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Abstract. A degenerate Keller-Segel system with diffusion exponent
m with 2n

n+2 < m < 2 − 2
n in multi dimension is studied. An exact

criterion for global existence and blow up of solution is obtained. The

estimates on L
2n

n+2 norm of the solution play important roles in our
analysis. These estimates are closely related to the optimal constant
in the Hardy- Littlewood- Sobolev inequality. In the case of initial free
energy less than a universal constant which depends on the inverse of

total mass, there exists a constant such that if the L
2n

n+2 norm of initial
data is less than this constant, then the weak solution exists globally;

if the L
2n

n+2 norm of initial data is larger than the same constant,
then the solution must blow-up in finite time. Our result shows that
the total mass, which plays the deterministic role in two dimension
case, might not be an appropriate criterion for existence and blow up

discussion in multi-dimension, while the L
2n

n+2 norm of the initial data
and the relation between initial free energy and initial mass are more
important.
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1. Introduction

In this article, we will study a degenerate Keller-Segel system for n ≥ 3
dimension:







ρt = ∆ρm − div(ρ∇c), x ∈ R
n, t ≥ 0,

−∆c = ρ, x ∈ R
n, t ≥ 0,

ρ(x, 0) = ρ0(x), x ∈ R
n,

(1.1)

where diffusion exponent m ∈ ( 2n
n+2 , 2 − 2

n ), ρ(x, t) represents the density of

bacteria and c(x, t) represents the chemical substance concentration. Mass
conservation of the system implies ‖ρ(·, t)‖L1 = ‖ρ0(·)‖L1 = M0.

Keller-Segel system with linear diffusion was proposed by Patlak [16] and
Keller-Segel [13, 14]. It is used to describe the collective motion of cells or the
evolution of the density of bacteria. This model plays important roles in the
study of chemotaxis in mathematical biology. Since 1980, Keller-Segel system
was widely studied in the literature. From the work by Childress [7], we known
that the behavior of this model strongly depends on the space dimension, the
readers can refer to two surveys given by Horstmann [11, 12].

Recently, many mathematicians are interested in finding the criterion for
global existence and blow up of solution to Keller-Segel type systems. In par-
ticular, the 2-dimensional case has been well studied. It is well known that
8π is the critical mass of 2-dimensional Keller-Segel system [5, 10, 17]. More
precisely, if the initial mass M0 < 8π, then there exists global weak solution;
if M0 > 8π, then the solution blows up in finite time; The more delicate case
M0 = 8π was studied in [2, 4].

In dimension n ≥ 3, one has to use nonlinear diffusion to balance the
non-local aggregation effect. A natural question is to find a criterion for initial
data to separate the global existence and finite time blow up to degenerate
Keller-Segel system (1.1) with diffusion exponent m > 1.

There were two critical diffusion exponents of (1.1) which have been stud-
ied recently. One is that m∗ = 2 − 2

n , which came from the scaling invariance
of the total mass. The following results were obtained in [18, 19]. If m > m∗,
the solution exists globally for any initial data; if 1 < m ≤ m∗, both global
existence and blow-up can happen for some initial data. Later on, Blanchet-
Carrillo-Laurencot in [3] studied the degenerate system with diffusion exponent
m = m∗, a critical mass was given there. Another critical exponent of (1.1),
mc = 2n

n+2 was given in [6], which came from the conformal invariance of the

free energy. The authors in [6] showed that Lmc norm of a family of positive
stationary solution can be viewed as the criterion for the global existence and
blow up of solutions.

In this paper we are interested in finding a criterion to classify the initial
data to get either global existence or blow up of the solution. Our analysis will
work for all the diffusion exponents m such that 2n

n+2 = mc < m < m∗ = 2− 2
n .
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There are two very important quantities of system (1.1). One is the total
mass which is time independent,

∫

Rn

ρ(x, t)dx =

∫

Rn

ρ0(x)dx = M0,

the other is the free energy

F(ρ) =
1

m− 1

∫

Rn

ρm(x, t)dx −
1

2

∫

Rn

ρ(x, t)c(x, t)dx,

which decays in time due to the following entropy-entropy production relation

d

dt
F(ρ(·, t)) +

∫

Rn

ρ
∣

∣

∣
∇(

m

m− 1
ρm−1 − c)

∣

∣

∣

2

dx = 0.

The main result of this paper is

Theorem 1.1. Assume that the initial density ρ0 ∈ L1
+(R

n) ∩ Lm(Rn) and
F(ρ0) < F∗, the following holds,

(1) If ‖ρ0‖
L

2n
n+2 (Rn)

< (s∗)
n−2

2n(m−1) , then (1.1) has a global weak solution,

i.e. for all T > 0 and some 1 < r, s ≤ 2, there is a function ρ(x, t) with

ρ ∈ L∞(0,+∞;L1
+(R

n) ∩ Lm(Rn)),

∇ρ ∈ L2(0, T ;Lr(Rn)), ∂tρ ∈ L2(0, T ;W−1,s
loc (Rn)),

such that it satisfies (1.1) in the sense of distribution.

