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ABSTRACT. In this article the existence of a minimizer for the energy
for the nonrelativistic one-electron Pauli-Fierz modethii the class of
quasifree states is established. To this end it is showrthleaninimum of
the energy on quasifree states coincides with the minimutineoénergy on
pure quasifree states, where existence and uniquenessipimairer holds.
Infrared and ultraviolet cutoffs are assumed, along witficgantly small
coupling constant and momentum of the dressed electron. riirpative
expression of the minimum of the energy on quasifree states small
momentum of the dressed electron and small coupling conistagiven.
We also express the Lagrange equation for the minimizerringdeof the
generalized one particle density matrix of the pure quesitate.
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I INTRODUCTION AND MAIN RESULTS

We begin by introducing the mathematical model studied is plaper and mention
some well-known results before we describe the main resfittse paper.
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1482 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

1.1 THE HAMILTONIAN

According to theStandard Model of Nonrelativistic Quantum Electrodynas i
the unitary time evolution of a free nonrelativistic pagicoupled to the quantized
radiation field is generated by the Hamiltonian

—

. —A@)? + Hy (.1)

acting on the Hilbert spact?(R2;F) of square-integrable functions with values in
the photon Fock space

g @3(”’ : (1.2)

n=0

Here 3" (§) = C - Q is the vacuum sector and thephoton sectos™ (5) =
n(h®”) is the subspace of totally symmetric vectors on thfold tensor product
of the one-photon Hilbert space

- —

h = {feL*(Son;COR?) |VE € Spp ace.: k- f(k)=0}  (1.3)

of square-integrable, transversal vector fields which apperted in the momentum
shell

Son = {k€R® | o <|k| <A}, (1.4)

where0 < o < A < oo are infrared and ultraviolet cutoffs, respectively. Thedie
tionk- f(k) = Oreflects our choice of gauge, namely, the Coulomb gaugecdlrise—

nient to fix real polarization vectog. (k) € R? such that{e', (k),z_ (k), r |} CR3
form a right-handed orthonormal basis (Dreibein) and rem(@3) by

b = L*(Sen X Zs), (1.5)

with the understanding tha(k) = £, f(k,+) + & f(k, —).
In (L.I) the energy of the photon field is represented by

Hy - /|k;|a*(k)a(k)dk:, (1.6)

where [ f(k)dk = > _. [o | f(k,7)dk and {a(k),a*(k)}res, Axz, are the
usual boson creation and annlhllatlon operators conistifi Fock representation of
the CCR org, i.e.,

la(k), a(k)] = la"(k), a"(K')] = O, (1.7)
[a(k), a*(K')] =6(k—K)1, a(k)Q = 0, (1.8)
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forall k, k" € S, o X Zy. The magnetic vector potenti&l(f) is given by

— -

A@@) = / G(k)(e’“z'fa*(k)+eik'5a(k)) dk, (1.9)
with k = (k,7) € R3 x Zs,
G(k,) = g&.(k) |k, (1.10)
andg € R being the coupling constant. In our units, the mass of thég&amand

the speed of light equal one, so the coupling constant isngsgy = ﬁ\/&, with
a =~ 1/137 being Sommerfeld’s fine structure constant.

The HamiltonianH, preserves (i.e., commutes with) the total momentum operato
7= 1V, + Ps of the system, where

P = /Ea*(k)a(k)dk (1.11)

is the photon field momentum. This fact allows us to elimirthteparticle degree of
freedom. More specifically, introducing the unitary operat

o B A3z
. T2(3. 2(m3. L iz (5—P ~
U : L*(R%;§) — L*(R%;3), (UY)(p) = /e (P f)\II(Z)W’
(1.12)
one finds that
~ @ 5
UH,U* = / H, 5 dp, (1.13)
where
1, = P N2
Hy 5 = 5(Pf + A(0) —p) + Hy (1.14)
is a self-adjoint operator adbm(H,, 5), the natural domain off, ; = %ﬁf + Hy.

1.2 GROUND STATE ENERGY AND BOGOLUBOV-HARTREE-FOCK ENERGY

Due to [L.I3), all spectral properties ﬁ?g are obtained from those ¢ff, ;} sers.
Of particular physical interest is the mass shell for fixegltonomentuny € R?,
coupling constany > 0, and infrared and ultraviolet cutoffts< o < A < o0, i.e.,
the value of the ground state energy

Eo(g,p,0,A) = info[Hyz > 0 (1.15)

and the corresponding ground states (or approximate grstates).
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1484 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

We express the ground state energy in terms of density matvidth finite energy
expectation value and accordingly introduce

o = {pe @) |p=0, Trslol =1, pHyg Hygo € £'F)},  (126)

so that the Rayleigh-Ritz principle appears in the form
Egs(9,9) = inf{Trg [p Hy 5] ‘p € 5971} (1.17)

Note thatlrz[p H, 5] = Trg|p' =P H, 5 p°], forall0 < 8 < 1, due to our assumption
pHoﬁv Hoﬁp € ‘Cl(g)

The determination oE,; (g, p) and the corresponding ground state(g, p) € oM
(provided the infimum is attained) is a difficult task. In tp&per we rather study ap-
proximations taE, (g, p) andpgs(g, p) that we borrow from the quantum mechanics
of atoms and molecules, namely, the Bogolubov-Hartred«[BEF) approximation.
We define the BHF energy as

Epur(g,p,o,A) = inf {Trg [p Hy (0, A)] ‘ pe Qg}, (1.18)
with corresponding BHF ground state(s) iy » (g, 9, o, A) € QF, determined by
Trg [pprF(9,7,0,A) Hy5(0,A)] = Epur(g,p,0,A), (1.19)
where
QF = {p € DM } pis quasifre% c oM (1.20)

denotes the subset of quasifree density matrices (of firatdigee number; see
Sect[1.]).
[.3 RESuLTS

Our first result in Theoreii TV5 is that the minimal energy esgation value for all
quasifree density matrice3g is already obtained if the variation is restricted to pure
guasifree density matrice®g, i.e.,

E 7.0 A) := inf Tr[H,sp] = inf Tr[H, » 1.21
BrF(9,0,0,A) Jnf r[Hy 5 p] jank [Hy 0], (1.21)

see[[.2D) and(I.40). The physical relevance of the mimation over (pure) quasifree
density matrices is seen by the fact that it includes demséirices of the form

Psq = |ei[(a*)2+a2] Q><ei[(a*)2+a2] Q|7 (1.22)

wherea = a(f) for some one-photon stafe These are important states in quantum
optics known asqueezed light
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The restriction to pure quasifree states has the great tayarthat the latter have
a very convenient parametrization of their reduced ondéigdadensity matrix given
in Propositio IV.I2. This enables us to prove the existemwé uniqueness of a
(pure) quasifree minimizeif, 7, 7.5, &tg,5) Which minimizes the energyf, v, &) —
Ey.5(f,7, @) in Theoren{VIIL3. The minimizer is characterized in Thenf§IL.8]
by the Euler-Lagrange equations corresponding,tg. We obtain expansions of the
minimizer and the corresponding minimal energy for smalhdp'in Theoreni VIIL.6.
Our proof uses a convexity and coercivity argument and teeraption thatg|, |p] <

C are smaller than a certain constaht= C(o, A) which, however, is not uniformly
bounded ag\ — oo oro — 0.

We also determine the minimizer in the case where the vanatver pure quasifree
density matrices is further restricted to coherent state®duced in[(IL4ll). More
precisely, we minimize the energy functioda(S, » x Z2) > f — &, 5(f,0,0) and
obtain the existence of a minimizgy ; and its uniqueness in Theorém V1.2 again by
a fixed-point argument. Compared to the general case stirdigteorent VIIL3, our
assumption for the minimizing coherent state is much mjldamely, thatp] < 1/3
and thatg? is small compared ta/In[A + 2]. As our equations are fairly explicit
in the coherent state case, we determine the leading oméhne iexpansions of the
minimizer f, ; and of the minimal energ¥, »(f,,7,0,0) in powers ofg and|p]. In
particular, the coefficient for the term proportional#?, which gives the “renormal-
ized electron mass for coherent states”, is computed ind3itppn[VI[. 1 and is found
to agree with the first order expansiondrof the renormalized mass of the electron,
as computed for example ih_[12]. Our result holds unifornmlysi — 0 but not in

A — o0.

OUTLINE OF THE ARTICLE In SectioriI] we discuss density matrices, density ma-
trices of finite particle number, pure density matrices amaksifree density matrices in
greater detail. We introduce our notation to describe tlversg quantization frame-
work in SectiorIl. Sectioi IV introduces two parametripat of pure quasifree
states and contains the proof of Theofem|IV.5. The energstifumal for a fixed value

of the momentunp of the dressed electron is computed in Sedfidon V, and some pos
itivity properties of the different parts of the energy astablished. From Sectign VI
on we tacitly assume that the coupling constght> 0 is small. The energy is then
minimized in the particular case of coherent states in 88fi], providing a first up-
per bound to the energy of the ground state and a proof of Enedf.2. We then
turn in Sectioi_ VIl to the problem of minimizing the energyeu all pure quasifree
states. The existence and uniqueness of a minimizer amerdgths of pure quasifree
state is then proven in Sectién VIIl.1 providgd is small enough. The first terms
of a perturbative expansion for smallandp of the energy at the minimizer is com-
puted in Sectiof VIIL.R. Finally the Lagrange equationsoasted with the problem
of minimization in the generalized one particle density nxatariables are presented
in SectiorLVIIL3.
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II DENSITY MATRICES AND QUASIFREE DENSITY MATRICES

We now further discuss density matrices on Fock space andriicplar give more
details about quasifree density matrices.

