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Abstract. We define the zeta function of a finite category. We prove
a theorem that states a relationship between the zeta function of a
finite category and the Euler characteristic of finite categories, called
the series Euler characteristic [BL08]. Moreover, it is shown that for
a covering of finite categories, P : E → B, the zeta function of E is
that of B to the power of the number of sheets in the covering. This
is a categorical analogue of the unproved conjecture of Dedekind for
algebraic number fields and the Dedekind zeta functions.
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1 Introduction

Euler characteristics and zeta functions are defined for various mathematical
objects; for example, simplicial complexes, algebraic varieties, and graphs. In
many cases, we can observe that the zeta function knows the Euler character-
istic, as the following three examples suggest.

1. Let G be a finite connected graph. Then, the Ihara zeta function of G is
defined by

ZG(u) =
∏

[C]

1

1− uℓ[C]

where [C] is an equivalence class of certain paths in G and ℓ is the length
function. The zeta function ZG has the determinant expression

ZG(u) =
(1− u2)1−r

|I − AGu+QGu2|
for some matrices AG and QG where I is the unit matrix and r is the
rank of the fundamental group of G (Theorem 2 of [ST96]). It is clear
that 1− r is the Euler characteristic χ(G) of G.

2. Let ∆ be a simplicial complex on a vertex set

{1, 2, . . . , N}

and let Fq be a finite field. Björner and Sarkaria defined the zeta function
of ∆ over Fq by

Z∆(q, t) = exp

( ∞∑

m=1

#V (∆,Fqm)
tm

m

)

where V (∆,Fqm) is the set of points in the projective space FqmPN−1

whose support belongs to ∆ [BS98]. By Theorem 2.2 of [BS98], the zeta
function has a rational expression; that is,

Z∆(q, t) =

d∏

k=0

1

(1 − qkt)f
∗
k
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Zeta Functions of Categories 1245

for some integers f∗
k where d is the dimension of ∆. Here, we obtain∑d

k=0 f
∗
k = χ(V (∆,C)) (Corollary 2.4 of [BS98]).

3. Let X be an n-dimensional smooth projective variety over a finite field
Fq. Then, the zeta function of X is defined by

ZX(T ) = exp

( ∞∑

m=1

Nm(X)

m
Tm

)

where Nm(X) is the number of points in X over Fqm . One of the Weil
conjectures states that ZX has a rational expression of the following form:

ZX(T ) =
P (T )

Q(T )

for some polynomials P (T ) and Q(T ) with coefficients in Z, and we obtain
χ(X) = degQ− degP (e.g., see [Har77]).

These examples tell us that the zeta function knows the Euler characteristic.
In this paper, we define the zeta function of a finite category and we prove a
theorem that states a relationship between the zeta function of a finite cate-
gory and the Euler characteristic of a finite category, called the series Euler

characteristic [BL08].
Let C be a finite category. A finite category is a category having finitely many
objects and morphisms. Then, the zeta function of C is defined by

ζC(z) = exp

( ∞∑

m=1

#Nm(C)

m
zm

)

where

Nm(C) = { (x0
f1 // x1

f2 // . . . fm // xm) in C}.
The zeta function of a finite category introduced in this paper is different from
the one introduced by Kurokawa [Kur96]. His zeta function is for a large
category; for example, the category of Abelian groups.
Next, let us recall the Euler characteristics of categories. The Euler charac-

teristic of a finite category was defined by Leinster [Lei08]. This was the first
Euler characteristic for categories. Subsequently, there have emerged the series
Euler characteristic by Berger-Leinster [BL08] and the L2-Euler characteristic

by Fiore-Lück-Sauer [FLS11] as well as the extended L2-Euler characteristic

[Nog] and the Euler characteristic of N-filtered acyclic categories [Nog11] by
the author. In this paper, we often use the series Euler characteristic, so we
provide a more detailed explanation for the series Euler characteristic.
For a finite category C whose set of objects is {x1, . . . , xN}, its series Euler

characteristic χΣ(C) is defined by substituting t = −1 in

sum(adj(I − (AC − I)t))

|I − (AC − I)t|
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if it exists, where AC = (#Hom(xi, xj)) is called the adjacency matrix of C
and sum means to take the sum of all the entries of a matrix. This rational
function is a rational expression of the power series

∑∞
m=0 #Nm(C)tm where

Nm(C) is the set of nondegenerate chains of morphisms of length m in C

Nm(C) = { (x0
f1 // x1

f2 // . . . fm // xm) in C | fi 6= 1}.

This Euler characteristic is defined from the viewpoint of the classifying spaces.
For a small category C, we can construct the topological space (in fact, a
CW-complex) BC, called the classifying space of C. There is a one-to-one
correspondence between the set of m-dimensional parts (m-cells) of BC and
Nm(C) [Qui73]. The Euler characteristic of a cell-complex is defined by the
alternating sum of the number of m-cells. Hence, the Euler characteristic of
C should be defined by

∑∞
m=0(−1)m#Nm(C) in a topological sense. However,

this series often fails to converge, so we substitute t = −1 in the rational
expression instead of the power series

∑∞
m=0 #Nm(C)tm. For more details,

see [BL08].
The following is our main theorem.

Main Theorem (Theorem 3.5). Suppose that C is a finite category with
Euler characteristic χ∑(C) and λ1, λ2, . . . , λn are the nonzero eigenvalues of
AC whose algebraic multiplicities are e1, e2, . . . , en. Then,

1. the zeta function of C is

ζC(z) =

n∏

k=1

1

(1− λkz)βk,0
exp




ek−1∑

j=1

βk,jz
j

j(1− λkz)j





for some complex numbers βk,j ,

2. the sum of all the indexes βk,0 is the number of objects of C,

3. each λk is an algebraic integer, and

4.
n∑

k=1

ek−1∑

j=0

(−1)j
βk,j

λj+1
k

= χΣ(C) ∈ Q.

Part 3 is an analogue of the Weil conjecture and, in fact, it does not need the
condition that C has Euler characteristic (see Theorem 3.3). Part 4 implies
that, although each λk and βk,j is a complex number, this alternating sum is
always rational. In this paper, we define Log z and the power functions by the
principal value; that is,

Log z = log |z|+ iArg(z) (z ∈ C− {x ∈ R | x ≤ 0},−π < Arg(z) < π)

and
zα = eαLog z (z, α ∈ C, z 6= 0).

If we do not assume the condition that C has Euler characteristic, Part 1 is
given by the following theorem.
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Theorem 1.1 (Theorem 3.3). Let C be a finite category. Suppose that

λ1, λ2, . . . , λn are the nonzero eigenvalues of AC and their algebraic multiplic-

ities are e1, e2, . . . , en. Then, the zeta function of C is

ζC(z) =

n∏

k=1

1

(1− λkz)βk,0
exp



Q(z) +

ek−1∑

j=1

βk,jz
j

j(1− λkz)j





for some complex numbers βk,j and a polynomial Q(z) with Q-coefficients whose

constant term is zero.