(2) If ‖ρ0‖
L

2n
n+2 (Rn)

> (s∗)
n−2

2n(m−1) and ρ0 has finite second moment, ρ(x, t)

is a solution of (1.1), then there exists a T ∗ > 0 such that

lim
t→T∗

‖ρ(·, t)‖Lm(Rn) = +∞.(1.2)

Here F∗ and s∗ are universal constants given by

F∗ =
2− 2

n −m

(m− 1)(1− 2
n )

(2n2α(n)

C(n)

)

n(m−1)
2n−2−mn

M
2n−m(n+2)
2n−2−mn

0 > 0,(1.3)

s∗ =
(2n2α(n)M

2n−m(n+2)
n−2

0

C(n)

)

n(m−1)
2n−2−mn

> 0,(1.4)

where M0 is the initial mass ‖ρ0‖L1(Rn), α(n) = πn/2

Γ(n
2 +1) is the volume of the

unit ball of Rn and C(n) is the best constant of the Hardy-Littlewood-Sobolev
inequality, see (1.9).

Remark 1.1. We remark here that under the condition F(ρ0) < F∗, L
2n

n+2 norm

of the initial data can not be (s∗)
n−2

2n(m−1) , which can be easily checked by using
the decomposition of the free energy. Thus the classification of the initial data
in Theorem 1.1 is complete.

Remark 1.2. The result does not hold for m = m∗ = 2 − 2
n , thus there is no

contradiction with the result by Blanchet et al. in [3], where a critical mass
was obtained.
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Remark 1.3. The conditions ρ0 ∈ L1
+(R

n) ∩ Lm(Rn) and ‖ρ0‖
L

2n
n+2 (Rn)

<

(s∗)
n−2

2n(m−1) for the existence result imply that the initial free energy is positive,
i.e. F(ρ0) > 0, which can be easily checked by direct computations. Conversely,
if the initial free energy is negative, i.e. F(ρ0) < 0 and ρ0 ∈ L1

+(R
n)∩Lm(Rn),

then ‖ρ0‖
L

2n
n+2 (Rn)

> (s∗)
n−2

2n(m−1) . Therefore, our result on the blow-up of so-

lutions allows more initial data than those in the work by Sugiyama. Thus the
blow up result improves her work with γ = 0. (In [18], Y. Sugiyama proved
that if the initial free energy is negative and ρ0 ∈ L1

+(R
n) ∩ Lm(Rn), then the

solution to the degenerate Keller-Segel with Bessel potential blows up in finite
time.) In fact, Theorem 1.1 gives an exact classification of the initial data so
that the solution either exists globally or blow-up in finite time. More precisely,

it is the constant (s∗)
n−2

2n(m−1) , where s∗ is stated in (1.4), which classifies the

initial data in L
2n

n+2 norm.

Remark 1.4. The exponents of M0 in (1.3) and (1.4) are both negative due to
the fact that 2n

n+2 < m < 2− 2
n . The assumption F(ρ0) < F∗ in Theorem 1.1

gives a relation between the initial mass and the initial free energy, i.e.

F(ρ0)M
m(n+2)−2n
2n−2−mn

0 <
2− 2

n −m

(m− 1)(1− 2
n )

(2n2α(n)

C(n)

)

n(m−1)
2n−2−mn

.(1.5)

As a conclusion, Theorem 1.1 implies that the initial mass itself might not be an
important quantity in the existence and blow up analysis in multi-dimension.
More precisely, no matter how small the initial mass is, the solution can still

blow up in case that ‖ρ0‖
L

2n
n+2

> (s∗)
n−2

2n(m−1) . No matter how large the initial

mass is, there still exists a global weak solution if ‖ρ0‖
L

2n
n+2

< (s∗)
n−2

2n(m−1) .

The similar fact that the initial mass is not a relevant quantity for blow-up
in the multi-dimensional Keller-Segel model is known in the literature, such
as in [9] where (1.1) with m = 1 was considered. Moreover, we can find
a consistent phenomenon with this result in parabolic-parabolic model, such
as in [20, 8]. In [8], the norm of ‖ρ0‖L

n
2

was used to discuss existence and

blow-up. The author in [20] studied the case with smooth bounded domain
with homogeneous Neumann boundary conditions, they obtained the existence
result for small initial data in Lq, q > n

2 and if the domain is ball, there is
always an unbounded solution developed from initial data with arbitrary small
mass.

Example 1. For given ε0 > 0 arbitrarily small, let the initial data be

ρ0(x) =

{

ε0
Kn

α(n) , |x| ≤ 1
K ,

0, |x| > 1
K ,

where K to be determined later. Then

‖ρ0‖L1 = ε0, ‖ρ0‖
L

2n
n+2

= ε0

( Kn

α(n)

)

n−2
2n

and

∫

Rn

|x|2ρ0dx < ∞.
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Now we can choose K large such that

‖ρ0‖
L

2n
n+2

> (s∗)
n−2

2n(m−1) ,(1.6)

and

F(ρ0)M
m(n+2)−2n
2n−2−mn

0 <
2− 2

n −m

(m− 1)(1− 2
n )

(2n2α(n)

C(n)

)

n(m−1)
2n−2−mn

.(1.7)

Therefore according to our result in theorem 1.1, the solution must blow up in
finite time.

We will give a detailed calculation of this example in the Appendix.
Similarly, we can find some initial data with large initial mass such that

the solution exist globally.

It should also be mentioned that the constants appeared in the main result
have close relation to the critical Hardy-Littlewood-Sobolev inequality. For
completeness, we cite this result from [15].

