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1522 Charles Vial

For a scheme X over a field k, CHi(X) denotes the rational Chow group of i-
dimensional cycles on X modulo rational equivalence. Throughout, f : X → B
will be a projective surjective morphism defined over k from a quasi-projective
variety X of dimension dX to an irreducible quasi-projective variety B of di-
mension dB, with various extra assumptions which will be explicitly stated.
Let h be the class of a hyperplane section in the Picard group of X . Intersect-
ing with h induces an action CHi(X) → CHi−1(X) still denoted h. Our first
observation is Proposition 1.6: when B is smooth, the map

(1)

dX−dB⊕

i=0

hdX−dB−i ◦ f∗ :

dX−dB⊕

i=0

CHl−i(B) −→ CHl(X)

is injective for all l and a left-inverse can be expressed as a combination of the
proper pushforward f∗, the refined pullback f∗ and intersection with h. It is
then not too surprising that, when both B and X are smooth projective, the
morphism of Chow motives

dX−dB⊕

i=0

hdX−dB−i ◦ f∗ :

dX−dB⊕

i=0

h(B)(i) −→ h(X)

is split injective; see Theorem 1.4. By taking a cohomological realisation, for
instance by taking Betti cohomology if k ⊆ C, we thus obtain that the map

dX−dB⊕

i=0

hdX−dB−i ◦ f∗ :

dX−dB⊕

i=0

Hn−2i(B,Q) −→ Hn(X,Q)

is split injective for all n and thus realises the left-hand side group as a sub-
Hodge structure of the right-hand side group. This observation can be consid-
ered as a natural generalisation of the elementary fact that a smooth projective
variety X of Picard rank 1 does not admit a non-constant dominant map to a
smooth projective variety of smaller dimension.
Let now Ω be a universal domain containing k, that is an algebraically closed
field containing k which has infinite transcendence degree over its prime sub-
field. Let us assume that there is an integer n such that the fibres Xb of f over
Ω-points b of B satisfy CHl(Xb) = Q for all l < n. If f is flat, then Theorem
3.2 shows that (1) is surjective for all l < n. When X and B are both smooth
projective, we deduce in Theorem 4.2 a direct sum decomposition of the Chow
motive of X as

(2) h(X) ∼=

dX−dB⊕

i=0

h(B)(i)⊕M(n),

where M is isomorphic to a direct summand of the motive of some smooth
projective variety Z of dimension dX − 2n. This notably applies when X is a
projective bundle over a smooth projective variety B to give the well-known

isomorphism
⊕dX−dB

i=0 h(B)(i)
≃
−→ h(X). Such a morphism is usually shown

to be an isomorphism by an existence principle, namely Manin’s identity prin-
ciple. Here, we actually exhibit an explicit inverse to that isomorphism. The
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same arguments are used in Theorem 5.3 to provide an explicit inverse to the
smooth blow-up formula for Chow groups. More interesting is the case when
a smooth projective variety X is fibred by complete intersections of low de-
gree. For instance, the decomposition (2) makes it possible in Corollary 4.4
to construct a Murre decomposition (see Definition 4.3) for smooth projective
varieties fibred by quadrics over a surface, thereby generalising a result of del
Angel and Müller–Stach [5] where a Murre decomposition was constructed for
3-folds fibred by conics over a surface, and also generalising a previous result
[27] where, in particular, a Murre decomposition was constructed for 4-folds
fibred by quadric surfaces over a surface. Another consequence of the decompo-
sition (2) is that rational and numerical equivalence agree on smooth projective
varieties X fibred by quadrics over a curve or a surface defined over a finite
field; see Corollary 4.8. It should be mentioned that our approach bypasses
the technique of Gordon–Hanamura–Murre [8], where Chow–Künneth decom-
positions are constructed from relative Chow–Künneth decompositions. In our
case, we do not require the existence of a relative Chow–Künneth decomposi-
tion, nor do we require f to be smooth away from finitely many points as is
the case in [8]. Finally, it should be noted, for instance if X is complex smooth
projective fibred by quadrics, that (2) actually computes some of the Hodge
numbers of X without going through a detailed analysis of the Leray–Serre
spectral sequence.

More generally, we are interested in computing, in some sense, the Chow groups
of X in terms of the Chow groups of B and of the fibres of f . Let us first
clarify what is meant by “fibres”. We observed in [27, Theorem 1.3] that if B
is smooth and if a general fibre of f has trivial Chow group of zero-cycles (i.e.
if it is spanned by the class of a point), then f∗ : CH0(X) → CH0(B) is an
isomorphism with inverse a rational multiple of hdX−dB ◦f∗. We thus see that,
as far as zero-cycles on the fibres are concerned, it is enough to consider only the
general fibre. For that matter, we show in Proposition 2.4 that, provided the
ground field is a universal domain, it is actually enough that a very general fibre
have trivial Chow group of zero-cycles. However, if one is willing to deal with
positive-dimensional cycles, it is no longer possible to ignore the Chow groups of

some of the fibres. For instance, if X̃Y → X is a smooth blow-up along a smooth

center Y ⊆ X , then CH1(X̃Y ) is isomorphic to CH1(X)⊕CH0(Y ), although a

general fibre of X̃Y → X is reduced to a point and hence has trivial CH1. One
may argue that a smooth blow-up is not flat. Let us however consider as in [1]
a complex flat conic fibration f : X → P2, where X is smooth projective. All
fibres F of f satisfy CH0(F ) = Q. A smooth fibre F of f is isomorphic to P1

and hence satisfies CH1(F ) = Q. A singular fibre F of f is either a double line,
or the union of two lines meeting at a point. In the latter case CH1(F ) = Q⊕Q.
This reflects in CH1(X) and, as shown in [1], CH1(X)hom is isomorphic to the
Prym variety attached to the discriminant curve of f . This suggests that a
careful analysis of the degenerations of f is required in order to derive some
precise information on the Chow groups of X . On another perspective, the
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following examples show what kind of limitation is to be expected when dealing
with fibres with non-trivial Chow groups. For instance, consider a complex
Enriques surface S and let T → S be the 2-covering by a K3-surface T . We
know that CH0(S) = Q, and the fibres Ts are disjoint union of two points and
hence satisfy CH0(Ts) = Q ⊕ Q. However, we cannot expect CH0(T ) to be
correlated in some way to the Chow groups of S and of the fibres, because a
theorem of Mumford [17] says that CH0(T ) is infinite-dimensional in a precise
sense. Another example is given by taking a pencil of high-degree hypersurfaces
in Pn. Assume that the base locus Z is smooth. By blowing up Z, we get a

morphism P̃n
Z → P1. In that case, CH0(P

1) = Q and the CH0 of the fibres is

infinite-dimensional, but CH0(P̃
n
Z) = Q.

Going back to the case where the general fibre of f : X → B has trivial Chow
group of zero-cycles, we see that CH0(X) is supported on a linear section of
dimension dB. We say that CH0(X) has niveau dB. More generally, Laterveer
[15] defines a notion of niveau on Chow groups as follows. For a variety X , the
group CHi(X) is said to have niveau ≤ n if there exists a closed subscheme
Z of X of dimension ≤ i + n such that CHi(Z) → CHi(X) is surjective, in
other words if the i-cycles on X are supported in dimension i + n. It can be
proved [27, Theorem 1.7] that if a general fibre F of f : X → B is such that
CH0(F ) has niveau ≤ 1, then CH0(X) has niveau ≤ dB + 1. In that context,
a somewhat more precise question is: what can be said about the niveau of
the Chow groups of X in terms of the niveau of the Chow groups of the fibres
of f : X → S? A statement one would hope for is the following: if the fibres
Xb of f : X → B are such that CH∗(Xb) has niveau ≤ n for all Ω-points
b ∈ B, then CH∗(X) has niveau ≤ n + dB . We cannot prove such a general
statement but we prove it when some of the Chow groups of the fibres of f are
either spanned by linear sections or have niveau 0, i.e. when they are finite-
dimensional Q-vector spaces. Precisely, if f : X → B is a complex projective
surjective morphism onto a smooth quasi-projective variety B, we show that
CHl(X) has niveau ≤ dB in the following cases:

• CHi(Xb) = Q for all i ≤ l and all b ∈ B(C) (Theorem 6.10);
• dB = 1 and CHi(Xb) is finitely generated for all i ≤ l and all b ∈ B(C)
(Theorem 6.12);

• f is smooth away from finitely many points, CHi(Xb) = Q for all i < l
and CHl(Xb) is finitely generated, for all b ∈ B(C) (Theorem 6.13).

These results, which are presented in Section 6, complement the generalisation
of the projective bundle formula of Theorem 3.2 by dropping the flatness con-
dition on f and by requiring in some cases that the Chow groups of the fibres
be finitely generated instead of one-dimensional. Their proofs use standard
techniques such as localisation for Chow groups (for that matter, information
on the Chow groups of the fibres of f is extracted from information on the
Chow groups of the closed fibres of f in Section 2), relative Hilbert schemes
and a Baire category argument. Let us mention that the assumption of The-
orem 6.13 on the singular locus of f being finite is also required in [8] where
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the construction of relative Chow–Künneth decompositions is considered. Fi-
nally, Theorem 7.1 gathers known results about smooth projective varieties
whose Chow groups have small niveau. Together with the results above, in
Section 7, we prove some conjectures on algebraic cycles (such as Kimura’s
finite-dimensionality conjecture [12], Murre’s conjectures [18], Grothendieck’s
standard conjectures [13], the Hodge conjecture) for some smooth projective
varieties fibred by very low degree complete intersection, or by cellular varieties
over surfaces. For instance, we show the existence of a Murre decomposition for
smooth projective varieties fibred by cellular varieties over a curve (Proposition
7.7) and for 6-folds fibred by cubics over a curve (Proposition 7.4), and the stan-
dard conjectures for varieties fibred by smooth cellular varieties of dimension
≤ 4 (Proposition 7.7) or by quadrics (Proposition 7.3) over a surface.