If we do not assume the condition that C has Euler characteristic, Part 2 fails
(see Example 3.7).

Our zeta function is related with coverings of small categories. We show that
for a covering of finite categories, P : E → B, the zeta function of E is that of B
to the power of the number of sheets in the covering. This is an analogue of the
unproved conjecture of Dedekind. The conjecture is that for a finite extension
K2 of an algebraic number field K1 the Dedekind zeta function ζK1

(s) of K1

divides that of K2 [Waa75]. An algebraic number field is a finite extension of
Q.

A covering of small categories is an analogy of Galois theory. A fundamental
theorem of Galois theory is that if K/F is a finite Galois extension, the set of
intermediate fields of K and F is bijective to the set of subgroups of the Galois
group Gal(K/F ):

K oo // {e}
⋂

L oo 1:1 // H
⋂

F oo // Gal(K/F ).

For a covering of small categories P̃ : Ẽ → B, where Ẽ is the universal cover-
ing of B, the set of the isomorphism classes of intermediate coverings of P̃ is
bijective to the set of subgroups of the fundamental group π1(B):

Ẽ

P̃

��

��

oo // {e}
⋂

E

��

oo 1:1 // H
⋂

B oo // π1(B)

Documenta Mathematica 18 (2013) 1243–1274



1248 K. Noguchi

(see Corollary 2.24 of [Tan]). We have the following correspondences:

coverings ↔ extensions of fields

π1 ↔ Galois groups

intermediate coverings ↔ intermediate fields

...
...

For an analogy between coverings of spaces and extensions of fields, see [Mor12].
By the diagrams above, we can conclude that the relationship between our
zeta functions and coverings is an analogue of the Dedekind conjecture. Graph
theoretic analogue of this conjecture was considered in Corollary 1 of §2 of
[ST96] ([ST00] and [ST07] are its continuation).
This remainder of this paper is organized as follows: In Section 2, the zeta
function of a finite category is defined, and we compute the zeta functions of
finite groupoids and finite acyclic categories. We classify the zeta functions
of one-object finite categories and two-objects finite categories. In Section 3,
we prove our main theorem, and we introduce four zeta functions of finite
categories having three-objects. In Section 4, we prove that for a covering of
finite categories, P : E → B, the zeta function of E is that of B to the power
of the number of sheets in the covering.

Acknowledgment. I wish to thank the referee to give me many useful sug-
gestions.

2 Definition and examples

In this section, we define the zeta function of a finite category, and we compute
zeta functions.

2.1 Definition

Before defining the zeta function of a finite category, we review the symbols
that are often used in this paper.
Let C be a finite category. Then, let

Nm(C) = { (x0
f1 // x1

f2 // . . . fm // xm) in C}

and

Nm(C) = { (x0
f1 // x1

f2 // . . . fm // xm) in C | fi 6= 1}.

The difference between these is merely whether identity morphisms are used or
not. For m = 0, we set N0(C) = N0(C) = Ob(C). In this paper we have the
important equality

#Nm(C) = sum(Am
C ).
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Indeed, if
Ob(C) = {x1, x2, . . . , xN}

and AC = (aij), then the (i, j)-entry of Am
C is

∑

1≤k1,k2,...,km−1≤N

aik1
ak1k2

ak2k3
. . . akm−1j .

This is the number of chains of morphisms of length m from xi to xj . Hence,
we obtain the equality.

Definition 2.1. Let C be a finite category. Then, we define the zeta function

ζC(z) of C by

ζC(z) = exp

( ∞∑

m=1

#Nm(C)

m
zm

)
.

This function belongs to the power series ring Q[[z]]. If preferable, the zeta
function can be considered a function of a complex variable by choosing z to
be a sufficiently small complex number. Indeed, for a complex number z such
that |z| < 1

sum(AC) , the series absolutely converges; that is,

∞∑

m=1

#Nm(C)

m
|z|m =

∞∑

m=1

sum(Am
C )

m
|z|m

≤
∞∑

m=1

{sum(AC)}m
m

|z|m < +∞.

Example 2.2. This is the simplest example. Let ∗ denote the terminal cate-
gory. Then, its zeta function is

ζ∗(z) = exp

( ∞∑

m=1

#Nm(∗)
m

zm

)

= exp

( ∞∑

m=1

1

m
zm

)

= exp (−Log(1 − z))

=
1

1− z
.

2.2 Groupoids

In this subsection, we compute the zeta functions of finite groupoids. First, we
compute the zeta functions of connected finite groupoids.
A category C is connected if C is a nonempty category and there exists a zig-zag
sequence of morphisms in C,

x
f1 // x1 x2

f3 //f2oo . . . y
fnoo ,
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for any objects x and y of C. We do not have to consider the direction of the
last morphism fn, since we can insert an identity morphism into the sequence.
A nonempty groupoid Γ is connected if and only if there exists a morphism
f : x → y for any objects x and y of Γ.

Proposition 2.3. Let Γ be a connected finite groupoid. Then, its zeta function

is

ζΓ(z) =
1

(1−#N0(Γ)o(Γ)z)#N0(Γ)

where o(Γ) is the order of the automorphism group Aut(x) for some object x
of Γ.

Proof. Let

Ob(Γ) = {x1, x2, . . . , xN}.
We count the chains of morphisms of length m in Γ. To determine

y0
f1 // y1

f2 // . . . fm // ym

we first determine the objects y0, y1, . . . , ym. There are Nm+1 ways to deter-
mine these. There are o(Γ)m ways to determine the morphisms f1, f2, . . . , fm,
since we have

#Hom(x, y) = #Hom(x′, y′) = o(Γ)

for any objects x, x′, y, and y′ of Γ. Hence, we obtain #Nm(Γ) = Nm+1o(Γ)m.
Thus, we have

ζΓ(z) = exp

( ∞∑

m=1

Nm+1o(Γ)m

m
zm

)

= exp

(
N

∞∑

m=1

1

m
(No(Γ)z)m

)

= exp (−N Log(1 −No(Γ)z))

=
1

(1−No(Γ)z)N
.

Remark 2.4. 1. The zeta function of a finite category is not invariant under
equivalence of categories. For example, let ΓN be the following groupoid:

x1
//
x2oo

// . . .oo
//
xNoo

for any natural number N . Then, ΓN is equivalent to ΓM for any natural
number M . Proposition 2.3 implies that their zeta functions are not the
same if N 6= M .
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2. The zeta function of a finite category depends only on the underlying
graph, not on the composition of the finite category, and the zeta function
of a finite category is not the same as the zeta function of its underlying
graph. For a directed graphD, the zeta function ZD(u) of D is defined by
the formal product of certain equivalence classes of paths (see [KS00] and
[MS01] for more details). It has a determinant expression of the following
form:

ZD(u) =
1

|I −ADu|
where AD is the adjacency matrix of D.

