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Abstract. We prove that if p ≥ 1 and 0 < r ≤ p then the se-
quence

(
mp+r

m

)
r

mp+r is positive definite. More precisely, it is the mo-

ment sequence of a probability measure µ(p, r) with compact support
contained in [0,+∞). This family of measures encompasses the mul-
tiplicative free powers of the Marchenko-Pastur distribution as well
as the Wigner’s semicircle distribution centered at x = 2. We show
that if p > 1 is a rational number and 0 < r ≤ p then µ(p, r) is abso-
lutely continuous and its density Wp,r(x) can be expressed in terms
of the generalized hypergeometric functions. In some cases, includ-
ing the multiplicative free square and the multiplicative free square
root of the Marchenko-Pastur measure, Wp,r(x) turns out to be an
elementary function.
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Introduction

For p, r ∈ R we define the Raney numbers (or two-parameter Fuss-Catalan
numbers) by

Am(p, r) :=
r

m!

m−1∏

i=1

(mp + r − i), (1)

A0(p, r) := 1. We can also write

Am(p, r) =

(
mp + r

m

)
r

mp + r
, (2)

(unless mp + r = 0), where the generalized binomial is defined by

(
a

m

)
:=

a(a− 1) . . . (a−m + 1)

m!
.

Let Bp(z) denote the generating function of the sequence {Am(p, 1)}∞m=0, the
Fuss numbers of order p:

Bp(z) :=
∞∑

m=0

Am(p, 1)zm, (3)

convergent in some neighborhood of 0. For example

B2(z) =
2

1 +
√

1 − 4z
. (4)

Lambert showed that

Bp(z)r =

∞∑

m=0

Am(p, r)zm, (5)

see [9]. These generating functions also satisfy

Bp(z) = 1 + zBp(z)p, (6)

which reflects the identity Am(p, p) = Am+1(p, 1), and

Bp(z) = Bp−r

(
zBp(z)r

)
. (7)

Using the free probability theory (see [28, 18, 6]) it was shown in [16] that if
p ≥ 1 and 0 ≤ r ≤ p then the sequence {Am(p, r)}∞m=0 is positive definite,
i.e. is the moment sequence of a probability measure µ(p, r) on R. Moreover,
µ(p, r) has compact support (and therefore is unique) contained in the positive
half-line [0,∞) (for example µ(p, 0) = δ0). The measures µ(p, r) satisfy some
interesting relations, for example

µ(p1, r) ⊠ µ(1 + p2, 1) = µ(p1 + rp2, r) (8)
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and

µ(p, r) ⊲ µ(p + s, s) = µ(p + s, r + s), (9)

see [16], where “⊠” and “⊲” denotes the multiplicative free and the monotonic
convolution (see [17]). A relation analogous to (9) is also satisfied by the three-
parameter family of distributions studied by Arizmendi and Hasebe [4].

Among the measures µ(p, r) perhaps the most important is the Marchenko-
Pastur (called also the free Poisson) distribution

µ(2, 1) =
1

2π

√
4 − x

x
dx on [0,4], (10)

which plays an important role in the theory of random matrices, see [29, 10,
11, 2, 1, 5]. It was proved in [1] that the multiplicative free power µ(2, 1)⊠n =
µ(n+1, 1) is the limit of the distribution of squared singular values of the power
Gn of a random matrix G, when the size of the matrix G goes to infinity. The
moments of µ(2, 1), Am(2, 1) =

(
2m+1
m

)
/(2m + 1), are called Catalan numbers

and play an important role in combinatorics, see A000108 in OEIS [24].

In this paper we are going to prove positive definiteness of {Am(p, r)}∞m=0 using
more classical methods. Namely, we show that if p > 1, 0 < r ≤ p and if p is a
rational number then µ(p, r) is absolutely continuous and can be represented
as Mellin convolution of modified beta measures. Next we provide a formula
for the density Wp,r(x) of µ(p, r) in terms of the Meijer G-function and of the
generalized hypergeometric functions (cf. [30, 21], where p was assumed to
be an integer). This allows us to draw graphs of these densities and, in some
particular cases, to express Wp,r(x) as an elementary function.

Let us mention that the measures µ(2, 1)⊠p = µ(1 + p, 1) were also studied by
Banica, Belinschi, Capitaine and Collins [5] as a special case of the free Bessel
laws. They showed in particular that for p > 0 this measure is absolutely
continuous and its support is [0, (p + 1)p+1p−p]. Liu, Song and Wang [14]
found a formula expressing the density of µ(2, 1)⊠n, n natural, as integral of a
certain kernel over [0, 1]n. Recently Haagerup and Möller [12] studied a two-
parameter family µα,β , α, β > 0, of probability measures. The measures µα,0

coincide with our µ(1 + α, 1), but if β > 0 then µα,β has noncompact support,
so it does not coincide with any of µ(p, r). The authors found a formula for
the density function of µα,β , which in the case of W1+p,1 reads as follows:

W1+p,1

(
sinp+1((p + 1)t)

sin t sinp(pt)

)
=

sin2 t sinp−1(pt)

π sinp((p + 1)t)
, (11)

for 0 < t < π/(p + 1). It can be used for drawing the graph of W1+p,1(x) by
computer.
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1 Preliminaries

For probability measures µ1, µ2 on the positive half-line [0,∞) the Mellin
convolution is defined by

(µ1 ◦ µ2) (A) :=

∫ ∞

0

∫ ∞

0

1A(xy)dµ1(x)dµ2(y) (12)

for every Borel set A ⊆ [0,∞). This is the distribution of product X1 ·X2 of
two independent nonnegative random variables with Xi ∼ µi. In particular,
µ ◦ δc (c > 0) is the dilation of µ:

(µ ◦ δc) (A) = Dcµ(A) := µ

(
1

c
A

)
.

If µ has density f(x) then Dc(µ) has density f(x/c)/c.

If both the measures µ1, µ2 have all moments

sm(µi) :=

∫ ∞

0

xm dµi(x)

finite then so has µ1 ◦ µ2 and

sm (µ1 ◦ µ2) = sm(µ1) · sm(µ2)

for all m.

If µ1, µ2 are absolutely continuous, with densities f1, f2 respectively, then so is
µ1 ◦ µ2 and its density is given by the Mellin convolution:

(f1 ◦ f2) (x) :=

∫ ∞

0

f1(x/y)f2(y)
dy

y
.

We will need the following modified beta measures :

Lemma 1.1. Let u, v, l > 0. Then
{

Γ(u + n/l)Γ(u + v)

Γ(u + v + n/l)Γ(u)

}∞

n=0

is the moment sequence of the probability measure

b(u + v, u, l) :=
l

B(u, v)
xlu−1

(
1 − xl

)v−1
dx (13)

on [0, 1], where B is the Euler beta function.

Proof. Using the substitution t = xl we obtain:

Γ(u + n/l)Γ(u + v)

Γ(u + v + n/l)Γ(u)
=

B(u + n/l, v)

B(u, v)
=

1

B(u, v)

∫ 1

0

tu+n/l−1(1 − t)v−1dt

=
l

B(u, v)

∫ 1

0

xlu+n−1
(
1 − xl

)v−1
dx.
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Note that if X is a positive random variable whose distribution has density
f(x) and if l > 0 then the distribution of X1/l has density lxl−1f(xl). In
particular, if the distribution of a random variable X is b(u + v, u, 1) then the
distribution of X1/l is b(u + v, u, l). For u, l > 0 we also define

b(u, u, l) := δ1. (14)

2 Applying Mellin convolution

From now on we assume that p > 1 is a rational number, say p = k/l, with
1 ≤ l < k, and that 0 < r ≤ p. We will show that then Am(p, r) is the moment
sequence of a probability measure µ(p, r), which can be represented as Mellin
convolution of modified beta measures. In particular, µ(p, r) is absolutely con-
tinuous and we will denote its density by Wp,r. The case when p is an integer
was studied in [21, 30].

First we need to express the numbers Am(p, r) in a special form.

Lemma 2.1. If p = k/l, where k, l are integers, 1 ≤ l < k and 0 < r ≤ p then

Am(p, r) =
r

l
√

2πk(p− 1)

(
p

p− 1

)r
∏k

j=1 Γ(βj + m/l)
∏k

j=1 Γ(αj + m/l)
c(p)m, (15)

where c(p) = pp(p− 1)1−p,

αj =





j

l
if 1 ≤ j ≤ l,

r + j − l

k − l
if l + 1 ≤ j ≤ k,

(16)

βj =
r + j − 1

k
, 1 ≤ j ≤ k. (17)

Proof. First we write:
(
mp + r

m

)
r

mp + r
=

rΓ(mp + r)

Γ(m + 1)Γ(mp−m + r + 1)
. (18)

Now we apply the Gauss’s multiplication formula:

Γ(nz) = (2π)(1−n)/2nnz−1/2Γ(z)Γ

(
z +

1

n

)
Γ

(
z +

2

n

)
. . .Γ

(
z +

n− 1

n

)

to get:

Γ(mp + r) = Γ
(
k
(m
l

+
r

k

))

= (2π)(1−k)/2kmk/l+r−1/2
k∏

j=1

Γ

(
m

l
+

r + j − 1

k

)
,

Γ(m + 1) = Γ

(
l
m + 1

l

)
= (2π)(1−l)/2lm+1/2

l∏

j=1

Γ

(
m

l
+

j

l

)
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and

Γ(mp−m + r + 1) = Γ

(
(k − l)

(
m

l
+

r + 1

k − l

))

= (2π)(1−k+l)/2(k − l)m(k−l)/l+r+1/2
k∏

j=l+1

Γ

(
m

l
+

r + j − l

k − l

)
.

