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Abstract. This paper treats certain lattices in ternary quadratic
spaces, which are obtained from the data of a non-zero element and a
maximal lattice in a quaternary space. Each class in the genus of such
a lattice with respect to the special orthogonal group corresponds to
an isomorphism class in the genus of an order associated with the
lattice in a quaternion algebra. Using this result together with the
principle of Shimura, we show that the number of classes of the prim-
itive solutions of a quadratic Diophantine equation in four variables
coincides with the type number of the order under suitable conditions
on the given element. We illustrate this result by explicit examples.
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Introduction

Let (V, ϕ) be a nondegenerate quadratic space of dimension 4 over a number
field F , that is, V is a four-dimensional vector space over F and ϕ is a non-
degenerate symmetric F -bilinear form on V . For an element h of V such that
ϕ[h](= ϕ(h, h)) 6= 0, we put

W = (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}

and consider a quadratic space (W, ψ) of dimension 3 over F with the restriction
ψ of ϕ to W . In this paper the special orthogonal group SOψ of ψ is regarded
as the subgroup {γ ∈ SOϕ | hγ = h} of the orthogonal group SOϕ of ϕ. The
orthogonal group Oψ of ψ is also identified with Oϕ in a similar manner. For
a maximal lattice L in (V, ϕ) we put

L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b}, D(L) = {α ∈ OϕA | Lα = L},
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where q = ϕ[h], b = ϕ(h, L), and the subscript A means adelization. Since
L[q, b] is stable under Γ·(L) = Oϕ ∩D(L), the set L[q, b]/Γ·(L) is meaningful
in an obvious way.
In the sense of Shimura [9, Introduction I], L[q, b] is the set of primitive so-
lutions of the equation ϕ[x] = q. Our interest in this paper is basically the
set

L[q, b]/Γ·(L)

consisting of the classes of such solutions. By the principle of [9, Theorem
11.6], each class of solutions of Li[q, b] modulo Γ·(Li) for i ∈ J corresponds to

a class of Oψ relative to an open subgroup OψA ∩ D(L) in OψA. Here {Li}i∈J
is a set of representatives for the Oϕ-classes in the Oϕ-genus of L for which
Li[q, b] 6= ∅ (see also (4.1) below).
Now we consider the lattice L ∩ W in (W, ψ) and the even Clifford algebra
A+(W ) of ψ, which is a quaternion algebra over F since the dimension of W
is 3. Let A(N) be the order generated by g and N in the Clifford algebra of ψ,
and put A+(N) = A+(W ) ∩ A(N) for an integral lattice N in (W, ψ). Here g
is the ring of all integers of F and the terms integral and maximal are given in
§1.1. To L∩W we can associate an order O in A+(W ), containing A+(L∩W ),
whose discriminant is given by (3.22) below. The purpose of this paper is to
define such an order O, to give a bijection of the SOψ-classes in the SOψ-genus
of L ∩W onto the isomorphism classes in the genus of O, and to prove

∑

i∈J

# {Li[q, b]/Γ·(Li)} = t(O) (0.1)

through the above principle under suitable conditions on h ∈ L[q, b], where the
genus of O is defined by the set {α−1Oα | α ∈ A+(W )×A} and t(O) is the type
number of O.
To obtain the order O, we proceed in a similar manner to [10, §4.6] under mild
conditions on h ∈ L[q, b] (Proposition 3.3 (3)). As for the bijection, given a
lattice N in the genus of L ∩W , put N = (L ∩W )τ(α) with α ∈ A+(W )×A.

Here τ is a surjective homomorphism of G+(W )A onto SOψA and G+(W ) is
the even Clifford group of ψ, which is given by A+(W )×. Then our bijection
is defined by N 7−→ α−1Oα (Theorem 3.4 (2)). This result mainly relies on a
description of L∩W in A+(W ) by means of A+(L∩W ) (cf. [4, Theorem 2.1]).

Now in Proposition 4.3, we shall prove that OψεD(L∩W ) = Oψε(OψA ∩D(L))

for every ε ∈ OψA under several assumptions on h ∈ L[q, b]. Because W is odd-
dimensional, the class number of the genus of L∩W with respect to Oψ equals
that with respect to SOψ. Hence by virtue of the principle mentioned above,
the number

∑
i∈J # {Li[q, b]/Γ·(Li)} is equal to the number of SOψ-classes in

the SOψ-genus of L ∩W . Our main result (0.1) follows from this fact and the
above bijection.
It should be noted that the genus of O is determined by the discriminant if O
has squarefree discriminant, for instance, ifO is maximal. When the quaternion
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algebra is totally definite, there are formulas for computing the type number of
such an order; see Peters [5, Satz 14] or Pizer [6, Theorem A and Theorem B],
etc.. In Section 5 we will take up totally-positive definite forms ϕ and employ
their numerical tables [5, Tabelle 2] and [6, Table 1] for type numbers. It
seems that there are few numerical examples for the type number of the genus
of an order whose discriminant is not squarefree and for the class number of
the genus of a lattice which is neither maximal nor unimodular with respect to
a definite form. Here we assume that h satisfies the conditions in Proposition
4.3. Then (0.1) contains the case of non-maximal (and often non-unimodular)
L ∩W , more clearly, the case that O has at most one higher-power prime pe

(e > 1) in its discriminant, where p is a prime ideal of F (see also (4.10) below).

To see the existence of such an element h, as an application of Proposition 4.3,
let Br,∞ be a definite quaternion algebra over Q ramified exactly at a prime
number r and take a prime number d prime to r so that d ≡ 1 (mod 4). In
Theorem 5.1 we shall show:
For every odd prime number p prime to dr and 0 ≤ n ∈ Z, except when n
is odd and p remains prime in Q(

√
d), there exists a maximal lattice L in

(V, ϕ) over Q of invariants {4, Q(
√
d), Br,∞, 4} (see (1.5) for the definitions)

such that L[dpn, 2−1dZ] 6= ∅. And moreover, formula (0.1) is valid for h ∈
L[dpn, 2−1dZ] with an order O in Br,∞ of discriminant rpnZ.
For example, let us take (V, ϕ) of invariants {4, Q(

√
29), B2,∞, 4}. By [9, The-

orem 12.14 (vi)] the number of Oϕ-classes in the Oϕ-genus of maximal lattices
in (V, ϕ) equals the number #{Λ[29, Z]/Γ·(Λ)}, where Λ is a maximal lattice
in a five-dimensional quadratic space overQ with respect to the quadratic form
defined by the sum of five squares. In [9, §12.15], #{Λ[29, Z]/Γ·(Λ)} was de-
termined, and it is 3. Hence the genus of maximal lattices in (V, ϕ) consists
of three Oϕ-classes. For details, see the last part of Section 4.1 in the text.
We can also see the representatives {L1, L2, L3} of such classes by means of a
bijection in Lemma 4.1 applied to the set Λ[29, Z]. Then we have the following
numerical table:

p N1(29p) N2(29p) N3(29p) t(2, p) c(29p)

1 2 0 0 1 1

5 0 2 0 1 1

7 0 0 2 1 1

13 0 2 2 2 2

23 0 0 6 1 1

53 0 10 6 3 3

59 24 8 6 3 3

Here we put Ni(29p) = #Li[29p, 2
−1 · 29Z], t(2, p) = t(O) with an order O
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in B2,∞ of discriminant 2pZ, and c(29p) =
∑3

i=1 #{Li[29p, 2−1 ·29Z]/Γ·(Li)};
we quoted the type number t(2, p) in [6, Table 1]. Therefore we have

#
{
Li[29 · 59, 2−1 · 29Z]/Γ·(Li)

}
= 1 for i = 1, 2, 3,

for instance. It is noted that #Γ(L1) = 48, #Γ(L2) = 8, and #Γ(L3) = 6,
where Γ(Li) = SOϕ∩D(Li). In Section 5.3 we shall give a few numerical tables
for r = 2 and d = 5, 13, 17, 29 including the above cases. As a special case of
Theorem 5.1 we have Corollary 5.2, which states that for any d as in Theorem
5.1 only one Oϕ-class in the genus satisfies L[d, 2−1dZ] 6= ∅ with a lattice L
in the class and then (0.1) precisely gives #{L[d, 2−1dZ]/Γ·(L)} = 1, provided
the type number of Br,∞ is 1.
The existence of a maximal lattice in Theorem 5.1 can be shown in a similar
way to [3, Proposition 4.3] by means of two explicit formulas concerning
#L[dpn, 2−1dZ] and #L[dpn, 2−1Z]. Those formulas will be given in (5.2) and
(5.3) without detailed proofs because of the length of the paper. The author
hopes to prove it in a subsequent paper.
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encouragement and for giving a remark on the discriminant of O in (0.1). I
am also thankful to Dr. Takashi Yoshinaga for supporting the computation
of #Li[dp
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determination of Λ[d, Z]/Γ(Λ) in Section 5.3 in November 2010. I would
like to express my deep gratitude to the anonymous referee, who carefully
read the manuscript and guided me to the connection of the classes of max-
imal lattices in a four-dimensional quadratic space with the sum of five squares.

Notation. We denote by Z, Q, and R the ring of rational integers, the field of
rational numbers, and the field of real numbers, respectively.
If R is an associative ring with identity element and if M is an R-module,
then we write R× for the group of all invertible elements of R and Mm

n the
R-module of m× n-matrices with entries in M . We set R×2 = {a2 | a ∈ R×}.
For a finite set X , we denote by #X the number of elements in X . We set
[a] = Max{n ∈ Z | n ≤ a}.
Let V be a vector space over a field F of characteristic 0, and GL(V ) the group
of all F -linear automorphisms of V . We let GL(V ) act on V on the right.
Let F be an algebraic number field and g the ring of all algebraic integers in F .
For a fractional ideal of F we often call it a g-ideal. Let a, h, and r be the sets
of archimedean primes, nonarchimedean primes, and real archimedean primes
of F , respectively. We denote by Fv the completion of F at v ∈ a ∪ h, and
by FA and F×

A the adele ring and the idele group of F , respectively. We often
identify v with the prime ideal of F corresponding to v ∈ h, and write xv for
the image of x under the embedding of F into R over Q at v ∈ r. For v ∈ h

we denote by gv, pv, and πv the maximal order, the prime ideal, and a prime
element of Fv, respectively. If K is a quadratic extension of F , we denote by
DK/F the relative discriminant of K over F , and put Kv = K⊗F Fv for v ∈ h.
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By a g-lattice, or simply a lattice L in a vector space V over a number field
or nonarchimedean local field F , we mean a finitely generated g-submodule in
V containing a basis of V . By an order in a quaternion algebra B over F we
mean a subring of B containing g that is a g-lattice in B. For a symmetric
F -bilinear form ϕ on V and two subspaces X and Y of V , we denote by X⊕Y
the direct sum of X and Y if ϕ(x, y) = 0 for every x ∈ X and y ∈ Y ; then
we also denote by ϕ|X the restriction of ϕ to X . When X is an object defined
over a number field F , we often denote by Xv the localization at a prime v if
it is meaningful. For given local objects Xv in the text with v ∈ a ∪ h, we put
Xa =

∏
v∈aXv and Xh =

∏
v∈hXv.

1 Preliminaries for quadratic forms

1.1 Quadratic spaces and Clifford algebras

Let F be an algebraic number field or its completion at a prime. Throughout
the paper we often call the former a global field and the latter a local field when
it is nonarchimedean. Let (V, ϕ) be a quadratic space over F , that is, V is a
vector space over F and ϕ is a symmetric F -bilinear form on V . In this paper
we consider only a nondegenerate form ϕ. We put ϕ[x] = ϕ(x, x) for x ∈ V .
We define the orthogonal group and the special orthogonal group of ϕ by

Oϕ(V ) = Oϕ = {γ ∈ GL(V ) | ϕ(xγ, yγ) = ϕ(x, y)},
SOϕ(V ) = SOϕ = {γ ∈ Oϕ(V ) | det(γ) = 1}.

We denote by A(ϕ) = A(V ) the Clifford algebra of ϕ and by A+(ϕ) = A+(V )
the even Clifford algebra of ϕ. For x ∈ A(V ) we mean x∗ the image of x under
the canonical involution of A(V ). We define the even Clifford group G+(V ) of
(V, ϕ) by

G+(V ) = {α ∈ A+(V )× | α−1V α = V }. (1.1)

We denote by τ a homomorphism defined as follows:

τ : G+(V ) −→ SOϕ(V ) via xτ(α) = α−1xα for x ∈ V . (1.2)

This is surjective and the kernel is F×; see [9, Theorem 3.6], for example.
For a g-lattice L in V we put

L̃ = L˜= {x ∈ V | 2ϕ(x, L) ⊂ g}. (1.3)

We call L integral with respect to ϕ if ϕ[L] ⊂ g. We note that L ⊂ L̃ if L is
integral. By a g-maximal, or simply a maximal, lattice L with respect to ϕ, we
understand a g-lattice L in V which is maximal among g-lattices on which the
values ϕ[x] are contained in g. For an integral lattice L in V with respect to
ϕ, we denote by A(L) the subring of A(V ) generated by g and L. We also put

A+(L) = A+(V ) ∩A(L). (1.4)
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Then A(L) (resp. A+(L)) is an order in A(V ) (resp. A+(V )) (cf. [9, §8.2]).