Notations. We work over a field k and Ω denotes a universal domain that
contains k. A variety over k is a reduced scheme of finite type over k. Through-
out, f : X → B denotes a projective surjective morphism defined over k from
a quasi-projective variety X of dimension dX to an irreducible quasi-projective
variety B of dimension dB. Given a scheme X over k, the group CHi(X)
is the Q-vector space with basis the i-dimensional irreducible reduced sub-
schemes of X modulo rational equivalence. By definition, we set CHj(X) = 0
for j < 0 and we say that CHi(X) is finitely generated if it is finitely gen-
erated as a Q-vector space, i.e. if it is a finite-dimensional Q-vector space.
If Z is an irreducible closed subscheme of X , we write [Z] for the class of Z
in CH∗(X). If α is the class of a cycle in CH∗(X), we write |α| for the sup-
port in X of a cycle representing α. If Y is a scheme over k and if β is a
cycle in CH∗(X × Y ), we define its transpose tβ ∈ CH∗(Y × X) to be the
proper pushforward of β under the obvious map τ : X × Y → Y × X . If
X and Y are smooth projective, a cycle γ ∈ CH∗(X × Y ) is called a corre-
spondence. The correspondence γ acts both on CH∗(X) and CH∗(Y ) in the
following way. Let pX : X × Y → X and pY : X × Y → Y be the first and
second projections, respectively. These are proper and flat and we may define,
for α ∈ CH∗(X), γ∗α := (pY )∗(γ · p∗Xα). Here “·” is the intersection product
on non-singular varieties as defined in [7, §8]. We then define, for β ∈ CH∗(Y ),
γ∗β := (tγ)∗β. Given another smooth projective variety Z and a correspon-
dence γ′ ∈ CH∗(Y × Z), the composite γ′ ◦ γ ∈ CH∗(X × Z) is defined to be
(pXZ)∗(p

∗
XY γ · p

∗
Y Zγ

′), where pXY : X × Y ×Z → X × Y is the projection and
likewise for pXZ and pY Z . The composition of correspondence is compatible
with the action of correspondences on Chow groups [7, §16].
Motives are defined in a covariant setting and the notations are those of [27].
Briefly, a Chow motive (or motive, for short) M is a triple (X, p, n) where X is
a variety of pure dimension dX , p ∈ CHd(X ×X) is an idempotent (p ◦ p = p)
and n is an integer. The motive of X is denoted h(X) and, by definition, is the
motive (X,∆X , 0) where ∆X is the class in CHdX (X ×X) of the diagonal in
X ×X . We write 1 for the unit motive (Spec k,∆Speck, 0) = h(Spec k). With
our covariant setting, we have h(P1) = 1 ⊕ 1(1). A morphism between two
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motives (X, p, n) and (Y, q,m) is a correspondence in q◦CHdX+n−m(X×Y )◦p.
If f : X → Y is a morphism, Γf denotes the graph of f in X×Y . By abuse, we
also write Γf ∈ CHdX (X × Y ) for the class of the graph of f . It defines a mor-
phism Γf : h(X) → h(Y ). By definition we have CHi(X, p, n) = p∗ CHi−n(X)
and Hi(X, p, n) = p∗Hi−2n(X), where we write Hi(X) := H2d−i(X(C),Q) for
singular homology when k ⊆ C, or Hi(X) := H2d−i(Xk,Qℓ) for ℓ-adic homol-
ogy (ℓ 6= char k) otherwise.
Given an irreducible scheme Y over k, ηY denotes the generic point of Y . If
f : X → B and if Y is a closed irreducible subscheme of B, XηY denotes the
fibre of f over the generic point of Y and XηY

denotes the fibre of f over a
geometric generic point of Y .

1. Surjective morphisms and motives

Let us start by recalling a few facts about intersection theory. Let f : X → Y
be a morphism of schemes defined over k and let l be an integer. If f is
proper, then there is a well-defined proper pushforward map f∗ : CHl(X) →
CHl(Y ); see [7, §1.4]. If f is flat, then there is a well-defined flat pullback

map f∗ : CHl(Y ) → CHl(X); see [7, §1.7]. Pullbacks can also be defined in the
following two situations. On the one hand, ifD is a Cartier divisor with support
ι : |D| →֒ X , there is a well-defined Gysin map ι∗ : CHl(X) → CHl−1(|D|) and
the composite ι∗ ◦ ι∗ : CHl(X) → CHl−1(X) does not depend on the linear
equivalence class of D, that is, there is a well-defined action of the Picard
group Pic(X) on CHl(X); see [7, §2]. For instance, if X is a quasi-projective
variety given with a fixed embeddingX →֒ PN , then there is a well-defined map
h : CHl(X) → CHl−1(X) given by intersecting with a hyperplane section of X .
More generally, if τ : Y →֒ X is a locally complete intersection of codimension
r, then there is a well-defined Gysin map τ∗ : CHl(X) → CHl−r(Y ); see [7,
§6]. For n ≥ 0, we write h0 = id : CHl(X) → CHl(X) and hn for the n-
fold composite h ◦ . . . ◦ h : CHl(X) → CHl−n(X). By functoriality of Gysin
maps [7, §6.5], if ιn : Hn →֒ X denotes a linear section of codimension n,
then the composite map h ◦ . . . ◦ h coincides with ιn∗ ◦ (ιn)∗. When X is
smooth projective, we write ∆Hn for the diagonal inside Hn × Hn, and the
correspondence Γιn ◦ tΓιn = (ιn × ιn)∗[∆Hn ] ∈ CHdX−n(X × X) induces a
map CHl(X) → CHl−n(X) that coincides with the map hn; see [7, §16]. By
abuse, we also write hn = Γιn ◦ tΓιn for n > 0 and h0 := [∆X ]. On the
other hand, if f : X → Y is a morphism to a non-singular variety Y and if
x ∈ CH∗(X) and y ∈ CH∗(Y ), then there is a well-defined refined intersection
product x ·f y ∈ CH∗(|x| ∩ f−1(|y|)), where “∩” denotes the scheme-theoretic
intersection; see [7, §8]. The pullback f∗y is then defined to be the proper
pushforward of [X ] ·f y in CH∗(X). Let us denote γf : X → X × Y the
morphism x 7→ (x, f(x)). Because Y is non-singular, this morphism is a locally
complete intersection morphism and the pullback f∗ is by definition γ∗f ◦ p∗Y ,
where pY : X × Y → Y is the projection and γ∗f is the Gysin map; see [7, §8].
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Finally, if f is flat, then this pullback map coincides with flat pullback [7, Prop.
8.1.2].

We have the following basic lemma.

Lemma 1.1. Let f : X → B be a projective surjective morphism between two
quasi-projective varieties. Let X ′ →֒ X be a linear section of X of dimension
≥ dB. Then f |X′ : X ′ → B is surjective.

Proof. Let X →֒ PN be an embedding of X in projective space and let H →֒
PN be a linear subspace such that X ′ is obtained as the pullback of X along
H →֒ PN . The linear subvariety H has codimension at most dX − dB in
PN while a geometric fibre of f has dimension at least dX − dB. Thus every
geometric fibre of f meetsH and henceX ′. It follows that f |X′ is surjective. �

Lemma 1.2. Let f : X → B be a projective surjective morphism to a smooth
quasi-projective variety B. Then there exists a positive integer n such that, for
all i, f∗ ◦ hdX−dB ◦ f∗ : CHi(B) → CHi(B) is multiplication by n. If moreover
X is smooth and B is projective, then

Γf ◦ hdX−dB ◦ tΓf = n ·∆B ∈ CHdB (B ×B).

Proof. Let ι′ := ιdX−dB : H ′ →֒ X be a linear section of X of dimension dB .
We first check, for lack of reference, that (f ◦ ι′)∗ = (ι′)∗ ◦ f∗ on Chow groups.
Here, f ◦ ι′ and f are morphisms to the non-singular variety B and as such the
pullbacks (f ◦ ι′)∗ and (ι′)∗ are the ones of [7, §8], while ι′ is the inclusion of a
locally complete intersection and as such the pullback (ι′)∗ is the Gysin pullback
of [7, §6]. Let σ ∈ CH∗(B), then (ι′)∗f∗σ = (ι′)∗γ∗f ([X ]×σ) = (γf ◦ι′)∗([X ]×σ),
where the second equality follows from the functoriality of Gysin maps [7,
§6.5]. Since γf ◦ ι′ = (ι′ × idB) ◦ γf◦ι′ , we get by using functoriality of Gysin
maps once more that (ι′)∗f∗σ = γ∗f◦ι′(ι

′ × idB)
∗([X ] × σ). Now, we have

(ι′ × idB)
∗([X ] × σ) = (ι′)∗[X ] × σ = [H ′] × σ; see [7, Example 6.5.2]. We

therefore obtain that (ι′)∗f∗σ = γ∗f◦ι′([H
′]× σ) := (f ◦ ι′)∗σ, as claimed.

Thus, since in addition both f and ι′ are proper, we have by functoriality of
proper pushforward (f ◦ ι′)∗(f ◦ ι′)∗ = f∗ι

′
∗(ι

′)∗f∗ = f∗ ◦ hdX−dB ◦ f∗. By
Lemma 1.1, the composite morphism g := f ◦ ι′ is generically finite, of degree
n say. It follows from the projection formula [7, Prop. 8.1.1(c)] and from the
definition of proper pushforward that, for all γ ∈ CHi(B),

f∗ ◦ h
dX−dB ◦ f∗γ = g∗([H

′] · g∗γ) = g∗([H
′]) · γ = n[B] · γ = nγ.

Assume now that X and B are smooth projective. In that case, we have
Γf ◦ hdX−dB ◦ tΓf = Γg ◦ tΓg := (p1,3)∗(p

∗
1,2

tΓg · p∗2,3Γg), where pi,j denotes
projection from B ×H ′ ×B to the (i, j)-th factor. By refined intersection, we
see that Γg ◦ tΓg is supported on (p1,3)([

tΓg × B] ∩ [B × Γg]), which itself is
supported on the diagonal of B × B. Thus Γf ◦ hdX−dB ◦ tΓf is a multiple of
∆B . We have already showed that f∗ ◦hdX−dB ◦f∗ = (Γf ◦hdX−dB ◦ tΓf )∗ acts
by multiplication by n on CHi(B). Therefore, Γf ◦ hdX−dB ◦ tΓf = n ·∆B. �
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The following lemma is reminiscent of [7, Prop. 3.1.(a)].

Lemma 1.3. Let f : X → B be a projective morphism to a smooth quasi-
projective variety B. Then, for all i, f∗ ◦hl ◦ f∗ : CHi(B) → CHi+dX−dB−l(B)
is the zero map for all l < dX−dB . If moreover X is smooth and B is projective,
then

Γf ◦ hl ◦ tΓf = 0 ∈ CHdX−l(B ×B) for all l < dX − dB.

Proof. By refined intersection [7, §8], the pullback f∗α is represented by a well-
defined class in CHi+dX−dB (f

−1(|α|)) for any cycle α ∈ CHi(B). It follows
that hl ◦ f∗α is represented by a well-defined class in CHi+dX−dB−l(f

−1(|α|)).
Since f |f−1(|α|) : f

−1(|α|) → |α| is proper, we see by proper pushforward that

f∗ ◦ h
l ◦ f∗α is represented by a well-defined cycle β ∈ CHi+dX−dB−l(|α|). But

then, dim |α| = i so that if l < dX − dB, then CHi+dX−dB−l(|α|) = 0.
Let us now assume that X and B are smooth projective. Let ιl : H l →֒ X be
a linear section of X of codimension l, and let hl be the class of (ιl × ιl)(∆Hl )
in CHdX−l(X × X). By definition we have Γf ◦ hl ◦ tΓf = (p1,4)∗(p

∗
1,2

tΓf ·

p∗2,3h
l ·p∗3,4Γf ), where pi,j denotes projection from B×X×X×B to the (i, j)-

th factor. These projections are flat morphisms, therefore by flat pullback we
have p∗1,2

tΓf = [tΓf×X×B], p∗2,3h
l = [B×∆Hl×B] and p∗3,4Γf = [B×X×Γf ].