II.1 DENSITY MATRICES OF FINITE PARTICLE NUMBER

Recall that the ground state energy is obtained as

Egs(%ﬁ) = inf {Trg[pHgyﬁ} pE@T}. (11.23)

Itis not difficult to see thaE,s (g, p) is already obtained as an infimum over all density
matrices

DM = {peéﬁt ‘ pNs, Nyp € ,cl(g)} (11.24)

of finite photon number expectation value, where

Ny = /a*(k) a(k) dk (1.25)
is the photon number operator. Indeeds if- 0 then
Hyp > Hy > o Ny, (11.26)

andD9 = DM is automatic. Furthermore, # = 0 then it is not hard to se& [4] that
Eus(9,7,0,A) = lime o Egs(g, P, 0, A), by using the standard relative bound

[A<o(0) 9] < Oo) ||(Hpco + 1) 0], (11.27)

where&@(ﬁ) andHy .. are the quantized magnetic vector potential and field energy
respectively, for momenta below So, for all0 < o < A < oo, we have that

Eg(g,5,0,7) = inf{Trg [p Hy (0, A)] \ pe @sm}. (11.28)
Indeed, if the infimum[(I.2Z8) is attained ai(g, 7,0, A) € DM then we call
pes(g, P, 0, A) a ground state off, (o, A).

Since®M is convex, we may restrict the density matricesin (Il.28yadoy only over
pure density matrices,

Eyo(9.5,0,A) = inf {Trg[p Hy 5(0, A)] \ p € poM|, (11.29)
wherepuredensity matrices are those of rank one,

—~—

pOM = {peéﬁt}axye& I =1: p=[wNw|}, (11.30)
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and
pOM = DM N pDOM. (11.31)

Another class of states that play an important role in ourkvi®the set ofcentered
density matrices,

DM = {pE@Sﬁ‘VfEb: Trg [pa*(f)] :0}. (1.32)

I1.2 QUASIFREE DENSITY MATRICES

A density matrixp € ©91 is calledquasifreg if there existf, € h, a symplectomor-
phismT), (see Definition IIL.6) and a positive, self-adjoint operdig = /7, > 0 onb
such that

(W(V2f/1)), = Trg[pW(V2f/i)]
= exp [20Tm{fy 1) — (T 7|0+ BT D], (1.33)
forall f € b, where
W(f) = exp [i0(f)] = exp [ (a*() +a(H)]  (1.34)

denotes the Weyl operator corresponding tand we write expectation values w.r.t.
the density matriy as(-),.

There are several important facts about quasifree densitgicas, which do not hold
true for general density matrices@li. See, e.g./[5, 13/ 7] 8]. The first such fact is
that if p € QF is a quasifree density matrix then soli&(g)* pW (g) € QF, for any

g € b, as follows from the Weyl commutation relations

i

Vigeb:  W(HW(g) = e 2™V W(f+g). (11.35)

Choosingg := —iv/2f,, we find thaty :=W (—iv/2f,)* pW(—iv/2f,) is a centered
quasifree density matrix, i.e.,

p=W(2f,)i)* pW (V2f, /i) € QF = QF N cOM. (11.36)

A characterization of centered quasifree density matigegven in AppendiVIl.
A second important fact is that any quasifree sjate Q3§ is completely determined
by its one-point functiona(y)),= (¢, f,) and its two-point function (one-particle
reduced density matrix)

L[y, a,) = (gf; 1+\‘;ﬂ%j) € B(hah), (1.37)

where the operators,, &, € B(h) are defined as

(&, 1) = (a"(P)alp))y and (o, ap¢) = (a(p)a(TY))s,  (11.38)

DOCUMENTA MATHEMATICA 18 (2013) 1481-1519



1488 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

andJ : b — b is a conjugation. See Definition 1V.8 and Remlark1V.10. Thsifhaty
of the density matrix implies thatl'[y,, &,] > 0 and, in particular;y, > 0, too.
Moreover, the additional finiteness of the particle numbegregetation value, which
distinguisheMt from DM, ensures that, € £'(h) is trace-class, namely,

Try[y,] = (Ng)p < o0, (1.39)

and thati, € £2(h) is Hilbert-Schmidt.
Similar to (I.30)-(I1.31), we introduce pure quasifreendéy matrices,

pOF = QF N pDM. (11.40)

A subset ofpQF of special interest is given bgoherent states.e., pure quasifree
states of the forniV (—i/2f)Q) (W (—iv/2£)|, which we collect in

coh = {|W(—=iV2f)Q)(W(—iv2/)Q|| f € b} (1.41)

For thesey, = &, = 0.

Conversely, ify € L1 (h) is a positive trace-class operator ané £(h) is a Hilbert-
Schmidt operator such thBfy, &] > 0 is positive then there exists a unique centered
quasifree density matrix € ¢Q§F such thaty = v, anda = «,, are its one-particle
reduced density matrices.

Summarizing these two relations, the sE¥ of quasifree density matrices is in one-
to-one correspondence to the convex set

1-pdm = {(£,7,d) €y @ £L.(9) @ £2(9) | Tlra] 20} (1.42)

Note that coherent states correspond to elements-@idm of the form( £, 0, 0).
Next, we observe in accordance with (I1.42) thap if QF is quasifree then its energy
expectation valugH, ;) , is a functional of( f,,, v,, &,), namely,

(Hyz), = €.5(fps Vor Cp), (11.43)

where, as shown in Sectigd V,

£,.5(1,.@) = {(TryF] + (£, K f) + 2Rel(,G)) ~ )
+ Tr[yk - vk] + Tr[a*k - ak] + Tr[|k[?]
+2Re(G + Ef a(G + Kf) + (G + Ef.-(2y+1)(G +Ef) )
+ Tr[y|k[] + (. |EL£) (11.44)

where|a) - (a| = Z?zl |a;){a;|. Note that in this expressiondenotes the triple of

multiplication operatorgk; , ks, k3). We also use the same notatiofor the momen-
tum variable, the meaning being clear from the context.
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IIT SECOND QUANTIZATION

In this section we describe in detail the second quantindtamework we use, and in
particular we explain the notation introduced below, whitdly be unfamiliar to some
readers.

In what followsh will denote aC-Hilbert space with a scalar produCtlinear in the
right variable andC-antilinear in the left variable.

Let B(X;Y') be the space of bounded operators between two Banach spauety’,
and £!(h) the space of trace class operatorsipn Given two C-Hilbert spaces
(h;,(-,-);), 7 = 1,2 and a bounded linear operatdr: h; — hs, setA* : hs — by to
be the operator such that

Vz1 € b1, 22 € ba, (22, Az1)2 = (21, A*22)1,
andReA := %(A @ A*), ImA := %(A ® (—A*)) € B(h1,b2) @ B(b2, b1).

ExampLE lll.1. Forz, 2’ € b,

(2,2/y = 2*2.

The adjoint of a bounded operatdronh is A*.

REMARK Ill.2. This notation applies in particular to one-particle veciof € §
identified with linear applications fron to h or to two-particle vectorsy € hH*?
identified with linear applications frorC to h®2. For this purpose a slight general-
ization of the Dirac notation with bras and kets would haverbsufficient, but we
would like to emphasize that in some situations, like in Egud[\.58), it is natural
to apply this operation to more general objects. For vectamd operators in a finite
dimensional spack this notation is consistent with the usual notation on ntatsi

The symmetrization operatdk, onh®" is the orthogonal projection defined by
1
Sn(21®-.-®zn): E Z Zﬂ'l®"'®2ﬂ-n
WEGW,

and extension by linearity and continuity. The symmetnist® product for vectors is
21V 22 = Sp,4ns (21 @ 22) and more generally for operatorsds V As = Sg, 44, ©
(A1 ® Az) 0 Sp,4p, TOr A; € B(h®Pi; h¥9 ). We set

BV = S,h°", BPY = B(in%).

DerINITION 111.3. The symmetric Fock space on a Hilbert spads defined to be

[e.°]

F+(0) =Py,

n=0

whereh V0 := C(, Q being the normalized vacuum vector.
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For a linear operataf’ on b such that|C/||z;) < 1, letT'(C) defined on eaclh ™"
by CV™ and extended by continuity to the symmetric Fock spack.on
For an operator on b, the second quantizatiafi'(A) of A is defined on each""
by
_ vn—1

dl'(A) o nlg" VA
and extended by linearity @', h"". The number operator i§; = dI'(1;). For a
vectorf in b, the creation and annihilation operatorgfiare the linear operators such
thata(f)Q =0, a*(f)Q2 = f,and

a(fg"™ =vn(f*g) g"" ", anda*(f)g"" =Vn+1fvg'™,  (ll.45)
for all g € . By the polarization identity

1
v.gla"'agna 91\/"'\/%:%251"'
Eizl

n @n
En ( Z Ejgj)
j=1

Eq. (IIL.48) extends td)¥"™ and hence also t@ffé’o h¥™. They satisfy the canonical

commutation relationg:(f), a*(g9)] = f*g, [a(f),a(g)] = [a*(f),a*(g)] = 0.

