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Abstract. As a first step to deriving effective dynamics and ray op-
tics, we prove that the perturbed periodic Maxwell operator in d = 3
can be seen as a pseudodifferential operator. This necessitates a better
understanding of the periodic Maxwell operator M0. In particular,
we characterize the behavior of M0 and the physical initial states at
small crystal momenta k and small frequencies. Among other things,
we prove that generically the band spectrum is symmetric with re-
spect to inversions at k = 0 and that there are exactly 4 ground state
bands with approximately linear dispersion near k = 0.
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1 Introduction

Photonic crystals are to the transport of light (electromagnetic waves) what
crystalline solids are to the transport of electrons [JJWM08]. Progress
in the manufacturing techniques have allowed physicists to engineer pho-
tonic crystals with specific properties – which in turn has stimulated even
more theoretical studies. One topic which has seen relatively little at-
tention, though, is the derivation of effective dynamics in perturbed pho-
tonic crystals for states from a narrow range of intermediate frequencies
(e. g. [OMN06, RH08, APR12, EG13]). Mathematically rigorous results are
even more scarce: apart from [MP96] concerning only the unperturbed case, the
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only rigorous work covering second -order perturbations is by Allaire, Palom-
baro and Rauch [APR12]. Hence, the correct form of the subleading-order
terms has not yet been established – rigorously or non-rigorously.

This paucity of results motivated the two authors to apply a perturbation
scheme developed by Panati, Spohn and Teufel [PST03b, PST03a], space-
adiabatic perturbation theory, to derive effective dynamics and ray optics equa-
tions for adiabatically perturbed Maxwell operators. Among other things, we
settle the important question about the correct form of the next-to-leading
order terms in the ray optics equations; these terms are necessary to explain
topological effects in photonic crystals. The current paper is a preliminary, but
necessary step to implement space-adiabatic perturbation theory [DL13]: we
establish that the Maxwell operator can be seen as a semiclassical pseudodiffer-
ential operator (ΨDO) with band structure defined over the cotangent bundle
over the Brillouin torus.

This is not just the content of an innocent lemma, it turns out there are quite a
few technical and conceptual hurdles to overcome. To mention but one, we need
a better understanding of the band structure of the periodic Maxwell operator.
Despite the body of work on periodic Maxwell operators (see e. g. [Kuc01] for
a review), proofs of rather fundamental results are either scattered throughout
the literature or, in some cases, seem to have not been published at all.

Before we expound on this point in more detail, let us recall the L2-theory of
electromagnetism first established in [BS87]. The two dynamical equations

∂tE = +ε−1∇x ×H, ∂tH = −µ−1∇x × E, (1)

can be recast as a time-dependent Schrödinger equation

i∂tΨ = MwΨ (2)

where Ψ = (E,H) consists of the electric field E = (E1, E2, E3) and the mag-
netic field H = (H1, H2, H3), and

Mw :=

(
0 +i ε−1∇×

x

−iµ−1∇×
x 0

)
(3)

is the Maxwell operator. Here we used ∇×
x as shorthand for the curl (cf. Ap-

pendix A). The second set of Maxwell equation which imposes the absence of
sources,

∇x · εE = 0, ∇x · µH = 0, (4)

enter as a constraint on the initial conditions for equation (2) or, equivalently,
one can restrict the domain to the physical states of Mw (see Section 2.1). We
shall always make the following assumptions on the material weights w = (ε, µ):
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Assumption 1.1 (Material weights) Assume ε, µ ∈ L∞
(
R3,MatC(3)

)
are

hermitian-matrix-valued functions which are bounded away from 0 and +∞,
i. e. 0 < c idR3 ≤ ε, µ ≤ C idR3 for some 0 < c ≤ C <∞. We say the material
weights (ε, µ) are real iff their entries are all real-valued functions.

These assumptions are rather natural in the setting we are interested in: First
of all, asking for boundedness of ε and µ only instead of continuity is necessary
to include the most common cases, because many photonic crystals are made
by alternating two different materials, e. g. a dielectric and air, in a periodic
fashion. The selfadjointness of the multiplication operator defined by the elec-
tric permittivity tensor ε∗ = ε and the magnetic permeability tensor µ∗ = µ
ensure that the medium neither absorbs nor amplifies electromagnetic waves.
The positivity of ε and µ excludes the case of metamaterials with negative re-
fraction indices (see e. g. [SPV+00]); moreover, combined with the boundedness
away from 0 and +∞, it implies that ε−1 and µ−1 exist as bounded operators
which again satisfy Assumption 1.1. Lastly, our assumptions also include the
interesting case of gyrotropic photonic crystals where the offdiagonal entries of
ε = ε∗ and µ = µ∗ are complex-valued functions.

Under these assumptions, we can proceed with a rigorous definition of the
Maxwell operator (3): it can be conveniently factored into

Mw =W Rot . (5)

where the first term is the bounded operator involving the weights

W (x̂) :=

(
ε−1(x̂) 0

0 µ−1(x̂)

)
(6)

and the free Maxwell operator

Rot :=

(
0 +i∇×

x

−i∇×
x 0

)
=

(
0 +i curl

−i curl 0

)
. (7)

Rot equipped with the domain D := D(Rot) ⊂ L2(R3,C6) is selfadjoint (see
Appendix A for a precise characterization of D). For reasons that will be clear
in the following, we refer to (5) as the physical representation of the Maxwell
operator. From the representation (5) one gets two immediate consequences:
first, D(Mw) = D since W is bounded and second, Mw is not self-adjoint
on L2(R3,C6). In order to cure the lack of selfadjointness one introduces the
weighted scalar product

〈
Ψ,Φ

〉
w
:=
〈
Ψ,W−1Φ

〉
L2(R3,C6)

=
〈
W−1Ψ,Φ

〉
L2(R3,C6)

. (8)

on the Banach space L2(R3,C6), and we will denote this Hilbert space with Hw.
Then, one can show that the Maxwell operator Mw is self-adjoint on D ⊂ Hw
(cf. Theorem 2.1). Only with respect to the correctly weighted scalar product,
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the evolutionary semigroup e−itMw is unitary – which physically corresponds
to conservation of field energy E

(
E(t),H(t)

)
= E(E,H),

E(E,H) =
1

2

∫

R3

dxE(x) · ε(x)E(x) +
1

2

∫

R3

dxH(x) · µ(x)H(x)

=
1

2

∥∥(E,H)
∥∥2
w
.

Periodic Maxwell operators describe photonic crystals; here, the material
weights ε and µ are periodic with respect to some lattice Γ. As the analog
of periodic Schrödinger operators, one can use Bloch-Floquet theory to ana-
lyze the properties of Mw (cf. Section 3). Hence, many properties of photonic
crystals mimic those of crystalline solids (both physically and mathematically).
However, the rapidly increasing interest for photonic crystals resides in the fact
that, as they are artificially created by patterning several materials, they can
be engineered to have certain desired properties. To name one example, one of
the early successes was to design a photonic semiconductor with a band gap in
the frequency spectrum [JJ00, JJWM08]. Such a “semiconductor for light” is
of great interest to the quantum optics community (e. g. [Yab93]).
Since perfectly periodic media are only a mathematical abstraction, one is led to
study more realistic models of photonic crystals. One well-explored possibility
is to include effects of disorder by interpreting ε and µ as random variables
and leads to the “Anderson localization of light” (see e. g. [Joh91, FK96b,
FK97] and references therein). We will concern ourselves with another class
of perturbations where the perfectly periodic weights ε and µ are modulated
slowly,

ελ(x) :=
ε(x)

τε(λx)2
, µλ(x) :=

µ(x)

τµ(λx)2
. (9)

The perturbation parameter λ ≪ 1 quantifies the separation of spatial scales
on which (ε, µ) and the scalar modulation functions (τε, τµ) vary. The latter
are assumed to verify the following

Assumption 1.2 (Modulation functions) Suppose τε, τµ ∈ C∞
b (R3) are

bounded away from 0 and +∞ as well as τε(0) = 1 and τµ(0) = 1.

To shorten the notation, we define Mλ := M(ελ,µλ) and Hλ := H(ελ,µλ).

As mentioned in the very beginning our goal is to rigorously derive both, the
effective “quantum-like” and “semiclassical” dynamics for perturbed Maxwell
operators Mλ in the adiabatic limit λ ≪ 1 [DL13]. Apart from ray optics, we
will derive effective light dynamics e−itMeff which approximate the full light
dynamics e−itMλ for initial states supported in a narrow range of frequencies,

∥∥∥
(
e−itMλ − e−itMeff

)
ΠΠΠλ

∥∥∥
Hλ

= O(λ∞) . (10)
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ΠΠΠλ is the projection on the superadiabatic subspace associated with a nar-
row range of frequencies and, up to a unitary transformation, the effective
operator Meff can be constructed order-by-order in λ as the Weyl quantization
Opλ(Meff) of a semiclassical symbol; in case additional assumptions are placed
on the frequency bands, the leading-order terms are given by

Meff(r, k) =
∑

n∈I

τε(r) τµ(r)ωn(k) |χn〉〈χn|+O(λ) .

Here, the ωn are the Bloch frequency band functions and χn denotes a fixed
orthonormal basis in the reference space [DL13, Theorem 3.1]. As usual one
can also prove that the subleading-order terms of Meff(r, k) contain geometric
quantities such as the Berry connection.
Similarly, the superadiabatic projection ΠΠΠλ is also constructed on the level of
symbols in terms ofMMMλ, the symbol of the Maxwell operator, and hence, prov-
ing that the Maxwell operator is a ΨDO associated to a semiclassical symbol
is the first order of business.

Theorem 1.3 Suppose Assumptions 3.1 on the material weights (ε, µ) and 1.2
on the modulation functions (τε, τµ) are satisfied. Then the Maxwell operator
(in Zak representation) MZ

λ = Opλ(MMMλ) is the pseudodifferential operator
associated to

MMMλ(r, k) =

(
τ2ε (r) 0
0 τ2µ(r)

)
M0(k)+

+ λW

(
0 −i τε(r)

(
∇rτε

)×
(r)

+i τµ(r)
(
∇rτµ

)×
(r) 0

)
(11)

where

M0(k) :=W Rot(k)

:=

(
ε−1(ŷ) 0

0 µ−1(ŷ)

) (
0 −(−i∇y + k)×

+(−i∇y + k)× 0

)

is the periodic Maxwell operator acting on the fiber at k defined in terms of
the weight operator W and the free Maxwell operator Rot(k). The function
MMMλ ∈ AS1

1,eq

(
B
(
d, L2(T3,C6)

))
is an equivariant semiclassical operator-valued

symbol in the sense of Definition 4.1.

For the precise definitions and the proof, we refer to Section 4.

Despite the similarities to the case of the Bloch electron [PST03a], applying
space-adiabatic perturbation theory to photonic crystals required us to solve
numerous technical and conceptual problems. In addition to defining pseudo-
differential operators on weighted L2-spaces, one other major difficulty is to
make O(λn) estimates in norm, because the norm also depends on λ (see
e. g. equation (10)). Such estimates are crucial when one wants to make sense
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of perturbation expansions of operators. This conceptual problem is solved by
introducing a λ-independent auxiliary representation (cf. Section 2.2).