For example, the zeta function of Γ2 (see above) is

1

(1 − 2z)2
,

but the zeta function of its underlying graph is

1

1− u2
.

The proposition above can be generalized to the following proposition.

Proposition 2.5. Suppose that C is a finite category and its adjacency matrix

AC = (aij) satisfies the condition
∑

i aij =
∑

i aij′ for any j and j′. Then, its

zeta function is

ζC(z) =
1

(1− (
∑

i aij) z)
#N0(C)

.

Proof. Under the condition that
∑

i aij =
∑

i aij′ for any j and j′, we have

#Nm(C) = sum(Am
C ) = #Ob(C)

(
∑

i

aij

)m

.

Hence, we obtain the result.

This result is with respect to the columns of AC , but it is clear that there is a
similar result with respect to the rows of AC .

Remark 2.6. A finite category and its opposite category have the same zeta
function. Indeed, we have AC = tACop , so sum(Am

C ) = sum(Am
Cop). Hence,

their zeta functions are the same.

By the following lemma, computing the zeta function of a finite category is
reduced to computing the zeta functions of its connected components.

Lemma 2.7. Let C1, C2, . . . , Cn be finite categories. Then, the zeta function of

C =
∐n

k=1 Ck is

ζC(z) =

n∏

k=1

ζCk
(z).
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1252 K. Noguchi

Proof. Since Nm(C) =
∐n

k=1 Nm(Ck), we obtain

ζC(z) = exp

( ∞∑

m=1

#Nm(C)

m
zm

)

=

n∏

k=1

exp

( ∞∑

m=1

#Nm(Ck)

m
zm

)

=

n∏

k=1

ζCk
(z).

Corollary 2.8. Suppose that Γ is a finite groupoid and Γ1,Γ2, . . . ,Γn are its

connected components; that is, Γ =
∐n

k=1 Γk and each Γk is connected. Then,

the zeta function of Γ is

ζΓ(z) =

n∏

k=1

1

(1 −#N0(Γk)o(Γk)z)#N0(Γk)
.

Proof. Lemma 2.7 and Proposition 2.3 directly imply the result.

2.3 Acyclic categories

In this subsection, we compute the zeta functions of finite acyclic categories by
using another expression for our zeta function.

Definition 2.9. A small category A is defined to be an acyclic category if all
the endomorphisms are only identity morphisms and if there exists a morphism
f : x → y such that x 6= y, then there does not exist a morphism g : y → x.

Lemma 2.10. Let C be a finite category. Then, we have

#Nm(C) =

m∑

j=0

(
m

j

)
#Nj(C)

for any m ≥ 0.

Proof. Suppose that 0 ≤ j ≤ m and take any (f1, f2, . . . , fj) of Nj(C). Then,
we can make

(
m
j

)
-elements of Nm(C) by inserting identity morphisms. Hence,

we obtain the result.

Proposition 2.11. Let C be a finite category. Then, we have

ζC(z) =
1

(1− z)#N0(C)
exp




∞∑

j=1

#Nj(C)zj

j(1− z)j


 .
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Proof. Lemma 2.10 implies

ζC(z) = exp

( ∞∑

m=1

1

m
#Nm(C)zm

)

= exp




∞∑

m=1

1

m

m∑

j=0

(
m

j

)
#Nj(C)zm




= exp




∞∑

j=0

#Nj(C)

∞∑

m=1

1

m

(
m

j

)
zm




= exp

( ∞∑

m=1

#N0(C)

m
zm +

∞∑

j=1

∞∑

m=1

#Nj(C)

m

(
m

j

)
zm
)

=
1

(1− z)#N0(C)
exp




∞∑

j=1

#Nj(C)zj

j(1− z)j


 .

Note that
(
m
j

)
= 0 if m < j. The last equality is implied by the equality (1.5.5)

in [Wil06].

Corollary 2.12. Let A be a finite acyclic category. Then, the zeta function

of A is

ζA(z) =
1

(1− z)#N0(A)
exp




M∑

j=1

#Nj(A)z
j

j(1 − z)j





for a sufficiently large integer M .

Proof. By Lemma 3.5 of [Nog], there exists a sufficiently large integer M such
that Nj(A) = ∅ for any j > M . Proposition 2.11 completes this proof.

2.4 Finite categories having one or two objects

In this subsection, we classify the zeta functions of finite categories having one
or two objects. In all the zeta functions that we have already seen, only rational
numbers appear, but irrational numbers appear in the classification.
First, we compute the zeta functions of one-object finite categories.

Proposition 2.13. Let C be a one-object finite category. Then, its zeta func-

tion is

ζC(z) =
1

1−#N1(C)z
.

Proof. Since C has only one object, all the morphisms can be composed, so we
have

#Nm(C) = (#N1(C))m.

Hence, we obtain the result.
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Lemma 2.14. Suppose that C is a finite category having N objects and its

adjacency matrix AC is diagonalizable, with

AC = P · diag(λ1, λ2, . . . , λN ) · P−1.

Then, we have

ζC(z) = exp

(
sum

(
P · diag

(
Log

1

1− λ1z
,

Log
1

1− λ2z
, . . . ,Log

1

1− λNz

)
· P−1

))
.

Proof. We have

ζC(z) = exp

(
sum

∞∑

m=1

Am
C

m
zm

)

= exp

(
sum

∞∑

m=1

1

m
P · diag(λm

1 , λm
2 , . . . , λm

N ) · P−1zm

)

= exp

(
sum

(
P · diag

(
Log

1

1− λ1z
,

Log
1

1− λ2z
, . . . ,Log

1

1− λNz

)
· P−1

))
.

Proposition 2.15. Let C be a two-object finite category and let AC =

(
a b
c d

)
.

Then, its zeta function is

ζC(z) =





1

(1− az)2
exp

(
bz

1− az

)
if a = d, b 6= 0, c = 0

1

(1− az)2
exp

(
cz

1− az

)
if a = d, b = 0, c 6= 0

1

(1− λ+z)β
+
0

1

(1− λ−z)β
−
0

otherwise,

where λ± are the eigenvalues of AC and

β±
0 =

{
1 if a = d, b = c = 0

1± b+c√
∆

otherwise.

Here, ∆ = (a − d)2 + 4bc is the discriminant of the characteristic polynomial

of AC .
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Zeta Functions of Categories 1255

Proof. If a = d, b 6= 0, and c = 0, then we have

#Nm(C) = am + am−1b+ am−2bd+ · · ·+ abdm−2 + bdm−1 + dm

= 2am +mbam−1.

Hence, we obtain

ζC(z) = exp

( ∞∑

m=1

1

m
(2am +mbam−1)zm

)

=
1

(1 − az)2
exp

(
bz

1− az

)
.