The self-adjoint field operator associatedftis ®(f) = % (a*(f)+a(f)). Formore

details on the second quantization see the book of Beriekin [6

A dot “." denotes an operation analogous to the scalar produke inFor every two
objectsd@ = (ai,a2,a3) andb = (b1, bs, b3) with three components such that the
productsa;b; are well defined

3
6 . EZ: Zajbj .
j=1
ExAMPLE I1.4. With 7€ R3, G € b3, k € (B11)3

3 3 3
PR peR, Rp=) pky € BYL piG =) piGieh,
j=1

J=1 J=1

3 3 3
oY ReB B G-YkGen GE-Y Gher

j=1 j=1 j=1

3 3
G-G"=> G,G;eB",G"-G=> G;G;eC,

j=1 j=1
where for an object with three compone@ts= (a1, az,as) such thata; is well-
defined @* := (a}, a3, a3). We sometimes use the notatigr? = |5]2, ork 2 = |k|2.
And with another product, such as the symmetric tensor grodu

3 3
kY2 =Y k% e B>, k-vG =Y kiVG;eB?.
j=1

j=1
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Recall that the Weyl operators are the unitary operdd(g) = exp(i®(f)) satisfy-
ing the relations

V21, 20 €D W (21)W (22) = e #mE2 W (2 + 2), (111.46)

Vzeh: W(—iv22)Q = e*$ Z

n=0

ZVn
ﬁ . (11.47)
We now introduce the usual parametrization of coherenestay vectors i) and of
Bogolubov transformations by symplectomorphisms.
DeriniTION HI1.5. Thecoherent vectorare the vectors of the form

E. = W(-iv22)Q
for somez € h and thecoherent stateare the states of the form

|E2)(E-|.

DEerINITION II1.6. A symplectomorphisri#’ for the symplectic formim(-,-) on a
C-Hilbert space) is a continuouR-linear automorphism oh which preserves this
symplectic form, i.e.,

Vz1, 22 €5 : Im(Tz1,Tz9) = Im(zy, 22) .

A symplectomorphisri is implementabléf there is a unitary operatdfr on g ()
such that
Vzeb, UrW(z)Up=W(Tz).

In this caséJr is aBogolubov transformationorresponding t@".

We recall a well-known parametrization, in the spirit of fh&lar decomposition, of
implementable symplectomorphisms.

ProrosiTiON Il.7. The set of implementable symplectomorphisms is the set of op
erators

oo 1
— Al — — an
T =uexp[f]=u g L
n=0

wherew is an isometry and is an antilinear operator, self-adjoint in the sense that
Vz,2' € b, (z,7#z') = (2/,7z), and Hilbert-Schmidt in the sense that the positive
operator#? is trace-class. Equivalently, there exist a Hilbert bagis) ;e of h and
(7:,5)i,; € £2(N?;C) such that

) )
T = Z 721'7]' <', QDJ> ©i VZ,] c N2 : 721'7]' = 72]"1', and Z |7gi’j|2 < 00.

i,j=1 ,J=1
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Proof. On the one hand, every operator of the fofim= w exp[#] with « a unitary
operator and® a self-adjoint antilinear operator is a symplectomorphis@ince a
unitary operator is a symplectomorphism, and the set of &ohpmorphisms is a
group for the compoasition, it is enough to prove thep[7] is a symplectomorphism.
It is indeed the case since, for allz’ in b,

Im(e"z, e"2') = Im(e” 2, cosh(7)2') 4+ Im(e" z, sinh(#)2')

Tin
Im(cosh(#)e’ z, 2') + Im(2’, sinh(#)e’ z)
Im(cosh(#)e’ 2, 2') — Im(sinh(7)e" 2, 2')
Im({e™

e ez, 2.

m

The implementability condition is then satisfied if we sup@bto be Hilbert-Schmidt.
On the other hand, to get exactly this formulation we give step to go from the
result given in Appendix A in[9] to the decomposition in PosjtionILZ. In [S] an
implementable symplectomorphism is decomposed as

T = ue", (11.48)

wherew is a unitary operatorg is a conjugation and is a Hilbert-Schmidt, self-
adjoint, non-negative operator commuting withlt is then enough to set = ¢ to
get the expected decomposition. To check the self-adjegstiofi, observe that, for
all z, 2/ in b,

(2 P2y = (', Fcz) = (T2, cz) = (z,c72") = (2,72') .

For the convenience of the reader we recall the main stegst&dnthe decomposition
in Eq. (IIL.48). First decomposE in its C-linear and antilinear partg, = L+ A, then
write the polar decompositioh = u|L|. Itis then enough to prove thgt|+u* A is of
the forme®”. >From certain properties of symplectomorphisms (alsalted in [9])

it follows that the antilinear operatai* A is self-adjoint andL|? + 15, = (u*A)%. A
decomposition of the positive trace class operatord)® = >°. Aejer with e; an
orthonormal basis of yields|L| = (1 + A?)!/2¢;e5. Using that; — 0 one can
study the operatof| andu* A on the finite dimensional subspades(|L| — u1y)
which are invariant undet* A. It is then enough to prove that for @antilinear
self-adjoint operatof such thatf f* = A2 on a finite dimensional space, there is an
orthonormal basi§ . } . such thatf(pr) = )\cpk The conjugation is then defined
such that(Y" Brpr) = 3 Brer andF = sinh ™' ();)1 on that subspace. O

IV PURE QUASIFREE STATES

In this section we give a characterization of quasifreeestaind use this to show
that the infimum of the energy over quasifree states is equtid infimum of the
energy over pure quasifree states. This result has beenalienad to a wider class of
Hamiltonians and also to the case of fermion Fock spacg in [2]
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IV.1 FRrROM QUASIFREE STATES TO PURE QUASIFREE STATES

Let h be theC-Hilbert spacel?(S,.a x Z2). We make use of the following charac-
terization of quasifree density matrices.

LEmMA IV.1. The set of quasifree density matrices and pure quasifresityema-
trices, respectively, of finite photon number expectat@aines can be characterized

by

aF = om() {W(z‘\@f)U*%

‘ f € b, UaBogolubov transformatign

UW (—iv2f)*
C e L), C 20, |Clsw <1}

pOF =D0Mm() {W(fi\/ﬁ FIUSQQUW (—iv2[)*

’f € b, U a Bogolubov transformatio}1

Proof. We only sketch the argument, details can be foundlin [6, 13} hot diffi-
cult to see that any density matrix of the fof(—iv/2f)U* %UW(—@'\/?JC)*

is indeed quasifree. Conversely, 4f € QF is a quasifree density matrix then
it is fully characterized by its one-point functiof) € b and two-point functions
(Vp,&p). Moreover, W (—iv/2f,)* pW(—iv2f,) € ¢QF is a centered quasifree
density matrix with the same one-particle density matrattis, the density ma-
trix W(—iv/2f,)* pW(—iv2f,) corresponds t40,v, — f,f5, &, — f,f;). Ob-
viously, v, — f,f, is again trace-class ang, — f,,f; is Hilbert-Schmidt. Now,
we use that there exists a Bogolubov transformatibwhich eliminatesa,,, i.e.,
U*W (v2f,/i)* pW (v/2f,/i)U corresponds t0, 7,,, 0). While this is the only non-
trivial step of the proof, we note thatlif is characterized by andv as in LemmalV.P
then there is an involved, but explicit formula that deteresiv andv. Again 7,

is trace-class because the photon number opefétdransforms undet* to itself
plus lower order correction&]* Ny U = Ny + O(N;/? + 1). Finally, it is easy to
see that0, 7,, 0) corresponds to the quasifree density mali{’,,) / Tr[I'(C,)] with
C, :=79,(1+7,)"*. Following these steps we finally obtain

L'(Cy)

as asserted. The additional characterization of pure fjgasiensity matrices is ob-
vious. O

LeEMMA IV.2. LetU € B(F) be a unitary operator. The following statements are
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equivalent:
U € B(3F) is a Bogolubov transformation; (IV.49)
< 3T implementable symplectomorphism, (IV.50)
U=0Ur, UrW(H)U*=W(Tf).
= JuecBbh), ve L2H)Vfeh: (IV.51)

Ua*(f)U* = a*(uf) + a(TvTf);

< U =exp(iH), whereH = H* is a semibounded operator, (IV.52)
guadratic ina® anda and without linear term.

Proof. Again, we only sketch the argument. First note that (N44@V.50) is the
definition of a Bogolubov transformation. Secondly; W (f)Uz = W (T'f) is equiv-
alent toUr®(f)U; = @(T'f). Hence, using that*(f) = J5[®(f) — i®(if)] and
a(f) = %[@(f) + i®(if)] we obtain the equivalencE (IVE8)(IV.5L). Thirdly,
settingUy = exp(iAH) anda}(f) := Uxa*(f)Us, we observe thadya}(f) =
i[H,a(f)]. Furthermore,|[H,a}(f)] is linear ina* anda if, and only if, H is
quadratic ina* anda. Solving this linear differential equation, we finally olrta

(V5D [L52). a

As a consequence, the class of quasifree states (resp.resbioeasifree states) is
invariant under conjugation by Weyl transformations angi@abov transformations
(resp. Bogolubov transformations):

LeEMmMA IV.3. For all Bogolubov transformation® and all g € b:
W(gUQFU*W (9)* = Q7. (IV.53)
UeQFU* = cQF. (IV.54)

REMARK IV.4. A pure quasifree state is a particular case of quasifree stih
C =0, thatisT'(C) = |Q2)(Q].

