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Abstract. In this article the existence of a minimizer for the energy
for the nonrelativistic one-electron Pauli-Fierz model within the class of
quasifree states is established. To this end it is shown thatthe minimum of
the energy on quasifree states coincides with the minimum ofthe energy on
pure quasifree states, where existence and uniqueness of a minimizer holds.
Infrared and ultraviolet cutoffs are assumed, along with sufficiently small
coupling constant and momentum of the dressed electron. A perturbative
expression of the minimum of the energy on quasifree states for a small
momentum of the dressed electron and small coupling constant is given.
We also express the Lagrange equation for the minimizer in terms of the
generalized one particle density matrix of the pure quasifree state.
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I Introduction and Main Results

We begin by introducing the mathematical model studied in this paper and mention
some well-known results before we describe the main resultsof the paper.
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I.1 The Hamiltonian

According to theStandard Model of Nonrelativistic Quantum Electrodynamics [4]
the unitary time evolution of a free nonrelativistic particle coupled to the quantized
radiation field is generated by the Hamiltonian

H̃g :=
1

2

(
1
i
~∇x − ~A(~x)

)2
+Hf (I.1)

acting on the Hilbert spaceL2(R3
x;F) of square-integrable functions with values in

the photon Fock space

F := F+(h) :=

∞⊕

n=0

F
(n)
+ (h). (I.2)

Here F
(0)
+ (h) = C · Ω is the vacuum sector and then-photon sectorF(n)

+ (h) =

Sn(h
⊗n) is the subspace of totally symmetric vectors on then-fold tensor product

of the one-photon Hilbert space

h =
{
~f ∈ L2(Sσ,Λ;C⊗ R3)

∣∣ ∀~k ∈ Sσ,Λ, a.e. : ~k · ~f(~k) = 0
}

(I.3)

of square-integrable, transversal vector fields which are supported in the momentum
shell

Sσ,Λ :=
{
~k ∈ R3

∣∣ σ ≤ |~k| ≤ Λ
}
, (I.4)

where0 ≤ σ < Λ < ∞ are infrared and ultraviolet cutoffs, respectively. The condi-
tion~k · ~f(~k) = 0 reflects our choice of gauge, namely, the Coulomb gauge. It isconve-

nient to fix real polarization vectors~ε±(~k) ∈ R3 such that{~ε+(~k), ~ε−(~k), ~k

|~k|} ⊆ R3

form a right-handed orthonormal basis (Dreibein) and replace (I.3) by

h = L2(Sσ,Λ × Z2), (I.5)

with the understanding that~f(~k) = ~ε+ f(~k,+) + ~ε− f(~k,−).
In (I.1) the energy of the photon field is represented by

Hf =

ˆ

|k| a∗(k) a(k) dk, (I.6)

where
´

f(k)dk :=
∑

τ=±
´

Sσ,Λ
f(~k, τ) d3k and {a(k), a∗(k)}k∈Sσ,Λ×Z2

are the
usual boson creation and annihilation operators constituting a Fock representation of
the CCR onF, i.e.,

[a(k) , a(k′)] = [a∗(k) , a∗(k′)] = 0, (I.7)

[a(k) , a∗(k′)] = δ(k − k′) 1, a(k)Ω = 0, (I.8)
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for all k, k′ ∈ Sσ,Λ × Z2. The magnetic vector potential~A(~x) is given by

~A(~x) =

ˆ

~G(k)
(
e−i~k·~x a∗(k) + ei

~k·~x a(k)
)
dk, (I.9)

with k = (~k, τ) ∈ R3 × Z2,

~G(~k, τ) := g ~ετ (~k) |~k|−1/2, (I.10)

andg ∈ R being the coupling constant. In our units, the mass of the particle and
the speed of light equal one, so the coupling constant is given asg = 1

4π

√
α, with

α ≈ 1/137 being Sommerfeld’s fine structure constant.
The HamiltonianH̃g preserves (i.e., commutes with) the total momentum operator
~p = 1

i
~∇x + ~Pf of the system, where

~Pf =

ˆ

~k a∗(k) a(k) dk (I.11)

is the photon field momentum. This fact allows us to eliminatethe particle degree of
freedom. More specifically, introducing the unitary operator

U : L2(R3
x;F) → L2(R3

p;F) ,
(
UΨ
)
(~p) :=

ˆ

e−i~x·(~p−~Pf )Ψ(~x)
d3x

(2π)3/2
,

(I.12)

one finds that

U H̃g U
∗ =

ˆ ⊕
Hg,~p d

3p, (I.13)

where

Hg,~p =
1

2

(
~Pf + ~A(~0)− ~p

)2
+ Hf (I.14)

is a self-adjoint operator ondom(H0,~0), the natural domain ofH0,~0 = 1
2
~P 2
f +Hf .

I.2 Ground State Energy and Bogolubov-Hartree-Fock Energy

Due to (I.13), all spectral properties of̃Hg are obtained from those of{Hg,~p}~p∈R3 .
Of particular physical interest is the mass shell for fixed total momentum~p ∈ R3,
coupling constantg ≥ 0, and infrared and ultraviolet cutoffs0 ≤ σ < Λ < ∞, i.e.,
the value of the ground state energy

Egs(g, ~p, σ,Λ) := inf σ[Hg,~p] ≥ 0 (I.15)

and the corresponding ground states (or approximate groundstates).
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We express the ground state energy in terms of density matrices with finite energy
expectation value and accordingly introduce

D̃M :=
{
ρ ∈ L1(F)

∣∣∣ ρ ≥ 0, TrF[ρ] = 1, ρH0,~0, H0,~0 ρ ∈ L1(F)
}
, (I.16)

so that the Rayleigh-Ritz principle appears in the form

Egs(g, ~p) = inf
{
TrF
[
ρHg,~p

] ∣∣∣ ρ ∈ D̃M
}
. (I.17)

Note thatTrF[ρHg,~p] = TrF[ρ
1−βHg,~p ρ

β], for all 0 ≤ β ≤ 1, due to our assumption
ρH0,~0, H0,~0ρ ∈ L1(F).

The determination ofEgs(g, ~p) and the corresponding ground stateρgs(g, ~p) ∈ D̃M

(provided the infimum is attained) is a difficult task. In thispaper we rather study ap-
proximations toEgs(g, ~p) andρgs(g, ~p) that we borrow from the quantum mechanics
of atoms and molecules, namely, the Bogolubov-Hartree-Fock (BHF) approximation.
We define the BHF energy as

EBHF (g, ~p, σ,Λ) = inf
{
TrF
[
ρHg,~p(σ,Λ)

] ∣∣∣ ρ ∈ QF
}
, (I.18)

with corresponding BHF ground state(s)ρBHF (g, ~p, σ,Λ) ∈ QF, determined by

TrF
[
ρBHF (g, ~p, σ,Λ) Hg,~p(σ,Λ)

]
= EBHF (g, ~p, σ,Λ), (I.19)

where

QF :=
{
ρ ∈ DM

∣∣∣ ρ is quasifree
}

⊆ DM (I.20)

denotes the subset of quasifree density matrices (of finite particle number; see
Sect. II.1).

I.3 Results

Our first result in Theorem IV.5 is that the minimal energy expectation value for all
quasifree density matricesQF is already obtained if the variation is restricted to pure
quasifree density matricespQF, i.e.,

EBHF (g, ~p, σ,Λ) := inf
ρ∈QF

Tr[Hg,~p ρ] = inf
ρ∈pQF

Tr[Hg,~p ρ] , (I.21)

see (I.20) and (II.40). The physical relevance of the minimization over (pure) quasifree
density matrices is seen by the fact that it includes densitymatrices of the form

ρsq =
∣∣ei[(a∗)2+a2]Ω

〉〈
ei[(a

∗)2+a2] Ω
∣∣, (I.22)

wherea ≡ a(f) for some one-photon statef . These are important states in quantum
optics known assqueezed light.
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The restriction to pure quasifree states has the great advantage that the latter have
a very convenient parametrization of their reduced one-particle density matrix given
in Proposition IV.12. This enables us to prove the existenceand uniqueness of a
(pure) quasifree minimizer(fg,~p, γg,~p, α̃g,~p) which minimizes the energy(f, γ, α̃) 7→
Eg,~p(f, γ, α̃) in Theorem VIII.3. The minimizer is characterized in Theorem VIII.8
by the Euler-Lagrange equations corresponding toEg,~p. We obtain expansions of the
minimizer and the corresponding minimal energy for smallg and~p in Theorem VIII.6.
Our proof uses a convexity and coercivity argument and the assumption that|g|, |~p| ≤
C are smaller than a certain constantC ≡ C(σ,Λ) which, however, is not uniformly
bounded asΛ → ∞ or σ → 0.

We also determine the minimizer in the case where the variation over pure quasifree
density matrices is further restricted to coherent states introduced in (II.41). More
precisely, we minimize the energy functionalL2(Sσ,Λ ×Z2) ∋ f 7→ Eg,~p(f, 0, 0) and
obtain the existence of a minimizerfg,~p and its uniqueness in Theorem VI.2 again by
a fixed-point argument. Compared to the general case studiedin Theorem VIII.3, our
assumption for the minimizing coherent state is much milder, namely, that|~p| ≤ 1/3
and thatg2 is small compared to1/ ln[Λ + 2]. As our equations are fairly explicit
in the coherent state case, we determine the leading orders in the expansions of the
minimizerfg,~p and of the minimal energyEg,~p(fg,~p, 0, 0) in powers ofg and|~p|. In
particular, the coefficient for the term proportional to|~p|2, which gives the “renormal-
ized electron mass for coherent states”, is computed in Proposition VII.1 and is found
to agree with the first order expansion inα of the renormalized mass of the electron,
as computed for example in [12]. Our result holds uniformly in σ → 0 but not in
Λ → ∞.

Outline of the article In Section II we discuss density matrices, density ma-
trices of finite particle number, pure density matrices and quasifree density matrices in
greater detail. We introduce our notation to describe the second quantization frame-
work in Section III. Section IV introduces two parametrizations of pure quasifree
states and contains the proof of Theorem IV.5. The energy functional for a fixed value
of the momentum~p of the dressed electron is computed in Section V, and some pos-
itivity properties of the different parts of the energy are established. From Section VI
on we tacitly assume that the coupling constant|g| > 0 is small. The energy is then
minimized in the particular case of coherent states in Section VI, providing a first up-
per bound to the energy of the ground state and a proof of Theorem VI.2. We then
turn in Section VIII to the problem of minimizing the energy over all pure quasifree
states. The existence and uniqueness of a minimizer among the class of pure quasifree
state is then proven in Section VIII.1 provided|~p| is small enough. The first terms
of a perturbative expansion for smallg and~p of the energy at the minimizer is com-
puted in Section VIII.2. Finally the Lagrange equations associated with the problem
of minimization in the generalized one particle density matrix variables are presented
in Section VIII.3.
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II Density Matrices and Quasifree Density Matrices

We now further discuss density matrices on Fock space and in particular give more
details about quasifree density matrices.