For a global field F and v ∈ a ∪ h, we put Vv = V ⊗F Fv and denote by
ϕv the Fv-bilinear extension of ϕ to Vv; we then put (V, ϕ)v = (Vv, ϕv). For
v ∈ h and a gv-maximal lattice Lv in Vv, (V, ϕ)v has a Witt decomposition
as follows (cf. [9, Lemma 6.5]): Vv = Zv ⊕ ∑rv

i=1(Fvei + Fvfi) and Lv =
Nv +

∑rv
i=1(gvei + gvfi) with some elements ei and fi (i = 1, · · · , rv) such

that ϕv(ei, ej) = ϕv(fi, fj) = 0 and 2ϕv(ei, fj) = 1 or 0 according as i = j
or i 6= j. Here Zv = {z ∈ Vv | ϕv(z, ei) = ϕv(z, fi) = 0 for every i}, on which
ϕv is anisotropic; Nv = {x ∈ Zv | ϕv[x] ∈ gv}, which is a unique gv-maximal
lattice in Zv with respect to ϕv. The dimension tv of Zv is uniquely determined
by ϕv and 0 ≤ tv ≤ 4 for v ∈ h (cf. [9, Theorem 7.6 (ii)]). We call Zv a core
subspace of (V, ϕ)v and tv the core dimension of (V, ϕ) at v. For convenience,
we also call a subspace Uv of Vv anisotropic if ϕv is so on Uv.

For g-lattices L and M in V over a global or local field F , we denote by [L/M ]
a g-ideal of F generated over g by det(α) of all F -linear automorphisms α of V
such that Lα ⊂M . If F is a global field, then [L/M ] =

∏
v∈h[Lv/Mv] with the

localization [L/M ]v = [Lv/Mv] at each v. Following [11, §6.1], in both global

and local F , we call [L̃/L] the discriminant ideal of (V, ϕ) if L is a g-maximal
lattice in V with respect to ϕ. This is independent of the choice of L. If F is
a local field, the discriminant ideal of ϕ coincides with that of a core subspace
of ϕ.

By the invariants of (V, ϕ) over a number field F , we understand a set of data

{n, F (
√
δ), Q(ϕ), {sv(ϕ)}v∈r}, (1.5)

where n is the dimension of V , F (
√
δ) is the discriminant field of ϕ with

δ = (−1)n(n−1)/2 det(ϕ), Q(ϕ) is the characteristic quaternion algebra of ϕ, and
sv(ϕ) is the index of ϕ at v ∈ r. For these definitions, the reader is referred to
[11, §1.1, 3.1, and 4.1] (cf. also [4, (1.6)]). By virtue of [11, Theorem 4.2], the
isomorphism class of (V, ϕ) is determined by {n, F (

√
δ), Q(ϕ), {sv(ϕ)}v∈r}

and vice versa.

The characteristic algebra Q(ϕv) is also defined for ϕv at v ∈ a ∪ h (cf. [11,
§3.1]). By [11, Lemma 3.3] the isomorphism class of (V, ϕ)v is determined by
{n, Fv(

√
δ), Q(ϕv)} if v ∈ h. As for v ∈ a, it is determined by {n, sv(ϕ)} if

v ∈ r, and by the dimension n if v 6∈ r. If v ∈ r, then Q(ϕv) is given by [11,
(4.2a) and (4.2b)], for example. If v 6∈ r, then Q(ϕv) =M2(C), where C is the
field of complex numbers.

Let SOϕ(V )A (resp. Oϕ(V )A) be the adelization of SOϕ(V ) (resp. Oϕ(V )) in
the usual sense (cf. [9, §9.6]). For α ∈ SOϕ(V )A and a g-lattice L in V , we
denote by Lα the g-lattice in V whose localization at each v ∈ h is given by
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Lvαv. We put

C(L) = {α ∈ SOϕ(V )A | Lα = L}, C(Lv) = SOϕv (Vv) ∩ C(L), (v ∈ h)

Γ(L) = SOϕ(V ) ∩ C(L).

Then the map α 7−→ Lα−1 gives a bijection of SOϕ\SOϕA/C(L) onto {Lα | α ∈
SOϕA}/SOϕ. We call {Lα | α ∈ SOϕA} the SOϕ-genus of L, {Lγ | γ ∈ SOϕ}
the SOϕ-class of L, and #{SOϕ\SOϕA/C(L)} the class number of SOϕ relative
to C(L) or the class number of the genus of L with respect to SOϕ. It is known
that all g-maximal lattices in V with respect to ϕ form a single SOϕ-genus.
Let A+(V )×A (resp. G+(V )A) be the adelization of A+(V )× (resp. G+(V )). We
can extend τ of (1.2) to a homomorphism of G+(V )A onto SOϕA. We denote
it by the same symbol τ (cf. [9, §9.10]).
For a g-lattice L in V , q ∈ F , and a g-ideal b of F , we put

L[q] = {x ∈ L | ϕ[x] = q}, L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b}.

Here ϕ(x, L) = {ϕ(x, y) | y ∈ L}, which becomes a g-ideal of F . Suppose
F is a nonarchimedean local field. Let V have dimension n > 2 and L be
a g-maximal lattice in V with respect to ϕ. Then [9, Theorem 10.5] due to
Shimura shows that

L[q, b] = hC(L), (1.6)

provided h ∈ L[q, b] (cf. also [12, Theorem 1.3]).

For a quaternion algebra B over F , we put 2β(x, y) = xyι + yxι for x, y ∈
B with the main involution ι of B. For an order o in B it is known that
[õ/o] = d(o)2 with an integral ideal d(o) of F . Here õ is defined by (1.3) with
β. The ideal d(o) is called the discriminant of o. If F is a number field and o
is a maximal order, then d(o) is the product of all prime ideals ramified in B,
which is called the discriminant of B and denoted by DB. We set

T (o) = {α ∈ B×
A | αo = oα}, T (ov) = B×

v ∩ T (o) (v ∈ a ∪ h),

Γ∗(o) = B× ∩ T (o),

where B×
A is the adelization of B×, Bv = B ⊗F Fv, and ov = o ⊗g gv. The

number #{T (o)\B×
A/B

×} is called the type number of o. Let U = B×
a

∏
v∈h o×v

in B×
A. Then the number of U \B×

A/B
× is called the class number of o.

Here we introduce two symbols below, which will be used throughout the paper.
Let F be a nonarchimedean local field and p the prime ideal of F . For b ∈ F×

we set

(F (
√
b)/p) =





1 if F (
√
b) = F ,

−1 if F (
√
b) is an unramified quadratic extension of F ,

0 if F (
√
b) is a ramified quadratic extension of F .
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For a quaternion algebra B over F we set

χ(B) =

{
1 if B ∼=M2(F ),

−1 if B is a division algebra.

1.2 Ternary quadratic spaces

We recall some basic facts on 3-dimensional quadratic spaces (W, ψ) over a
number field or its completion F . The characteristic algebra Q(ψ) is given by
A+(W ) by definition. The core dimension sv of (W, ψ) at v ∈ h is determined
by

sv =

{
1 if Q(ψv) =M2(Fv),

3 if Q(ψv) is a division algebra.
(1.7)

This can be seen from [11, §3.2] and the proof of [11, Lemma 3.3].
There are isomorphisms of (W, ψ) onto (A+(W )◦, dν◦) with d ∈ F×. Here
A+(W )◦ = {x ∈ A+(W ) | x∗ = −x}, ν[x] = xx∗ for x ∈ A+(W ), and ν◦ is
the restriction of ν to A+(W )◦. Let us explain such isomorphisms, following
[9, §7.3].
Take an orthogonal basis {k1, k2, k3} of W with respect to ψ, namely, an F -
basis {ki} of W such that ψ(ki, kj) = 0 for i 6= j. Under the identification
of W with the corresponding subspace in the Clifford algebra A(W ), put ξ =
k1k2k3 ∈ A(W )×; then F + Fξ is the center of A(W ). We see that A+(W ) =
F+Fk1k2+Fk1k3+Fk2k3 andWξ = Fk1k2+Fk1k3+Fk2k3. By [9, Theorem
2.8 (ii)], A+(W ) is a quaternion algebra over F ; the main involution coincides
with the canonical involution ∗ restricted to A+(W ). Then the mapping x 7−→
xξ gives an F -linear isomorphism of W onto A+(W )◦ such that (xξ)(xξ)∗ =
ξξ∗ψ[x] for x ∈W . Putting ν[y] = yy∗ for y ∈ A+(W ), we have an isomorphism

(W, ψ) ∼= (A+(W )◦, (ξξ∗)−1ν◦) via x 7−→ xξ. (1.8)

We note that ξξ∗ ∈ det(ψ)F×2, since ξξ∗ = ψ[k1]ψ[k2]ψ[k3] ∈ F×.
Let G+(W ) be the even Clifford group of (W, ψ) as in (1.1) and τ the homomor-
phism defined in (1.2). By the definition of A+(W )◦, α−1A+(W )◦α = A+(W )◦

for α ∈ A+(W )×. Hence we have G+(W ) = A+(W )×. Moreover, under the
isomorphism (1.8) we can understand that

xτ(α) = α−1xξαξ−1

for x ∈W and α ∈ A+(W )×.
Now, the pair (A+(W ), ν) can be viewed as a quaternary quadratic space
over F . We note that ν(x, y) = 2−1TrA+(W )/F (xy

∗) for x, y ∈ A+(W ).
For an integral lattice N in W with respect to ψ, we consider the order
A+(N) in A+(W ) defined by (1.4). Its discriminant d(A+(N)) is given by
[A+(N )̃ /A+(N)] = d(A+(N))2, where A+(N )̃ is defined by (1.3) with ν. By
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[4, Lemma 1.1], d(A+(N)) = 2−1[Ñ/N ]. It is noted that if the order A+(N) is
maximal in A+(W ) for an integral lattice N in (W, ψ), then N is g-maximal
with respect to ψ. The converse is not true; namely, in general, A+(N) is not
maximal even if N is a maximal lattice.

2 Orthogonal complements in quaternary spaces

2.1 Invariants and discriminant ideals

Let (V, ϕ) be a 4-dimensional quadratic space over a number field F . The
characteristic algebra Q(ϕ) is determined by A(ϕ) ∼= M2(Q(ϕ)) by definition.
Set B = Q(ϕ) and K = F (

√
δ) with δ = det(ϕ). The core dimension tv of

(V, ϕ) at v ∈ h is determined by

tv =





0 if Fv(
√
δ) = Fv and Q(ϕv) =M2(Fv),

4 if Fv(
√
δ) = Fv and Q(ϕv) is a division algebra,

2 if Fv(
√
δ) 6= Fv.

(2.1)

This can be seen from [11, §3.2] and the proof of [11, Lemma 3.3].
For h ∈ V such that ϕ[h] = q 6= 0 we put

W = (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}. (2.2)

Then (W, ψ) is a nondegenerate ternary quadratic space over F with the re-
striction ψ of ϕ to W and (V, ϕ) = (W, ψ) ⊕ (Fh, ϕ|Fh). The invariants of
(W, ψ) are given by {3, F (√−δq), Q(ψ), {sv(ψ)}v∈r}, which are independent
of the choice of h so that ϕ[h] = q. The characteristic algebra Q(ψ) = A+(W )
is determined by the local algebras Q(ψv) for all primes v of F . Then by [2,
Theorem 1.1 (1)], Q(ψv) =M2(Fv) holds exactly in the following cases:

δ ∈ F×2
v and v ∤ DB,

δ 6∈ F×2
v , v ∤ DB, and q ∈ κv[K

×
v ],

δ 6∈ F×2
v , v | DB, and q 6∈ κv[K

×
v ],

v ∈ r, qv > 0, and sv(ϕ) = 0, 2,

v ∈ r, qv < 0, and sv(ϕ) = 0, −2,

v ∈ a such that v 6∈ r,

where κv is the norm form of Kv. It should be noted that

M2(Q(ϕ)) ∼= Q(ψ)⊗F {K, q}, (2.3)

where F is a number field or its completion and {K, q} is the quaternion algebra
over F defined in [4, (1.12)] if K 6= F ; we set {K, q} = M2(F ) if K = F (see
also [9, §1.10]). This (2.3) can be seen from [11, Theorem 7.4 (i)]. The index
at v ∈ r is given by sv(ψ) = sv(ϕ)−1 if qv > 0 and sv(ψ) = sv(ϕ)+1 if qv < 0.
The core dimension of (W, ψ) at v ∈ h is determined by (1.7).
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The Clifford algebra A(W ) can be viewed as a subalgebra of A(V ) with
the restriction ψ. Then A+(W ) = {x ∈ A+(V ) | xh = hx} and
G+(W ) = {α ∈ G+(V ) | αh = hα} by [9, Lemma 3.16]. The canonical
involution of A(W ) coincides with ∗ of A(V ) restricted to A(W ). In particular,
such an involution ∗ gives the main involution of the quaternion algebra
A+(W ).

Let L and M be g-maximal lattices in V and W with respect to ϕ and ψ,
respectively. The discriminant ideals of ϕ and ψ are given as follows:

[L̃/L] = DK/F e
2, (2.4)

[M̃/M ] = 2a−1D2
Q(ψ) ∩ 2a, (2.5)

where e is the product of all the prime ideals which are ramified in B and which
do not ramify in K; we understand DK/F = g if K = F ; we put δqg = ab2

with a squarefree integral ideal a and a g-ideal b of F . These (2.4) and (2.5)
can be obtained by applying [11, Theorem 6.2] to (V, ϕ) and the complement
(W, ψ).
The intersection L ∩W is an integral g-lattice in W with respect to ψ. It can
be seen that [(L ∩W )̃ /L ∩W ] = [M/L ∩W ]2[M̃/M ] and [M/L ∩W ] is an
integral ideal, which is independent of the choice of M ; see [2, Lemma 2.2 (6)].
Moreover there is a g-ideal b(q) of F such that

[M/L ∩W ] = b(q)(2ϕ(h, L))−1 (2.6)

by [2, Theorem 4.2]. We note that 2ϕ(h, L) must contain b(q) and that
2ϕ(h, L) ⊂ g if h ∈ L. The ideal b(q) is determined by

2q[L̃/L] = b(q)2[M̃/M ] (2.7)

(cf. [2, (4.1)]). Combining these, we obtain [(L ∩ W )̃ /L ∩ W ] =

2q[L̃/L](2ϕ(h, L))−2. Now to L∩W we associate the order A+(L∩W ) defined
by (1.4). Its discriminant is given by

d(A+(L ∩W )) = 2−1[(L ∩W )̃ /L ∩W ] = q[L̃/L](2ϕ(h, L))−2. (2.8)

It is noted that the discriminant of A+(W ) divides q[L̃/L](2ϕ(h, L))−2. We
also note that if d(A+(L ∩W )) is squarefree, then 2ϕ(h, L) must be b(q) in
(2.6), that is, L ∩W is maximal in W .

