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Abstract. For a complex or real algebraic group G, with g :=
Lie(G) , quantizations of global type are suitable Hopf algebras Fq[G]
or Uq(g) over C

[
q, q−1

]
. Any such quantization yields a structure of

Poisson group on G, and one of Lie bialgebra on g : correspondingly,
one has dual Poisson groups G∗ and a dual Lie bialgebra g∗ . In
this context, we introduce suitable notions of quantum subgroup and,
correspondingly, of quantum homogeneous space, in three versions:
weak, proper and strict (also called flat in the literature). The last
two notions only apply to those subgroups which are coisotropic, and
those homogeneous spaces which are Poisson quotients; the first one
instead has no restrictions whatsoever.

The global quantum duality principle (GQDP), as developed in [F.
Gavarini, The global quantum duality principle, Journ. für die Reine
Angew. Math. 612 (2007), 17–33.], associates with any global quan-
tization of G , or of g , a global quantization of g∗, or of G∗. In this
paper we present a similar GQDP for quantum subgroups or quan-
tum homogeneous spaces. Roughly speaking, this associates with ev-
ery quantum subgroup, resp. quantum homogeneous space, of G , a
quantum homogeneous space, resp. a quantum subgroup, of G∗ . The
construction is tailored after four parallel paths — according to the
different ways one has to algebraically describe a subgroup or a ho-
mogeneous space — and is “functorial”, in a natural sense.

Remarkably enough, the output of the constructions are always quan-
tizations of proper type. More precisely, the output is related to the
input as follows: the former is the coisotropic dual of the coisotropic
interior of the latter — a fact that extends the occurrence of Poisson
duality in the original GQDP for quantum groups. Finally, when the
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input is a strict quantization then the output is strict as well — so
the special rôle of strict quantizations is respected.

We end the paper with some explicit examples of application of our
recipes.

2010 Mathematics Subject Classification: Primary 17B37, 20G42,
58B32; Secondary 81R50
Keywords and Phrases: Quantum Groups, Poisson Homogeneous
Spaces, Coisotropic Subgroups

1 Introduction

In this paper we work with quantizations of (algebraic) complex and real
groups, their subgroups and homogeneous spaces, and a special symmetry
among such quantum objects which we refer to as the “Global Quantum Du-
ality Principle”. This is just a last step in a process, which is worth recalling
in short.
In any possible sense, quantum groups are suitable deformations of some alge-
braic objects attached with algebraic groups, or Lie groups. Once and for all,
we adopt the point of view of algebraic groups: nevertheless, all our analysis
and results can be easily converted in the language of Lie groups.
The first step to deal with is describing an algebraic group G via suitable
algebraic object(s). This can be done following two main approaches, a global
one or a local one.
In the global geometry approach, one considers U(g) — the universal envelop-
ing algebra of the tangent Lie algebra g := Lie(G) — and F [G] — the algebra
of regular functions on G . Both these are Hopf algebras, and there exists a non-
degenerate pairing among them so that they are dual to each other. Clearly,
U(g) only accounts for the local data of G encoded in g , whereas F [G] instead
totally describes G : thus F [G] yields a global description of G , which is why
we speak of “global geometry” approach.
In this context, one describes (globally) a subgroup K of G — always assumed
to be Zariski closed — via the ideal in F [G] of functions vanishing on it; al-
ternatively, an infinitesimal description is given taking in U(g) the subalgebra
U(k) , where k := Lie(K) .
For a homogeneous G–space, say M , one describes it in the form M ∼= G

/
K —

which amounts to fixing some point in M and its stabilizer subgroup K in G .
After this, a local description of M ∼= G

/
K is given by representing its left-

invariant differential operators as U(g)
/
U(g) k : therefore, we can select U(g) k

— a left ideal, left coideal in U(g) — as algebraic object to encode M ∼= G
/
K ,

at least infinitesimally. For a global description instead, obstructions might
occur. Indeed, we would like to describe M ∼= G

/
K via some algebra F [M ] ∼=

F
[
G
/
K
]
strictly related with F [G] . This varies after the nature of M ∼= G

/
K
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— hence of K — and in general might be problematic. Indeed, there exists
a most natural candidate for this job, namely the set F [G]

K
of K–invariants

of F [G] , which is a subalgebra and left coideal. The problem is that F [G]
K

permits to recover exactly G
/
K if and only if M ∼= G

/
K is a quasi-affine

variety (which is not always the case). This yields a genuine obstruction, in
the sense that this way of (globally) encoding the space M ∼= G

/
K only works

with quasi-affine G–spaces; for the other cases, we just drop this approach —
however, for a complete treatment of the case of projective G–spaces see [6].

In contrast, the approach of formal geometry is a looser one: one replaces
F [G] with a topological algebra F [[G]] = F

[[
Gf

]]
— the algebra of “regular

functions on the formal group Gf” associated with G — which can be realized
either as the suitable completion of the local ring of G at its identity or as
the (full) linear dual of U(g) . In any case, both algebraic objects taken into
account now only encode the local information of G .

In this formal geometry context, the description of (formal) subgroups and
(formal) homogeneous spaces goes essentially the same. However, in this case
no problem occurs with (formal) homogeneous space, as any one of them can

be described via a suitably defined subalgebra of invariants F
[[
Gf

]]Kf : in a
sense, “all formal homogeneous spaces are quasi-affine”. As a consequence, the
overall description one eventually achieves is entirely symmetric.

When dealing with quantizations, Poisson structures arise (as semiclassical lim-
its) on groups and Lie algebras, so that we have to do with Poisson groups and
Lie bialgebras. In turn, there exist distinguished subgroups and homogeneous
spaces — and their infinitesimal counterparts — which are “well-behaving”
with respect to these extra structures: these are coisotropic subgroups and
Poisson quotients. Moreover, the well-known Poisson duality — among Poisson
groups G and G∗ and among Lie bialgebras g and g∗ — extends to similar dual-
ities among coisotropic subgroups (of G and G∗) and among Poisson quotients
(of G and G∗ again). It is also useful to notice that each subgroup contains a
maximal coisotropic subgroup (its “coisotropic interior”), and accordingly each
homogeneous space has a naturally associated Poisson quotient.

As to the algebraic description, all properties concerning Poisson (or Lie bial-
gebra) structures on groups, Lie algebras, subgroups and homogeneous spaces
have unique characterizations in terms of the algebraic codification one adopts
for these geometrical objects. Details change a bit according to whether one
deals with global or formal geometry, but everything goes in parallel in either
context.

By (complex) “quantum group” of formal type we mean any topological Hopf
algebra H~ over the ring C[[~]] whose semiclassical limit at ~ = 0 — i.e.,
H~

/
~H~ — is of the form F

[[
Gf

]]
or U(g) for some formal group Gf or Lie

algebra g . Accordingly, one writes H~ := F~

[[
Gf

]]
or H~ := U~(g) , calling the

former a QFSHA and the latter a QUEA. If such a quantization (of either type)
exists, the formal group Gf is Poisson and g is a Lie bialgebra; accordingly, a
dual formal Poisson group G ∗

f and a dual Lie bialgebra g∗ exist too.
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In this context, as formal quantizations of subgroups or homogeneous spaces
one typically considers suitable subobjects of either F~

[[
Gf

]]
or U~(g) such

that: (1) with respect to the containing formal Hopf algebra, they have the
same relation as a in the “classical” setting — such as being a one-sided ideal,
a subcoalgebra, etc.; (2) taking their specialization at ~ = 0 is the same as
restricting to them the specialization of the containing algebra (this is typi-
cally mentioned as a “flatness” property). This second requirement has a key
consequence, i.e. the semiclassical limit object is necessarily “good” w.r. to the
Poisson structure: namely, if we are quantizing a subgroup, then the latter is
necessarily coisotropic, while if we are quantizing a homogeneous space then it
is indeed a Poisson quotient.
In the spirit of global geometry, by (complex) “quantum group” of global type
we mean any Hopf algebra Hq over the ring C

[
q, q−1

]
whose semiclassical limit

at q = 1 — i.e., Hq

/
( q − 1)Hq — is of the form F [G] or U(g) for some alge-

braic group G or Lie algebra g . Then one writes Hq := Fq[G] or Hq := U~(g) ,
calling the former a QFA and the latter a QUEA. Again, if such a quantization
(of either type) exists the group G is Poisson and g is a Lie bialgebra, so that
dual formal Poisson groups G∗ and a dual Lie bialgebra g∗ exist too.
As to subgroups and homogeneous spaces, global quantizations can be defined
via a sheer reformulation of the same notions in the formal context: we refer to
such quantizations as strict. In this paper, we introduce two more versions of
quantizations, namely proper and weak ones, ordered by increasing generality,
namely {strict} ( {proper} ( {weak} . This is achieved by suitably weakening
the condition (2) above which characterizes a quantum subgroup or quantum
homogeneous space. Remarkably enough, one finds that now the existence of
a proper quantization is already enough to force a subgroup to be coisotropic,
or a homogeneous space to be a Poisson quotient.
The Quantum Duality Principle (=QDP) was first developed by Drinfeld
(cf. [7], §7) for formal quantum groups (see [10] for details). It provides two
functorial recipes, inverse to each other, acting as follows: one takes as input
a QFSHA for Gf and yields as output a QUEA for g∗ ; the other one as input
a QUEA for g and yields as output a QFSHA for G ∗

f .
The Global Quantum Duality Principle (=GQDP) is a version of the QDP
tailored for global quantum groups (see [11, 12]): now one functorial recipe
takes as input a QFA for G and yields a QUEA for g∗ , while the other takes a
QUEA for g and provides a QFA for G∗ .
An appropriate version of the QDP for formal subgroups and formal homo-
geneous spaces was devised in [5]. Quite in short, the outcome there was an
explicit recipe which taking as input a formal quantum subgroup, or a formal
quantum homogeneous space, respectively, of Gf provides as output a quantum
formal homogeneous space, or a formal quantum subgroup, respectively, of G ∗

f .
In short, these recipes come out as direct “restriction” (to formal quantum sub-
groups or formal quantum homogeneous spaces) of those in the QDP for formal
quantum groups. This four-fold construction is fully symmetric, in particular
all duality or orthogonality relations possibly holding among different quan-
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tum objects are preserved. Finally, Poisson duality is still involved, in that the
semiclassical limit of the output quantum object is always the coisotropic dual
of the semiclassical limit of the input quantum object.
The main purpose of the present work is to provide a suitable version of the
GQDP for global quantum subgroups and global quantum homogeneous spaces
— extending the GQDP for global quantum groups — as much general as pos-
sible. The inspiring idea, again, is to “adapt” (by restriction, in a sense) to
these more general quantum objects the functorial recipes available from the
GQDP for global quantum groups. Remarkably enough, this approach is fully
successful: indeed, it does work properly not only with strict quantizations
(which should sound natural) but also for proper and for weak ones. Even
more, the output objects always are global quantizations (of subgroups or ho-
mogeneous spaces) of proper type — which gives an independent motivation
to introduce the notion of proper quantization.
Also in this setup, Poisson duality, in a generalized sense, shows up again as
the link between the input and the output of the GQDP recipes: namely, the
semiclassical limit of the output quantum object is always the coisotropic dual
of the coisotropic interior of the semiclassical limit of the input quantum object.
Besides the wider generality this GQDP applies to (in particular, involving
also non-coisotropic subgroups, or homogeneous spaces which are not Poisson
quotients), we pay a drawback in some lack of symmetry for the final result —
compared to what one has in the formal quantization context. Nevertheless,
such a symmetry is almost entirely recovered if one restricts to dealing with
strict quantizations, or to dealing with “double quantizations” — involving
simultaneously a QFA and a QUEA in perfect (i.e. non-degenerate) pairing.
At the end of the paper (Section 6) we present some applications of our GQDP:
this is to show how it effectively works, and in particular that it does provide
explicit examples of global quantum subgroups and global quantum homoge-
neous spaces. Among these, we also provide an example of a quantization
which is proper but is not strict — which shows that the former notion is a
non-trivial generalization of the latter.

2 General Theory

The main purpose of the present section is to collect some classical material
about Poisson geometry for groups and homogeneous spaces. Everything is
standard, we just need to fix the main notions and notations we shall deal
with.

2.1 Subgroups and homogeneous spaces

Let G be a complex affine algebraic group and let g be its tangent Lie alge-
bra. Let us denote by F [G] its algebra of regular functions and by U(g) its
universal enveloping algebra. Both such algebras are Hopf algebras, and there
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exists a natural pairing of Hopf algebras between them, given by evaluation of
differential operators onto functions. This pairing is perfect if and only if G is
connected, which we will always assume in what follows.
A real form of either G or g is given once a Hopf ∗–algebra structure is fixed on
either F [G] or U(g) — and in case one take such a structure on both sides, the
two of them must be dual to each other. Thus by real algebraic group we will
always mean a complex algebraic group endowed with a suitable ∗–structure.
A subgroup K of G will always be considered as Zariski–closed and algebraic.
For any such subgroup, the quotient G

/
K is an algebraic left homogeneous

G–space, which is quasi-projective as an algebraic variety. Given an algebraic
left homogeneous G–space M and choosing m ∈ M , the stabilizer subgroup
Km will be a closed algebraic subgroup of G such that G

/
Km ≃ M ; changing

point will change the stabilizer within a single conjugacy class.
We shall describe the subgroup K , or the homogeneous space G

/
K, through

either an algebraic subset of F [G] — to which we will refer as a global coding
— or an algebraic subset of U(g) — to which we will refer as a local coding.
The complete picture is the following:

— subgroup K :

(local) letting k = Lie(K) we can consider its enveloping algebra U(k) which
is a Hopf subalgebra of U(g) ; we then set C ≡ C(K) := U(k) ;

(global) functions which are 0 on K form a Hopf ideal I ≡ I(K) inside
F [G] , such that F [K] ≃ F [G]

/
I .