Proposition 1.1 (H.-L.-S. inequality). Let ρ ∈ L
2n

n+2 (Rn), then
∫ ∫

Rn×Rn

ρ(x)ρ(y)

|x− y|n−2
dxdy ≤ C(n)‖ρ‖2

L
2n

n+2
,(1.8)

where

C(n) = π(n−2)/2 1

Γ(n/2 + 1)

{

Γ(n/2)

Γ(n)

}−2/n

.(1.9)

Moreover, the equality holds if and only if ρ(x) = AUλ,x0 , for some constant A
and parameters λ > 0, x0 ∈ R

n, where

(1.10) Uλ,x0 = 2
n+2
4 n

n+2
2

(

λ

λ2 + |x− x0|2

)

n+2
2

.

This family of radially symmetric functions (1.10) is also a class of stationary
solution of the degenerate system (1.1) with diffusion exponent m = mc =

2n
n+2 .

The readers are referred to [6] for the relations among stationary solution,
the Hardy-Littlewood-Sobolev inequality and conformal invariance of the free

energy. A direct scaling analysis tells us that L
2n

n+2 norm of Uλ,x0 is a universal
constant independent of the parameters λ and x0.

We can separate the free energy into two parts by using the Hardy-
Littlewood-Sobolev inequality (1.8), namely,

F(ρ) =
1

m− 1

∫

Rn

ρm(x, t)dx −
C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2
−

1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρ(x, t)ρ(y, t)

|x− y|n−2
dxdy

=: F1(ρ) + F2(ρ).

Proposition 1.1 says that F2(ρ) ≥ 0.
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Since the first part of the free energy is concave in L
2n

n+2 norm of the
solution, it is not difficult to get a priori estimates, which shows that in the
cases of supercritical and subcritical initial data, the quantity ‖ρ‖

L
2n

n+2
can be

bounded from below or from above separately. More precisely, if the initial free
energy F(ρ0) < F∗, then the following estimates hold

(1) If ‖ρ0‖ 2n
n+2

< (s∗)
n−2

2n(m−1) , then there exists a constant µ1 < 1 such that

‖ρ(·, t)‖ 2n
n+2

< (µ1s
∗)

n−2
2n(m−1) , for all t > 0.

(2) If ‖ρ0‖ 2n
n+2

> (s∗)
n−2

2n(m−1) , then there exists a constant µ2 > 1 such that

‖ρ(·, t)‖ 2n
n+2

> (µ2s
∗)

n−2
2n(m−1) , for all t > 0.

We will give the proof of the first fact for the regularized solution in the Lemma
2.1 in section 2, and show that the second is true in Lemma 3.1 in section 3.

This paper is arranged as follows. In section 2, we will give the proof of the
global existence of weak solution. After introducing the regularized problem,

a uniform estimate for the L
2n

n+2 norm of the regularized solution by using
decomposition of the free energy is obtained. Based on this estimate, further
estimates, including the spacial and time derivatives, are derived. Then the
global existence follows from standard compactness arguments with the help
of Aubin’s lemma. In section 3, with supercritical initial data, it is shown
that any solution will blow-up in finite time by studying the time derivative of
second moment.

2. Existence of weak solution

We follow the same way on the construction of the regularized problem as
in [3, 18, 19], namely,







∂tρε = ∆[(ρε + ε)m − εm]− div((ρε + ε)∇cε), x ∈ R
n, t ≥ 0,

−∆cε = Jε ∗ ρε, x ∈ R
n, t ≥ 0,

ρ(x, 0) = ρ0ε(x), x ∈ R
n

(2.1)

for ε > 0, Jε(x) = 1
εn J(

x
ε ), J(x) = 1

α(n) (1 + |x|2)−(n+2)/2 satisfying
∫

Rn

Jε(x)dx = 1. A simple computation derives

cε =
1

n(n− 2)α(n)

∫

Rn

1

(|x− y|2 + ε2)
n−2
2

ρε(y)dy.

The initial data ρ0ε is the regularization of the function ρ0, it satisfies that
there exists a positive constant δ such that for all 0 < ε < δ,

ρ0ε > 0, ρ0ε ∈ Lr(Rn), r ≥ 1, ‖ρ0ε‖L1 = ‖ρ0‖L1 = M0,
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Moreover, as ε → 0,

if ρ0 ∈ Lp for some p > 1, then ‖ρ0ε − ρ0‖Lp → 0, as ε → 0,
∫

Rn

|x|2ρ0εdx →

∫

Rn

|x|2ρ0dx, Fε(ρ0ε) → F(ρ0),

where Fε(ρ0ε) is the initial regularized entropy, see (2.2).
The classical parabolic theory implies that the above regularized problem

has a global smooth non-negative solution ρε for t > 0 if the initial data is
non-negative. Notice that the solution of the regularized problem (2.1) still
conserves the mass.

We will mainly focus on the estimates of the regularized solutions in this

section. After getting L
2n

n+2 estimate with the help of the free energy, we
obtain the uniform Lp estimates by using standard method. Furthermore, the
uniform estimates for space and time derivatives will be derived carefully. With
all these uniform estimates, a standard compactness argument as in [6, 1] by
using Aubin’s lemma will give the global existence.

From now on, we will present the uniform estimates in five steps and will
skip the compactness arguments.