It remains to use them in (18).

In order to apply Lemma 1.1 we need to modify enumeration of α’s.

Lemma 2.2. For 1 ≤ i ≤ l + 1 denote

ji :=

⌊
(i − 1)k

l

⌋
+ 1,

where ⌊·⌋ is the floor function, so that

1 = j1 < j2 < . . . < jl < k < k + 1 = jl+1.

For 1 ≤ j ≤ k define

α̃j =





i

l
if j = ji, 1 ≤ i ≤ l,

r + j − i

k − l
if ji < j < ji+1.

(19)

Then the sequence {α̃j}kj=1 is a rearrangement of {αj}kj=1.

Moreover, if 0 < r ≤ p = k/l then we have βj ≤ α̃j for all j ≤ k.

Proof. It is easy to verify the first statement.

Assume that j = ji for some i ≤ l. We have to show that

r + ji − 1

k
≤ i

l
,

which is equivalent to

lr + l

⌊
k(i − 1)

l

⌋
≤ ki.

The latter is a consequence of the fact that ⌊x⌋ ≤ x and the assumption that
r ≤ p = k/l.

Now assume that ji < j < ji+1. We ought to show that

r + j − 1

k
≤ r + j − i

k − l
,

which is equivalent to
lr + lj + k − l− ki ≥ 0.
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Using the inequality ⌊x⌋ + 1 > x we obtain

lj + k − l − ki ≥ l(ji + 1) + k − l − ki

= lji + k − ki > k(i− 1) + k − ki = 0,

which completes the proof, as r > 0.

Now we are ready to prove the main theorem of this section.

Theorem 2.3. Suppose that p = k/l, where k, l are integers, 1 ≤ l < k, and
that r is a real number such that 0 < r ≤ p. Then there exists a unique
probability measure µ(p, r) such that (1) is its moment sequence. Moreover
µ(p, r) can be represented as the following Mellin convolution:

µ(p, r) = b(α̃1, β1, l) ◦ . . . ◦ b(α̃k, βk, l) ◦ δc(p),

where

c(p) :=
pp

(p− 1)p−1
.

Consequently, µ(p, r) is absolutely continuous and its support is [0, c(p)].

It is easy to see that the density function is positive on (0, c(p)). The represen-
tation of densities in the form of Mellin convolution of modified beta measures
was used in different context in [8], see its Appendix A.

Example. For the Marchenko-Pastur measure we get the following decompo-
sition:

µ(2, 1) = b(1, 1/2, 1) ◦ b(2, 1, 1) ◦ δ4, (20)

where b(1, 1/2, 1) has density 1/(π
√
x− x2) on [0, 1], the arcsine distribution

with the moment sequence
(
2m
m

)
4−m, and b(2, 1, 1) is the Lebesgue measure on

[0, 1] with the moment sequence 1/(m + 1).

Proof. In view of Lemma 2.1 and Lemma 2.2 we can write

Am(p, r) = D

k∏

j=1

Γ(βj + m/l)Γ(α̃j)

Γ(α̃j + m/l)Γ(βj)
· c(p)m

for some constant D. Taking m = 0 we see that D = 1.

Note that a part of the theorem illustrates a result of Kargin [13], who proved
that if µ is a compactly supported probability measure on [0,∞), with expec-
tation 1 and variance V , and if Ln denotes the supremum of the support of the
multiplicative free convolution power µ⊠n, then

lim
n→∞

Ln

n
= eV, (21)

where e = 2.71 . . . is the Euler’s number. The Marchenko-Pastur measure
µ(2, 1) has expectation and variance equal to 1 and µ(2, 1)⊠n = µ(n + 1, 1), so
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in this case Ln = (n+1)n+1/nn (this was also proved in [29] and [11]) and (21)
holds.

The density function for µ(p, r) will be denoted by Wp,r(x). Since Am(p, p) =
Am+1(p, 1), we have

Wp,p(x) = x ·Wp,1(x), (22)

for example

W2,2(x) =
1

2π

√
x(4 − x) on [0, 4], (23)

which is the semicircle Wigner distribution with radius 2, centered at x = 2.

Now we can reprove the main result of [16].

Theorem 2.4. Suppose that p, r are real numbers satisfying p ≥ 1, 0 ≤ r ≤ p.
Then there exists a unique probability measure µ(p, r), with compact support
contained in [0, c(p)], such that {Am(p, r)}∞m=0 is its moment sequence.

Proof. It follows from the fact that the class of positive definite sequence is
closed under pointwise limits.

Remark. In view of Theorem 2.1 in [5], for every p > 1 the measure µ(p, 1) is
absolutely continuous and its support is equal [0, c(p)], see also [14, 12].