— homogeneous space G
/
K :

(local) let I ≡ I(K) = U(g) · k : this is a left ideal and two-sided coideal in
U(g) , and U(g)

/
I is the set of left–invariant differential operators

on G
/
K .

(global) regular functions on the homogeneous space G
/
K may be identified

with K–invariant regular functions on G . We will let C = C(K) =

F [G]
K
; this is a subalgebra and left coideal in F [G] .

Warning : this needs clarification! The point is: can one recover

the homogeneous space G
/
K from C(K) = F [G]K ? The answer

depends on geometric properties of G
/
K itself — or (equivalently)

of K — which we explain later on.

For any Hopf algebra H we introduce the following notations: ≤1 will stand for
“unital subalgebra”, E for “two-sided ideal”, El for “left ideal” and similarly
≤̇ will stand for “subcoalgebra”, Ė for “two-sided coideal” and Ėℓ for “left
coideal”. When the same symbols will be decorated by a subindex referring
to a specific algebraic structure their meaning should be modified accordingly,
e.g. EH will stand for “Hopf ideal” and ≤H for “Hopf subalgebra”.
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With such notations, with any subgroup K of G there is associated one of the
following algebraic objects:

(a) I EH F [G] , (b) C ≤1
Ėℓ F [G] , (c) I El ĖU(g) , (d) C ≤H U(g) (2.1)

In the real case, one has to consider, together with (2.1), additional require-
ments involving the ∗ structure and the antipode S , namely

(a) I∗ = I , (b) S(C)∗ = C , (c) S(I)∗ = I , (d) C∗ = C (2.2)

In the connected case algebraic objects of type I , I and C in (2.1) are enough
to reconstruct either K or G

/
K :

K = Spec
(
F [G]/I

)
= exp

(
Prim(C)

)
= exp

(
Prim(I)

)

where Prim(X) denotes the set of primitive elements of a bialgebra X .

In contrast, C(K) = F [G]
K

might be not enough to reconstructK , due to lack
of enough global algebraic functions; this happens, for example, when G

/
K is

projective and therefore C(K) = C . Any group K which can be reconstructed
from its associated C is called observable: we shall now make this notion more
precise. Let us call τ the map that to any subgroup K associates the algebra
of invariant functions F [G]K and let us call σ the map that to any subalgebra
A of F [G] associates its stabilizer σ(A) =

{
g ∈ G

∣∣ g · f = f ∀ f ∈ A
}
. These

two maps are obviously inclusion–reversing. Furthermore they establish what
is also known as a simple Galois correspondence: namely, for any subgroup K
and any subalgebra A one has

(σ ◦ τ)(K) ⊇ K , (τ ◦ σ)(A) ⊇ A

so that (τ ◦ σ ◦ τ) (K) = τ(K), (σ ◦ τ ◦ σ) (A) = σ(A). A subgroup K of G
such that (σ ◦ τ) (K) = K is said to be observable: this means exactly that
such a subgroup can be fully recovered from its algebra of invariant functions
τ(K). If K is any subgroup, then K̂ := (σ ◦ τ) (K) is the smallest observable
subgroup containing K; we will call it the observable hull of K. Remark then
that C(K) = C

(
K̂
)
.

The following fact (together with many properties of observable subgroups),
which gives a characterization of observable subgroups in purely geometrical
terms, may be found in [13]:
Fact: a subgroup K of G is observable if and only if G

/
K is quasi–affine.

Let us now clarify how to pass from algebraic objects directly associated with
subgroups to those corresponding to homogeneous spaces. Let H be a Hopf
algebra, with counit ε and coproduct ∆ . For any submodule M ⊆ H define

M+ := M ∩Ker(ε) , HcoM :=
{
y ∈ H

∣∣ (∆(y)− y ⊗ 1) ∈ H ⊗M
}

(2.3)

Let C be a (unital) subalgebra and left coideal of H and define Ψ(C) = H ·C+.
Then Ψ(C) is a left ideal and two-sided coideal in H . Conversely, let I be a
left ideal and two-sided coideal in H and define Φ(I) := HcoI . Then Φ(I) is a
unital subalgebra and left coideal in H . Also, this pair of maps (Φ,Ψ) defines
a simple Galois correspondence, that is to say
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(a) Ψ and Φ are inclusion-preserving;

(b) (Φ ◦Ψ) (C) ⊇ C , (Ψ ◦ Φ) (I) ⊆ I ;

(c) Φ ◦Ψ ◦ Φ = Φ , Ψ ◦ Φ ◦Ψ = Ψ .

(where the third property follows from the previous ones; see [19, 21, 22] for
further details).
Let now K be a subgroup of G and let I, C, I, C the corresponding algebraic
objects as described in (2.1). We can thus establish the following relations
among them:

subgroup vs. homogeneous space: objects directly related to the sub-
group (namely, I and C) and objects directly related to the homogeneous
space (namely, C and I) are linked by Ψ and Φ as follows:

I = Ψ(C) , C = Φ(I) , I ⊇ Ψ(C) , C = Φ(I) (2.4)

In particular, K is observable if and only if I = Ψ(C) ; on the other hand,

we have in general Ψ(C(K)) = I(K̂) .

orthogonality with respect to the natural pairing between F [G] and U(g) :
this is expressed by the relations

I = C⊥ , C = I⊥ , C = I⊥ , I ⊆ C⊥ (2.5)

In particular, K is observable if and only if I = C⊥ ; on the other hand,
we have in general C(K)⊥ = I

(
K̂
)
.

Let us also remark that orthogonality intertwines the local and global
description.

The “formal” vs. “global” geometry approach. In the present ap-
proach we are dealing with geometrical objects — groups, subgroups and ho-
mogeneous spaces — which we describe via suitably chosen algebraic objects.
When doing that, universal enveloping algebras or subsets of them only pro-
vide a local description — around a distinguished point: the unit element in
a (sub)group, or its image in a coset (homogeneous) space. Instead, function
algebras yield a global description, i.e. they do carry information on the whole
geometrical object; for this reason, we refer to the present approach as the
“global” one.
The “formal geometry” approach instead only aims to describe a group by a
topological Hopf algebra, which can be realized as an algebra of formal power
series; in short, this is summarized by saying that we are dealing with a “formal
group”. Subgroups and homogeneous spaces then are described by suitable
subsets in such a formal series algebra (or in the universal enveloping algebra,
as above): this again yields only a local description — in a formal neighborhood
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of a distinguished point — rather than a global one. Now, the analysis above
shows that an asymmetry occurs when we adopt the global approach. Indeed,
we might have problems when describing a homogeneous space by means of
(a suitably chosen subalgebra of invariant) functions: technically speaking,
this shows up as the occurrence of inclusions — rather than identities! — in
formulas 2.4 and 2.5. This is a specific, unavoidable feature of the problem,
due to the fact that homogeneous spaces (for a given group) do not necessarily
share the same geometrical nature — beyond being all quasi-projective — in
particular they are not necessarily quasi-affine.
The case of those homogeneous spaces which are projective is treated in [6],
where their quantizations are studied; in particular, there a suitable method to
solve the problematic “C–side” of the QDP in that case is worked out, still in
terms of “global geometry” but with a different tool (semi-invariant functions,
rather than invariant ones). In contrast, in the formal geometry approach such
a lack of symmetry does not occur: in other words, it happens that every
formal (closed) subgroup is observable, or every formal homogeneous space is
quasi-affine. This means that there is no need of worrying about observability,
and the full picture — for describing a subgroup or homogeneous space, in four
different ways — is entirely symmetric. This was the point of view adopted in
[5], where this complete symmetry of the formal approach is exploited to its
full extent.

2.2 Poisson subgroups and Poisson quotients

Let us now assume that G is endowed with a complex Poisson group structure
corresponding to a Lie bialgebra structure on g , whose Lie cobracket is denoted
δ : g −→ g ∧ g . At the Hopf algebra level this means that F [G] is a Poisson–
Hopf algebra and U(g) a co-Poisson Hopf algebra, in such a way that the
duality pairing is compatible with these additional structures (see [4] for basic
definitions). Let us recall that the linear dual g∗ inherits a Lie algebra structure;
on the other hand, it has a natural Lie coalgebra structure, whose cobracket
δ : g∗ −→ g∗ ∧ g∗ is the dual map to the Lie bracket of g . Altogether, this
makes g∗ into a Lie bialgebra, which said to be dual to g . Therefore, there
exist Poisson groups whose tangent Lie bialgebra is g∗ ; we will assume one
such connected group is fixed, we will denote it with G∗ and call it the dual
Poisson group of G. In the real case the involution in F [G] is a Poisson algebra
antimorphism and the one in U(g) is a co-Poisson algebra antimorphism.
A closed subgroup K of G is called coisotropic if its defining ideal I(K) is a
Poisson subalgebra, while it is called a Poisson subgroup if I(K) is a Poisson
ideal, the latter condition being equivalent to K →֒ G being a Poisson map.
Connected coisotropic subgroups can be characterized, at an infinitesimal level,
by one of the following conditions on k ⊆ g :

(C-i) δ(k) ⊆ k ∧ g , that is k is a Lie coideal in g ,

(C-ii) k⊥ is a Lie subalgebra of g∗ ,
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while analogous characterizations of Poisson subgroups correspond to k being
a Lie subcoalgebra or k⊥ being a Lie ideal.
The most important features of coisotropic subgroups, in this setting, is the
fact that G

/
K naturally inherits a Poisson structure from that of G. Actually,

a Poisson manifold (M ,ωM ) is called a Poisson homogeneous G–space if there
exists a smooth, homogeneous G–action φ : G×M −→ M which is a Poisson
map (w.r. to the product Poisson structure on the domain). In particular, we
will say that (M,ωM ) is a Poisson quotient if it verifies one of the following
equivalent conditions (cf. [26]):

(P-i) there exists x0 ∈ M whose stabilizer Gx0
is coisotropic in G ;

(P-ii) there exists x0 ∈ M such that φx0
: G → M , φ(x0, g) = φ(x, g) ,

is a Poisson map ;

(P-iii) there exists x0 ∈ M such that ωM (x0) = 0 .

It is important to remark here that inside the same conjugacy class of sub-
groups of G there may be subgroups which are Poisson, coisotropic, or non
coisotropic. Therefore, on the same homogeneous space there may exist many
Poisson homogeneous structures, some of which make it into a Poisson quotient
while some others do not.
For a fixed connected subgroup K of a Poisson group G, with Lie algebra k, one
can consider the following descriptions in terms of the Poisson Hopf algebra
F [G] or of the co-Poisson Hopf algebra U(g) :

I ≤P F [G] , C ≤P F [G] (2.6)

I ĖP U(g) , C ĖP U(g) (2.7)

where on first line we have global conditions and on second line local ones.
Conversely each one of these conditions imply coisotropy of G with the excep-
tion of the condition on C, which implies only that the observable hull K̂ is
coisotropic. Therefore a connected, observable, coisotropic subgroup of G is
identified by one of the following algebraic objects:

I EH ≤P F [G] , C ≤1
Ėℓ ≤P F [G] (2.8)

I El Ė ĖP U(g) , C ≤H ĖP U(g) (2.9)

(still with the usual, overall restriction on the use of C, which in general only

describes the observable hull K̂ ).
Thanks to self-duality in the notion of Lie bialgebra, with any Poisson group
there is associated a natural Poisson dual, which is fundamental in the QDP;
note that a priori many such dual groups are available, but when dealing with
the QDP such an (apparent) ambiguity will be solved. As we aim to extend
the QDP to coisotropic subgroups, we need to introduce a suitable notion of
(Poisson) duality for coisotropic subgroups as well.
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Definition 2.1. Let G be a Poisson group and G∗ a fixed Poisson dual.

1. If K is coisotropic in G we call complementary dual of K the unique
connected subgroup K⊥ in G∗ such that Lie(K⊥) = k⊥ .

2. If M is a Poisson quotient and M ≃ G
/
KM we call complementary dual

of M the Poisson G∗–quotient M⊥ := G∗
/
K⊥

M .

3. For any subgroup H of G we call coisotropic interior of H the unique

maximal, closed, connected, coisotropic subgroup
◦
H of G contained in H .

Remarks:

1. The complementary dual of a coisotropic subgroup is, trivially, a
coisotropic subgroup whose complementary dual is the connected com-
ponent of the one we started with:. Similarly, the complementary dual of
a Poisson quotient is a Poisson quotient, and if we start with a Poisson
quotient whose coisotropy subgroup (w.r. to any point) is connected then
taking twice the complementary dual brings back to the original Poisson
quotient.

2. The coisotropic interior may be characterized, at an algebraic level, as
the unique closed subgroup whose Lie algebra is maximal between Lie
subalgebras of h which are Lie coideals in g .

