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ABSTRACT. We write out and prove the trace formula for a convolu-
tion operator on the space of cusp forms on GL(2) over the function
field F' of a smooth projective absolutely irreducible curve over a finite
field. The proof — which follows Drinfeld — is complete and all terms
in the formula are explicitly computed. The structure of the homo-
geneous space GL(2, F')\ GL(2,A) is studied in section 2 by means
of locally free sheaves of Ox-modules. Section 3 deals with the reg-
ularization and computation of the geometric terms, over conjugacy
classes. Section 4 develops the theory of intertwining operators and
Eisenstein Series, and the trace formula is proven in section 5.
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1 INTRODUCTION AND STATEMENT OF THE TRACE FORMULA

1.1 INTRODUCTION

The (non-invariant) trace formula for GL(2) over a number field was stated
and its proof sketched in chapter 15 of the influential book of Jacquet and
Langlands [JL70] of 1970. It was used there for comparison of automorphic
representations of the multiplicative group of a quaternion algebra, with auto-
morphic representations of GL(2).

Drinfeld used the trace formula for GL(2) over a function field F' to prove
Langlands’ conjecture for GL(2, F'), and to count in [D81] the number of two
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dimensional irreducible representations of the fundamental group of a smooth
projective geometrically irreducible curve X over a finite field. To check the
statement of the trace formula of [JL70] in the function field case, Drinfeld gave
a detailed (but unpublished) proof. It differs from the one sketched in [JL70].
It is this proof of Drinfeld which is given in this paper.

The main reason why this proof is still interesting is the elementary and un-
conventional treatment of Eisenstein series (see subsections 4.7-4.8 below), and
the computation of traces in the spirit of Tate [T68], see subsection 5.2. In
both cases it is based on a “baby model” (see Proposition 4.31, Corollary 4.32,
Lemma 5.11), which cries out for generalization.

Let us describe the contents of this article.

The trace formula itself is stated in subsection 1.2 with a few comments. More
comments, including informal ones, are given in section 3.

Section 2 contains a dictionary between the language of adeles and the lan-
guage of vector bundles on the smooth projective curve X corresponding to
F. In particular, the set of rank n vector bundles on X is identified with
GL(n, F)\ GL(n,A)/ GL(n,Oy4), where Oy C A is the ring of integral adeles.
This dictionary goes back to A. Weil [W38], although in an older language. It
underlies Drinfeld’s Geometric Langlands program [BD].

The terms which appear in the geometric part of the trace formula — orbital in-
tegrals and weighted orbital integrals — are estimated and regularized in section
3.

In section 4 intertwining operators, Eisenstein series, and L-functions are in-
troduced. The rationality of the intertwining operator M (1, u2,t) and the
functional equation M? = 1 are first proven using local computations: nor-
malization of the intertwining operators by L-functions and e-factors, and the
functional equation of the L-functions.

In subsections 4.7-4.8 these facts are proven using an alternative, global ap-
proach. The ideas might go back to Selberg. But technically the exposition is
quite different and more elementary: in the case of function fields the analytic
problems disappear.

The trace formula is proven in section 5. The logarithmic derivative of the
intertwining operator appears as a result of a computation of the trace of some
operator in a power series space, see Lemma 5.11. This computation is probably
related to Tate’s article [T68].

Here are some questions.

1. Could the methods of subsections 4.7-4.8 and section 5 be extended to
prove the functional equation for Eisenstein series, and the trace formula, for
an arbitrary reductive group over a function field?

2. Is there a modification of the technique from subsections 4.7-4.8 that would
work in the case of number fields, e.g., for GL(2,Q)? One could try to replace
the space of formal power series used in subsections 4.7-4.8 by some space of
holomorphic functions.

3. What is the precise relationship between Lemma 5.11 and Tate’s [T68]?
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4. What is the relationship between the approach to Eisenstein series of subsec-
tions 4.7-4.8, and the classical approaches: that of Selberg-Langlands-Arthur,
and that of scattering theory (see [FP72] or [LP76])?

This author’s initial motivation to write out Drinfeld’s expression and proof of
the trace formula for GL(2) over a function field stems from his search for higher
rank analogues of Drinfeld’s formula [D81]. This led us to count with Deligne
[DF13] the number of rank n (> 2) local systems with principal unipotent
local monodromy at least at two places. There we use the trace formula in the
compact quotient case, and the transfer of automorphic representations from a
compact form to GL(n). This explains the condition: “at least at two places”.
The case of [D81] is rank n = 2, no monodromy. To complete the study
of [D81] and of [DF13] in rank two one has to consider the case of principal
unipotent local monodromy at a single place. This is done in [F], using the
explicit computations of the trace formula for GL(2) over a function field of
the present work. This was our initial motivation to write out this formula.
Drinfeld’s proof in the case of rank two, no ramification, is also given in [F].
Of course there are numerous expositions of the trace formula of [JL70], e.g.
[GJ79], geared to explain the lifting application of [JL70], mainly in the number
field case. But none computes explicitly (and accurately, cf. [D81]) all the terms
which appear in the trace formula. The latter is precisely what is needed for the
counting applications of [D81] and [F]. An attempt at a complete exposition
of the computations for GL(2) in the number field case is at [AFOO].

Of course the trace formula of [JL70] was generalized to the higher rank case
by Arthur, see e.g. [A05], in the number field case, and by Lafforgue, see e.g.
[L{97], in the function field case. But the important applications of these works
did not require explicit evaluation of all the terms which appear in the trace
formula, so our results are not included in those of [L{f97], even in the case of
GL(2) considered here.

In the number field case, the Remark on p. 112 of [A05] states: “As a matter
of fact, it is only in the case of GL(2) that the general coefficients have been
evaluated. It would be very interesting to understand them better in other
examples, although this does not seem to be necessary for presently conceived
applications of the trace formula”. Indeed the applications of [D81], [DF13],
[F] — counting rather than comparing — are of different nature than those of
[JL70], [AO5], [Lf97], where most terms can be erased a-priori in the comparison
so they need not be computed.

To repeat what is explained above, we also think the approach of subsections
4.7-4.8 and section 5 is original, substantially different from the currently known
methods (which are developed in [A05], [Lf97]), interesting and warrants further
development.

I am deeply grateful to V. Drinfeld for making available to me his unpublished
notes, for teaching me lots of mathematics in the process, and for his per-
mission to publish this paper; to A. Beilinson for telling me at IHES about
Drinfeld’s notes; to the referee for the very careful reading. The author was
a Schonbrunn visiting Professor at the Hebrew University, Jerusalem. Work
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1.2 STATEMENT OF THE TRACE FORMULA

Let us write the trace formula for GL(2) over a function field F' of a smooth
projective geometrically connected curve X over a finite field Iy, and a test
function f in C2°(GL(2,A)) (subscript ¢ for “compactly supported”, super-
script oo for “locally constant”, A denotes the ring of adeles of F').

Let 79 be the representation of GL(2,A) by right translation on the space
Ap,o of cusp forms on o - GL(2, F)\ GL(2,A), and ro(f) = [ f(g)ro(g)dg
(g9 € GL(2,A)) the convolution operator; dg = ®,dg, is a Haar measure. Here
« is a fixed idele of degree 1, whose components are almost all equal to 1.

A cusp form is a function ¢ : GL(2, F)\ GL(2,A) — E (E is a fixed algebraically
closed subfield of C) which is invariant on the right by some open compact
subgroup of GL(2,A), and fN(F)\N(A) ¢(nx)dn = 0 for all z in GL(2,A). Here
N denotes the unipotent upper triangular subgroup of GL(2). We also write A
for the diagonal subgroup, and A" = A — Z where Z is the center of GL(2). By
a well known result of G. Harder, when F' is a function field (but not a number
field) a cusp form is compactly supported modulo Z(A).

THEOREM 1.1. For any f € C°(GL(2,A)) we have trro(f) = > ;<5 Si(f)-
The terms are: -

Si(f) = la® - GL(2, F\GL(2,A)] Y f(7):

yeQk-FX

Sa(f) = Sam(f),

Som(f) = Autp |70 > /GL(2 o flzyz™Y)da.

yEQL(F2—F)
Here Fy ranges over the set of isomorphism classes of quadratic extensions of
the field F. For each Fy we fix an embedding Fo «— M (2, F) into the ring of
2 x 2 matrices over F.

S3(f) = @t yz)v(z)da.

’YEO(Z'A’(F) /A(A)\ GL(QvA)

Any x € GL(2,A) can be written in the form ank, a € A(A), k € GL(2,04),

n=(§%),bis determined uniquely by x up to b — ub+w, u € O, w € O,.

Put v(Ox) =>_, log,(max(1,[b,|,)).

Sif) = X Bus0) Buglt) = 3 (Ous(t) 4 00st7),
FEt (58 o)t @,
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ht™ : GL(2,A) — Z is defined by ht™ ((&§) k) = dega — degb (k € GL(2,04);
a,be A% ce ).

% m/(
1/, 2)
E trI (p1vs, pov,— 1,f)72zdz.
~ 4mi = m(p/pe, 2)

Here m(u,z) = L(p, 2)/L(p, 2/q). The pi, pa range over the set of characters
of AX/F* . a” v (x) = 2%8®) Also I(uy, p2) is the space of right locally
constant functions ¢ on GL(2,A) with

¢((§5) ) = la/b]'Ppi(a)u2(b)p(x) (v € GL(2,A); a,be A™; c€A).

It is a GL(2,A)-module by right translation, and tr I(pv., pev,—1, f) is the
trace of the indicated convolution operator.

d

—1

29 -1 . 5 5 - 5 y dz.
= 4 HZM jél ) pVz, Pzt f) - R(pa, p2, 2) dZR(m po, 2)]dz

Notations are as in Ss5(f), and R(p1, 2, 2) : I(paVs, pov,—1) = I(pov,—1, u1vs)
is an operator, rational in z, defined as a product @,R(p1y, fhov, 2v), 2v =
29e8(v) " The product is well defined as the local operator maps the function in
the source whose restriction to GL(2,0,) is 1 to such function in the target.
Further, R(p14, 2y, 2) is defined to be

[L(va/,UZm 22/qv)/L(va/M2va 22)]M(N1vv H2v, Z)

The operator M (p1y, fi2y, 2) = M (1902, paov,—1) is defined first by an integral

b / S((03) (30 a)dy if (/) (m)2?] < 1,

then by analytic continuation, as it is a rational function in z. The operators
Iz, pov,—1, f) and R(p1, pa, z) are considered as operators on

To(pa, p2) = {¢ € C(GL(2,04)); ¢ ((§5)x) = pi(a)pa(b)é(x);
z € GL(2,04), a,be Of; ce O}

S:(f) = %Zm(u,u,f), Z/GL(M p(det z)d.
I

Both sums range over all characters i of A*/F* -a?%. The sum of Sg is over
all automorphic one dimensional representations (podet) of o\ GL(2,A). The
integral there represents the trace of the convolution operator associated with f.

The terms S1(f) and Sa(f) are finite by Proposition 3.5, 3.6, 3.9. The argument
used in the proof of Proposition 3.9 shows that for any v € oZ(A(F) — Z(F))
the function x — f(z~'yx) on A(A)\ GL(2,A) has compact support, hence the
integral in S3(f) converges.
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By Proposition 3.11 the function 0, f(t) is rational and may have at t = 1 a
pole of order at most 1, for each a € A*. Hence 0, ¢(t) is regular at t = 1.
From Proposition 3.5 it follows that the sums in S3(f) and Sy(f) are finite, so
these terms are well defined.

For any f = ®f, in C°(GL(2,A)), the operator I(u1, us, f) is zero unless p;
are unramified at each v where f, is GL(2,0,) biinvariant. This implies that
the sums in S;(f) (5 < i < 8) are finite, for a given f. To see that S5(f) and
Se(f) are well defined, note that the rational functions m(u,t), R(p1, pe,t),
R(p1, 2, )" are regular on |t| = 1 for all characters p, pi1, po of AX/F* . a”.
For m(p,t) this follows from Proposition 4.11, for R and R~! from Corollary
4.28.

The distributions [linear forms on C°(GL(2,A))] f — trro(f), Si(f) (i =
1,2,5,7,8) are invariant, namely take the same value at f and f"(x)
f(h=zh), h € GL(2,A). For i = 3,4,6 we have S;(f") = Si(f) if h
GL(2,0,), but S; is not invariant.

If f € C*(GL(2,A)) takes values in Q then trro(f) € Q, since the representa-
tion rg is defined over Q. Fori = 1,2,3,4,8 it is clear that S;(f) € Q. Fori =7
the integrand contains the factor y(ab)|a/b|'/? which involves /7. However the
sum includes with p also pe, e(a) = —1, and so the sum of the terms indexed
by 1 and pe can be written as an integral over the domain where |a/b| is in
2.

To see that S5(f) is rational, we put a(uy, p2) = 5= fm:l f(u1, pa, t)dt where

m

f(:ula K2, t) - tr[(:ulytv HaVi—1, f) ! % lnm(ul/ﬂ% t2)7

and claim that for any o € Gal(Q/Q) one has o(a(u1, 2)) = a(? 1, p2). Note
that Gal(Q/Q) acts on the group of characters on AX/F* - a? as they are all
Q-valued. Now a(p1, p2) is the sum of the residues of f(u1, pe,t) at the points
of the unit disc. We have that o(f(u1,p2,t)) = f(Tp1, u2,e(o) - 7t) with
e(o) = o(\/q)//q. However, if f(u1,p2,t) has a pole at t = to and |to| < 1,
then by Proposition 4.11, |o(tp)| < 1 for any ¢ € Gal(Q/Q). Hence S5(f) € Q.
To see that Sg(f) € Q one proceeds similarly, using the results of Corollary
4.28 on the poles of R(ju1, 1o, t) and R(uy, 2, )"t

2 LOCALLY FREE SHEAVES OF O x-MODULES

2.1 STABLE BUNDLES

Let X be a smooth geometrically connected projective curve over F, (we take
minimal ¢). Denote by Ox the structure sheaf of X. Denote by Bun,, the set of
isomorphism classes of rank n locally free sheaves of O x-modules. By a (vector)
bundle we mean here simply a locally free sheaf. In particular, Bun; = Pic X.
The Picard group Pic X of invertible, or rank 1, locally free sheaves £ of Ox-
modules, is naturally isomorphic to the group of classes D of (Weil) divisors
D =3 nyw (n, € Z, v € |X|). Here |X| is the set of closed points of X,

DOCUMENTA MATHEMATICA 19 (2014) 1-62



EISENSTEIN SERIES AND THE TRACE FORMULA . .. 7

and the divisors D, D’ lie in the same class (are linearly equivalent) if their
difference is the (principal) divisor (f) = >, ord,(f)v where f is a nonzero
rational function on X and ord,(f) is the order of f at v € | X| (ord,(f) > 0 if
v is a zero, ord, (f) < 0 if v is a pole, ord,(f) = 0 otherwise). If £, M € Pic X
correspond to the divisors D, D’ then £ ® M corresponds to D + D'.

There is a degree map deg on Pic X: deg(d_, n,v) = >, n,deg(v) defines
deg(L) = deg(D), where deg(v) = [k, : Fy]. Here k, is the residue field of the
function field F' = Fy(X) of X over F, at v; assume F, is algebraically closed
in F. We write F, for the completion of F' at v, O, for its ring of integers. The
cardinality of the residue field k, = F,, at v is denoted by ¢, thus ¢, = qdes(v)
We also write deg(D) for deg(D), as the degree of a principal divisor is 0; recall
that D denotes the class of D.

Denote by x(£) = dimp, H°(X, £) — dimg, H*(X, L) the Euler-Poincar¢ char-
acteristic of £ € PicX. Here H'(X, L) are finite dimensional vector spaces
over F,. Then x(Ox) = 1— g where g = dimy, H'(X, Ox) is named the genus
of X. The Riemann-Roch theorem asserts that y(£) — deg(£) = x(Ox) is
independent of £ € Pic X.

Define the degree of a locally free sheaf £ of Ox-modules of rank n to be
deg& = x(€) — nx(Ox). The determinant of £ is det& = \" € € Pic X. We
have deg & = degdet £. This gives an alternative definition of the degree. A
proof of this equality is as follows. If £ is a line bundle, then there is nothing
to prove. In the general case, use the fact that both deg& and degdet & are
additive (if £ C € is a subbundle, then deg £ = deg &' +deg(£/E’) and similarly
for deg det &), and that each vector bundle has a flag, &;, such that &;/&;_1 are
line bundles.

The height of a rank two locally free sheaf £ of Ox-modules is the integer
ht(€) = max,(2deg £ — deg £), L ranges over all invertible subsheaves of €.

PROPOSITION 2.1. We have —2g < ht(€) < oo.

Proof. Let L be an invertible subsheaf of £. From the Riemann-Roch theorem
X(L£) = degL + 1 — g we obtain dimg, H'(X,£) > degL + 1 — g, whence
deg £ < dimyp, H°(X, L) 4+ g — 1 < dimp, H(X,E) + g — 1, so ht(€) is finite.

Let £ be an invertible subsheaf of £ of maximal degree. Let M be an invertible
sheaf with degM = degL + 1. Then Hom(M,E) = 0. Also, by Riemann-
Roch for the rank 2 sheaf &, dimp, Hom(M,€) = dimp, H*(X, M~1E) >
deg(M~LE) +2 — 29 = deg€ — 2deg M + 2 — 29 = degé — 2deg L — 29,
so 2deg L —deg& > —2g. O

A rank two locally free sheaf & of Ox-modules is called stable if ht(£) < 0
and semistable if ht(£) < 0. In general, the slope (E) of a locally free sheaf
& over an algebraic curve is defined to be deg £/ 1k &, and £ is called stable if
w(F) < p(€) for all proper nonzero subbundles F of € (semistable if <). A
locally free sheaf £ of rank two is called almost stable if ht(£) < 2¢g — 1, and
very unstable if ht(€) > 29 — 1. If g = 0, every £ is very unstable.
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Remark 1. A very unstable vector bundle £ of rank 2 splits into the direct
sum of two line bundles. We give here a relatively elementary treatment. An
extension can be found in the work of Harder and Narasimhan. If & is very
unstable, £ is an invertible subsheaf of £ of maximal degree, and M = £/L,
then M is invertible and Ext(M, £) = H'(X, M~L) is 0 since

degM™'L =deg L — degM = 2deg L — degE =ht £ > 2g — 1.

Indeed, by Serre duality H'(X, ML) = H°(X, £L~! Mw) where w denotes the
canonical bundle. But deg L7 *Mw < 2g—2—(2g—1) <0, and H*(X,F) =0
for an invertible sheaf F with negative degree.

PROPOSITION 2.2. The number of isomorphism classes of almost stable rank
two locally free sheaves € of Ox-modules with a fixed degree is finite.

Proof. The height of an almost stable sheaf lies in [—2g,2¢ — 2]. Hence it
suffices to show the finiteness for £ with a fixed degree n and height h. Every
such sheaf lies in an exact sequence 0 — L — & — M — 0, where £ and
M are invertible sheaves and 2deg £ — deg€& = h. Then degL = (n+ h)/2,
deg M = (n — h)/2. Since the degrees of £ and M are fixed, there are only
finitely many possibilities for £ and M (set of cardinality of the F,-points on
the abelian variety Pic’(X)). With £ and M fixed there are only finitely many
choices for € as Ext(L, M) is finite. O

The group Pic X acts on Buny : (£ € PicX,€ € Bung) — L®E. As
deg(L ® &) = 2deg(L) + deg(&),

the set of almost stable sheaves is invariant under this action. In a Pic X-orbit
we may choose € to have deg(€) in {0,1}. Hence we deduce

COROLLARY 2.3. The number of Pic X -orbits on the set of isomorphism classes
of almost stable rank two locally free sheaves of Ox-modules is finite.