3 Applying Meijer G-function

The aim of this section is to describe the density function Wp,r(x) of µ(p, r)
in terms of the Meijer G-function (see [19] for example) and consequently, as
a linear combination of generalized hypergeometric functions. We will see that
in some particular cases Wp,r can be represented as an elementary function.

For p > 1, r > 0 define an analytic function

φp,r(σ) =
rΓ
(
(σ − 1)p + r

)

Γ(σ)Γ
(
(σ − 1)(p− 1) + r + 1

) ,

which is well defined whenever (σ − 1)p + r is not a nonpositive integer. Note
that φp,1(σ + 1) = φp,p(σ) and if m is a natural number then

φp,r(m + 1) =

(
mp + r

m

)
r

mp + r
.

Then we define Wp,r as the inverse Mellin transform:

Wp,r(x) =
1

2πi

∫ d+i∞

d−i∞

x−σφp,r(σ) dσ,

x > 0, if exists, see [25] for details. It turn out that if p > 1 is a rational
number then Wp,r can be expressed in terms of the Meijer G-function and its
Mellin transform is φp,r. For the theory of the Meijer G-functions we refer to
[15, 23, 19].
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Theorem 3.1. Suppose that p = k/l, where k, l are integers, 1 ≤ l < k and
r > 0. Then Wp,r(x) is well defined and

Wp,r(x) =
rpr

x(p− 1)r+1/2
√

2kπ
Gk,0

k,k

(
xl

c(p)l

∣∣∣∣
α1, . . . , αk

β1, . . . , βk

)
, (24)

x ∈ (0, c(p)), where c(p) = pp(p− 1)1−p and the parameters αj , βj are given by
(16) and (17). Moreover, φp,r is the Mellin transform of Wp,r, namely

φp,r(σ) =

∫ c(p)

0

xσ−1Wp,r(x) dx, (25)

for ℜσ > 1 − r/p.

If 0 < r ≤ p then Wp,r(x) > 0 for 0 < x < c(p) and therefore Wp,r is the
density function of the probability distribution µ(p, r).

Proof. Putting m = σ − 1 in (15) we get

φp,r(σ) =
r(p− 1)p−r−3/2

lpp−r
√

2kπ

∏k
j=1 Γ(βj − 1/l + σ/l)

∏k
j=1 Γ(αj − 1/l + σ/l)

c(p)σ. (26)

Writing the right hand side as Φ(σ/l − 1/l)c(p)σ, using the substitution σ =
lu + 1 and the definition of the Meijer G-function (see [19] for example), we
obtain

Wp,r(x) =
1

2πi

∫ d+i∞

d−i∞

Φ(σ/l − 1/l)c(p)σx−σdσ

=
lc(p)

2πxi

∫ d+i∞

d−i∞

Φ(u)
(
xl/c(p)l

)−u
du

=
rpr

x(p− 1)r+1/2
√

2kπ
Gk,0

k,k

(
z

∣∣∣∣
α1, . . . , αk

β1, . . . , βk

)
,

where z = xl/c(p)l. Recall that for the Meijer function of type Gk,0
k,k there is no

restriction on the parameters and the integral converges for 0 < x < c(p) (see
16.17.1 in [19]).

On the other hand, substituting x = c(p)t1/l we can write

∫ c(p)

0

xσ−1Wp,r(x) dx

=
rpr

(p− 1)r+1/2
√

2kπ

∫ c(p)

0

xσ−2Gk,0
k,k

(
xl

c(p)l

∣∣∣∣
α1, . . . , αk

β1, . . . , βk

)
dx.

=
rprc(p)σ−1

l(p− 1)r+1/2
√

2kπ

∫ 1

0

t(σ−1)/l−1Gk,0
k,k

(
t

∣∣∣∣
α1, . . . , αk

β1, . . . , βk

)
dt.
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Since
∑k

j=1 (βj − αj) = −3/2 < 0, so the assumptions of (2.24.2.1) in [23], the
third case, are satisfied and therefore the last integral is convergent provided

− r

k
= −minβj < ℜσ − 1

l
,

(equivalently: ℜσ > 1 − r/p) and the whole expression is equal to the right
hand side of (26).

For the last statement we note that in view of Theorem 2.3, of the uniqueness
part of the Riesz representation theorem for linear functionals on C[0, c(p)] and
of the Weierstrass approximation theorem, for 0 < r ≤ p the density function
of µ(p, r) must coincide with Wp,r.

Now applying Slater’s formula we can express Wp,r as a linear combination of
hypergeometric functions.