Proposition 2.2. Let K be any subgroup of G and let K〈⊥〉 :=
〈
exp(k⊥)

〉
be

the closed, connected, subgroup of G∗ generated by exp(k⊥) . Then:

(a) the Lie algebra k〈⊥〉 of K〈⊥〉 is the Lie subalgebra of g∗ generated by k⊥;

(b) k〈⊥〉 is a Lie coideal of g∗, hence K〈⊥〉 is a coisotropic subgroup of G∗;

(c) K〈⊥〉 = (
◦
K )⊥ ; in particular if Kis coisotropic then K〈⊥〉 = K⊥ ;

(d) (K〈⊥〉)〈⊥〉 =
◦
K and K is coisotropic if and only if (K〈⊥〉)〈⊥〉 = K .

Proof. Part (a) is trivial. As for (b), since k = (k⊥)⊥ is a Lie subalgebra of g ,
we have that k⊥ is a Lie coideal in g∗ : therefore, due to the identity

δ
(
[x, y]

)
=
∑
[y]

(
[x, y[1]]⊗y[2]+y[1]⊗ [x, y[2]]

)
+
∑
[x]

(
[x[1], y]⊗x[2]+x[1]⊗ [x[2], y]

)

(where δ(z) =
∑

[z] z[1]⊗z[2] for z ∈ g∗), the Lie subalgebra 〈k⊥〉 of g∗ generated

by k⊥ is a Lie coideal too. It follows then by claim (a) that K〈⊥〉 is coisotropic.
Thus (b) is proved.
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As for part (c) we have

(
k〈⊥〉

)⊥
= 〈k⊥〉⊥ =

(
⋂

h≤L g∗

h⊇k⊥

h

)⊥
=

∑
h≤L g∗

h⊇k⊥

h =
∑

fĖLg
f⊇k

f =
◦
k

(with ≤L meaning “Lie subalgebra” and ĖL meaning “Lie coideal”) where
◦
k

is exactly the maximal Lie subalgebra and Lie coideal of g contained in k . To
be precise, this last statement follows from the above formula for δ

(
[x, y]

)
,

since that formula implies that the Lie subalgebra generated by a family of Lie
coideals is still a Lie coideal.

Now
◦
k= Lie(

◦
K) , so Lie(K〈⊥〉) = k〈⊥〉 =

((
k〈⊥〉

)⊥)⊥
=
( ◦
k
)⊥

= Lie(
◦
K)⊥

implies K〈⊥〉 = (
◦
k)⊥ as we wished to prove. If, in addition, K is coisotropic

then, obviously, K〈⊥〉 = K . All other statements follow easily.

3 Strict, proper, weak quantizations

The purpose of this section is to fix some terminology concerning the meaning
of the word “quantization” and to describe some possible ways of quantizing
a (closed) subgroup, or a homogeneous space. We set the algebraic machinery
needed for talking of “quantization” and “specialization”: these notions must
be carefully specified before approaching the construction of Drinfeld’s functors.

Let q be an indeterminate, C
[
q, q−1

]
the ring of complex-valued Laurent poly-

nomials in q , and C(q) the field of complex-valued rational functions in q .
Denote by HA the category of all Hopf algebras over C

[
q, q−1

]
which are

torsion-free as C
[
q, q−1

]
–modules.

Given a Hopf algebra H over the field C(q) , a subset H ⊆ H is called a
C
[
q, q−1

]
–integral form (or simply a C

[
q, q−1

]
–form) if it is a C

[
q, q−1

]
–Hopf

subalgebra of H and HF := C(q) ⊗C[q,q−1] H = H . Then H is torsion-free

as a C
[
q, q−1

]
–module, hence H ∈ HA .

For any C
[
q, q−1

]
–module M , we set M1 := M

/
(q − 1)M = C⊗C[q,q−1] M :

this is a C–module (via C
[
q, q−1

]
→ C

[
q, q−1

]/
(q − 1) = C ), called special-

ization of M at q = 1 .
Given two C(q)–modules A and B and a C(q)–bilinear pairing A×B −→ F ,
for any C

[
q, q−1

]
–submodule A× ⊆ A we set:

A×
•

:=
{
b ∈ B

∣∣∣
〈
A×, b

〉
⊆ C

[
q, q−1

]}
(3.1)

In such a setting, we call A×
•
the C

[
q, q−1

]
–dual of A× .

We will call quantized universal enveloping algebra (or, in short, QUEA) any
Uq ∈ HA such that U1 := (Uq)1 is isomorphic to U(g) for some Lie algebra g ,
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and we will call quantized function algebra (or, in short, QFA) any Fq ∈ HA
such that F1 := (Fq)1 is isomorphic to F [G] for some connected algebraic
group G and, in addition, the following technical condition holds:

⋂
n≥0

(q − 1)
n
Fq =

⋂
n≥0

(
(q − 1)Fq + Ker(ǫ

Fq
)
)n

We will add the specification that such quantum algebras are real whenever
the starting object is a ∗–Hopf algebra. As a matter of notation, we write

Uq := C(q)⊗C[q,q−1] Uq , Fq := C(q)⊗C[q,q−1] Fq .

When Uq is a (real) QUEA, its specialization U1 is a (real) co–Poisson Hopf
algebra so that g is in fact a (real) Lie bialgebra. Similarly, for any (real) QFA
Fq the specialization F1 is a (real) Poisson-Hopf algebra and therefore G is a
(real) Poisson group (see [4] for details).
On occasions it is useful to consider simultaneous quantizations of both the
universal enveloping algebra and the function algebra, or, in a larger generality,
of a pair of dual Hopf algebra. Let H ,K ∈ HA and assume that there exists
a pairing of Hopf algebras 〈 , 〉 : H ×K −→ C

[
q, q−1

]
. If the pairing is such

that

(a) H = K• , K = H• (notation of (3.1)) w.r.t. the pairing H×K → C(q) ,
for H := C(q)⊗C[q,q−1 ]H , K := C(q)⊗C[q,q−1]K , induced from H×K →
C(q)

(b) the Hopf pairing H1 ×K1 → C given by specialization at q = 1 is perfect
(i.e. non-degenerate)

then we will say that H and K are dual to each other. Note that all these
assumptions imply that the initial pairing between H and K is perfect. When
H = Uq(g) is a QUEA and K = Fq[G] is a QFA, if the specialized pairing
at 1 is the natural pairing between U(g) and F [G] we will say that the pair
(Uq(g) , Fq[G]) is a double quantization of (G, g) .

Let us now move to the case in which G is a Poisson group and K a subgroup.
We want to define a reasonable notion of “quantization” of K and of the cor-
responding homogeneous space G

/
K . There is a standard way to implement

this, which actually implies — cf. Lemma 3.3 and Proposition 3.5 later on —
the additional constraint that K be coisotropic.

Definition 3.1. Let Fq[G] and Uq(g) be a QFA and a QUEA for G and g and
let

πFq
: Fq[G] −։ Fq[G]

/
(q−1)Fq[G] ∼= F [G]

πUq
: Uq(g) −։ Uq(g)

/
(q −1)Uq(g) ∼= U(g)
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be the specialization maps. Let I, C, I and C be the algebraic objects associated
with the subgroup K of G (see 2.1). We call “strict quantization” (and some-
times we shall drop the adjective “strict”) of each of them any object Iq , Cq ,
Iq or Cq respectively, such that

(a) Iq Eℓ Ė Fq[G] , πFq
(Iq) = I , πFq

(Iq) ∼= Iq
/
(q−1) Iq

(b) Cq ≤1 Ėℓ Fq[G] , πFq
(Cq) = C , πFq

(Cq) ∼= Cq
/
(q−1) Cq

(c) Iq Eℓ Ė Uq(g) , πUq
(Iq) = I , πUq

(Iq) ∼= Iq
/
(q−1)Iq

(d) Cq ≤1 Ėℓ Uq(g) , πUq
(Cq) = C , πUq

(Cq) ∼= Cq

/
(q−1)Cq

(3.2)

In order to explain this definition let us start by considering the first two
conditions in each line of (3.2).

a) A left ideal and two-sided coideal in a QFA quantizes the Hopf ideal of
functions which are zero on a (closed) subgroup;

b) a left coideal subalgebra in a QFA quantizes the algebra of invariant
functions on a homogeneous space;

c) a left ideal and two-sided coideal in a QUEA quantizes the infinitesimal
algebra on a homogeneous space;

d) a left coideal subalgebra in a QUEA quantizes the universal enveloping
subalgebra of a subgroup.

Once again, we must stress the fact that Cq , as was explained in Proposition

2.4, has to be seen as a quantization of the observable hull K̂ rather than of K
itself.

Let us now be more precise about the last condition in the previous definition.
By asking Iq

/
(q − 1)Iq ∼= πFq

(Iq) = I we mean the following: the special-

ization map sends Iq inside F [G]. This map factors through Iq
/
(q − 1)Iq ;

in addition, we require that the induced map Iq
/
(q − 1)Iq −→ F [G] be a

bijection on I . Of course this bijection will respect the whole Hopf structure,
since πFq

does. Now, since

πFq
(Iq) = Iq

/(
Iq ∩ (q − 1)Fq[G]

)

this property may be equivalently rephrased by saying that Iq ∩ (q−1)Fq [G] =
(q−1) Iq as well. The previous discussions may be repeated unaltered for all
four algebraic objects under consideration. An equivalent definition of strict
quantizations is therefore the following:

(a) Iq Eℓ Ė Fq[G] , πFq
(Iq) = I , Iq ∩ (q−1)Fq[G] = (q−1) Iq

(b) Cq ≤1 Ėℓ Fq[G] , πFq
(Cq) = C , Cq ∩ (q−1)Fq[G] = (q−1) Cq

(c) Iq Eℓ Ė Uq(g) , πUq
(Iq) = I , Iq ∩ (q−1)Uq(g) = (q−1)Iq

(d) Cq ≤1 Ėℓ Uq(g) , πUq
(Cq) = C , Cq ∩ (q−1)Uq(g) = (q−1)Cq

(3.3)
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The purpose of the last condition — which is often mentioned by saying that Cq

is a flat quantization (typically, in the literature on deformation quantization)
— should be clear: indeed, removing it means losing any control on what is
contained, in quantization, inside the kernel of the specialization map.

Although the just mentioned notion of quantization appears to be, in many
respect, the “correct” one — and indeed is typically the one considered in
literature — another notion of quantization naturally appears when one has to
deal with quantum duality principle.

Definition 3.2. Let Fq[G] and Uq(g) be a QFA and a QUEA for G and g and
let

πFq
: Fq[G] −։ Fq[G]

/
(q−1)Fq[G] ∼= F [G]

πUq
: Uq(g) −։ Uq(g)

/
(q −1)Uq(g) ∼= U(g)

be the specialization maps. Let ∇ := ∆ − ∆op. Let I, C, I and C be the
algebraic objects associated with the subgroup K of G (see 2.1). We call “proper
quantization” of each of them any object Iq , Cq , Iq or Cq respectively, such
that

(a) Iq Eℓ Ė Fq[G] , πFq
(Iq) = I ,

[
Iq , Iq

]
⊆ (q − 1) Iq

(b) Cq ≤1 Ėℓ Fq[G] , πFq
(Cq) = C ,

[
Cq , Cq

]
⊆ (q − 1) Cq

(c) Iq Eℓ Ė Uq(g) , πUq
(Iq) = I , ∇(Iq) ⊆ (q−1)Uq(g) ∧ Iq

(d) Cq ≤1 Ėℓ Uq(g) , πUq
(Cq) = C , ∇(Cq) ⊆ (q−1)Uq(g) ∧ Cq

(3.4)

The link between these two notions of quantization is the following:

Lemma 3.3. Any strict quantization is a proper quantization.

Proof. This is an easy consequence of definitions. Indeed, let K be a subgroup
of G . If Iq := I

(
K̂
)
is any strict quantization of I(K), we have

Iq ∩ (q − 1)Fq = (q − 1) Iq

by assumption, and moreover
[
Fq , Fq

]
⊆ (q − 1)Fq . Then

[
Iq , Iq

]
⊆ Iq ∩

[
Fq , Fq

]
⊆ Iq ∩ (q − 1)Fq = (q − 1) Iq

thus
[
Iq , Iq

]
⊆ (q − 1) Iq , i.e. Iq is proper. A similar argument works for

quantizations of type Cq(K) . Also, if Iq(K) is any strict quantization of I(K) ,
then we have Iq ∩ (q − 1)Uq = (q − 1)Iq by assumption, and moreover
∇(Uq) ⊆ (q − 1)U ∧2

q . Then

∇(Iq) ⊆
(
Uq ∧ Iq

)
∩ ∇(Uq) ⊆

(
Uq ∧ Iq

)
∩ (q − 1)U ∧2

q ⊆ (q − 1)Uq ∧ Iq

so that Iq is proper. A similar argument works for quantizations of type Cq(K)
as well.
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Remark 3.4. The converse to Lemma 3.3 here above is false. Indeed, there
exist quantizations (of subgroups / homogeneous spaces) which are proper but
not strict: we present an explicit example — of type Cq — in Subsection 6.3
later on.
This means that giving two different versions of “quantization” does make
sense, in that they actually capture two inequivalent notions — hierarchically
related via Lemma 3.3.

The following statement clarifies why such definitions actually apply only to
the (restricted) case of coisotropic subgroups (this result can be traced back to
[18], where it is mentioned as coisotropic creed).

Proposition 3.5. Let K be a subgroup of G and assume a proper quantiza-
tion of it exists. Then K is coisotropic or, in case the quantization is Cq , its

observable hull K̂ is coisotropic.