We come to the main result of this section.

THEOREM IV.5. Let0 < 0 < A < o0, g € Randp € R3. Minimizing the energy
over quasifree states is the same as minimizing the eneggypove quasifree states,
ie.,

E 5.0, A) = inf Tr[H,-pl = inf Tr[H,sp|.
sHF(9,D,0, M) Jnf r[Hg 5 p) dnf [Hg5p]

For the proof of Theorein V5 we derive a couple of prepasaemmata.

ProrosiTION IV.6. LetC be a non-negative operator dy then
{Tr[r(C)] < oo} = {0 e L'(h) and |[Csam) < 1} :

In this caseTr[['(C)] = det(1 — C)~1. (We refrain from defining the determinant.)
For the direction< the non-negativity assumption is not necessary.
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Proof. Let us decomposg = P,.,Ce; whereC' = } cjeje; with (e;);>0 an
orthonormal basis df. Then3+(b) & ;>0 5+(Ce;) and

1
= @) = [[ () = [[ —
i>0 320 i=0 ’
and the infinite product converges exactly whigre £'(h) and||C|| () < 1. O

LEMMA IV.7. Supposé, is of dimensionl < co. Then, for any non-negative oper-
ator Cy # 0 such thatCy € £'(hg) and||Cyl|5(,) < 1, there exist a non-negative
measureu, (depending orC) of mass one ohy and a family{ pq(zq4) }»,es, Of pure
quasifree states such that

re)
m = /hd pa(zd) dpa(za) -

Proof. In finite dimensiond we can use a resolution of the identity with coherent
states (see, e.g.[6])
dZd
]'F(hd) */ |EZd Zd|

whereb is identified withC? anddzy = dxgdyq, 24 = xq + iyq. Using Equa-
tion (IIL47) we get

N(C) = | DB E., M)

ba

exp(|CY224]? — |2a|?)d2q
b |EC1/2zd><E01/2zd| T(d °
d

dzd
wd

The measurely(zq) = 7 Lexp(|CY?24|> — |24|?)dza/Tr[[(C)] has mass one.
Indeed

dzd d dzx dy
[ ezt - -1 / exp(~(1 - ¢;)(a® 7)) 222
ba
d
_121 T = T
whereC = Z;l cjeje; with (e;)4_, an orthonormal basis df;. O

Proof of Theorei IV|5The inclusionpQF C QF implies that
inf Tr[H,pzp] < inf Tr[Hgzpl],

pPENTF PEPAQT

and it is hence enough to prove for any quasifree state
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that the inequality
Tr[Hy 5 > inf Tr[H,p
(Hyg5pqr] = pé?ﬁ& r[Hg,5 p]
holds true. The operata?’ is decomposed a§' = > .., cje;e; where(e;) is an
orthonormal basis of the Hilbert spag@ndc; > 0. LetCq = >, cjeje;. Let

‘ . D(C ‘ .
pusia = W(—iVe) U ol B U W(-iv2f)"

then using Lemm@aIVI7 withy = @, , Ce;j, 1 = F+(ha©hy) = F4ha®@F+ by

and the extension of the operatb(C,;) on F1ha to F1ha ® Fihs by T(Cy) ®

(|th><ﬂhj |) (which we still denote by'(Cj)), we obtain

Paf.d = / pa(za) dpa(za),
ha

wherep,(z4) are pure quasifree states and fhgare non-negative measures with
mass one. Note that

Tr[I'(C
VI T

j>d

asd — oco. Further note thap,s > v pqs.a, fOr anyd € N, sincel’(C) > I'(Cy).
Thus

Tr[Hy 5 pqs] > Tr[Hypvapgs.d)

= g /hd Tr[Hy 5 pa(2a)] dpa(za)

vg inf Tr[Hg 5 pa(za))
za€ha

> inf Tr[H, »
=V oy tHyzpls

V

forall d € N, and in the limitd — oo, we obtain

TY[Hy 5 pqs) > li inf T[Hyzp] = inf Tr[H,zp]. O
(Hy5pes) = lim {va} inf Th[Hypp) = inf Tr[H,;p)

IV.2 PURE QUASIFREE STATES AND THEIR ONE-PARTICLE DENSITY MaA-
TRICES

We now define reduced density matrig@s resulting as marginals from a given den-
sity matrixp on Fock space and derive a convenient parametrizationdaon th case

is pure and quasifree. We also recall a characterizationeotimissible one-particle
density matrices for pure quasifree states.

Let h be aC-Hilbert space.
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DEFINITION IV.8. Letp € DM be a density matrix on the bosonic Fock spgceéh)
prtaq

overh. If Tr[pN,* ] < oo, we defingp?? € BP(h) through

Vo,p e, VPPV = Tr[a* (@) a(y)p] .

We single out
f= po,1 c BO! =~ ,

i.e., f, € his the unique vector such th@t[a(v) p] = ¢* f,, for all ¢ € b. Further-
more, withp = W (v/2f,/i)*pW (v/2f,/i), the matrix elements of the (generalized)
one-particle density matrix are defined by

v = ﬁl’l c Bl and a, = ﬁ(),Q c BO2 o bv27
in other words

Ve, eb s (¥, 70) = Trlpa’(p)a()],
Wee,a) =Trlpa(y)a(e)].

Note thatf,, v,, anda, exist for anyp € DM sinceNsp, pNy € L (F4).
REMARK IV.9. For a centered pure quasifree statg?-¢ vanishes whep+ ¢ is odd.

REMARK 1V.10. Another definition of the one-particle density matsix would be
through the relatiorfy), v,¢) = Trla*(p)a(v)p]. We prefer here a definition with a
“centered” versiorp of the statey, because this centered quasifree siidteen satisfies
the usual Wick theorem. The same considerations hold for

Hence, any quasifree density matrix is characterizedfpyy,, «,), sincep?? can be
expressed in terms @f,, v,, a,).

When f, = 0, the definition ofy, is consistent with the usual one, for, zo € b,
(z1,7p22) = Tr[a*(z2)a(z1)p]. The definition ofa, is related with the definition
of the operatory, (here denoted with a hat for clarity) used in the article otiBa
Lieb and Solovej[5], through the relatida; ® 22, a,)pe2 = (21, &,c22) With c @
conjugation orh.

ExampLE IV.11. A centered pure quasifree state satisfies the relation,
PPrP=~7®v+v®v Ex4aa* € B>?, (IV.55)
where the exchange operator is the linear operatd*3rsuch that
Vz1, 22 € b, Ex(z1 ® 22) = 20 ® 21
and where for any € h¥2, aa*b = (o, b)ge2 o

We now turn to another parametrization of quasifree staiegectors in a real Hilbert
space. This parametrization enables us to use convexityragts.
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PROPOSITION IV.12. LetT = ue” be an implementable symplectomorphism and
a quasifree state of the form= U, |2)(2|Ur. Then
Vo = %(COSh(2T) 1), (IV.56)
Vzi,22 € (21 ® 22, ) pe2 = (21, 5 sinh(27)zs) . (IV.57)
Proof of Propositiof IV 12 We haveli = ue’i = uie™" = iue™" and for allz € b
Tr[pW (—iv/22)] = Te[Up | QU W (—iv/22)]
= (QW (ue’ (—iv22))|)
= (QW (—iv2ue"2)|Q)
=exp (— 3|ue "2]?)
= exp (— e =P).
>From this formula we can easily compute the function
h(t,s) = Tr[pW(fti\/ﬁz)W(fsi\/ﬁz)] = exp (— Ll "(t+5)z|?),
whose derivativé; d; at (¢, s) = (0,0) involvesa and~y:
2.:0:h(0,0) = Tr[p(a’(2) — a(2))’]
= —22%yz + 2Re(a*2"?) — 2*2.

But we also have
t=s=0

= —(cosh(7)z — sinh(7)z)* (cosh(#)z — sinh(#)z)

—(cosh(#)2)" (cosh(7)2)
+ 2Re(sinh(7)z)*(cosh(#)z) — (sinh(7)z)* (sinh(#)z)
= —2*(cosh? # + sinh? #)z + 2Re(z* (sinh 7 cosh #)2)

1
= —z" cosh(27)z + 2Re(z*§ sinh(27)z)
and hence, using the polarization identity
42V 2 = (2+2)%% — (2 — 2/)®?

to recover every vector from¥? from linear combinations of vectors of the forri?,

we arrive at[(IV.56){(IV.5F). O

ProrosiTioN IV.13. The admissible, « for a pure quasifree state are exactly those
satisfying the relation
THY = (a®1)* 1), (IV.58)

with v > 0.
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This is the constraint when we minimize the energy as a fanaf ( f, v, «) with the
method of Lagrange multipliers in Section VTII.3.

Proof. If v, « are associated with a quasifree state, then there issaich thaty, o

andr satisfy Equationd (IV.36) an@(IV.57), then
(21, (0" ®1)(1® a)zg) = (a" @ 27)(22 ® @)

b

b

1
= (($(cosh(27) — 1) + 1(cosh(27) — 1)?)z, 22>h .

