matrix;

® 0 has insoluble image;
o for every p of F above p, p is unramified at p.

Then there is a finite totally real soluble extension Fsx, C F of F in which p

splits completely; a finite set X of finite places of Fx, (at which p|Gs, where

Gy Gal(F/Fx) is ramified of conductor nx.); an ideal n of Oy, coprime to

p which ny, divides; and, for every subset P of the set Sxp of places of Fx
above p,

1. a character
XP : Gy — O0*

of finite order, unramified outside a finite set of places containing Sx p,
such that the restriction to the inertia subgroup of Gy at p of xp equals
that of xp1 (Tesp. Xp,2) for all p in P (resp. Sxp — P);

2. a finite extension L of Frac Ag and a A-adic form

Fiiida.p : h(ng) — L;

3. a homomorphism fp : h%(n) — O if p > 2 while fp : hh(n)— — O if
p = 2 satisfying
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fp(Ty) = tr p(Froby)/xp(Froby) for all q not dividing np;
e fp(NgSy) = det p(Frobg)/x%(Frobg) for all q not dividing np;
fp(Uq) =0 for q dividing n but not dividing p;

fe(Up) = (xp.1/xp)(Froby) for every p in P and fp(Uy,) =
(Xp,2/xp)(Froby) for every p in Sy p — P.

Proof. Choose a finite soluble totally real extension Fx of F' in which p splits
completely such that the restriction of p is absolutely irreducible when restric-
ted to Gal(F/Fs((p)), unramified outside a finite set X [[ S p [[ S5, of finite
places q of Fx, such that p|g,, is of of conductor 1 or q at g, and arises from—by
Jacquet-Langlands—a cuspidal automorphic representation, nearly ordinary at
every p € Sy p and special at q € X, of the quaternion algebra Dy, over Fx, as
in the previous section.

For every P C Sy p, it follows from class field theory that one can choose xp,
of conductor 1 away from a finite set of places containing the set of places above
p, as asserted in the theorem.

Let pp denote p ®c, 17/ ry) xp' and Fp denote (pp mod m). If we let px

denote the modular lifting of p, then py ® Xfpl is a modular lifting of pp; in
fact it is ordinary at every p € Sy p by Jarvis’ level lowering results [15]-by
which one shows py ® x;l is crystalline at p— followed by Fontaine-Laffaille
theory. Let mp denote the corresponding maximal ideal of ehs(ngp)e if p > 2
and eha(ngd)p, — if p = 2. It then follows from Hida theory [14] and results
from preceding sections that there exists a finite extension L in an algebraic
closure of Frac A which we fix; and, for every P C Sy, p, a A-adic eigenform
Fup : hd(ng) = hh(ns)m, — Op, and a height one prime pp of O such
that

e (pry mod pp) ~ pp

o for every distinct subsets P and @, (Fup,pp) and (Fug,9qQ)
are in companion; more precisely, for every ¢ not dividing ngp,
(Fu,@(Ty) mod pq) = (Fu,p(TeS(p—(Pr@)u@- (@) (@)~") mod pp);
for pin (PNQ)U ((Sg,p — P) N (Sep — Q)), (Fue(Up) mod pq) =
(FHﬁp(Up> mod pp), while for p in (P N (Sgyp — Q)) U ((Sgﬁp — P) n Q),
(Fii,@(Up) mod pq) = (Fu,p(Uy ' S* (p)) mod pp).

Let fp be the composite h))(nx) = O — Or/pp ~ O; if the image of U, for
g dividing ny, but not dividing p is not zero, we may increase the level at q if
necessary to assume the image of indeed zero (See [34] for example) . O

8 MODELS OF HILBERT MODULAR VARIETIES

Let F be a totally real field—F in the preceding section—of degree d = [F': Q]
with ring of integers Op. Fix a rational prime p and an ideal n of O prime to
p. For every integer r > 1, fix a p"-th primitive root (,~ of unity. For a prime
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p of F' above p, let F}, denote the completion of F' with respect to the absolute
value corresponding to p, kp, the residue field of Fy, f, the residue class degree,
and ey, the ramification index.

Fix embeddings Q — Q — Qp. Let K denote a finite extension of Q, which
contains the image of F' by every embedding of F' into QP; and let O denote
its ring of integers and k denote the residue field.

For a fractional ideal I of F' canonically ordered, let IT denote the totally
positive elements. Fix a set T' of representatives in A 5 of the strict ideal class
group AL /(F*(OF @ Z™)*F£*), and we shall let ¢ also mean the fractional
ideal td corresponding to a representative ¢ in 7.

DEFINITION. A t-polarised Hilbert-Blumenthal abelian variety (henceforth ab-
breviated as HBAV) with level 'y (n)-structure over a O-scheme S is an abelian
variety A over S of relative dimension d together with

e i:Op — End(A/S);

e a homomorphism A : (¢,¢t7) — (Sym(A/S),Pol(A/S)) of ordered in-
vertible Op-modules, where Sym(A/S) (resp. Pol(A/S)) denotes the
invertible Op-module (via ¢) of symmetric homomorphisms (resp. polar-
isations), such that A ®o, t — AV, induced by J, is an isomorphism of
HBAVs-it is shown in [41] that this is equivalent to the condition that
there exists a prime-to-p polarisation A — AY; and to the ‘determinant
condition’ on Lie(A4) in the sense of Kottwitz;

e an Op/n-module morphism 7 : (Op/n)V = (GL1 ® 9.")[n] — An].

DEFINITION. Let Yp, (n¢) (resp. Yr,(a,¢)niw) denote the O-scheme represent-
ing the functor which sends an O-scheme S to the set of isomorphism classes
(A,i,\,n) (resp. (A,i,A\,n,C)) of t-polarised HBAVs with level I'1(n)-level
structure (resp. and a finite flat subgroup scheme C' of A[p] with compatible
Op-action locally free of rank > [Op/p|).

It follows from [27] and [8] that if n does not divide 2, nor 3, Y, (n,¢) is a smooth
scheme over O of relative dimension [F : Q]. If n does divide 2, or 3, we let
YT, (n,t) denote the O-scheme

(1 (n, 1) /T (m, )NYD, (1)

for an auxiliary ideal m of Op such that njm and T';(m) small enough, i.e.,
torsion-free.

Let Ypl(mt) denote the fibre over k of Yr, (4 4); and let Let ?pl(mt)mw denote
the fibre over k of Yr, (n ¢)niw-

It is a well-known result of Deligne-Ribet that the fibre Ypl(mt) is irreducible
(Corollary 4.6 in [9]). It is a result of local model theory by Pappas that
?pl(n,t)mw is normal (Corollary 2.2.3 in [25]).
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Suppose that p splits completely in F'. In which case, the p-divisible group of
a HBAV over the ring of integers of a finite extension of Q, decomposes as
the product of [F' : Q] one-dimensional p-divisible groups, one for each prime
p of F' above p, and this allows us to define ‘Katz-Mazur-Drinfeld” higher level
structures at p by defining level structures at p on the ‘p-divisible group’ for
each p.