For our later use, let us state a weak Witt decomposition of the local space
(V, ϕ)v whose core dimension tv is 0 or 2. We fix a nonarchimedean prime v
of F and drop the subscript v. Let L be a g-maximal lattice in V with respect
to ϕ. We first note that ϕ is isotropic as t is 0 or 2. Let K be the discriminant
algebra of ϕ defined by K = F × F if t = 0 and by K = F (

√
det(ϕ)) if t = 2;

also let κ be the norm form defined by 2κ(x, y) = κ[x + y] − κ[x] − κ[y] and
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κ[(a, b)] = ab for x, y, (a, b) ∈ K if t = 0, and by 2κ(x, y) = xyρ + xρy for
x, y ∈ K with a nontrivial automorphism ρ of K over F if t = 2. Because K
is embeddable in A+(V ), we identify K with the image of it. Then there is a
weak Witt decomposition as follows (cf. [4, (1.19) and (1.20)]):

V = Kg ⊕ (Fe+ Ff), L = rg + (ge + gf),

(Kg, ϕ) ∼= (K, cκ) via xg 7−→ x (2.9)

with some elements e and f of V such that ϕ[e] = ϕ[f ] = 0 and 2ϕ(e, f) = 1,
and g ∈ V such that g2 = c ∈ F×. Here r = g× g if t = 0 and r is the maximal
order of K if t = 2. We may assume that c = 1 if t = 0, c ∈ g× if (K/p) = −1
and χ(Q(ϕ)) = +1, c ∈ πg× if (K/p) = −1 and χ(Q(ϕ)) = −1, and c ∈ g× if
(K/p) = 0. We also note that A+(Kg) = K and xg = gx∗ for x ∈ K, where
(a, b)∗ = (b, a) for (a, b) ∈ K if t = 0 and the involution ∗ gives a nontrivial
automorphism of K over F if t = 2.

2.2 The genus of L ∩W
Let (V, ϕ) be a quaternary quadratic space over a number field F and (W, ψ)
as in §2.1 with a fixed element h of V such that ϕ[h] 6= 0.

Lemma 2.1. Let L be a g-maximal lattice in V with respect to ϕ. Then A+(L∩
W ) = A+(L) ∩ A+(W ) for every h ∈ V such that ϕ[h] 6= 0. The discriminant
of A+(L ∩W ) is given by (2.8).

This follows from the similar result [4, Lemma 3.2] on local orders A+(Lv∩Wv)
by localization. We next restate [4, Corollary 2.2] which is a conclusion from
the main result of [4]:

Theorem 2.2. Let (V, ϕ) be a quaternary quadratic space over a number field F
and L a g-maximal lattice in V with respect to ϕ. For h ∈ V such that ϕ[h] 6= 0
put W = (Fh)⊥ and let ψ be the restriction of ϕ to W . Put o = A+(L ∩W ).
Then C(L ∩W ) = τ(T (o)) and Γ(L ∩W ) = τ(Γ∗(o)) hold. Consequently, the
map N 7−→ A+(N) gives a bijection of the SOψ(W )-classes in the SOψ(W )-
genus of L ∩W onto the conjugacy classes in the genus of o which is the set
{α−1oα | α ∈ A+(W )×A}.

3 An order associated with L ∩W

3.1 The local case

We first recall some general notation and results, following [9, §8 Part I]. For
a quadratic space (V, ϕ) over a local field F , take a g-maximal lattice L in V
with respect to ϕ. We define a subgroup JV of G+(V ) by

JV = {α ∈ G+(V ) | τ(α) ∈ C(L), αα∗ ∈ g×}. (3.1)
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Put EV = G1(V ) ∩ JV , where G1(V ) = {α ∈ G+(V ) | αα∗ = 1} is the spin
group of ϕ. If the dimension of V is even more than 2, then by virtue of [9,
Theorem 8.9] specialized to this case,

[C(L) : τ(JV )] =

{
1 if t = 0, or t = 2, (K/p) = −1, and Q(ϕ) =M2(F ),

2 otherwise,

(3.2)

where t is the core dimension of (V, ϕ) and K = F (
√
δ) is the discriminant

field of ϕ. If the dimension of V is odd more than 1, then by [9, Theorem 8.9]
and [12, Theorem 1.8 (ii)],

[C(L) : τ(JV )] =

{
1 if t = 1 and δ ∈ g×F×2,

2 otherwise.
(3.3)

Let (V, ϕ) be a quaternary quadratic space over F . For h ∈ V such that
ϕ[h] = q 6= 0, put W = (Fh)⊥ and let ψ be the restriction of ϕ to W . Let
K = F (

√
δ) be the discriminant field of ϕ. Also let L and M be g-maximal

lattices in V and W with respect to ϕ and ψ, respectively. We define JV in
G+(V ) by (3.1) with L and JW in G+(W ) with M . Let S+

V (resp. S+
W ) be the

order in A+(V ) (resp. A+(W )) generated by EV and A+(L) (resp. by EW and
A+(M)) except the case where t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1 (resp.
where t = 0 and q ∈ πg×F×2, or t = 2, δq ∈ πg×F×2, and Q(ϕ) =M2(F )); in
which cases we put

S+
V = A+(V ) ∩ SV if t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1, (3.4)

S+
W = A+(W ) ∩ SW if

{
t = 0 and q ∈ πg×F×2,

t = 2, δq ∈ πg×F×2, and Q(ψ) =M2(F ),
(3.5)

where SV (resp. SW ) is a unique maximal order in A(V ) (resp. A(W )) contain-
ing EV and A(L) (resp. EW and A(M)) given by [9, Theorem 8.6 (i)]. By [9,
Theorem 8.6 (ii)] these S+

V and S+
W are maximal orders except in cases (3.4)

and (3.5). It should be noted that we can prove this fact in a similar way to
the proof of [9, Theorem 8.6 (ii)] even for the case which does not satisfy the
assumption [9, (8.1)]. For the same reason we also see that SW = A(M) in
case (3.5). In all cases,

JV = G+(V ) ∩ (S+
V )

×, (3.6)

JW = G+(W ) ∩ (S+
W )× = (S+

W )×. (3.7)

In fact, [9, Proposition 8.8 (ii)] together with G+(W ) = A+(W )× implies (3.7)
except in case (3.5). As for (3.5), there is an order in A(W ) containing JW and
M by [9, Lemma 8.4 (ii)]. In view of the uniqueness of SW and EW ⊂ JW , SW
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contains JW and M , and hence [9, Proposition 8.8 (i)] is applicable to the case
(3.5). This proves (3.7). Similarly we have (3.6).
Now, A+(W ) = {x ∈ A+(V ) | xh = hx} and G+(W ) = {α ∈ G+(V ) | αh =
hα} as mentioned in §2.1. It can be seen that

G+(W ) ∩ JV = (A+(W ) ∩ S+
V )

×. (3.8)

Thus G+(W ) ∩ JV is the unit group of an order A+(W ) ∩ S+
V in A+(W ).

Lemma 3.1. In the above setting the following assertions hold:

(1) [S+
W /A

+(M)] is given by





p if t = 4 and q ∈ g×F×2,

or t = 2, δq ∈ g×F×2, and χ(Q(ψ)) = −1,

g otherwise.

(3.9)

Here S+
W may or may not be maximal when t = 0 and q ∈ πg×F×2 or

when t = 2, δq ∈ πg×F×2, and Q(ψ) =M2(F ).

(2) Assume that q ∈ g×F×2 if t = 2, K/F is unramified, and Q(ϕ) is a
division algebra. Then [A+(W ) ∩ S+

V /A
+(L ∩W )] is given by





p if t = 4 and q ∈ g×F×2,

or t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1,

g otherwise.

(3.10)

Proof. Let s be the core dimension of (W, ψ). In view of (1.7), (2.3), and (2.1),
we observe that

s = 1 and δq ∈ πg×F×2 ⇐⇒
{
t = 0 and q ∈ πg×F×2,

t = 2, δq ∈ πg×F×2, and Q(ψ) =M2(F ),

(3.11)

s = 3 and δq ∈ g×F×2 ⇐⇒
{
t = 4 and q ∈ g×F×2,

t = 2, δq ∈ g×F×2, and χ(Q(ψ)) = −1.

(3.12)

Then we can verify that

S+
V = A+(L) if

{
t = 0,

t = 2 except the case (K/p) = −1 and χ(Q(ϕ)) = −1,

(3.13)

S+
W = A+(M) ⇐⇒

{
s = 1,

s = 3 and δq ∈ πg×F×2.
(3.14)
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In fact, if s = 1 and δq ∈ πg×F×2, then the ‘if’-part of (3.14) follows from
(3.11), (3.5), and SW = A(M). If s = 3 and δq ∈ πg×F×2, then S+

W = A+(M)
because the discriminant of A+(M) is p. If s = 3 and δq ∈ g×F×2, then since
S+
W is a maximal order in the division algebra A+(W ), it has discriminant p.

Note that the discriminant of A+(M) is p2. Hence S+
W 6= A+(M). Further,

observing A+(M) ⊂ S+
W ⊂ (S+

W )˜⊂ A+(M)˜and applying [2, Lemma 2.2 (3)]
with the norm form ν of A+(W ), we have [S+

W /A
+(M)] = p. The remaining

parts follow from [9, Theorem 8.6 (vi)].
From (3.14) and (3.12) we see that

S+
W 6= A+(M) ⇐⇒

{
t = 4 and q ∈ g×F×2,

t = 2, δq ∈ g×F×2, and χ(Q(ψ)) = −1.

In this case [S+
W /A

+(M)] = p, which proves (1).
To prove (2), it is sufficient to observe the two cases that t = 4 or that t = 2,
(K/p) = −1, and χ(Q(ϕ)) = −1 by (3.13) and Lemma 2.1.
If t = 4 and q ∈ πg×F×2, then A+(L ∩W ) ⊂ A+(W ) ∩ S+

V ⊂ S+
W = A+(M).

Thus A+(W ) ∩ S+
V = A+(L ∩W ) because L ∩W is maximal.

Suppose that t = 4 and q ∈ g×F×2. Then A+(L ∩ W ) has discriminant p2

and by Lemma 2.1, A+(L ∩W ) ⊂ A+(W ) ∩ S+
V ⊂ S+

W in the division algebra
A+(W ). We employ the setting and notation in the case where q0 ∈ g× and
(K1/p) = 0 in [4, §4.4]. In [4, (3.31)] observing (g2g3)(g2g3)

∗ ∈ π2g×, we set

O = g+ gg1g2 + gg1g3 + gπ−1g2g3. (3.15)

This is an order in A+(W ) which contains but does not coincide with A+(L ∩
W ). Hence O is a unique maximal order S+

W in A+(W ). Now in the present
setting, (V, ϕ) = (B, β) and L is a unique maximal order o in B = Q(ϕ) with
the norm form β. To see the order S+

V in A+(V ), we here recall an F -linear
mapping p defined in [9, §7.4 (B)]:

p : V −→M2(B) via p(x) =


 0 x

xι 0


 ,

where ι is the main involution of B. Then A+(V ) and S+
V are given by

A+(V ) =






x 0

0 y


 | x, y ∈ B



 , S+

V =






x 0

0 y


 | x, y ∈ o



 .

Under the identification of V with p(V ) and of W with p(W ), A+(L∩W ) and
S+
W are given by [4, (3.31)] and (3.15), respectively. Then we see that

π−1g2g3 =
1

π


 0 g2

gι2 0




 0 g3

gι3 0


 =


π

−1g2g
ι
3 0

0 π−1gι2g3


 ,

β[π−1g2g
ι
3] = π−2 · πac · π2−2(κ−k)(1− c) ∈ g×.
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Thus both π−1g2g
ι
3 and π−1gι2g3 belong to o, so that π−1g2g3 ∈ S+

V . Therefore
S+
V contains S+

W , which implies that A+(W ) ∩ S+
V is the maximal order S+

W .
For the other cases S+

W can be observed in a similar manner; we have then

S+
W =





g+ g1Bω + g1B(vω) + gπ−1ω(vω) if (K1/p) = −1 and p ∤ 2,

g+ g1Bω + g1B(uω) + gπ−1ω(uω) if (K1/p) = −1 and p | 2,
g+ g

√
sω + g

√
s(vω) + gπ−1ω(vω) if (K1/p) = 1.

Here the notation is the same as in each case of [4, §3.4]. ConsequentlyA+(W )∩
S+
V = S+

W in each case. This settles the case where t = 4 and q ∈ g×F×2.
Suppose that t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1. In this case S+

V is defined
by (3.4) with the maximal order SV in A(V ). Let q ∈ π2ℓg× with ℓ ∈ Z. Then
b(q) = pℓ as was seen in the case of q 6∈ ϕ[Kg] in [4, §3.2] with g2 ∈ πg× in
(2.9). Since A+(W ) is a division algebra, S+

W is a unique maximal order in
A+(W ) of discriminant p. We have by (2.8),

A+(L ∩W ) ⊂ A+(W ) ∩ SV ⊂ S+
W ,

p2ℓ+2(2ϕ(h, L))−2 ⊂ d(A+(W ) ∩ SV ) ⊂ p. (3.16)

Now put 2ϕ(h, L) = pm, which satisfies m ≤ ℓ. We observe that qπ−me +
πmf ∈ L[q, 2−1pm] = hC(L) by (1.6) with the same notation as in the proof
of [4, Lemma 3.1]. Then identifying W with that in [4, (3.1)] and employing
the isomorphism Ψ of A(V ) in the proof of [4, Lemma 3.1], we can find the
structure of A+(W ) ∩ SV as follows:

Ψ(A+(W ) ∩ SV ) = r+ π−mrη, (3.17)

where r = g[ξ] is the maximal order of K and η is given by [4, (3.3)]. From
this together with [4, (3.4)] we have [A+(W ) ∩ SV /A+(L ∩W )] = [r/f] = p,
where f = g + g2gξ. To see (3.17), we recall by [9, Theorem 8.6 (iii)] that
Ψ(SV ) = M2(Q), where Q = r + rg is a maximal order in the division algebra
Q(ϕ) = A(Kg) = K +Kg. Then (3.17) can be seen from this and [4, (3.2)].
This completes the proof.