Step 1. Free energy of the regularized problem
The free energy on the regularized solution ρε is

(2.2) Fε(ρε) =
1

m− 1

∫

Rn

((ρε + ε)m − εm)dx −
1

2

∫

Rn

ρεcεdx.

Or, the free energy has an equivalent form in the following

Fε(ρε) =
1

m− 1

∫

Rn

((ρε + ε)m − εm)dx

−
1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρε(x, t)ρε(y, t)

(|x− y|2 + ε2)
n−2
2

dxdy.(2.3)

It is easy to check that Fε(ρε) is non-increasing in time. In fact, the system
(2.1) has the gradient flow structure

(2.4) ρεt = div

(

(ρε + ε)∇

(

m

m− 1
(ρε + ε)m−1 − cε

))

.

Now by taking m
m−1

(

(ρε + ε)m−1 − εm−1
)

− cε as a test function, we have the
following entropy-entropy production relation

d

dt
Fε(ρε(·, t)) +

∫

Rn

(ρε + ε)
∣

∣

∣
∇

(

m

m− 1
(ρε + ε)m−1 − cε

)

∣

∣

∣

2

dx = 0.

The monotone decreasing property of the free energy follows immediately by
the non-negativity of the entropy production.
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Next, we separate the free energy into two parts by using the Hardy-
Littlewood-Sobolev inequality (1.8), i.e.,

Fε(ρε) =
1

m− 1

∫

Rn

((ρε + ε)m − εm) dx −
C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2
−

1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρε(x, t)ρε(y, t)

(|x− y|2 + ε2)
n−2
2

dxdy

≥
1

m− 1

∫

Rn

ρmε dx −
C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2
−

1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρε(x, t)ρε(y, t)

|x− y|n−2
dxdy

=: F1(ρε) + F2(ρε).

Proposition 1.1 shows that the second part of the free energy is non-negative,
i.e. F2(ρε) ≥ 0.

Due to m >
2n

n+ 2
, interpolation shows that

‖ρε‖
L

2n
n+2

≤ ‖ρε‖
1−θ
L1 ‖ρε‖

θ
Lm , θ =

m(n− 2)

2n(m− 1)
.(2.5)

Thus the first part of the free energy is

F1(ρε) =
1

m− 1

∫

Rn

ρmε (x, t)dx −
C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2

≥
1

m− 1
‖ρε‖

(θ−1)m
θ

L1 ‖ρε‖
m
θ

L
2n

n+2
−

C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2
(2.6)

≥
1

m− 1
M

2n−m(n+2)
n−2

0 ‖ρε‖
2n(m−1)

n−2

L
2n

n+2
−

C(n)

2(n− 2)nα(n)
‖ρε‖

2

L
2n

n+2
.

According to the previous analysis, let

f(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 s−
C(n)

2(n− 2)nα(n)
s

n−2
n(m−1) .

We now have a lower bound of the first part of free energy, i.e.

f
(

‖ρε‖
2n(m−1)

n−2

L
2n

n+2

)

≤ F1(ρε).

Step 2. Uniform L
2n

n+2 norm estimate of the regularized solution.
The following lemma shows that for subcritical initial data, the quantity

‖ρε‖
L

2n
n+2

can be bounded.

Lemma 2.1. If the initial free energy Fε(ρ0ε) < F∗ := f(s∗), ‖ρ0ε‖ 2n
n+2

<

(s∗)
n−2

2n(m−1) , let ρε(x, t) be a solution of problem (2.1), then there exists a con-
stant µ1 < 1 such that

‖ρε(·, t)‖ 2n
n+2

< (µ1s
∗)

n−2
2n(m−1) , for all t > 0,
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where s∗ is the maximum point of f(s):

s∗ =
(2n2α(n)M

2n−m(n+2)
n−2

0

C(n)

)

n(m−1)
2n−2−mn

.(2.7)

Proof. Notice that 1 < m < 2− 2
n implies n−2

n(m−1) > 1, we know that f(s) is a

strictly concave function in 0 < s < ∞. Directly calculation shows that

f ′(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 −
C(n)

2(n− 2)nα(n)

n− 2

n(m− 1)
s

2n−2−mn
n(m−1) .

As a consequence, s∗ is a unique maximum point of f(s). Therefore the im-
portant property of f is that f(s) is monotone increasing for 0 < s < s∗, while
f(s) is monotone decreasing for s > s∗.

In the case that initial free energy Fε(ρ0ε) < f(s∗), we can make it even
smaller, i.e. there is a δ < 1 such that Fε(ρ0ε) < δf(s∗).

Combining all the facts we know, including the interpolation, the Hardy-
Littlewood-Sobolev inequality and the monotonicity of free energy, we have

f
(

‖ρε‖
2n(m−1)

n−2

L
2n

n+2

)

≤ F1(ρε) ≤ Fε(ρε) ≤ Fε(ρ0ε) < δf(s∗).(2.8)

If initially ‖ρ0ε‖
2n(m−1)

n−2

L
2n

n+2
< s∗, due to the fact that f(s) is increasing in 0 < s <

s∗, there exists a µ1 < 1 such that ‖ρε‖
2n(m−1)

n−2

L
2n

n+2
< µ1s

∗. �

Step 3. Uniform Lp (1 < p < n) estimates of the regularized solution.
Under the assumption of ρ0ε ∈ Lp(Rn) with 1 < p < n, we will give the

estimate on ‖ρε‖Lp , and as a byproduct, also the uniform estimates on space

derivatives ∇ρ
m+p−1

2
ε and ∇cε.