DEFINITION.  Let r be an integer > 1. Define Yr (n¢)nr,p-) to be the
O-scheme representing the functor which sends an O-scheme S to the set
of isomorphism classes of the sextuples (A,i,A,n,C,nkm) over S where
(A,i,A,n) is a t-polarised HBAV over S with I'y (n)-level structure, C is a finite
flat subgroup scheme of A[p"] locally free of finite rank |Op/p"| = >_, [OF/p"|
with compatible action of Op, and an Op-linear group homomorphism
nrMm : Op/p" — Mor (S, C') C Mor(S, A[p"]) such that the image of niky defines
a ‘full set of sections’ in the sense of Katz-Mazur [17] (See 1.10.5 and 1.10.10
in [17]).

DEFINITION. For every prime p of F above p, let YT, (n¢)nr, (pr),1w,, i denote
the fine moduli space over K of the septuples (4, i, \, 7, C, nkm, Dy) where the
sextuple (4,7, A,n,C,nxm) defines a point of Y1, (n,1)nr, (pr) XSpec0x Spec K,
and D, is finite flat subgroup scheme of A[p] of rank |Op/p| which has trivial
intersection with C.

9 COMPACTIFICATION

By an unramified cusp C of Yr, (4 1) over R, we shall mean a pair of fractional
ideals My, My of F such that M; M, ' ~ t which comes equipped with

e an Op ®z R-linear isomorphism A : Mfl ®z R~ Op ®z R,
e an Op-linear embedding 1 : Op/n — n™ My ' /Myt

For brevity, let M = M;M,, MV = Homgz(M,Z) = Homoe,(M,05") ~
My 05!, and MY+ € MY of the totally positive elements in (¢M; '05")*.
Choose a rational polyhedral cone decomposition X¢ of (MVT @z R) U {0}.
For a cone 0 C (MY* @z R), we let 0¥ C M ®z R denote the dual cone.

Let S, = Spec Z[q"flM] and Sy < Sy, denote the affine torus embed-
ding (see Theorem 2.5 in [6]) corresponding to the cone o and let Sp, =

Spf Z[[g" 'M"e"]] denote the formal completion of Sy, along the boundary

def
g2 4G, . — Sa.

Let Th, = SpecZ[[q"flMﬁ"v]] and ng = Twe — Sin =

Spec Z[[g" MM q=n'MNoY)] The henselisation of (Sn.0,55%,) projects
onto an affine étale scheme U, , over S, , which approximates SQG in the

sense of Artin, and let UY , = Uy o x7,  TY .
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The Mumford construction applied to the Op-linear ‘period’ map q : My —
GLi(Uno) ®@z D;lel gives rise to a semi-abelian scheme

def _ _
Tatenr, a1, (q) = (GL1 @z 07 ' My ") /¢™"

over the complete ring Uy , with action of Op, whose pull-back, which we shall
denote by Tate?wh 1, (@) to UY . is naturally a HBAV, ¢-polarised

n,o’

Tatenr, a, (q) ®op MiMy '~ (GLy @z 07 My ") /g™
I

Tatenr,, nr, (9) =~ Tatenr, v, (9)",
with level T'y (n)-structure, and which gives rise to a map
US,U Xspecz Opec O = Y1 (n1)-

We glue ]_[T/g Haezc Un,c Xspecz Spec O along the map to get a toroidal
compactification X, (n,4) over O of Yp, (44 ([26]). Similarly, one can define a
compactification X, (n¢)n1w over O of Yr, (n¢)n1w With its choice of a rational
cone decomposition compatible with that of Xp, (s -

Let
0 def
TateMl 1M275(q> = TateMl My (q) X SpecZ[[gM ,q—M]] S

for a Z[[¢™, ¢~ M]]-scheme S; it is t-polarised. Let S be a O ®@z Z[[¢M, ¢ M]]-
scheme. Then there is a ‘connected-étale’ exact sequence

0 — (GL1 @z 07" M M) [p"] — Tatenr, am,s(q)[p"] = (1/p")Ma /My — 0
of (Op/p")-modules schemes over S.

LEMMA 11 Fiz an integer r > 1. Let S be a connected O @z Z[[g™, ¢ M]]-
scheme. Suppose that C is an Op-stable finite flat subgroup scheme of
Tate%ll,MZ’S(q)[pT] of order |Op/p"|. Then for every T = Ty, there exists a
unique pair of non-negative integers pr 1, pr2 such that p; 1+ pr2 = r and such
that

Cp N (GL1 @z 07 "My H)[p'] = (GL1 @z 0~ My 1) [pP]

and the image of Cy in (1/p")Ma /My is isomorphic to p~ P> My /M>.
Proof. This is essentially Proposition 13.6.2 in [17]. O

By a cusp of C of Yr,(n,4)nr,(pr) over R, we shall mean a pair of fractional
ideals My, My of F such that M; M, ' ~ t which comes equipped with

e an Op ®z R-linear isomorphism A : Mfl ®z R~ Op ®z R,

e an Op-linear embedding 1 : Op/n — n~ My ' /Myt
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e an Op-linear isomorphism nky : Op /p" ~ p~"Ma /M.

Let M = M;M, as above. Fix an integer » > 1. Suppose that S is an
O @z Z[Cyr][[g /") M~ (/0" )M) | scheme.
DEFINITION Let ¢, denote the image of 1 by

Ckmyr : (Op/p") =07 p" 07! ~ GL1[p| @z 07! ~ (GLy ®z 0~ )[p"]

and ¢, r denote its 7 = 7, component. We often allow ¢, and ¢, to mean their
images in (GL; ®z 071)(S) and Tatenr, as,.5(q)(S).
Let n¢* denote the image of 1 by

MKM

Ninte : (Or/p") =" p~"My/My % gp " M2/M>

defining a point of Tateas, a1, (q)(S) of exact order [Op /pT|. Let ngf, denote its
T = Tp component.

LEMMA 12 Fiz an integer r > 1. Let S be a connected O ®z Z[[¢™,q M]]-
scheme. Suppose that C is an Op-stable finite flat subgroup scheme of

Tate%/[thys(q)[pT] of order |Op /p"|. Suppose that C is of type p = (pr.1,pr.2)r-
Let Pxm € C(S) denote a point of exact order |Op/p"|. Then for every T =7y,

Pxw,r is of the form Cz?lnfyt}aﬂz for a pair of integers 0 < 0.1 < pr1 and
0 <or2 < pr2 such that both 0,1 and o, 2 are coprime to p.

proof. This is essentially 13.6.3 in [17]. O

10 GENERIC FIBRES

With n fixed, for every integer r > 1, let U, denote the quotient group of the
totally positive units of F' by the subgroup of elements which are squares of
elements in O which are congruent to 1 mod np”. If r = 0, we simply write U.