However, the biggest obstacle to control the symbol MMMλ is to gain a better
understanding of the periodic Maxwell operator M0(k) and its band structure.
In particular, pseudodifferential theory requires us to understand the pointwise
behavior of M0(k) and associated objects. Even though k 7→ M0(k) is linear
and defined on a k-independent domain, and thus trivially analytic, the split-
ting of the fiber Hilbert space h0 = J0(k)⊕⊥G0(k) into physical and unphysical
states is not even continuous at k = 0. Here, h0 is defined as the Banach space
L2(T3,C6) equipped with a scalar product analogous to (8), and elements of
J0(k) satisfy the source-free condition on the fiber space. We characterize how
this discontinuity enters into the band structure of M0(k), and show that it is
connected to the ground state bands, i. e. those frequency bands which go to 0
linearly as k → 0. The precise band structure of MZ

0 =
∫ ⊕

B
dkM0(k) is studied

in great detail in Section 3.3 where the following result is proven:

Theorem 1.4 (The band picture of MZ
0 ) Suppose ε and µ satisfy As-

sumption 3.1.

(i) For each n ∈ Z, the band functions R3 ∋ k 7→ ωn(k) are continuous,
analytic away from band crossings and Γ∗-periodic.

(ii) If the weights (ε, µ) are real, then for all n ∈ Z, there exists j ∈ Z such
that ωn(k) = −ωj(−k) holds for all k ∈ R3.

(iii) MZ
0 has 4 ground state bands indexed by the set Igs which are character-

ized as follows:

(1) ωn(k) = 0 ⇔ n ∈ Igs and k = 0.

(2) ωn(k) = ±cn(k) |k|+ o(|k|) holds for n ∈ Igs where the cn(k) are the
positive eigenvalues of the matrix (36) for the unit vector k := k

|k| .

The content of Theorem 1.4 is sketched in Figure 1. Among other things,
we prove that the ground state bands of the Maxwell operator always have a
doubly degenerate conical intersection at k = 0 and ω = 0.

The remainder of the paper is dedicated to explaining and proving Theorem 1.3
and Theorem 1.4: In Section 2, we give some basic facts on the Maxwell opera-
tor. Section 3 is devoted to the study of the properties of the periodic operator
MZ

0 with a particular attention to the analysis of the band picture. Finally, in
Section 4 where discuss pseudodifferential theory on weighted Hilbert spaces
and finish the proof of Theorem 1.3. For the benefit of the reader, we have
included some auxiliary results in Appendix A.

Before we proceed, let us collect some conventions and introduce notation used
throughout the remainder of the paper.
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Figure 1: A sketch of a typical band spectrum ofM0(k)|J0(k). The 2+2 ground
state bands with linear dispersion around k = 0 are blue. Positive frequency
bands are drawn using solid lines while the lines for the symmetrically-related
negative frequency bands are in the same color, but dashed.

1.1 Notation and remarks

The Maxwell operator is naturally defined on weighted L2-spaces Hw where
the scalar product is weighted by the tensors w = (ε, µ) according to the
prescription (8). We will use capital greek letters such as Ψ and Φ to denote
elements of Hw and small greek letters with the appropriate index to indicate
they are the electric (first three) or the magnetic (last three) component1 , for
instance Ψ = (ψE , ψH) and Φ = (φE , φH). Componentwise the scalar product
(8) reads

〈
Ψ,Φ

〉
w
:=

∫

R3

dx ψE(x) · ε(x)φE(x) +

∫

R3

dxψH(x) · µ(x)φH (x) . (12)

Let us point out that with this convention the complex conjugation is implicit
in the scalar product like a · b :=

∑N
j=1 aj bj on CN . Equation (12) leads to the

natural (orthogonal) splitting

Hw := L2
ε(R

3,C3)⊕⊥ L
2
µ(R

3,C3) ,

1Note that even though physical electromagnetic fields are real-valued, we assume Ψ ∈ Hw

takes values in the complex vector space C6, and hence our distinction in notation to the
physical fields (E,H). It turns out to be crucial in the analysis of photonic crystals to admit
complex solutions.
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where L2
ε(R

3,C3) is the Banach space L2(R3,C3) with the scalar product
twisted by the tensor ε and similarly for µ.
Even though the Hilbert space structure of Hw depends crucially on the weights
w = (ε, µ), the Assumption 1.1 implies the equivalence of the norm ‖·‖w with
the usual L2(R3,C6)-norm ‖·‖. This means that Hw agrees with the usual
L2(R3,C6) as Banach spaces. For many arguments in this paper, only the
Banach space structure of Hw is important, and thus, whenever convenient, we
will use the canonical identification of Hw ≃ L2(R3,C6). In particular, any
closed operator T on Hw can also be seen as a closed operator on L2(R3,C6)
which we denote with the same symbol. We will use the same notation for
weighted L2-spaces over T3: for instance, the Hilbert space

h0 := L2
ε(T

3,C3)⊕⊥ L
2
µ(T

3,C3)

is defined as the Banach space L2(T3,C6) equipped with a scalar product anal-
ogous to equation (12).
Let us turn to conventions regarding operators: Suppose A : D0(A) ⊆ B1 −→
B2 is a possibly unbounded linear operator between the Banach spaces B1 and
B2 defined on the dense domain D0(A). The operator A is called closable if
and only if for every {ψn} ⊂ D0(A) such that ψn → 0, then also Aψn → 0. The
closure of the operator A (still denoted with the same symbol) is the extension

of A to D(A) := D0(A)
‖·‖A with respect to the graph norm

‖ψ‖A :=
√
‖ψ‖2B1

+ ‖Aψ‖2B2
. (13)

When D0(A) = D(A), the operator A is said to be closed. A core C of a closed
operator is any subset of D(A) which is dense with respect to ‖·‖A. Given
any closed operator A : B1 −→ B2 between Banach spaces, the kernel (or null
space) and range of A are defined as

kerA :=
{
ψ ∈ B1 | Aψ = 0

}
⊂ D(A) ⊆ B1,

ran0A :=
{
Aψ | ψ ∈ D(A)

}
⊆ B2

While kerA is automatically a closed subspace of B1, in general ran0A is not.

For this reason, we need to introduce its closure ranA := ran0A
‖·‖

B2 .
Other properties, most notably selfadjointness, crucially depend on the scalar
product. Whenever the Hilbert structure of Hw is important, we will make this
explicit either in the text or in notation. To give one example, we distinguish
between the direct sum J⊕G and the orthogonal sum J⊕⊥G of vector spaces.
We found it convenient to use the shorthand v×ψ := v × ψ to associate the
antisymmetric matrix

v× =




0 −v3 +v2
+v3 0 −v1
−v2 +v1 0


 (14)

to any vectorial quantity v = (v1, v2, v3).
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2 The perturbed Maxwell operator

We will use this section to recall standard facts on the Maxwell operator [BS87,
Kuc01] and introduce the main definitions and notions. This initial part is
completed by a compendium of classical results in vector field analysis sketched
in Appendix A.

2.1 General properties of the Maxwell operator

In order to identify the domain D(Mw) explicitly we start with the free case
Mw=(1,1) = Rot which is reviewed in detail in Appendix A.5. Assumption 1.1
on w = (ε, µ) implies that Hw ≃ L2(R3,C6) agree as Banach spaces and that
W defines a bounded operator with bounded inverse. Moreover, Rot|C∞

c
is a

densely defined operators on Hw and Rot is its unique closed extension defined
on the domain D := D(Rot) (cf. eq. (59)). Since, the graph norms ‖·‖

Mw
and

‖·‖
Rot

are equivalent, this immediately implies

D(Mw) = D =
(
kerDiv ∩H1(R3,C6)

)
⊕ ranGrad, (15)

because Mw|C∞

c
=W Rot|C∞

c
is closable and its unique closure is the product

of the bounded operator W and (Rot,D).
The weighted scalar products (8) also implies Mw is not only closed but also
symmetric, and thus, selfadjoint: for all Ψ,Φ ∈ D, we have

〈
Ψ,MwΦ

〉
w
=
〈
Ψ,W−1W RotΦ

〉
L2(R3,C6)

=
〈
RotΨ,Φ

〉
L2(R3,C6)

=
〈
W−1W RotΨ,Φ

〉
L2(R3,C6)

=
〈
MwΨ,Φ

〉
w
.

The weights in the scalar products imply that the Helmholtz-Hodge-Weyl-Leray
decomposition of the domain (15) is no longer orthogonal with respect to 〈· , ·〉w.
However, Theorem A.1 readily generalizes to the case with weights and yields
an orthogonal splitting

Hw = Jw ⊕⊥ G (16)
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where we identify the physical (or transversal) subspace

Jw = ker
(
DivW−1

)
=
{
Ψ ∈ Hw | Div

(
W−1Ψ

)
= 0
}
=W J (17)

and the unphysical (or longitudinal) subspace

G = ranGrad =
{
Ψ = Gradϕ ∈ Hw | ϕ ∈ L2

loc(R
3,C2)

}
= kerRot. (18)

We also call G the space of zero modes, because G = kerRot coincides with
kerMw asW has a bounded inverse. From the first equation of (8) we conclude
that Jw = G⊥w is the 〈· , ·〉w-orthogonal complement to G. We will denote the
orthogonal projections onto Jw and G with Pw and Qw. For later reference,
we summarize these facts into a

Theorem 2.1 ([BS87]) Suppose Assumption 1.1 on ε and µ is satisfied.

(i) The Maxwell operator Mw equipped with the (ε, µ)-independent domain

D =
(
D ∩H1(R3,C6)

)
⊕ ranGrad =

(
kerDiv ∩H1(R3,C6)

)
⊕G

defines a selfadjoint operator on Hw, and H
1(R3,C6) and C∞

c (R3,C6) are
cores.

(ii) The Maxwell operator Mw = Mw|Jw
⊕⊥0|G is block diagonal with respect

to the (ε, µ)-dependent orthogonal decomposition of Hw = Jw ⊕⊥ G. In
this decomposition, the domain splits into

D =
(
D ∩ Jw

)
⊕⊥ G .

(iii) The restrictions of Mw to Jw or G again define selfadjoint operators,
and thus, the dynamics e−itMw leave Jw and G invariant.

With the exception of the explicit computation of the domain, all of this is
contained in [BS87, Lemma 2.2].
We have mentioned the significance of admitting complex vector fields in the
introduction (cf. Footnote 1), and the question arises whether we can construct
solutions by evolving Ψ ∈ Hw in time and then taking real and imaginary
part of Ψ(t) = e−itMwΨ. This question will be crucial as to why usually one
needs to consider “counter-propagating waves” whose frequencies ±ω differ by
a sign. So let (CΨ)(x) := Ψ(x), Ψ ∈ L2(R3,CN), be component-wise complex
conjugation; for simplicity, we shall always use the same symbol independently
of N ∈ N. If ε and µ are real, then the weights commute with C, and

(
CMwCΨ

)E
= C

(
+i ε−1(x̂)∇×

x

)
CψH = −i ε−1(x̂)∇x × ψH

as well as an analogous computation for the other component of MwΨ imply

CMw C = −Mw . (19)

Consequently, the spectra for Maxwell operators with real weights are symmet-
ric with respect to reflections at 0; the same holds for all spectral components.
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Theorem 2.2 Suppose Assumption 1.1 on the weights ε and µ is satisfied,
and assume in addition that they are real. Then equation (19) holds and thus
the spectra σ(Mw) = −σ(Mw) and σ♯(Mw) = −σ♯(Mw), ♯ = pp, ac, sc, are
symmetric with respect to reflections about the origin 0 ∈ R.

In case ε and µ have non-trivial complex offdiagonal entries, the weights no
longer commute with complex conjugation, and (19) as well as the above the-
orem do not hold.