By refined intersection, the intersection of the closed subschemes tΓf ×X ×B,
B×∆Hl ×B and B×X×Γf of B×X×X×B defines a (dX − l)-dimensional
class supported on their scheme-theoretic intersection {(f(h), h, h, f(h)) : h ∈
H l} ⊂ B × X × X × B. Since f is projective, this is a closed subset of
dimension dX − l. Also its image under the projection p1,4 has dimension at
most dB, which is strictly less than dX − l by the assumption made on l. The
projection p1,4 is a proper map and hence, by proper pushforward, we get that
(p1,4)∗[{(f(h), h, h, f(h)) ∈ B ×X ×X ×B : h ∈ H l}] = 0. �

Theorem 1.4. Let f : X → B be a surjective morphism of smooth projective
varieties over k. Consider the following two morphisms of motives

Φ :=

dX−dB⊕

i=0

hdX−dB−i ◦ tΓf :

dX−dB⊕

i=0

h(B)(i) −→ h(X)

and

Ψ :=

dX−dB⊕

i=0

Γf ◦ hi : h(X) −→
dX−dB⊕

i=0

h(B)(i).

Then Ψ ◦ Φ is an automorphism.

Proof. The endomorphism Ψ ◦Φ :
⊕dX−dB

i=0 h(B)(i) →
⊕dX−dB

i=0 h(B)(i) can be

represented by the (dX − dB +1)× (dX − dB +1)-matrix whose (i, j)th-entries
are the morphisms

(Ψ ◦ Φ)i,j = Γf ◦ hdX−dB−(j−i) ◦ tΓf : h(B)(j − 1) → h(B)(i − 1).

By Lemma 1.2, there is a non-zero integer n such that the diagonal entries
satisfy (Ψ ◦ Φ)i,i = n · idh(B)(i−1). By Lemma 1.3, (Ψ ◦ Φ)i,j = 0 as soon as
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j > i. Therefore

N := id−
1

n
·Ψ ◦ Φ

is a nilpotent endomorphism of
⊕dX−dB

i=0 h(B)(i) with NdX−dB+1 = 0. Let us
define

Ξ := (n · id− n ·N)−1

=
1

n
·
(
id +N +N2 + ·+NdX−dB

)
.

It then follows that Ξ is the inverse of Ψ ◦ Φ. �

In the situation of Theorem 1.4, the morphism

Θ := Ξ ◦Ψ

then defines a left-inverse to Φ and the endomorphism

p := Φ ◦Θ = Φ ◦ Ξ ◦Ψ ∈ End(h(X))

is an idempotent.

Proposition 1.5. With the notations above, the idempotent p ∈ End(h(X)) =
CHdX (X × X) satisfies p = tp. Moreover, the morphism Ψ ◦ p : (X, p) →⊕dX−dB

i=0 h(B)(i) is an isomorphism with inverse p ◦ Φ ◦ Ξ.

Proof. The second claim consists of the following identities: Ψ ◦ p ◦ p ◦Φ ◦Ξ =
Ψ◦p◦Φ◦Ξ = Ψ◦Φ◦Ξ◦Ψ◦Φ◦Ξ = id◦ id = id and p◦Φ◦Ξ◦Ψ◦p = p◦p◦p = p.
As for the first claim, we have

p =
1

n
· Φ ◦

(
1 +N + . . .+NdX−dB

)
◦Ψ.

Recall that N = id− 1
n ·Ψ◦Φ, so that it is enough to see that t(Φ◦Ψ) = Φ◦Ψ.

A straightforward computation gives

Φ ◦Ψ =

dX−dB∑

i=0

hdX−dB−i ◦ tΓf ◦ Γf ◦ hi.

We may then conclude by noting that the correspondence h ∈ CHdX−1(X×X)
satisfies h = th. �

Finally, let us conclude with the following counterpart of Theorem 1.4 that
deals with the Chow groups of quasi-projective varieties.

Proposition 1.6. Let f : X → B be a projective surjective morphism to a
smooth quasi-projective variety B. Then the map

Φ∗ =

dX−dB⊕

i=0

hdX−dB−i ◦ f∗ :

dX−dB⊕

i=0

CHl−i(B) −→ CHl(X)

is split injective and its left-inverse is a polynomial function in f∗, f
∗ and h.
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Proof. Thanks to Lemma 1.2 and to Lemma 1.3, there is a non-zero integer n
such that

f∗ ◦ h
i ◦ f∗ : CHl(B) → CHl+dX−dB−i(B)

is multiplication by n if i = dX − dB and is zero if i < dX − dB.

Let us write Ψ∗ for
⊕dX−dB

j=0 f∗ ◦ hj : CHl(X) →
⊕dX−dB

j=0 CHl−j(B). In order
to prove the injectivity of Φ∗, it suffices to show that the composite

Ψ∗ ◦ Φ∗ :

dX−dB⊕

i=0

CHl−i(B) −→ CHl(X) −→
dX−dB⊕

j=0

CHl−j(B)

is an isomorphism. But then, as in the proof of Theorem 1.4, we see that Ψ∗◦Φ∗

can be represented by a lower triangular matrix whose diagonal entries’ action
on CHl−i(B) is given by multiplication by n. �

Remark 1.7. Note that the conclusion of Proposition 1.6 also holds for a flat
and projective surjective morphism f : X → B of quasi-projective varieties.

2. On the Chow groups of the fibres

In this section, we fix a universal domain Ω. The following statement was
communicated to me by Burt Totaro.

Lemma 2.1. Let f : X → B be a morphism of varieties over Ω and let F be
a geometric generic fibre of f . Then there is a subset U ⊆ B(Ω) which is a
countable intersection of nonempty Zariski open subsets such that for each point
b ∈ U , there is an isomorphism from the field Ω to the field Ω(B) such that this

isomorphism turns the scheme Xb over Ω into the scheme F over Ω(B). In
other words, a very general fibre of f is isomorphic to F as an abstract scheme.
Consequently, for each point p ∈ U , CHi(Xb) is isomorphic to CHi(F ) for all
integers i.

Proof. There exist a countable subfield K ⊂ Ω and varieties X0 and B0 defined
over K together with a K-morphism f0 : X0 → B0 such that f = f0 ×SpecK

SpecΩ. Let us define U ⊆ B(Ω) to be
⋂

Z0
(B0\Z0)Ω(Ω), where the intersection

runs through all proper K-subschemes Z0 of B0. Note that there are only
countably many such subschemes of B0 and that U is the set of Ω-points of
B = B0 ×SpecK SpecΩ that do not lie above a proper Zariski-closed subset of
B0.
Let now b : SpecΩ → B be a Ω-point of B that lies in U , i.e. a point b such that

the composite map β : SpecΩ
b

−→ B → B0 is dominant, or equivalently such
that the composite map β factors as ηB0

◦ α for some morphism α : SpecΩ →
SpecK(B0), where ηB0

: SpecK(B0) → B0 is the generic point of B0. Since X
is pulled back from X0 along B → B0, we see that Xb the fibre of f at b is the
pull back of the generic fibre (X0)ηB0

along α. Consider then ηB : SpecΩ(B) →
B a geometric generic point of B such that XηB = F . Since the composite

map SpecΩ(B) → B → B0 factors through ηB0
: SpecK(B0) → B0, we see as

before that F is the pull-back of the generic fibre (X0)ηB0
along some morphism
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α′ : SpecΩ(B) → SpecK(B0). The fields Ω(B) and Ω are algebraically closed
fields of infinite transcendence degree over K(B0) and there thus exists an

isomorphism Ω(B) ∼= Ω fixing K(B0). Hence, the fibre Xb identifies with F

after pullback by the isomorphism SpecΩ ∼= SpecΩ(B) over SpecK(B0).
The last statement follows from the fact that the Chow groups of a vari-
ety X over a field only depend on X as a scheme. Precisely, if one de-
notes ψb : Xb → F an isomorphism of schemes, then the proper push-
forward map (ψb)∗ : CHi(Xb) → CHi(F ) is an isomorphism with inverse
(ψ−1

b )∗ : CHi(F ) → CHi(Xb). �

The following lemma will be useful to refer to.

Lemma 2.2. Let f : X → B be a projective surjective morphism defined over Ω
onto a quasi-projective variety B. Assume that CHl(Xb) = Q (resp. CHl(Xb)
is finitely generated) for all b ∈ B(Ω). Then CHl(XηD ) = Q (resp. CHl(XηD )
is finitely generated) for all irreducible subvarieties D of X.

Proof. Let D be an irreducible subvariety of B and let ηD → D be a geo-
metric generic point of D. By Lemma 2.1 applied to XD := X ×B D, there
is a closed point d ∈ D such that CHl(XηD

) is isomorphic to CHl(Xd). By
assumption CHl(Xd) = Q (resp. CHl(Xd) is finitely generated). Therefore
CHl(XηD

) = Q (resp. CHl(XηD
) is finitely generated), too. By a norm argu-

ment for Chow groups, the pullback map CHl(XηD ) → CHl(XηD
) is injective.

Hence CHl(XηD ) = Q (resp. CHl(XηD ) is finitely generated). �

The following definition is taken from Laterveer [15].

Definition 2.3. Let X be a variety over k. The Chow group CHi(X) is said
to have niveau ≤ r if there exists a closed subscheme Y ⊂ X of dimension i+ r
such that the proper pushforward map CHi(YΩ) → CHi(XΩ) is surjective.

Proposition 2.4. Let f : X → B be a generically smooth, projective and
dominant morphism onto a smooth quasi-projective variety B defined over Ω.
Let n be a non-negative integer. The following statements are equivalent.

(1) If F is a general fibre, then CH0(F ) has niveau ≤ n;
(2) If F is a very general fibre, then CH0(F ) has niveau ≤ n;
(3) If F is a geometric generic fibre, then CH0(F ) has niveau ≤ n.

Proof. The implication (1) ⇒ (2) is obvious. Let us prove (2) ⇒ (3). Let Xb

be a very general fibre and F a geometric generic fibre of f , and, by Lemma
2.1, let ψb : Xb → F be an isomorphism of schemes. Assume that there is a
closed subscheme Z of dimension ≤ r in Xb, for some integer r, such that the
proper pushforward CH0(Z) → CH0(Xb) is surjective. Then, denoting Z ′ the
image of Z in F under ψb, functoriality of proper pushforwards implies that
CH0(Z

′) → CH0(F ) is surjective. We may then conclude by noting that the
subscheme Z ′ has dimension ≤ r in F .
As for (3) ⇒ (1), let Y be a subvariety of F defined over ηB such that
CH0(Y ) → CH0(F ) is surjective. The technique of decomposition of the diag-
onal of Bloch–Srinivas [2] gives ∆F = Γ1 + Γ2 ∈ CHdimF (F × F ), where Γ1 is
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supported on F × Y and Γ2 is supported on D × F for some divisor D in F .
Consider a Galois extension K/Ω(B) over which the above decomposition and
the morphism Y → F are defined, and consider an étale morphism U → B
with Ω(U) = K such that f restricted to U is smooth. Let u be a Ω-point of
U and let Xu be the fibre of f over u. Then the decomposition ∆F = Γ1 + Γ2

specialises [7, §20.3] on Xu ×Xu to a similar decomposition, where Γ1|Xu×Xu

is supported on Xu × Yu and Γ2|Xu×Xu is supported on Du ×Xu. Letting it
act on zero-cycles, we see that CH0(Xu) is supported on Yu. �

Remark 2.5. When n = 0 or n = 1, the statements of Proposition 2.4 are
further equivalent to CH0(F ) having niveau ≤ n for F the generic fibre of f .
Indeed, if X is a smooth projective variety such that CH0(X) has niveau ≤ 1,
then CH0(X) is supported on a one-dimensional linear section [11, Proposition
1.6]. In particular, CH0(X) is supported on a one-dimensional subvariety of X
which is defined over a field of definition of X . Note that, for general n, it is a
consequence of the Lefschetz hyperplane theorem and of the Bloch–Beilinson
conjectures that if CH0(X) has niveau ≤ n, then CH0(X) is supported on an
n-dimensional linear section of X .