Lemma 2.2. Assume ρ0ε ∈ L1(Rn) ∩ Lp(Rn), ‖ρ0ε‖
L

2n
n+2

< (s∗)
n−2

2n(m−1) and

Fε(ρ0ε) < F∗ := f(s∗), ρε is a smooth solution of the regularized problem
(2.1), then

‖ρε‖L∞(0,T ;Lp(Rn)∩Lp+1(0,T ;Lp+1(Rn))) ≤ C, ‖∇ρ
m+p−1

2
ε ‖L2(0,T ;L2(Rn)) ≤ C,(2.9)

moreover, for 1 < p < n, it holds

‖∇cε‖L∞(0,T ;Ls(Rn)) ≤ C, s ∈
( n

n− 1
,

np

n− p

]

.(2.10)
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Proof. Multiplying the first equation of (2.1) by pρp−1
ε with p > 1, we have

d

dt

∫

Rn

ρpεdx

= −pm(p− 1)

∫

Rn

(ρε + ε)m−1ρp−2
ε |∇ρε|

2dx

+(p− 1)

∫

Rn

∇ρpε · ∇cεdx+ εp

∫

Rn

∇ρp−1
ε · ∇cεdx

≤ −pm(p− 1)

∫

Rn

ρp+m−3
ε |∇ρε|

2dx+ (p− 1)

∫

Rn

ρp+1
ε dx+ pε

∫

Rn

ρpεdx

= −
4pm(p− 1)

(m+ p− 1)2

∫

Rn

|∇ρ
m+p−1

2
ε |2dx + (p− 1)

∫

Rn

ρp+1
ε + pε

∫

Rn

ρpεdx.

Now we will focus on the estimate on

∫

Rn

ρp+1
ε .

∫

Rn

ρp+1
ε =

∥

∥

∥
ρ

m+p−1
2

ε

∥

∥

∥

2(p+1)
m+p−1

L
2(p+1)
m+p−1

≤ G
2(p+1)
m+p−1

∥

∥

∥
∇ρ

m+p−1
2

ε

∥

∥

∥

α 2(p+1)
m+p−1

L2
·
∥

∥

∥
ρ

m+p−1
2

ε

∥

∥

∥

(1−α) 2(p+1)
m+p−1

Lr
,

where G is the constant from Gagliardo-Nirenberg-Sobolev ineqality,

m+ p− 1

2
r =

2n

n+ 2
,

m+ p− 1

2(p+ 1)
=

α(n− 2)

2n
+

1− α

r
,

and

α =

m+p−1
2 (n+2

2n − 1
p+1 )

(n+2)(m+p−1)−2(n−2)
4n

.

In the next, we will use notation

ν := α
2(p+ 1)

m+ p− 1
=

2(n+ 2)(p+ 1)− 4n

(n+ 2)(m+ p− 1)− 2(n− 2)
< 2

in the case of m >
2n

n+ 2
. Thus by Young’s inequality, we get

∫

Rn

ρp+1
ε ≤ G

2(p+1)
m+p−1

∥

∥

∥
∇ρ

m+p−1
2

ε

∥

∥

∥

ν

L2
‖ρε‖

(1−α)(p+1)

L
2n

n+2

≤ G
2(p+1)
m+p−1

(

ǫ
∥

∥

∥
∇ρ

m+p−1
2

ε

∥

∥

∥

2

L2
+ C(ǫ)‖ρε‖

2(1−α)(p+1)
2−ν

L
2n

n+2

)

.(2.11)

Now we can choose ǫ such that

(p− 1)G
2(p+1)
m+p−1 ǫ =

2pm(p− 1)

(m+ p− 1)2
.
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By using the boundedness of ‖ρε‖
L

2n
n+2

from Lemma 2.1, we have

d

dt

∫

Rn

ρpεdx +
2pm(p− 1)

(m+ p− 1)2

∫

Rn

|∇ρ
m+p−1

2
ε |2dx

≤ pε

∫

Rn

ρpεdx + C(M0, p, n).(2.12)

Gronwall’s inequality implies that ρε ∈ L∞(0, T ;Lp(Rn)). Therefore we have
the uniform estimate by integrating (2.12) in t, for any fixed T > 0,

sup
0≤t≤T

∫

Rn

ρpε(x, t)dx +
2pm(p− 1)

(m+ p− 1)2

∫ T

0

∫

Rn

|∇ρ
m+p−1

2
ε |2dxdt ≤ C(M0, p, n, T ).

Moreover combining this estimate with (2.11), it is easy to see that ρε ∈
Lp+1(0, T ;Lp+1 (Rn)). The estimate for ∇cε in (2.10) can be directly obtained
from the weak Young inequality. �

Remark 2.1. The above lemma gives a general Lp estimate. In particu-
lar, we can take p = m and get the estimate ρε ∈ L∞(0, T ;Lm(Rn)) ∩
Lm+1(0, T ;Lm+1(Rn)) which will be used later.

Remark 2.2. The fact that m > 2n
n+2 is very important in the above proof. It

makes the use of Young’s inequality successful (see (2.11)), which is impossible
in the case m = 2n

n+2 , ν = 2.