Lemma 3.2. Let the notation be the same as in Lemma 3.1 with h and L. Then
the following assertions hold:

(1) Define an order O in A+(W ) by

O =





S+
W if t = 4,

A+(W ) ∩ SV if t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1,

A+(L ∩W ) otherwise.

(3.18)

Then G+(W ) ∩ JV = O×.
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(2) Assume that q = ϕ[h] ∈ g×F×2 and 2ϕ(h, L) = b(q) if t = 2, K/F is
unramified, and Q(ϕ) is a division algebra. Let O be the order defined by
(3.18). Then O is a unique order in A+(W ), containing A+(L ∩W ), of
discriminant





p if t = 4,

or t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1,

q[L̃/L](2ϕ(h, L))−2 otherwise.

(3.19)

In particular, O is a unique maximal order in the division algebra A+(W )
when t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1. Moreover, if L ∩W ⊂M ,
then O ⊂ S+

W .

Proof. To prove (1), let O be the order given by (3.18). From Lemma 3.1 it
can be seen that O = A+(W )∩S+

V . Thus we have G
+(W )∩JV = O× by (3.8),

which proves (1).
To prove (2), by Lemma 3.1 (2) we see that A+(W ) ∩ S+

V 6= A+(L∩W ) if and
only if t = 4 and q ∈ g×F×2 or if t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1. If
t = 4 and q ∈ g×F×2, then A+(W ) ∩ S+

V = S+
W as seen in the proof of Lemma

3.1 (2). If t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1, then, by our assumption,
q ∈ π2ℓg× and 2ϕ(h, L) = b(q) = pℓ with ℓ ∈ Z. Thus applying (3.16) to
m = ℓ, we have p2 ⊂ d(A+(W )∩SV ) ⊂ p. Because A+(W )∩SV 6= A+(L∩W ),
A+(W ) ∩ SV must be maximal in A+(W ). Consequently, if O 6= A+(L ∩W ),
it is a maximal order which is uniquely determined by discriminant p. As for
the case of O = A+(L ∩W ), the discriminant is given by (2.8). Summing up
these, we have the uniqueness of O. To prove the last assertion, suppose that
L ∩W ⊂ M . Then A+(L ∩W ) ⊂ A+(M) ⊂ S+

W , which shows O ⊂ S+
W when

O = A+(L∩W ). If O 6= A+(L∩W ), then O is maximal in A+(W ). Since S+
W

is also maximal, we have O = S+
W . Hence O ⊂ S+

W holds if L ∩W ⊂M . This
proves (2).

3.2 The global case

Let (V, ϕ) and (W, ψ) be the quadratic spaces over a number field F in the
setting of §2.2 with an element h of V such that ϕ[h] = q ∈ F×. Let L and M
be g-maximal lattices in V and W with respect to ϕ and ψ, respectively. Put

JV = G+(V )a
∏

v∈h

JVv
, JW = G+(W )a

∏

v∈h

JWv
, (3.20)

where JVv
and JWv

are given in §3.1. We have an order S+
W in A+(W ) deter-

mined by S+
Wv

for all v ∈ h, where S+
Wv

is the order in A+(Wv) given in §3.1;
notice that S+

Wv

= A+(Mv) for almost all v.
Let us here insert a remark on the order in A+(W ) given in [12, Lemma 5.3
(ii)]. By applying that lemma to M , we have an order O0 containing A+(M).
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Then [(O0)v/A
+(Mv)] is the same ideal as in (3.9) for each v ∈ h. This can be

seen in the proof of [12, Lemma 5.3 (ii)]. Hence the order O0 coincides with
S+
W in the present situation.

Proposition 3.3. Let the notation be the same as above with h ∈ V and
L. Also let K = F (

√
δ) be the discriminant field of ϕ. Then the following

assertions hold:

(1) Let O be the order in A+(W ) whose localization at v ∈ h is the local order
defined by (3.18). Then

G+(W )A ∩ JV = A+(W )×a O
×
h . (3.21)

(2) T (A+(M)) = T (S+
W ) and JW = A+(W )×a (S

+
W )×h . Moreover JW ⊂

T (A+(M)) and G+(W )A ∩ JV ⊂ T (A+(L ∩W )).

(3) Assume that q = ϕ[h] ∈ g×v F
×2
v and 2ϕ(h, L)v = b(q)v for every v ∈ h

such that tv = 2, Kv/Fv is unramified, and Q(ϕ)v is a division algebra.
Let O be the order given in (1). Then O is a unique order in A+(W ),
containing A+(L ∩W ), of discriminant

q[L̃/L](2ϕ(h, L))−2f−1. (3.22)

Here f is the product of all the prime ideals p of F such that tp = 4 and
q ∈ g×p F

×2
p , or that tp = 2, Kp/Fp is unramified, and Q(ϕ)p is a division

algebra.

(4) Under the assumptions of (3) suppose L ∩W ⊂ M . Then O ⊂ S+
W and

G+(W )A ∩ JV ⊂ JW .

Proof. To prove (1), we see that

G+(W )A ∩ JV =

= G+(W )A ∩ (G+(V )a
∏

v∈h

(JV )v) = G+(W )a
∏

v∈h

(G+(W )v ∩ (JV )v).

Since G+(W )v ∩ (JV )v = O×
v by Lemma 3.2 (1), we have (3.21).

From (3.14), (S+
W )v is generated by G1(W )v and A+(M)v if δ ∈ g×F×2

v and
χ(Q(ψ)v) = −1, and (S+

W )v = A+(M)v otherwise v ∈ h. Since

α−1G1(W )vα = G1(W )v for every α ∈ A+(W )×v ,

we have T (A+(M)) ⊂ T (S+
W ). Conversely, for α ∈ A+(W )×A

α−1S+
Wα = S+

W =⇒Mτ(α) =M =⇒ α−1A+(M)α = A+(M).

This is because C(M) = τ(T (S+
W )) by [12, Lemma 5.4]. Thus T (A+(M)) =

T (S+
W ). Let x be an element of JW . Since τ(x) ∈ τ(JW ) ⊂ C(M), together
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with C(M) = τ(T (A+(M))), there is an element y of T (A+(M)) such that
τ(x) = τ(y). Hence x = ay with some a ∈ F×

A . As F×
A ⊂ T (A+(M)), we

have JW ⊂ T (A+(M)). Similarly let x ∈ G+(W )A ∩ JV . Since τ(x) ∈ SOψA ∩
τ(JV ) ⊂ C(L∩W ), together with C(L∩W ) = τ(T (A+(L∩W ))) by Theorem
2.2, there is an element y of T (A+(L ∩W )) such that τ(x) = τ(y). From this,
noticing F×

A ⊂ T (A+(L∩W )), we have G+(W )A ∩JV ⊂ T (A+(L∩W )). This
proves (2).
To prove (3), we take the order O of (1). Since Lemma 3.2 (2) is applicable
to Ov for each v ∈ h under the assumption of (3), Ov contains A+(L ∩W )v
and has the discriminant given by (3.19). Also when Ov 6= A+(L ∩ W )v,
[Ov/A

+(L ∩W )v] = pv by Lemma 3.1 (2). Thus by applying [2, Lemma 2.2
(3)] to O and A+(L ∩W ) with the norm form ν of A+(W ), we have

[Õ/O] = [A+(L ∩W ) /̃A+(L ∩W )][O/A+(L ∩W )]−2

= (q[L̃/L](2ϕ(h, L))−2)2
∏

p|f

p−2,

where f is the ideal in the statement of (3). This gives (3.22). Now, let O′

be an order in A+(W ), containing A+(L∩W ), whose discriminant is given by
(3.22). Then the localization O′

v at v ∈ h contains A+(L ∩W )v and has the
discriminant of (3.19). By Lemma 3.2 (2), O′

v = Ov for every v. Hence we
have O′ = O, which shows the uniqueness of O.
Keeping the assumptions of (3), let L ∩W ⊂ M . Then applying Lemma 3.2
(2) with localization, we have O ⊂ S+

W . Thus G+(W )A ∩ JV ⊂ JW by (3.8)
and (3.7). This proves (4).

Theorem 3.4. Let the notation and assumption be the same as in Proposition
3.3 (3) and O the order in A+(W ) given in that proposition. Then the following
assertions hold:

(1) C(L ∩W ) = τ(T (O)) and Γ(L ∩W ) = τ(Γ∗(O)).

(2) The map (L ∩ W )τ(α) 7−→ α−1Oα gives a bijection of the SOψ(W )-
classes in the SOψ(W )-genus of L∩W onto the conjugacy classes in the
genus of O which is the set {α−1Oα | α ∈ A+(W )×A}.

(3) The type number of O equals the type number of A+(L ∩W ) and conse-
quently is equal to the class number of the genus of L∩W with respect to
SOψ(W ).

Proof. In view of Lemma 3.1, Ov 6= A+(L ∩ W )v if and only if tv = 4 and
q ∈ g×v F

×2
v or if tv = 2, (K/v) = −1, and χ(Q(ϕ)v) = −1 for v ∈ h. Since

Lemma 3.2 (2) is applicable in our assumption, Ov is a unique maximal order in
the division algebra A+(W )v in both cases. Furthermore, (L∩W )v is a unique
maximal lattice in the anisotropic space (W, ψ)v becuase 2ϕ(h, L)v = b(q)v.
Thus it can be found that

α−1Oα = O ⇐⇒ α−1A+(L ∩W )α = A+(L ∩W )
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for α ∈ A+(W )×A. This combined with Theorem 2.2 proves (1).
To prove (2), let N be an arbitrary g-lattice in the genus of L ∩W . Since N
is integral we have the order A+(N) in A+(W ). Taking α ∈ A+(W )×A so that
N = (L∩W )τ(α), we can put O(N) = α−1Oα in A+(W ). In fact, if N = (L∩
W )τ(α′) with some α′ ∈ A+(W )×A, then (L ∩W )τ(α(α′)−1) = L ∩W , whence
α(α′)−1 belongs to T (A+(L ∩W )) = T (O) by (1). This shows (α′)−1Oα′ =
α−1Oα, namely, O(N) is independent of the choice of α. Moreover this is a

unique order of discriminant q[L̃/L](2ϕ(h, L))−2f−1 containing A+(N), where
f is the ideal in (3.22). Indeed, since O contains A+(L ∩ W ) and has the
discriminant given by (3.22), the order O(N) contains A+(N) and has the
same discriminant. The uniqueness of O(N) can be reduced to that of O.
Our assertion (2) can be verified by using this fact and (1). Assertion (3) is a
consequence from (2). This completes the proof.

4 Quadratic Diophantine equations in four variables

4.1 Quadratic Diophantine equations

Let (V, ϕ) be a quadratic space of dimension n over a number field F and L a
g-lattice in V . We recall that

L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b},

and this set is stable under Γ(L).
For h ∈ V such that ϕ[h] = q 6= 0 we set (W, ψ) as in (2.2). Assume that L is
g-maximal with respect to ϕ and n > 2. Then

∑

i∈I

# {Li[q, b]/Γ(Li)} = #
{
SOψ \ SOψA/(SOψA ∩C(L))

}
, (4.1)

where b = ϕ(h, L), {Li}i∈I is a set of representatives for the SOϕ-classes in the
SOϕ-genus of L for which Li[q, b] 6= ∅, and SOψ is regarded as the subgroup
{γ ∈ SOϕ | hγ = h} of SOϕ. This is a consequence from the main theorem
of quadratic Diophantine equations due to Shimura [9, Theorem 11.6] (cf. also
[12, Theorem 2.2 and (2.7)]). For a g-lattice N in V we put

D(N) = {α ∈ Oϕ(V )A | Nα = N}, Γ·(N) = Oϕ(V ) ∩D(N)

as denoted in the Introduction. Then formula (4.1) is valid for
(Oϕ, Oψ, D(L), Γ·(Li), J) in place of (SOϕ, SOψ , C(L), Γ(Li), I) by [9,
Theorem 11.6 (iii) and (v)], where {Li}i∈J is a set of representatives for the
Oϕ-classes in the Oϕ-genus of L for which Li[q, b] 6= ∅ and Oψ is regarded
as the subgroup {γ ∈ Oϕ | hγ = h} of Oϕ. We note that the Oϕ-genus of L
coincides with the SOϕ-genus of L and that the class number of Oϕ relative
to D(L) equals the class number of SOϕ relative to C(L) when n is odd; see
[9, Lemma 9.23 (i)], for example.
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Now we pay attention to the following; if the number of the right-hand side of
(4.1) coincides with #{SOψ \SOψA/C(L∩W )}, then the left-hand side of (4.1)
is given by the class number of the genus of L∩W . Concerning this, there is a
result [9, Proposition 11.13] for odd-dimensional spaces and also its analogue
[2, Proposition 4.4] for even-dimensional spaces whose discriminant fields are
the base fields. In Proposition 4.3 below we shall prove another analogue of [9,
Proposition 11.13] to quaternary case.
As for the representatives of classes in the genus of L ∩W , by virtue of the
principle in [9, Theorem 11.6 (i)], we have the following:

Lemma 4.1. Let the notation be as above. Fix an element h of L[q, b] (q 6= 0)
and set (W, ψ) as in (2.2). Then the map

kΓ(Li) 7−→ (Li ∩ (Fk)⊥)γ−1SOψ

defines a well-defined surjection of the union of the sets Li[q, b]/Γ(Li) for i ∈ I
onto the SOψ-classes in the SOψ-genus of L ∩ W with γ ∈ SOϕ such that
k = hγ for k ∈ Li[q, b] and i ∈ I. In particular, if SOψε(SOψA ∩ C(L)) =

SOψεC(L ∩ W ) for every ε ∈ SOψA, then the map is bijective. More-
over the assertions are true for (Oψ , J, Γ·(Li), D(L), D(L ∩W )) in place of
(SOψ , I, Γ(Li), C(L), C(L ∩W )).