If a = d, b = 0, and c 6= 0, then we can similarly prove the result.
If a = d and b = c = 0, then the category consists of one-object categories, so
Lemma 2.7 and Proposition 2.13 imply the result.
In the other cases, AC is diagonalizable over R since ∆ is nonzero and is
a nonnegative real number. We omit the process to compute P , since the
calculation is routine. Lemma 2.14 completes the proof.

Example 2.16. Let
P = x // y .

Then, AP =

(
1 1
0 1

)
, so Proposition 2.15 implies that the zeta function is

ζP (z) =
1

(1− z)2
exp

(
z

1− z

)
,

which is not a rational function. In the proof of Theorem 3.3, we will find the
reason why the zeta function of a finite category has an exponential factor is
that a nonzero eigenvalue of its adjacency matrix has algebraic multiplicity.

Example 2.17. Let F be the following category:

x
i //

y
r

oo i◦rdd

where r ◦ i = 1x, i ◦ r 6= 1y. Then, AF =

(
1 1
1 2

)
. Proposition 2.15 implies that

the zeta function is

ζF(z) =
1

(
1−

(
3+

√
5

2

)
z
)1+ 2√

5

1
(
1−

(
3−

√
5

2

)
z
)1− 2√

5

.

The reason that
√
5 appears is that the sequence (#Nm(F))m≥0 is a subse-

quence of the Fibonacci sequence (Fm)m≥1; that is, we have #Nm(F) = Fm+3

and

Fm =
1√
5

((
1 +

√
5

2

)m

−
(
1−

√
5

2

)m
)
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(see §1.3 of [Wil06]). Hence, Proposition 2.11 also implies the result.
Here, let us confirm that Theorem 3.5 holds for this zeta function.

1. The zeta function of F is

ζF(z) =
1

(
1−

(
3+

√
5

2

)
z
)1+ 2√

5

1
(
1−

(
3−

√
5

2

)
z
)1− 2√

5

.

2. The sum of the indexes is the number of objects in F, which is
(
1 +

2√
5

)
+

(
1− 2√

5

)
= 2.

3. The numbers 3±
√
5

2 are algebraic integers. More precisely, they are inte-

gers in the real quadratic number field Q(
√
5). The ring of integers in

Q(
√
5) is {

a+ b
√
5

2

∣∣∣∣a, b ∈ Z, a ≡ b mod 2

}
.

4. We obtain
1 + 2√

5

3+
√
5

2

+
1− 2√

5

3−
√
5

2

= 1 = χΣ(F).

3 Main theorem

In this section, we prove our main theorem.

3.1 Preparations for our main theorem

Throughout this section, we will use the following notation.

1. Unless otherwise stated, C is a finite category having N objects.

2. The two polynomials |AC − Iz| and sum(adj(AC − Iz)) that will often be
used are expressed in the following forms:

|AC − Iz| = a0 + a1z + · · ·+ aNzN

and
sum(adj(AC − Iz)) = b0 + b1z + · · ·+ bN−1z

N−1.

3. We denote the codegrees of |AC − Iz| and sum(adj(AC − Iz)) by the
following:

codeg |AC − Iz| = r

and
codeg(sum(adj(AC − Iz))) = s.
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The codegree of a polynomial f(z) is the smallest n such that the coefficient of
zn is nonzero. The coefficients aN , aN−1, and a0 are (−1)N , (−1)N−1Tr(AC),
and |AC |, respectively, and bN−1 is (−1)N−1N . Hence, the codegree of |AC−Iz|
is less than or equal to N − 1 if C is a nonempty category, since Tr(AC) ≥ N .

Remark 3.1. The category C has Euler characteristic if and only if s ≥ r. In
this case, we have

χΣ(C) =
br
ar

.

(See the bottom of p. 46 in [BL08].)

Lemma 3.2. If C has Euler characteristic, then we have

deg
(
sum(adj(I −ACz)AC)

)
= deg |I −ACz| − 1 = N − r − 1.

Proof. Lemma 2.2 of [NogA] and Remark 3.1 imply this result.

To finish this subsection, we prepare some symbols that are needed to state
our main theorem.
Suppose that the characteristic polynomial |AC − Iz| is factored as follows:

|AC − Iz| = zraN (z − λ1)
e1 (z − λ2)

e2 · · · (z − λn)
en

where ei ≥ 1 for any i and λi 6= λj if i 6= j. Namely, each λk is a nonzero
eigenvalue of AC and ek is its algebraic multiplicity. Then, |I−ACz| is factored
as follows:

|I −ACz| = (−1)Nar

(
z − 1

λ1

)e1 (
z − 1

λ2

)e2

· · ·
(
z − 1

λn

)en

.

Suppose that

sum(adj(I −ACz)AC) = q(z)|I −ACz|+ r(z),

where r(z) and q(z) are polynomials with Z-coefficients and

deg r(z) < deg |I −ACz|.

Then, r(z)
|I−ACz| has a partial fraction decomposition to the following form:

r(z)

|I −ACz|
=

(−1)N

ar

n∑

k=1

ek∑

i=1

Ak,i

(z − 1
λk

)i
(1)

for some complex numbers Ak,i.
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3.2 A proof of our main theorem

In this subsection, we give a proof of our main theorem. The symbols without
explanations are explained in the previous subsection.

Theorem 3.3. Suppose that λ1, λ2, . . . , λn are the nonzero eigenvalues of AC

and e1, e2, . . . , en are their algebraic multiplicities. Then,

1. the zeta function of C is

ζC(z) =

n∏

k=1

1

(1− λkz)βk,0
exp


Q(z) +

ek−1∑

j=1

βk,jz
j

j(1− λkz)j


 ,

where βk,0 = (−1)N−1Ak,1

ar
,

βk,j =
(−1)N−1

ar

ek−1∑

i=j

(
i− 1

j − 1

)
(−1)iλi+j

k Ak,i+1

for j ≥ 1, and Q(z) = 1
n

∫
q(z) dz is a polynomial of Q[z] whose constant

term is zero, and

2. each λk is an algebraic integer.

To prove this theorem, we use the following proposition.

Proposition 3.4 (Proposition 2.1 of [NogA]). Let C be a finite category. Then,

the zeta function of C is

ζC(z) = exp

(∫
sum(adj(I −ACz)AC)

|I −ACz|
dz

)
.