II.1 Density Matrices of Finite Particle Number

Recall that the ground state energy is obtained as

Egs(g, ~p) = inf
{
TrF

[
ρHg,~p

] ∣∣∣ ρ ∈ D̃M
}
. (II.23)

It is not difficult to see thatEgs(g, ~p) is already obtained as an infimum over all density
matrices

DM :=
{
ρ ∈ D̃M

∣∣∣ ρNf , Nf ρ ∈ L1(F)
}

(II.24)

of finite photon number expectation value, where

Nf =

ˆ

a∗(k) a(k) dk (II.25)

is the photon number operator. Indeed, ifσ > 0 then

Hg,~p ≥ Hf ≥ σNf , (II.26)

andDM = D̃M is automatic. Furthermore, ifσ = 0 then it is not hard to see [4] that
Egs(g, ~p, 0,Λ) = limσց0 Egs(g, ~p, σ,Λ), by using the standard relative bound

∥∥~A<σ(~0)ψ
∥∥ ≤ O(σ)

∥∥(Hf,<σ + 1)1/2 ψ
∥∥, (II.27)

where~A<σ(~0) andHf,<σ are the quantized magnetic vector potential and field energy,
respectively, for momenta belowσ. So, for all0 ≤ σ < Λ <∞, we have that

Egs(g, ~p, σ,Λ) = inf
{
TrF
[
ρHg,~p(σ,Λ)

] ∣∣∣ ρ ∈ DM
}
. (II.28)

Indeed, if the infimum (II.28) is attained atρgs(g, ~p, σ,Λ) ∈ DM then we call
ρgs(g, ~p, σ,Λ) a ground state ofHg,~p(σ,Λ).
SinceDM is convex, we may restrict the density matrices in (II.28) tovary only over
pure density matrices,

Egs(g, ~p, σ,Λ) = inf
{
TrF
[
ρHg,~p(σ,Λ)

] ∣∣∣ ρ ∈ pDM
}
, (II.29)

wherepuredensity matrices are those of rank one,

p̃DM :=
{
ρ ∈ D̃M

∣∣∣ ∃Ψ ∈ F, ‖Ψ‖ = 1 : ρ = |Ψ〉〈Ψ|
}
, (II.30)
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and

pDM := DM ∩ p̃DM. (II.31)

Another class of states that play an important role in our work is the set ofcentered
density matrices,

cDM :=
{
ρ ∈ DM

∣∣∣ ∀f ∈ h : TrF
[
ρ a∗(f)

]
= 0
}
. (II.32)

II.2 Quasifree Density Matrices

A density matrixρ ∈ DM is calledquasifree, if there existfρ ∈ h, a symplectomor-
phismTρ (see Definition III.6) and a positive, self-adjoint operator hρ = h∗ρ ≥ 0 onh
such that

〈
W (

√
2f/i)

〉
ρ
:= TrF

[
ρW (

√
2f/i)

]

= exp
[
2i Im〈fρ|f〉 −

1

2

〈
Tρf

∣∣(1 + hρ)Tρf
〉]
, (II.33)

for all f ∈ h, where

W (f) := exp
[
iΦ(f)

]
:= exp

[
i√
2

(
a∗(f) + a(f)

)]
(II.34)

denotes the Weyl operator corresponding tof and we write expectation values w.r.t.
the density matrixρ as〈·〉ρ.
There are several important facts about quasifree density matrices, which do not hold
true for general density matrices inDM. See, e.g., [5, 13, 7, 8]. The first such fact is
that if ρ ∈ QF is a quasifree density matrix then so isW (g)∗ρW (g) ∈ QF, for any
g ∈ h, as follows from the Weyl commutation relations

∀ f, g ∈ h : W (f)W (g) = e−
i
2
Im〈f |g〉W (f + g). (II.35)

Choosingg := −i
√
2fρ, we find thatρ̃ :=W (−i

√
2fρ)

∗ ρW (−i
√
2fρ) is a centered

quasifree density matrix, i.e.,

ρ̃ :=W (
√
2fρ/i)

∗ ρW (
√
2fρ/i) ∈ cQF := QF ∩ cDM. (II.36)

A characterization of centered quasifree density matricesis given in Appendix VII.
A second important fact is that any quasifree stateρ ∈ QF is completely determined
by its one-point function〈a(ϕ)〉ρ= 〈ϕ, fρ〉 and its two-point function (one-particle
reduced density matrix)

Γ[γρ, α̃ρ] :=

(
γρ α̃ρ

α̃∗
ρ 1+ J γρ J

)
∈ B

(
h ⊕ h), (II.37)

where the operatorsγρ, α̃ρ ∈ B(h) are defined as

〈ϕ, γρ ψ〉 := 〈a∗(ψ) a(ϕ)〉ρ̃ and 〈ϕ, α̃ρ ψ〉 := 〈a(ϕ) a(J ψ)〉ρ̃, (II.38)
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andJ : h → h is a conjugation. See Definition IV.8 and Remark IV.10. The positivity
of the density matrixρ implies thatΓ[γρ, α̃ρ] ≥ 0 and, in particular,γρ ≥ 0, too.
Moreover, the additional finiteness of the particle number expectation value, which
distinguishesDM from D̃M, ensures thatγρ ∈ L1(h) is trace-class, namely,

Trh[γρ] = 〈Nf 〉ρ < ∞, (II.39)

and that̃αρ ∈ L2(h) is Hilbert-Schmidt.
Similar to (II.30)-(II.31), we introduce pure quasifree density matrices,

pQF := QF ∩ p̃DM. (II.40)

A subset ofpQF of special interest is given bycoherent states, i.e., pure quasifree
states of the form|W (−i

√
2f)Ω〉〈W (−i

√
2f)Ω|, which we collect in

coh :=
{
|W (−i

√
2f)Ω〉〈W (−i

√
2f)Ω|

∣∣ f ∈ h
}
. (II.41)

For these,γρ = α̃ρ = 0.
Conversely, ifγ ∈ L1

+(h) is a positive trace-class operator andα̃ ∈ L2(h) is a Hilbert-
Schmidt operator such thatΓ[γ, α̃] ≥ 0 is positive then there exists a unique centered
quasifree density matrixρ ∈ cQF such thatγ = γρ andα = αρ are its one-particle
reduced density matrices.
Summarizing these two relations, the setQF of quasifree density matrices is in one-
to-one correspondence to the convex set

1−pdm :=
{
(f, γ, α̃) ∈ h ⊕ L1

+(h)⊕ L2(h)
∣∣∣ Γ[γ, α̃] ≥ 0

}
. (II.42)

Note that coherent states correspond to elements of1−pdm of the form(f, 0, 0).
Next, we observe in accordance with (II.42) that, ifρ ∈ QF is quasifree then its energy
expectation value〈Hg,~p〉ρ is a functional of(fρ, γρ, α̃ρ), namely,

〈
Hg,~p

〉
ρ
= Eg,~p(fρ, γρ, α̃ρ), (II.43)

where, as shown in Section V,

Eg,~p(f, γ, α̃) =
1

2

{
(Tr[γ~k] + 〈f,~kf〉+ 2Re(〈f, ~G〉)− ~p)·2

+Tr[γ~k · γ~k] + Tr[α̃∗~k · α̃~k] + Tr[|~k|2γ]

+ 2Re〈~G+ ~kf,·α̃(~G+ ~kf)〉+ 〈~G+ ~kf, ·(2γ + 1)(~G + ~kf)〉
}

+Tr[γ|~k|] + 〈f, |~k|f〉 , (II.44)

where|~a〉 · 〈~a| = ∑3
j=1 |aj〉〈aj |. Note that in this expression~k denotes the triple of

multiplication operators(k1, k3, k3). We also use the same notation~k for the momen-
tum variable, the meaning being clear from the context.
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III Second Quantization

In this section we describe in detail the second quantization framework we use, and in
particular we explain the notation introduced below, whichmay be unfamiliar to some
readers.
In what followsh will denote aC-Hilbert space with a scalar productC-linear in the
right variable andC-antilinear in the left variable.
LetB(X ;Y ) be the space of bounded operators between two Banach spacesX andY ,
and L1(h) the space of trace class operators onh. Given two C-Hilbert spaces
(hj , 〈·, ·〉j), j = 1, 2 and a bounded linear operatorA : h1 → h2, setA∗ : h2 → h1 to
be the operator such that

∀z1 ∈ h1, z2 ∈ h2, 〈z2, Az1〉2 = 〈z1, A∗z2〉1 ,

andReA := 1
2 (A⊕A∗), ImA := 1

2i (A⊕ (−A∗)) ∈ B(h1, h2)⊕ B(h2, h1).

Example III.1. Forz, z′ ∈ h,

〈z, z′〉 = z∗z′ .

The adjoint of a bounded operatorA onh isA∗.

Remark III.2. This notation applies in particular to one-particle vectors f ∈ h

identified with linear applications fromC to h or to two-particle vectorsα ∈ h⊗2

identified with linear applications fromC to h⊗2. For this purpose a slight general-
ization of the Dirac notation with bras and kets would have been sufficient, but we
would like to emphasize that in some situations, like in Equation (IV.58), it is natural
to apply this operation to more general objects. For vectorsand operators in a finite
dimensional spaceh this notation is consistent with the usual notation on matrices.

The symmetrization operatorSn onh⊗n is the orthogonal projection defined by

Sn(z1 ⊗ · · · ⊗ zn) =
1

n!

∑

π∈Sn

zπ1
⊗ · · · ⊗ zπn

and extension by linearity and continuity. The symmetric tensor product for vectors is
z1 ∨ z2 = Sn1+n2

(z1 ⊗ z2) and more generally for operators isA1 ∨ A2 = Sq1+q2 ◦
(A1 ⊗A2) ◦ Sp1+p2

for Aj ∈ B(h⊗pj ; h⊗qj ). We set

h∨n := Snh
⊗n, Bp,q := B(h⊗p; h⊗q).

Definition III.3. The symmetric Fock space on a Hilbert spaceh is defined to be

F+(h) :=

∞⊕

n=0

h∨n ,

whereh∨0 := CΩ, Ω being the normalized vacuum vector.
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For a linear operatorC on h such that‖C‖B(h) ≤ 1, let Γ(C) defined on eachh∨n

byC∨n and extended by continuity to the symmetric Fock space onh.
For an operatorA on h, the second quantizationdΓ(A) of A is defined on eachh∨n

by

dΓ(A)
∣∣∣
h∨n

= n1∨n−1
h ∨ A

and extended by linearity to
⊕alg

n≥0 h
∨n. The number operator isNf = dΓ(1h). For a

vectorf in h, the creation and annihilation operators inf are the linear operators such
thata(f)Ω = 0, a∗(f)Ω = f , and

a(f)g∨n =
√
n(f∗g) g∨n−1 , and a∗(f)g∨n =

√
n+ 1f ∨ g∨n , (III.45)

for all g ∈ h. By the polarization identity

∀g1, . . . , gn, g1 ∨ · · · ∨ gn =
1

2nn!

∑

εi=±1

ε1 · · · εn
( n∑

j=1

εjgj

)⊗n

Eq. (III.45) extends toh∨n and hence also to
⊕alg

n≥0 h
∨n. They satisfy the canonical

commutation relations[a(f), a∗(g)] = f∗g, [a(f), a(g)] = [a∗(f), a∗(g)] = 0.
The self-adjoint field operator associated tof isΦ(f) = 1√

2

(
a∗(f)+a(f)

)
. For more

details on the second quantization see the book of Berezin [6].

A dot “·” denotes an operation analogous to the scalar product inR3. For every two
objects~a = (a1, a2, a3) and~b = (b1, b2, b3) with three components such that the
productsajbj are well defined

~a ·~b :=
3∑

j=1

ajbj .

Example III.4. With ~p ∈ R3, ~G ∈ h3, ~k ∈ (B1,1)3

~p ·2 =
3∑

j=1

p2j ∈ R , ~k · ~p =
3∑

j=1

pjkj ∈ B1,1, ~p · ~G =
3∑

j=1

pjGj ∈ h ,

~k ·2 =

3∑

j=1

k2j ∈ B1,1, ~k · ~G =

3∑

j=1

kjGj ∈ h , ~G∗ · ~k =

3∑

j=1

G∗
jkj ∈ h∗,

~G · ~G∗ =

3∑

j=1

GjG
∗
j ∈ B1,1, ~G∗ · ~G =

3∑

j=1

G∗
jGj ∈ C ,

where for an object with three components~a = (a1, a2, a3) such thata∗j is well-

defined,~a∗ := (a∗1, a
∗
2, a

∗
3). We sometimes use the notation~p ·2 = |~p|2, or~k ·2 = |~k|2.

And with another product, such as the symmetric tensor product∨,

~k ·∨2 =

3∑

j=1

k∨2
j ∈ B2,2 , ~k ·∨~G =

3∑

j=1

kj ∨Gj ∈ B2,3 .
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Recall that the Weyl operators are the unitary operatorsW (f) = exp(iΦ(f)) satisfy-
ing the relations

∀z1, z2 ∈ h : W (z1)W (z2) = e−
i
2
Im(z∗

1z2)W (z1 + z1) , (III.46)

∀z ∈ h : W (−i
√
2z)Ω = e−

|z|2

2

∞∑

n=0

z∨n

√
n!
. (III.47)

We now introduce the usual parametrization of coherent states by vectors inh and of
Bogolubov transformations by symplectomorphisms.

