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1 INTRODUCTION

A sums-of-squares formula of type [r,s,n] over a field F' of characteristic # 2
(with strictly positive integers r, s and n) is a formula

T

(me) ) (iyf) = (izf) EF[T1, . Tr, Y1, Ys) (1)

i=1

where z; = z;(X,Y) for each ¢ € {1,...,n} is a bilinear form in X and Y (with
coefficients in F), i.e. z; € Flz1,...,%r,Y1,-..,Ys| is homogeneous of degree 2

and F-linear in X and Y. Here, X = (z1,...,2,) and Y = (y1,...,ys) are coor-

dinate systems. To be specific, z; = Zk,j cgjj)xkyj for cgjj) € F. An old problem
of Adolf Hurwitz concerns the existence of sums-of-squares formulas. Historical
remarks can be found in [I8] and [20]. For any m € Z~q, we let ¢(m) denote
the cardinality of the set {l€ Z:0< ! <m and!=0,1,2 or 4 (mod 8)}. The

aim of this paper is to introduce the following result.

THEOREM 1.1. If a sums-of-squares formula of type [r,s,n] exists over a field
F of characteristic # 2, then 29C~D=41 divides (M) form—r <i<p(s—1).
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196 HENG XIE

The proof of Theorem [[T]over R was provided by [2] and [2]]. It involves com-
putations of topological K O-theory of real projective spaces and «*-operations.
The statement of Theorem [T over R can be extended to any field of charac-
teristic 0 by an algebraic remark of T.Y. Lam and K.Y. Lam, cf. Theorem 3.3
[18]. By using algebraic K-theory, D. Dugger and D. Isaksen prove a similar
result over an arbitrary field of characteristic # 2, where ¢(s — 1) in the above
theorem is replaced by L%J, cf. Theorem 1.1 [7]. They actually conjectured
the above statement. Since ¢(s — 1) > [251], our main theorem generalizes

2
theirs. One may wish to look at the following table.

n |1]2[3[4]5]6]7]8]9
o) |1]2]2]3]3]3[3[4]5
15)

1111223344

ExaMPLE 1.1. Consider the triplet [15,10, 16] which does not exist over F' by
the above theorem. Neither Hopf’s condition [§] nor the weaker condition in [7]
can give the non-existence of [15, 10, 16].

REMARK 1.1. The necessary condition of our main theorem does not imply the
existence of [r, s,n|. To illustrate, [3, 5, 5] does not exist over the field F' by the
Hurwitz-Radon theorem. However, it satisfies the necessary condition.

REMARK 1.2. The algebraic K-theory analog (cf. Theorem 1.1 [7]) of our main
theorem works even if the assumption ‘if a sums-of-squares formula of type
[r, s,n] exists over F” is replaced by ‘if a nonsingular bilinear map of size [r, s, n]
exists over F’. The statement with the latter assumption is ‘stronger’. However,
this is not the case under our proof, since we will use the sums-of-squares

identity ().

REMARK 1.3. The triplet [r,s,n] is independent of the base fields whenever
r < 4 and whenever s > n — 2 (cf. Corollary 14.21 [20]), so that the main
theorem is true. There is a bold conjecture which states that the existence of
[r, s,n] is independent of the base field F' (of characteristic # 2), cf. Conjecture
3.8 [I8] or Conjecture 14.22 [20]. Our main theorem and Dugger-Isaksen’s Hopf
condition (cf. [§]) suggest this conjecture to some extent. However, as Shapiro
points out in Chapter 14 [20], there is indeed very little evidence to support
this conjecture.

In [22], it is shown that the Grothendieck-Witt group of a complex cellular
variety is isomorphic to the K O-theory of its set of C-rational points with
analytic topology. The set of C-rational points of a deleted quadric is homotopy
equivalent to the real projective space of the same dimension, cf. Lemma 6.3
[15]. Moreover, the computation of topological K O-theory of a real projective
space is well-known, cf. Theorem 7.4 [I]. We therefore have motivations to work
on the Grothendieck-Witt group of a deleted quadric and on the +*-operations.
The proof of our main theorem requires the computation of Grothendieck-Witt
group of a deleted quadric which will be explored in Section Bl
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2  TERMINOLOGY, NOTATION AND REMARK

Let (€,%,7m) be a Z[%]—linear exact category with duality. For i € Z, Walter’s
Grothendieck-Witt groups GW*(€, *,n) are defined in Section 4.3 [16]. The
triplet (Vect(X), Hom( ,L),can) (notation in Example 2.3 [I6]) is an exact
category with duality. If X is any Z[%]—scheme7 then we define

GWH (X, L) == GW*(Vect(X), Hom( ,L),can).