Theorem 3.2. For p = k/l, with 1 ≤ l < k, r > 0, and x ∈ (0, c(p)) we have

Wp,r(x) = γ(k, l, r)

k∑

h=1

c(h, k, l, r) kFk−1

(
a(h, k, l, r)
b(h, k, l, r)

∣∣∣∣ z
)
z(r+h−1)/k−1/l,

(27)
where z = xl/c(p)l,

γ(k, l, r) =
r(p − 1)p−r−3/2

pp−r
√

2kπ
, (28)

c(h, k, l, r) =

∏h−1
j=1 Γ

(
j−h
k

)∏k
j=h+1 Γ

(
j−h
k

)

∏l
j=1 Γ

(
j
l − r+h−1

k

)∏k
j=l+1 Γ

(
r+j−l
k−l − r+h−1

k

) , (29)

and the parameter vectors of the hypergeometric functions are

a(h, k, l, r) =

({
r + h− 1

k
− j − l

l

}l

j=1

,

{
r + h− 1

k
− r + j − k

k − l

}k

j=l+1

)
,

(30)

b(h, k, l, r) =

({
k + h− j

k

}h−1

j=1

,

{
k + h− j

k

}k

j=h+1

)
. (31)

Proof. Putting z = xl/c(p)l, and hence x = c(p)z1/l, we can rewrite (24) as

Wp,r(x) =
r(p− 1)p−r−3/2

z1/lpp−r
√

2kπ
Gk,0

k,k

(
z

∣∣∣∣
α1, . . . , αk

β1, . . . , βk

)
, (32)

x ∈ (0, c(p)). Observe that for 1 ≤ i < j ≤ k the difference βj − βi = (j − i)/k
is never an integer. Therefore we can apply formula (8.2.2.3) in [23] (see also
(16.17.2) in [19] or formula (7) on page 145 in [15]), so that

c(h, k, l, r) =

∏
j 6=h Γ(βj − βh)

∏k
j=1 Γ(αj − βh)

,
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which gives (29). For the parameter vectors we have

a(h, k, l, r)j = 1 + βh − αj

and

b(h, k, l, r)j = 1 + βh − βj , j 6= h,

which leads to (30) and (31). Finally, the summand with index h is in addition
multiplied by zβh−1/l.

Theorem 3.1 and Theorem 3.2 are sufficient for drawing graphs of the functions
Wp,r with help of computer programs. In some cases however it is possible to
express Wp,r as an elementary function. The most tractable case is p = 2. We
know already that

W2,1(x) =
1

2π

√
4 − x

x
, W2,2(x) =

1

2π

√
x(4 − x).

Now we can give a simple formula for W2,r.

Corollary 3.3. For p = 2, r > 0, the function W2,r is

W2,r(x) =
sin
(
r · arccos

√
x/4
)

πx1−r/2
, (33)

x ∈ (0, 4). If 0 < r ≤ 2 then W2,r is the density function of the measure µ(2, r).
In particular for r = 1/2 and r = 3/2 we have

W2,1/2(x) =

√
2 −√

x

2πx3/4
, (34)

W2,3/2(x) =
(
√
x + 1)

√
2 −√

x

2πx1/4
. (35)

Note that if r > 2 then W2,r(x) < 0 for some values of x ∈ (0, 4).

Proof. We take k = 2, l = 1 so that c(2) = 4, z = x/4 and γ(2, 1, r) =
r2r/(8

√
π). Using the Euler’s reflection formula and the identity Γ(1 + r/2) =

Γ(r/2)r/2 we get

c(1, 2, 1, r) =
Γ(1/2)

Γ(1 − r/2)Γ(1 + r/2)
=

2 sin(πr/2)

r
√
π

,

c(2, 2, 1, r) =
Γ(−1/2)

Γ
(
(1 − r)/2

)
Γ
(
(1 + r)/2

) =
−2 cos(πr/2)√

π
.

Documenta Mathematica 18 (2013) 1573–1596



1584 W. M lotkowski, K. A. Penson, K. Życzkowski

We also need formulas for two hypergeometric functions, namely

2F1

(
r

2
,
−r

2
;

1

2

∣∣∣∣ z
)

= cos(r arcsin
√
z),

2F1

(
1 + r

2
,

1 − r

2
;

3

2

∣∣∣∣ z
)

=
sin(r arcsin

√
z)

r
√
z

,

see 15.4.12 and 15.4.16 in [19]. Now we can write

W2,r(x) =
sin(πr/2) cos

(
r arcsin

√
x/4
)
− cos(πr/2) sin

(
r arcsin

√
x/4
)

πx1−r/2

=
sin
(
πr/2 − r arcsin

√
x/4
)

πx1−r/2
=

sin
(
r arccos

√
x/4
)

πx1−r/2
.

For the special cases we use the identity sin
(
1
2 arccos(t)

)
=
√

(1 − t)/2, which
is valid for 0 ≤ t ≤ 1.

Remark. Note that

W2,1 (
√
x)

2
√
x

=
1

4
W2,1/2

(x
4

)
=

√
4 −√

x

4πx3/4
. (36)

It means that if X,Y are random variables such that X ∼ µ(2, 1) and
Y ∼ µ(2, 1/2) then X2 ∼ 4Y . This can be also derived from the relation
Am(2, 1/2)4m = A2m(2, 1) =

(
4n+1
2n

)
/(4n + 1), A048990 in OEIS [24]. Hence

A048990 is the moment sequence of the density function (36), x ∈ (0, 16).