Remark 2.3 Symmetries of type (19), i. e. anti-unitary operators which map
Mw onto −Mw, are known in the physics literature as particle-hole symmetries
or PH symmetries for short [AZ97, SRFL08]. However, as many physicists and
mathematicians consider the second-order equation ∂2tΨ = −M2

wΨ because
it is block-diagonal, the PH symmetry for Mw is replaced by a time-reversal
symmetry for the second-order equation. Ordinary Schrödinger operators H =
−∆x + V on the other hand possess time-reversal symmetry, C H C = H .
Discrete symmetries which square to ±id have been classified systematically
for topological insulators (cf. Table II in [SRFL08]); the presence of the PH
symmetry means that Mw is in symmetry class D (provided there are no other
symmetries). According to general results on the topological classification of
band insulators (aka periodic operators), one expects that D-type operators in
dimension d = 2 admit protected states parametrized by Z-valued topological
invariants (cf. Table I in [SRFL08]). This suggests there is an analog of the
quantum Hall effect in 2-dimensional photonic crystals [RH08]. In contrast,
for topological invariants to exist in d = 3, additional symmetries appear to
be necessary (e. g. ε = µ or ε and µ have a common center of inversion); the
presence of PH symmetry alone seems to prevent the formation of topologically
protected states. Certainly, a direct proof for the Maxwell operator establishing
the existence (d = 2) or absence (d = 3) of topological invariants would be an
interesting avenue to explore.

2.2 Slow modulation of the Maxwell operator

One of the key differences between Maxwell and Schrödinger operators is that
perturbations are multiplicative rather than additive. Given material weights ε
and µ (which verify Assumption 1.1), we define their slow modulations (ελ, µλ)
to be of the form (9). Assumption 1.2 for the modulation functions (τε, τµ) en-
sures that also (ελ, µλ) satisfy Assumption 1.1 because they are again bounded
away from 0 and +∞.
We denote the λ-dependence of the weights with w(λ) = (ελ, µλ) and define
shorthand notation for the λ-dependent family of Hilbert spaces, projections
and Maxwell operators by setting

Hλ := Hw(λ) , Jλ := Jw(λ) (spaces)

Mλ := Mw(λ) , Pλ := Pw(λ) , Qλ := Qw(λ) (operators) .

Similarly, we will denote the scalar product and norm of Hλ by 〈· , ·〉λ and ‖·‖λ.
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To compare these operators for different values of λ, we will represent them on
a common, λ-independent Hilbert space: the scaling operator

S(λx̂) : Hλ −→ H0, S(λx̂) =

(
τ−1
ε (λx̂) 0

0 τ−1
µ (λx̂)

)
, (20)

is a unitary since it is surjective and preserves scalar products. The Maxwell
operator in this new representation can be calculated explicitly: for instance,
the upper-right matrix element of Mλ transforms to

τ−1
ε (λx̂)

(
−τ2ε (λx̂) ε

−1(x̂) (−i∇x)
×
)
τµ(λx̂) =

= −τε(λx̂) τµ(λx̂)
(
ε−1(x̂) (−i∇x)

× + λ ε−1(x̂)
(
−i∇x ln τµ

)×
(λx̂)

)
,

and if we introduce the functions τ(λx) := τε(λx) τµ(λx) and

Υ(λx) :=

(
0 +i

(
∇x ln τµ

)×
(λx)

−i
(
∇x ln τε

)×
(λx) 0

)
,

we can write the Maxwell operator as

Mλ := S(λx̂)Mλ S(λx̂)
−1 =M0 + λM1

= τ(λx̂)M0 + λ τ(λx̂)W Υ(λx̂) . (21)

As a product of bounded multiplication operators, M1 is an element of B(H0).
The regularity of τε and τµ also ensures the domain is preserved.

Lemma 2.4 S(λx̂) maps D bijectively onto itself.

This means all of the operators,M0, Mλ andMλ, have the same λ-independent
domainD and cores (e. g.H1(R3,C6)) – even though the splitting of the domain
into physical and unphysical subspaces depends on λ. We denote the invariant
subspaces

Jλ := S(λx̂)Jλ , Gλ := S(λx̂)G

of Mλ with regular letters instead of bold letters, and in the same vein, the
corresponding projections are

Pλ := S(λx̂)Pλ S(λx̂)
−1 , Qλ := S(λx̂)Qλ S(λx̂)

−1 .

For λ = 0, the λ-independent representation coincides with the physical rep-
resentation since S(λx̂)|λ=0 = idH0 reduces to the identity by Assumption 1.2,
and we have J0 = J0 and G0 = G for the subspaces, as well as P0 = P0 and
Q0 = Q0 for the corresponding projections.
The unitarity of S(λx̂) and Theorem 2.1 imply H0 = Jλ⊕⊥Gλ is a λ-dependent
decomposition of H0 into 〈· , ·〉0-orthogonal subspaces which are invariant under
the dynamics e−itMλ .
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3 Properties of the periodic Maxwell operator

Photonic crystals are materials where the unperturbed material weights (ε, µ)
are periodic with respect to a lattice

Γ := spanZ{e1, e2, e3}
∼= Z

3 ,

and henceforth, we shall always make the following

Assumption 3.1 (Photonic crystal) Suppose that ε and µ are Γ-periodic
and satisfy Assumption 1.1.

The lattice periodicity suggests we borrow the language of crystalline solids
[GP03]: we can decompose vectors x = y + γ in real space R3 ∼= W × Γ into
a component y which lies in the so-called Wigner–Seitz cell W and a lattice
vector γ ∈ Γ. Whenever convenient we will identify this fundamental cell W
with the 3-dimensional torus T3.
Given a lattice Γ, then there is a canonical way to decompose momentum
space R3 ∼= B×Γ∗: here, the dual lattice Γ∗ = spanZ{e

∗
1, e

∗
2, e

∗
3} is generated by

the family of vectors which are defined through the relations ej · e
∗
n = 2π δjn,

j, n = 1, 2, 3. The standard choice of fundamental cell

B :=
{∑3

j=1αj e
∗
j ∈ R

3
∣∣ α1, α2, α3 ∈ [−1/2,+1/2)

}

is called (first) Brillouin zone, and elements k ∈ B are known as crystal mo-
mentum.

3.1 The Zak transform

The lattice-periodicity of ε and µ sugests to use a Fourier basis: for any CN -
valued Schwartz function Ψ ∈ S(R3,CN ) we define the Zak transform [Zak68]
evaluated at k ∈ R3 and y ∈ R3 as

(ZΨ)(k, y) :=
∑

γ∈Γ

e−ik·(y+γ)Ψ(y + γ) . (22)

The Zak transform is a variant of the Bloch-Floquet transform with the follow-
ing periodicity properties:

(ZΨ)(k, y − γ) = (ZΨ)(k, y) γ ∈ Γ

(ZΨ)(k − γ∗, y) = e+iγ∗·y(ZΨ)(k, y) γ∗ ∈ Γ∗

In other words, ZΨ is a Γ-periodic function in y and periodic up to a phase in
k. The Schwartz functions are dense in H0, so

Z : H0 −→ L2
eq(R

3, h0) ∼= L2(B) ⊗ h0
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extends to a unitary map between H0 and the L2-space of equivariant functions
in k with values in h0 := L2

ε(T
3,C3)⊕⊥ L2

µ(T
3,C3),

L2
eq(R

3, h0) :=
{
Ψ ∈ L2

loc(R
3, h0)

∣∣ Ψ(k − γ∗) = e+iγ∗·ŷΨ(k) a. e. ∀γ∗ ∈ Γ∗
}
,

(23)

which is equipped with the scalar product

〈Ψ,Φ〉eq :=

∫

B

dk
〈
Ψ(k),Φ(k)

〉
h0

where

〈
Ψ(k),Φ(k)

〉
h0

:=

∫

T3

dy ψE(k, y) · ε(y)φE(k, y)+

+

∫

T3

dy ψH(k, y) · µ(y)φH(k, y) .

Due to the (quasi-)periodicity of Zak transformed functions, they are uniquely
determined by the values they take on B× T3.
To see how the Maxwell operator transforms when conjugating it with Z, we
compute the Zak representation of its building block operators positions x̂ and
momentum −i∇x (which are equipped with the obvious domains):

Z x̂Z−1 = i∇k (24)

Z (−i∇x)Z
−1 = idL2(B) ⊗ (−i∇y) + k̂ ⊗ idh0 ≡ −i∇y + k̂ (25)

The common domains of the components i∂kj and −i∂yj + k̂j Zak transform to
L2
eq(R

3, h0) ∩H
1
loc

(
R3, h0

)
and

ZH1(R3,C6) = L2
eq

(
R

3, H1(T3,C6)
)
∼= L2(B) ⊗H1(T3,C6) . (26)

Note that the position operator in Zak representation does not factor, unless
we consider Γ-periodic functions ε,

Z ε(x̂)Z−1 = idL2(B) ⊗ ε(ŷ) ≡ ε(ŷ) . (27)

Operators A : D(A) −→ H0 which commute with lattice translations, e. g. op-
erators of the form (25), (27) or the periodic Maxwell operator, fiber in k,

AZ = ZAZ−1 =

∫ ⊕

B

dkA(k) ,

and the fiber operators at k ∈ R3 and k−γ∗, γ∗ ∈ Γ∗, are unitarily equivalent,

A(k − γ∗) = e+iγ∗·ŷA(k) e−iγ∗·ŷ , (28)

Operator-valued functions k 7→ A(k) which satisfy (28) are called equivariant.
It is for this reason that it suffices to consider all objects only for k ∈ B and
extend them by equivariance if necessary.
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3.2 Analytic decomposition of the fiber Hilbert space

Clearly, Q0 and P0 also commute with lattice translations, and thus, the Zak
transform yields a fiber decomposition into

QZ
0 := Z Q0 Z

−1 =

∫ ⊕

B

dk Q0(k) , PZ
0 := Z P0 Z

−1 =

∫ ⊕

B

dk P0(k) .

These fibrations also identify physical and unphysical subspaces of the fiber
Hilbert space

h0 = J0(k)⊕⊥ G0(k)

for each k ∈ B where G0(k) = ranQ0(k) and J0(k) = ranP0(k). A priori, all
we know is that this fibration is measurable in k. However, we are interested
in the analyticity properties of the fiber projections. Figotin and Kuchment
have recognized that k 7→ Q0(k) and thus also k 7→ P0(k) are not analytic at
k ∈ Γ∗ [FK96a]. The purpose of this section is to define regularized projections
k 7→ Qreg

0 (k) and k 7→ P reg
0 (k) which are analytic on all ofR3. These regularized

projections enter crucially in the proof on the existence of ground state bands
(Theorem 1.4 (iii)).

Lemma 3.2 (i) The orthogonal projections k 7→ Q0(k) and k 7→ P0(k) onto
unphysical and physical subspace are analytic on R3 \ Γ∗.

(ii) The regularized orthogonal projections k 7→ Qreg
0 (k) and k 7→ P reg

0 (k)
are analytic on all of R3. Moreover, P reg

0 (γ∗) = P0(γ
∗) and Qreg

0 (γ∗) =
Q0(γ

∗) holds for all γ∗ ∈ Γ∗.