By the symbols GW?(X), we mean the groups GW*(X, O). Note that GW(X)
is just Knebusch’s L(X) which is defined in [I4]. The notation in [3] is used
for the Witt theory. For KO-theory and comparison maps, we refer to [22].

DEFINITION 2.1. Let T be a scheme. For us, a smooth T-variety X is called
T-cellular if it has a filtration by closed subvarieties

X=20D>2Z1D---DZy=0
such that Z_1 — Z, = AT for each k.

In this paper, the following notations are introduced for convenience:

F — a field of characteristic # 2;

K — an algebraically closed field of characteristic # 2;

\% — the ring of Witt vectors over K;

L — the field of fractions of V;

X —  the base-change scheme X x 717 F' for any Z[3)-scheme X;
S — the polynomial ring Fly1, ..., ys];

ps—1 —  the scheme Proj Z[$][y1, ..., ys;

qs — the quadratic polynomial q¢4(y) = v? + ... + vy
Vi(gs) — the closed subscheme of P$~1 defined by gs;

Dy(qs) — the open subscheme P*~1 — V. (q5) of P*~1;

13 — the line bundle O(—1) of P% " restricted to Dy (gs)r;
R — the ring of elements of total degrees 0 in S_;

P — the R-module of elements of total degrees —1 in S_;
Qn — the Z[$]-scheme defined by

ZZS x;y; = 0 in P if n > 0 is even;
Z§261)/2 zy; + ¢ =0 in PP if n > 0 is odd;
DQ,y1 — the open subscheme P"*! — Q,, of Pnt!,

REMARK 2.1. (i) Let E be a field containing v/—1 and of characteristic # 2.
Note that (Qs—2)g is isomorphic to the projective variety Vi (¢s)g, cf. Lemma
2.2 [8]. This map induces an isomorphism ig : (DQs—1)g — D4 (gs)E-

(ii) Observe that V is a complete DVR with the quotient field K, cf. Chapter
IT [I77]. Also, note that the fraction field L of V has characteristic 0, cf. loc. cit..
(iii) The scheme D, (gs)r is affine over the base field F, since Dy (gs)r and
Spec R are isomorphic, cf. the proof of Proposition 2.2 [7].
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3 PRrooOF orF THEOREM [I.1]

LEMMA 3.1. If a sums-of-squares formula of type [r,s,n| exists over F, then
there exist a non-degenerate bilinear form o : € x £ — O on Dy (qs)r and a
bilinear space ¢ on D4 (qs)r of rank n —r such that

rl€.o] +[¢) =n € GW'(D1(4s5)F)
where n 1s the trivial bilinear space of the rank n.

Proof. The K-theory analog has been proved, cf. Proposition 2.2 [7]. It is
clear that the group GW°(D, (gs)r) is isomorphic to GWy(R) by Remark 2]
(iii). If the equation (Il) exits, we are able to construct a graded S-module
homomorphism (S(—1))" — S™ by f = (f1,..., fr) = (z1(f,Y),...,z.(f,Y))
where Y = (y1,...,¥s) is the coordinate system introduced in Section [Tl This
map induces a homomorphism « : P* — R"™ of R-modules by localizing it at ¢,.