3. A generalisation of the projective bundle formula

We establish a formula that is analogous to the projective bundle formula for
Chow groups. Our formula holds for flat morphisms, rather than Zariski locally
trivial morphisms as is the case for the projective bundle formula. However,
since a flat morphism does not have any local sections in general, it only holds
with rational coefficients.

Proposition 3.1. Let f : X → B be a flat projective surjective morphism of
quasi-projective varieties. Let l ≥ 0 be an integer. Assume that

CHl−i(XηBi
) = Q

for all 0 ≤ i ≤ min(l, dB) and for all closed irreducible subschemes Bi of B of
dimension i, where ηBi is the generic point of Bi.
Then the map

Φ∗ =

dX−dB⊕

i=0

hdX−dB−i ◦ f∗ :

dX−dB⊕

i=0

CHl−i(B) −→ CHl(X)

is surjective.

Proof. The case when dB = 0 is obvious. Let us proceed by induction on dB .
We have the localisation exact sequence

⊕

D∈B1

CHl(XD) −→ CHl(X) −→ CHl−dB (XηB ) −→ 0,

where the direct sum is taken over all irreducible divisors of B. If l ≥ dB, let
Y be a linear section of X of dimension l. By Lemma 1.1, f |Y : Y → B is
surjective. The restriction map CHl(X) → CHl−dB (XηB ) is the direct limit of
the flat pullback maps CHl(X) → CHl(XU ) taken over all open subsets U of

Documenta Mathematica 18 (2013) 1521–1553



Algebraic Cycles and Fibrations 1533

B; see [3, Lemma 1A.1]. Therefore CHl(X) → CHl−dB (XηB ) sends the class
of Y to the class of YηB inside CHl−dB (XηB ). But then this class is non-zero
because the restriction to ηB of a linear section of Y of dimension dB has
positive degree. Furthermore, if [B] denotes the class of B in CHdB (B), then
the class of Y is equal to hdX−l ◦ f∗[B] in CHl(X). Thus, since by assumption
CHl−dB (XηB ) = Q, the composite map

CHdB (B)
hdX−l◦f∗

−→ CHl(X) → CHl−dB (XηB )

is surjective.
Consider now the fibre square

XD

fD

��

j′D
// X

f

��

D
jD

// B.

Then fD : XD → D is flat and its fibres above points of D satisfy the as-
sumptions of the theorem. Therefore, by the inductive assumption, we have a
surjective map

dX−dB⊕

i=0

hdX−dB−i ◦ f∗
D :

dX−dB⊕

i=0

CHl−i(D) −→ CHl(XD).

Furthermore, since f is flat and jD is proper, we have the formula [7, Prop.
1.7 & Th. 6.2]

j′D∗ ◦ h
dX−dB−i ◦ f∗

D = hdX−dB−i ◦ f∗ ◦ jD∗ : CHl−i(D) → CHl(X).

Hence, the image of Φ∗ contains the image of

⊕

D∈B1

dX−dB⊕

i=0

j′D∗ ◦ h
dX−dB−i ◦ f∗

D :
⊕

D∈B1

dX−dB⊕

i=0

CHl−i(D) −→ CHl(X).

Altogether, this implies that the map Φ∗ is surjective. �

We can now gather the statements and proofs of Propositions 1.6 and 3.1 into
the following.

Theorem 3.2. Let f : X → B be a flat and projective surjective morphism
onto a quasi-projective variety B of dimension dB. Let l ≥ 0 be an integer.
Assume that

CHl−i(Xb) = Q for all 0 ≤ i ≤ min(l, dB) and for all points b in B(Ω).

Then the map

Φ∗ =

dX−dB⊕

i=0

hdX−dB−i ◦ f∗ :

dX−dB⊕

i=0

CHl−i(B) −→ CHl(X)
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is an isomorphism. Moreover the map

Ψ∗ =

dX−dB⊕

i=0

f∗ ◦ h
i : CHl(X) −→

dX−dB⊕

i=0

CHl−i(B)

is also an isomorphism. �

Proof. Let Bi be an irreducible closed subscheme of B of dimension i with
0 ≤ i ≤ min(l, dB). Since CHl−i(Xb) = Q for all points b ∈ B(Ω), Lemma
2.2 gives CHl−i(XηBi

) = Q. Thus the theorem follows from a combination of

Proposition 1.6 (and Remark 1.7) and Proposition 3.1. �

4. On the motive of quadric bundles

Let us first recall the following result.

Proposition 4.1 (Corollary 2.2 in [27]). Let m and n be positive integers.
Let (Y, q) be a motive over k such that CHi(YΩ, qΩ) = 0 for all i < n and
CHj(YΩ,

tqΩ) = 0 for all j < m. Then there exist a smooth projective variety
Z over k of dimension dX −m−n and an idempotent r ∈ End(h(Z)) such that
(Y, q) is isomorphic to (Z, r, n). �

The main result of this section is the following theorem.

Theorem 4.2. Let f : X → B be a flat morphism of smooth projective varieties
over k. Assume that there exists a positive integer n such that CHl(Xb) = Q

for all 0 ≤ l < n and for all points b ∈ B(Ω). Then there exists a smooth
projective variety Z of dimension dX − 2n and an idempotent r ∈ End(h(Z))
such that the motive of X admits a direct sum decomposition

h(X) ∼=

dX−dB⊕

i=0

h(B)(i) ⊕ (Z, r, n).

Proof. With the notations of Theorem 1.4 and its proof the endomorphism

Ψ ◦ Φ ∈ End
(⊕dX−dB

i=0 h(B)(i)
)
admits an inverse denoted Ξ. Proposition 1.5

then states that p := Φ◦Ξ◦Ψ ∈ End(h(X)) is a self-dual idempotent such that

(X, p) ∼=
⊕dX−dB

i=0 h(B)(i). By Theorem 3.2, (pΩ)∗ : CHl(XΩ) → CHl(XΩ) is
an isomorphism for all l < n. It follows that CHl(XΩ, pΩ) = CHl(XΩ) for all
l < n and thus that CHl(XΩ, idΩ − pΩ) = 0 for all l < n. Because p = tp, we
also have CHl(XΩ, idΩ − tpΩ) = 0 for all l < n. Proposition 4.1 then yields
the existence of a smooth projective variety Z of dimension dX − 2n such that
(X, id− p) is isomorphic to a direct summand of h(Z)(n). �

Our original motivation was to establish Murre’s conjectures [18] for smooth
projective varieties fibred by quadrics over a surface. The importance of
Murre’s conjectures was demonstrated by Jannsen who proved [11] that these
hold true for all smooth projective varieties if and only if Bloch and Beilinson’s
conjecture holds true. In our covariant setting, Murre’s conjectures can be
stated as follows.

Documenta Mathematica 18 (2013) 1521–1553



Algebraic Cycles and Fibrations 1535

(A) There exist mutually orthogonal idempotents π0, . . . , π2d ∈ CHdX (X ×X)
adding to the identity such that (πi)∗H∗(X) = Hi(X) for all i. We say that X
has a Chow–Künneth decomposition.
(B) π0, . . . , π2l−1, πd+l+1, . . . , π2d act trivially on CHl(X) for all l.
(C) F iCHl(X) := Ker (π2l) ∩ . . . ∩Ker (π2l+i−1) doesn’t depend on the choice
of the πj ’s. Here the πj ’s are acting on CHl(X).
(D) F 1 CHl(X) = CHl(X)hom := Ker

(
CHl(X) → H2l(X)

)
.

Definition 4.3. A variety X that satisfies conjectures (A), (B) and (D) is said
to have a Murre decomposition.

In the particular case when f is a flat morphism whose geometric fibres are
quadrics1, Theorem 4.2 implies the following corollary. We write ⌊a⌋ for the
greatest integer which is smaller than or equal to the rational number a.

Corollary 4.4. Let f : X → B be a flat morphism of smooth projective
varieties over k. Assume that CHl(Xb) = Q for all 0 ≤ l < dX−dB

2 and for
all points b ∈ B(Ω). For instance, the geometric fibres of f could either be
quadrics or complete intersection of dimension 4 and bidegree (2, 2). Then

• If dB = 1, then X is Kimura finite-dimensional [12].
• If dB ≤ 2, then X has a Murre decomposition.
• If dB = 3, dX − dB is odd and B has a Murre decomposition, then X

has a Murre decomposition.

Proof. By Theorem 4.2, there is a variety Z and an idempotent r ∈ End(h(Z))
such that the motive of X admits a direct sum decomposition

h(X) ∼=

dX−dB⊕

i=0

h(B)(i)⊕ (Z, r, ⌊
dX − dB + 1

2
⌋),

where

dZ =

{
dB − 1 if dX − dB is odd;
dB if dX − dB is even.

Thus, we only need to note that any direct summand of the motive of a curve is
finite-dimensional [12] and that any direct summand of the motive of a surface
has a Murre decomposition [27, Theorem 3.5]. Finally, let us mention that,
when dB = 1, it is not necessary to assume f to be flat to conclude that X is
Kimura finite-dimensional; see Propositions 7.3 and 7.5 below. �

Remark 4.5. Examples of 3-folds having a Murre decomposition include prod-
ucts of a curve with a surface [19], 3-folds rationally dominated by a product
of curves [28] and uniruled 3-folds [5].

1Actually if f is flat and if its closed geometric fibres are quadrics, then all of its geometric

fibres are quadrics. Conversely if the geometric fibres of f are quadrics of dimension dX −dB ,

then f is flat.
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Remark 4.6 (The case of smooth families). Suppose f : X → B is a smooth
morphism between smooth projective varieties with geometric fibres being
quadric hypersurfaces. Iyer [10] showed that f is étale locally trivial and
deduced that f has a relative Chow–Künneth decomposition. By using the
technique of Gordon–Hanamura–Murre [8], it is then possible to prove that

h(X) ∼=

{ ⊕dX−dB

l=0 h(B)(l) if dX − dB is odd;⊕dX−dB

l=0 h(B)(l)⊕ h(B)(dX−dB

2 ) if dX − dB is even.

Remark 4.7. Suppose f : X → S is a complex morphism from a smooth
projective 3-fold X to a smooth projective surface S whose fibres are conics.
In that case, Nagel and Saito [20] identify (up to direct summands isomorphic
to 1 or 1(1)) the motive (Z, r) in the proof of Corollary 4.4 with the h1 of the
Prym variety P attached to a double-covering of the discriminant curve C of f .
If now f : X → S is a flat complex morphism from a smooth projective variety
X to a smooth projective surface S whose fibres are odd-dimensional quadrics,
then, because the motive of a curve is Kimura finite-dimensional and by the
Lefschetz (1, 1)-theorem, one would deduce an identification of the h1 of (Z, r)
with h1(P ) from an isomorphism of Hodge structures H1(Z, r) ∼= H1(P ). Here,
P again is the Prym variety attached to a double-covering of the discriminant
curve C of f . Such an identification is currently being investigated by J. Bouali
[4] by generalising the methods of [20].

Corollary 4.8. Let f : X → B be a flat dominant morphism between smooth
projective varieties defined over a finite field F whose geometric fibres are
quadrics. If dB ≤ 2, then numerical and rational equivalence agree on X.