Proof. For k ∈ Li[q, b] with i ∈ I there is γ ∈ SOϕ such that k = hγ as
ϕ[k] = ϕ[h] by [9, Lemma 1.5 (ii)]. We set L = Liαi with αi ∈ SOϕA. We may
assume that (αi)v = 1 for v ∈ a. Since h, k(αi)v ∈ Lv[q, bv] for v ∈ h, by
(1.6), h = k(αi)vαv with some αv ∈ C(Lv) for each v. Putting αv = γ−1

v

for v ∈ a, we have α ∈ C(L) whose component is αv for every prime v.
Then by [9, Theorem 11.6 (i)] the map k 7−→ γαiα induces a well-defined

bijection of
⋃
i∈I Li[q, b]/Γ(Li) onto SOψ \ SOψA/(SOψA ∩ C(L)). Obviously

γαiα 7−→ (L ∩W )(γαiα)
−1 gives a surjection of SOψ \ SOψA/(SO

ψ
A ∩ C(L))

onto the SOψ-classes in the genus of L ∩ W . On the other hand, we can
consider a g-lattice Li ∩ (Fk)⊥ in the complement (Fk)⊥, which is isomorphic
to (Li∩(Fk)⊥)γ−1 inW under γ−1. Then by localization (L∩W )v(γαiα)

−1
v =

{Lv(αi)−1
v ∩ (Fvh)

⊥(αiα)
−1
v }γ−1 = (Li ∩ (Fk)⊥)vγ

−1 for every v ∈ h. This
determines (L ∩W )(γαiα)

−1 = (Li ∩ (Fk)⊥)γ−1. We have thus the desired
surjection. Clearly this map is bijective under the assumption in the statement.
The assertions for Oϕ can be handled in a similar way.

Here we apply Lemma 4.1 to the quadratic form defined by the sum of five
squares; the result will be used in Section 5.3.
Let X = Q1

5 and define Φ by Φ[x] = x · tx for x ∈ X . The pair (X, Φ) defines a
quadratic space overQ whose invariants are {5, Q, B2,∞, 5}. These invariants
can be determined by [11, (Q.5)] because of (X, Φ) ∼= (B2,∞, β)⊕ (Qe, Φ|Qe)
with some e ∈ X so that Φ[e] = 1, where β is the norm form of B2,∞. Let Λ
be a Z-maximal lattice in (X, Φ). It is known that #{OΦ \ OΦ

A/D(Λ)} = 1;
see [9, §12.12], for example. By [9, Lemma 12.13 (i)], Λ[d, Z] 6= ∅ for every
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squarefree positive integer d. Fixing k0 ∈ Λ[d, Z], we put V = (Qk0)
⊥ and

L = Λ ∩ V . Then by [9, Theorem 12.14 (ii)], L is a Z-maximal lattice in
V with respect to the restriction ϕ of Φ to V . By virtue of (4.1) for OΦ,
#{Λ[d, Z]/Γ·(Λ)} = #{Oϕ\OϕA/(O

ϕ
A∩D(Λ))} holds. Suppose that d is an odd

prime number. Then [9, Proposition 11.13 (iii)] is applicable to k0 ∈ Λ[d, Z].
We have thus

Oϕε(OϕA ∩D(Λ)) = OϕεD(L) (4.2)

for every ε ∈ OϕA. Therefore #{Λ[d, Z]/Γ·(Λ)} equals the number of Oϕ-
classes in the Oϕ-genus of Z-maximal lattices in (V, ϕ). This result can be
found in [9, Theorem 12.14 (vi)]; the class number of SOϕ relative to C(L)
equals #{Λ[d, Z]/Γ(Λ)} by the same theorem. Moreover (V, ϕ) has invariants
{4, Q(

√
d), B2,∞, 4}, which can be seen by applying [2, Theorem 1.1 (2)] to

(X, Φ) and d.

In view of (4.2), by Lemma 4.1 we have a bijection

kΓ·(Λ) 7−→ (Λ ∩ (Qk)⊥)γ−1Oϕ (4.3)

of Λ[d, Z]/Γ·(Λ) onto the Oϕ-classes in the genus of L with some γ ∈ OΦ so
that k = k0γ for every odd prime number d. A method of determining the
set Λ[d, Z]/Γ·(Λ) is explained in [9, §12.15]. In that explanation the case of
d = 29 is treated and the result #{Λ[29, Z]/Γ·(Λ)} = 3 is obtained with explicit
representatives for Λ[29, Z]/Γ·(Λ). Hence the class number of Oϕ relative to
D(L) is equal to 3, as mentioned in the Introduction. In Section 5.3 we shall
list the representatives for Λ[d, Z]/Γ·(Λ) and the corresponding lattices under
the map (4.3) for d = 5, 13, 17, and 29.

4.2 Results for quaternary spaces

To apply our results in the previous section to quadratic Diophantine equations,
let us assume n = 4 in the setting of §4.1 and take an element h of L[q, b].
Under suitable conditions on q and b, we have an orderO defined in Proposition
3.3 (3). The order satisfies inequalities

t(O) ≤ #{SOψ \ SOψA/(SO
ψ
A ∩ C(L))} ≤ c(O). (4.4)

Here t(O) (resp. c(O)) is the type number (resp. the class number) of O. To
show (4.4), we observe that

SOψA ∩ τ(JV ) ⊂ SOψA ∩ C(L) ⊂ C(L ∩W ).

Since the kernel of τ is F×
A , the class number of O is more than #{SOψ \

SOψA/(SO
ψ
A ∩ τ(JV ))} by (3.21). Further by Theorem 3.4 the type number of

O equals #{SOψ \ SOψA/C(L ∩W )}. This proves (4.4).
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Corollary 4.2. Let the notation and assumption be as in Proposition 3.3 (3)
and O the order in A+(W ) defined in that proposition with an element h of
L[q, b]. Also let I (resp. J) be a set of representatives α for SOϕ \ SOϕA/C(L)
(resp. Oϕ\OϕA/D(L)) for which Lα−1[q, b] 6= ∅. Then the following inequalities
hold:

t(O) ≤
∑

α∈J

#
{
Lα−1[q, b]/Γ·(Lα−1)

}
≤

≤
∑

α∈I

#
{
Lα−1[q, b]/Γ(Lα−1)

}
≤ c(O).

Moreover, assume that 2ϕ(h, L)v contains p
[ν/2]
v with qgv = pνv for every v ∈ h

such that tv = 2 and Kv/Fv is ramified. Then the formula in [10, (1.9)] is
applicable to h and it can be given as follows:

∑

y

#
{
Lτ(y)−1[q, b]/τ(G+(V ) ∩ yJV y−1)

}
= c(O). (4.5)

Here y runs over a set of all representatives for G+(V )\G+(V )A/JV such that
G+(W )A ∩G+(V )yJV 6= ∅.

Proof. To prove the first assertion, we recall that #{SOψ \SOψA/C(L∩W )} =

#{Oψ \ OψA/D(L ∩ W )}, because W is odd-dimensional. Since OψA ∩ D(L)
is contained in D(L ∩ W ), by formula (4.1) for Oϕ, we have the first in-
equality. Here we may assume that {Lα−1}α∈J ⊂ {Lα−1}α∈I . Clearly
#
{
Lα−1[q, b]/Γ·(Lα−1)

}
≤ #

{
Lα−1[q, b]/Γ(Lα−1)

}
for every α ∈ J . Then

the desired inequalities follow from these and (4.4) combined with (4.1).

To prove (4.5), put q = q0π
2ℓ
v and 2ϕ(h, L)v = pmv with q0 ∈ g×v ∪ πvg×v and

ℓ, m ∈ Z for v ∈ h. In order to apply [10, (1.9)], we have to verify that
hC(L) = hτ(JV ) in VA = V ⊗F FA. In view of (3.2) it is sufficient to observe
the local cases where (i) tv = 4, (ii) tv = 2 and (K/v) = 0, (iii) tv = 2,
(K/v) = −1, and χ(Q(ϕ)v) = −1. Our argument is basically the same as in
[10, §4.3], and so we give only an outline of the proof to avoid a repetition of
the same argument. Put Cv = C(Lv) and Jv = JVv

.

(i) Through an isomomorphism of Q(ϕ)v onto A+(W )v we have hCv = hτ(Jv)
in the same way as in §4.3 (i) of [10]. We note that Cv = SOϕv and C(Lv∩Wv) =
SOψv .

(ii) Assume that 2ϕ(h, L)v ⊃ pℓv. In a Witt decomposition of ϕ in (2.9) with
g2 ∈ g×v , take the same element ωv ∈ K×

v = G+(Kvg) as in §4.3 (ii) of [10].
We take kv = qπ−m

v e + πmv f ; then kvτ(ωv) = kv. In a similar manner to [10,
§4.3 (ii)] we have τ(ωv) ∈ Cv and ωv 6∈ Jv, from which it follows that kvCv =
kvτ(Jv). Since, by our assumption, kv ∈ Lv[q, 2

−1pmv ], we have kv ∈ hCv by
(1.6). Thus the criterion [10, (1.10)] is applicable to kv; we have hCv = hτ(Jv).

(iii) In a Witt decomposition of ϕ in (2.9) with g2 ∈ πvg
×
v , we take ωv =
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g(qπ−m
v e−πmv f) ∈ A+(Vv)

× and kv = qπ−m
v e+πmv f . Then it can be seen that

ν(ωv) = ωvω
∗
v = −qg2 ∈ πvqg

×
v , kvτ(ωv) = kv,

Lvτ(ωv) = rvg + gvq
−1π2m

v f + gvqπ
−2m
v e.

Because m = ℓ by the assumption on (iii), we have ν(ωv) ∈ π2ℓ+1
v g×v and

Lvτ(ωv) = Lv. Hence kvCv = kvτ(Jv) by the same way as in §4.3 (iii) of [10].
Since kv ∈ Lv[q, 2

−1pℓv] = hCv, by [10, (1.10)], we have hCv = hτ(Jv).
Accordingly hC(L) = hτ(JV ) holds. Therefore [10, (1.9)] is applicable and the
formula is given by

∑

y

#
{
Lτ(y)−1[q, b]/τ(G+(V ) ∩ yJV y−1)

}

= #
{
G+(W ) \G+(W )A/(G

+(W )A ∩ JV )
}
, (4.6)

where y runs over all representatives for G+(V ) \ G+(V )A/JV for which
G+(W )A∩G+(V )yJV 6= ∅. Since G+(W )A∩JV = A+(W )×a O

×
h by Proposition

3.3 (3), (4.6) equals the class number of O. Thus we obtain (4.5).

Let v be a prime of F in case (i), (ii), or (iii) of the proof of Corollary 4.2. As
can be seen in the proof, there is an element ωv of G

+(Vv) such that hτ(ωv) = h,
Lvτ(ωv) = Lv, and ωv 6∈ JVv

. This together with (3.2) shows that

[SOψv ∩ C(Lv) : SOψv ∩ τ(JVv
)] = [C(Lv) : τ(JVv

)] (4.7)

for every v ∈ h under the two assumptions that 2ϕ(h, L)v ⊃ p
[ν/2]
v if (K/v) = 0

and that ν ∈ 2Z and 2ϕ(h, L)v = b(q)v if (K/v) = −1 and χ(Q(ϕ)v) = −1.
Here K is the discriminant field of ϕ and qgv = pνv. In the same assumptions
we also see that

SOψv ∩ τ(JVv
) = τ(O×

v ). (4.8)

These facts (4.7) and (4.8) are often useful in the application to quadratic
Diophantine equations with four variables.

As for formula (4.1) for Oϕ, we can state the following proposition:

Proposition 4.3. Let (V, ϕ) be a quadratic space of dimension 4 over a number
field F and K = F (

√
δ) the discriminant field of ϕ. For an element h of V

such that ϕ[h] = q 6= 0 put W = (Fh)⊥ and let ψ be the restriction of ϕ to W .
Identify Oψ(W ) with {γ ∈ Oϕ(V ) | hγ = h}. Let L be a g-maximal lattice in
V with respect to ϕ. Also let f1 be the product of all primes v ∈ h such that
2ϕ(h, L)v 6= b(q)v. Suppose that for v ∈ h,

(1) v ∤ 2 and ϕ(h, L)2v = qgv if (K/v) = 0 and χ(Q(ψ)v) = −1.

(2) qgv is a square ideal of Fv if (K/v) = −1 and χ(Q(ϕ)v) = −1.
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(3) f1 consists of the primes v such that tv = 0 or that v ∤ 2, (K/v) = −1,
χ(Q(ϕ)v) = +1, and qgv is a square ideal of Fv.

Here tv is the core dimension of ϕ at v. Let λ be the number of prime factors
of f1f2, where f2 is the product of all primes v ∈ h such that v ∤ f1, tv 6= 4,

(K/v) 6= 0, and qgv is not a square ideal of Fv. Then [D(L∩W ) : OψA∩D(L)] =

[C(L ∩W ) : SOψA ∩ C(L)] = 2λ. Moreover, if λ ≤ 1, then OψεD(L ∩W ) =

Oψε(OψA ∩D(L)) for every ε ∈ OψA.