The isomorphism PQr P — R, f®g — (fg)-¢s gives a non-degenerate bilinear
form o : P x P — R. Let (—, —)gn be the unit bilinear form over R". Let
= fr),9 = (91,-..,9-) € P". We claim that (a(f),a(g))rr equals
iy o(fisg:)- It is enough to show that (a(f),a(f))rn = >, o(fi, fi). Note
that (a(f), a(f))rn = 21(f,Y)?+.. .4+ 2,(f, V)2 By the existence of the triplet
[r, s,n], we obtain 21 (f, Y)?+.. .42, (f,Y)? = (fi+.. .+ f2)as = >oi_y o(fir [i)-
Note that (P",>;_, o) is non-degenerate. It follows that « is injective and
(Pr,>i_, o) can be viewed as a non-degenerate subspace of (R™, (—,—)gn)
via a. Define ¢ to be its orthogonal complement (P"): with the unit form
(—,—)R, restricting to (P")*. By a basic fact of quadratic form theory, ¢ is
non-degenerate and (L(P",Y./_, o) = (R", (—, —)g»). O

THEOREM 3.1. Let v denote the element [€, 0] —1 in the ring GW° (D4 (qs) i )-
Then, the ring GW9 (D, (qs)k) is isomorphic to

Zv] ) (v? + 2v, 297Dy

where o(s — 1) is the number defined in Section . Therefore, for any rational
point ¢ : Spec K — D4 (qs)k, the reduced Grothendieck-Witt ring

éﬁ/O(D+(Qs)K) = ker (§* : GWO (D (gs)x) — GW(Spec K) = Z)

is isomorphic to 721,
Theorem [3.I] will be proved in the next section.

Proof of Theorem 1.1. Tt is enough to show this theorem over the algebraic
closure F' of F. Indeed, if [r,s,n] exists over F', then it also exists over F. In
order to apply the standard trick (cf. the proof of Theorem 1.3 [7]), we have to
take care of v'-operations on GW(D, (gs) 7). To be specific, this standard trick
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AN APPLICATION OF HERMITIAN K-THEORY ... 199

can not be applied without the list of three properties (cf. Properties (i)-(iii) in
loc. cit.) of v'-operations and their generating power series v; = 1+Zi>0 ~*t¢ on
GW (D, (qs)r)- Due to the lack of reference, we will develop v‘-operations on
K (Bil(X)) and prove these three properties (see Appendix [A]). It is enough for
our purpose because GW(X) is just K (Bil(X)) if X is affine (see Remark[AT]),
and the scheme D, (gs)7 is affine by Remark 1] (iii). Hence, together with
Lemma 3.1, we are allowed to apply the standard trick. One checks that details
are the same as in the proof of Theorem 1.3 [7] by replacing K-theory analogs
with GW-theory and |31 ] with ¢(s — 1). Combining with a reformulation of
powers of 2 dividing correspondent binomial coefficients (cf. Section 1.2 [7]),
we are done. O

4 PROOF OF THEOREM [B. 1]

4.1 RIGIDITY AND HERMITIAN K-THEORY OF CELLULAR VARIETIES

By Remark 2.1] (ii), there is always an inclusion map Q — L where Q (resp.
L) is the algebraic closure of Q (resp. L). Consider the following diagram (2I).

K 1% I Wi(K) «Z— wi(v) —— Wi()
I @
C+—— 1T WHC) «—— W'@

On the right-hand side of the diagram (), the maps of Witt groups are all
induced by the correspondent ring maps of the left-hand side for a fixed i € Z.
All these Witt groups are trivial if 4 # 0 (mod 4), cf. Theorem 5.6 [5]. Note
that 89 is an isomorphism by Satz 3.3 [13]. It is also clear that WO(K) is
isomorphic to Z/2 and that all the maps on the right-hand side of the diagram
@) preserve multiplicative identities for ¢« = 0. Since Witt groups are four
periodicity in shifting, we obtain

LEMMA 4.1. The map n° o (x*)"! o a® o (B%)~! yields an isomorphism from
WHK) to W¥(C). Moreover, by Karoubi induction (cf. Section 3 [6]), the left-
hand side of the digram (@) gives an isomorphism GW'(K) — GW?¥(C) of
Grothendieck- Witt groups. O

LEMMA 4.2. Let X be a smooth Z[%]—cellular variety. Let f : A — B be a map
of regular local rings of finite Krull dimensions with 1/2. Suppose that the map
WHA) — W¥(B) induced by f is an isomorphism for each i, then f gives an
isomorphism of Witt groups (resp. Grothendieck-Witt groups)

W Xa,La) = WHXp,LB) (resp. GW (X a,La) = GW (Xp,LB))

for each i and any line bundle L over X.
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Proof. We may use W(X, L), to simplify the notation W*(X,, L,). We wish
to prove the Witt theory case by induction on cells. Firstly, note that the
pullback maps Wi(A) — W*(A%) and W*(B) — W*(A%) are isomorphisms by
homotopy invariance, cf. Theorem 3.1 [4]. It follows that

WEHAT) = WHAR).
Let X = Z9g D> Z1 D --- D Zn = 0 be the filtration such that
Zk,1 — Zk =A™ = Ck.