4 Some particular cases

In this part we will see that for k = 3 some densities still can be represented
as elementary functions. We need two families of formulas (cf. 15.4.17 in [19]).

Lemma 4.1. For c 6= 0,−1,−2, . . . we have

2F1

(
c

2
,
c− 1

2
; c

∣∣∣∣ z
)

= 2c−1
(
1 +

√
1 − z

)1−c
, (37)

2F1

(
c + 1

2
,
c− 2

2
; c

∣∣∣∣ z
)

=
2c−1

c

(
1 +

√
1 − z

)1−c(
c− 1 +

√
1 − z

)
. (38)

Proof. We know that 2F1(a, b; c| z) is the unique function f which is analytic
at z = 0, with f(0) = 1, and satisfies the hypergeometric equation:

z(1 − z)f ′′(z) +
[
c− (a + b + 1)z

]
f ′(z) − abf(z) = 0

(see [3]). Now one can check that this equation is satisfied by the right hand
sides of (37) and (38) for given parameters a, b, c.
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Now consider p = 3/2.

Theorem 4.2. Assume that p = 3/2. Then for r = 1/2, 1, 3/2 we have

W3/2,1/2(x) =

(
1 +

√
1 − 4x2/27

)2/3
−
(

1 −
√

1 − 4x2/27
)2/3

25/33−1/2πx2/3
, (39)

W3/2,1(x) = 31/2

(
1 +

√
1 − 4x2/27

)1/3
−
(

1 −
√

1 − 4x2/27
)1/3

24/3πx1/3
(40)

+31/2x1/3

(
1 +

√
1 − 4x2/27

)2/3
−
(

1 −
√

1 − 4x2/27
)2/3

25/3π

and, finally, W3/2,3/2(x) = x ·W3/2,1(x), with x ∈ (0, 3
√

3/2).

Proof. For arbitrary r we have

W3/2,r(x) =
21−2r/3 sin

(
2πr/3

)

33/2−rπ
3F2

(
3 + 2r

6
,
r

3
,
−2r

3
;

2

3
,

1

3

∣∣∣∣ z
)
zr/3−1/2

−2(4−2r)/3r sin
(
(1 − 2r)π/3

)

33/2−rπ
3F2

(
5 + 2r

6
,

1 + r

3
,

1 − 2r

3
;

4

3
,

2

3

∣∣∣∣ z
)
z(r+1)/3−1/2

−r(1 + 2r) sin
(
(1 + 2r)π/3

)

2(1+2r)/333/2−rπ
3F2

(
7 + 2r

6
,

2 + r

3
,

2 − 2r

3
;

5

3
,

4

3

∣∣∣∣ z
)
z(r+2)/3−1/2,

where z = 4x2/27. If r = 1/2 or r = 1 then one term vanishes and in the two
others the hypergeometric functions reduce to 2F1.

For r = 1/2 we apply (37) to obtain:

W3/2,1/2(x) =
z−1/3

21/331/2π
2F1

(
1

6
,
−1

3
;

1

3

∣∣∣∣ z
)
− z1/3

25/331/2π
2F1

(
5

6
,

1

3
;

5

3

∣∣∣∣ z
)

=
z−1/3

21/331/2π
2−2/3

(
1 +

√
1 − z

)2/3 − z1/3

25/331/2π
22/3

(
1 +

√
1 − z

)−2/3

=
z−1/3

2 · 31/2π

(
1 +

√
1 − z

)2/3 − z1/3

2 · 31/2π

(
1 −

√
1 − z

z

)2/3

=
z−1/3

2 · 31/2π

(
1 +

√
1 − z

)2/3 − z−1/3

2 · 31/2π

(
1 −

√
1 − z

)2/3

and this yields (39).

For r = 1 we use (38):

W3/2,1(x) =
z−1/6

22/3π
2F1

(
5

6
,
−2

3
;

2

3

∣∣∣∣ z
)

+
z1/6

21/3π
2F1

(
7

6
,
−1

3
;

4

3

∣∣∣∣ z
)
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=
z−1/6

4π

(
1 +

√
1 − z

)1/3(
3
√

1 − z − 1
)

+
z1/6

4π

(
1 +

√
1 − z

)−1/3(
3
√

1 − z + 1
)

=
z−1/6

4π

(
1 +

√
1 − z

)1/3(
3
√

1 − z − 1
)
+
z−1/6

4π

(
1 −

√
1 − z

)1/3(
3
√

1 − z + 1
)
.