Let YT, (n)s XT3 (n)> Y13 (0)nIws KTy () "Iws YT (n)AT3 (p) s YT1 ()T (), Twy , K
respectively denote the disjoint wunions, ¢ ranging over T, of

YT, (n,), X1y (n,6) YT (n,6)nIws XTy (n,6)ATws YT (n,6)AT (p7)s YTy (n,6)AT (p7) Iwp K -

Let X1, (n),x5 X1, (n)n1w,x respectively denote the generic fibres over K of the
Ok-schemes Xr, (ny, X1, (n)n1w-

Let Xt (m)nr, (p7), 5> XT, ()T (pr),Iw, K Tespectively denote the toroidal com-
pactifications of the K-schemes YT, (n)nr, (p7), 55 YT1 (n)ATy (p7),Iwy K¢ -

Let YFAI(M), Xli\l(mt) , YF/\l(n,t)ﬂIw’ Xli‘\l(n,t)ﬂlw respectively  denote  the
formal completions of Yr‘l(n7t),X1"1(n7t), Ypl(mt)mw, Xpl(n,t)mw along
their closed  k-fibres Y1 (), X1, (n,6)s Y Ty (n,0) 1w X Ty (n,6)NIw- Let
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YF/\I(H)7 Xli\l(n), YFAl(n)mev Xli\l(n)mw denote their disjoint unions over T
Finally, let Ylfﬁn), Xli‘;g(n), erﬁn)ﬂlw’ Xlr“lfg(n)mw respectively denote the Raynaud

rigid generic fibres of YF/\l(n),Xlﬁl(n), Y X

A
Ty(n)NIw? “* Ty (n)NIw*

11 p-ADIC CLASSICAL HILBERT MODULAR FORMS

Suppose that (k = > com(rx) BrT: W = 22 cHom(r i) WrT) € ZHom(F.K)
ZHom(FK) s guch that w = 2w, — k, is independent of 7 (this is Taylor’s p in
[38]).

For S € {YF1(11)7K, YFl(n)ﬁIw,Ka YFl(n)ﬁFl(pT),K}a let LieV(A/S) (resp.
Hjr(A/S)) denote the pull-back by the identity section of the sheaf of
relative differentials of the universal HBAV A over S (resp. the higher direct
image of the relative de Rham complex). By the decomposition,

OF ®z O ~ H O,

T€Hom(F,K)

where O, is O into which F' embeds by 7, we have

Lie"(4/8)= € Lie"(4/9),, Hig(4/S)= P Hir(4/9),

T€Hom(F,K) T€Hom(F,K)

where Lie"(A4/S) and H}z (A/S) are locally free sheaves of Og-modules of rank
1 and 2 respectively. Following Hida [14], let

Lowy =  Q  (N\Hir(4/9))®"* @0, (LicY (A/S))2*
T€Hom(F,K)

If k is parallel, more precisely, if (k,w) = ((k,..., k), (k/2,...,k/2)), we will
often write Ly for Ly ). We shall also let L ., denote its extension to the
compactification.
Let m; (resp. ma,,) denote the degeneracy map
Xr, ()T (p7) Iwp, K — Xy ()AL (p7), K
defined, on the non-cuspdail points, by
(Aa ia )‘7 m, Cv TIKM » Dp) = (Av iv >‘a m, Ca UKM)

(resp. (A/D,, (¢ mod Dy), (A mod D,), (n mod D,), (nkm mod Dy)).
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12 CANONICAL SUBGROUPS FOR ONE-DIMENSIONAL FORMAL GROUPS

Let L be a finite extension of K, and let val; be a valuation on L normal-
ised so that valy(p) = 1. Let G be a one-dimensional principally polarised
p-divisible/Barsotti-Tate group over Op.

DEFINITION. The identity component G* of G is a one-dimensional formal
group, and define Ha(G) to be valy(a) for a as defined in Proposition 3.6.6,
[16] (see also [29]).

By definition, G is ordinary if and only if Ha(G) = 0.
Let C be a finite flat subgroup scheme of G|p] of order p.

DEFINITION.  Define deg(G,C) to be 1 — valy(Ann(coker(Lie”(G/C) —
Lie¥(@)))).

It follows immediately from the definition that deg(G, C)+deg(G/C, G[p]/C) =
1.

Suppose that deg(G,C) < p/(p + 1). Then there exists a canonical subgroup
H(G) of G. If C = H(G), then deg(G,C) = Ha(G). To see this, note that
H(G)(L) consists of 0 and p — 1 points P of the formal group G of valuation
(1 -Ha(G))/(p — 1) (Theorem 3.10.7, [16]). Since deg(G,C) =1 —[]p val(P)
(Lemma 1.3 [24]), deg(G, C) = Ha(G).

LEMMA 13 Let r be a rational number < p/(p + 1). Suppose that G is not
ordinary. Then

{(G,C) |Ha(G) < r}
divides into two disjoint subsets, namely
{(G,C)|C = H(G) and deg(G,C) € (0,r]}
and
{(G,C)|C # H(G) and deg(G,C) € [1 —r/p,1)}.

On the other hand,
{(G,C) |Ha(G/C) <r}

divides into two disjoint subsets, namely

{(G,C)|deg(G,C) € (0,r/p], C = H(G), and Ha(G) < 1/(p+1)
U {(G,0)]|deg(G,C) € (0,r/p], C # H(G), and Ha(G) < p/(p+ 1)

——

and
{(G,0) |deg(G,C) € 1 —1,1), C=H(G), 1/(p+1) <Ha(G) <p/(p+1)}
U{(G,C)|deg(G,C) e [1 —r,1), C# H(G), Ha(G) > p/(p+ 1)}.
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Proof. This follows from canonical subgroup theorem in [29]. O

Fix an integer n > 1 and suppose furthermore that deg(G,C) < p*="/(p+1) <
p/(p+ 1). Then define subgroup H,, = H,(G) of G order p" inductively as
follows: If n = 1, set H; = D. If n > 1, then let H,, to be the pre-image by
the map G — G/H(G) of H,_1(G/H(G)) C G/H(G).

PROPOSITION 14 Suppose that one-dimensional principally polarised p-
divisible group G over Op has a subgroup H,(G) as defined above. Suppse
that m > 1 is an integer. Suppose that C,, is a subgroup of G of or-
der p™ such that H,(G) N C, = {0}, and suppose that Dpyin 1is a
cyclic subgroup of G of order p™™™ such that H,(G) C Dpin. Then
deg(G/Cp) < p'= ") /(p + 1) and G/C,, has the subgroup H,,in(G/Cp).
Indeed, Hpyyyn(G/Cr) = (Dintn + Cm)/Chn.

Proof. This can be proved as in Proposition 3.5 in [3]. O

13 p-ADIC OVERCONVERGENT HILBERT MODULAR FORMS

Let Xlérll(n),K’Xlé?(n)ﬂIW,K’Xlérll(n)ﬂl“l(pr),K respectively denote the rigid

analytic spaces in the sense of Tate ([2]) associated to the K-schemes
X1y (n),K > X1 (0)Nlw, K 5 XTy ()0 (p7), K -

Given a closed point of Ylfig(n), it corresponds to a point (A, A, ) defined over

the integer Op of a finite extension L of K. We then define deg.(A), for
T = 7, for a place p of I above p, to be ‘deg’ as in the previous section with
the (one-dimension) Barsotti-Tate group of p-power torsions of A in place of ‘G’.

rig
T'yi(n)
exists a finitely many sufficiently small affine formal schemes U”" such that
rig A

their generic fibres U'® form an admissible covering of X, (n)" Let Ugpoa

denote the smooth formal scheme U” ﬂYrAl(n) and let i : U 4 = U”. On each
U, ngo 4> there is a function whose corresponding rigid function has its valuation
deg,; indeed, apply the construction to the formal completion of the ‘universal’
semi-abelian scheme over Xr, () along the underlying scheme of Ungod- We
may think of the function on UgAOod as a lift of the Hasse invariant at p, and it

follows from Kocher’s principle that i*OUgAmd = Oyn, i.e., the function extends

The O-scheme X, () is of finite type, hence X is quasi-compact. There

to U”. The valuation of its induced function on the generic fibre U™e extends
the function on U, ;. Glue these functions on U™#’s, there is a rigid function

on Xli‘f;(n) ~ X, that defines deg.
DEFINITION. If T C [0,1) is a closed, open, or half open interval with endpoint
in Q, define the rigid space X{i“ll(n) L =11 X{i“ll(n £ 1 to be the admissible
open set of points whose degrees are all in the range I.
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rig

), F Ty (ﬂ,t),K
is connected (since X, (n,) is irreducible) and its ordinary locus is open, dense,
and connected.