Definition III.5. Thecoherent vectorsare the vectors of the form

Ez =W (−i
√
2z)Ω

for somez ∈ h and thecoherent statesare the states of the form

|Ez〉〈Ez | .

Definition III.6. A symplectomorphismT for the symplectic formIm〈·, ·〉 on a
C-Hilbert spaceh is a continuousR-linear automorphism onh which preserves this
symplectic form, i.e.,

∀z1, z2 ∈ h : Im〈Tz1, T z2〉 = Im〈z1, z2〉 .

A symplectomorphismT is implementableif there is a unitary operatorUT onF+(h)
such that

∀z ∈ h , UTW (z)U∗
T =W (Tz) .

In this caseUT is aBogolubov transformationcorresponding toT .

We recall a well-known parametrization, in the spirit of thepolar decomposition, of
implementable symplectomorphisms.

Proposition III.7. The set of implementable symplectomorphisms is the set of op-
erators

T = u exp[r̂] = u

∞∑

n=0

1

n!
r̂n ,

whereu is an isometry and̂r is an antilinear operator, self-adjoint in the sense that
∀z, z′ ∈ h, 〈z, r̂z′〉 = 〈z′, r̂z〉, and Hilbert-Schmidt in the sense that the positive
operatorr̂2 is trace-class. Equivalently, there exist a Hilbert basis(ϕj)j∈N of h and
(r̂i,j)i,j ∈ ℓ2(N2;C) such that

r̂ =

∞∑

i,j=1

r̂i,j 〈·, ϕj〉ϕi , ∀i, j ∈ N2 : r̂i,j = r̂j,i , and
∞∑

i,j=1

|r̂i,j |2 <∞.
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Proof. On the one hand, every operator of the formT = u exp[r̂] with u a unitary
operator and̂r a self-adjoint antilinear operator is a symplectomorphism. Since a
unitary operator is a symplectomorphism, and the set of symplectomorphisms is a
group for the composition, it is enough to prove thatexp[r̂] is a symplectomorphism.
It is indeed the case since, for allz, z′ in h,

Im〈er̂z, er̂z′〉 = Im〈er̂z, cosh(r̂)z′〉+ Im〈er̂z, sinh(r̂)z′〉
= Im〈cosh(r̂)er̂z, z′〉+ Im〈z′, sinh(r̂)er̂z〉
= Im〈cosh(r̂)er̂z, z′〉 − Im〈sinh(r̂)er̂z, z′〉
= Im〈e−r̂er̂z, z′〉 .

The implementability condition is then satisfied if we supposer̂ to be Hilbert-Schmidt.
On the other hand, to get exactly this formulation we give thestep to go from the
result given in Appendix A in [9] to the decomposition in Proposition III.7. In [9] an
implementable symplectomorphism is decomposed as

T = uecr̃ , (III.48)

whereu is a unitary operator,c is a conjugation and̃r is a Hilbert-Schmidt, self-
adjoint, non-negative operator commuting withc. It is then enough to set̂r = cr̃ to
get the expected decomposition. To check the self-adjointness ofr̂, observe that, for
all z, z′ in h,

〈z′, r̂z〉 = 〈z′, r̃cz〉 = 〈r̃z′, cz〉 = 〈z, cr̃z′〉 = 〈z, r̂z′〉 .

For the convenience of the reader we recall the main steps to obtain the decomposition
in Eq. (III.48). First decomposeT in itsC-linear and antilinear parts,T = L+A, then
write the polar decompositionL = u|L|. It is then enough to prove that|L|+u∗A is of
the formecr̃. >From certain properties of symplectomorphisms (also recalled in [9])
it follows that the antilinear operatoru∗A is self-adjoint and|L|2 + 1h = (u∗A)2. A
decomposition of the positive trace class operator(u∗A)2 =

∑
j λ

2
jeje

∗
j with ej an

orthonormal basis ofh yields|L| =∑j(1 + λ2j )
1/2eje

∗
j . Using thatλj → 0 one can

study the operator|L| andu∗A on the finite dimensional subspacesker(|L| − µ1h)
which are invariant underu∗A. It is then enough to prove that for aC-antilinear
self-adjoint operatorf such thatff∗ = λ2 on a finite dimensional space, there is an
orthonormal basis{ϕk}k such thatf(ϕk) = λϕk. The conjugation is then defined
such thatc(

∑
βkϕk) =

∑
β̄kϕk andr̃ = sinh−1(λj)1 on that subspace.

IV Pure Quasifree States

In this section we give a characterization of quasifree states and use this to show
that the infimum of the energy over quasifree states is equal to the infimum of the
energy over pure quasifree states. This result has been generalized to a wider class of
Hamiltonians and also to the case of fermion Fock space in [2].
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IV.1 From Quasifree States to Pure Quasifree States

Let h be theC-Hilbert spaceL2(Sσ,Λ × Z2). We make use of the following charac-
terization of quasifree density matrices.

Lemma IV.1. The set of quasifree density matrices and pure quasifree density ma-
trices, respectively, of finite photon number expectation value can be characterized
by

QF = DM
⋂{

W (−i
√
2f)U∗ Γ(C)

Tr[Γ(C)]
UW (−i

√
2f)∗

∣∣∣ f ∈ h, U a Bogolubov transformation,

C ∈ L1(h), C ≥ 0, ‖C‖B(h) < 1
}

pQF = DM
⋂{

W (−i
√
2f)U∗|Ω〉〈Ω|UW (−i

√
2f)∗

∣∣∣ f ∈ h, U a Bogolubov transformation
}

Proof. We only sketch the argument, details can be found in [6, 13]. It is not diffi-
cult to see that any density matrix of the formW (−i

√
2f)U∗ Γ(C)

Tr[Γ(C)]UW (−i
√
2f)∗

is indeed quasifree. Conversely, ifρ ∈ QF is a quasifree density matrix then
it is fully characterized by its one-point functionfρ ∈ h and two-point functions
(γρ, α̃ρ). Moreover,W (−i

√
2fρ)

∗ ρW (−i
√
2fρ) ∈ cQF is a centered quasifree

density matrix with the same one-particle density matrix, that is, the density ma-
trix W (−i

√
2fρ)

∗ ρW (−i
√
2fρ) corresponds to(0, γρ − fρf

∗
ρ , α̃ρ − fρf̄

∗
ρ ). Ob-

viously, γρ − fρf
∗
ρ is again trace-class and̃αρ − fρf̄

∗
ρ is Hilbert-Schmidt. Now,

we use that there exists a Bogolubov transformationU which eliminatesα̃ρ, i.e.,
U∗W (

√
2fρ/i)

∗ ρW (
√
2fρ/i)U corresponds to(0, γ̃ρ, 0). While this is the only non-

trivial step of the proof, we note that ifU is characterized byu andv as in Lemma IV.2
then there is an involved, but explicit formula that determinesu andv. Again γ̃ρ
is trace-class because the photon number operatorNf transforms underU∗ to itself

plus lower order corrections,U∗Nf U = Nf + O(N
1/2
f + 1). Finally, it is easy to

see that(0, γ̃ρ, 0) corresponds to the quasifree density matrixΓ(Cρ)/Tr[Γ(Cρ)] with
Cρ := γ̃ρ(1 + γ̃ρ)

−1. Following these steps we finally obtain

ρ =W (fρ)U
Γ(Cρ)

Tr[Γ(Cρ)]
U∗W (fρ)

∗ ,

as asserted. The additional characterization of pure quasifree density matrices is ob-
vious.

Lemma IV.2. Let U ∈ B(F) be a unitary operator. The following statements are
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equivalent:

U ∈ B(F) is a Bogolubov transformation; (IV.49)

⇔ ∃T implementable symplectomorphism, (IV.50)

U = ŨT , ŨTW (f)Ũ∗ =W (Tf).

⇔ ∃u ∈ B(h), v ∈ L2(h) ∀f ∈ h : (IV.51)

Ua∗(f)U∗ = a∗(uf) + a(J vJ f);

⇔ U = exp(iH), whereH = H∗ is a semibounded operator, (IV.52)

quadratic ina∗ anda and without linear term.

Proof. Again, we only sketch the argument. First note that (IV.49)⇔(IV.50) is the
definition of a Bogolubov transformation. Secondly,ŨTW (f)Ũ∗

T =W (Tf) is equiv-
alent toŨTΦ(f)Ũ

∗
T = Φ(Tf). Hence, using thata∗(f) = 1√

2
[Φ(f) − iΦ(if)] and

a(f) = 1√
2
[Φ(f) + iΦ(if)] we obtain the equivalence (IV.50)⇔(IV.51). Thirdly,

settingUλ = exp(iλH) anda∗λ(f) := Uλa
∗(f)U∗

λ , we observe that∂λa∗λ(f) =
i[H, a∗λ(f)]. Furthermore,[H, a∗λ(f)] is linear in a∗ and a if, and only if, H is
quadratic ina∗ and a. Solving this linear differential equation, we finally obtain
(IV.51)⇔(IV.52).

As a consequence, the class of quasifree states (resp. centered quasifree states) is
invariant under conjugation by Weyl transformations and Bogolubov transformations
(resp. Bogolubov transformations):

Lemma IV.3. For all Bogolubov transformationsU and allg ∈ h:

W (g)UQFU∗W (g)∗ =QF, (IV.53)

U cQFU∗ = cQF. (IV.54)

Remark IV.4. A pure quasifree state is a particular case of quasifree state with
C = 0, that isΓ(C) = |Ω〉〈Ω|.
We come to the main result of this section.

Theorem IV.5. Let 0 ≤ σ < Λ < ∞, g ∈ R and~p ∈ R3. Minimizing the energy
over quasifree states is the same as minimizing the energy over pure quasifree states,
i.e.,

EBHF (g, ~p, σ,Λ) := inf
ρ∈QF

Tr[Hg,~p ρ] = inf
ρ∈pQF

Tr[Hg,~p ρ] .

For the proof of Theorem IV.5 we derive a couple of preparatory lemmata.

Proposition IV.6. LetC be a non-negative operator onh, then
{
Tr[Γ(C)] <∞

}
⇔

{
C ∈ L1(h) and ‖C‖B(h) < 1

}
.

In this caseTr[Γ(C)] = det(1 − C)−1. (We refrain from defining the determinant.)
For the direction⇐ the non-negativity assumption is not necessary.
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Proof. Let us decomposeh =
⊕

j≥0 Cej whereC =
∑
cjeje

∗
j with (ej)j≥0 an

orthonormal basis ofh. ThenF+(h) =
⊗

j≥0 F+(Cej) and

Tr[Γ(C)] = Tr[
⊗

j≥0

Γ(cj)] =
∏

j≥0

Tr[Γ(cj)] =
∏

j≥0

1

1− cj

and the infinite product converges exactly whenC ∈ L1(h) and‖C‖B(h) < 1.

Lemma IV.7. Supposehd is of dimensiond < ∞. Then, for any non-negative oper-
ator Cd 6= 0 such thatCd ∈ L1(hd) and‖Cd‖B(hd) < 1, there exist a non-negative
measureµd (depending onC) of mass one onhd and a family{ρd(zd)}zd∈hd

of pure
quasifree states such that

Γ(C)

Tr[Γ(C)]
=

ˆ

hd

ρd(zd) dµd(zd) .

Proof. In finite dimensiond we can use a resolution of the identity with coherent
states (see, e.g., [6])

1Γ(hd) =

ˆ

hd

|Ezd〉〈Ezd |
dzd
πd

,

wherehd is identified withCd anddzd = dxd dyd, zd = xd + iyd. Using Equa-
tion (III.47) we get

Γ(C) =

ˆ

hd

Γ(C1/2)|Ezd〉〈Ezd |Γ(C1/2)
dzd
πd

=

ˆ

hd

|EC1/2zd〉〈EC1/2zd |
exp(|C1/2zd|2 − |zd|2)dzd

πd
.