2.2 BUNDLES AND LATTICES

Let £ be a rank n locally free sheaf of Ox-modules. Denote by &, the fiber
(= stalk) of £ over the generic point 1 of X. Let £, be the stalk of £ at the
closed point v € |X|. Let O, be the local ring of X at v. Then &, is an
n-dimensional vector space over F, and &, is an O,)-lattice in &, namely a
rank n free O(,)-submodule of &,.

A set M of O,)-lattices M(,) in a finite dimensional vector space V over F, v
ranges over the set | X| of closed points in X, is called adelic if there exists a
basis {e1,...,en} in V such that M) = O(,ye1 + - - - + O(y)e, for almost all v
in |[X|. “Almost all” means “with at most finitely many exceptions”. If M is
adelic then it is adelic with respect to any basis {e1,...,e,} of V.

The set of stalks {£,y;v € |X|[} of a locally free sheaf & of Ox-modules is
adelic. Conversely, an adelic set of lattices M = {M,y;v € |X|} in a finite
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dimensional vector space V over F' is the set of stalks of the locally free sheaf
& of Ox-modules defined by

HY(U,E)={scV;YoeU,ssc My}

for any open subset U of X. Obtained is an equivalence of the category of finite
rank locally free sheaves of O x-modules, with the category of finite dimensional
vector spaces over F' with adelic sets of O(,)-lattices.

Let O, be the completion of O,). The completion of F' at v is denoted Fy,.
Let V be a finite dimensional vector space over F'. Put V,, =V ®p F,. There
is a natural bijection between the set of O(,)-lattices in V', and O,-lattices in
Ve: an O,-lattice M C V' corresponds to the lattice M R0y, 0, in V,; an
O,-lattice N C V,, corresponds to the O(,-lattice N NV

The category C whose objects are finite dimensional F-vector spaces V with
adelic sets {M,;v € |X|} of O,-lattices M, in V,, is equivalent to the category
of finite rank locally free sheaves of Ox-modules &, by € — (&,,{E,}), where
&, is the generic fiber of £ and &, is the completion of the stalk of £ at the
closed point v € | X].

Let R,, be the set of isomorphism classes of pairs (£,7) where £ is a rank n
locally free sheaf of Ox-modules, and 7 is an isomorphism from the generic
fiber of £ to F™. The pairs (£,i) and (£',i') are isomorphic if there is an
isomorphism £-E’ which induces a commutative diagram when restricted to
the generic fiber with sides 7 and ¢’ and the identity F" — F". The group
GL(n, F) acts on R, by g : (£,71) — (€,g04). Then GL(n, F)\R,, = Bun,, is
the set of isomorphism classes of rank n locally free sheaves of O x-modules.
The set R, is the set of adelic collections of O,-lattices M,, C FJ', v € | X|. The
group GL(n, F,) acts transitively on the set of O,-lattices in F'. The stabilizer
of the standard lattice O in F* is GL(n,O,). Thus the set of O,-lattices in
E" is GL(n, F,,)/ GL(n, O,), and R, is GL(n,A)/ GL(n,Oy), where A is the
ring of adeles in F* and Og = [],¢ x| Ov. Thus

Bun,, = GL(n, F')\ GL(n,A)/ GL(n, Oa).

The elements of GL(n,A)/ GL(n,Oy4) are called matrix divisors, and the ele-
ments of GL(n, F)\ GL(n, A)/ GL(n, Oa) classes of matrix divisors. For n =1,
the identification of GL(n, F)\ GL(n, A)/ GL(n, O,) with Bun,, is the identifi-
cation of classes of divisors with invertible sheaves.

The group GL(n, A) can be identified with the set of triples

(E,in: €0 S F" (iy 1 £, 5 OM).

Given a rank n locally free sheaf £, an isomorphism i,, : &, 5 F™, and for each
closed point v in | X| an isomorphism i, : £, = O of the completion &, of the
stalk &£,y at v with Oy, let us define the corresponding g = (g,) in GL(n, A).
Each g, has to be an automorphism F* — F"  with ¢,(0") = O for almost
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all v. Construct g, as the composition 7, o i, *:

in

F'=F"®pF, <& @p F,=E&p, =& ®o0, Fy, = OI'®0, F, = F".

Note that since £ is locally free, for almost all v the map g, = i, o, I takes
Oy C Flto &, C &®FF, via i;l, and then to O] via i,,. To show that the map
{(&, 1y, (iv))} — GL(n, A) is bijective one shows that GL(n,A) acts on the set
of triples, simply transitively. Viewing the trivial locally free sheaf as O} (space
of columns), (&, iy, (iy)) is defined to be (g€, iy, (ivog, *)), where i, 0g, ' maps
the stalk g,&, of g€ at v to O}. The set of pairs {(&,i,)} then corresponds to
GL(n,A)/ GL(n,Oy), the set of pairs {(&, (iy))} to GL(n, F)\ GL(n,A), and
the set {€} to GL(n, F')\ GL(n,A)/ GL(n,Oy).

To an idéle a = (w, ™ u,; v € | X|), where m,, denotes a generator of the maximal
ideal in the ring O, of integers in F,, u, € O and n, € Z, we associate the
divisor D =) n,v, and the degree

deg(a) = deg(D) = va deg(v), deg(v) = [Fy : Fl,

where F, is the residue field of F at v, a finite field of ¢, = ¢9°¢(*) elements.
For g € GL(2,A) write deg g for degdet g. Recall that Oy = [[, O, (v € |X]).

For t € C* we write
i) =t~ = [ e
v

where ¢, = 198"}, Then v,-1(a) = [, ¢% = |a| is equal to v(a) = g4°&(®).
Also vy (my) = by, vg-1(my) = [Ty

Let £ and M be invertible sheaves. Fix isomorphisms i, i, of their generic
fibers with F. Each of (£,iz) and (M,in) defines an element of A* /Oy,
namely a divisor on X. Choose representatives a, b in A*, for example ", n,v
is represented by (w, ). Given an exact sequence 0 — £ — & — M — 0 of
locally free sheaves, choose an isomorphism ¢ between the generic fiber of £ and
F? 50 that the induced exact sequence of generic fibers 0 — F — F? — F — 0
is standard (z = (5),(y) — y) The isomorphism ¢ is defined uniquely up
to left multiplication by an automorphism of F? of the form (}!), t € F.
The pair (£,¢) determines an element of GL(2,A)/ GL(2,04), of the form
w=(§%)(2Y), with z in A. Since u is defined up to right multiplication by
an element of GL(2,0), z is uniquely defined up to addition of an element of
20,. Replacing ¢ by (1) with ¢t € F replaces z by z 4 t. Thus we get a
bijection

Ext(M, £) — A/(F + %OA).

This is an isomorphism of F4-vector spaces.

In summary, if the invertible sheaves £ and M correspond to ideles a and
b, then Ext(M, L) ~ A/(F + $0,), and the map Ext(M, £) — Buny which
associates to the exact sequence 0 — £ — & — M — 0 its middle term,
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coincides with the map A/(F + ¢0,) ~ H' (X, M~1L), see [S97], IL. 5. The
isomorphism A/(F + £04) = Ext(M, £) is H (X, M~'£)= Ext(M, L).

2.3 THE SpACE GL(2, F)\ GL(2,A)

PROPOSITION 2.4. Given a € A*, dega > 2g — 1, then aOy + F = A.

Proof. If L is an invertible sheaf on X associated with a, then A/(F +aOy) =
HY(X, L). By Serre duality H(X, £) ~ H°(X, L~ 'w), where w is the canonical
bundle of degree 2g — 2. Then deg(£L 'w) < (29 —2) — (29 — 1) = -1 < 0,
hence H(X, £L71w) = {0}. O

Define a function
ht™ : GL(2,A) = Z by ht" ((§5)k) = dega — degb

for all a,b € A*, c € A, k € GL(2,0,). It is clearly a well defined function on
B(F)\ GL(2,A). For x € GL(2,A), put

ht(z) = ht* :
() . (vz)

On GL(2, F)\ GL(2,A) it is well defined.
PROPOSITION 2.5. For any x € GL(2,A) we have —2¢g < ht(z) < oo.

Proof. This follows from Proposition 2.1 as if £ is a rank two locally free sheaf
of Ox-modules associated to the image of z in GL(2, F))\ GL(2,A)/ GL(2,0,),
then ht(x) = ht(€). O

Put Hp = {x € B(F)\ GL(2,A); ht"(z) > 0} and
H = {z € GL(2, F)\ GL(2, A); ht(x) > 0}.

PROPOSITION 2.6. (1) The restriction p to Hp of the natural projection p’ :
B(F)\ GL(2,A) — GL(2, F)\ GL(2,A) is a homeomorphism Hp — H.

(2) The set {x € GL(2, F)\ GL(2,A); ht(z) < n} is compact modulo the center
Z(A) of GL(2,A) for every integer n.

Proof. (1) The map p is clearly onto. To show that p is injective it suffices to
show for any z in GL(2,A),y € GL(2, F), that ht™(z) > 0 and ht*(y2) > 0
implies v € B(F). This is a typical application of the Harder-Narasimhan
filtration. In simple, explicit terms, this follows from

LEMMA 2.7. If g € GL(2, F) — B(F) then ht™ (z) + ht™(gx) < 0.
Proof. Write g as giwge with g1,92 in B(F), w = ({}). Put 2’ = gou.
Then ht*(z) = ht"(2’), ht"(gz) = ht™(wz’). Thus we need to show that

ai ¢ az Cc2

ht*(2') + ht*(wa’) < 0. Suppose 2’ = (G 41 ) ki, wa’ = (¢4 ) k2 with
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ki ks € GL(2,04). Put koky! = (:g). Then (% §2) (2‘?) —w(G) =

(a01 2 ) Hence byy = a;. Thus dega; < degby (as degy < 0, since v € Oy).

But deg agzby = degaib;. Hence degas < degb;. Then ht™(z') 4+ ht™ (wa') =
dega; — deg by 4+ degas — degbs < 0. O

Now the natural projection p’ : B(F')\ GL(2,A) — GL(2, F)\ GL(2, A) is open
and Hp is an open subset of B(F)\ GL(2,A). Hence the bijection p = p/|Hp :
Hp — H is open. Since it is also continuous, p is a homeomorphism.

(2) The image of the set S = {x € B(F)\ GL(2,A); —2¢g < ht™(2) < n} in
GL(2, F)\ GL(2,A) under p’ contains the set {z € GL(2, F)\ GL(2, A); ht(z) <
n}. So it suffices to show that S is compact mod Z(A). Choose a compact C
in A* with

CF* ={te A*;—2g < degt <n}.

Choose an idele d with degd > 2g — 1. Put
Y:{(éf)(gg)kz; k€ GL(2,0,), a,be AX, %ec, cedOA}.

LEMMA 2.8. The map Y — S is surjective.

Proof. Let € GL(2,A),—2g < ht"(z) < n. We need to show that x can
be written as hy with y € Y and h € B(F). Write z as (3 ) K with k €
GL(2,04),r,t € A*,s € A. Tt remains to show that (§ {) can be expressed as
(04)(§5)(29) with a,be AX, £ € C, c €dOys, a,8 € F*, v € F. Thus we
need to show the existence of a, b, ¢, a, 8, such that

(*) aac =71, Bb=t, a,beA*, a,pelF*, $eC,

(**) blac+v)=s, c€dOy, vE€EF

By definition of =, degr — degt lies in [—2g, n], so the existence of a,b, a, 8
satisfying (*) follows from the definition of C. The existence of ¢ € dO4 and
v € F satisfying ac+~ = s/b follows from: cOp + F = A if dege >2g—1. O

Since Y is compact mod Z(A), so is S, and (2) follows. O

In summary, the homogeneous space GL(2, F')\ GL(2,A) is the union of the
compact mod Z(A) set {z € GL(2,F)\ GL(2,A); ht(z) < 0}, and the set
H = {z € GL(2, F)\ GL(2,A); ht(x) > 0}, whose structure is simpler. The set
Hp, hence also the sets H and GL(2, F')\ GL(2, A), are noncompact modulo
Z(A). Indeed the function ht™ takes arbitrary large values.

The image of H in Buns = GL(2, F)\ GL(2,A)/ GL(2,04) is the set of non-
semistable locally free sheaves.

The set GL(2, F')\ GL(2,A)/ GL(2, O,) is analogous to the set

SL(2,7)\ SL(2,R)/SO(2) = SL(2, Z)\b,

where h = {2z € C;Imz > 0}, the upper half plane, is isomorphic to
SL(2,R)/SO(2), by
g g(i) = (at +b)/(ci + d).
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The set B(F)\ GL(2,A)/ GL(2, O,) is analogous to N\b where N is the group
of transformations z + z+n (n € Z) on h. The function ht ™ is analogous to the
function z — InTm z on N\h. The statement —2g < ht(x) < oo corresponds to
the statement that the natural map from the half plane {z € C;Im 2 > /3/2}
to SL(2,Z)\b is onto. The statement that p : Hgp — H is homeomorphism
corresponds to the statement that the map N\{z € C;Imz > 1} — SL(2,Z)\h
is injective, and the compactness of {x € GL(2, F)\ GL(2,A); ht(z) < n}
corresponds to the statement that the complement in SL(2,7Z)\h of the image
of the half plane {z € C;Imz > h} is compact.

2.4 /(-GROUPS

An (-space is a Hausdorff topological space such that each of its points has a
fundamental system of open compact neighborhoods.

We shall consider on /-spaces only measures for which every open compact
subset is measurable, and its volume is a rational number. If dz is such a
measure on an f-space Y, and f is a locally constant compactly supported
function on Y with values in a field E of characteristic zero, then [, f(z)dx
reduces to a finite sum, and it is well defined.

On topological groups we consider only left- or right-invariant measures.

An /-group is a topological group with an ¢-space structure.

PROPOSITION 2.9. Let G be an (-group. Then (1) there exists a fundamen-
tal system of meighborhoods of the identity in G consisting of open compact
subgroups;

(2) there exists a left Haar measure on G such that the volume of each open
compact set is a rational number.

Proof. (1) Let U be a neighborhood of the identity in G. We shall show that U
contains an open compact subgroup. Since G is ¢-space, we may assume that U
is open and compact. Put V = {x € G;2U C U}. Then V = NyepUu~1!, hence
it is compact. Now for each v in V' and w in U, by continuity of multiplication
m there exists an open subset W,, containing v, and U, in U containing u, such
that m(W,,,U,) C U. As U is compact and U = UyecpU,, there are finitely
many ui,...,u, in U with U = Uj<;<,U,,. Then W = Ni<i<, W, is open
in V and it contains v. Thus V is an open neighborhood of the identity, and
V-V =V. Then VNV~ is an open compact subgroup in U.

(2) Fix some left Haar measure on G. Denote the volume of an open compact
subgroup U by |U|. For two such groups, U; and Us we have

M _ |U1| / |U2| _ [U1:U1ﬂU2] G(@
Us] — [ULNa] [ULNUs| — [Up:UiNU]

Consequently the Haar measure on G can be chosen to assign rational volume
to every open compact subgroup of G. But then the volume of every open
compact subset K in G is rational, since as in (1) for such K there is a compact
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open subgroup U of G with KU C K, and then |K| = [K : U]|U] is rational,
where K is a disjoint union of [K : U] translates of U. O

Fix an ¢-group G and a left Haar measure on G such that the volume of any open
compact set is a rational number. Fix a field E of characteristic zero. The E-
vector space Hg of compactly supported locally constant functions f: G — F
is an algebra under the convolultion (f1 * f2)(g9) = [, fi(h) f2(h~'g)dh. For an
open compact subgroup U in G the set of U-biinvariant functions in Hg is a
subalgebra HY, called the Hecke algebra of (G,U). Although H¢ has no unit
(unless G is discrete, when the d-function is in Hg), HS does: it is §p : G — Q,
the characteristic function of U divided by |U].

A representation 7 of the group G on a vector space V is called smooth if
the stabilizer of any vector of V is open, and admissible if it is smooth and
for any open subgroup U of G the space VY of U-fixed vectors in V is finite
dimensional.

If 7 is a smooth representation of an /-group G on a vector space V over F, for
each f € Hg define the operator n(f) : V.= V by n(f)v = [ f(g)m(g)vdg.
This integral reduces to a finite sum since m is smooth, and 7(f; * fa) =
7w(f1) om(f2). Then V is naturally an Hg-module, and for any open compact
subgroup U of G, the space V'V is a unital module over Hg .

PROPOSITION 2.10. (1) A smooth G-module V' # {0} is irreducible iff for
every open compact subgroup U of G either VUV = 0 or VU is an irreducible
Hg—module.

(2) Given an open compact subgroup U of G and an irreducible unital Hg—
module M, there exists a smooth irreducible G-module V' such that V'V is iso-
morphic to M as an Hg-module, and V' is determined by this property up to
isomorphism.

For a proof see [BZ76], 2.10. See [BZ76], 2.11 for

Schur’s Lemma. Let w be an irreducible admissible representation of G in a
vector space V' over an algebraically closed field E. Then any nonzero G-module
morphism (intertwining operator) V.— V is a scalar.

PROPOSITION 2.11. Let 7 be an irreducible admissible representation of G in
a vector space V' over an algebraically closed field E. For any field extension
E' of B, the representation of G in' V ®@p E' is also irreducible.

Proof. By Proposition 2.10, the statement reduces to a similar statement for
finite dimensional algebras, since 7 is assumed to be admissible. O

Let F be a subfield of C invariant with respect to complex conjugation. A
representation of G on a vector space V over E is unitary if there is a G-
invariant scalar product on V (thus a bilinear function (-,-) : V x V — E with
(v,w) = (w,v) and (v,v) =0 iff v = 0, and (gv, gw) = (v, w) for all v,w in V
and ¢ in G).
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Note that we do not require V' to be complete with respect to the scalar product,
even in the case £ = C. If F is algebraically closed and the representation of
G in FE is irreducible and admissible, then the G-invariant inner product on V'
is unique up to a scalar multiple, if it exists.

PROPOSITION 2.12. Let 7 be an admissible unitary representation of G in the
E-space V. Fix a G-invariant scalar product on V. Let L be an invariant
subspace of V, and L* its orthogonal complement. Then V = L & L*.

Proof. Given z € V, we need to express it as x1 + z2 with 1 € L and x4 €
L+*. Since 7 is smooth there exists a compact open subgroup U of G with
z € VY. Since 7 is admissible, dimg V'V is finite. Thus z = z1 + a9 for
some 1 € LY, 29 € VU, 29 orthogonal to LY. Tt remains to show that xs is
orthogonal to the entire space L. Let 6y be the unit in HY. Then 7(dy) is the
orthogonal projector V +— VU, Hence for every y in L, (z2,y) = (7(0v)z2,y) =
(z2, m(6r)y) = 0 since m(6y)y € LY. O

It follows that every admissible unitary representation of G is a direct sum
of irreducible representations. This sum is not necessarily finite. However,
given an open compact subgroup U of G, only finitely many summands contain
nonzero U-invariant vectors.

2.5 AUTOMORPHIC FORMS

Let E be an algebraically closed field of characteristic zero. An automorphic
form is a smooth function ¢ : GL(2, F)\ GL(2,A) — E, where by smooth we
mean that there is an open subgroup Uy of GL(2,A) such that ¢(zu) = ¢(x)
for all w € Uy and o € GL(2,A). A cusp form is an automorphic form ¢ with
Jayp@((§7)x)dz =0 for all z € GL(2, A).