For every t, X{i“ll(n, 0, 1 is connected; this follows from the fact that X

Similarly, given a closed point of Yrrig(n)mw’ it corresponds to a point (A4, A, n, C)

defined over the integer O, of a finite extension L of K. Let B = A/C and S =
Spec Op; let valg denote the valuation on L normalised such that valg(p) = 1.
Then the Op-equivariant map of Og-modules

Lie¥(B/S) — Lie"(A/S)
decomposes into
Lie¥(B/S), — LieY(A/S),

for every 7 € Hom(F, K), and, for the unique prime p of F above p corres-
ponding to 7, let deg,((4,C)) denote 1 — valg (Ann(Coker(Lie¥(B/S), —
LieV(A/S);))). Applying the construction to the universal HBAV over
erig(:n)ﬂlw’ we locally have functions on Yrrﬁn)mw whose valuations define the
degrees. As for deg(A), Kocher’s principle allows us to extend the function to

rig ~ an
XF1 (m)NIw — XF1 (m)NIw

DEFINITION. If S; and Sy are disjoint subsets of Hom(F,K) and if
I,I,Io C [0,1] are closed, open, or half open intervals with endpoints in
Q, define the rigid space (Xli“ll(n)mw,KI),Ilsllgsz to be the admissible open
set of points whose degree at 7 € Hom(F, K) —S; — Sy (resp. S, resp. Sq) is
in the range I (resp. Iy, resp. I2).

DEFINITION. Let m (resp. m2 ) denote the degeneracy map

which, on the non-cuspidal points, is defined by
(A5, A,n,C) — (A,i, A\, n)
(resp. (A4,%,A,1,C) — (A/Cy, (i mod Cy), (A mod Cy), (n mod Cy))
DEFINITION. Let 7 denote the degeneracy map
XPlmnrs (), 8 — X1 (m)nitw, K
which, on the non-cuspidal points, is defined by

(Aa ia /\7 , UKM) =
(A/<pP77KM>’ (Z mod <pP77KM>)’ ()‘ mod <pP77KM>)’ (77 mod <pP7ZKM>)'
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where by P,,,, we mean the image of 1 by nku.
DEFINITION. Define (X?T(n)ﬁFl(pT) w115, Iz, to be the preimage by 7 of
(X?T(H)QIW,KI’ )Il S1 1252‘

For 0 <r <p/(p+1), it follows from the previous section that

T (G 1 [0,7]) = XE2 e i [0, T T X8 oy, i [T — 7/, 1;

and for 7 =7,

W;,;(X?T(n)x[oﬂ"])
~ (X wyatw, & [0 7D [0, 7/P] LIXEY (o), 1 [0 7] 7 [1 = 7,1,

The theory of canonical subgroups provides rigid sections:
Tt X mynmw,x [0, 7] — XT ) 1[0, 7]

and
T2p t X1 mynmw, i [1 = 75 1] —> X ) [0, 7).

On the other hand,

Tt XP wynrw, ik [1 = 7/0, — X k[0, 7]

is finite flat of degree |OF/p|, and

T2t X wyarw, k[0, 7/P]— X () k[0, 7]

is finite flat of degree |Op/p|.

Hida [14] proves (Theorem 5.6 in [14]) that, for a character ¢ : Frpye —
K* which factors through I, and k > 2, an element Fy : h)(n) — L of
8%(n) ® L defines, modulo(ker(e o Art)*=21)), a cusp eigenform of weight k
and level I'; (np”) which is an eigenform with its Ty-eigenvalue Fyy(Tw) mod
(ker(e o Art)*=2¢)) and S acting by (e o Art)*~2¢. Indeed I,,~-action defines
the character of Fiy mod (ker(e o Art)¥=21)), i.e,

(Fiz mod (ker(e o Art)k=24))(({ ))
= (¥, mod (ker(e o Art)*~2¢)) (¢ 0 €7F)

where ¢p, is the composite Torgpe = Inpeo Q hd(n) followed by
Fa : h%(n) — L; and ¢r is the ‘Teichmuller character’, the projection
from Z; to its torsion subgroup of finite order. We shall prove that the
specialisation Fiy mod ker(e o Art)*~2¢) defines a p-ordinary overconvergent
eigenform of weight k and of level 'y (np”) for any k = 1.
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For e such that 0 < e < 1/(p"%(p + 1)), the theory of canonical

subgroups in [29] (see also Proposition 2.3.1 and 2.4.1 in [21]) shows

that U, = Hp U, defines a completely continuous endomorphism on

HO(XﬁT(n)mFI(pT)ﬁK[O,e],Lk(cusps))U, where X7t o or ) k[0.€] is the pre-
image by the forgetful morphism of X7, «10,€]. We remark that, when
F = Q, this is proved in [4] Lemma 2.3 as a result of calculations with

g-expansions.

By Serre’s theory [31], there is an idempotent e commuting with U, by which
we may write

HO(XIZET(“)HFI(V),K[O, €], Ly(cusps))Y B
= eHO(XfE’i‘(n)mﬂ1 (o). K [0, €], Lg(cusps))Y

(1= e)HO (X )ar, (.1 05 €], L (cusps)) Y

where eHO(Xf{l(n)mn(pr)K[O,e],Lk(cusps))ﬁ is finite-dimensional K-vector
space and all the generalised eigenvalues of U, are units, while U, is
topologically nilpotent on the complement. It is well-known that e =

el HO(XE s (o). 1105 €], Li(cusps))Y.

LEMMA 15 For any integer k, the p-adic eigenform Fyy mod (ker(eo Art)*=24))
as above is overconvergent of weight k and of level T'y(np").

Proof. This can be proved as in Lemma 1 in [5]; replace the Eisenstein
series ‘E’ of weight (p — 1) therein by the pull-back to Xﬁ?(n)ﬁFl(pr),K of a
characteristic zero lifting of a sufficiently large power of the Hasse invariant. [

It follows from the theorem in the previous section that, given a p-adic repres-
entation

p:Gal(F/F) — GLy(0)
as in the main theorem, there are

1. a finite soluble totally real field extension F5; C F of F in which p splits
completely,

2. afinite set S = L[]Sy p ][ Sy, of places in Fy,, where Sy, p denotes the
set of places of F' above p and Sy o denotes the set of infinite places of
Fx,

3. an ideal n of Op divisible by ny = quz q,

4. 219=rl characters x p : Gal(F/Fx) — O* of finite order and 2!5=7| weight
one p-ordinary overconvergent cuspidal Hilbert modular eigenforms fp of
‘tame level’ n, one for every subset P of Sy, p, such that:

DOCUMENTA MATHEMATICA 18 (2013) 997-1038



ARTIN REPRESENTATIONS AND T°'Y OvER TOTALLY REAL ... 1025

e fp is the weight one specialisation of the A-adic companion form
Fiida,p @ h3(n) — K, with character p = w}SDE’PQ/,P,SEYP of
(Op /n)* x (O /p)*

e the Galois representation pp associated to fp is p|Ga1(f/FE) @xp L,

e pp is unramified outside S and ordinary at every place in Sy, p,
and the fp’s are ‘in companion’ in the sense that

o ¢(Op, fr) =1, and ¢(m, fp) = 0 if m is not coprime to n;

e ¢(q, fp) = tr p(Frobg)/x p(Frobg) for every prime ideal q not divid-
ing np;

e for pin P, c(m, fp)(xp o Art)(m) = c(m, fp_p1)(Xp—{p} © Art)(m)
for every ideal m coprime to np;

e for p in P, the character of fp at p is xp_{p}xgl while for p €
Sy p — P, the character of fp at p is Xpu{p}xl_gl;

o for pin P, (2" o Art)(p) = (¥77,, o Art)(p);

o for a place p of P, the Uy-eigenvalue of fp is (Xpﬁlxgl)(Frobp) while
for p in Sy p — P, the Up-eigenvalue of fp is (xp2Xp")(Froby).