Proof. As in the proof of Corollary 4.4, there is a direct sum decomposition

(3) h(X) ∼=

dX−2⊕

i=0

h(B)(i)⊕ (Z, r, ⌊
dX − dB + 1

2
⌋)

for some smooth projective variety Z, which is a curve if dX − dB is odd
and a surface if dX − dB is even. Now the action of correspondences pre-
serves numerical equivalence so that if α denotes the isomorphism from
h(X) to the right-hand side of (3) and if β denotes its inverse, then we
have CHl(X)num = β∗α∗ CHl(X)num for all l. In particular, CHl(X)num =

β∗
(⊕dX−2

i=0 CHl−i(B)num ⊕ r∗ CHl−m(Z)num
)
, where m = ⌊dX−dB+1

2 ⌋. The
corollary then follows from the fact that for any smooth projective variety Y
defined over a finite field the groups CH0(Y )num, CH

1(Y )num and CH0(Y )num
are zero. �

5. On the motive of a smooth blow-up

Let X be a smooth projective variety over a field k and let j : Y →֒ X be

a smooth closed subvariety of codimension r. We write τ : X̃Y → X for the
blow-up of X along Y . Manin [16] showed by an existence principle that the

natural map, which is denoted Φ below, h(X) ⊕
⊕r−1

i=1 h(Y )(i) −→ h(X̃Y ) is
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an isomorphism of Chow motives. Here, we make explicit the inverse to this
isomorphism. An application is given by Proposition 5.4. The results of this
section will not be used in the rest of the paper.

We have the following fibre square

D
j̃

//

τD

��

X̃Y

τ

��

Y
j

// X

where j̃ : D → X̃Y is the exceptional divisor and where τD : D → Y is a
Pr−1-bundle over Y . Precisely D = P(NY/X) is the projective bundle over Y
associated to the normal bundle NY/X of Y inside X . The tautological line
bundle on D = P(NY/X) is OP(NY/X)(−1) = OX̃Y

(D)|D. Let

Hr−1 ⊂ . . . ⊂ Hi ⊂ . . . ⊂ H ⊂ D

be linear sections of D corresponding to the relatively ample line bundle
OP(NY/X )(1), where Hi has codimension i. Thus, if D →֒ PM × Y is an

embedding over Y corresponding to OP(NY/X)(1), then H
i denotes the smooth

intersection of D with Li × Y for some linear subspace Li of codimension i
inside PM . Let us write ιi : Hi →֒ D for the inclusion maps.
As we will be using repeatedly Manin’s identity principle, let us mention that
if Z is a smooth projective variety over k, then the blow-up of X × Z along

Y × Z canonically identifies with τ × idZ : X̃Y × Z → X × Z. We write Hi
Z

for Hi × Z.

Let us define the morphism of motives

Φ := tΓτ ⊕
r−1⊕

i=1

Γj̃ ◦ h
r−1−i ◦ tΓτD : h(X)⊕

r−1⊕

i=1

h(Y )(i) −→ h(X̃Y ).

Here, hl is the correspondence Γιl ◦
tΓιl ; it coincides with the l-fold composite

of h := Γι1 ◦
tΓι1 with itself.

On the one hand, we have the following blow-up formula for Chow groups; see
[16].

Proposition 5.1. The induced map

Φ∗ = τ∗ ⊕
r−1⊕

i=1

j̃∗h
r−1−iτD

∗ : CHl(X)⊕
r−1⊕

i=1

CHl−i(Y ) −→ CHl(X̃Y )

is an isomorphism. �

On the other hand, we define

Ψ := Γτ ⊕
r−1⊕

i=1

(−1) · ΓτD ◦ hi−1 ◦ tΓj̃ : h(X̃Y ) −→ h(X)⊕
r−1⊕

i=1

h(Y )(i).
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Let (Ψ ◦ Φ)i,j be the (i, j)th component of Ψ ◦ Φ, where h(X) is by definition

the 0th coordinate of h(X) ⊕
⊕r−1

i=1 h(Y )(i). Thus, if i, j 6= 0, then (Ψ ◦ Φ)i,j
is a morphism h(Y )(j) → h(Y )(i); if i 6= 0, then (Ψ ◦ Φ)i,0 is a morphism
h(X) → h(Y )(i); if j 6= 0, then (Ψ ◦Φ)0,j is a morphism h(Y )(j) → h(X); and
(Ψ ◦ Φ)0,0 is a morphism h(X) → h(X).
The following lemma shows that Ψ◦Φ is a lower triangular matrix with invert-
ible diagonal elements.

Lemma 5.2. We have

(Ψ ◦ Φ)i,j =





0 if i < j
0 if ij = 0 unless i = j = 0

∆X if i = j = 0
∆Y if i = j > 0

Proof. The proposition consists of the following relations:

(1) Γτ ◦ tΓτ = ∆X .
(2) ΓτD ◦ hi−1 ◦ tΓj̃ ◦ Γj̃ ◦ h

r−1−j ◦ tΓτD = 0 for all 1 ≤ i < j ≤ r − 1.

(3) ΓτD ◦ hi−1 ◦ tΓj̃ ◦ Γj̃ ◦ h
r−1−i ◦ tΓτD = −∆Y for all 1 ≤ i ≤ r − 1.

(4) Γτ ◦ Γj̃ ◦ h
r−1−i ◦ tΓτD = 0 for all 1 ≤ i ≤ r − 1.

Let us establish them. The morphism τ is a birational morphism so that the
identity (1) follows from the projection formula as in the proof of Lemma 1.2.

The proof of (4) is a combination of the fact that τ ◦ j̃ = j ◦ τD and Lemma
1.3. As for (2) and (3), we claim that

tΓj̃ ◦ Γj̃ = −Γι ◦
tΓι = −h ∈ CHdX−1(D ×D).

Indeed, the action of h on CH∗(D) is given by intersecting with the class of

H . Also, by [7, Prop. 2.6], the map j̃∗j̃∗ : CH∗(D) → CH∗−1(D) is given by
intersecting with the class of D|D which is precisely −h. The same arguments
for the smooth blow-up of X × Z along Y × Z (whose exceptional divisor is

D × Z →֒ X̃Y × Z), together with Manin’s identity principle, yield the claim.
In view of the above claim, (2) follows from Lemma 1.3 and (3) follows from
Lemma 1.2. �

Thus the endomorphism

N :=




∆X 0 0 · · · 0
0 ∆Y 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 ∆Y




− Ψ ◦ Φ

is a nilpotent endomorphism of h(X) ⊕
⊕r−1

i=1 h(Y )(i) of index ≤ r − 1, i.e.
N r−1 = 0. The morphism

Θ := (id +N + . . .+N r−2) ◦Ψ

thus gives a left-inverse to Φ.
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The main result of this section is then the following theorem.

Theorem 5.3. The morphism Θ is the inverse of Φ.

Proof. Let p := Φ ◦Θ ∈ End(h(X̃Y )). Because Θ is a left-inverse to Φ, we see

that p is an idempotent. The motive of X̃Y thus splits as

h(X̃Y ) = (X̃Y , p)⊕ (X̃Y , id− p).

As a consequence of Proposition 5.1 and Lemma 5.2, we obtain that

CH∗(X̃Y , p) = CH∗(X̃Y ).

Actually, since ˜(X × Z)Y ×Z canonically identifies with X̃Y ×Z, we get, thanks
to [7, Prop. 16.1.1], that Φ ×∆Z induces an isomorphism of Chow groups as
in Proposition 5.1 and that Θ×∆Z is a left-inverse to Φ×∆Z . Thus, we also
have that

CH∗(X̃Y × Z, p×∆Z) = CH∗(X̃Y × Z).

Therefore
CH∗(X̃Y × Z,∆X̃Y

×∆Z − p×∆Z) = 0.

By Manin’s identity principle it follows that

p = ∆X̃Y
.

In other words, Θ is not only a left-inverse to Φ, it is also the inverse of Φ. �

Let us now use Theorem 5.3 to study the birational invariance of some
groups of algebraic cycles attached to smooth projective varieties. For a
smooth projective variety X over k, we write Griffl(X) for its Griffiths group
CHl(X)hom/CHl(X)alg. We also write, when k ⊆ C,

T l(X) := Ker
(
AJ l : CHl(X)hom → J l(X)

)

for the kernel of Griffiths’ Abel–Jacobi map to the intermediate Jacobian J l(X)
which is a quotient of H2l−1(X,C).

If π : X̃ → X is a birational map, the projection formula implies that Γπ◦tΓπ =
∆X ; see Lemma 1.2. Thus π∗π

∗ acts as the identity on CHl(X), Griff l(X) and
on T l(X). The following proposition shows that in some cases π∗ and π∗ are
actually inverse to each other.

Proposition 5.4. Let π : X̃ → X be a birational map between smooth

projective varieties. Then π∗π∗ acts as the identity on CH0(X̃), Griff1(X̃),

Griff2(X̃), T 2(X̃), CH1(X̃)hom and CH0(X̃).

Proof. By resolution of singularities, there are morphisms f : Y → X̃ and
g : Y → X , which are composite of smooth blow-ups, such that g = π ◦ f .
The groups considered in the proposition behave functorially with respect to
the action of correspondences. Therefore it is enough to prove the proposition

when π is a smooth blow-up X̃Y → X as above. First note that Ψi := h(X̃Y ) →
h(Y )(i) acts as zero on the groups considered in the proposition when 1 ≤ i ≤
r − 1, for dimension reasons. Having in mind that the first column and the
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first row of N are zero, and expanding Φ ◦Θ, we see that Φ ◦Θ acts like π∗π∗
on the groups of the proposition. By Theorem 5.3, the correspondence Φ ◦ Θ
acts as the identity on CHl(X̃). Thus π∗π∗ acts as the identity on the groups
of the proposition. �

Remark 5.5. As a consequence of Theorem 5.3, we obtain an explicit Chow–

Künneth decomposition for a smooth blow-up X̃Y in terms of Chow–Künneth
decompositions of X and Y . Precisely, assume that X and Y are endowed
with Chow–Künneth decompositions {πi

X , 0 ≤ i ≤ 2 dimX} and {πi
Y , 0 ≤ i ≤

2 dimY }, respectively. Let us define

πi
X̃Y

:= Φ ◦
(
πi
X ⊕

r−1⊕

j=1

πi−2j
Y

)
◦Θ ∈ End

(
h(X̃Y )

)
.

Then {πi
X̃Y
, 0 ≤ i ≤ 2 dim X̃Y } is a Chow–Künneth decomposition of X̃Y .