In general, the closed subvarieties Z; may not be smooth. However, let Uy
be the open subvariety X — Zj for each 0 < k < N. Every U is smooth
in X. There is another filtration X = Uy D Uy_1 D --- D Uy = 0 with
Uy —Up_1 = Zi—1 — Zj, =2 C} closed in Uy of codimension dj. Consider the
following commutative diagram of localization sequences.

W (Up-1) a— Wi, Uy, £) a— W (U, L) a—W (Up—1) a—WE (Ur, £) a

! ! ! ! !

W N (Uy—1) p— Wi, Uy, £) p—W (U, £) p— W (Ur—1) —WEH (U, L)

Here, Wék (U, £) means the L-twisted ith-Witt group of Uy with supports on
C%. Note that any line bundle over (Cy)4 is trivial, since

Pic(A”;) = Pic(A) = 0 (A is regular local and so it is a UFD).

By the dévissage theorem (cf. [I0]), we deduce that
W, (U, L)a = W, (Uk, L) g for all i.
Moreover, by induction hypothesis,
WHUp_1)a 2 W (Ug_1)p for all 4.
Applying the 5-lemma, one sees that the middle vertical map is an isomorphism.
Since the K-theory analog of this theorem is also true by induction on cells,
the GW-theory cases follow by Karoubi induction, cf. Section 3 [6]. O
COROLLARY 4.1. The Witt group (resp. the Grothendieck- Witt group)
WHX, L)k (resp. GW (X, L))

s isomorphic to
WHX,L)c (resp. GW (X, L)c)

for each i and any line bundle L over X.
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4.2 COMPARISON MAPS AND RANK ONE BILINEAR SPACES

If X is a smooth variety over C, we let X (C) be the set of C-rational points of
X with analytic topology. One can define comparison maps (cf. Section 2 [22])

K Ko(X) — K°%X(Q))
gw’: GW°X) — KO°X(C)) (3)
W WOX) - E2%x(0)

where %O(X (C)) means the cokernel of the realification map from K°(X) to
KO°(X(C)). Let GWY, (X (C)) be the Grothendieck-Witt group of complex
bilinear spaces over X (C). The map gu® consists of the composition of the

following two maps
f:GWOX) = GWL,(X(C))  g: GW,(X(C)) — KO°(X(C))

where the map f takes a class [M, ¢] on X to the class [M(C), ¢(C)] on X(C).
The map g sends a class [N, €] on X(C) to the class represented by the under-
lying real vector bundle R(NV, €) such that (N, €) ®r C = N and that e|p(y )
is real and positive definite, cf. Lemma 1.3 [22]. Let Q(X) (resp. Qop(X))
denote the group of isometry (resp. isomorphism) classes of rank one bilinear
spaces (resp. rank one complex bilinear spaces) over X (resp. X(C)) with the
group law defined by the tensor product. There are maps of sets

Q(X) = GWO(X),[L,¢] = [L£,¢]  Quop(X(C)) = GWiop(X(C)), [Lye] = [Ly €.

Let Picg(X(C)) be the group of isomorphism classes of rank one real vector
bundles over X (C).

LEMMA 4.3. The following diagram is commutative

GWo(X) —L— GW2,(X(C)) —L— KO°(X(C))

I d dl

QX) —I— Qup(X(C)) —L— Pic(X(C))

where f([L,3)) (resp. G([L,€])) is defined as [L(C), $(C)] (resp. [R(L,€)]).