(iii) dim
(
G0(k) ∩ J

reg
0 (k)

)
= 2 for all k ∈ R3 \ Γ∗

Essentially, the idea for the definition of Qreg
0 (k) is already contained in the

proofs of Lemma 51 and Corollary 52 of [FK96a], so we will briefly sketch the
construction of Q0(k) and then proceed to define Qreg

0 (k).
Assume from now on that k ∈ B. The idea is to use the fact that G0(k) :=

ran0 Grad(k) and define an auxiliary projection Q̃0(k) = Grad(k)T (k) with
range G0(k) as the product of the operator

Grad(k) = (∇y + ik,∇y + ik) : H1(T3,C2) −→ h0.

which depends analytically on k ∈ R3 and its left-inverse T (k). Such a left-
inverse exists if and only if Grad(k) is injective, and if it exists, it is also
bounded [FK96a, p. 52] and analytic in k [ZKKP75, Theorem 4.4]. Note that
the closedness of ran0 Grad(k) = Grad(k)H1(T3,C2) for k 6= 0 follows from
the boundedness of T (k).
One can check that for k 6= 0, the operator Grad(k) is injective while for k = 0
there are zero modes,

Z(T3,C2) :=

{
y 7→

(
βE

βH

) ∣∣∣
(
βE

βH

)
∈ C

2

}
= kerGrad(0) .
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Consequently, the projection Q̃0(k) = Grad(k)T (k) can only be defined in
this fashion for k 6= 0, and there is a point of non-analyticity at k = 0, because
ranGrad(0) is “smaller” by two dimensions than G0(k), k 6= 0.

Even though Q̃0(k) need not be an orthogonal projection (the proofs in [All67]
and [ZKKP75] only make reference to the Banach algebra structure), these

arguments show that G0(k) = ranQ0(k) = ran Q̃0(k) depends analytically on
k away from Γ∗. Thus, the unique orthogonal projection Q0(k) onto G0(k)
necessarily also depends analytically on k ∈ R3 \ Γ∗.
The behavior of Grad(k) at k = 0 suggests to define the regularized unphysical
space as

Greg
0 (k) := ran0 Grad(k)|H1

reg

where the closed subspace

H1
reg(T

3,C2) :=
{
ϕ = (ϕE , ϕH) ∈ H1(T3,C2)

∣∣ 〈1, ϕ♯
〉
L2(T3)

= 0, ♯ = E,H
}

= Z(T3,C2)⊥ ∩H1(T3,C2)

consists of all H1-functions orthogonal to the constant functions. Now
Grad(k)|H1

reg
is injective for all k ∈ B, and by modifying the estimates on

[FK96a, p. 52] we deduce there exists an analytic bounded left-inverse Treg(k)
for all k ∈ B. Hence, the composition

k 7→ Q̃reg
0 (k) := Grad(k)|H1

reg
Treg(k)

defines a projection onto Greg
0 (k) that depends analytically on k for all of B,

including k = 0; again, the boundedness of Treg(k) implies Greg
0 (k) is a closed

subset of h0. By the same arguments as above, the uniquely determined orthog-

onal projection Qreg
0 (k) onto Greg

0 (k) inherits the analyticity of Q̃reg
0 (k) [Kat95,

Theorem 6.35]. At k = 0, this regularized projection coincides with the usual
one, Qreg

0 (0) = Q0(0), as their ranges

Greg
0 (0) = ranGrad(0)|H1

reg
= ranGrad(0) = G0(0) (29)

are the same (this also proves that G0(0) is closed). Moreover, k 7→ Qreg
0 (k)

has a unique extension by equivariance (cf. (28)) to all of R3.
Now the analyticity of the orthogonal projection

P reg
0 (k) := idh0 −Qreg

0 (k)

onto the 〈· , ·〉h0
-orthogonal complement

J reg
0 (k) := Greg

0 (k)⊥

follows from the analyticity of k 7→ Qreg
0 (k).
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Before we prove (iii), it is instructive to juxtapose the decomposition h0 =
J0(k)⊕⊥ G0(k) with the regularized decomposition

h0 = J reg
0 (k)⊕⊥ G

reg
0 (k)

for the special case M0 = Rot, i. e. ε = 1 = µ. The difference between the
two is how the constant functions y 7→ (αE , αH) ∈ C6, are distributed amongst
them: for k 6= 0 only certain constant functions belong to J0(k),

y 7→

(
αE

αH

)
∈ J0(k) ⇐⇒ Div(k)

(
αE

αH

)
= −i

(
k · αE

k · αH

)
=

(
0
0

)
,

while for k = 0 all constant functions are elements of J0(0) and the physical
subspace “grows” by 2 dimensions at the expense of G0(0). In contrast, the
regularized physical subspace J reg

0 (k) contains all constant functions for all
values of k. We will now extend these arguments to the case of non-trivial
weights (ε, µ).

Proof (Lemma 3.2) We have already shown (i) and (ii) in the text preceding
the lemma and it remains to prove (iii). Without loss of generality, we restrict
ourselves to k ∈ B. First of all, we note that the unphysical subspace

G0(k) =

{
∑

γ∗∈Γ∗

(
βE(γ∗) (γ∗ + k)
βH(γ∗) (γ∗ + k)

)
e+iγ∗·y

∣∣∣

{∣∣β♯(γ∗) γ∗
∣∣
}
γ∗∈Γ∗

∈ ℓ2(Γ∗), ♯ = E,H

}

and the regularized unphysical subspace

Greg
0 (k) =

{
∑

γ∗∈Γ∗\{0}

(
βE(γ∗) (γ∗ + k)
βH(γ∗) (γ∗ + k)

)
e+iγ∗·y

∣∣∣

{∣∣β♯(γ∗) γ∗
∣∣
}
γ∗∈Γ∗

∈ ℓ2(Γ∗), ♯ = E,H

}
. (30)

coincide for k = 0, and we immediately deduce

dim
(
G0(0) ∩ J

reg
0 (0)

)
= dim

(
G0(0) ∩ J0(0)

)
= 0 .

Hence, we assume from now on k ∈ B \ {0}. That means, we can write the in-
tersection as the regularized projection applied to a two-dimensional subspace,

G0(k) ∩ J
reg
0 (k) = P reg

0 (k)

{
y 7→

(
βE k
βH k

) ∣∣∣ βE , βH ∈ C

}
.

The image is again two-dimensional: if we write any Ψ = ΨQ ⊕⊥ ΨP ∈ h0
as the sum of ΨQ ∈ Greg

0 (k) and ΨP ∈ J reg
0 (k), then in view of equation (30)
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the γ∗ = 0 Fourier coefficient of ψQ = Qreg
0 (k)Ψ necessarily has to vanish,

ψ̂Q(0) = 0. Thus, ψ̂P (0) = ψ̂(0) follows, and the map

C
2 ∋

(
βE

βH

)
7→ P reg

0 (k)

(
βE k
βH k

)
∈ J reg

0 (k)

is injective. That means dim
(
G0(k) ∩ J

reg
0 (k)

)
= 2 for k ∈ R3 \ Γ∗. �

3.3 Analyticity properties of the fiber Maxwell operator

The Zak transform fibers the periodic Maxwell operator in crystal momentum,

MZ
0 := Z M0Z

−1 =

∫ ⊕

B

dkM0(k) . (31)

Each of the fiber operators

M0(k) =W Rot(k) =

(
0 −ε−1 (−i∇y + k)×

+µ−1 (−i∇y + k)× 0

)
,

acts on a potentially k-dependent subspace d(k) of h0, and has a splitting into
physical and unphysical part, M0(k) = M0(k)|J0(k) ⊕ 0|G0(k). In any case, the
selfadjointness of M0 on D implies the selfadjointness of each fiber operator
M0(k) on D(k). Since the domain of each fiber operator M0(k) may depend
on k, it is not obvious whether k 7→ M0(k) is analytic in k even though the
operator prescription is linear.

Proposition 3.3 (Analyticity) Suppose Assumption 3.1 on ε and µ holds.

(i) The domain of selfadjointness

d =
(
kerDiv(k) ∩H1(T3,C6)

)
⊕ ranGrad(k) (32)

of M0(k) is independent of k.

(ii) The map R3 ∋ k 7→ M0(k) ∈ B(d, h0) is analytic.

Proof (i) Since H1(R3,C6) is a core for M0 (Theorem 2.1 (i)) and (26),
we know that H1(T3,C6) is a common core of M0(k) for all values of k.
Moreover, combining equations (59) and (26) with the fact that Div and
Grad also fiber in k yields the decomposition of d as a k-dependent direct
sum as given by (32).

The difference of the two fiber operators restricted to H1(T3,C6) extends
to a bounded operator on all of h0,

M0(k)|H1 −M0(k
′)|H1 =W

(
0 −(k − k′)×

+(k − k′)× 0

)

=:

3∑

j=1

(kj − k′j)Aj =: (k − k′) ·A . (33)
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Using
∥∥k ·A

∥∥
B(h0)

= |k| ‖W‖B(h0), it is straightforward to see that these

graph norms of M0(k) and M0(0) are equivalent on H1(T3,C6),

(
1 + |k| ‖W‖

)−1
‖Ψ‖M0(0) ≤ ‖Ψ‖M0(k) ≤

(
1 + |k| ‖W‖

)
‖Ψ‖M0(0) .

The equivalence of the graph norms now implies that the domains, seen
as completions of H1(T3,C6) with respect to these graph norms, are in-
dependent of k,

d(k) = H1(T3,C6)
‖·‖

M0(k) = H1(T3,C6)
‖·‖

M0(0) = d(0) .

(ii) By (i) the domain d of each M0(k) is independent of k, and thus the
analyticity of the linear polynomial k 7→ M0(k) is trivial. �

The fibration of MZ
0 can be used to extract a great deal of information on the

spectra of M0 and M0(k):

Theorem 3.4 (Spectral properties) Suppose Assumption 3.1 on ε and µ
is satisfied. Then for any k ∈ R3 the following holds true:

(i) σ
(
M0(k)|G0(k)

)
= σess

(
M0(k)|G0(k)

)
= σpp

(
M0(k)|G0(k)

)
= {0}

(ii) σ
(
M0(k)|J0(k)

)
= σdisc

(
M0(k)|J0(k)

)

(iii) σ
(
M0(k)|Jreg

0 (k)

)
= σdisc

(
M0(k)|Jreg

0 (k)

)
= σ

(
M0(k)

)

(iv) σ(M0) =
⋃

k∈B

σ
(
M0(k)

)
=
⋃

k∈R3

σ
(
M0(k)

)

(v) σ(M0) = σac(M0) ∪ σpp(M0)

Proof (i) For any ϕ ∈ C∞
c (R3,C2), the vector Grad(ϕ) ∈ G0 is an element

of the unphysical subspace, and thus we have found an eigenvector to 0,

M0(k)(ZΨ)(k) =
(
ZM0Ψ

)
(k) = 0.

This means we have found a countably infinite family of eigenvectors, and
we have shown (i).

(ii) According to Lemma A.4,
(
Rot(k)|JRot(k)−z

)−1
is compact for all k ∈ R3

where JRot(k) = kerDiv(k) is the physical subspace for the free Maxwell

operator. Because we can write
(
M0(k)|J0(k) − z

)−1
as a product of

bounded operators and
(
Rot(k)|JRot(k)−z

)−1
[SEK+05, equation (4.23)],

the resolvent of M0(k)|J0(k) is also compact. Thus, the spectrum of
M0(k)|J0(k) is purely discrete.

(iii) This follows from (ii) and the observation that by Lemma 3.2 (iii), J0(k)
and J reg

0 (k) differ by an at most 2-dimensional subspace J reg
0 (k)∩G0(k).
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(iv) The proof is analogous to that of [FK96a, Corollary 57].