Before stating the proof, we note a simple fact. Let G(V ) be the Clifford group
of ϕ. Then the homomorphism τ of (1.2) gives a surjection of G(V ) onto
Oϕ(V ), because V is even-dimensional.

Proof. In view of assumptions (2) and (3), we can take the order O in Propo-
sition 3.3 (3). Put qgv = pνvv with νv ∈ Z for v ∈ h. We note that v | f2 if and
only if tv = 0, v ∤ f1, and νv is odd, or if (K/v) = −1, v ∤ f1, and νv is odd.

Suppose v ∤ f1f2. Then (L ∩W )v is maximal in (W, ψ)v. If tv = 0, then ψv is
isotropic and δqgv is square, which is because νv must be even by v ∤ f2. Since
C(Lv) = τ(JVv

) by (3.2), we have SOψv ∩ C(Lv) = τ(O×
v ) by (4.8). Clearly

Ov = A+(L ∩W )v by calculating the discriminant. Note that C(Lv ∩Wv) =
τ(A+(Lv ∩Wv)

×) by [12, Lemma 5.4]. Hence we have C(Lv ∩Wv) = SOψv ∩
C(Lv). If tv = 4, then D(Lv) = Oϕv and C(Lv) = SOϕv . Also D(Lv∩Wv) = Oψv
and C(Lv ∩Wv) = SOψv as ψv is anisotropic. Hence we have D(Lv ∩Wv) =
Oψv ∩D(Lv) and C(Lv ∩Wv) = SOψv ∩C(Lv). Assume tv = 2 and (K/v) = −1.
Then δqgv must be square. If Q(ϕ)v = M2(Fv), then ψv is isotropic. In the
same way as in the case tv = 0 we see that C(Lv∩Wv) = SOψv ∩C(Lv). If Q(ϕ)v
is a division algebra, then ψv is anisotropic and A+(W )v is a division algebra.
Notice that C(Lv ∩Wv) = τ(A+(W )×v ) as Lv ∩Wv is maximal. Our order Ov

has discriminant pv by (3.22), whence it is maximal in A+(W )v. Observe that
A+(W )×v = F×

v (O×
v ∪ O×

v ω) with some ω ∈ A+(W )×v so that ω2 is a prime
element of Fv. Since SOψv ∩ τ(JVv

) = τ(O×
v ) by (4.8), we have [C(Lv ∩Wv) :

SOψv ∩ τ(JVv
)] = 2. In view of (4.7) together with [C(Lv) : τ(JVv

)] = 2 by
(3.2), SOψv ∩ C(Lv) must coincide with C(Lv ∩Wv). Assume (K/v) = 0. If
Q(ψ)v = M2(Fv), we take a Witt decomposition of ϕv in (2.9) with g ∈ Vv so
that g2 ∈ g×v . Then rvg is a maximal lattice in the core subspace (Kvg, ϕv).
Our assumption Q(ψ)v = M2(Fv) implies that there is an element k of Kvg
such that ϕv[k] = q = ϕ[h]. Since the lattice rvg ∩ (Fvk)

⊥ is maximal in the
complement (Fvk)

⊥ in Kvg as (Kvg, ϕv) is anisotropic, we have 2ϕv(k, rvg) =
b(q)v = 2ϕ(h, L)v. Thus [9, Proposition 11.12 (iv) and (v)] are applicable to
h. We have C(Lv ∩ Wv) = SOψv ∩ C(Lv) and D(Lv ∩ Wv) = Oψv ∩ D(Lv).
Similarly for the case where Q(ψ)v is a division algebra, under the assumption
(1), we have C(Lv ∩Wv) = SOψv ∩ C(Lv) and D(Lv ∩Wv) = Oψv ∩D(Lv).

Suppose v | f1. By assumption (3) such a prime satisfies either (i) tv = 0 or (ii)
v ∤ 2, (K/v) = −1, Q(ϕ)v =M2(Fv), and νv is even. In both cases (i) and (ii),
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Ov = A+(L ∩W )v and SOψv ∩ C(Lv) = τ(O×
v ). Moreover, we can prove that

T (Ov) = F×
v (O×

v ∪O×
v η) (4.9)

with some element η of A+(W )×v such that ηO×
v = O×

v η and ηη∗gv = gv
or ηη∗gv = pv according as νv is even or odd. This can be handled in a
similar way to the proof of [3, Theorem 3.1] for Case (i) and to [3, §3.4] for
Case (ii). (We will determine the index [A+(Mv)

× : A+(Lv ∩ Wv)
×] in a

subsequent paper, which may be used in the proof of (4.9).) We have therefore
[C(Lv ∩Wv) : τ(O

×
v )] = 2.

Suppose v | f2. Then (L∩W )v is maximal and Ov = A+(L∩W )v. If tv = 0, we
have SOψv ∩C(Lv) = τ(O×

v ). Since qgv is not square, by (3.5) and (3.7), JWv
=

A+(Lv ∩Wv)
×. Hence [C(Lv ∩Wv) : τ(O×

v )] = 2 by (3.3). If (K/v) = −1,
then Q(ϕ)v must be M2(Fv) under the assumption (2) as νv is odd. Applying
(3.2) and (4.8), we have SOψv ∩C(Lv) = τ(O×

v ). Hence by the same way as in
the case tv = 0, [C(Lv ∩Wv) : τ(O

×
v )] = 2.

To prove [D(Lv ∩ Wv) : Oψv ∩ D(Lv)] = [C(Lv ∩ Wv) : SOψv ∩ C(Lv)], we
shall show that [Oψv ∩ D(Lv) : SOψv ∩ C(Lv)] = 2 because [D(Lv ∩ Wv) :
C(Lv ∩Wv)] = 2 by [9, Lemma 6.8]. It is sufficient to investigate the following
cases; (a) tv = 0, (b) (K/v) = −1 and χ(Q(ϕ)v) = +1, (c) (K/v) = −1 and
χ(Q(ϕ)v) = −1. In cases (a) and (b) we can verify the desired fact by the same

technique as in the proof of [9, Proposition 11.12 (v)]; see the case L̃ = L and
t 6= 1 in that proof. As for case (c), we first note νv ∈ 2Z by our assumption
(2); put ℓ = νv/2. Since (L ∩W )v must be maximal under assumption (3),
2ϕ(h, L)v = b(q)v = pℓv by (2.6) and (2.7). Now we take our setting and
notation to be those in Case (iii) of the proof of Corollary 4.2. By (1.6),
hα = kv with some α ∈ C(Lv). Under such an α we may identify h, (W, ψ)v,
and (L ∩W )v with kv, Kvg ⊕ Fv(qπ

−ℓ
v e − πℓvf), and rvg + p−ℓv (qπ−ℓ

v e − πℓvf),
respectively. Looking at the lattice rvg in the subspace (Kvg, ϕv) of (V, ϕ)v,
we can find γ0 ∈ O(Kvg) such that det(γ0) = −1 and (rvg)γ0 = rvg by [9,
Lemma 6.8]. Extend γ0 to an element γ of GL(Vv) by setting γ to be the
identity map on (Kvg)

⊥. Then γ ∈ Oϕv , hγ = h, det(γ) = −1, and Lvγ = Lv.
This shows [Oψv ∩ D(Lv) : SO

ψ
v ∩ C(Lv)] = 2. Summing up all these results,

we obtain the first assertion.
To prove the second assertion, we borrow the idea of the proof of [9, Proposition
11.13 (ii)]. When there is no prime v dividing f1f2, we have D(L ∩ W ) =

OψA ∩D(L), and so our assertion is obvious. Hereafter we assume λ = 1. For

ε ∈ OψA put Λ = Lε−1, which is a g-maximal lattice in (V, ϕ). We consider
τ(h) of Oψ . Put a = ϕ[h](2ϕ(h, L))−2. Let c ∈ F×

A so that 2cϕ(h, L) = g;
then 2ϕv(cvh, Λv) = gv and ϕv[cvh]gv = ϕv[cvh]ϕv(2cvh, Λv)

−2 = av for every
v ∈ h.
Suppose av = gv. Then ϕv[cvh] ∈ g×v and 2ϕv(cvh, Λv) = gv. Hence cvh
belongs to Λv and also it is invertible in the order A(Λ)v. Since this order
contains Λv by definition, A(Λ)v ∩ Vv = Λv by [9, Lemma 8.4 (iii)]. Thus we
have Λvτ(h) = h−1A(Λ)vh ∩ Vv = Λv.
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Let v ∤ f1f2. If tv = 0 or (K/v) = −1, then qgv = b(q)2v as νv is even.
We have av = gv, whence Λvτ(h) = Λv. If tv = 4, then Λv is a unique
maximal lattice in the anisotropic space (V, ϕ)v. Hence Λvτ(h) = Λv. If
(K/v) = 0 and Q(ψ)v =M2(Fv), we take a Witt decomposition of ϕv as in the
same case of the proof of the first assertion with Λv in place of Lv. Because
2ϕv(h, Λv) = 2ϕ(h, L)v = b(q)v, by the same manner as in that proof, we can
find α ∈ C(Λv) so that hα = k with some k ∈ Kvg. Then τ(h) = ατ(k)α−1 by
[9, Lemma 3.8 (ii)]. We see that

Λvτ(h) = {(rvg)τ(k) + gveτ(k) + gvfτ(k)}α−1 = Λv.

If (K/v) = 0 and Q(ψ)v is a division algebra, then av = gv by assumption (1),
which leads Λvτ(h) = Λv.
Let v | f1f2. We take a weak Witt decomposition of ϕv as in (2.9) with Λv in
place of Lv. Put qv = ϕv[cvh] and k = qve+ f . We see that av = [M/L∩W ]2v
if v | f1 and νv ∈ 2Z, av = [M/L ∩W ]2vpv if tv = 0 and νv 6∈ 2Z, and av = pv
if v | f2 and (K/v) = −1, where M is a maximal lattice in (W, ψ). Since
qv ∈ av, it belongs to gv. Hence we have k ∈ Λv[qv, 2

−1gv]. By (1.6) there
is α ∈ C(Λv) so that (cvh)α = k. Moreover τ(k) = α−1τ(h)α by [9, Lemma
3.8 (ii)]. Then α gives an isomorphism of Wv onto W ′ = (Fvk)

⊥ such that
(Λv ∩Wv)α = Λv ∩W ′. Observe that Λv ∩W ′ = rvg+ gv(qve− f). Employing
[9, Lemma 3.10], we can find that

(Λv ∩W ′)τ(k) = {−x− a(qve− f) | x ∈ rvg, a ∈ gv} = Λv ∩W ′,

Λvτ(k) = {−x+ qvae+ q−1
v bf | x ∈ rvg, a, b ∈ gv} 6= Λv,

because qv ∈ av ⊂ pv as seen above. Thus we have (Λv∩Wv)τ(h) = Λv∩Wv but
Λvτ(h) 6= Λv. To sum up, τ(h) is an element of Oψ such that (Λ ∩W )τ(h) =
Λ ∩W and Λτ(h) 6= Λ.

Now, observe D(Λ∩W ) = εD(L∩W )ε−1 and OψA∩D(Λ) = ε(OψA∩D(L))ε−1.

Since [D(L∩W ) : OψA∩D(L)] = 2 by λ = 1, we have [D(Λ∩W ) : OψA∩D(Λ)] =
2. By our result on τ(h) we obtain

D(Λ ∩W ) = (OψA ∩D(Λ)) ∪ τ(h)(OψA ∩D(Λ)).

Then our assertion follows from this and τ(h) ∈ Oψ.

As a consequence, assuming that h ∈ L[q, b] satisfies all the assumptions with
λ ≤ 1 in Proposition 4.3, by formula (4.1) for Oϕ together with Proposition
4.3 and Theorem 3.4 (3), we obtain

∑

α∈J

#
{
Lα−1[q, b]/Γ·(Lα−1)

}
= t(O), (4.10)

where J is a set of representatives α for Oϕ\OϕA/D(L) for which Lα−1[q, b] 6= ∅
and O is the order in A+(W ) defined in Proposition 3.3 (3) with h. It should
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be remarked that the discriminant of O has at most one higher-power prime
pe (e > 1) if h satisfies λ ≤ 1. Note that formula (4.5) permits several such
primes in the discriminant of O if h satisfies the assumptions of Corollary 4.2.
For example, the reader is referred to our notes after the proof of [3, Proposition
4.3], in which O has discriminant 2 ·52g2Z for a squarefree odd positive integer
g prime to 5.

5 Applications and numerical examples

5.1 Applications to {4, Q(
√
d), Br,∞, 4}

Theorem 5.1. Let Br,∞ be a definite quaternion algebra over Q ramified only
at a prime number r. Take a quadratic space (V, ϕ) over Q whose invariants
are {4, Q(

√
d), Br,∞, 4} with a prime number d prime to r such that d ≡ 1

(mod 4). Then for every odd prime number p prime to dr and 0 ≤ n ∈ Z there
exist Z-maximal lattices L and L′ in (V, ϕ) such that

L[dpn, 2−1dZ] 6= ∅, L′[dpn, 2−1Z] 6= ∅, (5.1)

except when n 6∈ 2Z and
(
d
p

)
= −1. Moreover the following formulas are valid:

∑

α∈I

#Lα−1[dpn, 2−1dZ]

[Γ(Lα−1) : 1]
=
r − 1

24
·
{
1 if n = 0,

pn−1
(
p+

(
d
p

))
if n ≥ 1,

(5.2)

∑

α∈I

#L′α−1[dpn, 2−1Z]

[Γ(L′α−1) : 1]
=

(r − 1)(d2 − 1)

48
·
{
1 if n = 0,

pn−1
(
p+

(
d
p

))
if n ≥ 1,

(5.3)
∑

α∈J

#
{
Lα−1[dpn, 2−1dZ]/Γ·(Lα−1)

}
= t(O). (5.4)

Here
(
d
p

)
is the quadratic residue symbol, I (resp. J) is a complete set of

representatives for SOϕ \ SOϕA/C(L) (resp. Oϕ \ OϕA/D(L)), O is an order
in the algebra A+(W ), which is isomorphic to Br,∞, of discriminant rpnZ
containing A+(L ∩W ), and W = (Qh)⊥ with h ∈ L[dpn, 2−1dZ].