The measuredµd(zd) = π−d exp(|C1/2zd|2 − |zd|2)dzd/Tr[Γ(C)] has mass one.
Indeed

ˆ

hd

exp(−z∗d(1hd
− C)zd)

dzd
πd

=

d∏

j=1

ˆ

R2

exp(−(1− cj)(x
2 + y2))

dx dy

π

=

d∏

j=1

1

1− cj
= Tr[Γ(C)],

whereC =
∑d

j=1 cjeje
∗
j with (ej)

d
j=1 an orthonormal basis ofhd.

Proof of Theorem IV.5.The inclusionpQF ⊂ QF implies that

inf
ρ∈QF

Tr[Hg,~p ρ] ≤ inf
ρ∈pQF

Tr[Hg,~p ρ] ,

and it is hence enough to prove for any quasifree state

ρqf = W (−i
√
2f)U∗

T

Γ(C)

Tr[Γ(C)]
UT W (−i

√
2f)∗ ,
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that the inequality
Tr[Hg,~p ρqf ] ≥ inf

ρ∈pQF
Tr[Hg,~p ρ]

holds true. The operatorC is decomposed asC =
∑

j≥0 cjeje
∗
j where(ej) is an

orthonormal basis of the Hilbert spaceh andcj ≥ 0. LetCd =
∑

j≤d cjeje
∗
j . Let

ρqf,d =W (−i
√
2f)U∗

T

Γ(Cd)

Tr[Γ(Cd)]
UT W (−i

√
2f)∗ ,

then using Lemma IV.7 withhd =
⊕

j≤d Cej , F+h = F+(hd⊕h⊥d )
∼= F+hd⊗F+h

⊥
d

and the extension of the operatorΓ(Cd) on F+hd to F+hd ⊗ F+h
⊥
d by Γ(Cd) ⊗

(|Ωh⊥
d
〉〈Ωh⊥

d
|) (which we still denote byΓ(Cd)), we obtain

ρqf,d =

ˆ

hd

ρd(zd) dµd(zd) ,

whereρd(zd) are pure quasifree states and theµd are non-negative measures with
mass one. Note that

νd :=
Tr[Γ(Cd)]

Tr[Γ(C)]
=
∏

j>d

(1 − cj) ր 1 ,

asd → ∞. Further note thatρqf ≥ νd ρqf,d, for anyd ∈ N, sinceΓ(C) ≥ Γ(Cd).
Thus

Tr[Hg,~p ρqf ] ≥ Tr[Hg,~p νdρqf,d]

= νd

ˆ

hd

Tr[Hg,~p ρd(zd)] dµd(zd)

≥ νd inf
zd∈hd

Tr[Hg,~p ρd(zd)]

≥ νd inf
ρ∈pQF

Tr[Hg,~p ρ] ,

for all d ∈ N, and in the limitd→ ∞, we obtain

Tr[Hg,~p ρqf ] ≥ lim
d→∞

{νd} inf
ρ∈pQF

Tr[Hg,~p ρ] = inf
ρ∈pQF

Tr[Hg,~p ρ] .

IV.2 Pure Quasifree States and their One-Particle Density Ma-

trices

We now define reduced density matricesρp,q resulting as marginals from a given den-
sity matrixρ on Fock space and derive a convenient parametrization for them in caseρ
is pure and quasifree. We also recall a characterization of the admissible one-particle
density matrices for pure quasifree states.
Let h be aC-Hilbert space.
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Definition IV.8. Letρ ∈ DM be a density matrix on the bosonic Fock spaceF+(h)

overh. If Tr[ρN
p+q
2

f ] <∞, we defineρp,q ∈ Bp,q(h) through

∀ϕ, ψ ∈ h , ψ∗∨pρp,qϕ∨q = Tr[a∗(ϕ)qa(ψ)pρ] .

We single out
f = ρ0,1 ∈ B0,1 ∼= h ,

i.e.,fρ ∈ h is the unique vector such thatTr[a(ψ) ρ] = ψ∗fρ, for all ψ ∈ h. Further-
more, withρ̃ = W (

√
2fρ/i)

∗ρW (
√
2fρ/i), the matrix elements of the (generalized)

one-particle density matrix are defined by

γρ = ρ̃1,1 ∈ B1,1 and αρ = ρ̃0,2 ∈ B0,2 ∼= h∨2 ,

in other words

∀ϕ, ψ ∈ h : 〈ψ , γρ ϕ〉 = Tr[ρ̃ a∗(ϕ)a(ψ)] ,

〈ψ ⊗ ϕ , αρ〉 = Tr[ρ̃ a(ψ)a(ϕ)] .

Note thatfρ, γρ, andαρ exist for anyρ ∈ DM sinceNfρ, ρNf ∈ L1(F+).

Remark IV.9. For a centered pure quasifree stateρ̃, ρ̃p,q vanishes whenp+q is odd.

Remark IV.10. Another definition of the one-particle density matrixγρ would be
through the relation〈ψ, γρϕ〉 = Tr[a∗(ϕ)a(ψ)ρ]. We prefer here a definition with a
“centered” versioñρ of the stateρ, because this centered quasifree stateρ̃ then satisfies
the usual Wick theorem. The same considerations hold forαρ.
Hence, any quasifree density matrix is characterized by(fρ, γρ, αρ), sinceρp,q can be
expressed in terms of(fρ, γρ, αρ).
Whenfρ = 0, the definition ofγρ is consistent with the usual one, forz1, z2 ∈ h,
〈z1, γρz2〉 = Tr[a∗(z2)a(z1)ρ]. The definition ofαρ is related with the definition
of the operator̂αρ (here denoted with a hat for clarity) used in the article of Bach,
Lieb and Solovej [5], through the relation〈z1 ⊗ z2, αρ〉h⊗2 = 〈z1, α̃ρcz2〉h with c a
conjugation onh.

Example IV.11. A centered pure quasifree state satisfies the relation,

ρ̃2,2 = γ ⊗ γ + γ ⊗ γ Ex+αα∗ ∈ B2,2 , (IV.55)

where the exchange operator is the linear operator onh⊗2 such that

∀z1, z2 ∈ h, Ex(z1 ⊗ z2) = z2 ⊗ z1

and where for anyb ∈ h⊗2, αα∗b = 〈α, b〉h⊗2 α.

We now turn to another parametrization of quasifree states,by vectors in a real Hilbert
space. This parametrization enables us to use convexity arguments.

Documenta Mathematica 18 (2013) 1481–1519



1498 Volker Bach, SÉbastien Breteaux, Tim Tzaneteas

Proposition IV.12. LetT = uer̂ be an implementable symplectomorphism andρ
a quasifree state of the formρ = U∗

T |Ω〉〈Ω|UT . Then

γρ = 1
2 (cosh(2r̂)− 1) , (IV.56)

∀z1, z2 ∈ h : 〈z1 ⊗ z2, αρ〉h⊗2 = 〈z1, 12 sinh(2r̂)z2〉 . (IV.57)

Proof of Proposition IV.12.We haveT i = uer̂i = uie−r̂ = iue−r̂ and for allz ∈ h

Tr[ρW (−i
√
2z)] = Tr

[
U∗

T |Ω〉〈Ω|UTW (−i
√
2z)
]

= 〈Ω|W (uer̂(−i
√
2z))|Ω〉

= 〈Ω|W (−i
√
2ue−r̂z)|Ω〉

= exp
(
− 1

2 |ue−r̂z|2
)

= exp
(
− 1

2 |e
−r̂z|2

)
.

>From this formula we can easily compute the function

h(t, s) := Tr
[
ρW (−ti

√
2z)W (−si

√
2z)
]
= exp

(
− 1

2 |e
−r̂(t+ s)z|2

)
,

whose derivative∂t∂s at (t, s) = (0, 0) involvesα andγ:

∂t∂sh(0, 0) = Tr
[
ρ(a∗(z)− a(z))2

]

= −2z∗γz + 2Re(α∗z∨2)− z∗z .

But we also have

∂t∂s exp(−
1

2
|e−r̂(t+ s)z|2)

∣∣∣
t=s=0

= −(e−r̂z)∗(e−r̂z)

= −(cosh(r̂)z − sinh(r̂)z)∗(cosh(r̂)z − sinh(r̂)z)

= −(cosh(r̂)z)∗(cosh(r̂)z)

+ 2Re(sinh(r̂)z)∗(cosh(r̂)z)− (sinh(r̂)z)∗(sinh(r̂)z)

= −z∗(cosh2 r̂ + sinh2 r̂)z + 2Re(z∗(sinh r̂ cosh r̂)z)

= −z∗ cosh(2r̂)z + 2Re(z∗
1

2
sinh(2r̂)z)

and hence, using the polarization identity

4z ∨ z′ = (z + z′)⊗2 − (z − z′)⊗2

to recover every vector fromh∨2 from linear combinations of vectors of the formz∨2,
we arrive at (IV.56)-(IV.57).

Proposition IV.13. The admissibleγ,α for a pure quasifree state are exactly those
satisfying the relation

γ + γ2 = (α⊗ 1)∗(1⊗ α) , (IV.58)

with γ ≥ 0.
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This is the constraint when we minimize the energy as a function of (f, γ, α) with the
method of Lagrange multipliers in Section VIII.3.

Proof. If γ, α are associated with a quasifree state, then there is anr̂ such thatγ, α
andr̂ satisfy Equations (IV.56) and (IV.57), then

〈z1, (α∗ ⊗ 1)(1⊗ α)z2〉 = (α∗ ⊗ z∗1)(z2 ⊗ α)

= ([α∗(z2 ⊗ 1)]⊗ z∗1)α

=
〈
α∗(z2 ⊗ 1), 12 sinh(2r̂)z1

〉
h

=
〈
α∗, z2 ⊗ 1

2 sinh(2r̂)z1
〉
h⊗2

=
〈
1
4 sinh

2(2r̂)z1, z2
〉
h

=
〈
(12 (cosh(2r̂)− 1) + 1

4 (cosh(2r̂)− 1)2)z1, z2
〉
h
.

Conversely, ifγ andα satisfy Eq. (IV.58) then we define theC-antilinear operator̂α
such that〈z1, α̂z2〉 = (z1 ⊗ z2)

∗α, and set̂r = 1
2 sinh

−1(2α̂), then

∀z1, z2 ∈ h : 〈z1 ⊗ z2, αρ〉h2 = 〈z1, α̂z2〉 =
〈
z1,

1
2 sinh(2r̂)z2

〉
,

which, in turn, implies that(α∗ ⊗ 1)(1⊗ α) = 1
4 sinh

2(2r̂). Hence, we have

γ + γ2 =
1

4
sinh2(2r̂)

and asγ ≥ 0, it follows thatγ = 1
2 (cosh(2r̂) − 1). Thenγ, α is associated with the

centered pure quasifree state whose symplectic transformation is exp[r̂].

V Energy Functional

In this section we calculate the energy of a quasifree state in terms of its characterizing
parameters, i.e., in terms of(f, γ, α) and(f, r).
Notation: We first recall that, as before, we denote by~k, and|~k| the multiplication
operators~k⊗1C2 and|~k|⊗1C2 onh = L2(Sσ,Λ×Z2), with three components in the
case of~k.
We now work at fixed values of total momentum~p ∈ R3. The operatorHg,~p is given
by

Hg,~p =
1

2
(dΓ(~k) + 2Re a∗(~G)− ~p)·2 + dΓ(|~k|) ,

where~G(k) = ~G(~k,±) := g|~k|−1/2~ε±(~k). The energy of a quasifree stateρ associ-
ated withf ∈ h, γ ∈ L1(h), α ∈ h∨2 is

Eg,~p(f, γ, α) := Tr[Hg,~p ρ] , (V.59)

whereh is theC-Hilbert spaceh = L2(Sσ,Λ × Z2) andL1(h) is the space of trace
class operators onh.
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Proposition V.1. The energy functional(V.59) is

Eg,~p(f, γ, α) =
1

2

{
(Tr[γ~k] + f∗~kf + 2Re(f∗ ~G)− ~p)·2

+Tr[γ~k · γ~k] + α∗(~k · ⊗~k)α+Tr[|~k|2γ]

+ 2Re{α∗[(~G+ ~kf)·∨2]}+Tr[(2γ + 1)(~G+ ~kf) · (~G+ ~kf)∗]
}

+Tr[γ|~k|] + f∗|~k|f . (V.60)

where the following positivity properties hold

(Tr[γ~k] + f∗~kf + 2Re(f∗ ~G)− ~p)·2 ≥ 0 ,

Tr[γ~k · γ~k] + Tr[γ~k]·2 + α∗(~k · ⊗~k)α +Tr[|~k|2γ] ≥ 0 ,

(Tr[γ~k] + f∗~kf + 2Re(f∗ ~G)− ~p)·2

+Tr[γ~k · γ~k] + α∗(~k · ⊗~k)α +Tr[|~k|2γ] ≥ 0 ,

2Re(α∗((~G+ ~kf)·∨2)) + Tr[(2γ + 1)(~G+ ~kf) · (~G+ ~kf)∗] ≥ 0 .