(v) From (iv) we know that σ(M0) can be written as the union of the spec-
tra of the fiber operators M0(k). Because these spectra σ

(
M0(k)

)
={

ωn(k)
}
n∈Z

in turn can be expressed in terms of piecewise analytic fre-

quency band functions k 7→ ωn(k), n ∈ Z (cf. Theorem 1.4 (i)), σsc(M0)
must be empty. �

Remark 3.5 (Absolute continuity of σ
(
M0|J0

)
) Unlike in the case of

periodic Schrödinger operators, it has not yet been proven that the spectrum
of M0|J0 is purely absolutely continuous. To show σ

(
M0|J0

)
= σac

(
M0|J0

)
, all

of the known proofs reduce the Maxwell operator to a possibly non-selfadjoint
Schrödinger-type operator with magnetic field, and these transformations in-
volve derivatives of ε and µ [Mor00, Sus00, KL01]. Hence, one needs additional
regularity assumptions on ε and µ; the best currently known are ε, µ ∈ C1(R3)
[KL01, Section 7.4]. This means, even though it is widely expected that the
spectrum is always purely absolutely continuous, flat bands (apart from ω ≡ 0)
currently cannot be excluded unless we make additional regularity assumptions
on ε and µ.

So far, most spectral and analytic properties mirror of MZ
0 those of periodic

Schrödinger operators, but there are two important differences: (i) M0 is not
bounded from below and (ii) in case of real weights the PH symmetry of the
spectrum (cf. Theorem 2.2) implies a symmetry for the frequency band spec-
trum (cf. Figure 1).
The first item in conjunction with the non-analyticity of J0(k) at k ∈ Γ∗

potentially complicates the labeling of frequency bands. For simplicity, we
solve this using the band picture proven in Theorem 1.4: first of all, we know
there exists an infinitely degenerate flat band ω0(k) = 0 associated to the
unphysical states (cf. Theorem 3.4 (i)). Moreover, it is easy to prove that 0
is an eigenvalue of M0(k)|J0(k) if and only if k ∈ Γ∗. Away from k ∈ Γ∗,
we repeat non-zero eigenvalues ωj(k) of M0(k) according to their multiplicity,
arrange them in non-increasing order and label positive (negative) eigenvalues
with positive (negative) integers, i. e. away from k ∈ Γ∗ we set

. . . ≤ ω−2(k) ≤ ω−1(k) < ω0(k) = 0 < ω1(k) ≤ ω2(k) ≤ . . .

Moreover, due to the analyticity of k 7→ M0(k), the eigenvalues depend on k
in a continuous fashion, and we extend this labeling by continuity to k ∈ Γ∗.
This procedure yields a family

{
k 7→ ωn(k)

}
n∈Z

of Γ∗-periodic functions.

Two types of bands are special: beside the zero mode band ω0(k) = 0 which is
due to states in G0(k), the ground state bands are those of lowest frequency in
absolute value:

Definition 3.6 (Ground state bands) We call a frequency band k 7→
ωn(k) of M

Z
0 a ground state band if and only if
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(i) lim
k→0

ωn(k) = 0 and

(ii) ωn is not identically 0 in a neighborhood of k = 0.

Moreover, we define Igs ⊂ Z to be the set of ground state band indices.

The ground state bands can be recovered from the space of zero modes

GS := kerM0(0) ∩ J0(0) .

using analytic continuation, and hence, also the use of P reg
0 (k) instead of P0(k)

even though they coincide at k = 0.

Lemma 3.7 (Ground state eigenfunctions at k = 0) Suppose Assump-
tion 3.1 holds true. Then GS = P reg

0 (0)
{
y 7→ a | a ∈ C6

}
is six-dimensional

and any of its elements can be uniquely written as

Ψa(y) :=
(
P reg
0 (0)a

)
(y) =

∑

γ∗∈Γ

Ψ̂a(γ
∗) e+iγ∗·y

for some a ∈ C6. The Fourier coefficients Ψ̂a(γ
∗) =

(
ψ̂Ea (γ

∗), ψ̂Ha (γ∗)
)
satisfy

the following relations:

Ψ̂a(0) = a ∈ C
6 (34)

ψ̂♯a(γ
∗) ∝ γ∗ ∀γ∗ ∈ Γ∗ \ {0}, ♯ = E,H

Proof First of all, seeing asW is bounded with bounded inverse, kerM0(k) =
kerRot(k). A simple computation (cf. Lemma A.4) yields that any Ψ ∈
kerRot(0) is of the form

Ψ = a+ΨG

for some a ∈ C
6 and ΨG ∈ Greg

0 (0) = G0(0). Applying P reg
0 (0) to both sides

yields P reg
0 (0)Ψ = Ψa and consequently, dimGS ≤ 6.

From
[
M0(k), P

reg
0 (k)

]
= 0 we deduce P reg

0 (0)
{
y 7→ a | a ∈ C6

}
⊆ GS. More-

over, in view of (30), y 7→ a ∈ C6 is an element of Greg
0 (0) = G0(0) if and only

if a = 0. Hence, a 7→ Ψa is injective and

dimP reg
0 (0)

{
y 7→ a | a ∈ C

6
}
= dimGS = 6 .

Finally, P reg
0 (0)

(
Ψa − a

)
= 0 means Ψa − a ∈ Greg

0 (0), and thus using equa-

tion (30) once more, we deduce Ψ̂a(γ
∗) ∝ γ∗ and Ψ̂a(0) = a. �

We now proceed to the proof of Theorem 1.4 which establishes the frequency
band picture for periodic Maxwell operators (cf. Figure 1).

Documenta Mathematica 19 (2014) 63–101



84 Giuseppe De Nittis and Max Lein

Proof (of Theorem 1.4) (i) Since M0(k) is isospectral to its restriction
M0(k)|Jreg

0 (k), let us consider the latter. First of all, k 7→ ω0(k) = 0 is
trivially analytic, we may assume n 6= 0. Thus, the analyticity away from
band crossings follows from the purely discrete nature of the spectrum of
M0(k)|Jreg

0 (k) (Theorem 3.4 (iii)), the analyticity of k 7→ M0(k) (Propo-

sition 3.3 (ii)) and k 7→ P reg
0 (k) (Lemma 3.2) combined with standard

perturbation theory in the sense of Kato [Kat95].

The Γ∗-periodicity of k 7→ ωn(k) is deduced from the equivariance of
k 7→ M0(k).

(ii) Now assume in addition that ε and µ are real. For n = 0, we trivially
find ω0(k) = 0 = −ω0(−k). So from now on, suppose n ∈ Z \ {0}.

One can check that upon Zak transform, the PH operator (complex
conjugation) CZ := ZCZ−1 acts on elements of Ψ ∈ L2

eq(B, h0) as(
CZΨ

)
(k) = Ψ(−k). Combined with CZ MZ

0 = −MZ
0 C

Z which follows
from equation (19) since ε and µ are real, a straight-forward calculation
shows that if un(k) is an eigenfunction to ωn(k), then

(
CZun

)
(k) is an

eigenfunction to −ωn(−k), and we have shown (ii).

(iii) To show (1), we will prove

0 ∈ σ
(
M0(k)|J0(k)

)
⇐⇒ 0 ∈ σ

(
Rot(k)|JRot(k)

)
(35)

first where JRot(k) = kerDiv(k) is the physical subspace of the free
Maxwell operator, and since the spectrum of Rot,

σ
(
Rot(k)|JRot(k)

)
=

⋃

γ∗∈Γ∗

{
±|k + γ∗|

}
,

is known explicitly (cf. Lemma A.4), this will prove 0 ∈ σ
(
M0(k)|J0(k)

)
if

and only if k ∈ Γ∗. Hence, combined with Definition 3.6 this implies (1).

First of all, since the spectra σ
(
M0(k)|J0(k)

)
are discrete for any k ∈ B

(Theorem 3.4 (ii)), we only need to consider the existence of eigenvec-
tors. As the inverse of W is bounded, the equations M0(k)Ψ = 0 and
Rot(k)Ψ = 0 are equivalent on the domain d. We will now show that
the existence of ΨM0 ∈ J0(k) ∩ d to M0(k)ΨM0 = 0 is equivalent to the
existence of a ΨRot ∈ kerDiv(k) which satisfies Rot(k)ΨRot = 0.

Assume there exists an eigenvector ΨM0 ∈ J0(k) ∩ d. Then by the direct
decomposition of the domain D = kerDiv(k) ⊕ ranGrad(k) implies we
can uniquely write

ΨM0 = ΨRot +ΨG

as the sum of ΨRot ∈ kerDiv(k) and ΨG ∈ G0(k). Because the intersec-
tion J0(k) ∩ G0(k) = {0} is trivial, we know ΨRot 6= 0. Hence, ΨRot is
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an eigenvector of Rot(k),

Rot(k)ΨRot = Rot(k)
(
ΨM0 −ΨG

)
= 0.

The converse statement is shown analogously and we have proven (35).

Now we turn to (2): let us define N := |Igs|. By (ii), N needs to be
even. Due to (29), we may replace the physical subspace J0(0) with
its regularized version J reg

0 (0), and the six-dimensional space GS from
Lemma 3.7 can also be defined in terms of J reg

0 (0). Thus, we already
know N ≤ dimGS = 6. Moreover, since dim

(
G0(k) ∩ J reg

0 (k)
)

= 2
(Lemma 3.2 (iii)) and Q0(k)J

reg
0 (k) ⊂ G0(k), the operator M0(k)|Jreg

0 (k)

has a two-fold degenerate flat band k 7→ 0 and we conclude that in fact,
N ≤ 4.

To show N = 4 and property (2), we use standard analytic perturbation
theory in the sense of Kato around the eigenvalue 0: We have proven in
(i) that all band functions are continuous, and thus if ωn(0) = 0 there
exists a neighborhood V of k = 0 and a δ > 0 such that |ωn(k)| < δ
holds on V . Let us pick an orthonormal basis

{
Ψ1, . . . ,Ψ6

}
of GS; ac-

cording to Lemma 3.7, each of these Ψj is associated to a coefficient
a(j) =

(
aE(j), a

H
(j)

)
∈ C6, j = 1, . . . , 6 via (34). Then M0(0)Ψj = 0

and [Kat95, equation (2.40)] imply the ground state band functions
{ωn(k)}n∈Igs are approximately equal to the non-zero eigenvalues of the
k-dependent matrix

k ·A :=
(〈

Ψl, k ·AΨj
〉
h0

)
1≤l,j≤6

(36)

where k · A = M0(k) − M0(0) is explicitly given in equation (33) and

k · A :=
∑3

j=1 kj Aj involves the implicitly defined matrices Aj . For

a, b ∈ C6, we can directly compute the scalar product:

〈
Ψa, k ·AΨb

〉
h0

=

〈(
ψEa
ψHa

)
,W

(
−k × ψHb
+k × ψEb

)〉

h0

= k ·

∫

T3

dy
(
ψEa (y)× ψHb (y)− ψHa (y)× ψEb (y)

))

= k ·
(
aE × bH − aH × bE

)
(37)

=

〈(
aE

aH

)
,

(
0 −k×

+k× 0

)(
bE

bH

)〉

C6

(38)

To arrive at the last line, we plug in the ansatz (34) for the ground state
function, use the orthogonality of the plane waves with respect to the
standard scalar product on L2(T3) and exploit γ∗ × γ∗ = 0.