14 ANALYTIC CONTINUATION OF OVERCONVERGENT EIGENFORMS

Fix 7 = 7, throughout the section (except the last two assertions).

DEFINITION. Fix t. For brevity, let Xrp (4)nmw,- denote
(Xr, (n,)ntw,x[0,7])[0,1)-; and for an integer n > 0, let Xp, (nniw,rn

denote (X, (n,¢)nw,x [0,7])[0,1 = 1/p"(p + 1)]-.
Let Xt,(m)ntw,r (resp. X7, (n)niw,r,n) denote the disjoint union over 7' of

XFl(n,t)ﬁIw,T (resp- XFl(n,t)ﬁIw,'r,n)-

PROPOSITION 16 For every integer n > 0, Xt (n)niw,r,n 15 an admissible open
subset of Xt (n)ntw,r» and the Xr (m)ntw,r,n form an admissible covering of
X1, (m)ntw,r- For every t and every n € Z>o, Xr, (n,t)niw,rn 15 connected.

Proof. Clear. O

DEFINITION. Let Xl—‘l(n,t)ﬁr‘l(pT)7T (resp. Xl"l(n7t)ﬂl"1(p7‘),7—,n) denote the pre-
image by the degeneracy morphism

. an an
[ Xrl("at)ﬁrl(PT),K - XF1(n,t)ﬁIw,K

of XFl(n,t)ﬂIw,T (YGSP- XFl(n,t)ﬂIw,T,n)-
Let X1, (n)nr; (pr), (tesp. X1, (n)nr, (p7),7,n) denote the disjoint union over 7" of

X, () (pr),r (Tesp. X1, (n,0)nr (p7),7,m)-
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PROPOSITION 17 For every integer n > 0, Xt (01, (p7),rn 8 an admissible
open subset of Xr, (n)nr,(pr),r, and the Xv (nr,(pr),rn form an admissible
covering of X, (n)ar, (pr),r- For everyt and an integer n > 0, X (n,0)nr, (p7),7n
s connected.

Proof. Analogous to the proposition above. [J
COROLLARY 18 We have 7T1_1(XF1(n)ﬁF1(pT),‘r,n+1) C 7T2_7; (Xl—‘l(n)ﬁl"l(pT)7T7n).

Proof. This follows from [29]. O

Let (Tateas, ar,(q) = (GLy @z 0 "M 1) /¢™2 i, \n,nem = 1+ ¢) over O ®
Z((¢M M2 ")) for the pair My, My of the fractional ideals such that My M, ~
t be a family of HBAVs around a cusp of Xt (n¢nr,(pr),n- Choose (non-
canonically) once for all a basis of the pull-back by Max (O ®z Z((¢™))) —
Xiwnr, (pry,x ©f the line bundle Ly, since a subgroup of Tatens,,, (@)[p]

of order |Op isjoint from 7., is of the form (n + ¢™2? where ( ranges
f order |Op/pl, disjoint from 7, is of the form (n + ¢*'* where { rang
over the |OF/p| points of (GL; ®z 0~ M; 1)(S)[p] and n = sty € gh Ma/M>
Up(f)(Ta'te]\/fl,]\/b (Q)a iy Ay 17, nKM) is:

0p/81 7Y FI(GLy @20 M) /g™ /(Cn)
¢
= [0p/pl "> F(GLy @707 MY /(Can)* M)

¢
= |Op/pI Y 10/ Y e(pM Ty, ) (Cay)”
¢ ve(p~tM)*
= [Or/pl 7 OR/6IT DD Qe M Y, fay
ve(p~tM)T ¢
= |Or/pl 7 OR /6" Y |OF/ple(pM 'y, f)a”
veM+
where ¢, denotes a representative in ¢* M2 of the class n € ¢b  M2/M2 —
(]”71M2 /qM2 defined earlier; and tp represents the class of pt ~ pM1M2_1.

THEOREM 19 Suppose that f € HO((XFI(n)ﬁFI(pT),K>T[O7E],Lk) is an eigen-
form_ for U, with non-zero eigenvalue, then f extends to Xv,(mnr,(pr),r =

(X1, (m)nr, ()= [0, 1).

DEFINITION. Let

[0 ] [r—1]
T)nme)r © Anmornen).s © S X nnr .-

X1\ (n,)NT1 (p7), 7

denote the admissible open subsets of Xfl’ll( ) defined in such a way

n,t)ﬁFl (p"‘
parameterises (A/S,i, A, n)

[s]

that the non-cuspidal S-points of XFl(n HAT: (pr),7
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equipped with a point P, of exact of order ) |Op/p"| where A/S is either p-
non-ordinary, or it is p-ordinary and HT,S(A[p]})j equals the subgroup generated
by |OF/p|sP77KM7p' .

S
For every 0 < s <r —1, Xrl(n,t)mrl(pr),r
of a closed subset of the union of irreducible components intersecting precisely
at the p-non-ordinary locus of X (4 t)nr; (pr),r-

is connected since it is the pre-image

THEOREM 20 If r is an integer > 2 and suppose that f €
HO(XFI(n)ﬂr‘l(pr),T,Lk) is an eigenform for U, with non-zero eigenvalue.

Then f extends to XI[Z;an]t)ﬂfl(pT) -

Proof. This can be proved as Lemma 6.1 in [3] O

COROLLARY 21 If f € HO(X?T(n)mIWK[O,e],Lk) for some 0 < € < 1 is
an eigenform for every Uy, p|p, with non-zero eigenvalue, then f extends to
HO(Xpl(n)mwyK[O,l),Lk). Similarly, if f € HO(X?T(n)ﬁFl(pT),K[O’6]’Lk)’ for
some 0 < € < 1 is an eigenform for every Uy, p|p, with non-zero eigenvalue,
then g extends to H°(Xr, (wynr, (pr), k[0, 1), Li).

15 GLUING EIGENFORMS

15.1 THE IWAHORI CASE

DEFINITION. For every subset P of the set of places of F' above p, let wp

denote the automorphism of Xfli‘( W)Nlw, K defined by a composite (independent

of ordering) of the wy, for all p in P.