Proof. Assume Iq exists. Let f, g ∈ I , and let ϕ, γ ∈ Iq with πFq
(ϕ) = f ,

πFq
(γ) = g . Then by definition {f, g} = πFq

(
(q − 1)−1[ϕ, γ]

)
. But

[ϕ, γ] ∈
[
Iq , Iq

]
⊆ (q − 1) Iq

by assumption, hence (q−1)−1[ϕ, γ] ∈ Iq , thus {f, g} = πFq

(
(q−1)−1[ϕ, γ]

)
∈

πFq
(Iq) = I , which means that I is closed for the Poisson bracket. Thus (see

(2.6)) K is coisotropic.
Similar arguments work when dealing with Cq , Iq or Cq . We shall only remark

that working with Cq we end up with C
(
K̂
)
= C(K) ≤P F [G] , whence K̂ is

coisotropic.

Since we would like to show also what happens in the non coisotropic case, we
will consider, also, the weakest possible — näıve — version of quantization.

Definition 3.6. Let Fq[G] and Uq(g) be a QFA and a QUEA for G and g and
let

πFq
: Fq[G] −։ Fq[G]

/
(q−1)Fq[G] ∼= F [G]

πUq
: Uq(g) −։ Uq(g)

/
(q −1)Uq(g) ∼= U(g)

be the specialization maps. Let I, C, I and C be the algebraic objects associated
with the subgroup K of G (see 2.1). We call “weak quantization” of each of
them any object Iq , Cq , Iq or Cq respectively, such that

(a) Iq Eℓ Ė Fq[G] , πFq
(Iq) = I

(b) Cq ≤1 Ėℓ Fq[G] , πFq
(Cq) = C

(c) Iq Eℓ Ė Uq(g) , πUq
(Iq) = I

(d) Cq ≤1 Ėℓ Uq(g) , πUq
(Cq) = C

(3.5)
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It is obvious that strict or proper quantizations are weak. Let us remark
that every subgroup of G is quantizable in the weak sense, since we may just
consider e.g. Iq := π−1

Fq
(I) to be a quantization of I . As näıf as it may seem,

this remark will play a rôle in what follows.

Let us lastly remark how the real case should be treated.

Definition 3.7. Let (Fq [G] , ∗) and (Uq(g) , ∗) be a real QFA and a real QUEA
for G and g . Let Iq , Cq , Iq and Cq be subgroup quantizations (either strict,
proper or weak). Then such quantizations are called real if

(
S(Iq)

)⋆
= Iq , C⋆

q = Cq ,
(
S(Iq)

)⋆
= Iq , C⋆

q = Cq (3.6)

3.8. The formal quantization approach. In the present work we are
dealing with global quantizations. In [5] instead we treated formal quantiza-
tions: these are topological Hopf C[[h]]–algebras which for h = 0 yield back
the (formal) Hopf algebras associated with a (formal) group. In this case, such
objects as Iq , Cq , Iq and Cq are defined in the parallel way. However, in [5] we
did not consider the notions of proper nor weak quantizations but only dealt
with strict quantizations. Actually, one can consider the notions of proper or
weak quantizations in the formal quantization setup as well; then the relation
between these and strict quantizations will be again the same as we showed
here above.
We point out also that the semiclassical limits of formal quantizations are just
formal Poisson groups, or their universal enveloping algebras, or subgroups,
homogeneous spaces, etc. In any case, this means — see the end of Subsection
2.1 — that no restrictions on subgroups apply (all are “observable”) nor on
homogeneous spaces (all are “quasi-affine”).

4 Quantum duality principle

Drinfeld’s quantum duality principle (cf. [7], §7; see also [10] for a proof) has a
stronger version (see [12]) best suited for our quantum groups — in the sense
of Section 3.

Let H be any Hopf algebra in HA and let

I := Ker
(
H

ǫ
։ C

[
q, q−1

] ev1

−−։C
)
= Ker

(
H

ev1

−−։H
/
(q−1)H

ǭ
։ C

)
(4.1)

Then I is a Hopf ideal of H . We define

H∨ :=
∑
n≥0

(q −1)
−n

In =
⋃
n≥0

(
(q −1)

−1
I
)n (

⊆ C(q)⊗C[q,q−1] H
)

(4.2)
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Notice that, setting J := Ker
(
H

ǫ
−։ C

[
q, q−1

])
, one has I = (q− 1) ·1H +J ,

so that
H∨ =

∑
n≥0 (q − 1)

−n
Jn =

∑
n≥0

(
(q − 1)

−1
J
)n

(4.3)

Consider, now, for every n ∈ N the iterated coproduct ∆n : H → H⊗n where

∆0 := ǫ ∆1 := idH ∆n :=
(
∆⊗ id

⊗(n−2)
H

)
◦∆n−1 if n ≥ 2 .

For any ordered subset Σ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik ,
define the morphism jΣ : H⊗k −→ H⊗n by

jΣ(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn where

{
bi := 1 if i /∈ Σ

bim := am if 1 ≤ m ≤ k

then set ∆Σ := jΣ ◦∆k , ∆∅ := ∆0 , and δΣ :=
∑

Σ′⊂Σ (−1)
n−|Σ′|∆Σ′ , δ∅ :=

ǫ . By the inclusion-exclusion principle, the inverse formula ∆Σ =
∑

Ψ⊆Σ δΨ
holds. We shall use notation δ0 := δ∅ , δn := δ{1,2,...,n} , and the key identity

δn = (idH − ǫ)
⊗n ◦∆n , for all n ∈ N+ . Given H ∈ H, we define

H ′ :=
{
a ∈ H

∣∣ δn(a) ∈ (q − 1)nH⊗n, ∀ n ∈ N
} (

⊆ H
)

. (4.4)

Theorem 4.1 (Global Quantum Duality Principle). (cf. [12]) For any H ∈
HA one has:

(a) H∨ is a QUEA and H ′ is a QFA. Moreover the following inclusions hold:

H ⊆
(
H∨
)′

, H ⊇
(
H ′
)∨

, H∨=
((
H∨
)′ )∨

, H ′=
((
H ′
)∨)′

(4.5)

(b) H =
(
H∨
)′

⇐⇒ H is a QFA, and H =
(
H ′
)∨

⇐⇒ H is a QUEA;

(c) If G is a Poisson group with Lie bialgebra g , then

Fq[G]∨
/
(q − 1)Fq[G]∨ = U(g∗) Uq(g)

′
/
(q − 1)Uq(g)

′ = F [G∗]

where G∗ is some connected Poisson group dual to G;

(d) Let Fq[G] and Uq(g) be dual to each other w.r. to some perfect Hopf
pairing. Then Fq[G]

∨
and Uq(g)

′
are dual to each other w.r. to the same

pairing.

A number of remarks are due, at this point:

1. The Poisson group G∗ dual to G appearing in (c) of Theorem 4.1 does
depend on Uq(g) which is given as a data. Different choices of Uq(g),
though associated with the same Lie bialgebra g may give rise to a dif-
ferent connected Poisson dual group G∗.
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2. For all Hopf C(q)–algebra H the existence of a C
[
q, q−1

]
-integral form Hf

which is a QUEA at q = 1 is equivalent to the existence of a C
[
q, q−1

]
–

integer form Hu which is a QFA at q = 1 .

3. All claims above have obvious analogues in the real case.

4. If H is a Hopf algebra and Φ ⊆ N is a finite subset, then ([16], Lemma
3.2)

δΦ(ab) =
∑

Λ∪Y=Φ

δΛ(a) δY (b) ∀ a, b ∈ H (4.6)

furthermore, if Φ 6= ∅ we have

δΦ(ab− ba) =
∑

Λ∪Y=Φ
Λ∩Y 6=∅

(
δΛ(a) δY (b)− δY (b) δΛ(a)

)
∀ a, b ∈ H (4.7)

The above formulas will be used frequently in what follows

Having clarified the exact statement of quantum duality principle that we have
in mind, let us extend it to objects of subgroup type as in Definition 3.6, i.e. to
left coideal subalgebras and to left ideals and two-sided coideals — either in
Fq[G] or in Uq(g) . This was already done in [5] where we only considered local
(i.e. over C[[h]]) quantizations. Let us remark that the quantum duality prin-
ciple we have in mind not only exchanges the rôle of algebras of functions with
that of universal enveloping algebras, but also exchanges the rôle of subgroups
with that of homogeneous spaces. At the semiclassical level, the pair of dual
objects is given by a coisotropic subgroup H and a Poisson quotient G∗

/
H⊥ .

When H is a Poisson subgroup, its orthogonal H⊥ turns out to be normal in
G∗ and G∗

/
H⊥ ∼= H∗ as a Poisson group, thus recovering the usual quantum

duality principle. In particular, we will consider a process moving along the
following draft:

(a) I
(
⊆F [G]

) (1)
−→ Iq

(
⊆Fq[G]

) (2)
−→ Iq

g
(
⊆Fq[G]

∨ ) (3)
−→ I1

g
(
⊆U(g∗)

)

(b) C
(
⊆ F [G]

) (1)
−→ Cq

(
⊆Fq[G]

) (2)
−→ Cq

▽
(
⊆Fq[G]

∨ ) (3)
−→ C1

▽
(
⊆U(g∗)

)

(c) I
(
⊆U(g)

) (1)
−→ Iq

(
⊆Uq(g)

) (2)
−→ Iq

!
(
⊆Uq(g)

′ ) (3)
−→ I1

!
(
⊆F [G∗]

)

(d) C
(
⊆U(g)

) (1)
−→ Cq

(
⊆Uq(g)

) (2)
−→ Cq

�
(
⊆Uq(g)

′ ) (3)
−→ C1

�
(
⊆F [G∗]

)

where arrows (1) are quantizations, arrows (3) are specializations at q = 1 and
the definition of arrows (2) will be the core of what follows. It will turn out
that:

1. each one of the right-hand-side objects above is one of the four algebraic
objects which describe a closed connected subgroup of G∗ : namely, the
correspondence is

(a) ==⇒ (c) , (b) ==⇒ (d) , (c) ==⇒ (a) , (d) ==⇒ (b) .
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2. the four quantizations of subgroups of G∗ so obtained are always proper
— hence the subgroups of G∗ associated with them are coisotropic.

3. if we begin with strict quantizations, and we start from a subgroup K,
then the quantization of the unique coisotropic closed connected subgroup
of G∗ mentioned above is strict as well, and the subgroup itself is K⊥

(cf. Definition 2.1), with some care in case (b), i.e. if we start from C(K).
This will partially generalize to weak quantizations, for which, starting
from a subgroup K of G, the unique coisotropic closed connected sub-
group of G∗ obtained above is K〈⊥〉 (cf. Proposition 2.2).

Let us fix, in what follows, quantizations Uq(g) and Fq[G] as in Section 3. Unless
explicitly mentioned we will not assume that this is a double quantization. To
simplify notations, let us set

Uq := Uq(g) , Uq := Uq(g) , Uq
′ := Uq(g)

′

Fq := Fq[G] , Fq := Fq[G] , Fq
∨ := Fq[G]∨

As mentioned in the first remark after Theorem 4.1, this implies that a specific
connected Poisson dual G∗ of G is selected (it depends on the choice of Uq :=
UQ(g) , not only on g itself). Let us consider quantum subgroups Iq , Cq , Iq
and Cq as defined in 3.6.

Definition 4.2. Using notations as in (4.1) we define:

(a) Iq
g :=

∞∑
n=1

(q − 1)
−n · I n−1 · Iq =

∞∑
n=1

(q − 1)
−n · J n−1 · Iq

(b) Cq
▽ :=

∞∑
n=0

(q − 1)−n ·
(
Cq ∩ I

)n
=

∞∑
n=0

(q − 1)−n ·
(
Cq ∩ J

)n

(c) Iq
! :=

{
x ∈ Iq

∣∣∣ δn(x) ∈ (q−1)n
n∑

s=1
Uq

⊗(s−1)⊗ Iq ⊗ Uq
⊗(n−s), ∀ n∈N+

}

(d) Cq
� :=

{
x ∈ Cq

∣∣∣ δn(x) ∈ (q − 1)n Uq
⊗(n−1)⊗ Cq , ∀ n ∈ N+

}

Let us remark that the following inclusions hold directly by definitions:

(i) Iq
g ⊇ Iq , (ii) Cq

▽ ⊇ Cq , (iii) Iq
! ⊆ Iq , (iv) Cq

� ⊆ Cq . (4.8)

5 Duality maps

In the present section we will prove properties of the four Drinfeld–type maps
defined in the previous section, namely the maps Iq 7→ Iq

g , Cq 7→ Cq
▽ ,

Iq 7→ Iq
! and Cq 7→ Cq

� . Let us recall that such maps do not change, as
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we will see, the algebraic properties of subobjects, but interchanges quantized
function algebra with quantum enveloping algebra and therefore quantizations
of coisotropic subgroups will be sent to quantizations of (embeddable) homo-
geneous spaces — of the dual quantum group — and viceversa.
Let us start by considering the map Iq 7→ Iq

g .