Since ¢ is right locally constant (= smooth) and A/F is compact, the integral
here is well defined and reduces to a finite sum.

Let AY be the space of cusp forms ¢ : GL(2, F)\ GL(2,A) — E. The group
GL(2,A) acts on AF by right translation: (r(h)¢)(g) = ¢(gh). By a character
of an ¢-group G with values in £ we mean a locally constant homomorphism
X :G — E*. If E C C such x is called a unitary character if |x(g)| = 1 for all
g in G.

Denote by A¥ () the space of ¢ € A with ¢(ax) = x(a)¢(x),a € A* (identi-
fied with the center of GL(2,A)),x € GL(2, F)\ GL(2,A). The space AF(x) is
invariant under the GL(2, A)-action.

Let m be an irreducible representation of GL(2,A) over E. By Schur’s lemma,
there is a character x : A* — E* such that for every a in A*, 7(a) is multipli-
cation by x(a). This x is called the central character of .

If V. AF is an irreducible admissible representation m of GL(2,A) and x is
the central character of V, then V' C A¥(x). Since the center of GL(2, F') acts
trivially on A%, y is trivial on F'*. Thus every irreducible admissible 7 C A¥
lies in A (), where x is the central character of 7, which is a character of
A*/F*. The following is known also e.g. for GL(n).
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PROPOSITION 2.13. Fiz an open subgroup U of GL(2,A). There exists a com-
pact mod Z(A) subset K of GL(2,F)\ GL(2,A) such that the support of any
U-invariant cusp form is contained in K.

Proof. We first show that there is an integer n such that given z € A and
z € GL(2,A) with ht*(z) > n, there exist u € U and 8 € F with (§ %)z =
(42)m

To see this, fix an effective divisor —D = Zue\)q nyv on X, put d = ()
and let Jp = dOy be the corresponding ideal in Oy. The groups I'(D) = {7 €
GL(2,04);y = I mod Jp} make a basis of neighborhoods of the identity in
GL(2,A). Thus we may assume in this proof that U = I'(D). In this case
we shall show that n = 29 — 1 — deg(d). Indeed, fix z € A and 2 = (§ )k
with k € GL(2,04) and ht*(z) = dega — degb > 29 — 1 — deg(d) (note:
deg(d) = —degD = 3, n,degv). Then “dOA +F =Aand z = ¥t + 8
for some 8 € F and ¢t € Op. Put u = k= (§4')k. Then u € I‘(D) and
(b5)e=(57) au.

We claim the proposition holds with K = {2 € GL(2, F)\ GL(2,A); ht(z) <
n}. This K is compact modulo Z(A). Let ¢ be a U-invariant cusp form,
x € GL(2,A), ht(zx) > n. We shall show that ¢(x) = 0. Replacing z by
v for suitable v € GL(2, F), we assume that ht™(z) > n. By our choice of
n, ¢((§%)x) = ¢(x) for all z in A. Since ¢ is a cusp form, ¢(z) = 0. O

COROLLARY 2.14. The representation of GL(2,A) in AF(x) is admissible.

PROPOSITION 2.15. Let E' be an extension of E, and x : A*/F* — E* a
character. Then A (x) = A¥ (x) @p E'.

Proof. The space AF(x) @z E' consists of the functions ¢ in AF () whose
values span a finite dimensional space over E, since ¢ € AF(x) takes finite
number of values times the set I' of values of y. But every ¢ in Agy(x) has this
property, since the set of its values lies in finitely many cosets of T'. O

Given a representation 7 of GL(2,A) over E and a character w : A — E*|
write wr or Tw or w @ or T ®w for the representation (mw)(z) = w(det x)w(x)
in the space of .

PROPOSITION 2.16. For any characters x, w: A* /F* — E*, we have
AF () ®w = AF (xw?).

Proof. We need to construct an invertible linear map L : AF(x) — AF (xw?)
such that for every ¢ € AF(x) and h € GL(2,A) we have r(h)L (qb) =
w(det h)L(r(h)®), where (r(h)p)(x) = ¢(xh).

Such L is (L) (x) = ¢p(x)w(det z). O

PROPOSITION 2.17. Given a character x : A% /F* — E* there exists a char-

acter w : AXJF* — E* such that x(x)w(x)? is a root of unity for every x in
AX/FX.
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Proof. Fix o € A*/F* with dega = 1. Such « exists since in the finite field
extension F/Fy(t), where ¢t € F is transcendental over Fy, there are always
primes which split completely. Fix ¢ in the algebraically closed field E with
? = x(a). Define w : AX/F* — E* by w(z) = ¢~ %8@) put xi(z) =
x(2)w?(z), put o = {a";n € Z}. Then x; is a character of the profinite
group AX/F* . a”, hence the values of x; are roots of 1. O

PRrOPOSITION 2.18. Let E be a subfield of C invariant under complex conjuga-
tion, x an E* -valued unitary character of A*/F*. Then the representation of
GL(2,A) in AF(x) is unitary.

Proof. The function x + ¢(2)dy(z) on GL(2,F)\ GL(2,A), where ¢1,
2 € AF(x), is invariant under Z(A) and is compactly supported as a
function on PGL(2,F)\PGL(2,A). Let dx be an invariant measure on
PGL(2, F)\PGL(2,A). It exists since PGL(2, F') is a discrete subgroup of
PGL(2,A), a group with a two-sided invariant measure. Then

(61, 62) = / 1 (0)By(a)dz (x € PGL(2, F)\ PGL(2, A))

is an invariant scalar product on A (y). O

COROLLARY 2.19. The representation of GL(2,A) in A¥(x) is a direct sum of
wrreducible subrepresentations.

Note that we may assume that all values of x are roots of unity, and that
E=Q.

The multiplicity one theorem asserts that in A () any irreducible representa-
tion of GL(2, A) occurs with multiplicity one.

An irreducible representation of GL(2,A) over an algebraically closed field E
is called cuspidal if it is isomorphic to a subrepresentation of AY.

2.6 FACTORIZABILITY

Irreducible admissible representations of GL(2, A) are factorizable, as we pro-
ceed to show. Let E denote an algebraically closed subfield of C. An irre-
ducible representation of GL(2, F,) in an E-space V' is unramified if V' contains
a nonzero GL(2, O, )-invariant vector.

PROPOSITION 2.20. The space of GL(2, O,)-invariant vectors VGL(2.00) in an
unramified representation (w, V') of GL(2, F,,) is one dimensional.

Proof. Denote by H, = C.(GL(2,0,)\ GL(2, F},)/ GL(2,0,))) the Hecke con-
volution algebra of compactly supported GL(2, O, )-biinvariant E-valued func-
tions on GL(2, F,). We claim it is a commutative algebra. Indeed, for any
| € H,, the function t f(x) = f(*z), where 'z is the transpose of x, is also in H,.
Since (zy) = 'y'z, we have !(f1 * fo) =t fax ' f1 for all f1, fo € H,. By Cartan
decomposition every GL(2, O,)-double coset in GL(2, F,,) contains a diagonal
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matrix. Hence ! f = f for all f € H,, and f1* fo = (fi* f2) = faxtf1 = fox f1
for all fi, fo € H,. If V is unramified, VE“(2:9+) is a nonzero irreducible H,-
module. But H, is commutative, so dimpg VE*Z0) ig 1. O

Given an irreducible admissible representation m, of GL(2, F},) in a space V,,
for every closed point v € | X| such that 7, is unramified for all v € S, S C | X|
finite, construct a representation 7 = ®m, of GL(2,A) as follows. For each
v € | X| — S choose a nonzero vector £J € VA9 For any finite set §' O S
of closed points of X put Vsr = Ques/'V,. If 87 D 5" O S, define an inclusion
Vs < Vsn by @ +— (Qpesr—5€0) @z, Put V = lim V. It is the span of
S'DS

the vectors ®,¢x|8v, & = €Y for almost all v, and &, € V, for all v € | X|.
Then V' is a GL(2, A)-module in a natural way; denote by 7 the corresponding
representation of GL(2,A). The vectors £ are determined uniquely up to a
scalar multiple, hence 7 is uniquely determined by the 7, for all v € | X].
Reducing to irreducible finite dimensional representations of tensor products
of algebras, we have

PROPOSITION 2.21. Given an irreducible admissible representation m, of
GL(2, F,) for every v in | X| which is unramified for almost all v, ™ = Q,m, is
an irreducible admissible representation of GL(2,A). Every irreducible admis-
sible representation © of GL(2,A) equals ®,m, for some irreducible admissible
representations w, of GL(2, F,)) which are almost all unramified. The represen-
tations m, are determined by m uniquely up to isomorphism.

3 LOOKING FOR A TRACE FORMULA

3.1 TRACE FORMULA IN THE COMPACT CASE

Let X be an f-space. Denote by C°(X) the space of E-valued locally constant
(= smooth) functions on X. Here E is a fixed algebraically closed subfield of C.
Let C$°(X) be the space of smooth compactly supported E-valued functions on
X. Let r be an admissible representation of an ¢-group G in an E-space V. Fix
a Haar measure dz on G. Given f € C°(G), define r(f) = [, f(x)r(z)dz, an
endomorphism of V. Since f is C*°, that is smooth, it is right invariant under
an open subgroup U of G. Then Im7(f) C VY, so Imr(f) is finite dimensional,
and the trace trr(f) is well defined. Let r be now the representation of G' on
C>(T'\G) by right translation, where I is a discrete cocompact subgroup of G.
Since r is admissible, trr(f) is defined.

PROPOSITION 3.1. Let G be an £-group. Let I' be a discrete cocompact sugroup
of G. Then G has a two sided invariant measure and T\G has a G-invariant
measure.

Proof. Since (see [BZ76]) I'\G admits a measure which when translated by x
in G is multiplied by A(z), where A is the modulus of G, we have |I'\G| =
A(z)|T\G|, thus A = 1. O
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PRrROPOSITION 3.2. Let X be an (-space, dx a measure on X K e C°° (X x X).
Define a linear endomorphism A of C=(X) by (Ap)(y) = [y K (x)dx.
Then the image of A is finite dimensional and tr A = fX K(x x)dac

Proof. We may assume that K (z,y) is of the form p(z)1(y), as such functions
span C2°(X x X). In this case the claim is clear. O

PROPOSITION 3.3. Let G be an £-group, I' a discrete cocompact subgroup, r the
representation of G in C°(I'\G) by right translation, dx a Haar measure on
G, f € C*(G),S a set of representatives of the conjugacy classes in T, Zp(7)
the centralizer of v in I'. Then trr(f) =3 s fG/Zr('y) flzyz=Y)da.

Proof. We first show that for each v € T the function z — f(xyr~!) on
G/Zr(v) is compactly supported, and that there are at most finitely many
v € S for which z + f(xyxr~1) is not identically zero. For this, fix a compact
subset K in G with KT' = G. Given ¢ € G there are k € K,6 € I', with
r = ki. Fix v e . If f(zyz~t) # 0 then kéyd~ 1k~ lies in suppf, thus
576! € Ky = K-suppf - K. Since Ky is compact Ky NT is finite, and there
are only finite number of possibilities for 6y6~!. Hence there are only a finite
number of possibilities d1,...,d, for § modulo Zr(y). Then f(xyz~—1) # 0
implies that z € K'Zr(v), where K’ = U1<;<, K §; is compact. If f(zyz~t) #
0, the conjugacy class of v in I' intersects the finite set Ky NI'. The number of
such classes is finite. Thus the sum is finite and the integrals converge.

Now given ¢ in C*°(T'\G), for any y in G we have

:/Gf(ac) yx dx—/f z)de = Ky(x,y)p(x)dx

G

where Ky(z,y) = > cp f(y~'yx). Then

trr(f) = Ky(z,z)dr = / (zflfy:c)d:c
F\G F\G ~er

/F\GZ S fale ow) dsz/ Fle 16 62 de

YES S€Zr (v)\T V€S 6le(v)\F

_ —1
= Z /ZF('Y)\Gf(z ~ya)dx.

y€ES

3.2 Case oF GL(2), OVERSIMPLIFIED

Let now A denote the space of E-valued cusp forms on GL(2, F)\ GL(2, A).
The right-shifts representation of GL(2,A) on AF is not admissible since the
center Z(A) of GL(2,A) is not compact. Fix a degree-one idele o and put

= {a™;n € Z}. Tt is a cyclic subgroup of A*, and we view A* as the
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center of GL(2,A). Denote by A(])S,a the space of cusp forms in A invariant
under «, and by 7 the representation of GL(2,A) on Ag o, by right translation.
Since A* /F*a?” is compact and every U-invariant cusp form — where U is an
open subgroup of GL(2,A) — is supported on some compact modulo Z(A) set
K C GL(2, F)\ GL(2, A), the representation g is admissible. Hence trro(f) is
defined for every f € C°(GL(2,A)).

Put A.o = C®(a? - GL(2, F)\ GL(2,A)). Fix f € C(GL(2,A)). Let r be
the right representation of GL(2,A) on A.,. We proceed to compute trr(f)
as if the space o - GL(2, F)\ GL(2, A) were compact, to see what needs to be
corrected. This space is not compact and r is not admissible, so that in fact
tr7(f) makes no sense.

For any ring R define A(R) = {diag(a,b);a,b € R*}, A/(R) = {diag(a,b);a,b €
R*, a# b}, N(R)={(}¢);a € R}. Let Q be the set of quadratic extensions
of the field F'. For each L € @ choose an embedding L < M (2, F'); it exists and
is unique up to an automorphism of M (2, F'); all automorphisms of M (2, F)
are inner. Given v € o? - GL(2, F), denote by Z(v) the centralizer of v in
a? GL(2, F).

PROPOSITION 3.4. Every conjugacy class of o” - GL(2, F') intersects precisely
one of : F* -a%;a(§1), a € F*-al; ol A(F); o - (L* — F*) for some
L € Q. In the first two cases the number of intersection points is 1, in the

3rd case 2, in the 4th case: the number of automorphisms of L over F. The
centralizers Z(v) are o”-GL(2, F), o* F*N(F), o - A(F), o* L*, respectively.

Immitating the trace formula in the compact case, one may expect
trr(f) = S1(f) + D San(f) + Ss(f)+ Sa(f)
LeQ
with
Si(f) = [a® - GL(2, F)\ GL(2,A)],

Self) = [Awer@t 3 [ fla~ ),
) oL\ GL(2,4)

yea (LX —Fx

1
S3(f) = 5 / [z ya)de,
yEQL A (F) aZA(F)\ GL(2,A)
Sa(f) = / flala (3 1) x)da.
wcar px JOPFX N(F)\ GL(2.4)

The left side of this wrong trace formula is divergent. So is Ss(f), since the
homogeneous space A(A)/a” - A(F) is not compact. We shall show that S (f)
and 377 o S2,0(f) converge, and although Sy(f) diverges, we shall show in
which way it does.

PROPOSITION 3.5. Given f € C°(GL(2,4)), the number of conjugacy classes
of v € a% - GL(2, F) with z € GL(2,A) and f(zyz~') # 0 is finite.
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Proof. The sets K1 = {trh;h € suppf} C A, Ky = {deth;h € suppf} C
A* are compact. It suffices to show that the set {y € a? - GL(2, F);trvy €
Ky,dety € Ky} is a union of finitely many conjugacy classes. Put v = o™z for
some x € GL(2, F). Then 2n = deg~, so n lies in a finite set. Fix n. Then
trz € a"Ki,detz € a2 K,y. But the sets FNa "K; and F* Na 2" K,
are finite. Hence the trace and determinant of x can take only finitely many
values. As the number of conjugacy classes of elements in GL(2, F') with fixed
trace and determinant is at most two, we are done. O

3.3 CENTRAL ELEMENTS
PROPOSITION 3.6. The volume | GL(2, F) - o2\ GL(2, A)| is finite.
Proof. This volume is equal to (below x € o GL(2, F)\ GL(2,A)/ GL(2,04))

>, e GL(2,F) Nz GL(2,04)x~"\2 GL(2, 04)|
= |GL(2,04)| Y, |[oZ GL(2, F) N2 GL(2,04)z~ |71

For z in GL(2,A)/ GL(2,04), let & = 202 be the associated rank 2 locally free
sheaf on X. Then Aut(€) consists of the g € GL(2,A) which map (£ =)z0%
to 2O% and the generic fiber F? to itself, thus Aut & is

GL(2, F) Nz GL(2,04)z™ " = a? GL(2, F) Nz GL(2,04)z .

We then need to show the convergence of

Z | Aut &7,

£€Buny /J

J being the image of a” under the natural homomorphism A* — Pic X. The
number of J-orbits on the set of stable rank two locally free sheaves on X is
finite, so it remains to show that the sum of | Aut £|~! over the set Buny® of
J-orbits of unstable rank two locally free sheaves on X is convergent.

LEMMA 3.7. (1) A rank two locally free sheaf & on X is very unstable (ht(E) >
2g—1) iff € =~ LB M where L, M are invertible sheaves with deg L —deg M >
2g — 1.

(2) If L, M € Pic X and deg L — deg M > max(2g — 1,1) then

| Aut(L & M)| = (q — 1)?gles£-dee Mtl=g,

@) IfLOM ~ L & M with deg L > deg M, deg L > deg M’ then L ~
LM~ M.

Proof. (1) If L is an invertible sheaf of £ of maximal degree and M = £/L,
then M is invertible, and Ext(M, £) = H*(X, M~1L) is 0 (by Serre duality)
as

deg ML = deg £ — deg M = 2deg £ — deg £ = ht(E) > 29 — 1.
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The exact sequence
0 — Hom(M, L) - Aut(L & M) - Aut L x Aut M — 0

implies (2) since Hom(M, £) = H°(X, M~'L) and H*(X, M~1L) = {0}, so
the Riemann-Roch theorem implies that dim H%(X, M~1L) = deg(M~1L) +
1—g. If the invertible sheaf £ corrsponds to aOy, then Aut £ consists of g € A*
which map the generic fiber F' onto itself (thus g € F*) and map aOa onto
itself (thus g € OF ). Then Aut £ = F* N Of = F* has cardinality ¢ — 1.

For (3), put £ = LOEM = L' @ M. Since deg L > (deg&)/2 > deg M,
we have Hom(£, M’) = {0}. Hence the image of £ under the isomorphism
LOMS L S M liesin L. Hence L~ L and M ~E/L~E/L ~M'. O

Assume g > 1, so that 2g — 1 > 1 (the case g = 0 is similar). The lemma
implies

S JAutE T = (- D7TPPI(X)] Y ¢ < oo

£€Buni® /J n>2g—1

COROLLARY 3.8. If the Haar measure on GL(2,A) is normalized so that
| GL(2,04)| is a rational number, then |o” - GL(2, F)\ GL(2,A)| € Q.

This follows from the proof of the last proposition.

3.4 ELLIPTIC ELEMENTS

PROPOSITION 3.9. Let L be a quadratic extension of F, v € o” - (L* — F*) C
GL(2,A), and f € C>*(GL(2,A)). Then the function x — f(zyz~') on
GL(2,A)/a” - L* has compact support.

Proof. We need to show that the map = — zyz~! on GL(2,A)/a”-L* is proper
(the preimage of a compact is compact). Since (L ® A)* /aZ - L* is compact,
it suffices to show that the map ¥ (z) = zyz~!, ¢ : GL(2,A)/AF — GL(2,A),
is proper (A, = L ®p A is the ring of adeles of L).

LEMMA 3.10. Let F be a local field in this lemma. Suppose v € M(2,F)
is reqular, i.e. the subalgebra E = F[y| generated by v is a field or is F x F.
Then the map v : GL(2, F)/E* — GL(2,F), x — xyx~!, is proper. Moreover,
if v € GL(2,0) and the ring O[y] is integrally closed, then ¢~1(GL(2,0)) =
GL(2,0)/E* NGL(2,0).