6. Chow groups of varieties fibred by varieties

with small Chow groups

In this section, we consider a projective surjective morphism f : X → B onto a
quasi-projective variety B. We are interested in obtaining information on the
niveau of the Chow groups of X , under the assumption that the Chow groups
of the fibres of f over generic points of closed subvarieties of B are either trivial
(= Q) or finitely generated. Contrary to Section 3, we do not assume that f
is flat. Let l be a non-negative integer and let dX and dB be the dimensions
of X and B, respectively. In §6.1, we assume that CHl−i(XηDi

) = Q for
all 0 < i ≤ dB and all irreducible subvarieties Di ⊂ B of dimension i, and
we deduce in Lemma 6.1 by a localisation sequence argument that CHl(X) is
spanned by CHl(Xb) for all closed points b in B and by CHl(H), where H →֒ X
is a linear section of X of dimension dX + l. We then move on to study the
subspace of CHl(X) spanned by CHl(Xb) for all closed points b in B in the case
when CHl(Xb) = Q in §6.2, and in the case when CHl(Xb) finitely generated
in §6.3. The results of §§6.1 & 6.2 are combined into Proposition 6.5, while
the results of §§6.1 & 6.3 are combined into Propositions 6.8 and 6.9 in §6.4.
Finally, in §6.5, we use Lemma 2.1 to give statements that only involve the
Chow groups of closed fibres when f is defined over the complex numbers; see
Theorems 6.10, 6.12 and 6.13.

6.1. Some general statements.

Lemma 6.1. Let f : X → B be a projective surjective morphism onto a quasi-
projective variety B and let H →֒ X be a linear section of dimension ≥ l +
dB . Assume that CHl−i(XηDi

) = Q for all 0 < i ≤ dB and all irreducible

subvarieties Di ⊂ B of dimension i. Then the natural map
⊕

b∈B CHl(Xb) ⊕
CHl(H) → CHl(X) is surjective.
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Proof. We prove the proposition by induction on dB . If dB = 0 then the
statement is obvious. Let us thus consider a morphism f : X → B and a
linear section ι : H →֒ X as in the statement of the proposition with dB > 0.
By Lemma 1.1, f restricted to H is surjective. We have the localisation exact
sequence ⊕

D∈B1

CHl(XD) → CHl(X) → CHl−dB (XηB ) → 0.

Here, B1 denotes the set of codimension-one closed irreducible subschemes of
B. For any irreducible codimension-one subvariety D ⊂ B, the restriction of ι
to D → B defines a linear section ιD : HD →֒ XD of dimension ≥ l + dB − 1
of XD. The restriction of f : X → B to D → B defines a surjective morphism
XD → D which together with the linear section ιD satisfies the assumptions of
the proposition. Therefore, by the induction hypothesis applied to XD → D,
the map ⊕

d∈D

CHl(Xd)⊕ CHl(HD) → CHl(XD)

is surjective. This yields an exact sequence
⊕

b∈B

CHl(Xb)⊕
⊕

D∈B1

CHl(HD) → CHl(X) → CHl−dB (XηB ) → 0.

Since each of the proper inclusion maps HD → X factors through ι : H → X ,

we see that the map
⊕

D∈B1 CHl(HD)
⊕(ιD)∗
−→ CHl(X) factors through ι∗ :

CHl(H) → CHl(X). In order to conclude, it is enough to prove that the
composite map

CHl(H) → CHl(X) → CHl−dB (XηB )

is surjective. If l < dB, then this is obvious. Let us then assume that l ≥ dB .
Let Y be an irreducible subvariety of H of dimension l such that the composite
Y →֒ X → B is dominant. Because CHl−dB (XηB ) = Q it is enough to see that
the class of Y in CHl(X) maps to a non-zero element in CHl−dB (XηB ). But,
as in the proof of Proposition 3.1, [Y ] maps to [YηB ] 6= 0 ∈ CHl−dB (XηB ). �

Here is an improvement of Lemma 6.1:

Lemma 6.2. Let f : X → B be a projective surjective morphism onto a quasi-
projective variety B and let H →֒ X be a linear section of dimension ≥ l+ dB.
Assume that:

• CHl−i(XηDi
) = Q for all i such that 0 < i < dB and all irreducible subvari-

eties Di ⊂ B of dimension i.
• CHl−dB (XηB ) is finitely generated.

Then there exist finitely many closed subschemes Zj of X of dimension l such
that the natural map

⊕
j CHl(Zj) ⊕

⊕
b∈B CHl(Xb) ⊕ CHl(H) → CHl(X) is

surjective.
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Proof. If dB = 0 then the statement is obvious. Let us thus consider a mor-
phism f : X → B and a linear section ι : H →֒ X as in the statement of
the proposition with dB > 0. The morphism f restricted to H is surjective;
see Lemma 1.1. As in the proof of Lemma 6.1 we have the localisation exact
sequence ⊕

D∈B1

CHl(XD) → CHl(X) → CHl−dB (XηB ) → 0.

Each of the morphisms XD → D satisfies the assumptions of Lemma 6.1 and
by the same arguments as in the proof of Lemma 6.1 we get that the image of
the map

⊕
b∈B CHl(Xb) ⊕ CHl(H) → CHl(X) contains the image of the map⊕

D∈B1 CHl(XD) → CHl(X). Let now Zj be finitely many closed subschemes
of XηB whose classes [Zj ] ∈ CHl−dB (XηB ) generate CHl−dB (XηB ). By sur-
jectivity of the map CHl(X) → CHl−dB (XηB ) there are cycles αj ∈ CHl(X)
that map to [Zj]. If Zj is the support in X of any representative of αj , we
then have a surjective map

⊕
j CHl(Zj) → CHl(X) → CHl−dB (XηB ). It is

then clear that the map
⊕

j CHl(Zj) ⊕
⊕

b∈B CHl(Xb) ⊕ CHl(H) → CHl(X)
is surjective. �

6.2. Varieties fibred by varieties with Chow groups generated by

a linear section.

Lemma 6.3. Let f : X → B be a projective surjective morphism onto a quasi-
projective variety B. Assume that CHl(Xb) = Q for all closed points b ∈ B.
Then, if H →֒ X is a linear section of dimension ≥ l+ dB , we have

Im
(⊕

b∈B

CHl(Xb) → CHl(X)
)

⊆ Im
(
CHl(H) → CHl(X)

)
.

Proof. Let b be a closed point of B and fix H →֒ X a linear section of dimension
≥ l + dB. The morphism f restricted to H is surjective; see Lemma 1.1. Let
Zl be an irreducible closed subscheme of X of dimension l which is supported
on Xb. Since f |H : H → B is a dominant projective morphism, its fibre Hb

over b is non-empty and has dimension ≥ l. By assumption CHl(Xb) = Q,
so that a rational multiple of [Zl] is rationally equivalent to an irreducible
closed subscheme of Hb of dimension l. Therefore [Zl] ∈ CHl(Xb) belongs
to the image of the natural map CHl(Hb) → CHl(Xb). Thus the image of
CHl(Xb) → CHl(X) is contained in the image of CHl(H) → CHl(X). �

Remark 6.4. It is interesting to decide whether or not it is possible to
parametrise such l-cycles by a variety of dimension dB; see Proposition 6.7.

Proposition 6.5. Let f : X → B be a projective surjective morphism onto a
quasi-projective variety B. Assume that CHl−i(XηDi

) = Q for all 0 ≤ i ≤ dB
and all irreducible subvarieties Di ⊂ B of dimension i. Then, if H →֒ X is a
linear section of dimension ≥ l+dB, the pushforward map CHl(H) → CHl(X)
is surjective. In particular, CHl(X) has niveau ≤ dB .

Proof. This is a combination of Lemma 6.1 and Lemma 6.3. �
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6.3. An argument involving relative Hilbert schemes. Let f : X → B
be a generically smooth, projective morphism defined over the field of complex
numbers C onto a smooth quasi-projective variety B. Let B◦ ⊆ B be the
smooth locus of f and let f◦ : X◦ → B◦ be the pullback of f : X → B along
the open inclusion B◦ →֒ B so that we have a cartesian square

X◦

f◦

��

�

�

// X

f

��

B◦ �

�

// B.

We assume that there is a non-negative integer l such that for all closed points
b ∈ B◦(C) the cycle class map CHl(Xb) → H2l(Xb) is an isomorphism.

Let πd : Hilbd
l (X/B) → B be the relative Hilbert scheme whose fibres over the

points b in B parametrise the closed subschemes ofXb of dimension l and degree
d, and let pd : Cd

l → Hilbdl (X/B) be the universal family over Hilbdl (X/B); see
[14, Theorem 1.4]. We have the following commutative diagram, where all the
morphisms involved are proper:

Cd
l

pd

��

qd
// X.

}}{{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

Hilbd
l (X/B)

πd

��

B

We then consider the disjoint unions Hilbl(X/B) :=
∐

d≥0 Hilb
d
l (X/B) and

Cl :=
∐

d≥0 C
d
l , and denote π : Hilbl(X/B) → B, p : Cl → Hilbl(X/B) and

q : Cl → X the corresponding maps.
Let us then denote

Irrl(X/B) := {H : H is an irreducible component of Hilbd
l (X/B) for some d}.

For a subset E ⊂ Irrl(X/B), we define the following closed subscheme of B◦:

ZE := B◦ ∩
⋂

H∈E

π(H).

We say that a finite subset E of Irrl(X/B) is spanning at a point t ∈ ZE(C)
if H2l(Xt) is spanned by the set { cl(q∗[p−1(u)]) : u ∈ H,H ∈ E , π(u) = t }.
Note that, given H ∈ Irrl(X/B) and u, u′ ∈ H such that π(u) = π(u′) =
t, cl(q∗[p

−1(u)]) = cl(q∗[p
−1(u′)]) ∈ H2l(Xt) if u and u′ belong to the same

connected component in π−1(t).

Claim. Let E be a finite subset of Irrl(X/B) that is spanning at a closed
point t ∈ ZE(C). Then, for all points s ∈ ZE(C) belonging to an irreducible
component of ZE that contains t, H2l(Xs) is spanned by the set { cl(q∗[p

−1(v)]) :
v ∈ H,H ∈ E , π(v) = s }.
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Indeed, consider any finite subset E of Irrl(X/B). The local system of Q-vector
spaces R2l(f0)∗Q on B◦ restricts to a local system (R2l(f0)∗Q)|ZE

on ZE . If t
is a complex point on ZE , let rt be the rank of the subspace of H2l(Xt) spanned
by { cl(q∗[p−1(u)]) : u ∈ H,H ∈ E , π(u) = t }. If we see this latter set as a set of
sections at t of the local system R2l(f0)∗Q, then these sections extend locally
to constant sections of the local system (R2l(f0)∗Q)|ZE

on ZE . This shows that
the rank rt is locally constant. If E is spanning at the point t ∈ ZE(C), then rt
is maximal, equal to dimQ H2l(Xt). The subset of ZE(C) consisting of points
s in ZE(C) for which rs = dimQ H2l(Xs) is therefore both open and closed in
ZE . It contains then the irreducible components of ZE that contain t.

Lemma 6.6. There exists a finite subset E of Irrl(X/B) such that B◦ = ZE and
such that E is spanning at every point t ∈ B◦(C).

Proof. By working component-wise, we may assume that B is irreducible. By
assumption on f : X → B, H2l(Xt) is spanned by algebraic cycles on Xt for
all points t ∈ B◦(C). Thus, for all points t ∈ B◦(C), there is a finite subset
Et of Irrl(X/B) that is spanning at t. For each point t, choose an irreducible
component YEt of ZEt that contains t. According to the claim above, Et is
spanning at every point s ∈ YEt(C). Now, we have B◦(C) =

∐
t∈B◦(C) YEt(C).