Proof. The square on the left-hand side is obviously commutative. It remains
to show that the right-hand side square is commutative. Check that the map g
is well-defined. Note that, for each couple of complex bilinear spaces (L', el) and
(L,€) on X(C), if R(L',€) is isomorphic to R(L,€), then (L, € ) is isometric
to (L,e€). Besides, the map ¢ has image in Picg(X(C)). To see this, suppose
g([L,€]) = [R(L,e)] is not in Picg(X(C)) for some [L,e] € Qiop(X(C)). It
follows that X (C) has a point with an open neighborhood U such that R(L, €)|¢r
is isomorphic to U x R™ with n # 1. Then, L|y is isomorphic to U x C™ (n # 1),
since R(L, €) @g C = L. This contradicts the assumption that the bundle L has
rank one. Then, it is clear that gou =v 0 g. O
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4.3 COMPARISON MAPS AND CELLULAR VARIETIES

Let H(C) (resp. SH(C)) be the unstable Al-homotopy category (resp. the
stable Al-homotopy category) over C. Let Ho(C) be the pointed version of
H(C). There are objects in He(C):

Sl — the constant sheaf represented by Al/0A! pointed canonically;
S} —  the sheaf represented by Al — {0} pointed by 1;
T — the sheaf represented by the projective line P! pointed by oo.

Set SP4 = (SHAP=D) A (SHN with p > ¢ > 0. Then, S** and T are A'-
weakly equivalent. See Section 3.2 [9] for details and Section 1.4 [22] for dis-
cussion. One may take these objects to SH(C). The category SH(C) is trian-
gulated with translation functor S0 A —. Set I?ép’q(X) = [E*X, 571 A KO
and KOPY(X) = [B2>°X,,579 A KO| where X € Ho(C) and X € H(C).
The object KO € SH(C) is the geometric model of Hermitian K-theory
in the Al-homotopy theory defined by Schlichting and Tripathi (See Sec-
tion 1.5 [22]). Moreover, there are isomorphisms GW4(X) = K0??9(X) and
We(X) = KO?9~1471(X). One defines comparison maps (cf. Section 2 [22])

ki) KoO™'(x) — KO'(X(C))
kPYX): KOPY(X) — KOP(X(C)).

In particular, when X is a complex smooth variety, we have

gul= kK GWYUX) — KO(X(C))
witl = kitﬁl,q: Wqul(X) N KOQqul(X(C)).

THEOREM 4.1. Let X be a complex smooth cellular variety. Assume further that
Z s cellular and closed in X, and let U := X — Z. Then, the map kiq’q(U) is

an isomorphism and the map kiq“’q(U) is injective.

Proof. When Z = (), this theorem is a special case of Theorem 2.6 [22]. We
slightly modify the proof of Theorem 2.6 [22] to show this theorem by induction
oncells. Let Z =2y D Zn_1D - D Zy = 0 be the filtration such that

Ziy1 — Zp =A™ =: (.

Set Ug := X — Zj, for each 0 < k < N. Note that there is another filtration
X=UyDU; D--DUn =U with Uy —Uy1 = Zgy1 — Zx = C}, closed in Uy.
Then, the normal bundle Ny, /o, of Uy in Cy is trivial. Hence, Thom(Ny, /C)
and S2%? are Al-weakly equivalent, where d is the codimension of Cj, in Uy,
cf. Proposition 2.17 (page 112) [9]. We can therefore deduce the commutative
ladder diagram in Figure 1 (page 486) [22]. Assume by induction, the theorem
is true for Uy, and we want to prove it for Ugy 1. It is known that Ezq’q(SQd’d)
and k79T 9(524:9) are isomorphisms and that &97*9(52%4) is injective, cf. the
proof of Theorem 2.6 [22]. The results follow by the 5-lemma. O
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4.4 GROTHENDIECK-WITT GROUP OF A DELETED QUADRIC

In this subsection, we simply write X = D, (¢5),Q = Qs—2 and DQ = DQ,_;.
Note that ) is smooth and closed in P*~! of codimension 1. The normal bundle
N of Q in P*71 is isomorphic to Og(2).

THEOREM 4.2. The comparison map gw? : GW4(DQc) — KO?*1(DQ(C)) is
an isomorphism for each q € Z.