Now we have

(
1 +

√
1 − z

)1/3 (
3
√

1 − z − 1
)

= −
(
1 +

√
1 − z

)1/3 (
3 − 3

√
1 − z − 2

)

= −3z1/3
(
1 −

√
1 − z

)2/3
+ 2

(
1 +

√
1 − z

)1/3

and similarly

(
1 −

√
1 − z

)1/3 (
3
√

1 − z + 1
)

= 3z1/3
(
1 +

√
1 − z

)2/3 − 2
(
1 −

√
1 − z

)1/3
.

Therefore

W3/2,1(x) =
z−1/6

2π

((
1 +

√
1 − z

)1/3 −
(
1 −

√
1 − z

)1/3)

+
3z1/6

4π

((
1 +

√
1 − z

)2/3 −
(
1 −

√
1 − z

)2/3)
,

which entails (40). The last statement is a consequence of (22).

The dilation D2µ(3/2, 1/2), with the density W3/2,1/2(x/2)/2, is known as the
Bures distribution, see (4.4) in [26]. The integer sequence

4mAm(3/2, 1/2) =

(
3m/2 + 1/2

n

)
4m

3m + 1
,

moments of the density function W3/2,1/2(x/4)/4 on the interval (0, 6
√

3), ap-
pears as A078531 in [24] and counts the number of symmetric noncrossing con-
nected graphs on 2n + 1 equidistant nodes on a circle. The axis of symmetry
is a diameter of a circle passing through a given node, see [7].

The measure µ(3/2, 1) is equal to µ(2, 1)⊠1/2, the multiplicative free square
root of the Marchenko-Pastur distribution and the integer sequence

4mAm(3/2, 1) =

(
3m/2 + 1

n

)
4m

3m/2 + 1
,

moments of the density function W3/2,1(x/4)/4 on (0, 6
√

3), appears in [24]
as A214377.

For the sake of completeness we also include the densities for the sequences
Am(3, 1) (A001764 in [24]) and Am(3, 2) (A006013), which have already ap-
peared in [20, 21].
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Theorem 4.3. Assume that p = 3. Then for r = 1, 2, 3 we have

W3,1(x) =
3
(

1 +
√

1 − 4x/27
)2/3

− 22/3x1/3

24/331/2πx2/3
(

1 +
√

1 − 4x/27
)1/3 , (41)

W3,2(x) =
9
(

1 +
√

1 − 4x/27
)4/3

− 24/3x2/3

25/333/2πx1/3
(

1 +
√

1 − 4x/27
)2/3 (42)

and, finally, W3,3(x) = x ·W3,1(x), with x ∈ (0, 27/4).

Proof. For arbitrary r we have

W3,r(x) =
2(6−2r)/3 sin

(
πr/3

)

33−rπ
3F2

(
r

3
,

3 − r

6
,
−r

6
;

2

3
,

1

3

∣∣∣∣ z
)
z(r−3)/3

−2(4−2r)/3r sin
(
(1 + r)π/3

)

33−rπ
3F2

(
1 + r

3
,

5 − r

6
,

2 − r

6
;

4

3
,

2

3

∣∣∣∣ z
)
z(r−2)/3

+
r(r − 1) sin

(
(1 − r)π/3

)

2(1+2r)/333−rπ
3F2

(
2 + r

3
,

7 − r

6
,

4 − r

6
;

5

3
,

4

3

∣∣∣∣ z
)
z(r−1)/3,

where z = 4x/27. For r = 1 and r = 2 we have similar reduction as in the
previous proof. Here we will be using only (37).

Taking r = 1 we get

W3,1(x) =
21/3z−2/3

33/2π
2F1

(
1

3
,
−1

6
;

2

3

∣∣∣∣ z
)
− z−1/3

21/333/2π
2F1

(
2

3
,

1

6
;

4

3

∣∣∣∣ z
)

=
z−2/3

33/2π

(
1 +

√
1 − z

)1/3 − z−1/3

33/2π

(
1 +

√
1 − z

)−1/3

=

(
1 +

√
1 − z

)2/3 − z1/3

33/2πz2/3
(
1 +

√
1 − z

)1/3 ,

which implies (41).

Now we take r = 2:

W3,2(x) =
z−1/3

21/331/2π
2F1

(
1

6
,
−1

3
;

1

3

∣∣∣∣ z
)
− z1/3

25/331/2π
2F1

(
5

6
,

1

3
;

5

3

∣∣∣∣ z
)

=
z−1/3

2 · 31/2π

(
1 +

√
1 − z

)2/3 − z1/3

2 · 31/2π

(
1 +

√
1 − z

)−2/3

=

(
1 +

√
1 − z

)4/3 − z2/3

2 · 31/2πz1/3
(
1 +

√
1 − z

)2/3 ,

and this gives us (42). Finally we apply (22).

Recall that the measure µ(3, 1) is equal to µ(2, 1)⊠2, the multiplicative free
square of the Marchenko-Pastur distribution.
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Figure 1: Raney distributions W3/2,r(x) with values of the parameter r labeling
each curve. For r > p solutions drawn with dashed lines are not positive.