THEOREM 22 For every subset P of the set S = Sp of places of F above p,
suppose fp € HO(X{i“ll(n) o> Li) s an overconvergent modular form of parallel

weight k =3~ cyom(r i) KT € Z and of level 'y (n). Assume furthermore that
o the Fourier coefficient c¢(fp,Op) = 1;

o for every place p of F' above p,there exist ay, By € K such that oy, # By
and such that, for every P, fp is an eigenform for U, with eigenvalue oy

if p € P whilst with eigenvalue By, if p & P;
e for all ideal m of O coprime to p, c¢(m, fp) are equal for every P.

Then every fp is a classical Hilbert modular eigenform of weight k and of level
I'y (ﬂ) N Iw.

Proof. By the isomorphism
s XFI;(n)ﬂIW,K[O? T] = XFI;(n),K[Ov T]

for r < p/(p+ 1) given by the canonical subgroups theorem [29], we may think

of fp as an element of HO(X?T(n)me #10,7], L). Tt follows from results in [29]
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that 7] fp extends to a section over Xﬁ?(n)mw 0,1). For brevity, we shall

only show that fp, with P the (full) set S of places of F' above p, is classical;
the general case follows by changing the roles of o, and fy.

Choose a rational number r € Q with 1/2 < r < p/(p + 1). Suppose
that fs extends to a section of Ly over (Xt (n)ntw,x[0,7])[0,1]s—p for some
P C S. Fix a prime p € P. It suffices to show that fs extends to

(X1, (myniw, 5[0, 7D[0, 15— (P {p})-

For f € HO(Xpl(n)yK[O,r],Lk) and for every subset Q C S — P, let f denote
the restriction of f to (X, (m)ntw,x[0,7])[1 — 7,1]g[0,7](s—p)—¢g by the map
m1 o wg which defines an isomorphism

(X1, myntw, 5 [0, 7)) [1 = 7,1]@, [0,7](s—py—0 =~ Xr,(m),x[0,7]
I
(XFl(n)ﬁIw,K[Oa T])[l -7 1]Q

The pre-image by 72, 0 wq of (X, (n),x[0,7])(0,7), is the union of two com-
ponents

(Xr, o [0, =7 g1 =7, Dy [T (Xry (e x 0,7 DL = 7, 10, 7/p),

and it induces an isomorphism

(XF1(n)ﬁIW,K[Oa T])[l - 1]Q(1 - 1)13 = (Xfl(n),K[O’ T])(Oa T)P

on the one component and a finite flat morphism of degree |Op/p|

(XFl(n)ﬁIw,K[Oa T])[l -7 1]@(0’ T/p)P — (XFl(n),K[Oa T])(O, T)P

on the other.
We are going to glue fg and fg_(,y; more precisely glue fg and fgf{p}.
Let F denote the section

(0p S~ B p7)/ (= By) € HO((Xry () 10,710, 7). L)

and G denote the section

Or /PIP)((F§ = F§ ()] (9 —=Bp) € HO(Xr, mpnmw, 5[0, P)[1=7, 1@ (0, 7)p, Li)

Since one can show readily the g-expansions of 73 F' and G are equal
at around C = (Taten, r,(q),---,(C1)), we shall glue 5 F' and G at
(X1, (m)ntw,x[0,7])[1 = 7] (0,7/p), to construct an extension F’ of F' to a sec-
tion over (Xt, (), x[0,7])[0,1),; this extension constructs an extension of fgg
(and f& 1)) to (Xp, (mrtw,x[0: 7)1 = 7,1]@[0,7](s—p)—ol0, 1]y and therefore
to (X1, (m)niw,x[0,7])[0, 1]s—(p—¢p}) (by assumption, there is an extension ‘over
0,1 at S — P)
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Gluing of 73 , F' and G is analogous to [3] since we have a commutative diagram
(X1, (mynrw, [0, 7D = 7lQ(0,7/p)py - — (X1 (mynw, [0, 7)) [1 = 7] (0, 1)y

(XFl(n),K[O’T])(Oar)p — (XFl(n),K[Oar])(Oal)p

where the vertical arrows are ma, o wg but of degree |Op/p| on the left and
1+ |OF/p| on the right.O]

15.2 THE T'i(p) CASE

For evert t in T and for every subset P of the set S = Sp of places of F' above
p, we well let

(XFl(n,t)ﬁFl(p),IwP,K[Oa 1))(0’ 1]S—P
def

— an

- ”fl(XFl(mt)ﬂFl(p),K[O’ 1)(0,1]s-p) C XFl(n,t)r‘ll"l(p),pr,K'

Let wp denote the composite of the we, for all p € P. Note that

(XF1(n,t)ﬂF1(P),IWp7K[07 1))(()’ 1]5713 E) wgiPXFﬂn,t)ﬁFl(P)pr,K[Ov 1)

and each (Xr,(n,)nr, (p),1w,,x[0,1))(0,1]s—p is connected since it is iso-
morphic to X, (n,1)nr, (p),0x [0, 1) and the latter is connected since it is the
pre-image of a connected component in the Zariski topology of the closed
fibre. Let (Xr,(m)nr, (p),1w,,x10,1))(0,1]s—p denote the disjoint union over T
of (X1, (n,0)nry (p), 1w,k [0, 1))(0, 1]5—p.

DEFINITION.  If f is a section of Lp over Xr m)nr,(p),x[0,1), then
wi_pf is a section of wf_pLi over U}giP(Xl"l(n)ﬂr‘l(pLK,[0,1)) =
(X, (m)nry (p),k10,1))(0,1]s_p. Because p is inverted, the natural morph-
ism of invertible sheaves

Lie| (X, (yry (), 10, D)0, 1s—p = w_ p(Li X, (mynrs (), 5[0, 1))

is an isomorphism and we let flwp denote the section of Lj over
(X1, (m)nry (p),x10,1))(0,1]p—s corresponding to w§_pf by the isomorph-

1S1m.

THEOREM 23 For every subset P of S = Sp, let fp €
HO(XFI(n)mFI(p)ﬁK[O,1),Lk)U1 be an overconvergent Hilbert modular form
of parallel weight k = ZTEHom(F,K) kT € Z and of level T'1(np). For every
subset P of S, suppose that fp has a Hecke character

def

vp L

and that 3 (p) = %S:,{p}(p) for every p in P. Suppose that

Vs P+ (Or/mp)* ~ (Op/0)* x (O /p)< — O%;
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e the Fourier coefficients ¢(Op, fp) = 1 and c¢(m, fp) = 0 if m and n are
not coprime,

o for every p € P, c(m, fp) = Ypy(m)c(m, fp_(,y) for every ideal m
coprime to np, where by Yp, we mean the p-component of Yps which
we assume non-trivial,

o for every p in S, fp is an Up-eigenform with non-zero eigenvalue
a(p, fp), and for everyp € P, a(p, fp)a(p, fr—(p)) = v3(p)|Op/p[*! =
VP 1oy (P)OF/p[F1

Then fp is a section of Ly over XF1(n)ﬂF1(p) Ox-

Proof. For every subset P of S, let gp denote fplup €
HO((Xt, (nynry (0),x[0,1))(0,1]s—p, Lx). Clearly gs = fs. We shall prove
that fg is classical.

Fix an integer 0 < n < |S| and suppose that the gp with P C S such that
|P| > n glue together to define sections, which will again be denoted by gp,
over

U (XFl(n)ﬁTH(P)aK[Oﬂ 1))(07 1]P*5'

PCS,|P|>n

Fix a subset P C S with #P = n and fix p € P. It suffice to show that
gp(~ ws_pfp) and (a constant multiple of) gp_ (=~ Ws_(p_ippfP—tp} =
w?{‘p}wg_pr_{p}) glue.