Conversely, ity anda satisfy Eq.[(IV.58) then we define ti@-antilinear operato
such thatz;, dzs) = (21 ® 22)*«, and sef = %sinh_1(207), then

Vzi,z2 €h (21 ®20,qp)p2 = (21,422) = <21, % sinh(2f)zg>,

which, in turn, implies thato* ® 1)(1 ® «) = %sinhQ(Qf). Hence, we have
2 1 .9
v+ = 1 sinh®(27)

and asy > 0, it follows thaty = % (cosh(27) — 1). Then, a is associated with the
centered pure quasifree state whose symplectic transfamiaexp|7].
O

V ENERGY FUNCTIONAL

In this section we calculate the energy of a quasifree statins of its characterizing
parameters, i.e., in terms 6f, v, a) and(f, r).

Notation: We first recall that, as before, we denoteByand|k| the multiplication
operators: ® 1¢» and|k| ® 1¢2 onh = L2(S, A X Zs), with three components in the
case ofk.

We now work at fixed values of total momentyie R*. The operato#d,, ; is given
by

1 - ~ -
Hy = 5(d0(k) + 2Re a” (G) — ) + dI'([k])

whereG(k) = G(k, +) := g|k|=1/22.(k). The energy of a quasifree stat@ssoci-
ated withf € b,y € £L*(h), a € h*?is

Egaﬁ(fa Y a) = Tr[Hgaﬁp] ’ (V59)

whereh is the C-Hilbert spaceh = L?(S, p x Zz) and L' () is the space of trace
class operators o
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ProrosiTioN V.1. The energy functiongdV59) is

0pF.v.0) = L { (TR + £Rf + 2Re( ) )
+ Tr[yk - vE] + o (k - ®K)a + Tr[|k[?]
+ 2Re{a*[(G + Bf) 2]} + Trl(2y + 1)(G + k) - (G + K]}
+ Tr[y[k[] + £7|k|f - (V.60)
where the following positivity properties hold
(Tr[yk] + fEf + 2Re(f*G) = p)* > 0,
Tr[yk - vk] + Te[yk] 2 + o* (k- @F)o + Tr[|k|*~] > 0,
(Te[yK] + [*kf + 2Re(f*G) — p)
e[k - vK] + o (F - ©F)a + Tr[|k[?7] > 0
2Re(a” (G +kf)V2) + Te[(2y + 1)(G + Ef) - (G + Ef)] > 0

The energy of a pure quasifree state in the variatflesdr is

f,7) = 3{(Tr[5(cosh(27) — 1 VK] + f*Ef 4+ 2Re(f*G) — 7))
+ Tr[—(cosh( 7 — 1Dk - 1 (cosh(27) — )E]
+ Tr[1 sinh(27)k - - 2 sinh(2r)k k] + Tr[|l<:|2 L (cosh(27) — 1)]
+ 2Re(2 sinh(27) (G + kf); (G + kf))
+ Tr[(21 (cosh(27) — 1) + 1)(G + kf) - (G + kf)*]}
+ Tr[3 (cosh(27) — 1) |E|] + f*|k|f - (V.61)

Proof. Using the Weyl operators,
Eq5(f, 7, ) == Tr[Hy zp| = Tr[Hy 5(f)p]
whereH, 5(f) = W(vV2f /i) H, 3W (V2f /i) andp = W (V2f [i)* pW (V2 /),

so thatp is centered. Modulo terms of odd order, which vanish whenake the trace
against a centered quasifree stdfg,;( ) equals

Hy5(f) = (dF( B)+ [*Ef 4 2Re(a* (K f + G)) + 2Re(f*G) — p)
+dU(|K]) + f*|k|f + odd
S (@) + FF 4+ 2Re(5° @) — )

+ %(2Re(a*(l§f + @) +dU(E) + f*|k|f + odd .
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To computef (£, v, o) we are thus lead to compute, fgre b3 andi € R3,

Tr[p(d(k) +@)?] and  Tr[p(2Re{a(d)})?] .

The expression of the energy as a function fify, «) then follows from Proposi-
tions[V.2 and’ V2. The expression of the energy as a functigiy o) follows from
Propositiod IV.IP. O

PROPOSITION V.2. Leti € R?, then
0 < Tr[p(dl(k) + @) ?) = (Tr[yk] + @) ? — Tr[yk]>
+ Te[yk - vk] + Te[yE] 2 + o (k -®k)a + Tr[|k]*].
This condition is used witlh = 5 — f*kf — 2Re(f*G).
Proof. Indeed,
(dU(E) 4+ @)% = dU(k)? +2d0(k) - @+ @2

Then we use thafr[j dT'(k)] = Tr[yk], add and substradir[yk]2 to complete the
square and computir[p dI'(k) 2] using LemmaVB. O

LEMMA V.3. LetX € BY!, then
0 < Tr[pdl(X)dl'(X)*] =
= Tr[y Xy X" + Tt [y X2 + " (X ®@ X*)a + Tr[X X *].
Proof. Indeed, using Equatioh (TV.55),
Tr[pdl’(X)dl'(X)"]
Ty / Xk, k) Xk, kb )a(k )a*(ka)a(k))a(k, )dk: dkadk, dity + dT'(X X))
=Ty @y+7®@yExr + ac™)(X @ X*)] + Tr[y X X7¥]
= Tr[yX|Tr[y X"+ Tr[y Xy X + o (X @ X" )a + Tr[y X X7]. O
ProrosITION V.4. Lety € b, then
0 < Tr[p(a*(p) + a(9))?] = 2Re(a” (")) + TH[(2y + )] (V.62)
and|2Re(a” ('*2))| < Tr((2y + 1)e"].
This condition is used with the three componentsiet G + kf.
Proof. A computation using the canonical commutation relatioeddg
Trlp (a* (o) + a())?]
=T[5 (a*())* + 5 (a(0))* + 5 (a"(#)alp) + alp)a”(¢))]

=a*e"? + 0" a+ Trly ™ + (v + 1)y
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VI MINIMIZATION OVER COHERENT STATES

In this section we consider the problem of minimizing thergg@ver coherent states
and show that there is a unique minimizer. We also calculetdawer orders of the
energy at the minimizer seen as a function of the total moumapt

For this section we can take= 0 if we consider the parametgrin the energy to be
in b := L2(S, A X Zo, (L[K|? + |K|)dk). Recall thatS, » = {k € R? |0 < [k| < A}.
We also recall that for andz’ in some Hilbert space*z’ = (z, z’) (see Sectionll).

REMARK VI.1. For a coherent state (see Definitionl1.5) the energy resltme

1, = 1, - . . .

E9.5(f) = SIGI® + 5(F7kf + 2Re(£7G) = p)* + (5 |K* + kD f. (V1.63)

Note that, foro > 0, h = L2(S, p X Zs,dk) = b, while foroc = 0, h C b, and
&,,5([f) extends tdy by using Equatior (VL.63).

THEOREM VI.2. There exists a universal constafit< oo such that, fol0 < o <
A < o0, g?In(A 4+ 2) < C and|p] < 1/3, there exists a uniqugz which mini-
mizest, 5 in h. The minimizerf; solves the system of equations

iz G
fo= "Lt (V1.64)
PR (R - K-
Uy = p— 2Re(f3G) — [5kf7, (VI1.65)

with |z < |p].

REMARK VI.3. Our hypotheses are similar those of Chen, Fréhlich, ancoHAZ],
where their vectoﬁEg is analogous taz in our notations.

The construction ofi; as the solution of a fixed point problem and the dependency in
the parametep imply that the mag’ — @ is of classC>.

REMARK VI.4. We note that we also expect to ha¥gin the neighborhood af.

REMARK VI.5. The minimizer is constructed as the solution of a fixed paiobfem.
As a result the application

o,N,g,p) — inf Tr[H, 7
( 9:7) pecoh Hy 5]

is continuous on the domain defined by TheokemVI1.2, angd atfixed,

,p)— inf Tr|H, 7
(9:7) pecoh Hyp)

is analytic forg? < C/In(A + 2) and|p] < 1/3.
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REMARK VI.6. The assumption ofp] < 1/3 is much weaker than in the quasifree
state case where we need to haiemaller than a constaiit which may be small.
In fact the1/3 is arbitrary and one may suppose oy < R for some constant
R < 1, but since this would result in a heavier exposition withaatviding additional
relevant information, we restrict {g] < 1/3.

To prove Theorem VI]2 we first show that the Equatidns (V1&d) [VI.65) are nec-
essarily verified by a minimizer. We then show the existenu# @niqueness of a
solution to these equations by a fixed point argument.

Proof of Theorerh VII2Assume there is a point; where the minimum is attained.
The partial derivative of the energy at the pofipt

95-E(fp)
= (3l 7+ 2Re(f3G)) - F ot 3 2 + 1R f— (7~ 3 fy — 2Re(750)) - G

then vanishes, where the derivatide £( f) at a pointf is the unique vector inﬁ* =
L3(S,.a, (L[E|? + |K|)~'dk) defined by

E(f+0f)—E(f) =2Re(of " 0p<E(f)) + o(ll6 fI5)
with £, 6f € b. Observe that

0 < &,5(0) = &9.5(f7)
= 11— U3 T+ 2Re(13G) 5 — TG IRP + Ry

and hencépl > |ii5| with il5 := p'— fikfz — 2Re(f5G). Sinceliis| < [p] < 1, it
makes sense to write

—

Uﬁ‘-G

5|kI? + k| =ty - k

I

Hence the minimum poinf; satisfies Equationg (VI.64) arld (VII65). Itis in particular
sufficient to prove that there exist a unigi@gin a ball B(0, r) with » > [p] such that
the function in Equatior (VI.84) satisfies also Equat{on.68) to prove the existence
and uniqueness of a minimizer.