Now let us define the invertible 6× 6 matrix Λ :=
(
a(1) | · · · | a(6)

)
which

maps the canonical basis
{
v(1), . . . , v(6)

}
⊂ C6 onto

{
a(1), . . . , a(6)

}
. Then
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we can express the matrix elements of k · A in terms of Λ:

〈
v(j), k · Av(n)

〉
C6 :=

(
k · A

)
jn

=

〈
a(j),

(
0 −k×

+k× 0

)
a(n)

〉

C6

=

〈
v(j),Λ

∗

(
0 −k×

+k× 0

)
Λv(n)

〉

C6

(39)

In view of equation (37), the matrix elements possess an SO(3) symme-
try: if we define the action of R ∈ SO(3) on a ∈ C

6 by setting Ra :=(
RaE , RaH

)
, then equation (37) in conjunction with R(v×w) = Rv×Rw,

v, w ∈ C3, yields

〈
Ψa, k ·AΨb

〉
h0

=
〈
ΨRa, (Rk) ·AΨRb

〉
h0
. (40)

Combining this symmetry with equation (38), we get

(
k ·A

)
jn

=

〈
RΛv(j),

(
0 +(Rk)×

−(Rk)× 0

)
RΛv(n)

〉

C6

=

〈
v(j),

(
Λ−1RΛ

)∗
Λ∗

(
0 +(Rk)×

−(Rk)× 0

)
Λ
(
Λ−1RΛ

)
v(n)

〉

C6

or, put more succinctly after replacing R with R−1 and k with Rk,

(Rk) ·A =
(
Λ−1R−1 Λ

)∗ (
k ·A

) (
Λ−1R−1 Λ

)
.

As the matrix Λ−1R−1Λ is invertible, we deduce

rank
(
k ·A

)
= rank

(
(Rk) ·A

)
= rank

(
λk ·A

)
(41)

holds for all R ∈ SO(3) and λ ∈ C \ {0}, i. e. the rank of the matrix k ·A
is independent of k 6= 0. In particular, it means that if 0 ∈ σ

(
k0 · A

)
for

some special k0 6= 0, then 0 is an eigenvalue of all matrices k ·A.

Now we will reduce this problem of 6 × 6 matrices to a problem of 3 ×

3 matrices: first of all, any basis
{
v(j)
}6
j=1

of C6 gives rise to a basis
{
Ψv(j)

}6
j=1

of GS. In particular, if we take
{
v(j)
}6
j=1

to be the canonical

basis of C6, we can apply the Gram-Schmidt procedure to
{
Ψv(j)

}6
j=1

and obtain a 〈· , ·〉h0
-orthonormal basis

{
Ψa(1)

}6
j=1

of GS with coefficients

a(j) =
(
aE(j), a

H
(j)

)
∈ C6. Due to the block structure of W−1 that is

also inherited by
〈
Φ,Ψ

〉
h0

=
〈
Φ,W−1Ψ

〉
L2(T3,C6)

, the fact that vH(1) =

vH(2) = vH(3) = 0 and vE(4) = vE(5) = vE(6) = 0 forces also the corresponding
coefficients of the orthonormalized vectors to be 0,

aH(1) = aH(2) = aH(3) = 0 , aE(4) = aE(5) = aE(6) = 0 .
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Moreover,
{
aE(1), a

E
(2), a

E
(3)

}
and

{
aH(4), a

H
(5), a

H
(6)

}
are two sets of linearly

independent vectors in C3 with aE(1), a
H
(4) ∝ (1, 0, 0).

Thus, using equation (37), one sees that the symmetric matrix k · A is
purely block-offdiagonal and can be written in term of three 3×3 matrices
B = (B1, B2, B3) as

k ·A =:

(
0 k ·B(

k ·B
)∗

0

)
. (42)

The block structure implies that

rank
(
k ·A

)
= rank

(
k ·B

)
+ rank

(
k ·B

)∗
= 2 rank

(
k · B

)
. (43)

Then in order to conclude that rank
(
k · A

)
= 4, we only need to show

that rank
(
k · B

)
= 2. Since the result is independent of k, we pick k0 =

(1, 0, 0) and use the basis obtained after Gram-Schmidt orthonormalizing{
Ψv(1) , . . . ,Ψv(6)

}
. Then a(1) ∝ v(1) and a(4) ∝ v(4) are non-trivial scalar

multiples of v(1) and v(4), and consequently, one obtains again from (37)

k0 · B =

(
0 0

0 k0 · B̃

)

where the 2× 2 matrix

k0 · B̃ =

(
k0 ·

(
aE(2) × aH(5)

)
k0 ·

(
aE(2) × aH(6)

)

k0 ·
(
aE(3) × aH(5)

)
k0 ·

(
aE(3) × aH(6)

)
)

has full rank, because k0 = vE(1) = vH(4) ∝ aE(1), a
H
(4) implies

det
(
k0 · B̃

)
=
(
k0 ·

(
aE(2) × aE(3)

)) (
k0 ·

(
aH(5) × aH(6)

))

∝ det
(
aE(1)

∣∣ aE(2)
∣∣ aE(3)

)
det
(
aH(4)

∣∣ aH(5)
∣∣ aH(6)

)
6= 0 .

Hence, piecing together rank
(
k0 · B

)
= 2 with equations (41) and (43)

yields that the degeneracy of the ground state bands is 4. �

3.4 Comparison to existing literature

Even though most of the results in this section are neither new nor surprising,
we still feel they fill a void in the literature: To the best of our knowledge,
it is the first time the most important fundamental properties of the fiber
Maxwell operator M0(k) are all proven rigorously in one place. Many of these
are scattered throughout the literature, e. g. various authors have proven the
discrete nature of the spectrum of M0(k) [FK97, Mor00, SEK+05] or have
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shown the non-analyticity of k 7→ P0(k) at k = 0 [FK96a]. Certainly there is no
dearth of literature on the subject (see also [Kuc01, JJWM08] and references
therein). However, most of these results are piecemeal: Some of them are
contained in publications which do not really focus on the periodic Maxwell
operator, but random Maxwell operators ([FK96b, FK97], for instance). Other
publications do not study M0 but rather operators associated to M2

0: since M
2
0

is block-diagonal, it suffices to study a second-order equation for either E or
B, see e. g. [FK96a, FK97]. In the two-dimensional case, this leads to a scalar
equation where the right-hand side is a second-order operator [FK96a].
Nevertheless, one result is new, namely Theorem 1.4 (iii): even though the pres-
ence of ground state bands is heuristically well-understood, we provide rather
simple and straight-forward proof. The k → 0 limit is related in spirit to the
homogenization limit where the wavelength of the electromagnetic wave is large
compared to the lattice spacing (see e. g. [Sus04, Sus05, SEK+05, BS07, APR12]
and references therein). On the one hand, many homogenization techniques
yield much farther-reaching results, most notably effective equations for the
dynamics (e. g. [BS07, Theorem 2.1]) while Theorem 1.4 (iii) only makes a
statement about the behavior of the ground state frequency bands. On the
other hand, compared to, say, [BS07, Theorem 2.1] or [SEK+05, Theorem 6.2],
computing the dispersion of the ground state bands for small k seems much
easier in our approach: given ε and µ, the problem reduces to orthonormalizing
2 × 3 vectors numerically and solving an eigenvalue problem for an explicitly
given 3 × 3 matrix |k · B| defined through (42) with one known eigenvalue
(namely 0). Moreover, a proof of the fact that there are 4 ground state bands
also appears to be new, e. g. in a recent publication this was stated as [SEK+05,
Conjecture 1]. Proving this fact, however, required a better insight into the na-
ture of the singularity of k 7→ P0(k) at k = 0 and necessitated the introduction
of a regularized projection P reg

0 .

4 MZ
λ and MZ

λ as ΨDOs

After expounding the properties of the periodic Maxwell operator, we proceed
to the proof of Theorem 1.3. The essential ingredient is a suitable interpretation
of the usual Weyl quantization rule

Opλ(f) :=
1

(2π)3

∫

R3

dr′
∫

R3

dk′ (Fσf)(r
′, k′) e−i(k′·(iλ∇k)−r

′·k̂) (44)

where

(Fσf)(r
′, k′) :=

1

(2π)3

∫

R3

dr′
∫

R3

dk′ e+i(k′·r−r′·k) f(r, k)

is the symplectic Fourier transform. The idea is to combine the point of view
from [Teu03, Appendix B] and [DL11, Section 2.2] with the fact that most
results of standard pseudodifferential theory depend only on the Banach struc-
ture of the spaces involved and not on the Hilbert structure.
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First of all, equation (44) defines a ΨDO for a large class of scalar [Fol89, Hö79,
Kg81, Tay81] and vector-valued functions [Luk72, Lev90]. For instance, if f is
a Hörmander symbol or order m ∈ R and type ρ ∈ [0, 1] taking values in the
Banach space (B, ‖·‖B),

f ∈ Smρ (B) :=
{
f ∈ C∞(R6,B)

∣∣ ∀α, β ∈ N
3
0 : ‖f‖m,αβ <∞

}
, (45)

where the seminorms
{
‖·‖m,αβ

}
α,β∈N3

0

are defined by

‖f‖m,αβ := sup
(r,k)∈R6

(√
1 + k2

−m+|β|ρ ∥∥∂αr ∂βk f(r, k)
∥∥
B

)
,

then (44) is defined as an oscillatory integral [Hö71]. The vector-valuedness of f
usually does not create any technical difficulties, most standard results readily
extend to vector-valued symbols, e. g. Caldéron-Vaillancourt-type theorems and
the composition of Hörmander-type symbols (see e. g. [Luk72, GMS91, MS09]
and [Teu03, Appendix A]).

In our applications B = B(h1, h2) will always be some Banach space of bounded
operators between the Hilbert spaces h1 and h2 whose elements are L2-functions
on the torus, e. g. L2(T3,CN ), h0 or d. As explained in [DL11, Section 2.2.1],
when compared to the pseudodifferential calculus associated to (−iλ∇x, x̂),
equation (44) can be seen as an equivalent representation of the same underlying
Moyal algebra [GBV88a, GBV88b]. Hence, the usual formulas and results
apply, and we may use standard Hörmander classes instead of the less common
weighted Hörmander classes as in [PST03a].

4.1 Equivariant ΨDOs

The relevant Hilbert spaces, ZHλ and ZH0, coincide with L
2
eq

(
R3, L2(T3,C6)

)

as Banach spaces, and we are in the same framework as in [Teu03, Appendix B]
and [DL11, Section 2.2.2]. The building block operators are macroscopic po-

sition iλ∇k and crystal momentum k̂ whose domains are dense in L2
eq(R

3, h0)
(cf. Section 3.1).

Operators which fiber-decompose in Zak representation have the equivariance
property (28), and thus MZ

0 : L2
eq(R

3, d) −→ L2
eq(R

3, h0) defines a selfadjoint
operator between Hilbert spaces of equivariant functions, for instance. This
motivates the following

Definition 4.1 (Semiclassical symbols) Assume hj, j = 1, 2, are Hilbert
spaces consisting of functions on T3. A map f : [0, λ0) −→ Smρ,eq

(
B(h1, h2)

)
,

λ 7→ fλ, is called a semiclassical equivariant symbol of order m ∈ R and weight
ρ ∈ [0, 1], that is f ∈ ASmρ,eq

(
B(h1, h2)

)
, if and only if

(i) fλ(r, k − γ∗) = e−iγ∗·ŷ fλ(r, k) e
+iγ∗·ŷ holds ∀ (r, k) ∈ R6, γ∗ ∈ Γ∗ and
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(ii) there exists a sequence {fn}n∈N0 , fn ∈ Sm−nρ
ρ , such that for all N ∈ N0

λ−N

(
fλ −

N−1∑

n=0

λn fn

)
∈ Sm−Nρ

ρ

(
B(h1, h2)

)

holds true uniformly in λ in the sense that for any N ∈ N0 and α, β ∈ N3
0,

there exist constants CNαβ > 0 so that the estimate
∥∥∥∥∥fλ −

N−1∑

n=0

λn fn

∥∥∥∥∥
m,αβ

≤ CNαβ λ
N

is satisfied for all λ ∈ [0, λ0).