Step 4. Uniform estimates for the space derivatives
The estimate on space derivative of ρε is important in order to use Aubin’s

lemma for compactness arguments. We will use the Lp estimate when p = m.

Lemma 2.3. Assume p = m and the assumptions of Lemma 2.1 hold, then

‖∇ρε‖
L2(0,T ;L

2m
3−m (Rn))

≤ C, in the case of m <
3

2
,(2.13)

‖∇ρε‖L2(0,T ;L2(Rn)) ≤ C, in the case of m ≥
3

2
.(2.14)

Proof. In the case of m < 3
2 , using (2.9), it holds for p = m that

‖ρε‖L∞(0,T ;Lm(Rn)) ≤ C, ‖∇ρ
m− 1

2
ε ‖L2(0,T ;L2(Rn)) ≤ C.(2.15)

We can use the expression

∇ρε =
2

2m− 1
ρ

3
2−m
ε ∇ρ

m− 1
2

ε ,

then the Hölder inequality and (2.15) imply (2.13).
In the case of m ≥ 3

2 , taking ρ2−m
ε as test function in (1.1), we have

1

3−m

d

dt

∫

Rn

ρ3−m
ε dx+m(2−m)

∫

Rn

|∇ρε|
2
dx

≤
2−m

3−m

∫

Rn

ρ4−m
ε dx+ ε

∫

Rn

ρ3−m
ε dx.
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Next we only need to estimate
∫

Rn ρ4−m
ε dx by ‖ρε‖Lm and

‖∇ρ
m− 1

2
ε ‖L2(0,T ;L2(Rn)). By the Gagliardo-Nirenberg-Sobolev inequality,

we have
∫

Rn

ρ4−m
ε dx = ‖ρm−1/2

ε ‖
4−m

m−1/2

L
4−m

m−1/2

≤ C‖∇ρm−1/2
ε ‖

θ 4−m
m−1/2

L2 ‖ρm−1/2
ε ‖

(1−θ) 4−m
m−1/2

L
m

m−1/2

= C‖∇ρm−1/2
ε ‖

θ 4−m
m−1/2

L2 ‖ρε‖
(1−θ)(4−m)
Lm ,(2.16)

where 0 < θ = 2(2−m)(m−1/2)

m(4−m)(m−1/2
m −n−2

2n )
< 1. Thus it remains to show if m ≥ 3

2 and

2n
n+2 < m < 2− 2

n , it holds that

θ
4−m

m− 1/2
=

2(2−m)

m− 1
2 − m(n−2)

2n

≤ 2.(2.17)

Actually, (2.17) is equivalent to m ≥ 5n
3n+2 , which can be obtained from the

following two facts.

• When n ≥ 6, since 2n
n+2 ≥ 5n

3n+2 , we have m > 5n
3n+2 ;

• When n < 6, since 3
2 > 5n

3n+2 , we have m > 5n
3n+2 .

Now by integrating (2.16) in time, we have
∫ T

0

∫

Rn

ρ4−m
ε dxdt ≤ C

(

‖ρε‖L∞(0,T ;Lm(Rn)), ‖∇ρm−1/2
ε ‖L2(0,T ;L2(Rn)), T

)

.

Therefore,

1

(3−m)

∫

Rn

ρ3−m
ε dx+m(2−m)

∫ T

0

∫

Rn

|∇ρε|
2
dxdt

≤
1

(3−m)
‖ρ0ε‖

3−m
L3−m + C ≤ C (‖ρ0ε‖Lm , ‖ρ0ε‖L1) + C,

where we have used the fact that 3−m ≤ m. So, (2.14) holds. �

Step 5. Uniform estimate for the time derivative.
This subsection will give another important fact in order to use Aubins

lemma, i.e. the estimate of the time derivative of ρε.

Lemma 2.4. Assume p = m and the assumptions of Lemma 2.1 hold, then

‖∂tρε‖L2(0,T ;W−1,s
loc (Rn)) ≤ C, s = min{

2m

m+ 1
,

nm(m+ 1)

nm+ (n−m)(m+ 1)
} > 1.

Proof. By using the weak formulation of the equation, we know the estimate for
time derivative ∂tρε can be obtained directly from the estimates on ∇(ρε+ε)m

and (ρε + ε) · ∇cε. We will prove the following facts,

‖∇(ρε + ε)m‖
L2(0,T ;L

2m
m+1 (Rn))

≤ C,

‖(ρε + ε) · ∇cε‖
Lm+1(0,T ;L

nm(m+1)
nm+(n−m)(m+1) (Rn))

≤ C.
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In fact,

|∇(ρε + ε)m| = m|(ρε + ε)m−1| · |∇ρε|

≤ m|(ρm−1
ε + εm−1)| · |∇ρε| ≤ |∇ρmε |+mεm−1|∇ρε|.(2.18)

By writing

|∇ρmε | =
∣

∣

2m

2m− 1
ρ1/2ε ∇ρm−1/2

ε

∣

∣,

the Hölder inequality and lemma 2.2, we have

∫

Rn

|∇ρmε |
2m

m+1 ≤ C
(

∫

Rn

ρmε

)
1

m+1
(

∫

Rn

|∇ρm−1/2
ε |2

)
m

m+1

.