Proof of the existence and uniqueness of a soluti@t.: < r < 1,47 € R?, |4] <

r < 1land

CR)

i
k|2 + k| — k- @

Observe thab; € Z, indeed, ifii@| < 1thend |k|>+|k|—k-@ > (1—7)(3]k[>+]|k]),
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and withz(k) = &(k, +) + &(k, —),

o TN (T 11 @ &k)P
[ e iieabra < [ 2o Al g o
Flelo.A] Klelo.a] |k| (1 =7)% [k + |k
2 ja?
< Cog”In(A +2) (e

for some universal constafy > 0. Observe then that

~ 2
/_‘ 1|€(7k)|_,dk S 00921D(A+2)
|Flelo,A] 5 |k[* + [K|

for some universal constagy > 0. It follows thatq)gé € L'(Sy A x Zs). Note that
if o =0then®; ¢ L?(S, A X Zso) (for @ # 0).
We can thus define the application

B(0,7) 3 @ U(7) := f— ®LkDz — 2Re(®LG) € R

We check that the hypotheses of the Banach-Picard fixed fiwotem are verified
on the ballB(0, r), which will prove the result.
Stability: If g2 In(A + 2) is sufficiently small, we get from

|9 ()] < [@5kDa| + |2Re(@5G)] + |51

and the estimates above that the sum of the two first termsadesrthan- — 1/3 and
since|p| < 1/3 the map¥ sendsB(0, ) into itself,

B(B(0,r) € BO,7).

Contraction For# andv in B(0,r), we have that

[Ba(k) — ()| (S1EP +[F])
i.G(Fk 5.G(F B
S A — o — Y )
LR + K| —E-@  §IEP +[F - K0
(=TGR
TALRR 4 R -k
- 1 1 - -
+ |9]|G(k)| |—= -—— 11k[* + |k
AN 7~ TP 1) GIF? + 1)
I |k
<l|u— k 1 = =
< i = AR 0+ Ty
R 1
< it = TIGE) =5
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For the term2Re(®%G), we observe that

o*
u

12Re(®%G) — 2Re(®5G)|
< 29

g*2|i — 7 ! / i%d%
(L =7)2 JiRieton) [K] 51KI? + (k]
Note that, forg? In(2 + A) < (1 —r)?/(3C}),
|2Re(®%LG) — 2Re(DLG)| < = = |u -
Finally, for the tern@gl?cl)ﬁ, we obtain the estimate
|BrkDy — D5kdy]

S/A (31K + [K])|Pa(k) — Da(k)|(|Pa(k)] + [@s(k)|)d*k
|k|€[o,A]

U — v S o
< T [ G (2al)] + o)
( r)? |k|€[o,A]
u— -
< SR IGIRE + )G B + 1l + 1y/31RE + Fle)

< Calii — 9] (Ja] + [9])g” In(A +2) ,

and thus this term can be controlled foin(A + 2)|? sufficiently small by |@ — .
We thus get a contraction

and with f; = ®; . Equation[V.64) is solved. O
We then obtain several explicit results from the expressfdahis minimizer.
CoROLLARY VL.7. With the same hypotheses as in Thedren VI1.2:

1. For0 <o < A < o0,

}Iéf[;ggp(f) = ;E%Eg,ﬁ(f) = &5(fa)

and for0 < o < A < oo, we have thaf; € b.

2. For fixedg, o, A, as a function of,

1

= = G-+ 0(p?).
11k|2 + |k| 4+ 2G - G* (12

Eg5(f5) = E4.5(0) — 7 G*
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1506 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

3. Forall finh,

Eoi(fot+ ) = Egp(fa) + 1T GIKP + K] — iz - k) f
+ L(f*Kf + 2Re(f5Ef) + 2Re(f*@))* . (V1.66)

4. The energy¥, 5(fz) of the minimizer compared to the energy of the vacuum
state&, 5(0) is

gg,ﬁ(f;ﬁ) = gg,p( ) 12Re(f )7 2|up 71312
Note that the terrﬁRe(f;iUﬁ- é) is non-negative.
Proof of 1. is straightforward forr > 0. Foro = 0 one can approximate the mini-
mizer inf by functions inh.
Proof of[2. The expression of the enerdy (/) given in Equation[(VL.6B) implies

that&, (f) > 1||G|%, and forp = 0 this minimum is only attained at the point
f3 = 0. Itfollows that f7 = 955 - p'+ O(|p]*) . >From Equation(VL.65) we deduce

iy = — 2Re((0pf5 - 1) G) + O(IpT*)

and thus

+O(|p1*)

e (7 — 2Re((9pf5 - 1) @)).
P —
U

LI + |K) — k-
= (%W + |k)) (5 - 2Re((95f5 - 9)* @) - G + O(|p) .

Expanding the left hand side of this equalit)ﬁm)rings
I N1 AN A
Ot 7= (FIkI* + |K)) (0 — 2Re((0pf5 - )" ) - G

and hencéyf; = (1[k[? + |k| + 2G - G*)~'G. The expansion of;; to the second
order is then

= (3 IR 1R 426G - G o(pr*).

We can compute the energy modulo error term@iip]?). To have less heavy com-
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MINIMIZATION OF THE ENERGY OF THE NONRELATIVISTIC ... 1507
putations we setl = 1|k[? + |k| + 2G - G* and get
1, = 1
Eq.7I7) = 511 = 317

1 1 — * . — * 7 . *
= — S\ + 5 (2Re(- 0pf5G) — 1) + 7 g (5 R + KOS -

O,
=y

(2Re(F- G*A™'G))? — 25- G*A~'G -

=y

1
2

Sy

R 1 - R R
+7- G AT G R + [R)ATIG

- - - 1

=200 G*AT'G)* + - G*A‘l((§|

. L . . 1= . L. .
=p-G"AT'2G -G ATNG - BT AT G IR 4 R+ 4G - G) AT G p

1. . L .
- G GIR + K| +2G - G) ' - p

which yields the result.
Proof off3. The Taylor expansion of the energy aroufyds

Egi(f5+ ) = E(f5) + [ 0p-E(fp) + 05 E(fp) |
{(f*Ef +2Re(f*G) + 2Re(f3k 1))

N | =

+
+2(f5Efp+ 2Re(f3G) = ) - fRf+ IR+ FIRLS

Sinced;-E( f7) vanishes this gives Equatidn (VII66).
Proof of[4. 1t is sufficient to replace by — f; in Equation[[VI.66). The observation

— =

. i@y G(k))2dk
oty G [ TGP
3R+ |k = k- @y
shows thaBRe(f5 iy - G) is non-negative sinciis| < 1. O

VII RENORMALIZED ELECTRON MASS FOR COHERENT STATES

In this section we use the coherent state minimizer foundeicti®n[V1 in order to
determine the renormalized electron mass.

ProposITION VII.1. The renormalized electron mass for coherent statgs, (g, A)
defined by

1
Egifop) —E,5(f,5) = mW]Q +0(Ip?).

327 A
Meon(g, A) =1+ TQQ In(1 + 5)-
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1508 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

REMARK VII.2. This result agrees withi.g/m obtained in[[12] to second order in
g, taking into account thaj in [12] equalsQ—\/f in the present paper, tha(E) = |E|,
and that the mass: of the electron is one in our units. See also (among othet§) [1
or [3].

Proof. From

1

= = G+ O(p?
1|k)? + |k| 4+ 2G - G* (121

1 = ik
Eg,ﬁ(fg,ﬁ) - 59,17(0) = §|ﬁ|2 -pG

and the fact that fop = 0 the minimizer isfgﬁ = 0, it follows that

1
= Eg.5(fa.5) — E4.5(0) + §|ﬁ|2
1

=~ p? — pGF— q G+ Oo(|pP
1pl* —p TR P+ O(p°)

where we used poifli 2 of Theorém VI.2 for the last equalitye Phwer expansion of
(1 —t)~!yields

LEI2 + K] +2G - G+ ‘=5 L1KI2 + || LIk + |k|

and hence
&y illos) — €50, 5) = 21— 235~ 26 = ——G) 5+ O
9.0\ g.p 9,090/ = 5 2j:1 %|E|2+|E|
1 1 -\ — 1
= —p- (Idgs + 2G* — —G) -+ o(p?
o7 (e + 26 s ) )
The coherent renormalized mass is thus
R LRI + |7

The proof is achieved by the computation of an integral thatgive in a separate
lemma since it will be useful again later. O

LEMMA VIL3. Witho = 0,

. 1 . 4 A
2G* ————G =¢*8m = In(1+ =) Idgs .
K12 + [F] g g fe
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MINIMIZATION OF THE ENERGY OF THE NONRELATIVISTIC ... 1509

Proof. Using spherical coordinates

. 1 . 5.2 (k)2 + [pe_(B)]? -
\

3|k[> + [k Fl<a 3lk[* + ~IR[?
—|EEpe
K|
— 262|j? Pl
7 [Fl<A alkl“+|/’fl2

27
= 2¢%|p]? / / / 1 smgpdcpd@ pidp
o Jo Jo 3p

=g |ﬁ|287r— In(1+ = )

which yields the result. O

VIII MINIMIZATION OVER QUASIFREE STATES

In this section we minimize the energy functional over the acfepure quasifree
states. We first obtain the existence and uniqueness of aypasifree state in Theo-
remVII[.3l As shown in Sectio IV this proves the existenlset(not the uniqueness)
of a minimizer in the class of quasifree states. We then cdenpsymptotics for
small couplingg and momenturp of the parameterg, ; andr, ; describing the pure
quasifree state minimizing the energy in Theofem VlIl.6rRrthese asymptotics we
deduce an expansion of the energy at the minimizer. Finalgme in Theorem VIII.B
the Lagrange equations in terms of the parametessand-y.