Proof. The conjugacy class C' of « is a closed subset of GL(2, F'), since ~ is
regular. So it suffices to show that ¢ maps GL(2, F')/E* homeomorphically
onto C'. It is clear that ¢ is continuous, injective and Im ) = C. It remains to
show that the map v’ : GL(2, F) — C, x + xyx~!, is open. For this, it suffices
to show that C' is the set of F-points of a smooth variety C over F, and that v’
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is smooth, that is its differential is everywhere onto. Since C is a homogeneous
space under a connected group G is suffices to show that the tangent map di)’
of 9" at the identity is onto. When verifying these properties of C and ', we
may replace F with an extension, thus we may assume that ~y is of the form
diag(a,b) with a@ # b, or (& 1) (if E is nonseparable over F'). To compute the
tangent map di’ : Lie G — T,(C) of ¢'(z) = zyx~! near the identity z = 1,
let Y be in Lie G, and put o = 1 + €Y, where €2 = 0. Then 27! =1 — €Y and
P(@)=1+e¥)y(1—-€Y)=1+¢Yy—~Y),s0 dy/(Y) =Y~ —~Y is onto
the tangent space T, (C) of C at v, and 1) is proper.

If z € GL(2, F) and zyz~! € GL(2,0), put M = 27 1O% Then yM C M. In
addition, v € GL(2,0), so yO? C O?. Thus M and O? are O[y]-submodules in
F?. Both modules are of finite type. As F? is a rank one free F = F[y]-module,
and we assume that O[y] is integrally closed, namely it is the ring of integers in
E = F[], both M and O? are rank one torsion free over the discrete valuation
ring O[y] (being rank two over O). Hence there exists a € EX with M = aO?.
Thus za0O? = 0?, that is za € GL(2,0). O

Now for v as in the proposition, for almost all closed points in X the component
of v at vis 1, v € GL(2,0,), and the ring O, [v] is integrally closed. This and
the lemma imply the proposition. O

3.5 REGULARIZATION OF THE UNIPOTENT TERMS

To study the integral which occurs in Sy(f), we regularize it as

bustt) = | flast (42 e
oZ-FX N(F)\ GL(2,F)

PROPOSITION 3.11. (1) For every f € C°(GL(2,A)) and a € A*, the integral
Oq,7(t) converges as an element of C((t)), and Cr(qg )" 0, ¢(t) € Clt,t71],
where Cp(t) = J,ex /(1 — ty) "L, t, = tdeev,

(2) If f is the characteristic function of GL(2,04) in GL(2,A), then

01.(t) = |GL(2,00)] - (¢ = 1) 71" " - [ Pic”(X)[Cr (g7,
Proof. (1) It suffices to consider f(x) =[], fo(2v), z = (z,) € GL(2,A), where
fo € C°(GL(2, F,)) for all v € | X| and f, is the characteristic function f0 of
GL(2,0,) at almost all v, since such functions span C°(GL(2,A)). Normalize

the measures on F,* and F), so that |O)| =1 = |O,|. Denote by val,(z,) the
valuation of x, € F)*, normalized by val,(m,) = 1. Define a function

hi : GL(2,F,) — Z by hf ((§2) k) = val,(a) — valy(c), k€ GL(2,0,).

Then A is well-defined and ht™ (z) = > velx| Iy (xy) deg(v). We have

Oas(t) = |4 Ja® - F*| - |A/F| ] ] ba,.s, ()
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where
Oa, 1, (to) = / fv(avzfl (3 %)SC)thI(I) degv .
FXN(Fy)\ GL(2,F,)

and t,, = t4°(*) To compute it, note that p, , = diag(w?,1) (n € Z) make a
set of representatives of the two sided coset space

FXN(F,)\ GL(2, )/ GL(2,0,).

Then
gt =t [ folava™ (3 1) a)de
nez Y FSN(F)Npy )l GL(2,00)pn,0 \Pn,s GL(2,0,)
= Z ty | BN (Fy) ﬂp;i GL(2, Ov)pmvrl / fv(avx_l (o1))dx
nel ’ P GL(2,0.,)

=> ¢,y / folawypn.o (§ 1) puby Dy =D 7alfo)a, "7,

nez GL(2,0v) nezZ

n
Ty

where 7,(f,) = fGL(2,OU)fU(aUy (é | Yy~ Hdy is 0 if n << 0 and 7,(f,) =
fo(ay) for n >> 0.

If a, € OF and f, is the characteristic function of GL(2,0,), then 7,(f,) =
| GL(2,0,)| for n > 0 and uy, = 0 for n < 0, so

Oa,.1.(tv) = | GL(2,0,)|(1 — tv/%)_l-
(2) It remains to compute (note that O | =1 and |Ox] = 1) :
[AXN(A)/a®F*N(F)| = (|A*/a”F*|/|O])(IA/F|/|Ow)).

The exact sequence 1 — F* — O — A* /a?F* — Pic X/o(= Pic"(X)) — 1
implies that the first factor on the right is | Pic’(X)|/(¢—1). The exact sequence

0—TF, = O0p—A/F— H(X,0x) =0

implies that the second factor on the right is ¢97!. |

4  INTERTWINING OPERATORS AND KEISENSTEIN SERIES

4.1 INTERTWINING OPERATORS

Let E be an algebraically closed field of characteristic zero, and v € |X| a
closed point of X. Denote by |a|, the absolute value of ¢ € F) normal-
ized by |m,| = ¢;'. It is an E*-valued character of F. Fix a square root
V@ =q"*of ¢in E. If E C C we choose ¢'/? > 0. For E-valued characters
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w1, pz of FX denote by I(p1, p2) both the space of right locally constant func-
tions ¢ : GL(2, F,,)) — E with ¢(( ¢ abz )x) = |a1/a2|71/2u1(al)ug(ag)qﬁ(x) (x €
GL(2,F,);a1,a2 € F);b € F,), and the action of the group GL(2, F,,) by right
translation on I(py,p2). The induced representation I(py,pe) is admissible
by the Iwasawa decomposition G = BK. It is unitarizable when puy, po are

unitary. It is possible to work with I(] - 73/2[“, | - |$/2u2), in whose definition

the factor |a1/a2|}}/2u1(a1);¢2(a2) becomes |aq |, 11 (a1)p2(az), but later we shall
need to multiply back by | - |, 12 The following is a standard basic result.

PROPOSITION 4.1. If puy/pa # | v, ||, then the representations of GL(2, F,)
in I(p1, p2) and I(pe, p1) are irreducible and isomorphic. If py/pe = |- |y or
|| then I(p1, u2) contains a unique proper invariant subspace I'(py, u2) and
there is a GL(2, F,)-isomorphism I' (p1, po) =~ I(pa, 1) /I (pa, p1). If po/p1 =
| - |», the subspace I'(pq] - ;1/2,u1| . |11,/2) is one dimensional; © € GL(2, F),)

acts on I'(pq] - ;1/2,,u1| : 11;/2)

via multiplication by pyi(x). The subspace

I(pal - /2 ol - [1?) s denoted by St(p2) = St(pa| - 1)/%, pa| - [;/?).

v ? v

It is isomorphic to I(pe| - |;1/2, 2] - |11,/2)/I’(;L2| . |;1/2, 2] - $/2). 1t consists of
6 € Hal [l ;%) with [ pa(deta)o(a)ds = 0.
GL(2,0.)

IF I, 12) = 138y, 1) then {yus, o} = (i, 15}, the representations (i1, 2)
(p1/p2 # | o or |- |;1) and St(uh) are infinite dimensional and inequivalent,

and St(p1) ~ St(ue) implies p = po.
We proceed to describe the operator intertwining I'(u1, u2) and I(ua, 7).
PROPOSITION 4.2. If |ui(my)/pa(my)| < 1 the integral

(o)) = [ o((85) (50 aldy

converges for each ¢ € I(u1, pu2) and x € GL(2, F,), and M¢ € I(ua, j1).

Proof. As (931) (V) = (ygl —?!1) (yll ?), the integrand is

p2(y)m (y) " Hyly o ((yll ?) w) :

which is 0 if |y|, is small, and pa(y) 1 (y) "y, *o(x) if |y, is big enough. For
sufficiently large n then the part of the integral over |y|, > ¢} is bounded by
o(x) times

2 () /()| - lyls Hdy = OS> [ () /pa () |F < o0,

k>
lylv>qy =n
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It is clear that (M@)(({ ¢)z) = (M@)(z) (c € F,) and (M)((&9)x) equals

1/2

o((5) (951 (5¥*) x)dy = pa (b)pa(a) .

2| 016)(a).

v

‘ a

Fy

We obtained, if |u1(m,)/pa(m,)| < 1, a GL(2, F,)-equivariant map

M = M(p1, p2) « I(pa, p2) = I(pa, p1).

Let vy be the unramified character of F,* with vi(m,) = t. Put M (uy, pa,t) =
M (pqve, pove-1). It converges for any pi, o, provided ¢ € C is small enough
in absolute value. To define M (u1, pu2) as the value at ¢ = 1 of the analytic
continuation of M (1, ue,t), we need these operators to be defined on the same
space, which we will take to be

Io(pa,p2) = {¢ € C®(GL(2,0,)); (4 2 ) x) = p(ar) pa(az)é(x),
ai,az € 0F, be O,, x € GL(2,0,)}.

By the Iwasawa decomposition G = BK, the restriction map I (v, piovs—1)
— Io(u1, p2) is bijective for any t. Identifying these spaces, the operator

M (pa, pa,t) becomes a map Io(p, p2) — Io(pa; p11).
Write L(u,t) for (1 — pu(mw,)t)~ 1 if p is unramified, and L(p,t) = 1 if p is a
ramified character of F*.

PROPOSITION 4.3. The operator valued function M (u1, 2, t) is rational in t €
C*. In fact the function t — L(u1/pa, t*) (M (1, p2, t)$)(z) is a polynomial
int for all ¢ € Inp(p1,p2), © € GL(2,0,). If u1,us are unramified and the
restrictions of ¢ € I(pyve, pavi—1) and ¥ € I(pavi—1, pavy) to GL(2,0,) are 1,

then M (p1, po,t)p = %W

Proof. Put ¢ = M(u1,pu2,t)¢ and aq = f\y\vgl (b((?;l)z)dy where x €
GL(2,0,). Then

Pr(z) = a +/

‘y‘v>1

@) y) "l )20 (1)) «) dy.
We shall show that this is the Taylor series of a rational function.
If n is large enough, ¢ ((yll ?) x) = ¢(z) for |yl, > ¢7. Then ¢(z) =
a1 + az(t) + as(t) with
wt) = [ @) ) e () <) d
1<]ylv<aqy

wt) = o) [ m ) )
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Clearly ax(t) is a polynomial in t (since v(m;})™! = t) and as(t) =
e*" L1 /o, 12).

If p11, 1o are unramified and « € GL(2,0,), a; = 1 and the expression for ¢;(z)
is

pr(x) =1 + / >1m(y)m(y)‘llyIJll/t(y)‘Qdy

= 1=(1=q,") Y (m(m)/palm,)) >

E>1
_ 4 A=a )l m@))  Ln/pe )
1= (pr(my)/ pa(my ) )2 L(p1/p2, g '2)

O

The operator M (u1, po,t) + I(pive, pove-1) — I(pave-1, pavy) intertwines the
GL(2, F,,)-modules for every t where it is defined. It can be regarded as
a rational function of ¢ (in fact, of ¢?) with values in the set of operators

Io(pe1, p2) — Io(p2, p1). Indeed,
M (p1, pa,t) = M(pave, pove-—1) = M(p1ve, p2).

Define

L(py/p2, g, '1?)
2 o T N g, ).
L1/ pa, 1) (b1, 2, )

COROLLARY 4.4. Suppose py and pz are unramified and ¢ € I(pave, pavi—1),
¥ € I(pavi—1, uavy) are the functions whose restrictions to GL(2,0,) are one,

then R(pu1, pa, t)p = . O

R(,u’la K2, t) =

Given characters p1, po of A*, write I(u1,pe) for the space of right locally
constant functions ¢ on GL(2,A) which satisfy

¢ ((4 L) x) = plar)pa(az)lar/az P¢(x). Put v(a) = ¢,

Then I(u1, p2) is the restricted tensor product of the spaces I(p14, f2,) Where
iy is the component of p; at v (the restriction of u; to FX — AX); it is
spanned by ®,¢, with ¢, € I(u14,12,) for all v and ¢,| GL(2,0,) = 1 for
almost all v, where p;,|O) = 1, i.e. p;, are unramified. Define the character
vy of AX by vy(a) = 8@, Then the restriction of v; to FX is v4,, the
unramified character of FX with vy, (m,) = t,(= t4°&8")). As in the local case,
we identify the spaces I(p1vs, pavy—1) with Io(py, p2) for all £. The operator
R(p, pa,t) from I(pave, povi-1) to I(povi—1, pivy) defined by R(u1, po,t) =
®yR (110, f2v, ty) is rational in ¢t. On any element in I(ujvy, povy—1) at most
finitely many components R(p1y, fioy, ty) do not act as the identity. Also write

m(p,t) for Lp,t)/L(p,t/q).
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4.2 EISENSTEIN SERIES
Write A, = C®(a? - GL(2, F)\ GL(2,4)),

Apo = C(0® - GL(2, F)\ GL(2,A)), Y = A(F)N(A)\ GL(2, A)
and Y, = Y/a?. Normalize the Haar measure on N (A) ~ A by [N(A)/N(F)| =
|A/F| = 1. The Haar measure on N (A) is invariant with respect to conjugation
by the elements of A(F) by the product formula. So it extends to a two-sided
invariant measure on the space a” - A(F)N(A). This, and the two-sided Haar
measure on GL(2,A) induce an invariant measure on Yy,.
Let ¢ and ¢ be locally constant functions on Yy, at least one of which is com-
pactly supported. Put (p,v) = [, ¢(z)¢(x)dz. On o” - GL(2, F)\ GL(2,A) a
scalar product is similarly defined. Define the map E* : A, — C(Yy) by

¢ — on, oOn(x) = / é(nz)dn, € GL(2,A).
N(F)\N(A)

Note that N(F)\N(A) is compact, so the integral converges. Note that ker E*
is the space Ag o of cusp forms invariant under «. For any f € C°(Y,,) define
a function Ef on o - GL(2, F)\ GL(2,A) by

(Ef)(z) = > f(yz), =z € GL(2,A).

~EA(F)N(F)\ GL(2,F)

PROPOSITION 4.5. The sum defining (Ef)(x) converges. For f € C>(Y,) and
¢ € A, we have (Ef,¢) = (f,E*®).

Proof. Consider the diagram
Y, & a? - A(F)N(F)\ GL(2,A) % o? - GL(2, F)\ GL(2, A).

Since N(F)\N(A) is compact, the map r is proper. Hence the natural embed-
ding r* maps C°(Y,,) to C°(a? - A(F)N(F)\ GL(2,A)). Given

W € CF(a"A(F)N(F)\ GL(2, 4)),
define a function s, on o GL(2, F)\ GL(2,A) by

(s:9)(x) = Z Y(yx), x € GL(2,A).
YEA(F)N(F)\ GL(2,F)
The sum is finite since 9 is compactly supported, and
su1p € C°(a” GL(2, F)\ GL(2,A)).

The sum which defines (Ef)(x) converges since E = s,7*.
Now define E* = r,s*, where s* is the natural embedding, and

e 1 C(@”A(F)N(F)\ GL(2,A)) — C>=(Y,)
is defined by (r.h)(x) = fN(F)\N(A) h(nz)dn, © € GL(2,A). Since (r*,r.) and

(84, 8%) are adjoint pairs, so is (E = s,r*, E* = r.s*). O
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The image Ag o of the Fisenstein map E = s,r* : C°(Yy) — A¢ o is called the
FEisenstein part of A; . The maps E and E* intertwine the GL(2 A)-action;
AE o is an invariant subspace of A, 4.

PROPOSITION 4.6. The space A o is an orthogonal direct sum of the space Ag o
of cusp forms and of Ag 4.

Proof. Cusp forms are compactly supported. Since Ay, = ker E* and Ap o =
im E, we have Ag o L Apo. Given a compact open subgroup U in GL(2, A),
put AU for the space of U-invariant functions in A, and

Aga = AeaNAY, Aga = Ao NAY, A%,a =Ap.nAY.

It remains to show that A, + A% , = AY,. If not there exists a nonzero linear
form ¢ : AV, — C which is zero on Af, +AU . There exists f € AY such that
Lp) = (@, f) for every ¢ € Ag For any U- 1nvar1ant function ¢ € C°(Y,) we
have (v, E*f) = (EvY, f) = £(EvY) = 0. Hence E*f = 0, thus [ € Ao,a- This
however is impossible since f is orthogonal to the space AY 0,o Of U-invariant
cusp forms. O

Given ¢ € C*(Ya) and @ € GL(2,A), put (M@)(z) = [y, ( (934 na)dn.
The integral converges, by

PROPOSITION 4.7. The map N(A) — Yo, n — oZA(F)N(A) (9 ') na, is
proper.

Proof. 1t suffices to consider the case of x = 1. The function
ht™ .Y, — Z, (65)k— dega — degb,

is continuous. Thus it suffices to show that the map ¢(a) = ht™((9 ') (§9)),

10

¢ A — Z, is proper. But (9 7') (§ %) is in GL(2,0,) if |ay |y < 1; otherwise
it is = (“gl ;Ul) (a;l 1) If a = (ay), then @(a) = =23, max(0,log, |ay|),
as log, |a,|, = — val,(a,) deg(v). Hence ¢ is proper. O

By definition, x +— (M¢)(x) is invariant under left translation by N(A), and
also by o - A(F). Indeed,

(Me)(( /¢ 1o )n(§h)e dy—\b\/N(Z ¢((§2) (10" ) nz)dn

and |a/b| = ¢3°8(¢/). Thus M maps C°(Y,) to C®(Y,).

PROPOSITION 4.8. Denote by I the natural embedding of C2°(Yy,) in C°(Yy,).
Then
E*E=1+ M.
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Proof. By the Bruhat decomposition, an element of GL(2, F') which is not in
A(F)N(F) has a unique decomposition nia (9 ') ne with n; € N(F), a €
A(F). Thus, for any ¢ € C°(Y,), « € GL(2,A), we have

(E¢)(z) = > dlyr) =)+ Y o((9 ") va).

~EA(F)N(F)\ GL(2,F) VvEN(F)
Hence
E*Ed)(x) = |N(A)Y/N(F x) + ?_1 vnx)dn
(F*Eg)(x) = |N(A)/N(F)é() /N<F>\N<A>V§<F>¢(( o) vna)
= o)+ (9 ) naydn = dx) + (Mo)(x).

N(A)
O

PROPOSITION 4.9. Let 1, pa be characters of A* /F*. Ift is sufficiently small,
for all ¢ € I(,ulz/t,,ugut 1) and x € GL(2,A), the integral (M (u1, p2,t)p)(x) =
fN ( ) nx)dn converges and defines a function in I(povi—1, u1vt).
Moreover M(ul,ug,t) = ¢ 7Im(p1/pa, t?)R(pa, pa, t).