Proof. This theorem is a consequence of Theorem [£.1] o
LEMMA 4.4. The group GW®(DQc) is isomorphic to GW°(DQ).

Proof. Applying Corollary 1] and the dévissage theorem, we observe that the
vertical maps of W and GW-groups in the following commutative diagram are
all isomorphisms

GWS, (P )—GWO (P ) —GW(DQK)— W, (Pi H)— WP )

| | o] ! |

GWS. (P ) —GWO(PE ) — GW(DQc) — Wi (PE ) — W (PE)

where all vertical maps are induced from the left-hand side of the diagram (2])
(use the 5-lemma to see the middle map 2 is an isomorphism). (]

Recall the isomorphism of varieties iy : DQx — X in Remark 2] (i). Note
that ic : DQc — Xc gives a homeomorphism iy : DQ(C) — X (C) by taking
C-rational points. Besides, let v : RP*~1 — X(C) be the natural embedding.
The space RP*~1 is a deformation retract of the space X (C) in the category
of real spaces, cf. Lemma 6.3 [I5]. These maps that induce isomorphisms in
K O-theory or GW-theory are described in the diagram ().

Hermitian K-theory Topological KO-theory
w()
GW*(DQc) 1 == 1| KO°(DQ(C))

| |
| |
I Qt I
| - |
L GWO(XKk) 5 GWO(DQk) 1
| |

Proof of Theorem[31l Let &op denote the tautological line bundle over RPS~1.
Recall that there is an isomorphism of rings

KOO(RP571) = Z[Vtop]/(y‘?op + 2Vt0137 2¢(571)Vt0p)

where vy, represents the class [€op]—1, cf. Section 7 [I] or Chapter IV [12]. Note
that Picg(RP*~!) is isomorphic to Z/2. Let ¥ : GW°(Xg) — KO°(RP*~1) be
the composition of maps in the diagram (). We have known ¢ is an isomor-
phism. Therefore, to prove Theorem B.1] we only need to show ¥(v) = v4op. To
achieve this, we give the following lemma.
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LEMMA 4.5. The group Q(Xk) (cf. Section[{.3) is isomorphic to Z/2.
Proof. There is an exact sequence (cf. Chapter IV.1 (page 229) [14])

1 — O(Xk)"JO(XK)* — Q(Xk) - oPic(Xk) — 1

where oPic(X ) means the subgroup of elements of order < 2 in Pic(Xg) and
where F is the forgetful map. Note that oPic(Xk) = Z/2, cf. [19]. In addition,
observe that O(Xg)* & R* = K* and that the group K*/K?* is trivial. It
follows that the forgetful map F' is an isomorphism. In fact, it sends the non-
trivial element [£, o] (in Lemma ) to the non-trivial element [¢]. O

Proof of Theorem [31] (Continued). In light of Lemma 3] there is a map
V: Q(Xk) — Picg(RP*™1)
(obtained in an obvious way) such that the following diagram is commutative

GWO(Xk) —2— KO°(RP*1)

J i
Z)2=Q(Xk) —2 s Picg(RP*~1)=Z/2.

The map i is injective (Note that [€] and 1 are distinct elements in Ko(Xx) by
its computation in Proposition 2.4 [7]). The map j is injective by the compu-
tation of KO°(RP*~1). Then, we see that 1 is bijective and must send [¢, o] to
[€top]. Therefore, ¥([€, 0]) = [€top], SO that ¥ (v) = viep. O

A OPERATIONS ON THE GROTHENDIECK-WITT GROUP

The ~'-operations on GW? of an affine scheme are analogous to those on the
topological K O-theory which have been explained in Section 1 and 2 in [2].
For readers’ convenience, details have been added.

Let Bil(X) be the set of isometry classes of bilinear spaces over a scheme
X. The orthogonal sum and the tensor product of bilinear spaces over the
scheme X make Bil(X) a semi-ring with a zero and a multiplicative identity.
Then, by taking the associated Grothendieck ring K (Bil(X)), we have a
homomorphism of the underlying semi-rings

L1 Bil(X) — K (Bil(X))
satisfying the universal property (see Chapter 1.4 (page 137) [14] for details).