Therefore,

∫ T

0

‖∇ρmε ‖2
L

2m
m+1

≤

∫ T

0

‖ρε‖Lm‖∇ρm−1/2
ε ‖2L2dt ≤ C,

i.e.,

‖∇ρmε ‖
L2(0,T ;L

2m
m+1 (Rn))

≤ C.(2.19)

By Lemma 2.3, since 2m
m+1 < min{2, 2m

3−m} and (2.19), we know that

∇(ρε + ε)m ∈ L2(0, T ;L
2m

m+1

loc (Rn)).

As a direct consequence of Lemma 2.2, we have

‖ρε · ∇cε‖
Lm+1(0,T ;L

nm(m+1)
nm+(n−m)(m+1) (Rn))

≤ C,(2.20)

where nm(m+1)
nm+(n−m)(m+1) > 1 due to 2n

n+2 < m < 2 − 2
n . By Lemma 2.2 with

(2.20) and noticing nm(m+1)
nm+(n−m)(m+1) ∈ ( n

n−1 ,
mn
n−m ], we get

‖(ρε + ε) · ∇cε‖
Lm+1(0,T ;L

nm(m+1)
nm+(n−m)(m+1) (Rn))

≤ C.

�

3. Blow up of the solution

In this section, we will discuss the blow-up of the solution when

‖ρ0‖
L

2n
n+2

> (s∗)
n−2

2n(m−1) and F(ρ0) < F∗ := f(s∗). Before we prove the result

of blow-up, we need to give a key lemma that shows in the cases of subcritical
initial data, the quantity ‖ρ‖

L
2n

n+2
can be bounded from below.
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3.1. Lower bound of ‖ρ‖
L

2n
n+2

.

Similar to the decomposition of free energy of the regularized problem, we can
separate the free energy into two parts by using the Hardy-Littlewood-Sobolev
inequality (1.8)

F(ρ) =
1

m− 1

∫

Rn

ρm(x, t)dx −
C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2
−

1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρ(x, t)ρ(y, t)

|x− y|n−2
dxdy

=: F1(ρ) + F2(ρ).

Proposition 1.1 says that that F2(ρ) ≥ 0.

Due to m >
2n

n+ 2
, interpolation tells us

‖ρ‖
L

2n
n+2

≤ ‖ρ‖1−θ
L1 ‖ρ‖θLm , θ =

m(n− 2)

2n(m− 1)
.

Thus the first part of the free energy is

F1(ρ) ≥
1

m− 1
M

2n−m(n+2)
n−2

0 ‖ρ‖
2n(m−1)

n−2

L
2n

n+2
−

C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2
.

According to the previous analysis, let

f(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 s−
C(n)

2(n− 2)nα(n)
s

n−2
n(m−1) .

We now have a lower bound of the first part of free energy, i.e. f
(

‖ρ‖
2n(m−1)

n−2

L
2n

n+2

)

≤

F1(ρ).

Lemma 3.1. If the initial free energy F(ρ0) < F∗ := f(s∗) and ‖ρ0‖
L

2n
n+2

>

(s∗)
n−2

2n(m−1) , let ρ(x, t) be a solution of problem (1.1), then there exists a con-
stant µ2 > 1 such that

‖ρ(·, t)‖ 2n
n+2

> (µ2s
∗)

n−2
2n(m−1) , for all t > 0,

where s∗ is the maximum point of f(s):

s∗ =
(2n2α(n)M

2n−m(n+2)
n−2

0

C(n)

)

n(m−1)
2n−2−mn

.

Proof. Notice that 1 < m < 2− 2
n implies n−2

n(m−1) > 1, we know that f(s) is a

strictly concave function in 0 < s < ∞. Directly calculation shows that

f ′(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 −
C(n)

2(n− 2)nα(n)

n− 2

n(m− 1)
s

2n−2−mn
n(m−1) .

As a consequence, s∗ is a unique maximum point of f(s). Therefore the im-
portant property of f is that f(s) is monotone increasing for 0 < s < s∗, while
f(s) is monotone decreasing for s > s∗.
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In the case that initial free energy F(ρ0) < f(s∗), we can make it even
smaller, i.e. there is a δ < 1 such that F(ρ0) < δf(s∗).

Combining all the facts we know, including the interpolation, the Hardy-
Littlewood-Sobolev inequality and the monotonicity of free energy, we have

f
(

‖ρ‖
2n(m−1)

n−2

L
2n

n+2

)

≤ F1(ρ) ≤ F(ρ) ≤ F(ρ0) < δf(s∗).

If initially ‖ρ0‖
2n(m−1)

n−2

L
2n

n+2
> s∗, due to the fact that f(s) is increasing in s > s∗,

there exists a µ2 > 1 such that ‖ρ‖
2n(m−1)

n−2

L
2n

n+2
> µ2s

∗. �

3.2. Time derivative of second moment.

In this subsection, we will focus on studying the time evolution of the second
moment. The following lemma is obtained from Lemma 3.1.

Lemma 3.2. If F(ρ0) < F∗ := f(s∗) and ‖ρ0‖ 2n
n+2

> (s∗)
n−2

2n(m−1) , ρ is a solution

of (1.1), then

dm2(t)

dt
< 0.(3.1)

Proof. By direct calculation, we have

dm2(t)

dt
=

(

2n−
2(n− 2)

m− 1

)

∫

Rn

ρmdx+ 2(n− 2)F(ρ).