Since there are only countably many finite subsets of Irrl(X/B) and since ZE

has only finitely many irreducible components, we see that the latter union is
in fact a countable union. This yields that B◦ = YE for some finite subset E
of Irrl(X/B) that is spanning at every point in YE(C). We then conclude that
B◦ = ZE and that E is spanning at every point t ∈ YE(C) = B◦(C). �

Proposition 6.7. Let f : X → B be a generically smooth and projective
morphism defined over C onto a smooth quasi-projective variety B. Let B◦ ⊆ B
be the smooth locus of f . Assume that there is an integer l ≤ dX − dB such
that for all closed points b ∈ B◦(C) the cycle class map CHl(Xb) → H2l(Xb)
is an isomorphism. Then Im

(⊕
b∈B◦ CHl(Xb) → CHl(X)

)
is supported on a

closed subvariety of X of dimension dB + l.

If moreover X is smooth, then there exist a smooth quasi-projective variety B̃

of dimension dB and a correspondence Γ ∈ CHdB+l(B̃ × X) such that Γ∗ :

CH0(B̃) → CHl(X) is well-defined and

Im
( ⊕

b∈B◦

CHl(Xb) → CHl(X)
)

⊆ Im
(
Γ∗ : CH0(B̃) → CHl(X)

)
.

Proof. By Lemma 6.6, there exists a finite set E of irreducible components of
Hilbl(X/B) such that B◦ = ZE and such that for all points t ∈ B◦(C) the
set { cl(q∗[p−1(u)]) : u ∈ H,H ∈ E , π(u) = t } spans H2l(Xt). Denote Hi

the irreducible components of Hilbl(X/B) that belong to E and let H̃i → Hi

be resolutions thereof. For all i, pick a smooth linear section B̃i → H̃i of

dimension dB. Lemma 1.1 shows that ri : B̃i → H̃i → Hi → B is surjective
and a refinement of its proof shows that, for all points b ∈ B(C), r−1

i (b) contains

a point in every connected component of H̃i,b. Consider then pi : (Cl)|B̃i
→ B̃i
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the pullback of the universal family p : Cl → Hilbl(X/B) along B̃i →֒ H̃i →
Hi →֒ Hilbl(X/B). For each i, we have the following picture

(Cl)|B̃i

qi
//

pi

��

X

B̃i

and we have

Im
( ⊕

b∈B◦

CHl(Xb) → CHl(X)
)

⊆
∑

i

Im
(
(qi)∗ : CHl((Cl)|B̃i

) → CHl(X)
)

so that the group on the left-hand side is supported on the union of the scheme-
theoretic images of the morphisms qi.

If X is smooth, we define Γi ∈ CHdB+l(B̃i × X) to be the class of the image

of (Cl)|B̃i
inside B̃i × X . Because q : Cd

l → X is proper for all d ≥ 0, Γi has

a representative which is proper over X . It is therefore possible [7, Remark

16.1] to define maps (Γi)∗ : CH0(B̃i) → CHl(X) for all i. In fact, we have

(Γi)∗ = (qi)∗p
∗
i . Finally, we define B̃ to be the disjoint union of the B̃i’s and

Γ ∈ CHdB+l(B̃×X) to be the class of the disjoint union of the correspondences
Γi. �

6.4. Complex varieties fibred by varieties with small Chow groups.

From now on, the base field k is assumed to be the field of complex numbers
C.

Proposition 6.8. Let f : X → C be a generically smooth, projective morphism
defined over C to a smooth curve. Assume that

• CHl(Xc) is finitely generated for all closed points c ∈ C,
• CHl(Xc) → H2l(Xc) is an isomorphism for a general closed point c ∈ C,
• CHl−1(Xη) is finitely generated, where η is the generic point of C.

Then CHl(X) has niveau ≤ 1.

Proof. We have the localisation exact sequence
⊕

c∈C

CHl(Xc) −→ CHl(X) −→ CHl−1(Xη) −→ 0.

Let Z1, . . . , Zn be irreducible closed subschemes of Xη of dimension l − 1 that
span CHl−1(Xη) and let Z1, . . . ,Zn be closed subschemes of X of dimension
l that restrict to Z1, . . . , Zn in Xη. Then by flat pullback the class of Zj in
CHl(X) maps to the class of Zj in CHl−1(Xη) so that the composite map⊕n

j=1 CHl(Zj) → CHl(X) → CHl−1(Xη) is surjective.
Let U ⊆ C be a Zariski-open subset of C such that for all closed points c ∈ U
the cycle class map CHl(Xc) → H2l(Xc) is an isomorphism. Up to shrinking
U , we may assume that f |U : X |U → U is smooth. We may then apply
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Proposition 6.7 to get a closed subscheme ι : D →֒ X of dimension l + 1 such
that ι∗ CHl(D) ⊇ Im

(⊕
c∈U CHl(Xc) → CHl(X)

)
.

As such, we have a surjective map

n⊕

j=1

CHl(Zj)⊕
⊕

c∈C\U

CHl(Xc)⊕ CHl(D) −→ CHl(X)

and it is straightforward to conclude. �

The next proposition is a generalisation of Proposition 6.8 to the case when
the base variety B has dimension greater than 1.

Proposition 6.9. Let f : X → B be a generically smooth, projective morphism
defined over C to a smooth quasi-projective variety B. Assume that the singular
locus of f in B is finite and let U be the maximal Zariski-open subset of B over
which f is smooth. Assume also that

• CHl(Xb) is finitely generated for all closed points b ∈ B,
• CHl(Xb) → H2l(Xb) is an isomorphism for all closed points b ∈ U ,
• CHl−i(XηDi

) = Q for all i such that 0 < i < dB and all irreducible subvari-
eties Di ⊂ B of dimension i.
• CHl−dB (XηB ) is finitely generated.

Then CHl(X) has niveau ≤ dB.

Proof. Let H →֒ X be a linear section of dimension ≥ l + dB. The restriction
of f to H is surjective. Thanks to Lemma 6.2, there are finitely many closed
subschemes Zj of X of dimension l such that the natural map

⊕
j CHl(Zj)⊕⊕

b∈B CHl(Xb) ⊕ CHl(H) → CHl(X) is surjective. By Proposition 6.7, there

exists a closed subscheme ι : B̃ →֒ X of dimension dB + l such that the image
of the map

⊕
b∈U CHl(Xb) → CHl(X) is contained in the image of the map

ι∗ : CHl(B̃) → CHl(X). Therefore the map
⊕

j

CHl(Zj)⊕ CHl(B̃)⊕
⊕

b∈B\U

CHl(Xb)⊕ CHl(H) −→ CHl(X)

is surjective. It is then straightforward to conclude. �

6.5. The main results. The field of complex numbers is a universal domain
and in view of Section 2 we restate some of the results above in a more com-
prehensive way.

First, we deduce from Proposition 6.5 the following.

Theorem 6.10. Let f : X → B be a complex projective surjective morphism
onto a quasi-projective variety B. Assume that CHi(Xb) = Q for all i ≤ l and
all closed point b ∈ B . Then CHi(X) has niveau ≤ dB for all i ≤ l.

Proof. By Lemma 2.2, CHi(XηD ) = Q for all i ≤ l and all irreducible subvari-
eties D of X . Proposition 6.5 implies that CHi(X) has niveau ≤ dB. �
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The following lemma gives a criterion for the second point in the assumptions
of Propositions 6.8 and 6.9 to be satisfied.

Lemma 6.11. Let X be a smooth projective complex variety. Assume that
CHi(X) is finitely generated for all i ≤ l. Then the cycle class map CHl(X) →
H2l(X) is an isomorphism.

Proof. The proof follows the same pattern as the proof of [24, Theorem 3.4] once
it is noted that if CHi(X) is finitely generated then the group of algebraically
trivial cycles CHi(X)alg is representable in the sense of [24, Definition 2.1].
Concretely, we get that the Chow motive of X is isomorphic to 1 ⊕ 1(1)b2 ⊕
. . . ⊕ 1(l)b2l ⊕ N(l + 1) where bi is the i-th Betti number of X and N is an
effective motive. This yields that the cycle class map CHi(X) → H2i(X) is an
isomorphism for all i ≤ l. �

As a consequence of Proposition 6.8, we obtain

Theorem 6.12. Let f : X → C be a complex generically smooth projective
surjective morphism onto a smooth complex curve. Assume that CHi(Xc) is
finitely generated for all closed points c ∈ C and all i ≤ l, then CHi(X) has
niveau ≤ 1 for all i ≤ l.

Proof. Let D be an irreducible component of C. Lemma 2.2 shows that
CHi(XηD ) is finitely generated for all i ≤ l. Let U ⊆ C be the smooth lo-
cus of f . It is an open dense subset of C. Then, for c ∈ U , the closed fibre
Xc is smooth and the groups CHi(Xc) are finitely generated for all i ≤ l. By
Lemma 6.11 the cycle class maps CHi(Xc) → H2i(Xc) are isomorphisms for all
c ∈ U and all i ≤ l. Proposition 6.8 implies that CHi(X) has niveau ≤ 1. �

And, as a consequence of Proposition 6.9, we obtain

Theorem 6.13. Let f : X → B be a complex projective surjective morphism
onto a smooth quasi-projective variety B. Assume that the singular locus of f
in B is finite, and assume also that

• CHi(Xb) is finitely generated for all closed points b ∈ B and all i ≤ l,
• CHi(Xb) = Q for all but finitely many closed points b ∈ B and all i < l.

Then CHi(X) has niveau ≤ dB for all i ≤ l.

Proof. Let D be an irreducible subvariety of X of positive dimension. By
Lemma 2.2, we have CHi(XηD ) = Q for all i < l. If we denote by U the smooth
locus of f , then, by Lemma 6.11, the cycle class maps CHi(Xb) → H2i(Xb) are
isomorphisms for all b ∈ U and all i ≤ l. Proposition 6.9 implies that CHi(X)
has niveau ≤ dB for all i ≤ l. �

7. Applications

7.1. Varieties with small Chow groups. In this section, we review the
known results about varieties with Chow groups having small niveau; see Defi-
nition 2.3. Varieties are defined over an algebraically closed field k of character-
istic zero and Ω denotes a universal domain over k. In that case, Grothendieck’s
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standard conjectures for a smooth projective variety X over k reduce to the
Lefschetz standard conjecture for X ; see Kleiman [13].

Theorem 7.1. Let X be a smooth projective variety of dimension d. Assume
that the Chow groups CH0(XΩ), . . . ,CHl(XΩ) have niveau ≤ n.

• If n = 3 and l = ⌊d−4
2 ⌋, then X satisfies the Hodge conjecture.

• If n = 2 and l = ⌊d−3
2 ⌋, then X satisfies the Lefschetz standard conjec-

ture.
• If n = 1 and l = ⌊d−3

2 ⌋, then X has a Murre decomposition.

• If n = 1 and l = ⌊d−2
2 ⌋, then X is Kimura finite-dimensional.

Proof. The fourth item is proved in [26]. It is also proved there that if X is as
in the third item, then X has a Chow–Künneth decomposition. That such a
decomposition satisfies Murre’s conjectures (B), (C) and (D) is proved in [25,
§4.4.2]. The first item is proved in [15]. We couldn’t find a reference for the
proof of the second item so we include a proof here.
Since it is enough to prove the conclusion of the theorem forXΩ, we may assume
that X is defined over Ω. Laterveer used the assumptions on the niveau of the
Chow groups to show [15, 1.7] that the diagonal ∆X admits a decomposition as
follows : there exist closed and reduced subschemes Vj ,W

j ⊂ X with dimVj ≤
j + 2 and dimW j ≤ n− j, there exist correspondences Γj ∈ CHn(X ×X) for
0 ≤ j ≤ ⌊n−3

2 ⌋ and Γ′ ∈ CHn(X ×X) such that each Γj is in the image of the

pushforward map CHn(Vj ×W j), Γ′ is in the image of the pushforward map

CHn(X ×W ⌊n−1

2
⌋), and

∆X = Γ0 + . . .+ Γ⌊n−3

2
⌋ + Γ′.