The energy of a pure quasifree state in the variablesf and r̂ is

Êg,~p(f, r̂) = 1
2

{
(Tr[ 12 (cosh(2r̂)− 1)~k] + f∗~kf + 2Re(f∗ ~G)− ~p)·2

+Tr[ 12 (cosh(2r̂)− 1)~k · 1
2 (cosh(2r̂)− 1)~k]

+ Tr[ 12 sinh(2r̂)
~k · 1

2 sinh(2r)
~k] + Tr[|~k|2 1

2 (cosh(2r̂)− 1)]

+ 2Re〈12 sinh(2r̂)(~G+ ~kf); (~G+ ~kf)〉
+Tr[(2 1

2 (cosh(2r̂)− 1) + 1)(~G+ ~kf) · (~G+ ~kf)∗]
}

+Tr[ 12 (cosh(2r̂)− 1)|~k|] + f∗|~k|f . (V.61)

Proof. Using the Weyl operators,

Eg,~p(f, γ, α) := Tr[Hg,~pρ] = Tr[Hg,~p(f)ρ̃]

whereHg,~p(f) = W (
√
2f/i)∗Hg,~pW (

√
2f/i) and ρ̃ = W (

√
2f/i)∗ρW (

√
2f/i),

so thatρ̃ is centered. Modulo terms of odd order, which vanish when we take the trace
against a centered quasifree state,Hg,~p(f) equals

Hg,~p(f) =
1

2

(
dΓ(~k) + f∗~kf + 2Re

(
a∗(~kf + ~G)

)
+ 2Re(f∗ ~G)− ~p

)·2

+ dΓ(|~k|) + f∗|~k|f + odd

=
1

2

(
dΓ(~k) + f∗~kf + 2Re(f∗ ~G)− ~p

)·2

+
1

2

(
2Re

(
a∗(~kf + ~G)

))·2
+ dΓ(|~k|) + f∗|~k|f + odd .
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To computeE(f, γ, α) we are thus lead to compute, for~ϕ ∈ h3 and~u ∈ R3,

Tr
[
ρ̃ (dΓ(~k) + ~u)·2

]
and Tr

[
ρ̃ (2Re{a(~ϕ)})·2

]
.

The expression of the energy as a function of(f, γ, α) then follows from Proposi-
tions V.2 and V.4. The expression of the energy as a function of (f, r) follows from
Proposition IV.12.

Proposition V.2. Let~u ∈ R3, then

0 ≤ Tr[ρ̃(dΓ(~k) + ~u)·2] = (Tr[γ~k] + ~u)·2 − Tr[γ~k]·2

+Tr[γ~k · γ~k] + Tr[γ~k]·2 + α∗(~k ·⊗~k)α+Tr[|~k|2γ] .

This condition is used with~u = ~p− f∗~kf − 2Re(f∗ ~G).

Proof. Indeed,

(dΓ(~k) + ~u)·2 = dΓ(~k)·2 + 2dΓ(~k) · ~u+ ~u ·2 .

Then we use thatTr[ρ̃ dΓ(~k)] = Tr[γ~k], add and substractTr[γ~k]·2 to complete the
square and computeTr[ρ̃ dΓ(~k)·2] using Lemma V.3.

Lemma V.3. LetX ∈ B1,1, then

0 ≤ Tr
[
ρ̃dΓ(X)dΓ(X)∗

]
=

= Tr[γXγX∗] + |Tr[γX ]|2 + α∗(X ⊗X∗)α+Tr[XX∗γ] .

Proof. Indeed, using Equation (IV.55),

Tr[ρ̃dΓ(X)dΓ(X)∗]

= Tr[ρ̃(

ˆ

X(k1, k
′
1)X(k2, k

′
2)a

∗(k1)a
∗(k2)a(k

′
2)a(k

′
1)dk1dk2dk

′
1dk

′
2 + dΓ(XX∗)]

= Tr[(γ ⊗ γ + γ ⊗ γ Ex+ αα∗)(X ⊗X∗)] + Tr[γ XX∗]

= Tr[γX ]Tr[γX∗] + Tr[γXγX∗] + α∗(X ⊗X∗)α+Tr[γ XX∗] .

Proposition V.4. Letϕ ∈ h, then

0 ≤ Tr[ρ̃(a∗(ϕ) + a(ϕ))2] = 2Re(α∗(ϕ∨2)) + Tr[(2γ + 1)ϕϕ∗] (V.62)

and|2Re(α∗(ϕ·∨2))| ≤ Tr[(2γ + 1)ϕϕ∗].

This condition is used with the three components of~ϕ = ~G+ ~kf .

Proof. A computation using the canonical commutation relations yields

Tr[ρ̃ (a∗(ϕ) + a(ϕ))2]

= Tr[ρ̃ (a∗(ϕ))2 + ρ̃ (a(ϕ))2 + ρ̃ (a∗(ϕ)a(ϕ) + a(ϕ)a∗(ϕ))]

= α∗ϕ∨2 + ϕ∨2∗α+Tr[γ ϕϕ∗ + (γ + 1)ψψ∗].
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VI Minimization over Coherent States

In this section we consider the problem of minimizing the energy over coherent states
and show that there is a unique minimizer. We also calculate the lower orders of the
energy at the minimizer seen as a function of the total momentum~p.
For this section we can takeσ = 0 if we consider the parameterf in the energy to be
in h̃ := L2(Sσ,Λ ×Z2, (

1
2 |~k|2 + |~k|)dk). Recall thatSσ,Λ = {~k ∈ R3 |σ ≤ |~k| ≤ Λ}.

We also recall that forz andz′ in some Hilbert space,z∗z′ = 〈z, z′〉 (see Section III).

Remark VI.1. For a coherent state (see Definition III.5) the energy reduces to

Eg,~p(f) =
1

2
‖ ~G‖2 + 1

2
(f∗~kf + 2Re(f∗ ~G)− ~p)·2 + f∗(12 |~k|

2 + |~k|)f . (VI.63)

Note that, forσ > 0, h = L2(Sσ,Λ × Z2, dk) = h̃, while for σ = 0, h ⊂ h̃, and
Eg,~p(f) extends tõh by using Equation (VI.63).

Theorem VI.2. There exists a universal constantC < ∞ such that, for0 ≤ σ <
Λ < ∞, g2 ln(Λ + 2) ≤ C and |~p| ≤ 1/3, there exists a uniquef~p which mini-

mizesEg,~p in h̃. The minimizerf~p solves the system of equations

f~p =
~u~p · ~G

1
2 |~k|2 + |~k| − ~k · ~u~p

, (VI.64)

~u~p = ~p− 2Re(f∗
~p
~G)− f∗

~p
~kf~p , (VI.65)

with |~u~p| ≤ |~p|.

Remark VI.3. Our hypotheses are similar those of Chen, Fröhlich, and Pizzo [10],
where their vector~∇Eσ

~p is analogous to~u~p in our notations.
The construction of~u~p as the solution of a fixed point problem and the dependency in
the parameter~p imply that the map~p 7→ ~u~p is of classC∞.

Remark VI.4. We note that we also expect to have~u~p in the neighborhood of~p.

Remark VI.5. The minimizer is constructed as the solution of a fixed point problem.
As a result the application

(σ,Λ, g, ~p) 7→ inf
ρ∈coh

Tr[Hg,~p ρ]

is continuous on the domain defined by Theorem VI.2, and atσ, Λ fixed,

(g, ~p) 7→ inf
ρ∈coh

Tr[Hg,~p ρ]

is analytic forg2 < C/ ln(Λ + 2) and|~p| < 1/3.
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Remark VI.6. The assumption on|~p| ≤ 1/3 is much weaker than in the quasifree
state case where we need to have~p smaller than a constantC which may be small.
In fact the1/3 is arbitrary and one may suppose only|~p| ≤ R for some constant
R < 1, but since this would result in a heavier exposition withoutproviding additional
relevant information, we restrict to|~p| ≤ 1/3.

To prove Theorem VI.2 we first show that the Equations (VI.64)and (VI.65) are nec-
essarily verified by a minimizer. We then show the existence and uniqueness of a
solution to these equations by a fixed point argument.

Proof of Theorem VI.2.Assume there is a pointf~p where the minimum is attained.
The partial derivative of the energy at the pointf~p

∂f∗E(f~p)

= ((f∗
~p
~kf~p − ~p+2Re(f∗

~p
~G)) ·~k+ 1

2
|~k|2 + |~k|)f~p − (~p− f∗

~p
~kf~p − 2Re(f∗

~p
~G)) · ~G

then vanishes, where the derivative∂f∗E(f) at a pointf is the unique vector iñh
∗ ∼=

L2(Sσ,Λ, (
1
2 |~k|2 + |~k|)−1dk) defined by

E(f + δf)− E(f) = 2Re(δf∗ ∂f∗E(f)) + o(‖δf‖
h̃
)

with f, δf ∈ h̃. Observe that

0 ≤ Eg,~p(0)− Eg,~p(f~p)

=
1

2
|~p|·2 − 1

2
(f∗

~p
~kf~p + 2Re(f∗

~p
~G)− ~p)·2 − f∗

~p (
1

2
|~k|2 + |~k|)f~p

and hence|~p| ≥ |~u~p| with ~u~p := ~p − f∗
~p
~kf~p − 2Re(f∗

~p
~G). Since|~u~p| ≤ |~p| < 1, it

makes sense to write

f~p =
~u~p · ~G

1
2 |~k|2 + |~k| − ~u~p · ~k

.

Hence the minimum pointf~p satisfies Equations (VI.64) and (VI.65). It is in particular
sufficient to prove that there exist a unique~u~p in a ballB̄(0, r) with r ≥ |~p| such that
the function in Equation (VI.64) satisfies also Equation (VI.65) to prove the existence
and uniqueness of a minimizer.
Proof of the existence and uniqueness of a solution.Let 1

3 < r < 1, ~u ∈ R3, |~u| ≤
r < 1 and

Φ~u(~k) =
~u · ~G(~k)

1
2 |~k|2 + |~k| − ~k · ~u

.

Observe thatΦ~u ∈ Z̃, indeed, if|~u| < 1 then1
2 |~k|2+ |~k|−~k ·~u ≥ (1−r)(12 |~k|2+ |~k|),
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and with~ε(~k) = ~ε(~k,+) + ~ε(~k,−),

ˆ

|~k|∈[σ,Λ]

(12 |~k|
2 + |~k|)|Φ~u(~k)|2dk ≤ g2

ˆ

|~k|∈[σ,Λ]

1

|~k|
1

(1− r)2
|~u · ~ε(~k)|2
1
2 |~k|2 + |~k|

dk < +∞ .

≤ C0g
2 ln(Λ + 2)

|~u|2
(1− r)2

for some universal constantC0 > 0. Observe then that

ˆ

|~k|∈[σ,Λ]

|~G(k)|2
1
2 |~k|2 + |~k|

dk ≤ C0g
2 ln(Λ + 2)

for some universal constantC0 > 0. It follows thatΦ∗
~u
~G ∈ L1(Sσ,Λ ×Z2). Note that

if σ = 0 thenΦ~u /∈ L2(Sσ,Λ × Z2) (for ~u 6= 0).
We can thus define the application

B̄(0, r) ∋ ~u 7→ ~Ψ(~u) := ~p− Φ∗
~u
~kΦ~u − 2Re(Φ∗

~u
~G) ∈ R3 .