Since Smρ
(
B(h1, h2)

)
and Smρ,eq

(
B(h1, h2)

)
are contained in the Moyal algebra

[GBV88a, Section III], the associated ΨDOs extend from continuous maps be-
tween vector-valued Schwartz functions to continuous maps between vector-
valued tempered distributions,

Opλ
(
Smρ
(
B(h1, h2)

))
⊂ Opλ

(
Smρ,eq

(
B(h1, h2)

))

⊂ L
(
S(R3, h1),S(R

3, h2)
)
∩ L

(
S ′(R3, h1),S

′(R3, h2)
)
.

Furthermore, one can easily check that equivariant ΨDOs also preserve equiv-
ariance on the level of tempered distributions: let us define translations and
multiplication with the phase e+iγ∗·ŷ on S ′(R3, hj), j = 1, 2, by duality, i. e. we
set

(
Lγ∗F, ϕ

)
S
:=
(
T, ϕ(·+ γ∗)

)
S
,

(
e−iγ∗·ŷF, ϕ

)
S
:=
(
T, e+iγ∗·ŷϕ

)
S
,

for all γ∗ ∈ Γ∗ ⊂ R3. The set of equivariant tempered distributions S ′
eq(R

3, hj),
j = 1, 2, is comprised of those tempered distributions which satisfy

Lγ∗F = e−iγ∗·ŷF .

Then [Teu03, Proposition B.3] states that

Opλ(f) : S
′
eq(R

3, h1) −→ S ′
eq(R

3, h2)

holds for all f ∈ Smρ,eq
(
B(h1, h2)

)
. Consequently, the inclusion L2

eq(R
3, hj) ⊂

S ′
eq(R

3, hj) and the standard Caldéron-Vaillancourt theorem imply [Teu03,
Proposition B.5]

Opλ
(
S0
ρ,eq

(
B(h1, h2)

))
⊂ B

(
L2
eq(R

3, h1) , L
2
eq(R

3, h2)
)
.

Similarly, the Moyal product ♯ which is implicitly defined through

Opλ(f♯g) := Opλ(f)Opλ(g)

extends as a bilinear, continuous map which respects equivariance,

♯ : Sm1
ρ,eq

(
B(h1, h2)

)
× Sm2

ρ,eq

(
B(h2, h3)

)
−→ Sm1+m2

ρ,eq

(
B(h1, h3)

)
. (46)
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4.2 Extension to weighted L2-spaces

We have seen that certain equivariant operator-valued functions define bounded
ΨDOs mapping between Hilbert spaces of equivariant L2-functions. The fact
B(h1, h2) only depends on the Banach space structure of h1 and h2 immediately
implies

B
(
ZD , ZHλ

)
= B

(
L2
eq(R

3, d) , L2
eq

(
R

3, L2(T3,C6)
))
,

for instance, and hence any f ∈ S0
ρ,eq

(
B
(
L2(T3,C6)

))
uniquely defines a ΨDO

Opλ(f) : ZHλ −→ ZHλ. (47)

One only needs to be careful about taking adjoints: the adjoint operator cru-
cially depends on the scalar product (see e. g. the discussion of selfadjointness of
Mw in Section 2.1), but in our applications, properties such as selfadjointness
are checked “by hand”.

4.3 Proof of Theorem 1.3

Assumption 3.1 on the material weights ε and µ as well as Assumption 1.2
placed on the modulation functions imply Hλ and H0 coincide with L2(R3,C6)
as Banach spaces. Similarly, we have h0 = L2(T3,C6) on the level of Banach
spaces. This means, ZHλ and ZH0 agree with L2

eq

(
R3, L2(T3,C6)

)
as normed

vector spaces.
Seeing as we can write MZ

λ = S(iλ∇k)
−2 MZ

0 , Theorem 1.3 follows from the
following

Lemma 4.2 Under the assumptions of Theorem 1.3, the following two opera-
tors are semiclassical pseudodifferential operators:

(i) S(iλ∇k)
±1 = Opλ

(
S±1

)
where S, S−1 ∈ S0

1,eq

(
B
(
L2(T3,C6)

))

(ii) MZ
0 = Opλ

(
M0( · )

)
where M0( · ) ∈ S1

1,eq

(
B
(
d, L2(T3,C6)

))

Proof (i) The matrix S(r) is block-diagonal with respect to L2(T3,C6) ∼=
L2(T3,C3) ⊕ L2(T3,C3) and each block is proportional to the identity
in L2(T3,C3). Due to the assumption on the modulation functions, we
conclude

S ∈ C∞
b

(
R

3,B
(
L2(T3,C6)

))
⊂ S0

1

(
B
(
L2(T3,C6)

))
.

Equivariance is trivial, because S(iλ∇k) commutes with e−iγ∗·ŷ and hence

S(r) = e+iγ∗·ŷ S(r) e−iγ∗·ŷ

holds. Lastly, S−1 has the same properties as S since τ−1
ε and τ−1

µ also
satisfy Assumption 1.2. This concludes the proof of (i).

Documenta Mathematica 19 (2014) 63–101



92 Giuseppe De Nittis and Max Lein

(ii) By Proposition 3.3, the map k 7→ M0(k) is linear (the domain is inde-
pendent of k), and thus S1

1

(
B
(
d, L2(T3,C6)

))
. Equivariance follows from

equation (28), and thus we have shown (ii). �

Seeing as M0( · ) is linear, the asymptotic expansion of ♯ terminates after two
terms and the symbols of the Maxwell operators in the physical representation
can be computed from

MZ = Opλ
(
S−2♯M0( · )

)
=: Opλ(MMMλ).

That MMMλ is an element of AS1
1,eq

(
B
(
d, L2(T3,C6)

))
is implied by the compo-

sition properties of equivariant symbols (46) and the preceding Lemma. This
concludes the proof of Theorem 1.3.

Consequently, also the Maxwell operator in the auxiliary representation is a
semiclassical ΨDO,

MZ
λ = Opλ

(
S♯MMMλ♯S

−1
)
= Opλ

(
S−1♯M0( · )♯S

−1
)
=: Opλ(Mλ) ,

whose semiclassical symbol Mλ is in the same symbol class.

Corrolary 4.3 Under the assumptions of Theorem 1.3, the Maxwell operator
MZ
λ = Opλ(Mλ) in the rescaled representation is the semiclassical pseudodif-

ferential operator associated to

Mλ(r, k) = τ(r)M0(k)− λ τ(r)W

(
0 i

2

(
∇r ln τε/τµ

)×
(r)

i
2

(
∇r ln τε/τµ

)×
(r) 0

)

where τ(r) := τε(r) τµ(r). The function Mλ ∈ AS1
1,eq

(
B
(
d, L2(T3,C6)

))
is an

equivariant semiclassical symbol in the sense of Definition 4.1.

A The curl operator and the Rot operator

The aim of this Appendix is to clarify the meaning of the relation D(Rot) =
D(curl) ⊕ D(curl) used in Section 2.1 in order to define the domain of the
Maxwell operator. So to conclude our arguments from Section 2.1, we give a
brief overview on the theory of the operators curl := ∇×

x andRot. Many works
have been devoted to the rigorous study of curl on L2(Ω,C3) where Ω ⊆ R3

can be a bounded [YG90, ABDG98, HKT12] or unbounded domain [Pic98]
whose boundary satisfies various regularity properties. A lot of related results
are contained in standard texts on the Navier-Stokes equation [DL72, FT78,
GR86, Gal11]. In this Appendix, we enumerate some elementary results for the
special case Ω = R3. The crucial result is the so-called Helmholtz-Hodge-Weyl-
Leray decomposition which leads to a decomposition of any ψ ∈ L2(R3,C3)
into divergence and rotation-free component.
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A.1 The gradient operator

The gradient operator is initially defined on the smooth functions with compact
support by

∇x : C∞
c (R3) −→ C∞

c (R3,C3), ∇xϕ :=



∂x1ϕ
∂x2ϕ
∂x3ϕ


 . (48)

The operator ∇x is closable (any component ∂xj
is anti-symmetric) and its

closure, still denoted with ∇x, has domain D(∇x) = H1(R3) and trivial null
space, ker∇x = {0}.

A.2 The divergence operator

The second operator of relevance, the divergence

div : C∞
c (R3,C3) −→ C∞

c (R3), divψ :=
3∑

j=1

∂xj
ψj , (49)

is also closable and its closure, still denoted with div, has domain [Tem01,
Section 1.2 and Theorem 1.1]

D(div) := C∞
c (R3,C3)

‖·‖
div =

{
ψ ∈ L2(R3,C3) | divψ ∈ L2(R3)

}
.

A relevant result is the Stokes formula [Tem01, Theorem 1.2], i. e. we have

Xψ(ϕ) :=
〈
ψ,∇xϕ

〉
L2(R3,C3)

+
〈
divψ, ϕ

〉
L2(R3)

= 0

for all ψ ∈ D(div) and ϕ ∈ H1(R3). This follows mainly from the Cauchy-
Schwarz inequality

∣∣Xψ(φ)
∣∣ 6 2 ‖ψ‖div ‖φ‖∇x

. The above relation shows that
div is the adjoint of −∇x and vice versa (cf. [Pic98]). In this sense D(div) can
be seen as the space of vector fields with weak divergence.

A.3 The rotor operator

Lastly, the

curl : C∞
c (R3,C3) −→ C∞

c (R3,C3), curlψ :=



∂x2ψ3 − ∂x3ψ2

∂x3ψ1 − ∂x1ψ3

∂x1ψ2 − ∂x2ψ1


 (50)

is essentially selfadjoint, and thus, uniquely extends to a selfadjoint operator
whose domain

D(curl) := C∞
c (R3,C3)

‖·‖
curl =

{
ψ ∈ L2(R3,C3) | curlψ ∈ L2(R3,C3)

}

(51)
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is the closure of the core with respect to the graph norm. The characteriza-
tion of D(curl) by the second equality in (51) is proven in a slightly more
general context in [DL72, Chapter 7, Lemma 4.1] (cf. also [ABDG98, Defini-
tion 2.2] and [Urb01]). By showing that the deficiency indices of curl are both
0, i. e. curlψ = ±iψ has no non-trivial solutions, one deduces curl is indeed
selfadjoint (cf. [CK57, Pic98]). A very interesting fact relates the domains of
curl and div, and the space H1(R3,C3): Theorem 2.5 of [ABDG98] states

D(curl) ∩D(div) = H1(R3,C3) (52)

which follows from the identity

‖ψ‖
2
H1(R3,C3) = ‖ψ‖

2
L2(R3,C3) + ‖curlψ‖

2
L2(R3,C3) + ‖divψ‖

2
L2(R3) . (53)

This decomposition of the H1(R3,C3)-norm follows from integration by parts
and the identity

(
curl

)2
= ∇x div −∆x

on C∞
c (R3,C3), and a simple density argument. Note that (52) implies

C∞
c (R3,C3) and H1(R3,C3) are cores for both, div and curl.