Let ay (vesp. ;) denote the Up-eigenvalue a(p, fp) (vesp. a(p, fr—ipy))-

Fix a p-th root ¢; of unity. Let (Tateas as,(q),---,nxm = 1+ (1). be a point
around a cusp C. By abuse of notation, we call it C'.

There is a morphism

™1 XE )0 () by & 7 XL ()0 (). K
defined, on the non-cuspidal points, by
(Aa ia )‘a 7, TKM Dp) = (Aa ia )‘a n, 77KM)
and, for v € (Op/p)*,
T2,y X%?(n,t)ﬁFl(p),pr,K — XD ()00 (p), K
defined, on the non-cuspidal points, by
(Aaia )‘a 7, IKM Dp) — (A/(’YTIKM(l)p +Dp)a sy (77KM mOd (’777KM(1)p +DP)))

To single out, let

. an an
T2,p * XFl(n,t)ﬁFl(p),pr,K — XFl(n,t)ﬁFl(p),K
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denote the morphism “y = 0 in Op/p’ which takes (4,7, A\, n, nxm, Dy) to
(A/Dp, ceey (77KM mod Dp))

By abuse of notation, let C' also denote the pre-image
(Taters, s, (9)s - -5 a1 Gy (05Y)) € XE2w yry (p) 1wy K

by 71 above of C = (Tatens, a,(q) - .,¢1) for (M, M) = (Op,t™1) and M =
MMy =t"1 andlet Cp € (X1, (n,0)N0s (p) 1wy, & [0, 1))(0, 1]s— p denote the cups
wg_pC. Then

(gplm)(Cp) = pr* f(Taters, ar, (q), -, G1) = Op /t]7H D e(wM™Y, fp)g”
veM+

On the other hand, for v € (O /p)*,

(9p|m2,~)(CP)
= (fP|7T27’Y)(TateM1,M2 (Q>a s 7§1)
= pT*fp(Tatth]\b (Q)/(C’Yﬁ)v e ) where 7 := nf,tp and ¢ := CLP
pr fe((GL @70 1M /(Clgy)? M2, )
= |Op/ty|™! 2ve(p-1my+ c(vpM 1, fp)(" gy

where t, is one of the (fixed) representatives of the narrow class group of F
representing the class of ¢p, and where ¢, denote a representative in quM2 of
the class g € ¢° M2 /¢M2_ Finally

pr(felmep)(Tatens, ar, (), - Cp)
OF /to] ™! e p-rany+ cvPM ™, fr)ay

(gplm2,p)(Cp)

For brevity, let S denote the ‘Gauss sum’

s Z CYpp()

YE(OFr/p)*

for (My, Mz) = (Op,t~1). Then for v € (p~*M)* such that vpM~! C OFf is
not divisible by p,

S= 3 M g (pM T =g, (pMTY) Y Mpy(7).

YE(Or/p)* YE(Or/p)*
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It then follows that

Z’YE(OF/F)X Ypp(7)(gplT2,,)(CP)
= ZVG(OF/p)X Q/JP,p(’Y)|OF/tp|_1 Zye(pflMﬁ c(vpM~, fP)Cqu
= [Or/ty|™! Zye(pflMﬁ c(vpM 1, fP)‘JZ Zve(oF/p) Ypp(7)¢”
= S|Or/ty|" D ove(p-1 M)+ propar—1 C(VPM T 7fP)7/’pp(VpM Yay
= S|OF/tP|71 Zye(pflM)Jr,pfupM*l c(vpM~ 7fP {p})qn
= S|OF/tP|_12ye(p*1M)+ c(wpM=, fp—(py)an
_SloF/tplil Zye(pflM)+7p\pr*1 C(VpMila fP*{P})qZ
= S|Op/ty|™? Zye(p—lMﬁ c(WpM =Y, fo_(p))d
—S|Op/ty| ™ 3, cprs (WM, fp_ {P})qn
S(OF/to] ™ X e p-ran+ WM™, fo_1py)ay — (Upgp—(py|m1)(Cp))
S(QP—{p}|7T2,p - ﬁng—{p}Wl)(CP)

By the connectedness of (Xr, (n4)nr, (p),x10,1))(0,1]s—p,

Z VYep(Y)(gplTey) = S(gp—ipylmap — Bpgr—{pylm1)
YE(OF/p)*

on (Xr, (n,6)nry (p), k[0, 1)) (0, 1]s—p.
Let (A,¢, A\, n,nxm, Dy = (Qp)) be a non-cuspidal point of X2"
and let P = ngm(1) = PP x P, and @ = PP x ()p. Then

T'i(n,t)NC1(p),Iwp, K

|OF/p|ang(Aa ia /\7775 Q) *pT*gP(A/<Pp>, ce ﬂﬁ? @))
where 77 := 1 mod (P,), and Q := @ mod (P,) is

‘OF/MUPQP(Av 5, A1, Q) - pr*gP(A/<PP>7 ceey T, Q)
220y AR, Cp£(Pp) (@p) PP (A/Cps -, (Q mod Ci))
Co=(vPp+Qp)ye(Op /pyx PT IP(A/(YPy + Qp), -, (Q mod (vFy + Qy)))
ZWE(OF/;])X Ypp(=7)pr*gp(A/{(yPp + Qp), - .-, (PP x Py mod (yFy + Qp))
( 1) ~NE(Op/p)* wp P('Y)(gP‘TFQ "/)(A’"'vnvp)
¢Pp§ BS(QP tpilm2p — Bpgp—_ipyIm1)(4, ... ,m, P)
(

Ypp S(pr*gp_(py(A/(Qp), ..., P mod (Qp)) — Bpgp—ip}(4,..., P)
Ypp(=1)S((gp—(pylwe, ) (4, - Pp X (—Qy))
—ay R (p)|OF /plpr* (QP {p}\wgp)(A/UDp) <7, (PP X (—Qp) m <P M)
= S((gp—ipylwe, )4, ..., Q) — |OF /p|~ La, tpr*(gp— Hwe,)(A/(Pp), ..., Q).
Therefore

(10r /plapgr — S(gp—(pylwe, )) (A, ..., Q)
= (|0r/plap) " pr* (|0 /plapgr — S(gp—(py|we, ))(A/(Po), . .., (Q mod (By)))

It suffices to show that |Or /plapygp—S(gp—p1|we, ) is identically zero; in which

case, one can glue gp and (|Op /ploy) "1 S(gp—(p1|we, ) as desired. Showing that
it is identically zero is exactly as in [3]. O
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15.3 THE I'1(p"), r > 2, CASE

THEOREM 24 Let S denote the set Sp of places of F above p. For any set
PCS, let fp e H(Xr, (w)nr, o), k[0, 1), L)Y be an overconvergent modular
form of weight k = ZTEHom(F,K) kT € Z and of level T'1(np").

Suppose that, for every P C S, fp has a character ¥3s p of (Op/np")* =~
(Op/n)*x(Op/p")*. Suppose furthermore that fp is an eigenform for U, with
non-zero eigenvalue for every p € S. Suppose finally that, for every P C S,

o C(OFafP) = 1;'
o ¢(m, fp) =0 if m and n are not coprime;

o for every p € P, c(m, fp) = by p(m)c(m, fp_(py) for every ideal m
coprime to np, where Yy p is the p-component of Vs p.