We check that the hypotheses of the Banach-Picard fixed pointtheorem are verified
on the ballB̄(0, r), which will prove the result.
Stability: If g2 ln(Λ + 2) is sufficiently small, we get from

|~Ψ(~u)| ≤ |Φ∗
~u
~kΦ~u|+ |2Re(Φ∗

~u
~G)|+ |~p|

and the estimates above that the sum of the two first terms is smaller thanr− 1/3 and
since|~p| ≤ 1/3 the map~Ψ sendsB̄(0, r) into itself,

~Ψ(B̄(0, r)) ⊆ B̄(0, r) .

Contraction: For~u and~v in B̄(0, r), we have that

|Φ~u(~k)− Φ~v(~k)|(12 |~k|
2 + |~k|)

= | ~u. ~G(~k)
1
2 |~k|2 + |~k| − ~k · ~u

− ~v. ~G(~k)
1
2 |~k|2 + |~k| − ~k.~v

|(12 |~k|
2 + |~k|)

≤
( |~u− ~v||~G(~k)|

1
2 |~k|2 + |~k| − ~k · ~u

+ |~v||~G(~k)| | 1
1
2 |~k|2 + |~k| − ~k · ~v

− 1
1
2 |~k|2 + |~k| − ~k · ~u

|
)
(12 |~k|

2 + |~k|)

≤ |~u− ~v||~G(~k)| 1

(1− r)
(1 +

r|~k|
1
2 |~k|2 + |~k|(1− r)

)

≤ |~u− ~v||~G(~k)| 1

(1− r)2
.
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For the term2Re(Φ∗
~u
~G), we observe that

|2Re(Φ∗
~u
~G)− 2Re(Φ∗

~v
~G)|

≤ g22|~u− ~v| 1

(1− r)2

ˆ

|~k|∈[σ,Λ]

1

|~k|
1

1
2 |~k|2 + |~k|

d3k

≤ C1g
2 ln(2 + Λ)2|~u− ~v| 1

(1 − r)2
.

Note that, forg2 ln(2 + Λ) < (1− r)2/(3C1),

|2Re(Φ∗
~u
~G)− 2Re(Φ∗

~v
~G)| < 1

3
|~u− ~v| .

Finally, for the termΦ∗
~u
~kΦ~u, we obtain the estimate

|Φ∗
~u
~kΦ~u − Φ∗

~v
~kΦ~v|

≤
ˆ

|~k|∈[σ,Λ]

(12 |~k|
2 + |~k|)|Φ~u(~k)− Φ~v(~k)|(|Φ~u(~k)|+ |Φ~v(~k)|)d3k

≤ |~u− ~v|
(1 − r)2

ˆ

|~k|∈[σ,Λ]

|~G(~k)|(|Φ~u(~k)|+ |Φ~v(~k)|)d~k

≤ |~u− ~v|
(1 − r)2

‖(12 |~k|
2 + |~k|)−1/2G‖(‖

√
1
2 |~k|2 + |~k|Φ~u‖+ ‖

√
1
2 |~k|2 + |~k|Φ~v‖)

≤ C2|~u− ~v| (|~u|+ |~v|)g2 ln(Λ + 2) ,

and thus this term can be controlled for|g ln(Λ + 2)|2 sufficiently small by13 |~u− ~v|.
We thus get a contraction

|~Ψ(~u)− ~Ψ(~u′)| ≤ 2

3
|~u− ~u′|

and withf~p = Φ~u~p
Equation (VI.64) is solved.

We then obtain several explicit results from the expressionof this minimizer.

Corollary VI.7. With the same hypotheses as in Theorem VI.2:

1. For 0 ≤ σ < Λ <∞,

inf
f∈h

Eg,~p(f) = inf
f∈h̃

Eg,~p(f) = Eg,~p(f~p) ,

and for0 < σ < Λ <∞, we have thatf~p ∈ h.

2. For fixedg, σ, Λ, as a function of~p,

Eg,~p(f~p) = Eg,~p(0)− ~p · ~G∗ 1
1
2 |~k|2 + |~k|+ 2 ~G · ~G∗

~G · ~p+O(|~p|3) .
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3. For all f in h̃,

Eg,~p(f~p + f) = Eg,~p(f~p) + f∗(12 |~k|
2 + |~k| − ~u~p · ~k)f

+ 1
2

(
f∗~kf + 2Re(f∗

~p
~kf) + 2Re(f∗ ~G)

)·2
. (VI.66)

4. The energyEg,~p(f~p) of the minimizer compared to the energy of the vacuum
stateEg,~p(0) is

Eg,~p(f~p) = Eg,~p(0)− 1
22Re(f

∗
~p~u~p · ~G)− 1

2 |~u~p − ~p|2 .

Note that the term2Re(f∗
~p~u~p · ~G) is non-negative.

Proof of 1. is straightforward forσ > 0. Forσ = 0 one can approximate the mini-
mizer in h̃ by functions inh.

Proof of 2. The expression of the energyEg,~p(f) given in Equation (VI.63) implies
that Eg,~p(f) ≥ 1

2‖ ~G‖2, and for~p = ~0 this minimum is only attained at the point
f~0 = 0. It follows thatf~p = ∂~pf~0 · ~p+O(|~p|2) . >From Equation (VI.65) we deduce

~u~p = ~p− 2Re((∂~pf~0 · ~p)∗ ~G) +O(|~p|2)

and thus

f~p =
(~p− 2Re((∂~pf~0 · ~p)∗ ~G)). ~G

1
2 |~k|2 + |~k| − ~k · ~u~p

+O(|~p|2)

= (
1

2
|~k|2 + |~k|)−1(~p− 2Re((∂~pf~0 · ~p)∗ ~G)) · ~G+O(|~p|2) .

Expanding the left hand side of this equality in~0 brings

∂~pf~0 · ~p = (
1

2
|~k|2 + |~k|)−1(~p− 2Re((∂~pf~0 · ~p)∗ ~G)) · ~G

and hence∂~pf~0 = (12 |~k|2 + |~k| + 2 ~G · ~G∗)−1 ~G. The expansion off~p to the second
order is then

f~p = (
1

2
|~k|2 + |~k|+ 2 ~G · ~G∗)−1 ~G · ~p+O(|~p|2) .

We can compute the energy modulo error terms inO(|~p|3). To have less heavy com-
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putations we setA = 1
2 |~k|2 + |~k|+ 2 ~G · ~G∗ and get

Eg,~p(f~p)−
1

2
‖ ~G‖2 − 1

2
|~p|2

≡ −1

2
|~p|2 + 1

2
(2Re(~p · ∂~pf∗

~0
~G)− ~p)·2 + ~p · ∂~pf∗

~0
(
1

2
|~k|2 + |~k|)∂~pf∗

~0
· ~p

≡ 1

2
(2Re(~p · ~G∗A−1 ~G))·2 − 2~p · ~G∗A−1 ~G · ~p

+ ~p · ~G∗A−1(
1

2
|~k|2 + |~k|)A−1 ~G · ~p

≡ 2(~p · ~G∗A−1 ~G)·2 + ~p · ~G∗A−1((
1

2
|~k|2 + |~k|)− 2A)A−1 ~G · ~p

≡ ~p · ~G∗A−12 ~G · ~G∗A−1 ~G · ~p− ~p · ~G∗A−1(
1

2
|~k|2 + |~k|+ 4 ~G · ~G∗))A−1 ~G · ~p

≡ −~p · ~G∗(
1

2
|~k|2 + |~k|+ 2 ~G · ~G∗)−1 ~G · ~p

which yields the result.
Proof of 3.The Taylor expansion of the energy aroundf~p is

Eg,~p(f~p + f) = Eg,~p(f~p) + f∗ ∂f∗E(f~p) + ∂fE(f~p) f

+
1

2

{
(f∗~kf + 2Re(f∗ ~G) + 2Re(f∗

~p
~kf)).2

+ 2(f∗
~p
~kf~p + 2Re(f∗

~p
~G)− ~p) · f∗~kf + f∗|~k|2f

}
+ f∗|~k|f .

Since∂f∗E(f~p) vanishes this gives Equation (VI.66).
Proof of 4.It is sufficient to replacef by−f~p in Equation (VI.66). The observation

f∗
~p~u~p · ~G =

ˆ

(~u~p · ~G(~k))2dk
1
2 |~k|2 + |~k| − ~k · ~u~p

shows that2Re(f∗
~p~u~p · ~G) is non-negative since|~u~p| < 1.

VII Renormalized Electron Mass for Coherent states

In this section we use the coherent state minimizer found in Section VI in order to
determine the renormalized electron mass.

Proposition VII.1. The renormalized electron mass for coherent statesmcoh(g,Λ)
defined by

Eg,~p(fg,~p)− Eg,~0(fg,~0) =
1

2mcoh(g,Λ)
|~p|2 +O(|~p|3) .

is

mcoh(g,Λ) = 1 +
32π

3
g2 ln(1 +

Λ

2
) .
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Remark VII.2. This result agrees withmeff/m obtained in [12] to second order in

g, taking into account thatg in [12] equals
√
α

2π in the present paper, thatω(~k) = |~k|,
and that the massm of the electron is one in our units. See also (among others) [11]
or [3].

Proof. From

Eg,~p(fg,~p)− Eg,~p(0) =
1

2
|~p|2 − ~p·~G∗ 1

1
2 |~k|2 + |~k|+ 2 ~G · ~G∗

~G·~p+O(|~p|3)

and the fact that for~p = ~0 the minimizer isfg,~0 = 0, it follows that

Eg,~p(fg,~p)− Eg,~0(fg,~0) = Eg,~p(fg,~p)− Eg,~0(0)

= Eg,~p(fg,~p)− Eg,~p(0) +
1

2
|~p|2

=
1

2
|~p|2 − ~p·~G∗ 1

1
2 |~k|2 + |~k|+ 2 ~G · ~G∗

~G·~p+O(|~p|3)

where we used point 2 of Theorem VI.2 for the last equality. The power expansion of
(1− t)−1 yields

1
1
2 |~k|2 + |~k|+ 2 ~G · ~G∗

=
∞∑

j=0

1
1
2 |~k|2 + |~k|

(
− 2 ~G · ~G∗ 1

1
2 |~k|2 + |~k|

)j

and hence

Eg,~p(fg,~p)− Eg,~0(fg,~0) =
1

2
|~p|2 − 1

2

∞∑

j=1

~p·
(
− 2 ~G∗ 1

1
2 |~k|2 + |~k|

~G
)j

·~p+O(|~p|3)

=
1

2
~p ·
(
IdR3 + 2 ~G∗ 1

1
2 |~k|2 + |~k|

~G
)−1

·~p+O(|~p|3) .

The coherent renormalized mass is thus

mcoh = IdR3 + 2 ~G∗ 1
1
2 |~k|2 + |~k|

~G .

The proof is achieved by the computation of an integral that we give in a separate
lemma since it will be useful again later.

Lemma VII.3. Withσ = 0,

2 ~G∗ 1
1
2 |~k|2 + |~k|

~G = g2 8π
4

3
ln(1 +

Λ

2
) IdR3 .
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Proof. Using spherical coordinates

2~p · ~G∗ 1
1
2 |~k|2 + |~k|

~G · ~p = 2g2
ˆ

|~k|≤Λ

|~p·~ε+(~k)|2 + |~p·~ε−(~k)|2
1
2 |~k|3 + |~k|2

d~k

= 2g2|~p|2
ˆ

|~k|≤Λ

1− | ~p
|~p| ·

~k

|~k| |
2

1
2 |~k|3 + |~k|2

d~k

= 2g2|~p|2
ˆ Λ

0

ˆ 2π

0

ˆ π

0

1− cos2 ϕ
1
2ρ

3 + ρ2
sinϕdϕdθ ρ2dρ

= g2|~p|2 8π 4

3
ln(1 +

Λ

2
) ,

which yields the result.

VIII Minimization over Quasifree States

In this section we minimize the energy functional over the set of pure quasifree
states. We first obtain the existence and uniqueness of a purequasifree state in Theo-
rem VIII.3. As shown in Section IV this proves the existence (but not the uniqueness)
of a minimizer in the class of quasifree states. We then compute asymptotics for
small couplingg and momentump of the parametersfg,~p andrg,~p describing the pure
quasifree state minimizing the energy in Theorem VIII.6. From these asymptotics we
deduce an expansion of the energy at the minimizer. Finally we give in Theorem VIII.8
the Lagrange equations in terms of the parametersf , α andγ.