Proposition 5.1. Let Iq = Iq(K) be a left ideal and two-sided coideal in
Fq[G] , that is a weak quantization (of type I ) of some subgroup K of G . Then

1. Iq
g is a left ideal and two-sided coideal in Fq[G]

∨
;

2. if Iq is strict, then Iq
g is strict too, i.e. Iq

g⋂ (q − 1)Fq[G]
∨

= (q −
1) Iq

g ;

3. there exists a coisotropic subgroup L of G∗ such that Iq(K)
g
= Iq(L) :

namely, Iq(K)
g

is a proper quantization, of type I, of some coisotropic
subgroup L of G∗ ;

4. in the real case, i.e. if the quantization Iq is a real one, Iq
g is real too,

i.e.
(
S
(
Iq

g
))∗

= Iq
g . Therefore claims (1–3) still hold in the framework

of real quantum subgroups.

Proof. (1) Consider that Iq
g is the left ideal of Fq

∨ generated by

(q − 1)
−1 Iq ; therefore, in order to prove Iq

g
ĖFq

∨ it is enough to show that

∆
(
(q−1)−1 Iq

)
⊆ Fq

∨⊗ Iq
g + Iq

g⊗ Fq
∨ . Since Iq is a coideal of Fq , we have

∆
(
(q − 1)

−1 Iq
)

⊆

⊆ Fq ⊗ (q−1)
−1 Iq + (q−1)

−1 Iq ⊗ Fq ⊆ Fq
∨⊗ Iq

g + Iq
g⊗ Fq

∨ (5.1)

whence Iq
g
ĖFq

∨ follows, and the first claim is proved. (2) Assume Iq to be
a strict quantization, so that Iq

⋂
(q − 1)Fq = (q − 1) Iq .

Let J := Ker
(
ǫ : Fq −→ C

[
q, q−1

] )
. Then

J mod (q−1)Fq = Ker (ǫ)
∣∣
F [G]

= me

and me

/
me

2 = g∗, the cotangent Lie bialgebra of G . Let {y1, . . . , yn} be a

subset of me whose image in the local ring of G at the identity e is a local
system of parameters, and pull it back to a subset {j1, . . . , jn} of J . Let F̂q be
the J–adic completion of Fq. From [12], Lemma 4.1, we know that the set of

ordered monomials
{
j e
∣∣ e ∈ Nn

}
(where hereafter j e :=

∏n
s=1 j

e(i)
s , for all

e ∈ Nn ) is a C
[
q, q−1

]
–pseudobasis of F̂q , which means that each element of F̂q

has a unique expansion as a formal infinite linear combination of the j e’s. In a

similar way, the (q−1)–adic completion of Fq
∨ admits

{
(q − 1)−|e|j e

∣∣ e ∈ Nn
}

as a C
[
q, q−1

]
–pseudobasis, where |e| :=

∑n

i=1 e(i) .
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For our purposes we need a special choice of the set {j1, . . . , jn} adapted to
the smooth subvariety K of G. By general theory we can choose {y1, . . . , yn}
so that y1, . . . , yk ∈ me and yk+1, . . . , yn ∈ I(K) , where k = dim (K) . We
can also choose the lift {j1, . . . , jn} of {y1, . . . , yn} inside J so that js is a lift
of ys, for all s = 1, . . . , k , and jk+1, . . . , jn ∈ Iq . With these assumptions,
it’s easy to see that

ϕ ∈ Iq
g⋂ (q − 1)Fq

∨ =⇒ (q − 1)n ϕ ∈
(
Jn−1 · Iq

)⋂
(q − 1)Jn

for some n ∈ N, which in turn yields (q − 1)
n
ϕ ∈ Jn−1 ·

(
Iq
⋂
(q−1)J

)
. Since

Iq
⋂
(q − 1)J ⊆ Iq

⋂
(q − 1)Fq = (q − 1) Iq

we conclude that (q − 1)
n
ϕ ∈ (q − 1)Jn−1 · Iq , whence ϕ ∈ (q − 1) Iq

g .
The converse inclusion Iq

g⋂ (q− 1)Fq
∨ ⊇ (q− 1) Iq

g is obvious, hence claim
(2) is proved. (3) It is an obvious statement that Iq

g is a weak quantization
of its image πFq

∨

(
Iq

g
)
: in particular, πFq

∨

(
Iq

g
)
Eℓ Ė πFq

∨

(
Fq

∨
)
= U

(
g∗
)

implies that πFq
∨

(
Iq

g
)
= I(L) for some subgroup L of G∗. Thus Iq

g is a weak
quantization, to be called Iq(L), of I(L) , and it is even strict if Iq itself is
strict, as we’ve just seen. Now we show that such quantization Iq(L) turns out
to be always proper.
In fact, (5.1) implies ∇

(
(q − 1)

−1 Iq
)

⊆ (q − 1)
−1 (

Fq ∧ Iq
)
. On the other

hand Fq ∧ Iq ⊆ J ∧ Iq ⊆ (q − 1)2 Fq
∨∧ Iq

g, thus, finally, ∇
(
Iq

g
)
∈ (q −

1)Fq
∨∧ Iq

g, which means that Iq
g is proper and (3) holds. (4) This is an

obvious consequence of definitions.

Remark 5.2. In functorial language we may say that the map Iq 7→ Iq
g

establishes a functor between quantizations of coisotropic subgroups of G and
quantizations of (embeddable) homogeneous spaces of G∗, moving from a global
to a local description, sending each type of quantization in a proper one and
preserving strictness. Indeed, we should make precise what are the “arrows”
in our categories of “quantum subgroups” or “quantum homogeneous spaces”,
and how the functor acts on these: we leave these details to the interested
reader.

Let us move on to properties of the map Cq 7→ Cq
▽ .

Proposition 5.3. Let Cq = Cq(K) be a left coideal subalgebra in Fq[G]. Then

1. Cq
▽ is a left coideal subalgebra in Fq[G]∨;

2. if Cq is strict, then Cq
▽ is strict too, i.e. Cq

▽⋂ (q − 1)Fq[G]
∨

= (q −
1) Cq

▽ .

3. there exists a coisotropic subgroup L of G∗ such that Cq(K)
▽
= Cq(L) :

namely, Cq(K)
▽
is a proper quantization, of type C , of some coisotropic

subgroup L of G∗ ;
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4. in the real case, i.e. if the quantization Cq is a real one, Cq(K)
▽
is real

too, i.e.
(
Cq
▽
)∗

= Cq
▽ . Therefore claims (1–3) still hold in the framework

of real quantum subgroups.

Proof. The proof uses essentially the same arguments as the previous one.
(1) By the very definitions Cq

▽ ≤1 Fq
∨ := Fq[G]

∨
. More precisely,

Cq
▽ is (by construction) the unital C

[
q, q−1

]
–subalgebra of Fq

∨ generated by

(q − 1)−1 (Cq)
+ , where (Cq)

+ := Cq
⋂

J . So to get Cq
▽
Ėℓ Fq

∨ we must only

prove ∆
(
(q−1)

−1
(Cq)

+)⊆ Fq
∨⊗ Cq

▽ . But Cq Ėℓ Fq , so:

∆
(
(q − 1)

−1
(Cq)

+) ⊆ Fq ⊗ (q − 1)
−1

(Cq)
+ ⊆ Fq

∨⊗ Cq
▽ (5.2)

therefore Cq
▽
Ėℓ Fq

∨, and claim (1) is proved. (2) Now suppose Cq to be a strict
quantization, i.e. Cq

⋂
(q−1)Fq = (q−1) Cq . We need an explicit description

of Fq
∨ and of Cq

▽ . This goes along the same lines followed to describe Iq
g in

the proof of Proposition 5.1: but now the choice of the subset {j1, . . . , jn} of
J is different.

First, since C(K) = C
(
K̂
)
we can assume that K = K̂ , i.e. K is observable.

Then we can choose
{
j1, . . . , jn

}
so that jk+1, . . . , jn ∈ J

⋂
Cq = Cq

+ (where

again k = dim (K) ) and, letting ys := js mod (q−1)Fq , the set
{
y1, . . . , yn

}

yields a local system of parameters at e ∈ G (in the localized ring), as before;
now in addition we have yk+1, . . . , yn ∈ me

⋂
C(K) =: C(K)

+
. With these

assumptions, the (q − 1)–adic completion of Fq
∨ admits

{
(q − 1)

−|e|
j e
∣∣ e ∈

Nn
}

as a C
[
q, q−1

]
–pseudobasis, like before, but in addition the same analysis

can be done for the (q − 1)–adic completion of Cq
▽ (just because Cq is strict),

which then has C
[
q, q−1

]
–pseudobasis

{∏n

s=k+1 j
es
s

∣∣ (ek+1, . . . , en) ∈ Nn−k
}
.

From these description of the completions, and comparing the former with Fq
∨

and Cq , we easily see that Cq
▽ ⋂ (q − 1)Fq

∨ ⊆ (q − 1) Cq
▽ . The converse is

trivial, hence claim (1) is proved. (3) It follows directly from (1) that Cq
▽

is a weak quantization of its image πFq
∨

(
Cq
▽
)
: in particular, πFq

∨

(
Cq
▽
)
≤1

Ėℓ πFq
∨

(
Fq

∨
)
= U

(
g∗
)
means that πFq

∨

(
Cq
▽
)
= C(L) for some subgroup L of

G∗. Thus Cq
▽ is a weak quantization — to be called Cq(L) — of C(L), and it

is even strict if Cq itself is strict, by claim (1). Now in addition we show that,
in any case, such a quantization Cq(L) is always proper.

From (5.2) we have

∇
(
(q − 1)

−1
(Cq)

+) ⊆ (q − 1)
−1

J ∧ (Cq)
+ ⊆

⊆ (q − 1)−1+2 Fq
∨∧ Cq

▽ = (q − 1)Fq
∨∧ Cq

▽

which implies exactly that Cq
▽ — which by definition is the unital subalgebra

generated by (q − 1)−1 (Cq)
+ — is proper. (4) This follows directly from

definitions and from Cq
∗ = Cq, which holds by assumption.
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Remark 5.4. In functorial language we may say that the map Cq 7→ Cq
▽ estab-

lishes a functor between quantized homogeneous spaces of G and quantizations
of coisotropic subgroups of G∗, moving from a global to a local description,
sending each type of quantization in a proper one and preserving strictness.
Again, to be precise, several details need to be fixed, and are left to the reader.

The third step copes with the map Iq 7→ Iq
! .

Proposition 5.5. Let Iq = Iq(K) be a left ideal and two-sided coideal in
Uq(g) , weak quantization (of type I) of some coisotropic subgroup K of G .
Then:

1. Iq
! is a left ideal and two-sided coideal in Uq(g)

′
;

2. if Iq is strict, then Iq
! is strict too, i.e. Iq

!⋂ (q−1)Uq(g)
′
= (q−1)Iq

! ;

3. there exists a coisotropic subgroup L in G∗ such that Iq(K)! = Iq(L) :

namely, Iq(K)! is a proper quantization, of type I , of some coisotropic
subgroup L of G∗ ;

4. in the real case, i.e. if the quantization Iq is a real one, Iq
! is real too,

i.e.
(
S
(
Iq

!
))∗

= Iq
!. Therefore claims (1–3) still hold in the framework

of real quantum subgroups.

Proof. (1) Let a ∈ Uq
′ and b ∈ Iq

! : by definition of Iq
!, from Iq Eℓ Uq and

from (4.6) we get

δn(ab) ∈ (q − 1)
n

n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq

⊗(n−s)

so a b ∈ Iq
! , thus Iq

!
Eℓ Uq

′ .
As to the coideal property, it is proven resorting to (q − 1)–adic completions,
arguing as in the proof of Proposition 3.5 in [12], and basing on the fact that
IqĖ Uq . Details are left to the reader. (2) Assume now Iq to be strict. The
inclusion

Iq
!⋂ (q − 1)Uq(g)

′ ⊇ (q − 1)Iq
!

is trivially true, and we must prove the converse. Let η ∈ Iq
! ⋂ (q − 1)Uq(g)

′
.

We have

δn(η) ∈ (q − 1)
n
((∑n

s=1Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(n−s)
)⋂

(q − 1)Uq
⊗n
)

for all n ∈ N+ . But then our assumption gives
(

n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(n−s)

) ⋂
(q − 1)Uq

⊗n =

=
n∑

s=1
Uq

⊗(s−1) ⊗
(
Iq
⋂
(q−1)Uq

)
⊗ Uq

⊗(n−s) =

= (q−1)n+1
n∑

s=1
Uq

⊗(s−1) ⊗ Iq ⊗ Uq
⊗(n−s)
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which, in turn, means η ∈ (q−1)Iq
! . Thus Iq

! ⋂ (q−1)Uq(g)
′ ⊆ (q−1)Iq

! ,

as expected. (3) Claim (1) implies that Iq
! is a weak quantization of its im-

age, therefore there exists a subgroup L of G∗ such that πUq
′

(
Iq

!
)
= I(L) .