Proof. Recall that |a| = ¢%°8@ and that I(u;,pus) consists of the ¢ in
C*(GL(2,A)) with

o((%4 ) ) = |ar/az|"?py(ar) pa(az) d(x),

while v4(a) = ti€e. We put t, = t4°8")  We may assume that ¢(z) =
[, ¢v(@y) with ¢y € I(u1ot4,, poyvy-1). For almost all v, the restriction
of ¢, to GL(2,0,) is 1. We may replace ¢, p;,t by their complex ab-
solute values to assume ¢ > 0 and ¢,,u; take real nonnegative values.
Then (M(p1, po,t)¢)(z) = cl], 7o, with 7, = fN(Fv) ¢ ((§ 1) nay)dn =
Jr, &u( (Y 7!) zy)dz. The measure dn, on N(F,) is normalized by |[N(O,)| = 1,
and ¢ = |N( )/N(F)| in the measure ®,dn,, on N(A).

We saw that for small enough ¢ the integral which defines 7, converges for all v.
For almost all v we have 7, = L(14/ptov, t2)/ L(f10/ praw, g, 12), so the product
[, 7o converges for small t. Now M (ju1, pu2,t) = c[[, M (10, pt20, to). Each fac-

1 L(Hlv/l'@u;ti) B
tor here is 7= Rt ay Rlkio, Hao, o). Put R(p, pi2,t) = @uR(p10, 20, t0),
and m(p,t) = L(Lq(ﬁl’:)#)’ where L(p,t) = [[,L(tw,ty). Note that ¢ is
|O] = ¢'79, using 0 = F, - O - A/F — H(X,0x) — 0. 0

It follows (since L(u,t) is a rational function of ¢) that after identifying the
spaces I (v, uovy—1) for all ¢, the operator

M(/J/l,/J/Q,t) : I(ull/t’/’l/QVtil) — I(H’Ql/tfla:u’lyt)

(defined for small ¢) depends on ¢ rationally. Hence M (1, po, t) is defined for
almost all ¢, and it commutes with the action of GL(2, A).
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4.3 L-FUNCTIONS

Let us review the theory of L-functions for GL(2). Let E be an algebraically
closed field of characteristic zero. The valuation val,(a) of a € F,* is the largest
integer n with a € ©l}O,. For any character ¢ : F, — E* ¢ # 1, let r(3)
be the largest n such that ¢ (w,;"0O,) = 1. Normalize the Haar measure on
F, by |0y = 1. The conductor of a character x : F — E* isn = 0 if
x(0X) =1, i.e., x is unramified; otherwise it is the smallest n > 1 such that
x(1 +x70,) = 1. Given x, put L(t,x) = (1 — x(mw,)t)~! if y is unramified,
L(t,x) = 1 is x is ramified. Given 1 # 1, put

T(x,¥,t) = / . X(m)_lw(x)t_ valy () g v F, — E*.

v

This I'(x, v, t) is a formal power series in ¢ which contains positive and negative
powers of t. Tate’s thesis (see [Lg94], VII, section 3-4) establishes

PROPOSITION 4.10. The formal series T'(x, ¥, t) has finitely many positive pow-
ers of t. It is a rational function of t, namely a Laurent series of a ratio-

nal function of t at t = oco. Put £(x, ¢, t) = % It has the form

c(x, )"V If () = 0 then n(x, 1) is the conductor of x. If in addi-
tion x is unramified then e(x,¥,t) is 1. If a € F}, ¢q.(x) = ¥(ax), then

e(Xs Ya, t) = x(a)(got)" De(x, 1), t).

Note that L and € are usually considered, in the case where E = C, as functions
of s, where t = ¢, °, rather than of ¢. The Haar measure on F, is usually
normalized by |O,| = qv "(¥)/2 " as this measure is self-dual with respect to the
pairing F,, x F,, — E*, (z,y) — ¥ (xy). This choice of measure is not convenient
if E # C since E has no distinguished square root of ¢.

Given a character x of A*, denote its restriction to F,* by x,. The restriction
to F, of a character ¥ of A is denoted v,. For a closed point v of X, we write
deg(v) for the dimension of the residue field at v over Fy, and ¢, = g°&(*).
Given a character x : AX/F* — E*, put L(x,t) =[], L(Xv,tv), where t, =
tdee(v); the product converges in E[[t]]. Let ¥ : A/F — E* be a character # 1.
Then e(x,t) = ¢* 79[, e(Xov, v, tv) converges as almost all factors are 1, and
e(x,t) is independent of ¢ by Proposition 4.10.

PROPOSITION 4.11. For any character x : A*/F* — E* the formal series
L(x,t) is rational in t, and L(x,t) = e(x,t)L(x~ ', ¢ 1t~1). If the restriction
of x to the group of x € A*/F* with deg(x) = 0 is nontrivial, then L(x,t)
is a polynomial. If the restriction is trivial, x is given by x(z) = udes(®) and
then L(x,t) has precisely two poles: t = u=' and t = q~tu~!, both poles are
simple. If x : A*/F* — C* is a unitary character (|x(z)| =1 for all x) then

the zeroes of L(x,t) lie in the doughnut {t € C;q~* < |t| < 1}.

The proof of this is also in [Lg94], Chapter VII, sections 7-8. The following is
due to [W45].
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THEOREM 4.12. (A. Weil). For any unitary character x : A*/F* — C*, all
zeroes of L(x,t) lie on the circle |t| = ¢~ /2.

Given a character ¥ : A/F — E* ¢ # 1, let W () be the space of locally
constant functions ¢ : GL(2,F,) — E with ¢(({%)z) = ¥(2)¢(x) for all
z € By, x € GL(2, F,). The group GL(2, F,,) acts on W () by right translation.
Fix a Haar measure d*z on F,*. For any ¢ € W (¢) put

Both Ay (t) and A, (t) are formal power series in ¢, containing positive and
negative powers of ¢.

Let 7 be an irreducible admissible representation of GL(2, F;,) over E. Then
m((&9)) is the operator of multiplication by a scalar n(a) € E*. The character
n: F} — E* is called the central character of m.

PROPOSITION 4.13. Let w be an irreducible admissible infinite dimensional rep-
resentation over E of GL(2, F,,). Letn be the central character of w. (1) There
exists a unique GL(2, Fy,)-invariant subspace W (m, ) of W () equivalent to
. (2) If € W (m, ) then Ay(t) is the Laurent series att = 0 of a rational
function, and /~X¢(t) is the Laurent series at t = 0o of a rational function. (3)
There exists a nonzero polynomial P € E[t] such that for any ¢ € W(m, 1) we
have P(t)Ay(t) € E[t,t71]. There exists ¢ € W (1) with Ay(t) #0. (4) The
quotient Ag(t)/Ag(t) of rational functions in t does not depend on the choice of
¢ in W(m, ) with Ag(t) # 0. (5) The lowest degree polynomial P € E[t] which
satisfies (3) and P(0) = 1 is independent of ¢b. (6) Put T'(m, ¢, t) = Ag(t)/Ay(t)

and e(m,,t) = % where L(m,t) = P(t)~! with P of (5). Then

e(m,4,t) has the form c(m, P))t" ™) c(m,9) in E* and n(m,y) in Z. (7) If
Va(w) is Y(az) for a € B, then e(m v, t) = n(a)(qut)* " @e(m, 9, 1).

This is [JL70], Theorem 2.18. Our L and ¢ relate to those Ly, €1, of Jacquet-
Langlands by Ly (7, s) = L(m,ty), ty = ¢, °, ejr(m, 0, s) = e(m, ¢, t,). Note
that the proof of [JL70], which claims that A,(¢) is a Laurent series of a mero-
morphic function in C — {0}, shows that A,(¢) is rational. In general, the
meromorpic functions of s over p-adic and global function fields are rational
functions of ¢°. Every smooth finite dimensional irreducible representation of
GL(2, F,) is one dimensional, of the form = +— x(det z), where x : F, — E*
is a character ([JL70], Proposition 2.7).

PROPOSITION 4.14. Let 7, 7 be irreducible admissible infinite dimensional
representations of GL(2, F,,) with equal central characters. If there is a char-
acter ¢ @ F, — E* such that for every character w : F) — E* we have
D(rw,,t) =T (7w, 1, t), then m ~ 7.

For a proof see [JL70], Corollary 2.19.
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The conductor of an irreducible admissible infinite dimensional representation
7w of GL(2, F,) is the integer n(m, 1), with ¢ normalized by r(¢) = 0. It is
well defined, as from (7) above, the integer n(m,¥) of (6) is not changed if v is
replaced by ¢, : & — ¢ (ax).

PropPOSITION 4.15. The conductor of w is the least integer n such that the
representation space of m contains a nonzero vector invariant under the group
H, ={(2%) € GL(2,0,); c € ®10,, d € 1 + 72O, }. For this n, dimgn" =
1.

For a proof see Casselman, Math. Ann. 201 (1973), 301-314.

PROPOSITION 4.16. Let w be an iwrreducible admissible infinite dimensional rep-
resentation, with central character n, of GL(2, F,). Let ¢ : F,, — E* be a non-
trivial character. Then there exists an integer m, such that if x : FX — E* is
any character with conductor > my, then L(mwx,t) =1 and

e(mx, ¥, 1) = e(x, ¥, D)e(xn, ¥, qut)a, ™.

For a proof see [JL70], Proposition 3.8. See [JL70], Proposition 3.5, 3.6, for a
proof of:

PROPOSITION 4.17. Let pu1, po be characters of F), and v # 1 a character of
Fo. If pa/pa # |- |5 then L(I(p1, p2),t) = L(p1, t)L(p2, t) and

(I, p2), ¥, t) = e, 9, t)e(pz, v, t)g; ).
If pa/p1 =1+ o, then

L(St(u| - [5772 ] - /%), ) = L - [}/%, 1),

_ Lpyt et .,
e(St(pa] - 52, mal - 1/2), 0, t) = %E(m,w,ﬂs(wl st 0)g, ).

If m is a cuspidal representation of GL(2, F,) then L(m,t) is 1.

Recall that an irreducible admissible infinite dimensional representation m of
GL(2, F,) on a vector space V is called unramified if its space VE of K =
GL(2,0,)-fixed vectors is nonzero. In this case V¥ is one dimensional, and
7 = I(u1, o) with unramified p1, po and py/pe # | - £

COROLLARY 4.18. Let m be an unramified irreducible admissible infinite di-
mensional representation of GL(2,F,) and v # 1 with r(¢)) = 0. Then

e(m,,t) = 1.

Proof. Here m = I(u1, po) with unramified gy, pa, so the claim follows from the
last proposition and Tate’s Thesis. |
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Let 7 be an admissible irreducible representation of GL(2, A) whose local com-
ponents are all infinite dimensional. Put L(m,t) = [[, L7y, ty), t, = tdee®);
the infinite product converges in E|[[t]]. For any character ¢ : A/F — E* 1) #
1, put e(m,,t) = [[,e(m0, ¥y, ty); almost all factors here are 1. From (7)
it follows that if the central character of 7 is trivial on F*, then e(m,,t) is
independent of the choice of ¢ : A/F — E*. We denote it in this case by
e(m, ).

Theorems 11.1, 11.3 of [JL70] assert:

THEOREM 4.19. Let 7 be an irreducible admissible representation of GL(2,A)
over E. Denote by n: A* — E* its central character. Then m is cuspidal iff
(1) n is trivial on F*; (2) all local components of w are infinite dimensional; (3)
for any character w : A*/F* — E* | the formal series L(mw,t) is a polynomial
int, and (4) L(mw,t) = e(nw, t)L(mn~tw™t ¢ 2t1).

Note that (4) makes sense due to (3). In [JL70], (3) is formulated as stating
that the product [], L(mywy,t,) converges absolutely for sufficiently small ¢,
and its value has an analytic continuation to a holomorphic function in C—{0}.
But the argument of [JL70] can be modified to lead to (3) in our case of E which
is not C, over a function field F'. Note that (4) is not [[, I'(mywa, 0, ty) = 13
indeed the product here does not converge.

PROPOSITION 4.20. If w, ' are cuspidal representations of GL(2,A) and m, ~
7l for almost all v, then ™ ~ 7’.

Proof. Let S be a finite set of closed points of X with m, ~ 7, at v &€ S.
Let n, " be the central characters of m, 7/, and 7,, 7, their components at
v (restrictions to F). By our assumption, n, = 7, for all v ¢ S. But the
groups FX, v € S, generate a dense subgroup of A*/F*. Hence ' = 7. By
the Theorem 4.19, of [JL70], above, fixing a character ¢ : A/F — E* ¢ # 1,
for any character w : A* /F* — E* one has

[[L(mwo t) = J]e(mwe, o, to) Limony 'wy 'y gy %8,
v v
[[L(mwo ts) = J[etmwe, o, to) Limyn, " wit, g2t ).
v v

Since 7, ~ 7, at all v € S, we conclude

wWas Py, Ty L v ~lp-t _Qt_l
HF(Fvwmwv,tv):HE(ﬂw Yo bo) LTy w7, 4"t )

ves ves L(mowo, to)

= E(ﬂ-l'uw’ua1/}71;t'u)L(ﬂ'l,U?],i}_lwgl,qJQt;l) B )
= H L(mhwy, ty) = H D (), Wy, ¥y, ty).

vES veES

Since n = 7/, it follows from Proposition 4.16 that for each v € S there exists
m, > 0 such that if x : F) — E* is any character whose conductor is > m,,,
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then T'(myx, ¥u,t) = T(7)x, ¥y, t). Fix v € S and a character x of F*. By
Proposition 4.14, it suffices to show I'(m,x, ., t) = (7 x, ¥y, t). For this, it
suffices to choose a character w : A*/F* — E* in the last displayed equation
with w, = x and such that for each u € S — {v}, the conductor of w, is
bigger than m,. But the group H = F}[],cq_ (v} O maps isomorphically
and homeomorphically onto its image in A*/F*. Hence any character of H
extends to a character of A*/F*. O

PROPOSITION 4.21. Let n be a character of A*/F*, S a finite set of closed
points of X,1b # 1 a character of AJF with r(v,,) = 0 for all uw in S. Suppose
that for any closed point v € |X|— S, m, is an irreducible admissible infinite
dimensional representation of GL(2, F,)) with central character 0, such that al-
most all 7, are unramified, there is no pair p1, pa of characters of A* JF* with
Ty = (10, f2v) for almost allv € | X| =S, and for any character w of A* /F*

which is unramified at all points of S, the formal series Hugs L(mywy, ty) and

vas L(myny tw;t t,) are polynomials, and there exists a number ¢ € E* and

integers n,, >0 (u € S) such that

H L(Trvwva tv) =c H (w("ru)tu)nu H E(vavv "/)va tu)L(va_qu_l, %J_Qt;l)'

vgS ueS vgS

Then there exists a cuspidal representation ™ of GL(2, A) with central character
n such that for every v € | X| — S the local component of © at v is .

A proof is in [JL70], Theorem 11, Corollary 11.6, proof of Theorem 12.2.
The representation 7 is unique by Proposition 4.20.

4.4 INTERTWINING AGAIN

We can now return to the study of the intertwining operators.

PROPOSITION 4.22. Let py1, po be characters of F,C. Let ) # 1 be a character
of F,. Then

— M1 — M2 —1,—
R(,U/hMQ,t)R(MQ,Mht 1) =& (anaqU 1t2) € (Iawaqv 1t 2) .

Proof. By the transformation formula for the e-factors, the right hand side
does not depend on 1. We then choose ¥ with ker+ D O, and kerv) 5 w,1O,.
We can rewrite the asserted equality as

M(MlaHZat)M(H%Hht_1> =TI <&7 7Q'u_1t2> r <&7w7qy_1t_2) :
M1 Ha
The restriction map I (1, u2) — I(u1/p2), where
— o} . a b _
1) = {f € C=SL@ F)) £ ((§10a) ) = m(@)laluf ()},
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is an isomorphism (u : F — E* is a character). The group SL(2, F},) acts
transitively on F2 — {(0,0)} on the right. The stabilizer of the vector (0,1) is
N(F,). Then N(F,)\ SL(2, F,,) can be identified with F>—{(0,0)} by (¢ %)
(¢,d) € F? —{(0,0)}. Using this we identify I(u) with

V(u) = {f € C=(F; — {(0,0)});
flaz) = p(a)~Mal; ' f(2),a € Ff x € FY —{(0,0)}},

so I(p1,p2) with V(,ul/,ug) The operator M (p1, pi2,t) corresponds to the
operator M (pu1/pa,t?) where

My 8) : V(pvs) = V(p tvg-), (M(M,S)f)(w)Z/{ X 1}f(y)dy-

Here A denotes the symplectic form (a,b) A (e, d) = ad—bc on F2. The measure
on the line £, = {y € F2;x Ay = 1} is transferred from the Haar measure on
F, via the map F,, — ¢, given by a — yo + ax where yq is a fixed point on /.
So we need to show:

M(p, )M (p= 57 =D, v, gy )T (™ b, gy ts™h).

For sufficiently small s € C* define operators As : C°(F?) — V(uvs) and
By : C*(F?) — V(u~tvs) by

— [ fasm@r@da, (B.H)@ = [ fazula) v @)da.
F, Fy
Restriction defines an isomorphism V (uvs) — Vo (p), where

Vo(p) = {f € C=(07 - {(0,0)});
flax) = p(a)™" f(2), = € 05 —{(0,0)}, a € O},

so we can identify the spaces V(uv;) as s varies.

The operators As and By, defined above for small s, depend rationally on s.
Hence they can be extended to all s.

Consider the Fourier transform

F: CX(F?) = C®(F?), / f(@)(x Ay)dx

LEMMA 4.23. We have M (p,s)As =T (=40, ¢ s ™) By F,
M(p=t, s B, =T, 1, q; 's)AF.
Proof. Given f € C°(F?), z € F? — {(0,0)}, we first show

D=ty ' s™ ) (B Ff) (@) = (M(u, ) As ) ().
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The operators F', Ay, Bs commute with the action of SL(2, F,,). This action is
transitive on F2 — {(0,0)}, so we may assume z = (0,1). We compute

(B FI)((0,1)) = /F (F1)((0,0))u(a) " v, (a)da,
ENO0) = [ fn2adsd: = o(-a)

ba) = / oW(—ya)dy, o) = [ fly.2)dz.

Tate’s functional equation (see [L], VII, section 3-4) is

I‘(ul,z/z,qvls1)/(,27(a),u1(a)Vsl(a)da:/(p(y)u(y)%(y)%'

(Formally this can be deduced from the definition of the I'-function and the
inversion formula p(y) = [ $(a)¥(ay)da. However the left side converges for
large |s|, while the right for small |s|, so one has to show both sides are rational
in s).

We conclude that the left side of the equation to be shown is

/ o) (—y)ra(y)ly~ dy = / / Fy, ) —y)vs )yl dyd=

while the right side is (recall: = (0,1), so (0,1) A (y, 2) = —y)

Jenera= [ [ fevuumw

The proof of the second identity of the lemma is similar. O

The inverse Fourier transform coincides with F' since the form (z,y) — z Ay
in the definition of F' is skew-symmetric. Hence F? = 1, and it follows from
the Lemma that

M(p, )M (p ", s ) Byr =T(p, 00, g, ' s)D(p ', gy 's ™) By

However, the operator B,-1 is onto for those s where it is defined (even its
restriction to C°(F2 —{(0,0)}) is onto), as V (uvs) is irreducible, so the propo-
sition follows. O

PROPOSITION 4.24. For any characters j1, po of A*/F* we have

M(MlvﬂQvt)M(/’Qlea til) =1

Proof. From Proposition 4.21, M (j1, pia, t) M (p12, pia, 1) is equal to
¢ m(pa /2, 2)m(pa/pa, t ) R(pa, pra, £) R(pa, pa, £,
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while Proposition 4.22 implies, for any character ¢» # 1 of A/F, that

R(,u’lv M2, t>R(M27 M1, til)
is

[Tle(ro/ o0, o, a5 60 (pan/ 10, 800, 4 15°)]

v
= ¢*9 %e(pa/p2, ¢ e (2 /pa, g~ ).
As e(x,t) = ¢" 791, e(xv: Yo, to) satisfies the functional equation L(x,t) =
e(x,t)L(x~t, ¢ 't~1), we have that
1,2 —1,-2 2 -2
e(pr/pa, gt )e(pa/pa, gt ") m(pa / pa, 2 )mlpa/ pa, t77),

which is equal to

e(ur/p2, g 2) Llpa/pa, £2)  (pa/pa, g %) L /2, %)
L(p1/p2,q='t%) L(pz/pa, g~ 172)

is equal to 1. O

4.5 M? =1 viA MELLIN TRANSFORM

We shall next study the relationship between M : C°(Y,) — C*(Y,) and
M (py, p2,t) © I(pavt, per™t) — I(uov =t pyvt), and conclude that M? = 1.
Both are defined by the same integral formula. Here uq, ps are characters of
AX/F* . o%. Put

1((§9)) = pa(a)uz(0)la/b*vi(a/b),  1: AA)/A(F) - o* — EX.