Proposition 2.1 of [NogA] assumes the invertibility of AC , but that hypothesis
is not used in the proof. Hence, we can abandon that hypothesis, and the same
proof can be used for this proposition.
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Proof of Theorem 3.3. Proposition 3.4 implies

ζC(z) = exp

(∫
q(z) dz +

∫
(−1)N

ar

n∑

k=1

ek∑

i=1

Ak,i

(z − 1
λk

)i
dz

)

= exp

(∫
q(z) dz +

(−1)N

ar

∫ n∑

k=1

Ak,1

(z − 1
λk

)
dz +

(−1)N

ar

∫ n∑

k=1

ek∑

i=2

Ak,i

(z − 1
λk

)i
dz

)

= exp

(
Q(z) +

(−1)N

ar

n∑

k=1

Ak,1 Log

(
z − 1

λk

)
+

(−1)N

ar

n∑

k=1

ek∑

i=2

− Ak,i

(i− 1)

1

(z − 1
λk

)i−1
+B

)

=

n∏

k=1

1

(z − 1
λk

)(−1)N−1
Ak,1
ar

×

exp

(
Q(z) +

(−1)N−1

ar

n∑

k=1

ek−1∑

i=1

Ak,i+1

i(z − 1
λk

)i

)
B′

=

n∏

k=1

1

(− 1
λk

)(−1)N−1
Ak,1
ar (1− λkz)

(−1)N−1
Ak,1
ar

×

exp

(
Q(z) +

(−1)N−1

ar

n∑

k=1

ek−1∑

i=1

Ak,i+1

i(z − 1
λk

)i

)
B′

=
n∏

k=1

1

(1− λkz)
(−1)N−1

Ak,1
ar

×

exp

(
Q(z) +

(−1)N−1

ar

n∑

k=1

ek−1∑

i=1

Ak,i+1

i(z − 1
λk

)i

)
B′′,

where we replaced (and will replace) the constant term by B, B′, B′′. . . .
Lemma 2.7 of [NogA] implies

ζC(z) =

n∏

k=1

1

(1− λkz)
(−1)N−1

Ak,1
ar

×

exp

(
Q(z) +

(−1)N−1

ar

n∑

k=1

ek−1∑

i=1

Ak,i+1

i

i∑

j=1

(
i
j

)
(−λk)

i(−z)j

(z − 1
λk

)j

)
B′′′.

Here, we use the boundary condition ζC(0) = 1. This condition is directly
implied by the definition of the zeta function. Hence, we obtain B′′′ = 1. By
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exchanging
∑

i and
∑

j , we have

ζC(z) =
n∏

k=1


 1

(1− λkz)
(−1)N−1

Ak,1
ar


 exp

(
Q(z)+

(−1)N−1

ar

n∑

k=1

ek−1∑

j=1

zj

j(1− λkz)j

( ek−1∑

i=j

(
i− 1

j − 1

)
(−1)iλi+j

k Ak,i+1

))
.

Hence, we obtain the first result.
Since (−1)N |AC − Iz| is a monic polynomial with coefficients in Z, it follows
that λk is an algebraic integer, so we obtain the second result.

Theorem 3.5. Suppose that C has Euler characteristic and λ1, λ2, . . . , λn are

the nonzero eigenvalues of AC and e1, e2, . . . , en are their algebraic multiplici-

ties. Then, we obtain the following results.

1. The zeta function of C is

ζC(z) =

n∏

k=1

1

(1− λkz)βk,0
exp




ek−1∑

j=1

βk,jz
j

j(1− λkz)j




where βk,0 = (−1)N−1Ak,1

ar
and

βk,j =
(−1)N−1

ar

ek−1∑

i=j

(
i− 1

j − 1

)
(−1)iλi+j

k Ak,i+1

for j ≥ 1.

2. The sum of all the indexes βk,0 is the number of objects of C; that is,

n∑

k=1

βk,0 = N.

3. Each λk is an algebraic integer.

4.

n∑

k=1

ek−1∑

j=0

(−1)j
βk,j

λj+1
k

= χΣ(C) ∈ Q. (2)
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Proof. Since C has Euler characteristic, Lemma 3.2 implies

deg
(
sum(adj(I −ACz)AC)

)
< deg |I −ACz|.

Hence, we have q(z) = 0 and r(z) = sum(adj(I − ACz)AC), so we obtain the
first result by Theorem 3.3 as Q(z) = 0.
By elementary calculation, we have

sum(adj(AC − Iz))

|AC − Iz| = −N

z
− 1

z2
sum(adj(I − 1

z
AC)AC)

|I − 1
z
AC |

.

Since r(z) = sum(adj(I−ACz)AC), the partial fraction decomposition (1) tells
us that this is equal to

−N

z
+

(−1)N−1

ar

n∑

k=1

ek∑

i=1

Ak,iz
i−2

(1− z
λk

)i
.

This, in turn, is equal to the Laurent series,

( N∑

k=1

βk,0 −N

)
1

z
+

(−1)N−1

ar

n∑

k=1

(
Ak,1

λk

+Ak,2

)
+

∞∑

m=1

cmzm,

for some complex numbers c1, c2, . . . . Since C has Euler characteristic, the

rational function sum(adj(AC−Iz))
|AC−Iz| is defined at zero (see p. 45 of [BL08]), so∑n

k=1 βk,0 = N , proving the second result.
We have already shown the third result in Theorem 3.3.
Finally, we show the fourth result. The left hand side of (2) is

(2) =
n∑

k=1

(−1)N−1 Ak,1

λkar

+
(−1)N−1

ar

n∑

k=1

ek−1∑

j=1

(−1)j
∑ek−1

i=j

(
i−1
j−1

)
(−1)iλi+j

k Ak,i+1

λj+1
k

=

n∑

k=1

(
(−1)N−1 Ak,1

λkar

+
(−1)N−1

ar

ek−1∑

j=1

ek−1∑

i=j

(−1)j+iλi−1
k

(
i− 1

j − 1

)
Ak,i+1

)

=
n∑

k=1

(
(−1)N−1 Ak,1

λkar

+
(−1)N−1

ar

ek−1∑

i=1

(−1)iλi−1
k Ak,i+1

( i∑

j=1

(−1)j
(
i− 1

j − 1

)))

=
(−1)N−1

ar

( n∑

k=1

Ak,1

λk

+Ak,2

)
.
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The Laurent series implies

χ∑(C) =
sum(adj(AC − Iz))

|AC − Iz|

∣∣∣∣
z=0

=
(−1)N−1

ar

n∑

k=1

(
Ak,1

λk

+Ak,2

)
.

Hence, we obtain the result.

We give an interpretation of Part 2 and 4 of Theorem 3.5 by residues. Let f
be a holomorphic function on the whole complex plane with the exception of
finitely many poles p1, p2, . . . , pj. Then the residue of f at infinity is defined
by

Res(f(z) : ∞) = −
j∑

i=1

Res(f(z) : pi).

Corollary 3.6. If C has Euler characteristic, then we have

Res

(
ζ′C(z)

ζC(z)
: ∞
)

= N

and

Res

(
z
ζ′C(z)

ζC(z)
: ∞
)

= χ∑(C).

Proof. By Proposition 3.4, the logarithmic derivative of ζC(z) is

sum(adj(I − ACz)AC)

|I −ACz|
.