REMARK VIII.1. We believe that the assumptien> 0 is unnecessary, but we have
no proof for this assertion and do not follow it here, becaheénfrared singular limit
o — 0is not our concern in this paper.

VIII.1 EXISTENCE AND UNIQUENESS OF A MINIMIZER OF THE ENERGY
OVER PURE QUASIFREE STATES

In this section we minimize the energy over all pure quasistates and show that
there is a unigue minimizer.

DEerINITION VIIL2. Let h be aC-Hilbert space. Lelt” be theR-Hilbert space of
antilinear operatordonb, self-adjointinthe sense that, 2’ € b, (z,72') = (2/,7z),
and Hilbert-Schmidt in the sense that the positive opergtis trace class. The space
X = b x Y with the scalar product

((f;7), (f, 7)) x = ff + Te[P']

is anR-Hilbert space.
Keepingo > 0, we only need to uske = L%(S, o x Zs) in this section.
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1510 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

THEOREM VIIL.3. Let0 < 0 < A < c0. There exist&® > 0 such that forg, |p] < C
there exists a unique minimizer 6§ (f, 7).

Proof. This result follows from convexity and coercivity argum&ntBy Proposi-
tion[VIIL4] ég,ﬁ(f, 7) is strictly §-convex (i.e., uniformly strictly convex) oBx (0, R)

for someR > 0 andf > 0. Sinceég,,y(f, 7) is strongly continuous on the closed and
convex set3x (0, R) of the Hilbert spaceX we get the existence and uniqueness of a
minimizer in Bx (0, R). (See for examplé[1]. The uniform strict convexity allowss t
prove directly that a minimizing sequence is a Cauchy secpigriProposition VIIL.b
then proves that it is the only minimum &f 5(f,#) on the whole space.

Note that to use Propositions VIIl.4 ahd VIII.5 we need tdrniesto values ofg and

|p] smaller than some constafit> 0. O

ProposITION VIII.4 (Convexity). There exisb < C, R < oo such that forg < C
and|p] < 1, the Hessian of the energy satisfigs, ;(f,7) > Z1x on the ball
Bx (0, R).

Proof. We use that strict positivity of the Hessian implies strioheexity and thus
first compute the Hessian {0, 0). The Hessia{&, 5(f,7) € B(X) is defined using
the Fréchet derivative

Egp(f +0f,7 + 87) = €y, 5(f,7)
= D, 5, 1)5F,07) + 5 ((65.67) , HEyo(1,7) (51, + o(1(5£,57) %)

with Dé‘g,ﬁ(o, 0) € B(X,R). (Note that differentiability is granted in this case be-
causdk| < A < c0.) Foranyu > 0,V(f,7) € X,

(F7), 5HE,50,0) (£ x
= 2Re(Fkf; G) + %(QRe(f*é))Q + Tr[F2G - G7]
+ %{Tr[f” - 7K] + Te[|k[?7%]}
FTR R F ) + £ (2 + [F - F 50

24 A reAra Lz
> Te[i?G - G*] = pllPG* — ;kall2

7,."
(R = F )+ £ G IR + 1R - F ) f
> T (F - F i (1= 0@ - G+ (G — IFE +1F = F- )

since

o A - JUES R U
2Re(Pk f; G)| < 2[17G||[kf|| = QﬂI\TGI\ﬁllka < pllPGI* + ﬁllkaQ-
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With 1 = 2 we obtain (with|pf < 1)

SHE,H0,0)(1.7) = TR~ F- 5~ G- G+ (R~ -9

> e[ ([K|(1 — [|F]~/2GI) = k- 9] + £ (k]| — - D) f
> Ty — 1R300 + 5 f
and forg small enough
%Hég,,;(o,O) > %.

We then compare it with the Hessian in points near zero. @bvagethat the Hessian is
continuous with respect t¢f, 7, p, g), we deduce that there exiBt < co andC > 0,
as asserted. O

ProrosiTioN VIS (Coercivity). Suppose¢ andC > 0 are fixed such tha% |p|% +
LIG|I?> < oR?, with the value of? given by PropositiofLVIITK, for ang < ¢ < C.

For every(f,7) € X,

Eo i (7)) = TR + fIRIf = o||(F,7)]]

x-

Sincef, 5(0,0) = 1[51% + 3||G||> < ¢R?, any minimizing sequence can be assumed
to take its values iBx (0, R).

VIII.2 ASYMPTOTICS FOR SMALL COUPLING AND MOMENTUM

In this section we calculate the ground state energy forlsondérs of the coupling
constanyy and total momenturp.

We use below an identification between self-adjéirantilinear Hilbert-Schmidt op-
eratori and symmetric two vector given by the relatioy, 7))y = (¢ ® 1, 7)pe2.
Note that the self-adjointness condition fbiis equivalent to the symmetry condi-
tionr € hV2.

THEOREM VIII.6. Let0 < o0 < A < oo. There exist&€ > 0 such that forg|, |p] <
C, there exist two functiong,  and 7, 7 which are smooth ir{g, p) such that the
minimum of the energg, 5(f,#) is attained at(f, 5,7, 7). These functions satisfy
PG 3
for = 1= =+ O, 2"
3|kI? + (K]
rop=—8"G"+0(|(g. 9%,

with § = k - @k + 2(3[k|? + |k|) v 1, and whereG¥2 = 3°°_ G, vV G; € h v b
(recall thatV denotes the symmetric tensor product). As a consequence

EBHF(gv y O A)

< AL 1 S5 = SV2x g—1 4
= &9 p(0x) =P G o= G P = 5 GSTIE 4 O (9. P)IP).
k2 + [k

N | =
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1512 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

Recall that forz and 2’ in a Hilbert spacez*z" = (z, /).

REMARK VIIL7. Thg energy in0x is the energy of the vacuum state and is
&,.5(0x) = 352 + L||G|]2. Further note that by LemniaVTl.3

R 1 ~ 327 A+2
QqG*ﬁG == 2 2—1 E——
- @9 = P (553)

and in particular does not depend on the choice of the pakiiz vector:
The quantityGV2*S—1G"V2? does not depend on the choice of the vectdeither
since

é’-\/2*571é-\/2 |€ klv k27 )| ddklddkg
pov= i |/€1||/€2|S k1, ko)
and with P; is the orthogonal projection anin R?,
> |,y -, v)P = 3 Trea[Pag, Pz, )
p,v==4 pv==+
= 1+Tips [P Py ]
=1+ (i ks )
|| [Eol
Proof of Theorerh VIITJ6.Let
F: (gvﬁ fvf) g affég,ﬁ(fa 72)
and(?) (¢,p) := (f(gg) such that
F(g,7,(]) (9:7) =0, (VII1.67)

then a derivation of Equation (VII.67) with respect(tf, #) brings

—1
09,5 (1) (0g.5) = = [04,:F(0g,5,01.5)] 0y 5F (0g.5,01.7) -
The term which is independent ¢f, ) and quadratic ir{ f) in the energy is
1 o w1 -
S {TRPST] + £ (k1 + 2[k]) £}
thus, in(Ogﬁ, Ofﬂ:),

E2+2(k 0
= .
Ors ( 0 S

To compute), F in 0, observe that no part in the energy is lineafjnp) and linear
in (f,7). Thusdy zF (04 5, 05+) = 0 and we get

99.5.f(0g,5) = 0.

DOCUMENTA MATHEMATICA 18 (2013) 1481-1519



MINIMIZATION OF THE ENERGY OF THE NONRELATIVISTIC ... 1513

Differentiating a second time Equatidn (VII[]67) brings
0= 8 o 205,00y 5F 00, 5 ( )+8fTF05‘§75(£)+8]%7FF(89,5(£) vag,ﬁa))'

T

Sinced, 5 (1) (04,7) = 0, it follows that
0.5 (1) (0g.3) = —[077F (0g.5,04.2)] 0 5F (09, 01.7) -

The part of the energy which is quadratiqin p) and linear in(f, #) is —2Re(f*é) .
7+ Re(rG; G), it follows that, in(0,. 7, 0.4),

=2 (36 01 (08 0) )

which gives in0, 7

getn=2( U 0

S ( 9,G

Hence the expansion ¢f’ ) up to order2.
We can thus express the energy aroang modulo error terms it© (|| (g, p)||°)

mmé'gp(f,) ég,ﬁ(oao)

P
LU Te[#2K] + f*kf + 2Re(f*G) — p)? + Tr[ik - k] + Tr[|k|*#2]
+2Re< (G +EF); (G+EN) + GNP + foIR1f}
+ I[P [k[] + £*|E|f — €,,5(0,0)
- IR 1 - o
= —2Re(f*G) - p+ sTx[SF] + Re(FG; G) + f*(§|k|2 + k) f
= —2Re(f*p- G) + LT[FS7| + Re(*G; G) + f* (5 |k|> + |K|) f
-k G)(-G) | Lavaegigve _ Giveng-igive @ G) (i G)
skl + k2 3|kI* + [k|
which completes the proof. O

VIII.3 LAGRANGE EQUATIONS

In this section we derive a system of equations that deterrmiitical points of the
energy functional. We formulate the results of Secfion Mliih terms ofy and«
subject to the constraintg + 7? = (a* ® 15)(15 ® «), without reference to the
parametrization ofy anda« in terms of7.