The restriction on m < 2 − 2
n gives that 2n − 2(n−2)

m−1 < 0. Then by using the
interpolation inequality, the decreasing properties of free energy and Lemma
3.1 with µ2 > 1, we have

dm2(t)

dt
≤

(

2n−
2(n− 2)

m− 1

)

M
(θ−1)m

θ
0 ‖ρ‖

m
θ

L
2n

n+2
+ 2(n− 2)F(ρ0)

<
(

2n−
2(n− 2)

m− 1

)

M
(θ−1)m

θ
0 µ2s

∗ + 2(n− 2)f(s∗)

=
(

2n−
2(n− 2)

m− 1

)

M
(θ−1)m

θ
0 (µ2 − 1)s∗ +

(

2n−
2(n− 2)

m− 1

)

M
(θ−1)m

θ
0 s∗

+2(n− 2)
( 1

m− 1
M

(θ−1)m
θ

0 s∗ −
C(n)

2(n− 2)nα(n)
(s∗)

2θ
m

)

=
(

2n−
2(n− 2)

m− 1

)

M
(θ−1)m

θ
0 (µ2 − 1)s∗ + 2nM

(θ−1)m
θ

0 s∗ −
C(n)

nα(n)
(s∗)

2θ
m

=
(

2n−
2(n− 2)

m− 1

)

M
(θ−1)m

θ
0 (µ2 − 1)s∗ < 0.

where the last second equation follows from the definition of s∗. �
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3.3. The proof on the blow-up result in Theorem 1.1.

From Lemma 3.2, we know that there exists a finite time T such that

lim
t→T

m2(t) = 0.

The relation between the second moment and Lm norm of ρ can be ob-
tained by using Hölder’s inequality, ∀R > 0, we have

∫

Rn

ρ(x)dx ≤

∫

BR

ρ(x)dx +

∫

Bc
R

ρ(x)dx ≤ CRn(m−1)/m‖ρ‖Lm +
1

R2
m2(t).

Now by choosing R = ( m2(t)
C‖ρ‖Lm

)
m

(m−1)n+2m , we have

‖ρ‖L1 ≤ C‖ρ‖
2m

(m−1)n+2m

Lm m2(t)
n(m−1)

(m−1)n+2m .

Consequently, there exists T ∗ ≤ T such that limt→T∗ ‖ρ‖Lm = ∞.

Appendix

In Example 1, we gave an initial data of the system with small mass and
showed that the solution must blow up in finite time according to the main
result of this paper. Here in this appendix, we will give a detailed calculation
for the quantities appeared in Example 1 to make sure that the assumptions
in theorem 1.1 satisfied.

For given ε0 > 0 small, let the initial data be

ρ0(x) =

{

ε0
Kn

α(n) , |x| ≤ 1
K ,

0, |x| > 1
K ,

(3.2)

where α(n) is the volume of n dimensional unit ball, and K will be determined
later.

First of all, since ‖ρ0‖
L

2n
n+2

= ε0

(

Kn

α(n)

)
n−2
2n

, to prove (1.6), i.e. ‖ρ0‖
L

2n
n+2

>

(s∗)
n−2

2n(m−1) , it is necessary to show

ε
1+ m(n+2)−2n

2(2n−2−mn)

0 K
n−2
2 > (α(n))

n−2
2n

(2n2α(n)

C(n)

)

n−2
2(2n−2−mn)

.(3.3)

Notice that n > 2, there exists a constant K1 > 0 such that for all K > K1,
the formula (3.3) is true.
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The corresponding initial free energy is

F(ρ0) =
1

m− 1

∫

Rn

ρ
m
0 dx−

1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρ0(x)ρ0(y)

|x− y|n−2
dxdy

=
1

m− 1

∫

|x|≤ 1
K

ε
m
0

( Kn

α(n)

)m
dx−

1

2(n− 2)nα(n)

∫

|x|≤ 1
K

∫

|y|≤ 1
K

(

ε0
Kn

α(n)

)2

|x− y|n−2
dxdy

≤
εm0

m− 1
K

n(m−1)(α(n))1−m −
1

2(n− 2)nα(n)

∫

|x|≤ 1
K

∫

|y|≤ 1
K

(

ε0
Kn

α(n)

)2

(|x|+ |y|)n−2
dxdy

≤
εm0

m− 1
K

n(m−1)(α(n))1−m −
1

2(n− 2)nα(n)

∫

|x|≤ 1
K

∫

|y|≤ 1
K

(

ε0
Kn

α(n)

)2

( 2
K
)n−2

dxdy

=
εm0

m− 1
K

n(m−1)(α(n))1−m −
22−n

2(n− 2)nα(n)
ε
2
0K

n−2
.

To show that (1.7) is true, it is necessary to show that

ε
m+m(n+2)−2n

2n−2−mn

0 Kn(m−1)(α(n))1−m <
(m− 1)22−n

2(n− 2)nα(n)
ε
2+m(n+2)−2n

2n−2−mn

0 Kn−2

+
2− 2

n −m

1− 2
n

(2n2α(n)

C(n)

)

n(m−1)
2n−2−mn

.(3.4)

Notice that m < 2− 2
n implies n(m− 1) < n− 2. Thus there exists a constant

K2 > 0 such that when K > K2, (3.4) holds.
Hence taking K0 = max{K1,K2}, we know that when K > K0, the initial

data satisfies blow-up condition in Theorem 1.1.
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