Lemma 3.2, the partial fraction decomposition (1), and Part 2 of Theorem 3.5
imply the first result. Moreover, by elementary calculation, we have

z
ζ′C(z)

ζC(z)
= −N +

(−1)N

ar

n∑

k=1

Ak,1

λk
+Ak,2

z − 1
λk

+
n∑

k=1

ek∑

i=2

ck,i

(z − 1
λk

)i

for some complex numbers ck,i. Hence we obtain

Res

(
z
ζ′C(z)

ζC(z)
: ∞
)

=
(−1)N−1

ar

(
n∑

k=1

Ak,1

λk

+Ak,2

)
= χ∑(C).

The last equality follows from one of the equations at the bottom of the proof
of Theorem 3.5.
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3.3 Examples

In this subsection, we introduce four examples of zeta functions. These are
implied, for example, by routine calculations to solve the characteristic polyno-
mial of each adjacency matrix and compute a partial fraction decomposition.
Since the calculations are routine, only the results are shown.

Example 3.7. Let C be a finite category whose adjacency matrix is


2 3 5
2 3 5
2 1 3



. This is Example 4.7 of [BL08]. The existence of such a cate-

gory is assured by Lemma 4.1 of [BL08]. Then, χΣ(C) is not defined. Its zeta
function is

ζC(z) =
1

(1− 8z)
13
4

.

We note that the index is not the number of objects of C; that is, 13
4 6= 12

4 = 3.
Therefore, we cannot abandon the hypothesis in Theorem 3.5 that C has Euler
characteristic.

Example 3.8. Let C be a finite category whose adjacency matrix is


2 2 2
2 2 2
2 8 5



. This is Example 4.5 of [BL08]. Then, both χL(C) and χΣ(C)

are defined. Here, χL is the Euler characteristic of a finite category by Lein-
ster [Lei08]. We have

χL(C) =
1

2
, χΣ(C) =

1

3
.

Its zeta function is

ζC(z) =
1

(1− 9z)3
.

Note that 3
9 = χ∑(C), but 3

9 6= χL(C), so our zeta function does not recover
χL.

Remark 3.9. Our zeta function also does not recover the L2-Euler character-

istic χ(2) [FLS11], since the zeta function of a finite category does not depend
on its composition, but the L2-Euler characteristic does. Indeed, let C1 be a
one-object category whose set of morphisms is {1, f}, where f ◦ f = f , and let
C2 be almost the same category as C1, with the only difference that f ◦ f = 1
in C2. Then, Proposition 2.13 implies that their zeta functions are

ζC1
(z) = ζC2

(z) =
1

1− 2z
,

but χ(2)(C2) = 1
2 and χ(2)(C1) 6= 1

2 by Example 5.12 and Remark 7.2 of
[FLS11].

The zeta functions in the following two examples use nonreal numbers.
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Example 3.10. Let C be a finite category whose adjacency matrix is

2 3 2
1 2 6
1 1 2


. Since AC has an inverse matrix, Theorem 3.2 of [BL08] implies

that C has Euler characteristic given by

χ∑(C) = sum(A−1
C ) =

5

6
.

Let us confirm that this zeta function satisfies the statement of Theorem 3.5.

1. The zeta function is

ζC(z) =
1

(1− 6z)
125
37 (1− iz)

−7+5i
37 (1 + iz)

−7−5i
37

.

2. The sum of indexes is

125

37
+

−7 + 5i

37
+

−7− 5i

37
= 3.

3. The numbers 6 and ±i are algebraic integers. In particular, they are
integers in Q(

√
−1); that is, they belong to the ring of Gaussian integers

Z[
√
−1].

4. Moreover, we have

1

6

125

37
+

1

i

−7 + 5i

37
+

1

−i

−7− 5i

37
=

5

6
.

Example 3.11. Let C be a finite category whose adjacency matrix is


4 7 8
1 4 5
1 1 3



. Since AC has an inverse matrix, its Euler characteristic is given

by
χ∑(C) = sum(A−1

C ) = 0.

Let us confirm that this zeta function satisfies the statement of Theorem 3.5.

1. The zeta function is

ζC(z) =
1

(1− 9z)
252
65 (1− (1 + i)z)

−57+i
130 (1− (1− i)z)

−57−i
130

.

2. The sum of indexes is

252

65
+

−57 + i

130
+

−57− i

130
= 3.

3. The numbers 6 and 1± i belong to the ring of Gaussian integers Z[
√
−1].

4. Moreover, we have

1

9

252

65
+

1

1 + i

−57 + i

130
+

1

1− i

−57− i

130
= 0.
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4 Coverings of small categories

The aim of this section is to prove that for a covering of finite categories,
P : E → B, the zeta function of E is that of B to the power of the number of
sheets in the covering. Some examples are given in the last subsection of this
section.

4.1 Coverings and zeta functions

In this subsection, we show that for a covering of finite categories, P : E → B,
the zeta function of E is that of B to the power of the number of sheets in the
covering.
Here, let us recall a covering of small categories [BH99].
Let C be a small category. For an object x ofC, let S(x) be the set of morphisms
of C whose source is x,

S(x) = {f : x → ∗ ∈ Mor(C)},

and let T (x) be the set of morphisms of C whose target is x,

T (x) = {g : ∗ → x ∈ Mor(C)}.

For the rest of this section, we assume that E and B are small categories and B
is connected. A functor P : E → B is a covering if the following two restrictions
of P are bijections for any object x of E:

P : S(x) −→ S(P (x))

P : T (x) −→ T (P (x)).

This condition is an analogue of the condition on an unramified covering of
graphs (see [ST96]). A functor P is called a discrete fibration if the restriction
P : T (x) −→ T (P (x)) is a bijection for any object x of E, and P is called a
discrete opfibration if the restriction P : S(x) −→ S(P (x)) is a bijection for
any object x of E. Thus, a functor is a covering if and only if it is both a
discrete fibration and a discrete opfibration.
For an object b of B, the inverse image P−1(b) of the restriction of P with
respect to objects,

P−1(b) = {x ∈ Ob(E) | P (x) = b},

is called the fiber of b by P . The cardinality of P−1(b) is called the number of

sheets in P , and it does not depend on the choice of b since the base category
B is connected (see Proposition 4.1).
Applying the classifying space functor B to a covering P : E → B, we have the
covering space BP in the topological sense (see [Tan]).
There has been much work on coverings of small categories; for example, see
[BH99], [CM], and [Tan]. In particular, coverings of groupoids were studied
in [May99].

Documenta Mathematica 18 (2013) 1243–1274



1266 K. Noguchi

The following proposition was briefly introduced without proof on p. 581 of
[BH99]. However, the proposition is very important in this paper, so we give a
proof.

Proposition 4.1. Let P : E → B be a covering. Then, P−1(b) is bijective to

P−1(b′) for any objects b and b′ of B.

Proof. It suffices to show that P−1(b) is bijective to P−1(b′) if there exists a
morphism f : b → b′. Indeed, if this is proven, then for any objects b and b′ we
have a zig-zag sequence

b // b1 b2 //oo . . . b′oo ,

so we obtain
P−1(b) ∼= P−1(b1) ∼= · · · ∼= P−1(b′).