Supposef € h, a € hV2, v € L1(h), X € B(h) = Bandi € R3. Let A(\) =
%E VE+AV1 andg(y) = v + 2.
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1514 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

THEOREM VIII.8. Supposéf,~,«) is a minimizer of the energy function&lsuch
that ||y sn) < 3. Then there is a unique\, @) such that(f, v, a, A, @) satisfies the
following equations, equivalent to Lagrange equations

M(y,@)f = —(ky— @) -G -k -V(G+kf)*a (VI11.68)
AN = —%(é +kf)yV? (VI11.69)
v=G"H(a" ®@1p) (1 ® )) (VII.70)

A= [ et (M(y, @)+ (G+Ef) - (G+Ef))e Gt at
’ (VIIL.71)
@ =~ Tr[yk] — f*kf — 2Re(f*G) (VIII.72)

with M (v, @) = L|k|> + |k| — k- @+ k - vk.

Assumingp| < 3, sufficient conditions such thax[(fy, ) and A(\) are invertible

operators areli| < 1/2,y > 0 and||A — (|k|2/2 + |k| — 7 k)]s < o/2. Equa-
tions [VIIL.68) to [VII.72) then form a system of couplegl@it equations.

REMARK VIIIL.9. To prove that Equations (VII.68) td (VII[.72) admit a salut we
use here the result of existence of a minimizer proved ini@e8IILT] It can also be
proved directly by a fixed point argument by defining the aggilons

—

(o007, @) = My, @) By — @) - G — F V(G + if)a
Wa(f2) = ~A) 1§<é+/€f>'v2
. (0) =G
A7) / I (M (3,) + (G + Ff) - (G + R e Gy

Ua(f, ) = §— Trlyk] — f*kf — 2Re(f*G)

8

defined on balls of centei 0, 0, 1|k|> + |k| — k-7 and 5 and proving that the
application

\Ij(f,)\)(fa >‘) = (\Ilf [fv \Ija {fa )‘}a\Ilv {\Ila(fv )\)},\I/,I {fv \IIW(\IIOZ [fv )‘])}] )
Uy [fa ‘II’Y {\I/Oé(fv)‘)}a‘llfl{fv \II’Y(‘IIoz [fv)‘])}])

is a contraction for a convenient choice of the radiuses asuffeciently small cou-
pling constany. Note that it is then convenient to consider the nornL.éfS, » x
Z2a |k|2) for f

Proof of Theorefil VIITBIndeed, seff = 5— Tr[yk] — f*kf — 2Re(f*G) and define
the partial derivatives a8¢-E(f, v, ) € b, Oa-E(f, v, ) € h¥2 andd,E(f, v, ) €
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MINIMIZATION OF THE ENERGY OF THE NONRELATIVISTIC ... 1515

B(h) = £1(h)’ such that
E(f+0f,7v+dv,a+da) —E(f,v, )
= 2Re(0f " 0p«E(f,7, ) + 2Re(da™ Ou+E(f, 7, @)
+ Tr[0y 0, E(f, 7, )] + o([[ (8, 67, 6a)llox 21 (5)x5v2) -
Recall the energy functional is given by Equatibn (V.60) #rid yields

07-£(f,7,0) = 5 {2(Ff + C) - (] + RS + 2Re(fG) ~ 7)
+2k V(G +Ef) atk- v+ 1)(G+Ef} + |k f
=—(kf+G) i+ k-V(G+Ekf)Y a+k -v(G+kf)+I|k|f
=My, a)f +(ky—d) -G+ k-V(G+Ekf) a,
Oa-E(f, 7, a) = %(E@E)a + %(é +Ef)V2,

0,£(f,7,0) = 3 {2K - (Txfyf] + FRf + 2Re(*C) — p)

+ 2k gk + [K? + 2(G + Ef)- (G + kf)"} + K|

= M(v,@) + (G +kf)- (G+kf)".
The constraint given by Equatidn (IVI58) can be expressed as
C(f,y,a)=0 (VII1.73)
with
C:hx LY (h) x h¥2 — L(h)
(f,r:0) =y +9° = (@ @ 1) (1 ©a).
Equation[[VIIL.73) is equivalent to Equatidn (VIILI70). €applicatiorC has a differ-
ential DC(f,v,a) : h x L£1(h) x h¥2 — L(h) such that
DC(f,~,a)(0f,67,0a)
=07+ ovy+707— (0" @ 1) (1y © @) — (@ @ 1p)(1y @ ba) .

For /7] 5w) < % the applicationDC( f,~, «) is surjective. Indeed it is already surjec-
tive on{0} x £1(h) x {0}, since, for every’ € £1(h) the equatiody+dy v+~ dy =

~" with unknownd~ has at least one solution, see Proposifion VII1.10. We can th
apply the Lagrange multiplier rule (see for example the bobKeidler [14]) which
tells us that there exists)ac B(h) such that

V(8f, 0, 07),  DE(f, a,7)(0f, bax, 6v) + Tr[DC(f, c,7)(0f, 6ax, 67) Al = 0,

that is to say

2Re(8f“0-E(f, 7, ) + 6 0a-E(f, 7, ) + Tr[0,E(f, 7, )]
+ Tr[(6y + 0y v + 77 — (o™ @ 1p)(1p @ @) — (@ ® 15)(1p ® da))A] = 0.
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1516 VOLKER BACH, SEBASTIEN BRETEAUX, TIiM TZANETEAS

This is equivalent to Equations (VIII.68), (VII[.69) and
1

MG +9)+ (5 + A= M) + (G4 RD- G +EpT (VinTa)

Using again Propositidn VII[.10 we get that Equatibn (VIH) is equivalent to Equa-

tion (VIIL.7T).
For the invertibility of A(\) note that

k2= k| +k-p) V1

N | =

AN ==(k®@1+10k) 2+ (k| —kp+X—

W,
2|

A= (kP/2+ k] -7 E)5) 1V 1,

For M (v, @), M(y,@) = 3|k|>+|k|—k-d@+k-vk > o/2if v > 0and|d| < 1/2. O

Let us recall a well known expression for the solution of tlydv&ster or Lyapunov
equation.

ProrosiTioN VIIL.10. Let A and B be bounded self-adjoint operators on a Hilbert
space. Supposé > a 1 with a > 0. Then the equation

AX+XA=1EB

for X a bounded operator has a unique solutipn(B) = [~ e~ ' Be~4dt.
If B atrace class operator then the solutidhis also trace class.

Proof. Indeed,x 4 (B) is a solution because

o0
Axa(B) + xa(B)A = / e "(AB + BA)e dt
0

~d
= —/ — (e Be~*)dt = B.

Conversely, suppose thdtX + X A = B, then

xa(B) :/ e M (AX + X A)e " Adt
0

> d
= f/ — (e Xe Mdt = X,

and thus any solutioX is equal toy 4 (B). Hence the solution is unique. O

A  EQUIVALENT CHARACTERIZATIONS OF CENTERED QUASIFREE DENSITY
MATRICES

In this appendix we give various equivalent charactemretiof quasifree states. In
particular we remark that (ii) in Lemnia_A.1 below correspsial the definition of
quasifree states in terms of Wick’s Theorem.
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LeMMA Al Letp € ¢®9 be a centered density matrix and dendi), :=
Trz{pA}. Then(i) < (ii) < (iii), where

(i) p € cQF is centered and quasifree;

(i) All odd correlation functions and all even truncatedrradation functions ofp
vanish, i.e., for allN € Nandys,...,pon € b, let eitherb,, := a*(p,) or
by, == a(py), foralll <n <2N.Then(b; ---ban_1), = 0 and

(b1 b2"'b2N>p = Z (br(1) bw(2)>p oo {bran—1) bw(2N)>pv (A.75)
TEPaN

where3; y denotes the set of pairings, i.e., the set of all permutatiog Sq
of 2N elements such that(2n — 1) < 7(2n + 1) andw(2n — 1) < 7(2n), for
alll <n<N-1andl <n<N,respectively.

(iii) There exist two commuting quadratic, semibounded Hamans

H = Z{Bi,j a* (i) a(iy) + Cija™ (i) a™(1;) + @a(wi)a(d}j)}
- (A.76)
H =Y { Bl e ) aly) + Clya" () a* (4) + CFja(vs) a(vy)}

2%

(A.77)

with B = B* > 0, C = CT € £%(h), where{y; };en C b is an orthonormal
basis, such thatxp(—H — SH’) is trace class, for al < oo, and

— lim Trgz[A exp(—H — SH')]
(A), = ﬂl_mo{ Trzlexp(—H — BH')] }a (A.78)

forall A € B(3).

Eq. (IL.38) and the vanishing (ii) of the truncated corriglatfunctions of a centered
quasifree state imply that any quasifree state QF is completely determined by its
one-point function(a(y)), and its two-point function (one-particle reduced density
matrix).
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