It is a character. Recall that Y, = oZN(A)A(F)\ GL(2,A) and (M f)(z) =
fN(A)f((?_Ol)mc)dn. Suppose that f € C>*(Y,), and t € E*. Define a
function T'(f, p1, po, t) : GL(2,A) — C by

Ot = [ e

Then T'(f, p1, po,t) € I(p1ve, pov—y) is called the Mellin transform of f. The
notation 7' can be used also when f € C*°(Y,) is not compactly supported,
whenever the integral converges.

PROPOSITION 4.25. For ¢ € O(Y,), characters jui,pa : AX/F* - o —
E* and large enough t € C*, the integral defining T converges, and
T(M(P,[J,l,MQ,t) = M(MQaMlat_l)T((pa,U/Qa,Ullat_l)'

Proof. By definition,
(T(f, pa, p2, 1)) () = //f((g 01 &) (@) pa(b)|a/b| vy (a/b)d” ad™ b.
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Put f = Mg, s0 f((§8)" @) = |b/a|fN(A)Sﬁ((82)_l (9 5!) na)dn. Hence
(T(f, p1, p2,t))(x) equals

[ ] [ets™ @5 nadmn @ b)b/al 2 a/s)d ad* b

/N(A)(T(%Mz,ul,tl))((? b)) na)dn

= (M(,LL%:ulat_l)T“avMQlevt_l))(z)'

If ¢ is large enough, the integral which defines M (juz, j11,t~ 1) converges, and so
is the integral which defines T'(f, u11, p2,t), which justifies the computation. O

PROPOSITION 4.26. If ¢ € C°(Yy) then My € C™(Y,). If My € C(Yy)
then M?p = .

Proof. Put f = My and h = M f = M?p (h is defined if f € C°(Y,)). By
Proposition 4.25,

T(hvﬂla,uﬂat) = M(M27M15t71>T(fa /1‘27M15t71>5
T(fa IU/Qa/j/latil) = M(lulay/Qat)T(SDa,ula,uQat)'

The first equation holds only for large enough ¢, and the second only for small
enough ¢. However, both sides of the second equality depend rationally on ¢ (for
the left side, this is true since f = My is compactly supported), hence it holds
for all ¢ in C*. Hence for large enough ¢, by Proposition 4.24 T'(h, pu1, 2, t) =
T(p, 1, p2,t) for all py, po. This implies h = . O

4.6 POLES, ZEROES AND VALUES OF R AND M

Recall that v;(z) = t1°8(*) is a character of AX /F* with v(m,) = t,, (= t38(®)),
and locally we write v for the unramified character of F* with v (m,) = t.
Let p1, pa be characters of F*. Recall:

L(p1/p2, g, 't?)
R

PROPOSITION 4.27. (1) The function R(u1, us2,t) is reqular at t = 0.

It has a pole at T € C* iff povy—1 Jpurv, = v (with v(m,) = g, t). This pole has
order 1.

The function R(p1,pa,t)~t has a pole at 7 € C* iff pyvy /pugv,—1 = v. This
pole has order 1.

(2) Suppose R(u1,p2,t)~' has a pole at 7 € C*. Then the function
R(uy, pa,t) is regular at t = 7. Put L = limy_.(t — 7)R(p1, 2, 1)t and
Q = R(u1,p2,7). The operators Q : I(uivr, povy,—1) — I(pov,—1, uavy) and
L : I(pove—1,pavr) — I(p1vs, povy—1) intertwine the GL(2, F,)-action. The
representations of GL(2, Fy,) in the spaces ker ), coker Q, im L are isomorphic

M(:u’la:u%t)‘

-1
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to the square integrable St(uivy,, puovy—1). The representations of GL(2, F,)
in the spaces ker L, coker L, im @ are isomorphic to the one dimensional
2 > 13 @)y )(2) = iy (2o ().

(3) The statement (2) remains true with R(u1, pe,t) replaced by Ry, pa,t) .

Proof. From the first part of the proof of Proposition 4.3 it follows that

M (py, p2, 1)/ L(pa/ pa, t°) = R(pa, p2, 1)/ L(pa/ p2, g, 't%)

is regular. So R(p1, pa,t) could have a pole at t € C* only if L(u1/uz,q, 't?)
is oo, that is pov,—1/piv, = v (recall: v(z) = |z|), and the order of the pole is
at most 1.

A similar statement holds for R(u1, pi2,t) ™ = c(pu1, p2 )t #1#2) R( g, g, t1).
(The last equality follows from Proposition 4.22. In fact n(ui,pu2) = 0,
but we do not need this.) Namely R(ju1,u2,t)"! has a pole at 7 € C* iff
p1vy [ pov—1 = v. This pole has order 1.

Suppose 1y /pavy—1 = v. Then pgv,—1 /v, # v so that R(uy, pz,t)~! is
regular at t = 7. With L, @ defined as in the proposition, it is clear they
commute with the GL(2, F},)-action. If L = 0 then @ = R(u1,u2,7) has no
pole, in fact it is an isomorphism. If Q = 0 then L would be an isomorphism,
as the operator lim;_,, R(p1, t2,t)/(t — 7) would be the inverse of L. However,
the representations of GL(2, Fy,) in I(uvy, pov,—1) and I(pav, -1, uiv,) are
not equivalent, hence L # 0, Q # 0. As L # 0, the function R(u1,puz2,t)""
does have a pole at t = 7. From the description of the invariant subspaces
of I(u1vr, povy—1) and I(uovy—1, u1vy) the claims in the proposition on the
description of the action of GL(2, F,) follow. The regularity of R(p1, uo,t) at
t = 0 follows from that of L(u1/p2,qy 't2) "L R(pu1, 2, t). O

In conclusion, the representation of GL(2, F,) in I(uive, povy—1) is reducible
iff R(u1,pz2,t) or R(u1,pe,t)~! has a pole at t = 7. These last operators are
regular at t € C* if puy /o is ramified. If py /po is unramified and (pq /p2)(m,) =
a, then the poles of R(u1, uz,t) are at 4-+/q,/a, and those of R(ju1, pi2,t)~! are
at £+/a/qy.

COROLLARY 4.28. Let 1, po be characters of AXJF* -a”. If R(u, ji2,t) has
a pole at t =1 € C*, then |t| = \/q. If R(p1, po,t)~" has a pole at t =7 € C*
then |1| = ¢~ /2.

Indeed, a character of A*/F* which takes the value 1 at « is unitary, thus
la| = 1.

PROPOSITION 4.29. Let ju1, ps be characters of AX/F* - o and 7 € C*,
|7| < 1. If M(p1, po,t) has a pole at t = T then py = po and T = +q~ /2,
If i1 = po is denoted p and T = ¢~ /% then M(p, p,t) has an order 1 pole
at 7. The image of the operator C = limy_,,(t — 7)M (u, p1,t) in this case is
one dimensional and is spanned by the function f(x) = p(detx)v,(detzx) in
I(pv,—, pvy). Further, M(u1, po,t) is reqular at t = 0.
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Proof. Recall that M (1, pia, t) = ¢*~9m(pa/p2, t*) R(p1, po, t) where m(u, t) =
L(p,t)/L(p,t/q). Let 7 € C*, |r] < 1. By Corollary 4.28, the function
R(p1, pa,t) is regular at 7. By Proposition 4.11, the function m(uy/pa,t?)
is not regular at 7 only if y1 = po and 7 = ¢~ /2. In these cases it has a
simple pole. Hence M (j11, 2, t) is regular at ¢t = 7 (0 < |7 < 1) unless p1 = po
and 7 = £¢~'/? where the order of the pole is at most 1. When pu; = pp = 1
and 7 = ¢~ /2, the operator C' = limy_,(t — 7)M (p, j1,t) is a scalar multiple
of R(p, pi,t) = @y Ry, fho, T ), Tp = 7980,

From (1) in Proposition 4.27, the function R(fiy, ftv, 7o)~ has a pole at t = 7
(ty, = 7p). Tts statement (2) implies that the image of R(py, iy, 7o) is one dimen-
sional and GL(2, F,) acts on it via the character x — p,(det z)v, (det z)de8?.
This implies the proposition, except the final claim, which follows from the
regularily of R(ju1, p2,t) at t = 0, and that of m(uy/p2,t?) at t = 0. O

Let w1, po be characters of A*/F*. The operator M (u1,pue,t) maps
I(pve, pavs—1) into the space I(uavs—1, 1), which in general is different from
I(pyve, pove—1). However, when py = po = p and ¢ = +1, then M (uq, po,t)
maps I(uyv, povs—1) to itself; M (p, p, t) is regular at ¢ = £1. The representa-
tion of GL(2,A) in I(uv,, pv,-1), 7 = %1, is irreducible, and hence M (u, i, T)
is a scalar operator. Moreover, from Proposition 4.26, M (i, u,7)> = 1 at
7=+l

PrROPOSITION 4.30. If p is a character of A*/F* and T = =1, then
M(NaMaT) =-1.

Proof. In view of the relation between M and R, it suffices to verify that

L(1,t
tlgr% ﬁ = —¢o! and R(py p,7) = 1.

In fact, for any character w of F, R(w,w,7) is 1 at 7 = £1. Indeed, sup-
pose first w is unramified. Then there exists a function f in I(wv,,wr,) whose
restriction to GL(2,0,) is 1. By the normalization of the intertwining op-
erator (Proposition 4.3(2)), R(w,w,7)f = f. However, the representation of
GL(2,F,) on I(wv,,wv,) is irreducible, so R(w,w,7) = 1 if w is unramified.
The general case reduces to the case where w is unramified, or even w = 1, by

the commutativity of the diagram
I(wrr wry) flewm)

"
I(vr,vr)®@w

I(wrr wry)

ALY I(vr,vr)Qw

To compute the limit of the ratio of L-functions, we use the functional equation
L(1,t/q) = e(1,t/q)L(1,t=1). Then

lim L(1,#)/L(1,t/q) = (1, 1/q)~* lim L(1,#)/L(1, t=h.

By the definition of the global e-function and its properties (Proposition 6.1,
6.3), e(1,1/q) = ¢'=9. Since L(1,t) has a pole of order one at t = 1, by
L’Hopital rule lim; 1 L(1,¢)/L(1,¢t71) is —1. O
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4.7 GLOBAL EISENSTEIN APPROACH

These proofs of M? = 1 and rationality of M (u1,u2,t) are based on local
computations (normalization of the intertwining operators by L-functions and
e-factors), and the functional equation of the L-function. The following alter-
native proof of these results is based on properties of the Eisenstein map.
The alternative approach of this subsection, the following subsection 4.8, and
the computation of traces in subsection 5.2 are motivated by Tate [T68]. They
are the newest part of this paper, which — as noted in the introduction — cries
out for generalization from our context of GL(2), and for further study.

We shall use the maps ht* : Y, — Z and ht : o” GL(2, F)\ GL(2,A) — Z.
Both maps are proper. However, ht™ is onto while the image of ht con-
tains the positive integers but only finitely many negatives. So in some sense
Y, is less compact than o GL(2, F)\ GL(2,A), so the map E : C®(Y,) —
C>®(a® GL(2, F)\ GL(2,A)) should have a big kernel. For ¢ in ker E' we have
(1+ M)p = E*Ep = 0. Hence M?p = ¢. Unlike M, the operator M? com-
mutes with the action of A(A) on C°(Y,) by left translation. Hence M?2p = ¢
not only for ¢ € ker E but also for ¢ in the span of A(A)-translates of ¢ in
ker E. The number of such linear combinations is already sufficiently large to
imply M? = 1. We now turn to rigorous proofs.

PROPOSITION 4.31. Let M : Clz,z7Y" — C((2))" be a C-linear map with
M (zu) = z7YM(u) for all u € Clz,2~ ™. Let I denote the natural embedding
Clz, 271" — C((2))*. Put B = I + M. Suppose there is some k € Z for
which the vector space (Im B)/B(z*C[z~1]") is finite dimensional. Then there
is some

P(z) € GL(n,C(z)) C GL(n,C((2)))
with P(271) = P(2)7! and (Mu)(z) = P(2)u(z~1) for all u(z) € C[z,z~1]".

Proof. Denote by e; the column in C" with nonzero entry only at the ith
row, where it is 1. From M(}2,(32; cijz?)e) = 32,30, cijz™7)Me;, we see
that (Mu)(z) = P(2)u(z~!) where P(z) is the n x n matrix with columns
Mey, ..., Me, whose entries are in C((z)). If w is in the kernel of B = I + M,
then P(2)u(z71) = —u(z). Since Im B = U,;,>1B(2™C[271]") and there is
some k > 0 such that B(z*C[2z71]") has finite codimension in Im B, there is
some ¢ with B(2*C[z~!]") = Im B. Then ker B + 2‘C[z~!]" = C[z, 2~!]". For
each i (1 <i < n), 2/Tle; € ker B + 2°C[z7!]". Hence there is a matrix W €
M (n,C[z, 2~']) whose columnes are in ker B and W —2z/T11d € 2/ M (n, C[z71]),
where Id is the identity matrix. But then W € GL(n,C(z)), and since the
columns of W are in ker B, we have P(z)W(2~1) = —W(z). Then P(z) =
W)W (EH™ and P(z7Y) = -W(E"HW(z)~t = P(2)~ L. O

COROLLARY 4.32. A C-linear map M : C[z,z7 '] — Cl[z, 27| which satisfies
the conditions of Proposition 4.31 has M? = Id.
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Recall that Y, = o A(F)N(A)\ GL(2,A). Write C$°(Y,) for the space of the
B-valued functions f on Y, with (1) f(z) = 0 if ht™ (z) is large enough, and (2)
f is invariant under right translation by some open subgroup U of GL(2, A).
Note that C°(Yy) C CF(Ya) C C°(Yy).

PROPOSITION 4.33. The image of C(Yy) under M lies in C°(Ya).

Proof. For f € C2°(Y,,) there exists an integer m such that f(x) = 0ifht™ (z) <
—m. We shall show that for such f, (M f)(z) = fN(A) (973 ne) da is zero

if ht ™ (x) > m. It suffices to show then that for z € GL(2, A) with ht™ (z) > m,
and any n € N(A), we have ht™ (((1J _01) nz) < —m. But by Lemma 2.7 we
have

bt (2) +ht™ (9 3) ne) =ht™ (n2) +ht™ ((9 ) na) <0.
|

PROPOSITION 4.34. Let U be an open subgroup of GL(2,0). For every integer
m > 1 define

W ={p € CX(Ya)"; p(x) =0 if bt (z) <m},
YU ={peC®® GL2,F)\ GL(2,A)Y; o(z) =0 if ht*(x) <m}.
Then E(WY) =Y.V for large enough m.
Proof. Put
Zy = {p € CX(a” - A(F)N(F)\ GL(2,A))"; p(x) = 0 if ht™ () < m}.
Recall that

E=s.0%,  sdx) =) v(yz),  v€AF)N(F)\GLEZ,F).

~

It is clear that s,.(ZY) = Y,U. It suffices to show that r*(WY) = ZU for
sufficiently large m. In fact, we showed, as the first claim in the proof of
Proposition 2.13, that for an open subgroup U of GL(2,A), that there is an
integer m with the property that if z € A, z € GL(2,A), ht*(z) > m, then
thereisu e U, B € F, with ({ %)z = (éf)xu In other words, if x € GL(2, A)
and ht*(z) is large enough, then N(A)z ¢ N(F)xU. O

We shall now give a different proof of Proposition 4.26.

PROPOSITION 4.35. If o € C=(Y,,) and My € C°(Y,,) then M?*p = .
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Proof. Let us introduce a structure of C[z, 27 1]-module on C*(Y,,) by
(N)@) =—=f((§Y)x), [feC™(Ya), weGL(2A).

From

it follows that M (zf) = 2~ M (f); recall that |a| = ¢, and f is invariant under
a. This is the reason for introducing the factor \/g. Let U be an open subgroup
of GL(2,0). Put

wl=cx2w,)Y, w!=crw.)v.

Both are C[z, z~1]-submodules in C*°(Y,). Denote by WY the set of functions
f € C®(Y,)Y such that f(x) = 0 if ht*(z) # 0. Then the natural map
WY @c Clz,271] — WY is an isomorphism. In the same way we have a
canonical isomorphism W{ ®c¢ C((z)) — WY. The operator

M :W.=Cx(Yy) = Wi =CF(Ya)
maps WY into WY . Hence it defines a map
M WY @c Clz, 271 — W &c C((2))

satisfying the first condition of Proposition 4.31.

It remains to check the second condition of that Proposition. The space WY
can be identified with WV ®@¢ 2~™C[27!], and then the operator B = I +
M is just E*E. Thus it suffices to show that for some m € Z, the space
E*EWY)/E*E(WY) is finite dimensional. Since E(WY) = YU for large m,
and {z € GL(2,F)\ GL(2,A); ht(xz) < m} is compact mod Z(A), it follows
that the subspace

EWY) c C*(a” GL(2, F)\ GL(2, A))Y

has finite codimension. Thus M satisfies both conditions of Proposition 4.31,
and our claim follows from Corollary 4.32. O

To use Proposition 4.31 to give another proof of the rationality of M (u1, us,t),
we take a different view of the Mellin transform and the relationship between
the operators M and M (u1, po,t). Let I.(u1v,-1, pov,) be the space of locally
constant functions f : GL(2,A) — Clz, 21| with

FUS5)2) = pa(@)ua(b)vz(b/a)la/b]' 2 f ().
Let I (pu1v,—1, povs,) be

IC(,U&VZfl s MQVZ) ®(C[z,z*1] (C((Z))
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The group o” C GL(2,A) acts trivially on these I. and I,. We put

I = &l(pv.—1, povs), L = &L (pave-1, povy),
where the sums range over all characters i1, po of AX/F* - a”.

PROPOSITION 4.36. There exists an isomorphism of C((z))-modules I, —
C°(Ya) which is GL(2, A)-equivariant and maps I. to C°(Ya).

Proof. Define a map F : I, — C°(Y,) by mapping

Y= {(pul,uz} € I+a Prr,pz € Ic(lu/lyzflaMQVz)a

to

(Fp)(x) = constant term of the formal series Z Oy e () € C((2)),
(22873

for any € GL(2,A). The map F is well defined, commutes with the actions
of C((z)) and GL(2,A). The inverse of F exists, as follows. If ¢ € C(Yy)

then F~1(¢) = {@u, o} With 0y o € L4 (u1v,—1, pov,) given by
Pusnle) = [ W) (h)dh,
A(A)/aZ-A(F)

where
n:A(A) = C((2))", n(diag(a,b)) = p(a)p2(b)v:(a/b).