It is noted that Lα−1[dpn, 2−1dZ] or L′α−1[dpn, 2−1Z] may be empty for some
α ∈ I or some α ∈ J .

Proof. First of all, under the assumption that L[dpn, 2−1dZ] 6= ∅ and
L′[dpn, 2−1Z] 6= ∅ with some maximal L and L′ in V , we can derive for-
mulas (5.2) and (5.3). We should mention that the proof will be given in a
subsequent paper and that these formulas will be used in the present proof to
show (5.1).
By [8, Proposition 1.8], for any positive integer q there is a Z-maximal lattice
L in (V, ϕ) such that L[q] 6= ∅. Let h ∈ L[dpn] with 0 ≤ n ∈ Z and take
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the complement (W, ψ) as in (2.2). Since d ≡ 1 (mod 4) and
(
d
p

)
= 1 if n

is odd, the quaternion algebra {Q(
√
d), dpn} is M2(Q). Hence Q(ψ) = Br,∞

by (2.3) and so the invariants of ψ are {3, Q(
√−pn), Br,∞, 3}. We have then

b(dpn) = dpℓ with ℓ = [n/2]. Noticing b(dpn) ⊂ 2ϕ(h, L) ⊂ Z as noted in §2.1,
we see that

L[dpn] =

ℓ⋃

i=0

{L[dpn, 2−1dpiZ] ∪ L[dpn, 2−1piZ]}. (5.5)

Applying the explicit formula of [8, Theorem 1.5 (II)] to L[dpn], we can derive
that

∑

α∈I

#Lα−1[dpn]

[Γ(Lα−1) : 1]
=

(r − 1)
(
d2 +

(
d
p

)n)

48

2ℓ∑

i=0

(
d

p

)n+i
pi. (5.6)

We here recall our assumption that
(
d
p

)
= 1 if n is odd. We put

R[q] =
∑

α∈I

#Lα−1[q]

#Γ(Lα−1)
, R[q, b] =

∑

α∈I

#Lα−1[q, b]

#Γ(Lα−1)
(5.7)

for q ∈ Z and a Z-ideal b of Q.

Suppose n = 2ℓ with 0 ≤ ℓ ∈ Z. We shall prove (5.1) by induction on ℓ. If ℓ = 0,
then b(d) = dZ and L[d] = L[d, 2−1dZ]∪L[d, 2−1Z] by (5.5). Because L[d] 6= ∅,
either L[d, 2−1dZ] or L[d, 2−1Z] must be nonempty. If L[d, 2−1dZ] 6= ∅, then
formula (5.2) is valid as mentioned above. Combining this with (5.6), we have
R[d, 2−1Z] = R[d]−R[d, 2−1dZ] = 48−1(r−1)(d2−1). This implies that there
is some α ∈ SOϕA so that Lα−1[d, 2−1Z] 6= ∅. Conversely, if L[d, 2−1Z] 6= ∅, we
have R[d, 2−1dZ] = 24−1(r − 1) in the same way, whence Lα−1[d, 2−1dZ] 6= ∅
with some α ∈ SOϕA. As a consequence we can find maximal lattices L and L′

in (V, ϕ) such that L[d, 2−1dZ] 6= ∅ and L′[d, 2−1Z] 6= ∅. This settles the case
ℓ = 0. Suppose ℓ > 0. In view of (5.5) we have

R[dpn] =
ℓ∑

i=0

{
R[dpn, 2−1dpiZ] +R[dpn, 2−1piZ]

}
. (5.8)

Observe that the mapping x 7−→ xpi gives a bijection of Lα−1[dp2(ℓ−i), 2−1dZ]
onto Lα−1[dpn, 2−1dpiZ] for i 6= 0 and α ∈ SOϕA for which
Lα−1[dpn, 2−1dpiZ] 6= ∅. Similarly Lα−1[dp2(ℓ−i), 2−1Z] is mapped onto
Lα−1[dpn, 2−1piZ] under the above bijection if i 6= 0 and Lα−1[dpn, 2−1piZ] 6=
∅. By our induction, (5.2) and (5.3) for 2(ℓ − i) in place of n are valid for
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i 6= 0. Thus we see that

R[dpn, 2−1dZ] +R[dpn, 2−1Z]

= R[dpn]−
ℓ∑

i=0

{
R[dp2(ℓ−i), 2−1dZ] +R[dp2(ℓ−i), 2−1Z]

}

=
(r − 1)(d2 + 1)

48
· p2ℓ−1

(
p+

(
d

p

))
. (5.9)

This shows that either L1[dp
n, 2−1dZ] or L1[dp

n, 2−1Z] is not empty with
some maximal lattice L1 in V . Now, if L1[dp

n, 2−1dZ] 6= ∅, then formula
(5.2) is valid. Combining these results with (5.9), we have R[dpn, 2−1Z] 6= 0,
which implies that L1α

−1[dpn, 2−1Z] 6= ∅ with some α ∈ SOϕA. Conversely,
if L1[dp

n, 2−1Z] 6= ∅, we have L1α
−1[dpn, 2−1dZ] 6= ∅ with α ∈ SOϕA by the

same way. Consequently we have maximal lattices L1 and L′
1 in (V, ϕ) such

that L1[dp
n, 2−1dZ] 6= ∅ and L′

1[dp
n, 2−1Z] 6= ∅. This completes our induction

on ℓ = n/2.
The case of odd n can be proved similarly, which together with the case of even
n shows (5.1) for every integer n ≥ 0. At the same time we obtain formulas
(5.2) and (5.3).
As for (5.4), observe first that the conditions of (1) and (2) in Proposition 4.3 are
satisfied for h ∈ L[dpn, 2−1dZ] because r, d, and p are distinct prime numbers.
Further (L∩W )v is not maximal if and only if v = p as b(dpn) = dpℓZ, except
when ℓ = [n/2] = 0, that is, when n = 0 or 1. Then we easily see that condition
(3) of that proposition is satisfied; for instance, if p remains prime in Q(

√
d),

then n must be even by our assumption, and so p satisfies (3). The ideal f2 of
Proposition 4.3 in the present situation is Z, except when n = 1. If n = 0 or
1, then L∩W is maximal. Also f2 = Z or pZ according as n = 0 or 1. To sum
up, Proposition 4.3 is applicable to h ∈ L[dpn, 2−1dZ] for every 0 ≤ n ∈ Z.
Hence (5.4) follows from (4.10).

We note that when n 6∈ 2Z and
(
d
p

)
= −1 in Theorem 5.1, L[dpn, 2−1dZ] = ∅

for any maximal lattice L and L′[dpn, 2−1Z] 6= ∅ with some maximal lattice L′

in (V, ϕ).
Formulas (5.2) and (5.3) can be derived by means of the mass formula due to
Shimura [9, (13.18)], combined with a result in a subsequent paper as mentioned
in the proof of Theorem 5.1.
It should be remarked about (5.4) that the type number of O is not determined
by discriminant, but by the genus of O. (In other words, by Theorem 3.4
(2), the ideal [(L ∩ W )̃ /L ∩ W ] does not determine the genus of L ∩ W .)
However, if L∩W is maximal, that is, if O has squarefree discriminant, t(O) is
determined by the discriminant. In fact, O is maximal or an order of squarefree
discriminant rpZ according as n = 0 or 1. By a result due to Eichler [1, Satz
3], any order O′ of discriminant rpZ belongs to the genus of O in the sense that
O′ = y−1Oy with some y ∈ A+(W )×A. The similar fact is true for maximal
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orders, which have discriminant rZ. Accordingly in either case n = 0 or 1
the discriminant rpnZ certainly determines the genus of O. Moreover the
discriminant does not depend on d. In view of these together with (5.4), we
can conclude

Corollary 5.2. Let the notation be as in Theorem 5.1. Then for n = 0 or
1 the number of the left-hand side of (5.4) is independent of the choice of d.
Especially, if the type number of orders in Br,∞ of discriminant rpnZ is 1,

for any prime number d prime to rpn such that d ≡ 1 (mod 4) and
(
d
p

)n
= 1

there exists only one Oϕ-class in the genus of maximal lattices in (V, ϕ) of
{4, Q(

√
d), Br,∞, 4} such that L1[dp

n, 2−1dZ] 6= ∅ and

L1[dp
n, 2−1dZ] = hΓ·(L1)

with a lattice L1 in the class and h ∈ L1[dp
n, 2−1dZ].

In Table 1 of Section 5.3 below we shall see a few numerical examples for r = 2
and n = 0 supporting this fact.

5.2 Examples for real quadratic fields

Let V be a totally definite quaternion algebra over F of discriminant g and ϕ
its norm form, where F is a totally real field of even degree. Taking a nonzero
element h of V and a g-maximal lattice L in (V, ϕ), we have the complement
(W, ψ) of Fh and the lattice L∩W . We see that A+(W ) is isomorphic to the
present V as quaternion algebras. Our order O is then A+(L ∩W ) and has
discriminant qb−2 with q = ϕ[h] and b = 2ϕ(h, L). Let c(O) denote the class
number of O as before.

Proposition 5.3. In the above setting with h ∈ L[q, 2−1b] assume that F has
class number 1. Then there exists an order O of discriminant qb−2 in V such
that

∑
i∈I #

{
Li[q, 2

−1b]/Γ(Li)
}
= c(O), where {Li}i∈I is a set of representa-

tives for the SOϕ-classes in the SOϕ-genus of L for which Li[q, 2
−1b] 6= ∅.

We first note by [8, Proposition 1.8] that, for every totally positive integer
q of F , there is a g-maximal lattice L in (V, ϕ) such that L[q] = {x ∈ L |
ϕ[x] = q} 6= ∅. Moreover if qg is squarefree, then L[q] = L[q, 2−1g] because of
b(q) = g.

Proof. Clearly formula (4.5) is applicable to h ∈ L[q, 2−1b]. Since C(L) =
τ(JV ) and F has class number 1, τ of (1.2) gives a bijection of G+(V ) \
G+(V )A/JV onto SOϕ \ SOϕA/C(L). Furthermore we have τ(G+(V ) ∩
yJV y

−1) = Γ(Lτ(y)−1) for every y ∈ G+(V )A. The assertion follows from
these combined with (4.5).

For example, take (V, ϕ) as in Proposition 5.3 over F = Q(
√
d) with d = 5, 13,

or 101. It is known that #{SOϕ \ SOϕA/C(L)} = 1 when d = 5, 13. As noted
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above, there is a maximal lattice L in (V, ϕ) such that L[q] = L[q, 2−1g] 6= ∅
for a given totally-positive squarefree integer q of F . Applying Proposition
5.3 to h ∈ L[q], we have an order O in V of discriminant qg. Now suppose
q ∈ g×. Then O is maximal as d(O) = g. Its class number is 1 if d = 5, 13
and is 5 if d = 101. These results can be found in [5, Tabelle 2] due to
Peters. Therefore by the same proposition, #{L[q, 2−1g]/Γ(L)} = 1 if d =
5, 13 and

∑
i∈I #{Li[q, 2−1g]/Γ(Li)} = 5 if d = 101, where {Li}i∈I is a set of

representatives of the SOϕ-classes in the genus of L for which Li[q, 2
−1g] 6= ∅.

We mention that there is a previous result [10, Theorem 1.11] concerning the
application of [10, Theorem 1.6] to the norm forms of definite quaternion alge-
bras over Q.

5.3 Numerical tables for {4, Q(
√
d), B2,∞, 4}

Let d be a prime number such that d ≡ 1 (mod 4). We take a quadratic
space (V, ϕ) over Q of invariants {4, Q(

√
d), B2,∞, 4} and a complete set

{Li}i∈J of representatives for the Oϕ-classes in the Oϕ-genus of maximal
lattices in (V, ϕ). By (5.4) the number

∑
i∈J #

{
Li[dp

n, 2−1dZ]/Γ·(Li)
}

is
given by the type number t(O) of some order O in B2,∞ of discriminant
2pnZ for an odd prime number p prime to d and 0 ≤ n ∈ Z, where we

assume
(
d
p

)
= 1 if n is odd and remark that Li[dp

n, 2−1dZ] may be empty

for some i ∈ J . We put c(dpn) =
∑
i∈J #

{
Li[dp

n, 2−1dZ]/Γ·(Li)
}

for
convenience. We restrict ourselves to the case n = 0 or 1. In this section
we shall not only give the numbers c(dpn) by quoting t(O), but also present
#Li[dp

n, 2−1dZ] for i ∈ J by taking {Li}i∈J in the case of d = 5, 13, 17, or 29.