Then the fp are classical Hilbert modular forms in HO(X?T(n)ﬂfl(p’"),K’ Ly)Yr.

Proof. As in the previous subsection, we shall prove the theorem
by induction. For every subset P of S, let gp denote fplwp €
HY(Xt, (wnr: (pr),x10,1))(0,1]s—p, Li). We shall prove that fg is classical.
Fix an integer 0 < n < |S| and suppose that the gp with P C S such that
|P| > n glue together to define sections, which will again be denoted by gp,
over
U X1, (m)ry (pr), k[0, 1)(0, 1] s p-

PCS,|P|>n
Fix a subset P C S with #P = n, and fix p € P. It suffice to show that gp
and (a constant multiple of) gp_rp} glue.
Let C' denote a point (Tateas, as,(q),%, A, n, P) around a cusp (Mi, My) =
(Op,t™1) where

P =nim(l) = PP x P, € Tate, a,(q)(0O ®z Z((¢™)))

def def t
where PP = Hq\p,q;&p Ci,q and Py = (1 pni'y-

For brevity, let i denote Cfril, and pyp its p-component.

We shall compute g-expansions of gp and gp_(yy at the cusp Cp et wg_pC.
Let oy denote the Up-eigenvalue of fp.

|Or /playgr(Cr)
= |Or/plUpgpr(Cp)
= ZCPCTate(q)[p],Cp75<Mp> pr* fp(Tatenr, a1, (q)/Ch, - .., (P mod Cy))
= ZWE(OI«*/?)X p’r’*fp((GLl ®z D_IM;I)/(N;JY‘]W)’J 1MZ7 o, P)
S o fr((GLy @2 0 MY /(i) M2, PP {Crpty 7})
52, pr e (GL @z 0 M) /(ian) M2, PP x G
S e (1= p" I)pM~ )pr* fp((GLy @2 07 M) /(g gn)® M2, )
S, e p(L=p M ™) X p1anys cWPM ™Y, f) (11 an)”
= et c(wpM™", fr)qy > e p((1— P PM T
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We know that 1g p has a conductor p”, and hence g p((1+p" " HpM~—1) = pu
for some integer 0 < v; < p (not that 1+ p"~! is thought of as an element of

—1
2

pMy M
pIMy My M, /p" M,y ~ Op/p"); it therefore follows that 1, p((1+
P hpM 1Y) =yt In particular, ¢y p((1 —p"~'y)pM 1) = p, ™. Hence

S (1= pdr g = 3 = { ORI P )
v v

0 otherwise

Therefore,

gp(Cp) = (op|Op/p]) Ok /p| > c(wpM ™", fp)q.

ve(p~tM)*,p|(v—r1)

We now calculate the g-expansion of gp_(,1|we, at Cp. Firstly, note that

(9p—gpylwe, )(Cp) = prrgp_py(Tatenr, 1, (9)/ (Crpniy), - - - PP X Qy)

where Q, is defined by (¢,pn5',, Qp) = ¢p. Tensoring over Op with p™~! on
GL; ® 0~ 'M; " induces an isomorphism

(GLi® aflel)/@MialCnp@ B
~ (GLi@d ' MY/ oy M)
(GLi @0 "My 1)/ (Crpa)® M2

2

12

The HBAV

def _ _ r—2
Tatenr, pr—211, (C1pq) = (GL1 @07 MY /(Crpg)® M2

is naturally tp2="(~ (p"~2Mz)~! M;)-polarised, and comes equipped with the
level structure (p)"~1n and the point PP x {n5',} of order |Or /p"l; it defines a

. [r—1] s . [r—1]
point of Xfl(n)ﬂfl(pr),T' For a point (A, i, A, n, P) of XFl(n,t)ﬂfl(pT),T’
(IOF /p1Bp) " gp—(py (A, i, A, P)
= (|0F/p|Up)TilgP7{p}(Aaia)‘anaP)
= 2, cAlpliCy=I0x /i |.opnp=(1y P 9P—{p} (A/Cp, -, (P mod Cy))
. 0
In which case, observe that (A/Cy,...,(P mod Cy)) € Xl[“l](n,t)mrl(pr),f and
that it allows one to extend finite slope U,-eigenforms over X (o]

'y (n,t)NI1 (p7),7T
U, -eigenforms over Xl[—‘:zi]t)ﬂrl(pr) . by ‘analytic continuation’. If we let

to

(Aa ia )‘a 7, P) = (Ta‘teMl,pT*ZMz (Cl,pQ)a ERE <p>ril77; PP x {nitp})

then the cyclic subgroups C), of order |Op/p"~!|, disjoint from
the subgroup of order |Op/p| generated by nf%, are of the form
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(Grp Gty M J(Cp M) for vy € Mifpr'My o~ Op/ph
Then

(GLy @MY
~ (GL1®2071M1)/
~ (GLy ®z 0 'My)/

R e V(e VISRV )

1

r M.
GGty )
( 1+PVT 1 )p’lMg

)

where ¢, is a representative in ¢" "My of st € qpfle/qu, is naturally
(p~1M3)~1M; ~ pt-polarised. Then there ex1sts a non-zero constant x; such
that

(gp,{p}\wgp)(CP)
vy -1
=S,y P e (p3((GL1 @z 07 M) /Crp T SR M2y ey PP (S, 1)

Tt 1 e
=¢SGmTTNT,, | priep_(p3((GL1 @z 2 T M1)/(Cr Trvr—1 st Mgy . pb X a2 1)

v, -1 v
:#’S(pr*l)Z,, lpr ap_ {p}((GLl Rz 071M1)/(<1+p r— 1"? P MZ) n, PP x {g +p r— 1}))
1 v,
= 81 Tu,_y ¥p.p (4 Py P M) et (1 (GLy @2 v*lMl)/@ e 1n§f,f' M2>,m,<r))
=51 Sy, p, (v DPMTHTES o eep M T fp,{,,p(cw =l
1 v, v
=R T, c(wp M fp_py)ay Xy vy p (A prp_ppM—h= 1 P
_ . def
where v,._; ranges over € (Op/p"1). For brevity, let S, =
—1\—1(4+prr_1)v .
Do e pr—1) Yo, P (L + pre—1)pM ™) 70 C . As in the proof of
Theorem 11.1 in [3], one can deduce that
Sy - ,Uzgil/ISl/

where vy is defined by ¢y p((1 4+ p"~1)pM~') = p', and therefore S, = 0
unless p|(v — v1); one also deduces that, for v € (p~t M) such that p|(v — 1),

Vl/’ "/)p P(V PM )

for v/ € (p~*M)T such that v'pM~! = 1 mod p and therefore
Svur [p p(WpM 1) (V'pM ™)) = S, /1 p(vpM~1).  Consequently, there
is a non-zero constant xo such that

(9p—(pylwe, )(Cp) = K1 Zye(pflM)Jr,p\(V—uQ) c(vp™' M, fp—p})Svay
= K2 Zy7p‘(1/—u2) c(vp~'M, fP—{p})¢p,P(VPM71)QZ
= K2 Zu,p\(u—ug) C(VpilM’ fP)q;;

Therefore apgp and nglgp_{p} agree at C'p and hence fp and (ozpng)’lgp_{p}
glue together. O
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