5 Graphical representation of selected cases

The explicit form of Wp,r(x) given in Theorem 3.2 permits a graphical visual-
ization for any rational p > 0 and arbitrary r > 0. We shall represent some
selected cases in Figures 1–9. These graphs which are partly negative are drawn
as dashed curves. In Fig. 1 the graphs of the functions W3/2,r(x) for values
of r ranging from 0.9 to 2.3 are given. For r ≤ 3/2 these functions are posi-
tive, otherwise they develop a negative part. In Fig. 2 we represent W5/2,r(x)
for r ranging from 2 to 3.4. In Fig. 3 we display the densities Wp,p(x) for
p = 6/5, 5/4, 4/3 and 3/2. All these densities are unimodal and vanish at
the extremities of their supports. They can be therefore considered as gener-
alizations of the Wigner’s semicircle distribution W2,2(x), see equation (23).
In Fig. 4 we depict the functions W4/3,r(x), for values r ranging from 0.8 to
2.4. Here for r ≥ 1.4 negative contributions clearly appear. In Fig. 5 and
6 we present six densities expressible through elementary functions, namely
W3/2,r(x) for r = 1/2, 1, 3/2, see Theorem 4.2 and W3,r(x) for r = 1, 2, 3, see
Theorem 4.3. In Fig. 7 the set of densities Wp,1(x) for five fractional values
of p is presented. The appearance of maximum near x = 1 corresponds to the
fact that µ(p, 1) weakly converges to δ1 as p → 1+. In Fig. 8 the fine details of
densities Wp,1(x) for p = 5/2, 7/3, 9/4, 11/5, on a narrower range 2 ≤ x ≤ 4.5
are presented. In Fig. 9 we display the densities Wp,1(x) for p = 2, 5/2, 3, 7/2, 4,
near the upper edge of their respective supports, for 3 ≤ x ≤ 9.5.
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Figure 2: As in Fig. 1 for Raney distributions W5/2,r(x).

Figure 3: Diagonal Raney distributions Wp,p(x) with values of the parameter
p labeling each curve.
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Figure 4: The functions W4/3,r(x) for r ranging from 0.8 to 2.4.

Figure 5: Raney distributions W3/2,r(x) with values of the parameter r labeling

each curve. The case W3/2,1(x) represents MP⊠1/2, the multiplicative free
square root of the Marchenko-Pastur distribution.
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Figure 6: Raney distributions W3,r(x) with values of the parameter r labeling
each curve. The case W3,1(x) represents MP⊠2, the multiplicative free square
of the Marchenko-Pastur distribution.

Figure 7: Raney distributions Wp,1(x) with values of the parameter p labeling
each curve. The case W3/2,1(x) represents the multiplicative free square root

of the Marchenko–Pastur distribution, MP⊠1/2.
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Figure 8: Tails of the Raney distributions Wp,1(x) with values of the parameter
p labeling each curve.

Figure 9: As in Fig. 8 for larger values of the parameter p.
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Figure 10: Parameter plane (p, r) describing the Raney numbers. The shaded
set Σ corresponds to nonnegative probability measures µ(p, r). The vertical
line p = 2 and the stars represent values of parameters for which Wp,r(x) is
an elementary function. Here MP denotes the Marchenko–Pastur distribution,
MP⊠s its s-th free mutiplicative power, B-the Bures distribution while SC
denotes the semicircle law. For p > 1 the points (p, p) on the upper edge of Σ
represent the generalizations of the Wigner semicircle law, see Fig. 3.

The Fig. 10 summarizes our results in the p > 0, r > 0 quadrant of the (p, r)
plane, describing the Raney numbers (c.f. Fig. 5.1 in [16] and Fig. 7 in [21]).
The shaded region Σ indicates the probability measures µ(p, r) (i.e. where
Wp,r(x) is a nonegative function). The vertical line p = 2 and the stars indicate
the pairs (p, r) for which Wp,r(x) is an elementary function, see Corollary 3.3,
Theorem 4.2 and Theorem 4.3. The points (3/2, 1) and (3, 1) correspond to

the multiplicative free powers MP⊠1/2 and MP⊠2 of the Marchenko-Pastur
distribution MP. Symbol B at (3/2, 1/2) indicates the Bures distribution and
SC at (2, 2) denotes the semicircle law centered at x = 2, with radius 2.

It is our pleasure to thank M. Bożejko, Z. Burda, K. Górska, I. Nechita and
M. A. Nowak for fruitful interactions.
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[26] H.-J. Sommers, K. Życzkowski, Statistical properties of random density
matrices, J. Phys. A: Math. Gen. 37 (2004) 8457–8466.

[27] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University
Press, Cambridge 1999.

[28] D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, CRM,
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Bôıte Courrier 121
4 place Jussieu
F 75252 Paris Cedex 05
France
penson@lptl.jussieu.fr
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