This quantization is even strict if Iq itself is strict, by the previous. Now we
show that this quantization Iq(L) is always proper — hence the subgroup L
is coisotropic, by Lemma 3.5. Recall that, by definition, Iq(L) is proper if and

only if [x, y] ∈ (q − 1)Iq
! for all x, y ∈ Iq

! . From definitions we have

[x, y] ∈ (q−1)Iq
! ⇐⇒ δn

(
[x, y]

)
∈ (q − 1)

n+1∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(n−s)

for all n ∈ N . Then by formula (4.7) we have (for all n ∈ N )

δn
(
[x, y]

)
=
∑

Λ∪Y ={1,...,n}
Λ∩Y 6=∅

(
δΛ(x) δY (y) − δY (y) δΛ(x)

)
(5.3)

while (with notation of §4)

δΛ(x) ∈ (q − 1)|Λ| · jΛ
(∑|Λ|

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(|Λ|−s)
)
,

δY (y) ∈ (q − 1)
|Y | · jY

(∑|Y |
s=1 Uq

⊗(s−1) ⊗ Iq ⊗ Uq
⊗(|Y |−s)

)
;

since Λ∪ Y = {1, . . . , n} and Λ ∩ Y 6= ∅ we have |Λ|+ |Y | ≥ n+ 1 ; moreover,
for each index i ∈ {1, . . . , n} we have i ∈ Λ (and otherwise Im (jΛ) has 1 in
the i–th spot) or i ∈ Y (with the like remark on Im (jY ) if not). As Iq is a left
ideal of Uq, we conclude

δΛ(x) · δY (y) , δY (y) · δΛ(x) ∈ (q − 1)
|Λ|+|Y |∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗Uq

⊗(n−s)

⊆ (q − 1)
n+1∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(n−s)

so that (5.3) gives δn
(
[x, y]

)
∈ (q−1)n+1∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(n−s), as

expected. (4) In the real case,
(
S
(
Iq

!
))∗

= Iq
! follows at once from defi-

nitions and from the identity
(
S(Iq)

)∗
= Iq .

Remark 5.6. In functorial language we may say that the map Iq 7→ Iq
! estab-

lishes a functor between quantized homogeneous spaces of G and quantizations
of coisotropic subgroups of G∗, moving from a local to a global description,
sending each type of quantization in a proper one and preserving strictness.
Once more, details are left to the interested reader.

The fourth and last step is devoted to the map Cq 7→ Cq
� .

Proposition 5.7. Let Cq = Cq(K) be a subalgebra and left coideal in Uq(g) ,
weak quantization (of type C) of some subgroup K of G . Then:

1. Cq
� is a subalgebra and left coideal in Uq(g)

′;
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2. if Cq is strict, then Iq
! is strict too, i.e. Cq

�⋂ (q−1)Uq(g)
′
= (q−1)Cq

� ;

3. there exists a coisotropic subgroup L in G∗ such that Cq(K)
�
= Cq(L) :

namely, Cq(K)
�
is a proper quantization, of type C , of some coisotropic

subgroup L of G∗ ;

4. in the real case, i.e. if the quantization Cq is a real one, Cq(K)
�
is real

too, i.e.
(
Cq

�
)∗

= Cq
� . Therefore claims (1–3) still hold in the framework

of real quantum subgroups.

Proof. The whole proof is very similar to that of Proposition 5.5. (1) By
definitions, 1 ∈ Cq and δn(1) = 0 for all n ∈ N, so 1 ∈ Cq

�. Let x, y ∈ Cq
�

and n ∈ N ; by (4.6) we have δn(xy) =
∑

Λ∪Y ={1,...,n} δΛ(x) δY (y) . Each of

the factors δΛ(x) belongs to a module (q − 1)
|Λ|

Uq
⊗(|Λ|−1)⊗X where the last

tensor factor is either X = Cq (if n ∈ Λ ) or X = {1} ⊂ Cq (if n 6∈ Λ ), and
similarly for δY (y); in addition Λ∪Y = {1, . . . , n} implies |Λ|+ |Y | ≥ n , and

summing up δn(xy) ∈ (q−1)
n
Uq

⊗(n−1)⊗ Cq , whence x y ∈ Cq
�. Thus Cq

� is a
subalgebra of Uq

′.

In order to prove that Cq
� is a left coideal in Uq

′, one can again resort to
(q − 1)–adic completions, with exactly the same arguments as in the proof
of Proposition 3.5 in [5], starting from the fact that Cq Ėℓ Uq. Details are
left to the reader. (2) Assume, now, that Cq is a strict quantization, i.e.

Cq

⋂
(q − 1)Fq = (q − 1)Cq. Then clearly Cq

� ⋂ (q − 1)Uq(g)
′ ⊇ (q − 1)Cq

� ,

and we must prove the converse inclusion. Let κ ∈ Cq
� ⋂ (q− 1)Uq(g)

′
. Then:

δn(κ) ∈ (q − 1)n
((

Uq
⊗(n−1) ⊗ Cq

)⋂
(q − 1)Uq

⊗n
)

=

= (q − 1)
n
(
Uq

⊗(n−1) ⊗
(
Cq

⋂
(q−1)Uq

))
= (q − 1)

n+1 · Uq
⊗(n−1) ⊗ Cq

which means κ ∈ (q − 1)Cq
� . Therefore Cq

� ⋂ (q − 1)Uq(g)
′ ⊆ (q − 1)Cq

�, as

claimed. (3) The above algebraic properties show that Cq
� is a weak quanti-

zation of its image πUq
′

(
Cq

�
)
; thus there exists a coisotropic subgroup L of G∗

such that: πUq
′

(
Cq

�
)
= C(L). Thus Iq

! is a weak quantization — to be called
Iq(L) — of I(L) , and it is even strict if Iq itself is strict, by the previous. Now
we show first that this quantization Iq(L) is always proper — hence the sub-
group L is coisotropic, by Lemma 3.5. Proving that Iq(L) is proper amounts

to show that [x, y] ∈ (q − 1)Cq
� for all x, y ∈ Cq

�. By definition we have

[x, y] ∈ (q−1)Cq
� ⇐⇒ δn

(
[x, y]

)
∈ (q−1)n+1Uq

⊗(n−1) ⊗ Cq ∀ n∈N

and formula (4.7) gives, for all n ∈ N,

δn
(
[x, y]

)
=
∑

Λ∪Y={1,...,n}
Λ∩Y 6=∅

(
δΛ(x) δY (y) − δY (y) δΛ(x)

)
(5.4)
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while

δΛ(x) ∈ (q−1)
|Λ|

jΛ

(
Uq

⊗(|Λ|−1)⊗Cq

)
, δY (y) ∈ (q−1)

|Y |
jY

(
Uq

⊗(|Y |−1)⊗Cq

)

Now, Λ∪ Y = {1, . . . , n} and Λ∩ Y 6= ∅ give |Λ|+ |Y | ≥ n+ 1, and since Cq is
a subalgebra of Uq we get

δΛ(x) δY (y) , δY (y) δΛ(x) ∈ (q−1)
|Λ|+|Y |

Uq
⊗(n−1) ⊗ Cq ⊆

⊆ (q−1)
n+1

Uq
⊗(n−1) ⊗ Cq

so that (5.4) yields

δn
(
[x, y]

)
∈ (q−1)

n+1
Uq

⊗(n−1) ⊗ Cq

thus [x, y] ∈ (q − 1)Cq
� . (4) In the real case (Cq)

∗
= Cq : this and the very

definitions imply the claim.

Remark 5.8. In functorial language we may say that the map Cq 7→ Cq
�

establishes a functor between quantization of coisotropic subgroups of G and
quantizations of Poisson homogeneous spaces of G∗, moving from a local to
a global description, sending each type of quantization in a proper one and
preserving strictness. We leave to the interested reader all details which still
need to be fixed.

We now move to connectedness properties of the coisotropic subgroup L iden-
tified in Propositions 5.5 and 5.7.

Proposition 5.9.

1. Let Iq(K) be a strict quantization (of type I) of a (coisotropic) sub-

group K in G . Then the subgroup L of G∗ such that Iq(K)
!
= Iq(L) is

connected.

2. Let Cq(K) be a strict quantization of type C of a (coisotropic) subgroup K

of G . Then the subgroup L of G∗ such that Cq(K)
!
= Cq(L) is connected.

Proof. (1) Saying that the (closed) subgroup L is connected is equivalent

to saying that its function algebra F [L] = F
[
G∗
]/

I(L) has no non-trivial

idempotents. Note that, since F
[
G∗
]
is the specialization of Uq

′ at q = 1 and

I(L) is the similar specialization of Iq
! , the quotient F [L] = F

[
G∗
]/

I(L) is

canonically isomorphic to the specialization at q = 1 of Uq
′
/
Iq

! . Let a be an

idempotent in F [L]: if we take any lift of it in Uq
′
/
Iq

! , i.e. any a ∈ Uq
′
/
Iq

!

such that a = a mod (q−1)Uq
′
/
Iq

! . We must prove:

a2 ≡ a mod (q−1)Uq
′
/
Iq

! =⇒ a mod (q−1)Uq
′
/
Iq

! ∈
{
0, 1
}

(5.5)
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We can clearly reduce to the case when ǫ(a) = 0: in fact, if a 2 = a then ǫ(a)
is necessarily 0 or 1 (for it is unipotent too), and in the latter case we then

find that a0 := 1 − a is idempotent and ǫ(a0) = 0. Also the lift a ∈ Uq
′
/
Iq

!

can be chosen, in this case, such that: ǫ(a) = 0. To simplify notation, we set

H := Uq

/
Iq and H’ := Uq

′
/
Iq

!. We shall prove that, if a ∈ H’, ǫ(a) = 0 and

a2 ≡ a mod (q−1)H’, then a ≡ 0 mod (q−1)H’, i.e. a ∈ (q−1)H’ ; in fact,
this will give (5.5).
Having assumed that Iq to be strict, H’ identifies with a C

[
q, q−1

]
–submodule

of H given in terms of the coalgebra structure of the latter: the embedding is

the one canonically induced by the maps Uq
′ −֒→ Uq −։ Uq

/
Iq. In fact, the

kernel of the latter map is Uq
′ ⋂ Iq (by strictness assumption). It is easy to

see from definitions that Uq
′ ⋂ Iq = Iq

!. Thus H’ does embed into H :

H’ =

{
η ∈ H

∣∣∣∣ δn(η) ∈ (q−1)
n
H⊗n , ∀ n ∈ N

}
. (5.6)

Now, a2 ≡ a mod (q−1)H’ means a = a2 + (q−1) c for some c ∈ H’; since
ǫ(a) = 0, we have ǫ(c) = 0 as well. Applying δn to the identity a = a2+(q−1) c
and using formula (4.6) we get

δn(a) = δn
(
a2
)
+ (q − 1) δn(c) =

∑
Λ∪Y ={1,...,n}

δΛ(a) δY (a) + (q − 1) δn(c)

for all n ∈ N, which — noting that δ0(a) := ǫ(a) = 0 yields:

δn(a) =
∑

Λ∪Y ={1,...,n}
Λ,Y 6=∅

δΛ(a) δY (a) + (q − 1) δn(c) (5.7)

Since c ∈ H’ , the last summand (q−1) δn(c) in right-hand side of (5.7) belongs
to (q−1)n+1 H⊗n, thanks to (5.6). Similarly, since a ∈ H’ we have δk(a) ∈
(q−1)k H⊗k for all k ∈ N, by (5.6) again: therefore each summand δΛ(a) δY (a)
in right-hand side of (5.7) belongs to (q − 1)n+1 H⊗n as well. But then (5.7)

yields δn(a) ∈ (q − 1)
n+1

H⊗n for all n ∈ N, which, again by (5.6), means
exactly that a ∈ (q−1)H’. This ends the proof of the first claim. (2) We

will use similar arguments to show this claim: F [L] = F
[
G∗
]/

I(L) has no

non-trivial idempotents. Since Cq
� = Cq(L) and C(L) = C

(
L̂
)
, we can assume

L = L̂, i.e. L is observable. This implies I(L) = Ψ
(
C(L)

)
, which is clearly the

specialization at q = 1 of Ψ
(
C(L)

)
= Uq

′ Cq
�; therefore, F [L] = F

[
G∗
]/

I(L) is

canonically isomorphic to the specialization at q = 1 of Uq
′
/
Uq

′ Cq
� .

From now on, one can mimic step by step the proof of part (1). The only
detail to modify is that one must take Uq Cq

+ =: Ψ(Cq) in place of Iq , and

Uq
′
(
Cq

�
)+

=: Ψ
(
Cq

�
)
in place of Iq

! . Letting H := Uq

/
Ψ(Cq) , and H’ :=
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Uq
′
/
Ψ
(
Cq

�
)
, the thesis amounts to prove that

a ∈ H’ , a2 ≡ a mod (q−1)H’ ⇒ a ≡ 0 mod (q−1)H’

(In fact also a ≡ 1 mod (q−1)H’ would be ok, but, arguing as before, we’ll
restrict to the case ǫ(a) = 0).
As Cq is strict, it is easy to see from definitions that Cq

� = Uq
′ ⋂ Cq, hence

Ψ
(
Cq

�
)
:= Uq

′
(
Cq

�
)+

= Uq
′
(
Uq

′ ∩ Cq

)+
: the latter is the kernel of the map

Uq
′ −֒→ Uq −։ Uq

/
Uq C

+
q , so H’ embeds as a C

[
q, q−1

]
–submodule of H ,

namely

H’ =

{
η ∈ H

∣∣∣∣ δn(η) ∈ (q−1)n H⊗n , ∀ n ∈ N
}
.

With this description at hand, computations are as in the proof of claim (1).

Our next results are about the behavior of quantum subgroups under compo-
sition of Drinfeld-like maps.

Proposition 5.10. Let Iq , Cq , Iq , Cq be weak quantizations of a subgroup
K of G . Then:

1. Iq ⊆
(
Iq

g
)!

, Cq ⊆
(
Cq
▽
)�

;

2. Cq ⊇
(
Cq

�
)▽

, Iq ⊇
(
Iq

!
)g

.