The last integral converges in the field C((z)). A base of the topology is given
by z"C|[z]], n > 0. The map F maps I, to C°(Yy,). O

Put IO = @#17#210([147;1@), with
To(pa, p2) = {f € CF(GL(2,0)); f((§5)x) = pa(a)na(b) f(2)}.

Denote by M (z) the map Iy — Iy which takes Io(u1,p2) to Io(us, 1) via
M (p1, p2, 2). We use the isomorphism F' to identify the spaces I and C3°(Y,),
as well as I, and C2°(Y,). The natural isomorphism

Ie(pavs—1, povs) = Io(pa, p2) ®c Clz, 271

and
Iy (a1, pavz) = Io(p, p2) ©@c C((2))

permit us to identify I. and Iy ®c C[z,27 1] as well as Iy and Iy ®c C((2)).
Thus the map M : C°(Y,) — C7°(Y,) induces an operator

My : Iy ®c C[Z, Zﬁl] — Iy ®c (C((Z))
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PROPOSITION 4.37. Regard the elements of Iy ®c Clz,271] as functions of z
with values in Iy and the elements of Iy ®c C((2)) as formal series in z with
coefficients in Ip. Then for any u € Iy ®@c Clz,27'] one has (Mou)(z) =
M (2)u(z71), M(z) is viewed as a formal series in z.

Proof. Write ¢ for the automorphism of C[z, z7!] which maps z to 2~!. Given
a function f : GL(2,A) — C((z)), denote by fo the function GL(2,A) — C
such that fo(x) is the constant term of f(x).

Define an operator

M" : Iy ®c Clz, 271 — Iy ®c C((2)) by (M"u)(z) = M(2)u(z™1).

We claim that My = M"”. Consider M” as a map I. — I;. We have to
show that for every f € I., we have FM"f = MFf, for the isomorphism
F:1. 5 CP(Y,). As I, is the sum over py, po of Io(piv,-1, pavs), it suffices
to consider f in one of these summands.

For z € GL(2,A), we have (M" f)(z) = fN(A) of ((973") nx) dn. Then

(M 1)) = (1" fo() = [ fo((4 5 ne)dn

N(A)

(MF ) = [

N(A)

RS ) ne)do= [ fo((35) o) dn

N(A)

are equal, as required. O
4.8 A SECOND PROOF OF THE RATIONALITY OF M (1, ji2,t) AND OF THE
FUNCTIONAL EQUATION M (puy, p2, t)M (pa, p1,t71) =1

Let U, WY, A be as in the proof of Proposition 4.35. Then WU =

Dy o Wgwu, where Wzijl,uz is the space of functions f € WY with

FUEY)w) = pa(a) ™ pa(b) ™ f (=)

whenever deg(a) = deg(b) = 0. The natural maps Io(ua, 1) = I/VMUI,H2 permit
one to identify WY and the space I¥. The map

M : WY @c Clz,2z7 = WY @c C((2))
is induced by the operator
My : Iy ¢ (C[Z, Z_l] — Iy Q¢ (C((Z))

The proof of Proposition 4.35 implies that the operator M satisfies the con-
ditions of Proposition 4.31. Then M is given by a formula of the form
(Mu)(z) = P(2)u(z7!), where P(z) is an automorphism of V which depends
on z rationally, and P(z71) = P(z)~!. From Proposition 4.37 it follows that
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P(z) is just the restriction of M(2) to I ®cC|z,27!]. The group U may be ar-
bitrarily small. Hence M(z) is a rational function of z, and M (z)M (271) = 1.
Hence for any characters p1, u2, of o - F*\AX, the operator M (1, pa, 2)
depends rationally on z, and

M(MlaﬂQa z)M(:u’laMQa Zﬁl) =L

The same is true for any characters u, puo of A*/F* which are not necessarily
trivial at «. To see this, it suffices to use the identities M (uqvy, povy,z) =
M (pa, pa, z) and M (pavy, provy—1, 2) = M (p, pa, t2). O

5 PROOF OF THE TRACE FORMULA

5.1 THE GEOMETRIC PART

Our aim is to compute the trace trro(f), where f € C(GL(2,A)) and rg is
the representation of GL(2,A) by right translation on the space Ag , of cusp
forms invariant under a.. Recall that the space A. , of a-invariant automorphic
forms is equal to the direct sum of Ay o and Ag o =Im(E : C°(Ya) = Aca)-
The corresponding representations of GL(2, A) are denoted by r and rg. Had
r been admissible, we would have had trro(f) = trr(f) — trrg(f), and the
computation of trro(f) would have reduced to that of trr(f) and trrg(f).
But r and rg are not admissible, so trr(f) and trrg(f) make no sense.
Suppose f is right invariant under the open subgroup U of GL(2,0). Denote
by AY, AV, AY the spaces of U-invariant vectors in Ag o, Aca, Ap.a. Since
Imro(f) C AY, we have trro(f) = trrl (f), where r§ (f) is the restriction of
To (f) to AIOJ

Denote by x,, the characteristic function of the set

{z € o” - GL(2, F)\ GL(2,A); ht(z) < m}, m > 0.
Denote by 6,,, the operator of multiplication by x,, on A¢ 4.

PROPOSITION 5.1. (1) For any m > 0, dim 6,,(AY) < .
(2) If m >> 1 then (a) 0., acts as the identity on AY, and (b) 0,,(A%) c AY.

Proof. (1) The support of x,, is compact mod Z(A), the quotient by the open U
is then finite. (2a) Ay is finite dimensional, consisting of compactly supported
forms. (2b) By (2a), (1—0,,)AY = (1 —0,,)AY. This lies in AY, as U-invariant
cusp forms are uniformly compactly supported. Hence 6,,(AY) C AY. O

Denote by 7V (f) and r¥%(f) the restrictions of r(f) to AV and A%. For m such
that 6,,(A%) C AY, denote the restriction of 6,, to AY again by 6,,,. Then for
m>>1,

trro(f) = terg (f) = te(Omr? (f)) = tr(Omrp (f)) = tr(@mr(f)) — tr(@mrk(f)).

We then proceed to compute tr(6,,7(f)) and tr(0,7%(f)).
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PROPOSITION 5.2. There exist cy € F and oy, € F with limy, o oy = 0, and

1
tr( ZS )+ cp(m— =) + am.

2
1<i<4

Proof. The map 0,,r(f) : Ac.a — Aca is an integral operator with kernel
Xm (y) K ¢ (2,y), where K¢(2,y) =3 coz.gri,r f(2717y). Then

(0 (1) = | Yon (@)K (2, 2) e

aZ-GL(2,F)\ GL(2,4)

LEMMA 5.3. There exists my > 0 such that if z € GL(2,A), v € o GL(2, F),
ht* () > my, f(z~'yz) #0, then v € aZA(F)N(F).

Proof. We have & = xy, y in supp(f). Since ht*(z) + ht™(dz) < 0 for § €
GL(2, F) — B(F), we have that ht™ (z) > 0. If in addition we had ht™ (zy) > 0,
we would conclude that v € aZB(F). The number m; = —min{ht*(2); z €
GL(2,0) - supp(f)} then has the property that ht*(z) > my, y € supp(f),
implies ht™ (zy) = ht*(x) + ht* (ky) > 0, where = = bk and ky = b'k’ so that
zy = bk (b, b € B(A): k, ' € GL(2,A)). O

Denote by &, the characteristic function of the set {z € GL(2,A); ht*(z) >
m}, by A'(F) the set of nonscalar diagonal matrices, and by Ell the set of

elliptic matrices in GL(2, F'), namely those whose eigenvalues are not in F.
Put w=(9}).

LEMMA 5.4. If m is big enough, then xm(y)K(x,x) is the sum of

Tin@) = xn(@) 3 f0),  Tam)= X fla ),

yeEQl -FX yEaL-Ell
Tym) =5 Y S Fa ) (1 E(6r) — En(wbn)),
~EaZ AI(F) §€ A(F)\ GL(2,F)
Tim(e)= Y S ) (- (o).

aca-F* §€¢ FXN(F)\ GL(2,F)

Proof. T1 ,(z) is the contribution of the elements v € aZ-F* in x, (2)K ¢ (z, z).
We claim that the contribution of the elements vy € oZ - Ell in x,(z)K ¢ (, 7)
is To (7). To show this, we need to see that if 2 € GL(2,A), v € o - Ell
and ®(z~'yz) # 0, then ht*(z) < m. Indeed, if ht(z) > m then there is
some § € GL(2, F) with ht*(dz) > m. Lemma 5.3 then implies that dyd~! €
a?A(F)N(F), contradicting v € oZ - Ell

Denote by T3 ,,(x) the contribution into xm(z)Ky(z,z) of the elements v of
the form a’v, j € Z, v € GL(2, F) with distinct eigenvalues in F. By T}, ()
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we denote the contribution of the elements o+, j € Z, v € GL(2, F), v ¢ F*
but the eigenvalues of v are equal. We have

T3 () = %xm(:c) > > famte ).

yEa?-A!(F) 6€ A(F)\ GL(2,F)

The factor % appears since diag(b,a) is conjugate to diag(a,b). To show that
T4 (%) = T3 () it suffices to show that when f(z~'6~1vdx) # 0,

Xm () =1 = §n(02) — Em (wiz),

namely if ht(z) > m then either ht*(dz) > m or ht™(wdz) > m. So if
ht(z) > m, then there is some n € GL(2, F) with ht™(n2) > m. By Lemma
5.3, nd~1yén~t € oZA(F)N(F), but this implies that né~t € A(F)N(F)
or ndtw € A(F)N(F). Correspondingly, ht*(dz) = htT(nz) > m or
ht ™ (wdz) = ht™(nz) > m, but both inequalities cannot hold simultaneously if
m > 0.

Now

T (@) = Xm(2) Y > fla™lo71(§8) ba).

a€al-F* §e F* N(F)\ GL(2,F)
To show that this equals T4 ,,, () we need to check that when
fla™lo1(§4) 0x) #0

and ht(z) > m, then ht™(6x) > m. Suppose then that ht™(nz) > m for
n € GL(2, F). Then by Lemma 5.3 we have

nd~t(§6)on~" € aPA(F)N(F).
Hence n6~! € A(F)N(F), so that ht*(dz) = ht* (nx) > m. O

We conclude that tr 0,,7(f) = 321 ;< ti,m With

tiym = / T o (x)d.
a?-GL(2,F)\ GL(2,A)

To prove the proposition it suffices to show that ¢; , = S;(f)+c;(2m —1)+ B,
for all i (1 < ¢ <4), where ¢; does not depend on m and lim 3, = 0. It is clear
that t1,, — S1(f) as m — oo. As T5 ,,(2) is independent of m, 3, = Sa(f).
Now

tam = 5 F@™t ) (1 = &n (@) — &m(wr))dz

ot ANE) /M(Aw)\ GL(2,4)

1

™t ya)s(x)da

’YE&Z'A/(F) /A(A)\ GL(27A)
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where

s(z) = / 1~ & (y) — Em(wya))dy
aZA(F)\A(A)

= vol{y € o A(F)\A(A); ht*(yz) < n, ht*(wyz) < n}.

Note that for y € A(A), ht* (yz) = ht* (y)+ht" (z) and ht " (wyz) = ht " (wz) —
ht* (y). Hence

s(z) = [{y € A(A)/a” - A(F); ht™ (wz) —m < ht(y) < m — ht*(x)}].

This is the number of integers between ht*(waz) —m and m — ht(z). So
s(z) = 2m — 1 —ht*(2) — ht ™ (wz).

LEMMA 5.5. We have ht™ (z) + ht™ (wz) = —2r(z), where if x = a (;Y)k,
a€ A(A), k€ GL(2,0) and y € A, we put r(x) = max(0,log, [yu|v)

Proof. Note that y is determined up to a change y — by +¢, b € O*, ¢ € O,
so r(x) is well defined. The asserted relation does not change if = is replaced
by azk, a € A(A), k € GL(2,0), so we may assume z = (;¥) € N(A).

1

Then ht*(z) = 0, and (94)(;Y) = (_05 ;) (% (1)) implies that ht*(wz) =
—2r(x).

O

Lemma 5.5 implies that

1
t3,m = S3(f) + (m — 5) Z / fz™ ya)de.
ot T L)
Next
- >/ £ (82)9) (- En(e))da
weaimx JoEFX N(F)\ GL(2,4)

- fa™t(88) ) da.

/{zeaZFX N(F)\ GL(2,A); ht*+ (z)<m}

a€al.-FX*

Recall that 6, (t) = faZFXN(F)\ anea) f (z71 (%) ) " @) dz is a Laurent
series at t = 0 of a rational function of ¢ with (p(q~'¢)7'0, ¢(t) € C[t,t71].
Suppose Oq ¢ (t) = >, ur(a)t®. Then tym = D cozpx Dopem Uk(a). Since
Cr(g't) has a simple pole at t = 1, we have that 0, f(t) = % + 04 ¢ (t), with
0. ¢(t) without poles on 0 < [¢t| < 1. Then

(1) = 5 0.r (1) + 0u (7)) = 5 Bars (1) + B (7)) + 50(a),
s (1) = B s (1) + () = 50(@) + 3 (ui(a) ~ pla)
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= 1 (Y ui(a) — (m — L)p(a)]
k<m
Then
~ 1
t47m: Z eayf(1)+(m7§)p(a)+/6mv ﬂ’m %0 as m%oo,
acal-F*
and Sy(f) = > ,car.px 0a.7(1). Proposition 5.2 follows. O

Note that 3, is 0 for sufficiently large m, as will be seen below.

5.2 THE EISENSTEIN CONTRIBUTION

Next we turn to computing tr(6,,7%(f)) for large m. Put WY = C°(Y,)Y,
WY =1+ MWD,

PROPOSITION 5.6. The operator E* maps AY isomorphically onto WY.

Proof. As AY = E(WY) and E*E = 1+ M, it suffices to show that ker E*E =
ker E. For ¢ € ker E*E we have (Eyp, E¢) = (E*Ep, ) = 0, hence Fo =
0. O

DEFINITION 1. Denote by WY the space of f in WYV with f(x) = 0if ht™(z) <
m. Denote by &, also the operator WY — WU of multiplication by the
characteristic function of the set {z € Y,; ht™(z) > m}. [If m > 0 then &, is
a left inverse to the operator 1 + M : WY — W[} Indeed, if f is in WY, then
(M f)(x) = 0 already when ht* () > —m since ht " (wnz)+ht ™ (nz) < 0 implies
ht* (wnx) < m and so f(wnz) = 0.] Hence 7™ = (1 + M), : WY — WY
satisfies 7" 7™ = ™, for m > 0. Put m,,, = 1 — 7.

PROPOSITION 5.7. For sufficiently large m, E* intertwines 0., with m,,, thus
TmE* = E*0,,, namely the diagram

AY 5wy

Gmi ~L7Tm,

AY Ewy

15 commutative.

Proof. Suppose f € AY and (1 —6,,)f = 0. Then f(x) = 0 for  with ht(z) >
m. As &m(z) # 0 only on o with ht™ (x) > m, we have 0 = (1 + M)¢,E* f =
(1 — ) E* f, the last equality as 1 — m,, = 7™ = (1 + M)&,,. For such f we
have E*0,,f = F*f and m, E* f = E*f.

If f e AY and 0,,f = 0, then by Proposition 4.34 there is ¢ € WY with
f = FEp. Then

T B [ =T E*Ep = 7 (1 + M) = 7 (1 + M) = ™o = 0,

hence E*0,, f = mp E* f for such f.
Any f € AY can be written as f = f1 + fa, f1 = (1 = 0m)f, f2 = Op f, thus
9mf1 =0 and (1 - em)fg =0. O
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DEFINITION 2. Recall that Y,, = oZA(F)N(A)\ GL(2,A). Denote by o., o,
o the representations of GL(2,A) in the spaces

We = C(Ya), Wy = Cj)ro(Ya)a Wi = (1+M)CE(Ya).
Consider o.(f), o4 (f), oa(f) as operators in the spaces WY, Wf, wy.
COROLLARY 5.8. We have tr(0., - r%(f)) = tr(mm - on ().

Proof. The operator E* yields an isomorphism of AY = E(WY) with W,
intertwining 6,, with m,,. O

In the proof of Proposition 4.35 we introduced a structure of C[z, z~!]-module
on WY and WY, as well as isomorphisms WY ~ W¥ ®¢ C[z,271] and WY ~
WY @c C((2)), where WY = {f e WY; f(x) =0if ht"(z) # 0}. Under these
isomorphisms, the operator M : WY — Wf corresponds to the operator

M WY @c Clz, 27 = W @c C((2)),
which satisfies the conditions of Proposition 4.31, hence has the form
(Mu)(z) = P(2)u(z1) for u € WY ®&cClz, 27

which is viewed as a function of 2z with values in W{. Here P(z) is a rational
function in z with values in Aut WY, and P(z71) = P(z)~ L.

Now o.(f) is an endomorphism of WY as a C[z, z~!]-module. The correspond-
ing endomorphism of the module WY @¢ C|z, 27!] is determined by a function
B(z) in End(WY) ®c C[z,271]. The endomorphism of W' @¢ C((z)) corre-
sponding to the operator o (f) is determined by the same function B(z). The
relation

Moo (f)=o04(f)M becomes P(2)B(z Yu(z™) = B(2)P(2)u(z™1)
for any u € WY ®@c C[z,271], thus B(z71) = P(2)"' B(2)P(2).

DEFINITION 3. Under the isomorphism WY ~ WV ®¢ C((2)), the subspace
Wl = (1+ M)WY is mapped onto the subspace L consisting of all rational
functions of the form u(z) + P(2)u(271), with u € W @¢ Clz, 2. Put

Ly = L0 (WY @c 2~™C[2])).
Denote by L™ the set of rational functions of the form
w(z) + P(2)u(z™1) with ue€ WY ®@c 2~ ™C[z71].

For sufficiently large m we have L = L, ® L™. Under the isomorphism W =
L, the operator 7, : W}, — WY corresponds to the idempotent operator
L — L with kernel L™ and image L,,. This projection will also be denoted
by 7. Thus tr(mmon (f)) = tr(m,B), where B : L — L is the operator of
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multiplication by B(z). On the left, 7, is an operator on W}, on the right,
on L.

Fix Q1, Q2 € M(k,C[z,271]), k > 1, such that det Q; # 0. Suppose the func-
tion Q2(2)~1Q1(2) is regular at z = oo, thus Q1(2) € Qa2(2)M (k, C[[z71]]), and
the function Q1(z) 1Qa(2) is regular at z = 0, thus Q2(2) € Q1(2)M (k, C[[2]]).
Put R = C[z,z7']¥. For m > 1, put

R = RN 27"Qu(2)Cl2))" N 2" Q2(2)Cll= )"

Also put
R™ = 27"Q1(2)C[z7 1) R = 2™Qo(2)Clz]".
Then dim R,, is finite.

ProOPOSITION 5.9. We have R = R™ & R,,, ® R,
Ry @ RT = RN 2Q4(2)C[2])F
and
Ry ® R™ = RN 2™ 1Qu(2)C[[2 11",

Proof. The natural map ¢ : R™ — X_ = C((2))%/217™Q1(2)C][[2]]* is an
isomorphism (note that C((2))/2'~™C[[z]] ~ 2~™C[z~!] and Q1 (z) is invertible
in GL(k,C((2))). The natural map

Y RY = Xo = C((z7))" /2" Qa(:)Cll27 )"

is then too. The natural map f: R/R,, — X_ @ X, is injective (by definition
of R,, as the intersection of R and the denominators of X_, X) and the
composition of the natural map RY* ® R™ — R/R,, with f is ¢ ® 1. O

DEFINITION 4. (1) Denote by pr,, : R — R the projection with kernel R7®R™
and image R,,. (2) If A(z) is a matrix in M (k, C[z, z7!]), denote by A[z] also
the corresponding automorphism of R = C[z, 2~ !]*. Denote by Ay the constant
term of A(z).