To obtain {Li}i∈J for these primes d, we proceed according to the viewpoint
explained at the last part of §4.1. Let (X, Φ) be as in that section. We set

Λ = Ze1 + Ze2 + Ze3 + Zg + Ze5,

where {ei} is the standard basis of Q1
5 and g = 2−1(e1 + e2 + e3 + e4). Then

Λ is a Z-maximal lattice in (X, Φ). By (4.3) we have a bijection

kiΓ
·(Λ) 7−→ (Λ ∩ (Qki)

⊥)γ−1
i Oϕ

of Λ[d, Z]/Γ·(Λ) onto the Oϕ-classes in the Oϕ-genus of maximal lattices in
(V, ϕ) with some γi ∈ OΦ so that ki = k0γ for i ∈ J , where {ki}i∈J is a
complete set of representatives for Λ[d, Z]/Γ·(Λ) and k0 is an arbitrarily fixed
element of Λ[d, Z]; we put V = (Qk0)

⊥ and ϕ = Φ|V . Hence the desired
representatives {Li}i∈J can be obtained from explicit elements ki for i ∈ J
by taking (Λ ∩ (Qki)

⊥)γ−1
i as Li. A method of determining Λ[d, Z]/Γ·(Λ) is

explained in [9, §12.15]; in which {ki}i∈J was found for the case of d = 29.
We employ that method for our purpose. Once such a set {ki}i∈J is obtained,
using the lattice Λ∩ (Qki)

⊥, we can compute the number #Li[dp
n, 2−1dZ] for

every i ∈ J .
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Here is a list of the representatives ki for Λ[d, Z]/Γ
·(Λ) and the corresponding

lattices Λ ∩ (Qki)
⊥ for i ∈ J and d = 5, 13, 17, 29:

(1) d = 5.

k1 = 2e1 + e5.

Λ ∩ (Qk1)
⊥ = Ze2 + Ze3 + Ze4 + Z(g − e5).

(2) d = 13.

k1 = 2e1 + 3e5, k2 = 2(e2 + e3 + e4) + e5.

Λ ∩ (Qk1)
⊥ = Z(e2 + e3 + e4) + Ze2 + Ze3 + Z(3g − e5),

Λ ∩ (Qk2)
⊥ = Ze1 + Z(e2 − 2e5) + Z(e3 − 2e5) + Z(g − 3e5).

(3) d = 17.

k1 = 4e4 + e5, k2 = 2(e3 + e4) + 3e5.

Λ ∩ (Qk1)
⊥ = Ze1 + Ze2 + Ze3 + Z(g − 2e5),

Λ ∩ (Qk2)
⊥ = Ze1 + Ze2 + Z(3e3 − 2e5) + Z(g − e3).

(4) d = 29.

k1 = 2e4 + 5e5, k2 = 2(e3 + 2e4) + 3e5,

k3 = 2(e1 + e2 + e3 + 2e4) + e5.

Λ ∩ (Qk1)
⊥ = Ze1 + Ze2 + Ze3 + Z(5g − e5),

Λ ∩ (Qk2)
⊥ = Ze1 + Ze2 + Z(3e3 − 2e5) + Z(g − e5),

Λ ∩ (Qk3)
⊥ = Z(e1 − 2e5) + Z(e2 − 2e5) +

+Z(e3 − 2e5) + Z(g − 5e5).

Here we note that the case d = 5 can be seen from [10, §4.4, (4.12c)]. It can
also be verified that these ki for i ∈ J form a complete set of representatives
for Λ[d, Z]/Γ(Λ) for d = 5, 13, 17, 29. Since [9, Proposition 11.13 (ii)] is
also applicable to k0 ∈ Λ[d, Z], by Lemma 4.1, {Li}i∈J gives a complete set
of representatives for the SOϕ-classes in the SOϕ-genus of maximal lattices in
(V, ϕ).
We can further determine [Γ(Li) : 1] for i ∈ J . In fact, by Theorem 5.1 we have
an explicit formula (5.2) for R[dpn, 2−1dZ] with the notation of (5.7); then
#Γ(Li) is computable in an elementary way by using this formula combined
with the numerical data of #Li[dp

n, 2−1dZ] in our tables. For example,
if d = 29, then we have three maximal lattices {L1, L2, L3} given above.
Looking at Table 1 for d = 29 and at Table 3 for d = 29, p = 5 and 7, we have
2 · #Γ(L1)

−1 = 24−1, 2 · #Γ(L2)
−1 = 4−1, and 2 ·#Γ(L3)

−1 = 3−1 by (5.2).
From these we get #Γ(L1) = 48, #Γ(L2) = 8, and #Γ(L3) = 6. Moreover the
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mass of the genus with respect to SOϕ is 5/16, which indeed coincides with
the mass derived from the exact formula of [7, Theorem 5.8]. Similarly for
d = 5, 13, 17, we have #Γ(L1) = 48 if d = 5; #Γ(L1) = 48 and #Γ(L2) = 12
if d = 13; #Γ(L1) = #Γ(L2) = 48 if d = 17.

In the numerical tables below, we put Ni(dp
n) = #Li[dp

n, 2−1dZ] and de-
note by t(2, pn) (resp. c(2, pn)) the type number (resp. the class number)
of O in B2,∞ of discriminant 2pnZ. We quote t(2, pn) and c(2, pn) from
[6, Table 1] due to Pizer. It is noted by Corollary 4.2 that the number∑

i∈J #
{
Li[dp

n, 2−1dZ]/Γ(Li)
}
coincides with c(2, pn) if t(2, pn) = c(2, pn).

d N1(d) N2(d) N3(d) t(2, 1) c(2, 1) c(d)

5 2 ∗ ∗ 1 1 1

13 2 0 ∗ 1 1 1

17 2 0 ∗ 1 1 1

29 2 0 0 1 1 1

Table 1: c(d) for d = 5, 13, 17, 29

Let us verify our numerical results for c(dp) in a straightforward way by using
the lattices listed above. As an example, we take up the case of d = 13 and
p = 23. We begin with the 5-dimensional space (X, Φ) and Λ as above. Put
k1 = 2e1 + 3e5 and k2 = 2(e2 + e3 + e4) + e5. In our list with d = 13, k1
and k2 form a complete set of representatives for Λ[13, Z]/Γ·(Λ) (and it is true
for Γ(Λ) in place of Γ·(Λ)). Set V = (Qk2)

⊥ and let ϕ be the restriction of
Φ to V . Then (V, ϕ) has invariants {4, Q(

√
13), B2,∞, 4} and L2 = Λ ∩ V is

Z-maximal in (V, ϕ). Since {e1, e2 − 2e5, e3 − 2e5, g− 3e5} is a Z-basis of L2,
representing ϕ by this basis, we may put V = Q1

4,

ϕ =




1 0 0 1/2

0 5 4 13/2

0 4 5 13/2

1/2 13/2 13/2 10



,

and L2 = Z1
4. Under this identification, Γ

·(L2) is the subgroup {γ ∈ GL4(Z) |
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d p N1(dp) N2(dp) t(2, p) c(2, p) c(dp)

5 11 24 ∗ 1 1 1

5 19 40 ∗ 2 3 2

5 29 60 ∗ 2 3 2

5 31 64 ∗ 2 4 2

5 41 84 ∗ 3 4 3

5 59 120 ∗ 3 5 3

5 61 124 ∗ 4 7 4

5 71 144 ∗ 2 6 2

5 79 160 ∗ 3 8 3

5 89 180 ∗ 5 8 5

5 101 204 ∗ 5 9 5

13 3 0 2 1 1 1

13 17 12 6 2 2 2

13 23 0 12 1 2 1

13 29 12 12 2 3 2

13 43 16 18 3 5 3

13 53 12 24 3 5 3

13 61 12 28 4 7 4

13 79 48 28 3 8 3

13 101 60 36 5 9 5

Table 2: c(dp) for d = 5, 13
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d p N1(dp) N2(dp) N3(dp) t(2, p) c(2, p) c(dp)

17 13 16 12 ∗ 2 3 2

17 19 16 24 ∗ 2 3 2

17 43 40 48 ∗ 3 5 3

17 47 48 48 ∗ 2 4 2

17 53 60 48 ∗ 3 5 3

17 59 72 48 ∗ 3 5 3

17 67 64 72 ∗ 4 7 4

17 83 72 96 ∗ 4 7 4

17 89 96 84 ∗ 5 8 5

17 101 96 108 ∗ 5 9 5

29 5 0 2 0 1 1 1

29 7 0 0 2 1 2 1

29 13 0 2 2 2 3 2

29 23 0 0 6 1 2 1

29 53 0 10 6 3 5 3

29 59 24 8 6 3 5 3

29 67 24 8 8 4 7 4

29 71 0 8 12 2 6 2

29 83 24 16 6 4 7 4

29 103 16 16 12 5 10 5

Table 3: c(dp) for d = 17, 29
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γϕ · tγ = ϕ} of GL4(Z). Then L2[13p
n, 2−1 · 13Z] is given by

L2[13p
n, 2−1 · 13Z] = {[x1 x2 x3 x4] ∈ Z1

4 |
x21 + 5x22 + 5x23 + 10x24 + x1x4 + 8x2x3 + 13x2x4 + 13x3x4 = 13pn,

(2x1 + x4)Z+ (10x2 + 8x3 + 13x4)Z+ (8x2 + 10x3 + 13x4)Z

+(x1 + 13x2 + 13x3 + 20x4)Z = 13Z}.
Now for p = 23 and n = 1 we have all solutions in L2[13 · 23, 2−1 · 13Z]:

[±5 ∓ 13 ∓ 13 ± 16], [±8 0 ∓ 13 ± 10], [±8 ∓ 13 0 ± 10],

[±18 0 ± 13 ∓ 10], [±18 ± 13 0 ∓ 10], [±21 ± 13 ± 13 ∓ 16].

We put

γ1 =















1 0 0 0

0 0 −1 0

0 −1 0 0

1 0 0 −1















, γ2 =















1 0 0 0

0 −1 0 0

1 1 1 −2

1 0 0 −1















, γ3 =















1 0 0 0

0 −1 0 0

0 0 −1 0

1 0 0 −1















.

These matrices belong to Γ·(L2). Consider the subgroup U of Γ·(L2) generated
by γ1, γ2, γ3, and −14, where 14 is the identity matrix of size 4. Put x =
[5 − 13 − 13 16]. Then it can be seen that xU contains all elements of
L2[13 · 23, 2−1 · 13Z]. Thus we have L2[13 · 23, 2−1 · 13Z] = xΓ·(L2).
Similarly for k1, we can consider a Z-lattice Λ ∩ (Qk1)

⊥. Denoting by ϕ1 the
restriction of Φ to (Qk1)

⊥, we may put (Qk1)
⊥ = Q1

4,

ϕ1 =




3 1 1 9/2

1 1 0 3/2

1 0 1 3/2

9/2 3/2 3/2 10



,

Λ ∩ (Qk1)
⊥ = Z1

4, and Γ·(Λ ∩ (Qk1)
⊥) = {γ ∈ GL4(Z) | γϕ1 · tγ = ϕ1} under

the identification with respect to a Z-basis {e2+ e3+ e4, e2, e3, 3g− e5} of Λ∩
(Qk1)

⊥. Let L1 be the lattice in (V, ϕ) corresponding to Λ∩(Qk1)⊥ under some
isomorphism of (V, ϕ) onto ((Qk1)

⊥, ϕ1). Then the number #L1[13p
n, 2−1 ·

13Z] is equal to

#{[x1 x2 x3 x4] ∈ Z1
4 |

3x21 + x22 + x23 + 10x24 + 2x1x2 + 2x1x3 + 9x1x4 + 3x2x4 + 3x3x4 = 13pn,

(6x1 + 2x2 + 2x3 + 9x4)Z + (2x1 + 2x2 + 3x4)Z+ (2x1 + 2x3 + 3x4)Z

+(9x1 + 3x2 + 3x3 + 20x4)Z = 13Z}.
For p = 23 and n = 1 there is no elements of (Λ ∩ (Qk1)

⊥)[13 · 23, 2−1 · 13Z].
Hence #L1[13 · 23, 2−1 · 13Z] = 0. Because L1 and L2 are not in the same Oϕ-
class as k1Γ

·(Λ) 6= k2Γ
·(Λ), we have therefore c(13 · 23) = #{L2[13 · 23, 2−1 ·
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13Z]/Γ·(L2)} = 1. This coincides with our result in the case of d = 13 and
p = 23 in Table 2.
We note that #U = 24, Γ·(L2) = U , and Γ(L2) is generated by γ1, γ2, −14;
furthermore we have xΓ(L2) = L2[13 ·23, 2−1 ·13Z], that is, #{L2[13 ·23, 2−1 ·
13Z]/Γ(L2)} = 1. As for Λ∩(Qk1)⊥, four elements δ1, · · · , δ4 and−14 generate
Γ·(Λ ∩ (Qk1)

⊥) and then Γ(Λ ∩ (Qk1)
⊥) is generated by δ1δ2, δ2δ3, δ4, −14,

where

δ1 =




1 0 0 0

0 1 0 0

0 0 1 0

3 0 0 −1



, δ2 =




1 0 0 0

0 1 0 0

1 −1 −1 0

0 0 0 1



,

δ3 =




1 0 0 0

1 −1 −1 0

0 0 1 0

0 0 0 1



, δ4 =




1 −2 0 0

1 −1 −1 0

0 0 1 0

0 −3 0 1



.

We shall show one more example for d = 13 and p = 79 obtained in the same
manner:

#
{
L1[13 · 79, 2−1 · 13Z]/Γ·(L1)

}
= 1, #

{
L2[13 · 79, 2−1 · 13Z]/Γ·(L2)

}
= 2,

#
{
L1[13 · 79, 2−1 · 13Z]/Γ(L1)

}
= 1, #

{
L2[13 · 79, 2−1 · 13Z]/Γ(L2)

}
= 3.

Here L′
1[13 ·79, 2−1 ·13Z], with L′

1 = Λ∩ (Qk1)
⊥ ∼= L1, consists of 48 solutions

[±10 ∓ 39 ∓ 26 ± 2], · · · , [±29 ∓ 13 ∓ 13 ∓ 2]

and L2[13 · 79, 2−1 · 13Z] of 28 solutions

[±3 ± 13 ± 39 ∓ 32], · · · , [±36 ± 39 ± 26 ∓ 46].

Accordingly
∑2

i=1 #{Li[13 ·79, 2−1 ·13Z]/Γ(Li)} is a quantity that differs from
both the type number and the class number of O.
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