Proof. (1) By the very definitions, for any n ∈ N we have

δn
(
Iq
)
⊆ JFq

⊗n⋂
(

n∑
s=0

Fq
⊗s ⊗ Iq ⊗ Fq

⊗(n−s−1)

)
=

=
n∑

s=0
JFq

⊗s ⊗Iq ⊗ JFq

⊗(n−s−1) ⊆ (q − 1)
n ·

n∑
s=0

(
Fq

∨
)⊗s

⊗Iq
g⊗

(
Fq

∨
)⊗(n−s−1)

which means exactly Iq ⊆
(
Iq

g
)!

. Similarly we can remark that:

δn
(
Cq
)

⊆ JFq

⊗n⋂(Fq
⊗(n−1) ⊗ Cq

)
=

= JFq

⊗(n−1) ⊗
(
Cq
⋂
JFq

)
⊆ (q−1)n

(
Fq

∨
)⊗(n−1)

⊗ Cq
▽

which means Cq ⊆
(
Cq
▽
)�
. Therefore claim (1) is proved. (2) As

(
Cq

�
)▽

is generated — as an algebra — by (q−1)−1
Cq

�⋂ JUq
′ , it is enough to show

that the latter space is contained in Cq . Let, then, x′ ∈ Cq
�⋂ JUq

′ . Surely
δ1
(
x′
)

∈ (q − 1)Cq, hence x′ = δ1
(
x′
)
+ ǫ
(
x′
)

∈ (q − 1)Cq . Therefore

(q − 1)−1x′ ∈ Cq , q.e.d. Similarly,
(
Iq

!
)g

is the left ideal of Uq
′ gener-

ated by (q−1)
−1

Iq
!⋂ JUq

′ , thus — since Uq
′ ⊆ Uq — we must only prove

that (q−1)−1
Iq

!⋂ JUq
′ is contained in Uq. Again, if y′ ∈ Iq

!⋂ JUq
′ then

y′ = δ1
(
y′
)
+ ǫ
(
y′
)
∈ (q − 1)Iq. Thus we get (q − 1)

−1
y′ ∈ Iq , and (2) is

proved.
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Remarks:

(a) By repeated applications of the previous proposition it is easily proved
that:

Iq
g =

((
Iq

g
)!)g

, Cq
▽ =

((
Cq
▽
)�)▽

, Cq
� =

((
Cq

�
)▽)�

, Iq
! =

((
Iq

!
)g)!

(b) Since we proved that Drinfeld-like maps always produce proper quantiza-
tions, and that proper quantizations specialize to coisotropic subgroups
(cf. Proposition 3.5), the following holds:

1. if Iq =
(
I g
q

)!
then Iq is a proper quantization (of type I) of a

coisotropic subgroup of G ;

2. if Cq =
(
C ▽
q

)�
then Cq is a proper quantization (of type C) of a

coisotropic subgroup of G ;

3. if Iq =
(
I !
q

)g
then Iq is a proper quantization (of type I) of a

coisotropic subgroup of G ;

4. if Cq =
(
C �
q

)▽
then Cq is a proper quantization (of type C) of a

coisotropic subgroup of G .

(c) Since the whole construction is independent of the existence of real struc-
tures all the above claims hold true in the real framework as well.

Next result reads as a converse of the previous one, holding for Drinfeld maps
applied to strict quantizations:

Theorem 5.11.

(a) if Iq is a strict quantization of a coisotropic subgroup of G then one has

Iq =
(
I g
q

)!
;

(b) if Cq is a strict quantization of a coisotropic subgroup of G then one has

Cq =
(
C ▽
q

)�
;

(c) if Iq is a strict quantization of a coisotropic subgroup of G then one has

Iq =
(
I !
q

)g
;

(d) if Cq is a strict quantization of a coisotropic subgroup of G then one has

Cq =
(
C �
q

)▽
;

(e) The above claims hold true in the real framework as well.
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Proof. (a) Let Iq be a strict quantization; by Proposition 5.10(1), it is enough

to prove Iq ⊇
(
I g
q

)!
. For this we apply the argument used in [12], Proposition

4.3, to prove that Fq ⊇
(
Fq

∨
)′
.

We denote by L the closed, coisotropic, connected subgroup of G∗ such that
I g
q = Iq(L) , as in Proposition 5.1, and with l its Lie algebra.

Let y′ ∈
(
I g
q

)!
. Then there is n ∈ N and y∨ ∈ I g

q \ (q − 1) I g
q such that

y′ = (q − 1)
n
y∨ . As we have seen strictness of Iq implies strictness of I g

q

and therefore y∨ 6∈ (q − 1)Fq
∨ , and so for y∨ := y∨ mod (q − 1)Fq

∨ we have

y∨ 6= 0 ∈ Fq
∨
∣∣∣
q=1

= U
(
g∗
)
.

As Fq
∨ is a quantization of U

(
g∗
)
, we can pick an ordered basis {bλ}λ∈Λ of

g∗, and a subset
{
x∨
λ

}
λ∈Λ

of (q − 1)
−1

JFq
so that x∨

λ mod (q − 1)Fq
∨ = bλ

for all λ ∈ Λ ; therefore x∨
λ = (q − 1)

−1
xλ for some xλ ∈ JFq

, for all λ (like in
the proof of [12] Proposition 4.3). In addition, we choose now the basis and its
lift so that a subset {bθ}θ∈Θ (for some suitable Θ ⊆ Λ ) is a basis of l , and,

correspondingly,
{
x∨
θ

}
θ∈Θ

⊆ I g
q . Since y∨ 6= 0 ∈ Fq

∨
∣∣
q=1

= U
(
g∗
)
, by the

Poincaré-Birkhoff-Witt theorem there is a non-zero polynomial P
(
{bθ}θ∈Θ

)
in

the bθ’s such that y∨ = P
(
{bθ}θ∈Θ

)
, hence

y∨ − P
({

x∨
θ

}
θ∈Θ

)
∈ I g

q

⋂
(q − 1)Fq

∨ = (q − 1) I g
q .

This implies y∨ = P
({

x∨
θ

}
θ∈Θ

)
+ (q − 1)

ν
y∨1 for some ν ∈ N+ where y∨1 ∈

I g
q \ (q − 1) I g

q .
One can see, like in [9], Lemma 4.12, that the polynomial P has degree not
greater than n . Thus y′ = (q−1)

n
y∨ = (q−1)

n
P
({

x∨
θ

}
θ∈Θ

)
+ (q−1)

n+ν
y∨1 ,

and

(q−1)nP
({

x∨
θ

}
θ∈Θ

)
= (q−1)nP

({
(q−1)−1 xθ

}
θ∈Θ

)
∈ Iq

by a degree argument. But now, Proposition 5.10 gives Iq ⊆
(
I g
q

)!
. Then

y′1 := y′−(q−1)
n
P
({

x∨
µ

}
θ∈Θ

)
∈
(
I g
q

)!
and y′1 = (q−1)

n+ν
y∨1 = (q−1)

n1y∨1

where n1 := n + ν > n, and y∨1 ∈ I g
q \ (q − 1) I g

q . We can then repeat the
construction, with y′1 instead of y′, n1 instead of n, etc.: iterating, we find an in-
creasing sequence of numbers

{
ns

}
s∈N

(with n0 := n) and a sequence of polyno-

mials
{
Ps

(
{Xθ}θ∈Θ

)}
s∈N

(again P0 := P ) such that the degree of Ps

(
{Xθ}θ∈Θ

)

is at most ns, and the formal identity y′ =
∑

s∈N
(q − 1)nsPs

({
x∨
θ

}
θ∈Θ

)
holds.

Now set In :=
∑n

k=1 (q − 1)
n−k Iq

k (for all n ∈ N), and let Îq be the topological
completion of Iq with respect to the filtration provided by the In’s. Then, by
construction, (q−1)

nsPs

({
x∨
θ

}
θ∈Θ

)
∈ In for all s∈N . This yields

∑
s∈N

(q−1)nsPs

({
x∨
θ

}
θ∈Θ

)
∈ Îq and y′ =

∑
s∈N

(q−1)nsPs

({
x∨
θ

}
θ∈Θ

)
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where the last is an identity in Îq . Thus y′ ∈
(
I g
q

)!⋂
Îq . Again with the

same arguments as in [12], we see that Iq
⋂
(q−1)

ℓ Îq = (q−1)
ℓ Iq for any

ℓ ∈ N . This together with y′ ∈
(
I g
q

)!⋂
Îq give y′ = (q − 1)

−m
η for some

m ∈ N and η ∈ Iq ; thus

η = (q−1)
m
y′ ∈ Iq

⋂
(q−1)

m Îq = (q−1)
m Iq ,

whence y′ ∈ Iq, q.e.d.
(b) Assume that Cq is a strict quantization; by Proposition 5.10(2), it is

enough to prove Cq ⊇
(
C ▽
q

)�
. To do that, we resume the argument used in [12],

Proposition 4.3, to show that Fq ⊇
(
Fq

∨
)′
.

We denote by L the closed, coisotropic, connected subgroup of G∗ such that
C ▽
q = Cq(L) and with l its Lie algebra.

Let c′ ∈
(
C ▽
q

)�
. Then there exist n ∈ N and c∨ ∈ C ▽

q \ (q − 1) C▽
q such that

c′ = (q − 1)nc∨. Note that strictness of Cq implies strictness of C ▽
q ; hence

c∨ 6∈ (q − 1)Fq
∨, so that for c∨ := c∨ mod (q − 1)Fq

∨ we have c∨ 6= 0 ∈
Fq

∨
∣∣
q=1

= U
(
g∗
)
. Moreover, c∨ ∈ C ▽

q

∣∣
q=1

= C(L) = U(l) ⊆ U
(
g∗
)
.

Since Fq
∨ is a quantization of U

(
g∗
)
, we can fix an ordered basis {bλ}λ∈Λ of

g∗ , and a subset
{
x∨
λ

}
λ∈Λ

of (q − 1)
−1

JFq
such that x∨

λ mod (q − 1)Fq
∨ = bλ

for all λ ∈ Λ; so x∨
λ = (q − 1)−1xλ for some xλ ∈ JFq

, for all λ (as in the proof
of [12] Proposition 4.3). We can choose both the basis and its lift so that a
subset {bµ}µ∈M

is a basis of l (here M ⊆ Λ), and, correspondingly,
{
x∨
µ

}
µ∈M

⊆

(q−1)
−1

JFq

⋂
C ▽
q . Since c∨ 6= 0 ∈ Fq

∨
∣∣∣
q=1

= U
(
g∗
)
, by the Poincaré-Birkhoff-

Witt theorem there exists a non-zero polynomial P
(
{bµ}µ∈M

)
in variables bµ’s

such that c∨ = P
(
{bµ}µ∈M

)
, hence:

c∨ − P
({

x∨
µ

}
µ∈M

)
∈ C ▽

q

⋂
(q − 1)Fq

∨ = (q − 1) C ▽
q .

Therefore, c∨ = P
({

x∨
µ

}
µ∈M

)
+ (q − 1)ν c∨1 for some ν ∈ N+ where c∨1 ∈

C ▽
q \ (q − 1) C ▽

q .
Now, we can see — like in [9], Lemma 4.12 — that the degree of P is not
greater than n . Then

c′ = (q − 1)
n
c∨ = (q − 1)

n
P
({

x∨
µ

}
µ∈M

)
+ (q − 1)

n+ν
c∨1

with (q − 1)nP
({

x∨
µ

}
µ∈M

)
= (q − 1)nP

({
(q − 1)−1 xµ

}
µ∈M

)
∈ Cq because P

has degree bounded (from above) by n. As Cq ⊆
(
C ▽
q

)�
, by Proposition 5.10,

we get

c′1 := c′−(q−1)
n
P
({

x∨
µ

}
µ∈M

)
∈
(
C ▽
q

)�
and c′1 = (q−1)

n+ν
c∨1 = (q−1)

n1c∨1

with n1 := n + ν > n, and c∨1 ∈ C ▽
q \ (q − 1) C ▽

q . We can repeat this con-
struction with c′1 in place of c′, n1 in place of n, etc.. Iterating, we get an
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increasing sequence of numbers
{
ns

}
s∈N

(n0 := n ) and a sequence of polyno-

mials
{
Ps

(
{Xµ}µ∈M

)}
s∈N

(P0 :=P ) such that the degree of Ps

(
{Xµ}µ∈M

)
is

at most ns, and c′ =
∑

s∈N
(q − 1)

nsPs

({
x∨
µ

}
µ∈M

)
.

Consider

ICq
:= Ker

(
Cq

ǫ
−։ C

[
q, q−1

] ev1
−։ C

)
= Ker

(
Cq

ev1
−։ Cq

/
(q − 1) Cq

ǭ
−։ C

)

By construction, we have (q − 1)nsPs

({
x∨
µ

}
µ∈M

)
∈ ICq

ns for all s ∈ N ;

in turn, this means that
∑

s∈N
(q − 1)

nsPs

({
x∨
µ

}
µ∈M

)
∈ Ĉq , the lat-

ter being the ICq
–adic completion of Cq , and the formal expression c′ =

∑
s∈N

(q − 1)
nsPs

({
x∨
µ

}
µ∈M

)
is an identity in Ĉq : therefore c′ ∈

(
C ▽
q

)�⋂
Ĉq.

Acting as in [12], again, we see that Cq
⋂
(q − 1)

ℓ Ĉq = (q − 1)
ℓ Cq for all ℓ ∈ N.