PROPOSITION 5.10. The trace tr(pr,, -A[z]) is equal to
(2m—1)tr Ag—res.—o tr A(2)Q) (2)Q1(2) " tdz—res.— oo tr A(2)Q5(2)Qa(2) dz.

Proof. Define a projection pr’’ : R — R with image R and kernel R™ + R,,,
and a projection pr’” : R — R with image R and kernel R"" + R,,. Analo-
gously to the decomposition R = R™ & R,,, ® R, consider the decomposition

R=2""C[z7* @ (2! 7™C[2]* n 2™~ IC[~1]*) @ 2™C[2]F,

namely the case where Q1 = 1 = Q2. Denote the associated projections by p™,
Pm, P Since the space z~™C[z!]*/R™ N z~™C[z~']* is finite dimensional,
the operator pr’!' —p’"' has finite rank, and the operator pr” —p™ has finite
rank since 2™ C[z]* /R N 2™C[2]" is finite dimensional.
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LEMMA 5.11. We have

r(pr™ - Al2] — p - A[2]) =res.— tr A(2)Q) (2)Qu (=) "\dz,
as well as

r(pr? -Alz] — 7+ A[2]) = res. oo tr A(2)Q(2)Qa(2) .

Proof. Denote by Pr™ : C((z))*¥ — C((z))* the projection with image
27™Q1(2)C[z7 1] and kernel 2'~™Q(2)C[[z]]¥. Denote by P™ : C((2))* —
C((2))* the projection with image z~™C[2~!]¥ and kernel 2'~™C[[2]]* (thus
the case of Q1 = 1). Denote by A((z)) the endomorphism of C((2))* which is
defined by multiplication by A(z). Then Pr™ = Q1((2)) - P™-Q1((z))~*. Now

Im(Pr™ - A((2)) — P™ - A((2))) € Cz, 271,
and the restriction of the operator
P A((2)) = P A((2)) to Cle2™'P (€ C((2))")
is equal to pr’ -A[z] — p™ - Alz]. Hence

tr(pr™ -Alz] — p™ - Alz]) = tr(Pr™ - A((z)) — P - A((2)))

:tr(Q1((Z))~PT~Q1((Z)) LA((2) = P A((2)
= tr(Q1((2)) - PI"- C((2)) — (2)) - C((2),  C(z) = Qu(2)""A(2).

Q1 (
As tr A(2)Q1(2)Q1(2) " = tr C( )Q1 (%), to prove the first claim of the lemma
it suffices to show that

tr(Q1((2)) - P - C((2)) — P - Qu((2))C((2))) = res—o tr C(2)Q (2)dz
for any Q1(z) € M(k,C[z,271]), C(z) € M(k,C((2))). By linearity, it suffices
to show this when the matrices Q1(z) and C(z) have a single nonzero entry.

Thus we may assume k = 1, and that Q1(z ) 2P, Thus we need to verify that
for any formal power series c( =Y, caz in (C((z) we have

tr[(((z")) - P = P ((2°)))e((2))] = be—s,

where the operations here are in C((z)). The left side is equal to

tr[(((2") - P ((z77) = P™) - ((z"))e((2))] = te[ (P77 — P™) - ((2"))e((2))]

C—b C—b41 --- C—1
C-p-1 C—p ... C—2

= tr . . . = bc_b
C1—2p C2-2p -+ C—p

The second claim of the lemma is similarly proven. O
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As pr,, —pm = (1 —pr —prl?) — (1 = p™ — pl') = (p™ — pr™) + (p' — prTt),
Lemma 5.11 implies that tr(pr,, -Al[z] — pm - Alz])
= —res.—o tr[A(2)Q1(2)Q1(2) "1dz] — res.—oo tr[A(2)Q(2) Az(2) " d2].

Since tr(pm, - A[z]) = (2m — 1) tr Ao, the proposition follows.

O

PROPOSITION 5.12. Let ¢ : Clz, 27 1% — Clz,271]* be the involution (1u)(z) =
u(z~Y). For sufficiently large m we have 2tr(v-pr,, -A[2]) = tr A(1) +tr A(—1).

Proof. Write A(z) = Y., Apz®, A € M(k,C). Then tr(c - py, - Alz]) =
D jij<m tr A2i. If m is big enough the right side here is equal to (tr A(1) +
tr A(—1)). It remains to show that tr(c - pr,, -A[z]) = tr(¢ - pm - A[z]) for large
enough m. As pr,, —pm = p" — pr'p’ +(p™ — pr™), it suffices to show that for
large enough m

tr(e- (plf —prl') - Alz]) =0 = tr(e- (p — pr™) - Alz]).

Note that pr’? = [z™]prl[z~™] and p* = [z"]p%[z~™], where as usual [z"]
here means the operator of multiplication by 2. The operators pr’l" and p’’
were defined only for m > 0, but the definition extends to m = 0 so that the
two relations above hold. Now

tr(e- (pf —prf) - Afe]) = tr(e- [2™](p% — pr{)[e™™] - Alz])
= tr(lz"e- (0% — T Al2]) = tr(e- (0F — )27 - Al [T)
= tr(e- (p§ — pr)[z7"] - Al2)).
Recall that dim V' is finite, where V' = im[u(p. —prY)]. If m is big enough then
[272™] - A[2]V C 27 'Clz71F N 271 Qa(2)C[2 ™ H]F C kerpf Nkerprf .

Hence tr(c- (pY — pr)[z~2™] - A[z]) is zero. Hence tr(.(pf* — pr7f) Alz]) is zero.
The proof of tr(c(p™ — pr”)A[z]) = 0 for large m is analogous. O

DEFINITION 5. Fix P € GL(k,C(2)) such that P(z) is regular at z = 0 and
P(z)~!is regular at z = co. Put S = C[z, 27 * + P - C[z, 2~ 1]¥,

Sy = SN2 mC2])F Nz P C2]]F, S™ =z""Clz7F 4 2P - C[z]".

Fix B in M (k,C[z, z7']) such that P~*BP lies in M (k,C[z,27!]). Then BS C
S. We denote by [B] or B[z] the operator S — S of multiplication by B(z).

PROPOSITION 5.13. We have S = S, ® S™. Denote by ps,, : S — S the
projection with image Sy, and kernel S™. Then

tr(ps,, -[B]) = (2m — 1) tr By
— res.—o tr[B(2) P'(2) P(2) ']dz + tr([B]; S/Clz,27']").

Here By is the constant term of B = B(z), and tr([B]; S/C[z, 2~ 1]*) denotes the
trace of the endomorphism of S/C[z, 2~ induced by multiplication by B(z).
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Proof. The space S is a k-dimensional free C[z, z~1]-submodule of C(2)*. Hence
there exists a matrix D in GL(k, C(2)) such that S = D-C|z, 2~ !]*. Since S con-
tains C[z, z71]%, D! lies in M (k,C[z,271]). Since S contains P-Cl[z, 2~ !]* we
deduce that D='P € M (k,Clz,271]). Put Q1 = D~!, Q2 = D~!P. The func-
tion Q1(2)71Q2(2) = P(z) is regular at z = 0. The function Q2(2) Q1 (2) is
regular at z = oo. Under the isomorphism S=C[z, z7'|*, u — D~ 1u, the sub-
spaces S, and S™ correspond to the subspaces R,, and R™ of Proposition 5.9.
The multiplication [B] : S — S corresponds to [A] : Clz,z71]F — C[z, z71]*,
A = D7 'BD. Then Proposition 5.10 implies the first part of the proposition,
as well as the equality

tr(ps,, -Blz]) = (2m — 1) tr Ag — res.—o tr A(2)Q} (2)Q1(2) 1dz

—reS,—o0 tr A(2)Q5(2)Q2(2) dz.
Here Ay is the constant term of A(z). We have

tr(AQ,Q7") = —tr(D7'BD’) = —tr(BD'D™1),

tr(AQYQ5 ") = —tr(D™'BP'P™'D -~ D7'BD’) = tr(BP'P~1) —tr(BD'D™1).
As A= D7'BD, we have tr A = tr B, and tr Ay = tr By. Hence

tr(ps,, -B[z]) = (2m — 1) tr By — res,—o tr B(2)P'(2)P(2) " 'dz
+res,—o tr B(2)D'(2)D(2) " 'dz + res,—oo tr B(2)D'(2)D(2) " 'dz
+(2m — 1) tr By — res,—o tr B(2)P'(2)P(2) " dz
- Z res,—¢ tr B(z)D'(2)D(z) " 'dz.
¢ecx

LEMMA 5.14. Suppose T € GL(k,C((2))), C € M(k,C[[z]]) and T~'CT €
M (k,CJ[[2]]). Thenres.—tr C(2)T"(2)T(z)~! = a—b, where a denotes the trace
of the operator multiplication by C in the space (C[[2]]* + TC[[z]]¥)/TC[[z]]¥,
while b denotes the trace of multiplication by C' in the space

(ClIN* + TClll1*) /Tl

Proof. Both sides of the asserted equality do not change if (7', C') is replaced
by (UTV,UCU') where U, V € GL(k,C[[z]]). We may then assume that
T is a diagonal matrix, hence that k = 1. When k£ = 1 both sides of the
asserted relation are simply mC'(0), where m is the multiplicity of zero of T'(z)
at z =0. O

It follows from the lemma that —res,—¢ tr(B(z)D'(z)D(z)"1)dz is just the
trace of the operator of multiplication by B(z) on the ¢ component of the
module S/C[z, z~1]*. This, and the equality just before the lemma, implies the
proposition. ]
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Suppose we have P(271) = P(z)~!. Replace the assumption P(z)"1B(2)P(z)
€ M(k,C|z,27Y) in Proposition 5.13 with the stronger assumption

P(2)7'B(2)P(z) = B(z™1).

Recall that L is the space of all rational functions of the form u(z)+ P(2)u(z71)
with v € Clz, z71]™. In view of the stronger assumption, L is invariant under
multiplication by B.

DEFINITION 6. Denote by By, the operator of multiplication by B on L. Put
Ly, = LN z'~™C[[2]]*. Denote by L™ the set of rational functions of the form
u(2) + P(2)u(271) with u(z) € 2~™C[z71]*.

ProrosiTION 5.15. The space L., is finite dimensional, and L = L, & L™.
Denote by m,, : L — L the projection with image L, and kernel L™. Suppose
the function P(z) is reqular at z = +1. Then for large enough m we have that
tr(mm Br) equals

(m— %) tr By — % res,—oo tr(B(2)P'(2)P(2) " Ydz

vy i[tY(B(l)P(l)) +tr(B(—1)P(~1))].

Here By is the constant term of B(z), and c is the trace of the operator of
multiplication by B(z) in the space (C[z,z71|* + P(2)Clz, 27 1]¥)/Clz, 2 ]*.

Proof. Let S, S, S™, ps,,, B be as in Proposition 5.13. From P(z7!) =
P(2)71 it follows that if u € S then @, given by a(z) = P(2)u(z~1), is also in
S. Define 7 : S — S by 7(u) = @& Then 72 =1, L = {u € S; 7(u) = u},
L =S AL, L™ = S™ A L, and

tr(m,Br) = %tr(psm ‘Blz]) + % tr(7 - ps,, -B[z]).

The finite dimensionality of S,,, and Proposition 5.13 then imply that the space
L., is finite dimensional, and L = L,,, & L™. To deduce the last claim of the
proposition from Proposition 5.13, it remains to show that

tr(7 - ps,, |[B]) = %(tf(B(l)P(l)) +tr(B(=1)P(-1)))

for large enough m.

Let D, @1, Q2 be as in Proposition 5.13. Then under the isomorphism
S=Clz,27Y*, u ~ D~'u, the operator ps,, : S — S translates into the
operator pr,, (of Proposition 5.9), and multiplication by B : .S — S translates
into multiplication by

A=D7'BD, Clz, 27 * = Clz, 271,
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The map 7: S — S translates into
[Cle: Clz, 27 Y% = Clz, 27 Y%, (w)(2) = u(z71), C(2) = D(2)"'P(2)D(z71).
Hence

tr(r - 3y, BJ2]) = r(Cl2Je -, A[Z]) = tr(epr,, ARICL]),

which — by Proposition 5.9 —

%(trA(l)C(l) +tr A(—1)C(=1)) = %tr(B(l)P(l) +tr B(—=1)P(=1));

note that D(z) is regular at z = £1, since so is P(z). O

If F € M(k,C) and Y C C* is an F-invariant subspace, write tr(F,Y’) for the
trace of F'on Y.

PROPOSITION 5.16. Fiz P(z) € GL(k,C(2)) with P(z=') = P(z)~!. Suppose
that the function P(z) is reqular on |z| = 1 and at z = 0, and that it has order
1 at all its poles (1, ...,(s inside {z € C; 0 < |z| < 1}. Denote by Y; the image
of the operator lim,_,¢,(z — (;)P(z) acting on C*. Fiz B(z) € M(k,C[z,27'])
and suppose B1(z) = P(2)"'B(2)P(z) € M(k,C[z,271]). Then

tr(ps,, -[B]) = (2m — 1) tr By + L " tr B(2)P'(2)P(2) " 'dz

+ Z tI‘ Cl +Bl(§ )’Y;)a
1<i<s

with By being the constant term of B(z).
If in addition By(z) = B(271) then

tr(mnBr) = (m — %)trB0+ 4%” ‘ ‘_1trB(z)P’(z)P(z)—1dz
+ Z (B(G),Y) + i[tr(B(l)P(l)) +tr(B(=1)P(=1))].

Note that the subspace Y; of C* is invariant under B((;) and By (¢1).
Proof. In view of Propositions 5.13 and 5.15 it suffices to verify that

L uBePePe) e+ Y w(BEG) + B¢, )

21
[z|=1 1<i<s

= tr([B], S/C[z, 27 1) — res.—o tr B(2)P'(2) P(2) " 1dz,

where

S =Clz, 27" 4+ P(2)C[z, 27 Y%
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For any ¢ # 0 in C denote by M and N the (-components of the C[z, z7!]-
modules S/C[z, 27 1]*¥ and S/P(z2)C[z, 27 1]*, respectively. From Cauchy’s for-
mula and Lemma 5.14, it follows that

1

21 |z|=1

tr B(z)P'(2)P(2)"'dz = Y tr([B], Mc)
1<[¢|<o0

— > tx([B],Ne) = res.—o0 tr(B(2) P’ (2) P(2) ") dz.

1<[¢|<o0

On the other hand, tr([B], S/C[z, z~1*) = > cecx tr([B], Mc¢). Hence the re-
quired identity follows from

> (Bl M) =} (B(G), Vi),

0<|¢|<1 1<i<s

> (BN = Y tx(Bu(¢), V).

1<|¢] <00 1<i<s

If P(z) is regular at ¢ then M, = 0. At each (;, P(z) has a pole of order
one. Hence there exists isomorphisms M, —Y; which translate the operator
[B] : M¢, — M, to the operator of multiplication by B({;) on Y;. This implies
the first identity.

For the second identity, for any ¢ € C*, denote by N the (-component
of the module (Clz,27 1% +P(2)71C[z, 271¥)/Clz, 2~ 1]¥. Multiplication by
P(z)~! induces an isomorphism N;~N¢. Under this isomorphism, multiplica-
tion by B : N — N¢ translates into multiplication by Bj : Wg — Wg, hence
tr([B], N¢) = tr([Bi1], N¢). From P(z)~! = P(27!) we deduce that N = 0 if
P(z) is regular at z = ¢!, and that tr([Bl],NC_—l) = tr(By(¢; 1), Y:). This
implies the second identity, hence the proposition? |

5.3 SPECTRAL TERMS

To deduce the trace formula from Proposition 5.16, we use properties of the
function M (pu1, po, t).

Recall that we have the projection 7, : L — L with kernel L™ and image L.,
and B, denotes the operator of multiplication by B(z) on L. The operator P(z)
is the restriction to the subspace of U-invariant vectors of the operator M on
the space In = @Io(u1, p2) (11, 2 range over the characters of A /F* .- o),
which maps Io(p1, 2) to Io(p2, ) via M(pr, po, 2).

PROPOSITION 5.17. There exists ay € C such that for sufficiently large m,

trmnBy) = (m — )ag — > Si(f).

5<i<8
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Proof. By Proposition 4.29 the function P(z) has two poles in the domain
|z| < 1, namely at z = +¢~ /2, each of order 1. We have P(z~1) = P(z)~! and
P(2)7'B(2)P(z) = B(z7!). Hence the final claim of Proposition 5.16 applies
and implies that for large enough m,

2 T

tr(m,[B]) = (m—l)tr Bo—i—% 7{ - tr B(z)P’(z)P(z)_ldz+tr(B(q_1/2),Y+)

+tr(B(—q~Y?),Y.) + i[tr(B(l)P(l)) +tr(B(—1)P(-1))].

Here By is the constant term of B(z) and the image of the operator
lim,_, 4 ,-1/2 (zFq7'/?)P(2) is denoted by Y. The proposition follows once we
show that

74 B BEP )P = i) + (1) (1)
tr(B(qg~ /%), Y}) + tr(B(—q~"/?),Y_) = —Ss(f), (2)
tr(B(1)P(1)) + tr(B(—-1)P(-1)) = —4S7(f). (3)

Denote by r(z) the representation of GL(2,A) by right translation in I(z) =
®@purpn (1121, o). Here 1, po are characters of A /F*.aZ. Let r(z, f) be
the convolution operator defined by 7(z) and the compactly supported function
fin C(GL(2,A)). Identify, as usual, I(z) to the space Iy, and consider r(z, f)
as an operator in Ip. From Proposition 4.36, B(z) coincides with the restriction
of 7(z, f) to I. Also, P(z) coincides with the restriction of M (z) to IY. Hence
the integral on the left of (1) equals

jé - tre(z, )M/ (2)M(2) " dz

% tr[(u2V2*17M1VZ; f)M/(Mlvl'LQa Z)M(/’Lla H2, Z)ildz
|z|=1
Hisp2

j{ tr M (p1, p2, 2) " I (pave—1, pavz, )M (a1, pa, 2)dz
|z|=1
1,2

% tr I(,U/IVZ) NQszlaf)M(MlaMQa z)ilM/(Mla M2, Z)dZ
|z|=1
K102

Then (1) follows from Proposition 4.9.

For (2), it follows from Proposition 4.29 that Y, = LY, with L = ®L,, L, C
I(p, ;1) being generated by the function = +— pu(x). The operator (¢~ /2, f)
acts in L, as the operator of multiplication by fGL(2,A) f(x)p(det z)dz. Hence

(B, V) = ol 0 = Y [ oy, flEeE )
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where 4 ranges over the set of characters of AX/F* - a%. Similarly

tr(B(g~ /%), Y_) = tr(r(—¢~ /%, f), L)

= Z/ p(det 2)v_q (det x)dz.
QL(2 A)

27 Z

Every character of A* which is trivial on F'* - o** is either trivial on F'* - «
or its product with v_1 is, so (2) follows.

For (3) note that

tr B(1)P(1) = trr(1, /)M Ztrl,u s YM (1, 1 Ztrl,u wy f)

by Proposition 4.30. Similarly tr B(—=1)P(—1) = = >_  tr I(pv—1, pv—1, f). O

This completes the proof of the trace formula.
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