REMARK A.1. For an affine scheme X, the ring GW(X) is identified with
K (Bil(X)), cf. Chapter 1.4 Proposition 1 (page 138) [14].
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DEFINITION A.1 (Chapter IV.3 (page 235) [I4]). Let (F, ¢) be a bilinear space
over a scheme X. Let ¢ be a strictly positive integer. The i-th exterior power
of (F, ), denoted by A'(F,¢), is the symmetric bilinear space (A*F, A’¢) over
X, where A'F is the i-th exterior power of the locally free sheaf F and where

Ag: NF xx N'F — Ox
is a morphism of sheaves consisting of a symmetric bilinear form
ANp(U) : N'F(U) x N'F(U) = Ox(U)
defined by
ANp(UN(xy A ANz yr A+ Ay;) = det([p(U)(x5, y&)]ixi)

for each open subscheme U of X. The exterior power AY(F, ¢) for every bilinear
space (F, ¢) (over X) is defined as 1 = (O, id).

LEMMA A.l. Let (F,¢),(G,v) be bilinear spaces over X. Then, we have that
() AYF.0) = (F,9);

(b) A*(F,¢) © (G.4)) = @D, ;i A" (F.0) ® A°(G,);

(c) If (F, ) is of constant rank © > 1, AY(F,¢) = 0 whenever i > ©.

Proof. (a) and (c) are clear. For (b), it is enough to show that the canonical
isomorphism of locally free sheaves

0: P NFRANG o ANFaQ)
r+s=k

respects the symmetric bilinear forms. This may be checked locally. Let U be
an affine open subset of the scheme X. One may choose elements

e® =21 A ANapy € AVFU) and yO =y1 4 A Aysy € ASG(U)

for t € {1,2}. Let a;; :== ¢(U)(xi1,2,2) and bg; := Y(U)(yk,1,y1,2). We have
matrices A = [a; j]rxr and B = [bgi]sxs.- On the one hand, we get that

A"U) @ Ayp(U) (2 @ yM, 2 @ y?)) = det(A) x det(B).  (5)
On the other hand, set
u® = o) @ y) € AH(F(U) & GU)
for ¢ € {1,2}. Consider the elements
(%.4,0), (0, yx.1) € F(U) & G(U)
for 1 <j<r1<k<sandte{l,2}. Itis clear that

u® = (@1,6,0) A= A (2, 0) A (0, 91,6) A== A (0, 9s,0)
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for t € {1,2}. Then, we deduce that

A O) @ ), ) = det (G ) 0

Note (@) = (@). The result follows. O

Let A(X) denote the group 1 4 tK(Bil(X))[[t]] of formal power series with
constant term 1 (under multiplication). Consider a map

Ay Bil(X) = A(X), [F ¢] = 1+ Y A([F, )t

i>1
If I:(F,¢) — (G,9) is an isometry of bilinear spaces, so is the natural map
AT 2 AY(F,¢) — NG, ).

Then, the map A; is well-defined. Furthermore, Lemma [A] (b) implies that
A; is a homomorphism of the underlying monoids. By the universal property
of K-theory, we can lift A; to a homomorphism of groups

A K(Bil(X)) — A(X)

such that \; ot = A;. Taking coefficients of )\, we get operators (not homo-
morphisms in general)

M K(Bil(X)) — K(Bil(X)).
Set vt = A¢j(1—r) and write 3z = 143", yitt. Again, we obtain operators
7' K(Bil(X)) — K(Bil(X)).
Explicitly, we deduce
;w’ti = ; N1 =) =1+ ;(;1 N <; B 1) )t

Hence, the 4" are certain Z-linear combinations of the A*. By definition, the
map ; is a homomorphism of groups. Hence, for all z,y € K(Bil(X)), we have

COROLLARY A.1l. (a) vi(z +y) = ve(x)%(y);
(b) v([n] — 1) = 14+ t([n] — 1) where n is a bilinear space of rank 1 over X;
(c) If (F,¢) € Bil(X) is of constant rank © > 1, v*((F,$) —0) =0 if i > O.

Proof. (a) is proved. For (b), we deduce

() —1) = 20 Sacolt)  LEEZ0 4 pi) 1),
For (c), see the proof of Lemma 2.1 [2]. O
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