Suppose that there exists a morphism f : b → b′. By the definition of a
covering, there exist induced functions

f∗ : P−1(b) −→ P−1(b′), f∗ : P−1(b′) −→ P−1(b).

Here, f∗(x) is the target x′ of the unique morphism g : x → x′ such that
P (g) = f , and similarly with f∗. It follows immediately from the uniqueness
that f∗f∗ = 1, and similarly with f∗ and f∗ reversed. Hence, f∗ and f∗ are
inverse to one another.

Definition 4.2. Let C be a small category and x be an object of C. Then, let
Nm(C)x be the set of chains of morphisms of length m in C and whose target
is x:

Nm(C)x = { (x0
f1 // x1

f2 // . . . fm // xm) in C | xm = x}.

Proposition 4.3. Let P : E → B be a covering. Then, Nm(E)x is bijective

to Nm(B)b for any object b of B, any x of P−1(b), and m ≥ 0.

Proof. Given a sequence of morphisms in B,

g =
(
b0

g1 // b1
g2 // · · · gm // bm = b

)
,

there exists a unique morphism fm : xm−1 → x such that P (fm) = gm since P
is a covering. If we repeat this process, we get a unique sequence of morphisms
in E,

f =
(
x0

f1 // x1
f2 // · · · fm // xm = x

)

such that P (f) = g. This correspondence gives a bijection between Nm(E)x
and Nm(B)b.

Proposition 4.4. Let P : E → B be a covering and let b be an object of B.

Then, Nm(E) is bijective to P−1(b)×Nm(B) for any m ≥ 0.
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Proof. Proposition 4.3 implies

Nm(E) =
∐

x∈Ob(E)

Nm(E)x

=
∐

b∈Ob(B)

∐

x∈P−1(b)

Nm(E)x

∼=
∐

b∈Ob(B)

∐

x∈P−1(b)

Nm(B)b

∼= P−1(b)×Nm(B).

The following theorem is an analogue of an unproved conjecture of Dedekind
and is the main result of this section. The conjecture is that for algebraic
number fields K1 ⊂ K2, the Dedekind zeta function ζK1

(s) of K1 divides that
of K2 [Waa75]. The graph theoretic analogue of this conjecture was considered
in Corollary 1 of §2 of [ST96].

Theorem 4.5. Let P : E → B be a covering of finite categories and let b be

an object of B. Then, we have

ζE(z) = ζB(z)
#P−1(b).

Proof. Proposition 4.4 and the definition of the zeta function of a finite category
directly imply this fact; that is,

ζE(z) = exp

( ∞∑

m=1

#Nm(E)

m
zm
)

= exp

( ∞∑

m=1

#P−1(b)#Nm(B)

m
zm
)

= ζB(z)
#P−1(b).

4.2 Coverings and Euler characteristics

Our main purpose in this section has already been accomplished in Theo-
rem 4.5. Aside from the main topic of this section, we investigate the rela-
tionships between coverings and Euler characteristics of categories.
Let p : X → Y be a topological fibration, which is one of the generalized notions
of covering spaces (e.g., see [Hat02] and [May99]). Under a suitable hypothesis,
we have the formula

χ(X) = χ(F )χ(Y ),

where F is the fiber of p.
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A categorical analogue of this formula was considered in [Lei08] and [FLS11].
Proposition 2.8 of [Lei08] is an analogue for Grothendieck fibrations and the
Euler characteristic χL. Theorems 5.30 and 5.37 of [FLS11] are analogues for
isofibrations, coverings of groupoids, and the L2-Euler characteristic χ(2).
In this subsection, we consider such analogues for coverings, the Euler char-
acteristic χ∑, and the Euler characteristic of N-filtered acyclic categories χfil

[Nog11].
Here, we recall the Euler characteristic of an N-filtered acyclic category [Nog11].
Let A be an acyclic category. We define an order on the set Ob(A) of objects
of A by x ≤ y if there exists a morphism x → y. Then, Ob(A) is a poset; that
is, Ob(A) is acyclic and each hom-set has at most one morphism.

Definition 4.6. Let A be an acyclic category. A functor µ : A → N ∪ {0}
satisfying µ(x) < µ(y) for x < y in Ob(A) is called an N-filtration of A. A pair
(A, µ) is called an N-filtered acyclic category.

Definition 4.7. Let (A, µ) be an N-filtered acyclic category. For nonnegative
integers i and m, let

Nm(A)i = {f ∈ Nm(A) | µ(t(f)) = i},

where t(f) = xm if

f = (x0
f1 // x1

f2 // . . . fm // xm) .

Suppose that each Nm(A)i is finite. We define the formal power series
fχ(A, µ)(t) over Z by

fχ(A, µ)(t) =

∞∑

i=0

(−1)i

(
i∑

m=0

(−1)m#Nm(A)i

)
ti.

Then, we define
χfil(A, µ) = fχ(A, µ)|t=−1

if fχ(A, µ)(t) is rational and has a nonvanishing denominator at t = −1.

We first demonstrate the formula for coverings and the Euler characteristic χ∑.
Propositions 4.3 and 4.4 hold when nerves are nondegenerate, which means
that we do not use identity morphisms. Let C be a small category and let x
and y be objects of C. We define the following symbols:

S(x) = S(x) \ {1x}, T (x) = T (x) \ {1x},

HomC(x, y) =

{
HomC(x, y) \ {1x} if x = y

HomC(x, y) if x 6= y

and

Nm(C)x = { (x0
f1 // x1

f2 // . . . fm // xm) in C | fi 6= 1, xm = x}.
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Proposition 4.8. Let P : E → B be a covering. Then, Nm(E)x is bijective

to Nm(B)b for any object b of B, any x of P−1(b), and m ≥ 0.

Proof. If we replace the symbols in the proof of Proposition 4.3 by the above
symbols with bars, we can use the same proof. Note that for any morphism f
of E it follows that f is an identity morphism if and only if P (f) is an identity
morphism.

Proposition 4.9. Let P : E → B be a covering and b be an object of B. Then,

Nm(E) is bijective to P−1(b)×Nm(B) for any m ≥ 0.

A discrete category consists of only objects and identity morphisms. The fiber
of a covering P : E → B is a discrete category when we regard it as a category.

Proposition 4.10. Let P : E → B be a covering of finite categories and let b
be an object of B. Then, E has Euler characteristic if and only if B has Euler

characteristic. In this case, we have

χ∑(E) = χ∑(P−1(b))χ∑(B).

Proof. Theorem 2.2 of [BL08] and Proposition 4.9 imply

∞∑

m=0

#Nm(E)tm = #P−1(b)

∞∑

m=0

#Nm(B)tm

= #P−1(b)
sum(adj(I − (AB − I)t))

|I − (AB − I)t| .