Given j such that 0 ≤ j ≤ ⌊n−3
2 ⌋, let Ṽj and W̃ j denote desingularisations of Vj

and W j respectively. The action of Γj on Hk(X) then factors through Hk(Ṽj)

and through H2n−k(W̃
j). On the one hand, we have H2n−k(W̃

j) = Hk−2j(W̃ j)
and hence if k ≤ 2j + 1 then the action of Γj on Hk(X) factors through the
H0 or the H1 of a smooth projective variety. Since the Lefschetz standard
conjecture is true in degrees ≤ 1, it follows that the action of Γj on Hk(X)
factors through the H0 or the H1 of a smooth projective variety. On the other

hand, we have Hk(Ṽj) = H4+2j−k(Ṽj) and hence if k ≥ 2j + 2 then Γj factors
through the H0, the H1 or the H2 of a smooth projective variety. Concerning

the action of Γ′ on Hk(X), it factors through H2n−k(W̃
⌊n−1

2
⌋) which vanishes

for dimension reasons if k < n when n is odd and if k < n − 1 when n is
even. When n is even and k = n − 1, the action of Γ′ on Hk(X) factors
through the H1 of a curve. Indeed this follows from a combination of the fact

that it factors through Hn+1(W̃
⌊n−1

2
⌋) = H1(W̃

n−2

2 ) and of the validity of the
Lefschetz standard conjecture in degree 1.
By the Lefschetz hyperplane theorem, we get that for k < n the cohomology
groups Hk(X) are generated algebraically (that is through the action of corre-
spondences) by the H0 of points, the H1 of curves and the H2 of surfaces. We
may then conclude with [28, Proposition 3.19]. �
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7.2. Varieties fibred by low-degree complete intersections. As ex-
plained by Esnault–Levine–Viehweg in the introduction of [6], it is expected
from general conjectures on algebraic cycles, that if Y ⊂ Pn

k is a complete
intersection of multidegree d1 ≥ . . . ≥ dr ≥ 2, then CHl(Y ) = Q for all

l < ⌊
n−

∑r
i=2

di

d1

⌋, see also Paranjape [22] and Schoen [23]. If there is no proof
of the above for the moment, the following theorem however was proved.

Theorem 7.2 (Esnault–Levine–Viehweg [6]). Let Y ⊂ Pn
k be a complete in-

tersection of multidegree d1 ≥ . . . ≥ dr ≥ 2.

• If either d1 ≥ 3 or r ≥ l+ 1, assume that
∑r

i=1

(
l + di
l + 1

)
≤ n.

• If d1 = . . . = dr = 2 and r ≤ l, assume that
∑r

i=1

(
l+ di
l + 1

)
=

r(l + 2) ≤ n− l+ r − 1.

Then CHl′(Y ) = Q for all 0 ≤ l′ ≤ l. �

Let us consider f : X → B a dominant morphism between smooth projective
complex varieties whose closed fibres are complete intersections. Theorem 6.10,
together with Theorem 7.2, shows that the niveau of the first Chow groups
of X have niveau ≤ dimB. When X is fibred by very low-degree complete
intersections, we can thus expect X to satisfy the assumptions of Theorem 7.1.
In the remainder of this paragraph, we inspect various such cases.

7.2.1. Varieties fibred by quadric hypersurfaces. Let Q ⊂ Pn be a quadric hy-
persurface. Then CHl(Q) = Q for all l < dimQ

2 .

Proposition 7.3. Let f : X → B be a dominant morphism between smooth
projective complex varieties whose closed fibres are quadric hypersurfaces.

• If dimB ≤ 1, then X is Kimura finite-dimensional and satisfies
Murre’s conjectures.

• If dimB ≤ 2, then X satisfies Grothendieck’s standard conjectures.
• If dimB ≤ 3, then X satisfies the Hodge conjecture.

Proof. The fibres of f have dimension ≥ dimX − dimB, so that X satisfies
the assumptions of Theorem 6.10 with l = ⌊dX−dB−1

2 ⌋. Thus the Chow groups
CH0(X), CH1(X), . . . ,CH

⌊
dX−dB−1

2
⌋
(X) have niveau ≤ dB. We can therefore

conclude by Theorem 7.1. �

7.2.2. Varieties fibred by cubic hypersurfaces. Let X ⊂ Pn be a cubic hyper-
surface. Then

• CH0(X) = Q for dimX ≥ 2.
• CH1(X) = Q for dimX ≥ 5.
• CH2(X) = Q for dimX ≥ 8.

Note that Theorem 7.2 only gives CH2(X) = Q for dimX ≥ 9. The bound on
the dimension of X was improved to dimX = 8 by Otwinowska [21].

Proposition 7.4. Let f : X → B be a dominant morphism between smooth
projective complex varieties whose closed fibres are cubic hypersurfaces.
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• If dimX = 6 and dimB = 1, then X satisfies Grothendieck’s standard
conjectures and has a Murre decomposition.

• If dimX = 7 and if dimB ≤ 2, then X satisfies the Hodge conjecture.
• If dimX = 9 and if dimB ≤ 1, then X satisfies the Hodge conjecture.

Proof. We use Theorem 6.10 as in the proof of Proposition 7.3. In the first
case, we get that CH0(X) and CH1(X) have niveau ≤ 1. In the second case
we get that CH0(X) and CH1(X) have niveau ≤ 2 and in the third case we get
that CH0(X), CH1(X) and CH2(X) have niveau ≤ 1. We can then conclude
in all three cases by Theorem 7.1. �

7.2.3. Varieties fibred by complete intersections of bidegree (2, 2). Let X ⊂ Pn

be the complete intersection of two quadrics. By Theorem 7.2, CH0(X) = Q;
and if dimX ≥ 4, then CH1(X) = Q.

Proposition 7.5. Let f : X → B be a dominant morphism between smooth
projective complex varieties whose closed fibres are complete intersections of
bidegree (2, 2).

• If dimB ≤ 1 and dimX ≤ 5, then X is Kimura finite-dimensional.
• If dimB ≤ 1 and dimX ≤ 6, then X satisfies Murre’s conjectures.
• If dimB ≤ 2 and dimX ≤ 6, then X satisfies Grothendieck’s standard

conjectures.
• If dimB ≤ 3 and dimX ≤ 7, then X satisfies the Hodge conjecture.

Proof. The variety X satisfies the assumptions of Theorem 6.10 with l = 1 for
dimX − dimB ≥ 4 and with l = 0 in any case. Thus the Chow group CH0(X)
has niveau ≤ dB and CH1(X) has niveau ≤ dB for dimX − dimB ≥ 4. We
can therefore conclude by Theorem 7.1. �

7.2.4. Varieties fibred by complete intersections of bidegree (2, 3). Let X ⊂ Pn

be the complete intersection of a quadric and of a cubic. If dimX ≥ 6, then
Hirschowitz and Iyer [9] showed CHl(X) = Q for l ≤ 1. (The result of Esnault–
Levine–Viehweg only says that CHl(X) = Q for l ≤ 1 when dimX ≥ 7).

Proposition 7.6. Let f : X → C be a dominant morphism from a smooth
projective complex variety X to a smooth projective complex curve C whose
closed fibres are complete intersections of bidegree (2, 3) of dimension 6. Then
X satisfies the Hodge conjecture.

Proof. By Theorem 6.10, we see that the Chow groups CH0(X) and CH1(X)
have niveau ≤ 1. We can thus conclude by Theorem 7.1. �

7.3. Varieties fibred by cellular varieties. Let f : X → B be a com-
plex dominant morphism from a smooth projective variety X to a smooth
projective variety B whose closed fibres are cellular varieties (not necessarily
smooth). In other words, X is a smooth projective complex variety fibred by
cellular varieties over B. For example, if Σ ⊂ B is the singular locus of f , then
X could be such that X |B\Σ is a rational homogeneous bundle over B\Σ (e.g.

Documenta Mathematica 18 (2013) 1521–1553



Algebraic Cycles and Fibrations 1551

a Grassmann bundle) and the closed fibres of f over Σ (the degenerate fibres)
are toric. That kind of situation is reminiscent of the setting of [8].

Proposition 7.7. Let f : X → B be a dominant morphism between smooth
projective complex varieties whose closed fibres are cellular varieties.

• Assume B is a curve, then X is Kimura finite-dimensional and X
satisfies Murre’s conjectures.

• Assume dimB ≤ 2 and dimX ≤ 6. If f is connected and smooth
away from finitely many points in B, then X satisfies Grothendieck’s
standard conjectures.

• Assume dimB ≤ 3 and dimX ≤ 7. If f is connected and smooth away
from finitely many points in B, then X satisfies the Hodge conjecture.

Proof. The Chow groups of cellular varieties are finitely generated. The first
statement thus follows from Theorems 6.12 and 7.1. Let us now focus on the
cases when dimB is either 2 or 3. It is a consequence of Mumford’s theorem
[17] that a connected smooth projective complex variety with finitely generated
Chow group of zero-cycles actually has Chow group of zero-cycles generated by
a point. Thus the second and third statements follow from Theorem 6.13 with
l = 1, and from Theorem 7.1. �
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[10] J. Iyer. Absolute Chow-Künneth decomposition for rational homogeneous
bundles and for log homogeneous varieties.Michigan Math. J., 60(1):79–91,
2011.

[11] U. Jannsen. Motivic sheaves and filtrations on Chow groups. In Motives
(Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 245–
302. Amer. Math. Soc., Providence, RI, 1994.

[12] S.-I. Kimura. Chow groups are finite dimensional, in some sense. Math.
Ann., 331(1):173–201, 2005.

[13] S.L. Kleiman. The standard conjectures. In Motives (Seattle, WA, 1991),
volume 55 of Proc. Sympos. Pure Math., pages 3–20. Amer. Math. Soc.,
Providence, RI, 1994.

[14] J. Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Sur-
veys in Mathematics. Springer-Verlag, Berlin, 1996.

[15] R. Laterveer. Algebraic varieties with small Chow groups. J. Math. Kyoto
Univ., 38(4):673–694, 1998.

[16] Yu.I. Manin. Correspondences, motifs and monoidal transformations.Mat.
USSR-Sb., 6:439–470, 1968.

[17] D. Mumford. Rational equivalence of 0-cycles on surfaces. J. Math. Kyoto
Univ., 9:195–204, 1968.

[18] J.P. Murre. On a conjectural filtration on the Chow groups of an algebraic
variety. I. The general conjectures and some examples. Indag. Math. (N.S.),
4(2):177–188, 1993.

[19] J.P. Murre. On a conjectural filtration on the Chow groups of an alge-
braic variety. II. Verification of the conjectures for threefolds which are the
product on a surface and a curve. Indag. Math. (N.S.), 4(2):189–201, 1993.

[20] J. Nagel and M. Saito. Relative Chow-Künneth decompositions for conic
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