A.4 The Helmholtz-Hodge-Weyl-Leray decomposition

For a more precise characterization of the domain D(curl) we need the
Helmholtz-Hodge-Weyl-Leray decomposition (see [Tem01, Chapter I, Sec-
tion 1.4], [FT78, Section 1.1] and [Gal11, Section III.1]). Let us introduce
the subspaces

Cσ :=
{
ψ ∈ C∞

c (R3,C3) | divψ = 0
}
, J := Cσ

‖·‖L2(R3,C3) .

Theorem A.1 (Helmholtz-Hodge-Weyl-Leray decomposition) The
space L2(R3,C3) admits the following orthogonal decomposition

L2(R3,C3) = J⊕⊥ G (54)

where J ⊂ D(div) is defined by

J =
{
ψ ∈ L2(R3,C3) | divψ = 0

}
= kerdiv (55)

and

G :=
{
ψ ∈ L2(R3,C3) | ψ = ∇xϕ, ϕ ∈ L2

loc(R
3)
}
= ran∇x . (56)

Moreover, one has also the following characterization:

J = kerdiv = ran curl, G = ker curl = ran∇x . (57)
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Proof (Sketch) Equation (55) is proven in [Tem01, Chapter I, Theorem 1.4,
eq. (1.34)]. The inclusion J ⊂ D(div) follows from the observation that the
norms ‖·‖L2(R3,C3) and ‖·‖

div
coincide on Cσ.

The definition of G as gradient fields (first equality) has been shown in [Tem01,
Chapter I, Theorem 1.4, eq. (1.33) and Remark 1.5]. The closedness of G,
and thus, the second equality is discussed in the proof of [Pic98, Lemma 2.5].
(According to our choice of convention in Section 1.1, ran∇x is the closure of
ran0 ∇x = ∇xH

1(R3), and for an example of ϕ ∈ L2
loc(R

3) \H1(R3) such that
∇xϕ ∈ L2(R3,C3) we refer to [Gal11, Note 2, pg. 156].)
The proofs of the two remaining equalities in (57) can be found in [Pic98,
Theorem 1.1].
We remark that in case of the vector fields on all of R3, the space of harmonic
vector fields HN := kerdiv∩ker curl = {0} is the trivial vector space, because
∆ψ = 0 has no non-trivial solutions on L2(R3,C3). This concludes the proof
of (54). �

Remark A.2 According to the standard nomenclature J is known as the
space of the solenoidal or transversal vector fields while G is the space
of the irrotational or longitudinal vector fields. The orthogonal projection
P : L2(R3,C3) −→ J is called Leray projection. The identification J = ran curl
implies that curl : J −→ J and this is enough for [P, curl] = 0.

Theorem A.1 has two immediate consequences: The first is the Helmholtz split-
ting, meaning each ψ ∈ L2(R3,C3) can be uniquely decomposed into a stream
field φ ∈ D(curl) and the gradient of a potential function ϕ ∈ L2

loc(R
3),

ψ = curlφ+∇xϕ,

where curlφ and ∇xϕ are mutually orthogonal. The second is the content of
the following

Corrolary A.3 (Domain of curl) The domain D(curl) of the operator
curl admits the following splitting

D(curl) =
(
J ∩D(curl)

)
⊕⊥ G

=
(
J ∩H1(R3,C3)

)
⊕⊥ G

=
(
kerdiv ∩H1(R3,C3)

)
⊕⊥ kercurl

=
(
kerdiv ∩H1(R3,C3)

)
⊕⊥ ran∇x. (58)

Proof Theorem A.1 implies D(curl) =
(
J ∩ D(curl)

)
⊕⊥ G since G ⊂

D(curl). Moreover, relation (52) and J = kerdiv lead to J ∩ D(curl) =(
J ∩D(div)

)
∩D(curl) = J ∩H1(R3,C3). �

A.5 The Rot operator

The block structure displayed in equation (7) implies Rot defines a selfadjoint
operator on D(Rot) = D(curl) ⊕⊥ D(curl) where D(curl) is the domain of
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the rotation operator curl as given in Corollary A.3. The splitting (58) of
D(curl) carries over to Rot, namely

D := D(Rot) =
(
kerDiv ∩H1(R3,C6)

)
⊕⊥ ranGrad, (59)

where Div := div ⊕ div and Grad := ∇x ⊕ ∇x consist of two copies of div
and ∇x which are defined as in Appendix A, and ranGrad is the closure of
ran0 Grad.

The splitting of the domain (59) is motivated by the orthogonal decomposition
of

L2(R3,C6) = J⊕⊥ G := kerDiv⊕⊥ ranGrad = ranRot⊕⊥ kerRot

into transversal and longitudinal vector fields provided by the Helmholtz-
Hodge-Weyl-Leray theorem (cf. Section A.4); it extends the unique splitting

Ψ = RotΦ +Gradϕ, Φ ∈ L2(R3,C6), ϕ ∈ L2
loc(R

3,C2),

from C∞
c (R3,C6) to all of L2(R3,C6). Note that the vectorsRotΦ and Gradϕ

are orthogonal with respect to the scalar product 〈· , ·〉L2(R3,C6), and thus there
exist orthogonal projections P and Q onto J and G. Moreover, Remark A.2
implies C∞

c (R3,C6) and H1(R3,C6) are cores of Rot.

The free Maxwell operator Rot ∼=
∫ ⊕

B
dkRot(k) is periodic with respect to

any lattice, and thus we can use the Zak transform to fiber decompose it. The
eigenvectors to any eigenvalue of Rot(k) can be explicitly constructed in terms
of plane waves.

Lemma A.4 (Band spectrum of RotZ)

(i) σ
(
Rot(k)

)
= {0} ∪

⋃

γ∗∈Γ∗

{
±|γ∗ + k|

}

(ii) There exists a k-dependent family of linearly independent vectors

{
uj± γ∗(k) | γ∗ ∈ Γ∗, j = 1, 2, 3

}

which spans all of L2(T3,C6) and has the following properties:

(1) The uj± γ∗(k) are eigenfunctions toRot(k) with eigenvalues ±|γ∗+k|
or 0 for all k ∈ R3.

(2) Away from Γ∗ ⊂ R3, all maps k 7→ uj± γ∗(k) ∈ L2(T3,C6) are locally
analytic on a small neighborhood which can be chosen to be indepen-
dent of j and γ∗.

(3) Near γ∗0 ∈ Γ∗, only those uj± γ∗(k) are locally analytic on a common
neighborhood for which γ∗ 6= −γ∗0 holds.
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Proof We begin by analyzing the original operator Rot = curl ⊗ σ2 which
can be factorized into an operator acting on L2(R3,C3) and a 2 × 2 matrix.
The Pauli matrix σ2 has eigenvalues ±1 and eigenvectors w±. curl fibers in ξ
after applying the usual Fourier transform F : L2(R3,C3) −→ L2(R3,C3),

F ∇×
x F−1 =

∫ ⊕

R3

dξ (iξ)× =:

∫ ⊕

R3

dξ curl(ξ),

and curl(ξ) = iξ× (see equation (5)) can be diagonalized explicitly: it has
eigenvalues {0,± |ξ|}. Moreover, it can be seen that the eigenvectors vj(ξ),
j = 1, 2, 3, are analytic away from ξ = 0. For ξ 6= 0, we set v1(ξ), v2(ξ) and
v3(ξ) to be the eigenvectors to +|ξ|, −|ξ| and 0, respectively. At ξ = 0 neither
the eigenvalues ± |ξ| nor the eigenvectors are analytic.
Now to the proof of the Lemma: For j = 1, 2, 3 let us set

uj± γ∗(k) := e+iγ∗·y vj(γ
∗ + k)⊗ w±

where vj(γ
∗ + k) is defined as in the preceding paragraph for ξ = γ∗ + k. The

exponential functions {e+iγ∗·y}γ∗∈Γ∗ and the {vj(ξ)⊗w±}j=1,2,3 form a basis of
L2(T3) and C3 ⊗ C2 ∼= C6, respectively, and hence, the set of all uj± γ∗ forms
a basis of L2(T3,C6). Moreover, these vectors are eigenfunctions to Rot(k)
with eigenvalues ±|γ∗ + k| (j = 1, 2) or 0 (j = 3), and thus we have shown (i),
σ
(
Rot(k)

)
= {0} ∪

⋃
γ∗∈Γ∗

{
±|γ∗ + k|

}
, and (ii) (1).

If k0 ∈ R3 \ Γ∗, then

|γ∗ + k| ≥ dist
(
k0,Γ

∗
)
> 0

is bounded from below which implies the eigenvectors uj± γ∗ are analytic in
some neighborhood of k0. These vectors vj(γ

∗ + k), j = 1, 2, 3, are analytic on
an open ball around k0 with radius dist

(
k0,Γ

∗
)
, proving (ii) (2).

If, on the other hand, k0 = γ∗0 ∈ Γ∗, then the basis involves the vector

uj±−γ∗

0
(γ∗0 ) = e−iγ∗

0 ·y vj(0)⊗ w±

which cannot be extended analytically to a neighborhood of k0 = γ∗0 , thus
proving (ii) (3). �
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Periodic Elliptic Operators. Transactions of the American Mathe-
matical Society, 354(2):537–569, 2001.

[Kuc01] P. Kuchment. Mathematical Modeling in Optical Science, volume 22
of Frontiers in Applied Mathematics, chapter The Mathematics of
Photonic Crystals, pages 207–272. SIAM, 2001.

Documenta Mathematica 19 (2014) 63–101



100 Giuseppe De Nittis and Max Lein

[Lev90] S. Levendorskii. Asymptotic Distribution of Eigenvalues of Differ-
ential Operators. Springer-Verlag, 1990.

[Luk72] G. Luke. Pseudodifferential operators on Hilbert bundles. Journal
of Differential Equations, 12(3):566–589, 1972.

[Mor00] A. Morame. The absolute continuity of the spectrum of Maxwell
operator in periodic media. J. Math. Phys., 41(10):7099–7108, 2000.

[MP96] P. A. Markowich and F. Poupaud. The Maxwell equation in a peri-
odic medium: homogenization of the energy density. Annali Della
Scuola Normale Superiore Di Pisa Classe di Scienze, 23(2):301–324,
1996.

[MS09] A. Martinez and V. Sordoni. Twisted Pseudodifferential Calculus
and Application to the Quantum Evolution of Molecules. Number
200 in Memoirs of the American Mathematical Society. American
Mathematical Society, 2009.

[OMN06] M. Onoda, S. Murakami, and N. Nagaosa. Geometrical asepcts in
optical wave-packet dynamics. Phys. Rev. E, 74:066610, 2006.

[Pic98] R. Picard. On a selfadjoint realization of curl in exterior domains.
Mathematische Zeitschrift, 229:319–338, 1998.

[PST03a] G. Panati, H. Spohn, and S. Teufel. Effective dynamics for Bloch
electrons: Peierls substitution. Commun. Math. Phys., 242:547–
578, October 2003.

[PST03b] G. Panati, H. Spohn, and S. Teufel. Space Adiabatic Perturbation
Theory. Adv. Theor. Math. Phys., 7(1):145–204, 2003.

[RH08] S. Raghu and F. D. M. Haldane. Analogs of quantum-Hall-effect
edge states in photonic crystals. Phys. Rev. A, 78:033834, 2008.
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