Remark VIII.1 . We believe that the assumptionσ > 0 is unnecessary, but we have
no proof for this assertion and do not follow it here, becausethe infrared singular limit
σ → 0 is not our concern in this paper.

VIII.1 Existence and Uniqueness of a Minimizer of the Energy

over Pure Quasifree States

In this section we minimize the energy over all pure quasifree states and show that
there is a unique minimizer.

Definition VIII.2 . Let h be aC-Hilbert space. LetY be theR-Hilbert space of
antilinear operatorŝr onh, self-adjoint in the sense that∀z, z′ ∈ h, 〈z, r̂z′〉 = 〈z′, r̂z〉,
and Hilbert-Schmidt in the sense that the positive operatorr̂2 is trace class. The space
X = h× Y with the scalar product

〈(f, r̂), (f ′, r̂′)〉X = f∗f ′ +Tr[r̂r̂′]

is anR-Hilbert space.
Keepingσ > 0, we only need to useh = L2(Sσ,Λ × Z2) in this section.
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Theorem VIII.3 . Let0 < σ < Λ <∞. There existsC > 0 such that forg, |~p| ≤ C
there exists a unique minimizer for̂Eg,~p(f, r̂).
Proof. This result follows from convexity and coercivity arguments. By Proposi-
tion VIII.4, Êg,~p(f, r̂) is strictlyθ-convex (i.e., uniformly strictly convex) on̄BX(0, R)

for someR > 0 andθ > 0. SinceÊg,~p(f, r̂) is strongly continuous on the closed and
convex setB̄X(0, R) of the Hilbert spaceX we get the existence and uniqueness of a
minimizer inB̄X(0, R). (See for example [1]. The uniform strict convexity allows to
prove directly that a minimizing sequence is a Cauchy sequence.) Proposition VIII.5
then proves that it is the only minimum of̂Eg,~p(f, r̂) on the whole space.
Note that to use Propositions VIII.4 and VIII.5 we need to restrict to values ofg and
|~p| smaller than some constantC > 0.

Proposition VIII.4 (Convexity). There exist0 < C,R < ∞ such that forg ≤ C
and |~p| ≤ 1

2 , the Hessian of the energy satisfiesHÊg,~p(f, r̂) ≥ σ
41X on the ball

BX(0, R).

Proof. We use that strict positivity of the Hessian implies strict convexity and thus
first compute the Hessian in(0, 0). The HessianHÊg,~p(f, r̂) ∈ B(X) is defined using
the Fréchet derivative

Êg,~p(f + δf, r̂ + δr̂)− Êg,~p(f, r̂)

= DÊg,~p(f, r̂)(δf, δr̂) +
1

2

〈
(δf, δr̂) , HÊg,~p(f, r̂) (δf, r̂)

〉
X
+ o(‖(δf, δr̂)‖2X)

with DÊg,~p(0, 0) ∈ B(X,R). (Note that differentiability is granted in this case be-
cause|~k| ≤ Λ <∞.) For anyµ > 0, ∀(f, r̂) ∈ X ,

〈(f,r̂) , 1
2
HÊg,~p(0, 0) (f, r̂)〉X

= 2Re〈r̂~kf ; ~G〉+ 1

2
(2Re(f∗ ~G))·2 +Tr[r̂2 ~G · ~G∗]

+
1

2

{
Tr[r̂~k · r̂~k] + Tr[|~k|2r̂2]

}

+Tr[r̂2(|~k| − ~k · ~p)] + f∗(
1

2
|~k|2 + |~k| − ~k · ~p)f

≥ Tr[r̂2 ~G · ~G∗]− µ‖r̂ ~G‖2 − 1

µ
‖~kf‖2

+
1

2

{
(2Re(δf∗ ~G))·2 +Tr[r̂~k · r̂~k] + Tr[|~k|2r̂2]

}

+Tr[r̂2(|~k| − ~k · ~p)] + f∗(
1

2
|~k|2 + |~k| − ~k · ~p)f

≥ Tr[r̂2(|~k| − ~k · ~p+ (1− µ)~G · ~G∗)] + f∗((
1

2
− 1

µ
)|~k|2 + |~k| − ~k · ~p)f ,

since

|2Re〈r̂~kf ; ~G〉| ≤ 2‖r̂ ~G‖‖~kf‖ = 2
√
µ‖r̂ ~G‖ 1√

µ
‖~kf‖ ≤ µ‖r̂ ~G‖2 + 1

µ
‖~kf‖2 .
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With µ = 2 we obtain (with|~p| ≤ 1
2 )

1

2
HÊg,~p(0, 0)(f, r̂) ≥ Tr[r̂2(|~k| − ~k · ~p− ~G · ~G∗)] + f∗(|~k| − ~k · ~p)f

≥ Tr[r̂2(|~k|(1 − ‖|~k|−1/2 ~G‖2)− ~k · ~p)] + f∗(|~k| − ~k · ~p)f

≥ Tr[r̂2σ(
1

2
− ‖|~k|−1/2 ~G‖2)] + f∗σ

2
f

and forg small enough
1

2
HÊg,~p(0, 0) ≥

σ

4
.

We then compare it with the Hessian in points near zero. Observing that the Hessian is
continuous with respect to(f, r̂, ~p, g), we deduce that there existR < ∞ andC > 0,
as asserted.

Proposition VIII.5 (Coercivity). Suppose~p andC > 0 are fixed such that12 |~p|2+
1
2‖ ~G‖2 < σR2, with the value ofR given by Proposition VIII.4, for any0 < g < C.
For every(f, r̂) ∈ X ,

Êg,~p(f, r̂) ≥ Tr[r̂2|~k|] + f∗|~k|f ≥ σ
∥∥(f, r̂)

∥∥2
X
.

SinceÊg,~p(0, 0) = 1
2 |~p|2 + 1

2‖ ~G‖2 < σR2, any minimizing sequence can be assumed
to take its values in̄BX(0, R).

VIII.2 Asymptotics for small Coupling and Momentum

In this section we calculate the ground state energy for small orders of the coupling
constantg and total momentum~p.
We use below an identification between self-adjointC-antilinear Hilbert-Schmidt op-
eratorr̂ and symmetric two vectorr given by the relation〈ϕ, r̂ψ〉h = 〈ϕ ⊗ ψ, r〉h⊗2 .
Note that the self-adjointness condition forr̂ is equivalent to the symmetry condi-
tion r ∈ h∨2.

Theorem VIII.6 . Let 0 < σ < Λ < ∞. There existsC > 0 such that for|g|, |~p| <
C, there exist two functionsfg,~p and r̂g,~p which are smooth in(g, ~p) such that the
minimum of the energŷEg,~p(f, r̂) is attained at(fg,~p, r̂g,~p). These functions satisfy

fg,~p =
~p·~G

1
2 |~k|2 + |~k|

+O(‖(g, ~p)‖3)

rg,~p = −S−1 ~G·∨2 +O(‖(g, ~p)‖3) ,

with S = ~k · ⊗~k + 2(12 |~k|2 + |~k|) ∨ 1h and where~G·∨2 =
∑3

j=1
~Gj ∨ ~Gj ∈ h ∨ h

(recall that∨ denotes the symmetric tensor product). As a consequence

EBHF (g, ~p, σ,Λ)

= Êg,~p(0X)− ~p · ~G∗ 1
1
2 |~k|2 + |~k|

~G · ~p− 1

2
~G·∨2∗S−1 ~G·∨2 +O(‖(g, ~p)‖5) .
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Recall that forz andz′ in a Hilbert space,z∗z′ = 〈z, z′〉.

Remark VIII.7 . The energy in0X is the energy of the vacuum state and is
Êg,~p(0X) = 1

2~p
·2 + 1

2‖ ~G‖2. Further note that by Lemma VII.3

2(~p · ~G∗)
1

1
2 |~k|2 + |~k|

(~G · ~p) = g2|~p|2 32π
3

ln

(
Λ + 2

σ + 2

)

and in particular does not depend on the choice of the polarization vectors~ε.
The quantity~G·∨2∗S−1 ~G·∨2 does not depend on the choice of the vectors~ε either
since

~G·∨2∗S−1 ~G·∨2 =
∑

µ,ν=±

ˆ |~ε(~k1, µ) · ~ε(~k2, ν)|2√
|~k1||~k2|S(~k1, ~k2)

d3k1d
3k2

and withP~u is the orthogonal projection on~u in R3,
∑

µ,ν=±
|~ε(~k1, µ) · ~ε(~k2, ν)|2 =

∑

µ,ν=±
TrR3 [P~ε(~k1,µ)

P~ε(~k2,ν)
]

= 1+TrR3 [P⊥
~k1
P⊥
~k2
]

= 1 +

( ~k1

|~k1|
·
~k2

|~k2|

)2

.

Proof of Theorem VIII.6.Let

F : (g, ~p, f, r̂) 7→ ∂f,r̂Êg,~p(f, r̂)

and
(
f
r̂

)
(g, ~p) :=

(
f(g,~p)
r̂(g,~p)

)
such that

F (g, ~p,
(
f
r̂

)
(g, ~p)) = 0 , (VIII.67)

then a derivation of Equation (VIII.67) with respect to(f, r̂) brings

∂g,~p
(
f
r̂

)
(0g,~p) = −

[
∂f,r̂F (0g,~p, 0f,r̂)

]−1
∂g,~pF (0g,~p, 0f,r̂) .

The term which is independent of(g, ~p) and quadratic in
(
f
r̂

)
in the energy is

1

2
{Tr[r̂Sr̂] + f∗(|~k|2 + 2|~k|)f}

thus, in(0g,~p, 0f,r̂),

∂f,r̂F =

(
|~k|2 + 2|~k| 0

0 S

)
.

To compute∂g,~pF in 0, observe that no part in the energy is linear in(g, ~p) and linear
in (f, r̂). Thus∂g,~pF (0g,~p, 0f,r̂) = 0 and we get

∂g,~pf(0g,~p) = 0 .

Documenta Mathematica 18 (2013) 1481–1519



Minimization of the Energy of the Nonrelativistic . . . 1513

Differentiating a second time Equation (VIII.67) brings

0 = ∂2g,~pF +2∂f,r̂∂g,~pF ◦∂g,~p
(
f
r̂

)
+∂f,r̂F ◦∂2g,~p

(
f
r̂

)
+∂2f,r̂F (∂g,~p

(
f
r̂

)
, ∂g,~p

(
f
r̂

)
) .

Since∂g,~p
(
f
r̂

)
(0g,~p) = 0, it follows that

∂2g,~p
(
f
r̂

)
(0g,~p) = −[∂f,r̂F (0g,~p, 0f,r̂)]

−1∂2g,~pF (0g,~p, 0f,r̂) .

The part of the energy which is quadratic in(g, ~p) and linear in(f, r̂) is−2Re(f∗ ~G) ·
~p+Re〈r̂ ~G; ~G〉, it follows that, in(0g,~p, 0f,r̂),

∂2g,~pF = 2

( (
1 0

)
∨
(
0 −2∂g ~G

)
(
∂g ~G 0

)
· ∨
(
∂g ~G 0

)
)
,

which gives in0g,~p

∂2g,~p
(
f
r̂

)
= 2

( (
1 0

)
∨
(

0
∂g

~G
1
2
|~k|2+|~k|

)

−S−1
(
∂g ~G 0

)
· ∨
(
∂g ~G 0

)
)
.

Hence the expansion of
(
f
r̂

)
up to order2.