Hence, E has Euler characteristic if and only if we can substitute t = −1 in

#P−1(b)
sum(adj(I − (AB − I)t))

|I − (AB − I)t|

if and only if we can substitute t = −1 in

sum(adj(I − (AB − I)t))

|I − (AB − I)t|

if and only if B has Euler characteristic. Thus, we have proven the first claim.
If E has Euler characteristic, then we have

χ∑(E) = #P−1(b)χ∑(B)

= χ∑(P−1(b))χ∑(B).

Next, we demonstrate the formula for coverings and the Euler characteristic of
N-filtered acyclic categories χfil.
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Proposition 4.11. Suppose that (A, µA) and (B, µB) are N-filtered acyclic

categories, b0 is an object of B, and P : A → B is a covering whose fiber

is finite, satisfying µA(x) = µB(P (x)) for any object x of A. Then, (A, µA)
has Euler characteristic χfil(A, µA) if and only if B has Euler characteristic

χfil(B, µB). In this case, we have

χfil(A, µA) = χfil(P
−1(b0), µ)χfil(B, µB)

for any N-filtration µ of P−1(b0).

Proof. We have

µ−1
A (i) =

∐

b∈µ
−1

B
(i)

P−1(b)

for any i ≥ 0. Propositions 4.1 and 4.8 imply

Nm(A)i =
∐

x∈µ
−1

A
(i)

Nm(A)x

∼=
∐

b∈µ−1

B
(i)

∐

x∈P−1(b)

Nm(A)x

∼=
∐

b∈µ
−1

B
(i)

P−1(b)×Nm(B)b

∼= P−1(b0)×Nm(B)i.

Hence, we have

fχ(A, µA)(t) =

∞∑

i=0

(−1)i

(
i∑

m=0

(−1)m#Nm(A)i

)
ti

=

∞∑

i=0

(−1)i

(
i∑

m=0

(−1)m#P−1(b0)#Nm(B)i

)
ti

= #P−1(b0)fχ(B, µB)(t).

Accordingly, χfil(A, µA) exists if and only if the power series fχ(A, µA)(t) is
rational and we can substitute t = −1 in the rational function if and only if
the power series fχ(B, µB)(t) is rational and we can substitute t = −1 in the
rational function if and only if χfil(B, µB) exists. Thus, the first claim has been
proven.
If χfil(A, µA) exists, then we have

χfil(A, µA) = #P−1(b0)χfil(B, µB)

= χfil(P
−1(b0), µ)χfil(B, µB).

It is clear that χfil(P
−1(b0), µ) = #P−1(b0) for any N-filtration µ. We can

provide a filtration to P−1(b0); for example, we can define µ : P−1(b0) →
N ∪ {0} by µ(x) = 0 for any x of P−1(b0).
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4.3 Examples

We give three examples of coverings of small categories.

Example 4.12. Let

Γ = x
f //

y
f−1

oo

and B = Z2 = {1,−1}. A group can be regarded as a category whose object
is just one object (denoted by an asterisk), whose morphisms are the elements
of G, and whose composition is the operation of G. We define P : Γ → B by
P (f) = P (f−1) = −1. Then, P is a covering that was studied in Example 5.33
of [FLS11]. Since Γ and B are finite connected groupoids, Proposition 2.3
implies

ζΓ(z) =
1

(1 − 2z)2
, ζB(z) =

1

1− 2z
.

The number of sheets in P is two. We have ζΓ(z) = ζB(z)
2. Example 2.7 of

[Lei08] and Theorem 3.2 of [BL08] imply

χ∑(Γ) = 1, χ∑(B) =
1

2
, χ∑(P−1(∗)) = 2,

and hence we have
χ∑(Γ) = χ∑(P−1(∗))χ∑(B).

Example 4.13. Let

A = y1 y2 y3 . . . yn

x1

f1

``BBBBBBBB g1

>>||||||||
x2

f2

``BBBBBBBB g2

==||||||||
. . . xn−1

···
gn−1

<<xxxxxxxx
xn

gn

mm[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

fn

aaBBBBBBBB

and

B = x

f
((

g

66 y .

We define a functor P : A → B by P (xi) = x, P (yi) = y, P (fi) = f , and
P (gi) = g for any i. Then, P is a covering. By Corollary 2.12, we have

ζA(z) =
1

(1− z)2n
exp

(
2nz

1− z

)
, ζB(z) =

1

(1− z)2
exp

(
2z

1− z

)
.

The number of sheets in P is n. We have ζA(z) = ζB(z)
n. Since A and

B are finite acyclic categories,
∑∞

m=0 #Nm(A)tm and
∑∞

m=0 #Nm(B)tm are
polynomials by Lemma 3.5 of [Nog]. Hence, we have

χ∑(A) = 2n− 2n = 0, χ∑(B) = 2− 2 = 0, χ∑(P−1(x)) = n,

and then we have
χ∑(A) = χ∑(P−1(x))χ∑(B).
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We introduce an example of a covering of infinite categories.

Example 4.14. Suppose that

A = x0 //

!!B
BB

BB
BB

B
x1 //

!!B
BB

BB
BB

B
x2 //

!!C
CC

CC
CC

C
· · ·

y0 //

==||||||||
y1 //

==||||||||
y2 //

=={{{{{{{{
· · ·

and
B = b0

//
// b1

//
// b2

//
// · · ·

where A is a poset. For n < m, bn and bm, we define

HomB(bn, bm) = {ϕ0
n,m, ϕ1

n,m},

and a composition of B is defined by ϕj
m,ℓ ◦ϕi

n,m = ϕk
n,ℓ, where k = 0 or k = 1

and k ≡ i+ j mod 2 for n < m < ℓ. We define P : A → B by P (xi) = P (yi) =
bi, with P ((xn, xm)) = P ((yn, ym)) = ϕ0

n,m and P ((yn, xm)) = P ((xn, ym)) =
ϕ1
n,m for n < m. Then, P is a covering. The indexes of objects of A and B

give N-filtrations µA and µB to A and B, respectively. We have

fχ(A, µA)(t) =

∞∑

i=0

(−1)i
( i∑

m=0

(−1)m2m+1

(
i

m

))
ti =

2

1− t
,

so χfil(A, µA) = 1. We have

fχ(B, µB)(t) =

∞∑

i=0

(−1)i
( i∑

m=0

(−1)m2m
(
i

m

))
ti =

∞∑

i=0

ti =
1

1− t
,

so χfil(B, µB) =
1
2 . We obtain

χfil(A, µA) = χfil(P
−1(b0), µ)χfil(B, µB)

for any N-filtration µ of P−1(b0).
In fact, the category A is the barycentric subdivision of Γ in Example 4.12 and
the category B is that of Z2 (see [Nog11] and [Nog]). Hence, Theorem 4.9 of
[Nog11] and Example 4.12 directly imply their Euler characteristics χfil(A, µA)
and χfil(B, µB).
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