We can thus express the energy around0g,~p modulo error terms inO(‖(g, ~p)‖5)

min
f,r̂

Êg,~p(f, r̂)− Êg,~p(0, 0)

≡ 1
2

{
(Tr[r̂2~k] + f∗~kf + 2Re(f∗ ~G)− ~p)·2 +Tr[r̂~k · r̂~k] + Tr[|~k|2r̂2]

+ 2Re〈r̂(~G+ ~kf); (~G+ ~kf)〉+ ‖ ~G‖2 + f∗|~k|2f
}

+Tr[r̂2|~k|] + f∗|~k|f − Êg,~p(0, 0)

≡ −2Re(f∗ ~G) · ~p+ 1
2Tr[r̂Sr̂] + Re〈r̂ ~G; ~G〉+ f∗(

1

2
|~k|2 + |~k|)f

≡ −2Re(f∗~p · ~G) + 1
2Tr[r̂Sr̂] + Re〈r̂ ~G; ~G〉+ f∗(

1

2
|~k|2 + |~k|)f

≡ −2
(~p · ~G)∗(~p · ~G)

1
2 |~k|2 + |~k|

+
1

2
~G·∨2∗S−1 ~G·∨2 − ~G·∨2∗S−1 ~G·∨2 +

(~p · ~G)∗(~p · ~G)
1
2 |~k|2 + |~k|

which completes the proof.

VIII.3 Lagrange Equations

In this section we derive a system of equations that determine critical points of the
energy functional. We formulate the results of Section VIII.1 in terms ofγ andα
subject to the constraintsγ + γ2 = (α∗ ⊗ 1h)(1h ⊗ α), without reference to the
parametrization ofγ andα in terms ofr̂.
Supposef ∈ h, α ∈ h∨2, γ ∈ L1(h), λ ∈ B(h) = B and~u ∈ R3. Let A(λ) =
1
2
~k ·∨~k + λ ∨ 1 andG(γ) = γ + γ2.
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Theorem VIII.8 . Suppose(f, γ, α) is a minimizer of the energy functionalE such
that ‖γ‖B(h) <

1
2 . Then there is a unique(λ, ~u) such that(f, γ, α, λ, ~u) satisfies the

following equations, equivalent to Lagrange equations

M(γ, ~u)f = −(~kγ − ~u) · ~G− ~k ·∨(~G+ ~kf)∗α (VIII.68)

A(λ)α = −1

2
(~G+ ~kf)·∨2 (VIII.69)

γ = G−1((α∗ ⊗ 1h)(1h ⊗ α)) (VIII.70)

λ =

ˆ ∞

0

e−t( 1
2
+γ)(M(γ, ~u) + (~G+ ~kf) · (~G+ ~kf)∗)e−t( 1

2
+γ)dt

(VIII.71)

~u = ~p− Tr[γ~k]− f∗~kf − 2Re(f∗ ~G) (VIII.72)

withM(γ, ~u) = 1
2 |~k|2 + |~k| − ~k · ~u+ ~k · γ~k.

Assuming|~p| < 1
2 , sufficient conditions such thatM(γ, ~u) andA(λ) are invertible

operators are|~u| < 1/2, γ ≥ 0 and‖λ − (|~k|2/2 + |~k| − ~p · ~k)‖B < σ/2. Equa-
tions (VIII.68) to (VIII.72) then form a system of coupled explicit equations.

Remark VIII.9 . To prove that Equations (VIII.68) to (VIII.72) admit a solution we
use here the result of existence of a minimizer proved in Section VIII.1. It can also be
proved directly by a fixed point argument by defining the applications

Ψf(f, α, γ, ~u) = −M(γ, ~u)−1(~kγ − ~u) · ~G− ~k ·∨(~G+ ~kf)∗α

Ψα(f, λ) = −A(λ)−1 1

2
(~G+ ~kf)·∨2

Ψγ(α) = G−1((α∗ ⊗ 1h)(1h ⊗ α))

Ψλ(f, γ, ~u) =

ˆ ∞

0

e−t( 1
2
+γ)(M(γ, ~u) + (~G+ ~kf) · (~G+ ~kf)∗)e−t( 1

2
+γ)dt

Ψ~u(f, γ) = ~p− Tr[γ~k]− f∗~kf − 2Re(f∗ ~G)

defined on balls of centers0, 0, 0, 1
2 |~k|2 + |~k| − ~k·~p and ~p and proving that the

application

Ψ(f,λ)(f, λ) = (Ψf [f,Ψα {f, λ} ,Ψγ {Ψα(f, λ)} ,Ψ~u {f,Ψγ(Ψα [f, λ])}] ,
Ψλ [f,Ψγ {Ψα(f, λ)} ,Ψ~u {f,Ψγ(Ψα [f, λ])}])

is a contraction for a convenient choice of the radiuses and asufficiently small cou-
pling constantg. Note that it is then convenient to consider the norm ofL2(Sσ,Λ ×
Z2, |~k|2) for f .

Proof of Theorem VIII.8.Indeed, set~u = ~p−Tr[γ~k]− f∗~kf − 2Re(f∗ ~G) and define
the partial derivatives as∂f∗E(f, γ, α) ∈ h, ∂α∗E(f, γ, α) ∈ h∨2 and∂γE(f, γ, α) ∈
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B(h) ∼= L1(h)′ such that

E(f + δf, γ + δγ, α+ δα) − E(f, γ, α)
= 2Re(δf∗ ∂f∗E(f, γ, α)) + 2Re(δα∗ ∂α∗E(f, γ, α))
+ Tr[δγ ∂γE(f, γ, α)] + o(‖(δf, δγ, δα)‖h×L1(h)×h∨2) .

Recall the energy functional is given by Equation (V.60) andthis yields

∂f∗E(f, γ, α) = 1

2

{
2(~kf + ~G) · (Tr[γ~k] + f∗~kf + 2Re(f∗ ~G)− ~p)

+ 2~k ·∨(~G+ ~kf)∗α+ ~k · (2γ + 1)(~G+ ~kf)
}
+ |~k|f

= −(~kf + ~G) · ~u+ ~k · ∨(~G+ ~kf)∗α+ ~k · γ(~G+ ~kf) + |~k|f
=M(γ, ~u)f + (~kγ − ~u) · ~G+ ~k ·∨(~G+ ~kf)∗α ,

∂α∗E(f, γ, α) = 1

2
(~k ·⊗~k)α+

1

2
(~G+ ~kf)·∨2 ,

∂γE(f, γ, α) =
1

2

{
2~k · (Tr[γ~k] + f∗~kf + 2Re(f∗ ~G)− ~p)

+ 2~k · γ~k + |~k|2 + 2(~G+ ~kf) · (~G+ ~kf)∗
}
+ |~k|

=M(γ, ~u) + (~G+ ~kf) · (~G+ ~kf)∗ .

The constraint given by Equation (IV.58) can be expressed as

C(f, γ, α) = 0 (VIII.73)

with

C : h× L1(h)× h∨2 → L1(h)

(f, γ, α) 7→ γ + γ2 − (α∗ ⊗ 1h)(1h ⊗ α) .

Equation (VIII.73) is equivalent to Equation (VIII.70). The applicationC has a differ-
entialDC(f, γ, α) : h× L1(h)× h∨2 → L1(h) such that

DC(f, γ, α)(δf, δγ, δα)
= δγ + δγ γ + γ δγ − (δα∗ ⊗ 1h)(1h ⊗ α)− (α∗ ⊗ 1h)(1h ⊗ δα) .

For‖γ‖B(h) <
1
2 the applicationDC(f, γ, α) is surjective. Indeed it is already surjec-

tive on{0}×L1(h)×{0}, since, for everyγ′ ∈ L1(h) the equationδγ+δγ γ+γ δγ =
γ′ with unknownδγ has at least one solution, see Proposition VIII.10. We can then
apply the Lagrange multiplier rule (see for example the bookof Zeidler [14]) which
tells us that there exists aλ ∈ B(h) such that

∀(δf, δα, δγ) , DE(f, α, γ)(δf, δα, δγ) + Tr[DC(f, α, γ)(δf, δα, δγ)λ] = 0 ,

that is to say

2Re(δf∗∂f∗E(f, γ, α) + δα∗∂α∗E(f, γ, α)) + Tr[∂γE(f, γ, α)δγ]
+ Tr[(δγ + δγ γ + γ δγ − (δα∗ ⊗ 1h)(1h ⊗ α)− (α∗ ⊗ 1h)(1h ⊗ δα))λ] = 0 .
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This is equivalent to Equations (VIII.68), (VIII.69) and

λ(
1

2
+ γ) + (

1

2
+ γ)λ =M(γ, ~u) + (~G+ ~kf) · (~G+ ~kf)∗ (VIII.74)

Using again Proposition VIII.10 we get that Equation (VIII.74) is equivalent to Equa-
tion (VIII.71).
For the invertibility ofA(λ) note that

A(λ) =
1

4
(~k ⊗ 1+ 1⊗ ~k)·2 + (|~k| − ~k.~p+ λ− 1

2
|~k|2 − |~k|+ ~k · ~p) ∨ 1

≥ (
σ

2
− λ− (|~k|2/2 + |~k| − ~p · ~k)‖B)1 ∨ 1 .

ForM(γ, ~u),M(γ, ~u) = 1
2 |~k|2+|~k|−~k ·~u+~k ·γ~k ≥ σ/2 if γ ≥ 0 and|~u| < 1/2.

Let us recall a well known expression for the solution of the Sylvester or Lyapunov
equation.

Proposition VIII.10. LetA andB be bounded self-adjoint operators on a Hilbert
space. SupposeA ≥ a1 with a > 0. Then the equation

AX +XA = B

for X a bounded operator has a unique solutionχA(B) =
´∞
0 e−tABe−tAdt.

If B a trace class operator then the solutionX is also trace class.

Proof. Indeed,χA(B) is a solution because

AχA(B) + χA(B)A =

ˆ ∞

0

e−tA(AB +BA)e−tAdt

= −
ˆ ∞

0

d

dt
(e−tABe−tA)dt = B .

Conversely, suppose thatAX +XA = B, then

χA(B) =

ˆ ∞

0

e−tA(AX +XA)e−tAdt

= −
ˆ ∞

0

d

dt
(e−tAXe−tA)dt = X ,

and thus any solutionX is equal toχA(B). Hence the solution is unique.

A Equivalent Characterizations of Centered Quasifree Density

Matrices

In this appendix we give various equivalent characterizations of quasifree states. In
particular we remark that (ii) in Lemma A.1 below corresponds to the definition of
quasifree states in terms of Wick’s Theorem.
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Lemma A.1. Let ρ ∈ cDM be a centered density matrix and denote〈A〉ρ :=
TrF{ρA}. Then(i) ⇔ (ii) ⇔ (iii), where

(i) ρ ∈ cQF is centered and quasifree;

(ii) All odd correlation functions and all even truncated correlation functions ofρ
vanish, i.e., for allN ∈ N andϕ1, . . . , ϕ2N ∈ h, let eitherbn := a∗(ϕn) or
bn := a(ϕn), for all 1 ≤ n ≤ 2N . Then〈b1 · · · b2N−1〉ρ = 0 and

〈
b1 b2 · · · b2N

〉
ρ
=

∑

π∈P2N

〈
bπ(1) bπ(2)

〉
ρ
· · ·
〈
bπ(2N−1) bπ(2N)

〉
ρ
, (A.75)

whereP2N denotes the set of pairings, i.e., the set of all permutationsπ ∈ S2N

of 2N elements such thatπ(2n− 1) < π(2n+ 1) andπ(2n− 1) < π(2n), for
all 1 ≤ n ≤ N − 1 and1 ≤ n ≤ N , respectively.

(iii) There exist two commuting quadratic, semibounded Hamiltonians

H =
∑

i,j

{
Bi,j a

∗(ψi) a(ψj) + Ci,ja
∗(ψi) a

∗(ψj) + Ci,ja(ψi) a(ψj)
}

(A.76)

H ′ =
∑

i,j

{
B′

i,j a
∗(ψi) a(ψj) + C′

i,ja
∗(ψi) a

∗(ψj) + C′
i,ja(ψi) a(ψj)

}

(A.77)

with B = B∗ ≥ 0, C = CT ∈ L2(h), where{ψi}i∈N ⊆ h is an orthonormal
basis, such thatexp(−H − βH ′) is trace class, for allβ <∞, and

〈A〉ρ = lim
β→∞

{
TrF[A exp(−H − βH ′)]

TrF[exp(−H − βH ′)]

}
, (A.78)

for all A ∈ B(F).

Eq. (II.36) and the vanishing (ii) of the truncated correlation functions of a centered
quasifree state imply that any quasifree stateρ ∈ QF is completely determined by its
one-point function〈a(ϕ)〉ρ and its two-point function (one-particle reduced density
matrix).
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