Getting back to c′ ∈
(
C ▽
q

)�⋂
Ĉq, we have c′ = (q − 1)

−m
κ for some m ∈ N and

κ ∈ Cq ; thus κ = (q−1)
m
c′ ∈ Cq

⋂
(q−1)

m Ĉq = (q−1)
m Cq, whence c′ ∈ Cq,

q.e.d.
(c) Let Iq be a strict quantization: by Proposition 5.10(2) it is enough to

prove Iq ⊆
(
I !
q

)g
; so given y ∈ Iq, we must prove that y ∈

(
I !
q

)g
. Recall

that Iq ⊆ Uq =
(
Uq

′
)∨

, the last identity following from Theorem 4.1. By
construction,

(
Uq

′
)∨

=
∑

n≥0 (q − 1)
−n

I n
Uq

′ , IUq
′ :=

(
Uq

′
)+

+ (q − 1)Uq
′

so for y ∈ Iq ⊆ Uq =
(
Uq

′
)∨

there exists N ∈ N such that

y+ := (q − 1)
N
y ∈ I N

Uq
′ ⊆ Uq

′ (5.8)

Strictness of Iq , i.e. Iq
⋂
(q − 1)Uq = (q − 1)Iq , implies

( n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq

⊗(n−s)
)⋂ (

(q−1)
n
Uq

⊗n
)

=

= (q−1)n
( n∑

s=1
Uq

⊗(s−1) ⊗ Iq ⊗ Uq
⊗(n−s)

)

for all n ∈ N+ ; then, by the very definitions, the latter yields I !
q = Iq

⋂
Uq

′ .

If in (5.8) N = 1, then y+ = y ∈ Uq
′, thus y ∈ Iq

⋂
Uq

′ = I !
q , q.e.d. If N > 1

instead, then formula (5.8), along with Iq ĖUq , yields

δn(y+) ∈
(
(q − 1)

N ·
n∑

s=1
Uq

⊗(s−1) ⊗ Iq ⊗ Uq
⊗(n−s)

)⋂(
(q − 1)

n
Uq

⊗n
)

(5.9)

for all n ∈ N+ , and since Iq is strict, from (5.9) one gets

δn(y+) ∈ (q−1)n
n∑

s=1
Uq

⊗(s−1) ⊗ Iq ⊗ Uq
⊗(n−s) ∀n ∈ N
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which means y+ ∈ I !
q . Eventually, we have found y+ ∈ I !

q

⋂
I N
Uq

′ .

Now look at I
I

!
q
:= IUq

′

⋂
I !
q . Using the fact that Uq

′ = Uq(g)
′
= F

[
G∗
]
—

from Theorem 4.1 — and I !
q = Iq(K)

!
= Iq(L) for some coisotropic subgroup

L in G∗ — as granted by Proposition 5.5 — and still taking into account
strictness, by an easy geometrical argument (via specialization at q = 1) we
see that

I n
Uq

′

⋂
I !
q ≡ I n

I
!
q

mod (q − 1)Uq
′ ∀n ∈ N+ .

This, together with Iq
⋂
(q − 1)Uq = (q − 1)Iq , yields also

I n
Uq

′

⋂
I !
q ≡ I n

I
!

q
mod (q − 1)I !

q ∀n ∈ N+

Finally, by suitable, iterated cancelation of factors (q − 1), which is possible
because of the condition Iq

⋂
(q − 1)Uq = (q − 1)Iq , we eventually obtain

I n
Uq

′

⋂
I !
q ≡ I n

I
!
q

mod (q − 1)n I !
q ∀n ∈ N+ .

To sum up, we have y+ ∈ I N
Uq

′

⋂
I !
q = I N

I
!
q

; therefore, by definitions,

y = (q − 1)
−N

y+ ∈ (q − 1)
−N

I N
I

!
q

⊆
(
I !
q

)g
.

(d) Let Cq be a strict quantization: by Proposition 5.10(2) it is enough to prove

Cq ⊆
(
C �
q

)▽
. We follow the same arguments used for claim (c). Let c ∈ Cq, since

Cq ⊆ Uq =
(
Uq

′
)∨

— from Theorem 4.1 — and
(
Uq

′
)∨

=
∑

n≥0 (q − 1)
−n

I n
Uq

′ ,

(notation as above) for c ∈ Cq ⊆ Uq =
(
Uq

′
)∨

there exists N ∈ N such that

c+ := (q − 1)N c ∈ I N
Uq

′ ⊆ Uq
′ .

Now, strictness of Cq implies

(
Uq

⊗(n−1) ⊗ Cq

)⋂
(q − 1)

n
Uq

⊗n = (q − 1)
n (

Uq
⊗(n−1) ⊗ Cq

)
∀ n ∈ N+

hence C �
q = Cq

⋂
Uq

′ . If the above N is 1, then c+ = c ∈ Uq
′ , thus c ∈

Cq

⋂
Uq

′ = C �
q , q.e.d. If instead N > 1 , then

δn(c+) ∈
(
(q − 1)

N · Uq
⊗n−1 ⊗ Cq

)⋂ (
(q − 1)

n
Uq

⊗n
)

∀n ∈ N+

and, since Cq is strict, δn(c+) ∈ (q − 1)
n ·Uq

⊗n−1 ⊗ Cq for all n ∈ N+ , which
means c+ ∈ C �

q . Thus, eventually, we have c+ ∈ C �
q

⋂
I N
Uq

′ .

Let us look, now, at I
C

�
q

:= IUq
′

⋂
C �
q . Again in force of strictness of Cq , a

geometrical argument (at q = 1) as before leads us to

I n
Uq

′

⋂
C �
q ≡ I n

C
�
q

mod (q − 1)n C �
q , ∀ n ∈ N+

from which we conclude that c+ ∈ I N
Uq

′

⋂
C �
q = I N

C
�
q

. Therefore, by the very

definitions,

c = (q − 1)
−N

c+ ∈ (q − 1)
−N

I N
C

�
q

⊆
(
C �
q

)▽
, q.e.d.
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(e) This is a direct consequence of claims from (a) through (d). (f) Once
again, this is true because the whole construction is independent of the exis-
tence of real structures.

It is now time to clarify how the coisotropic subgroup L of G∗ is linked to the
coisotropic subgroup K of G . We will give this relation in the weak quantiza-
tion case first, and show how it improves under stronger hypothesis.

Theorem 5.12. Let K be a subgroup of G, and let Iq(K) , Cq(K) , Iq(K)
and Cq(K) be weak quantizations as in Definition 3.6. Then (with notation of
Proposition 2.2)

(a) Iq(K)
g
= Iq

(
K〈⊥〉

)
;

(b) Cq(K)
▽
= Cq

(
K〈⊥〉

)
;

(c) if Iq(K) =
(
Iq(K)

! )g
, then Iq(K)

!
= Iq

(
K〈⊥〉

)
; in particular, this

holds if the quantization Iq(K) is strict;

(d) if Cq =
(
Cq(K)�

)▽
, then Cq(K)� = Cq

(
K〈⊥〉

)
; in particular, this holds

if the quantization Cq(K) is strict;

(e) claims (a–d) hold as well in the framework of real quantum subgroups.

Proof. (a) By Proposition 5.1 we already have Iq(K)
g
= Iq(L) for some sub-

group L ⊆ G∗. In order to show that L = K〈⊥〉, we will proceed much like in

the proof of Fq
∨
/
(q − 1)Fq

∨ ∼= U(g∗), as given in [12], Theorem 4.7.

Let us fix a subset {j1, . . . , jn} of J adapted to K as in the proof of Proposition

5.1. Let J∨ := (q−1)−1J ⊂ Fq
∨ and j ∨ := (q − 1)−1j for all j ∈ J . From the

discussion in that proof, we argue also that
{
(q − 1)

−|e|
j e mod (q−1)Fq

∨
∣∣ e ∈

Nn
}
, where j e =

∏n

s=1 j
e(i)
s , is a C–basis of F1

∨, and
{
j ∨
1 , . . . , j ∨

n

}
is a C–basis

of t = J∨ mod (q − 1)Fq
∨.

Now, jµ jν − jν jµ ∈ (q−1)J (for µ, ν ∈ {1, . . . , n}) implies that:

jµ jν − jν jµ = (q − 1)
∑n

s=1 cs js + (q − 1)
2
γ1 + (q − 1) γ2

for some cs ∈ C
[
q, q−1

]
, γ1 ∈ J and γ2 ∈ J2. Therefore

[
j∨µ , j

∨
ν

]
:= j∨µ j∨ν − j∨ν j∨µ =

∑n
s=1 cs j

∨
s + γ1 + (q−1)γ∨

2 ≡

≡
∑n

s=1 cs j
∨
s mod (q−1)Fq

∨

(where we set γ∨
2 := (q − 1)−2γ2 ∈ (q − 1)−2(J∨

)2
⊆ Fq

∨ ) thus the subspace
t := J∨ mod (q−1)Fq

∨ is a Lie subalgebra of F1
∨ . But then it should be F1

∨ ∼=
U(t) as Hopf algebras, by the above description of F1

∨ and PBW theorem.
Now for the second step. The specialization map π∨ : Fq

∨ −։ F1
∨ = U(t)

actually restricts to η : J∨ ։ t = J∨
/
J∨
⋂(

(q−1)Fq
∨
)
= J∨

/(
J + J∨J

)
,
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because J∨
⋂(

(q−1)Fq
∨
)
= J∨

⋂
(q−1)

−1
IFq

2 = J + J∨J . Also, multiplica-

tion by (q−1)
−1

yields a C
[
q, q−1

]
–module isomorphism µ : J

∼=
−֒−։ J∨. Let

ρ : me −։ me

/
me

2 = g∗ be the natural projection map, and ν : g∗ −֒→ me

a section of ρ. The specialization map π : Fq −։ F1 restricts to a map
π′ : J −−։ J

/
(J
⋂
(q− 1)Fq) = me. Let’s fix a section γ : me −֒→ J of π′ and

consider the composition σ := η ◦ µ ◦ γ ◦ ν : g∗ −→ t: this is a well-defined Lie
bialgebra morphism, independent of the choice of ν and γ.
In the proof of Proposition 5.1 we made a particular choice for the subset
{j1, . . . , jn}. As a consequence, the above analysis to prove that σ : g∗ ∼= t

shows also that the left ideal I1
g := Iq

g mod (q−1)Fq
∨ of U(t) is generated

by
η
(
Iq

g
)
= (η ◦ µ)

(
Iq
)
= (σ ◦ ρ ◦ π)

(
Iq
)
= σ

(
ρ(I )

)
= σ

(
k⊥
)
.

So I1
g = U(g∗) · k⊥ = U(g∗) · 〈k⊥〉 = I

(
K〈⊥〉

)
— where we are identifying g∗

with its image via σ —which eventually means l = 〈k⊥〉. (b) By Proposition 5.3
we have Cq(K)

▽
= Cq(L) for some coisotropic subgroup L in G∗. We must prove

that L = K〈⊥〉. Once again, we mimic the procedure of the proof of Proposition
5.3, and we fix a subset

{
j1, . . . , jn

}
of J as in the proof of such Proposition.

Then, tracking the analysis we did there to prove that σ : g∗ ∼= t, we see also
that the unital subalgebra C1

▽ := Cq
▽ mod (q−1)Fq

∨ of U
(
g∗
)
is generated by

η
(
Cq
▽
)
= (µ ◦ η)

(
Cq
)
= (σ ◦ ρ ◦ π)

(
Cq
)
= σ

(
ρ(C )

)
= σ

(
k⊥
)
. Thus C1

▽ is the

subalgebra of U
(
g∗
)
generated by k⊥, hence C1

▽ =
〈
k⊥
〉
Alg

= U
(〈
k⊥
〉
Lie

)
=

U
(
k〈⊥〉

)
= C

(
K〈⊥〉

)
, which means l = 〈k⊥〉 , q.e.d. (c) Thanks to Proposition

5.5 we already know that Iq(K)
!
= Iq(L) for some coisotropic subgroup L in

G∗. Again, we must prove that L = K〈⊥〉. Note that we can assume K to be
connected, as its relationship with Iq(K) passes through k alone; thus in the
end we simply have to prove that l := Lie (L) = k〈⊥〉 = k⊥, taking into account
that k〈⊥〉 = k⊥ because k is coisotropic, by a remark following Proposition 5.10.

By assumption Iq(K) =
(
Iq(K)

! )g
; this and (a) together give

Iq(K) =
(
Iq(K)

! )g
= Iq(L)

g
= Iq

(
L〈⊥〉

)
= Iq

(
L⊥
)

where L〈⊥〉 = L⊥ because L is coisotropic as well: at q = 1 this implies
k = l⊥ , q.e.d. (d) We must prove that L = K〈⊥〉: as above we can assume K
to be connected, so we only have to prove that l := Lie (L) = k〈⊥〉 = k⊥ (as k
is coisotropic, by Proposition 5.11.

By assumption Cq =
(
Cq(K)

� )▽
; this along with (c) gives

Cq(K) =
(
Cq(K)�

)▽
= Cq(L)

▽ = Cq

(
L〈⊥〉

)
= Cq

(
L⊥
)

with L〈⊥〉 = L⊥ since L is coisotropic too: specializing at q = 1, this even-
tually yields k = l⊥ . (e) This is clear again since all arguments pass through
unchanged in the real setup.
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Corollary 5.13. Let Iq(K) and Cq(K) be weak quantizations of a (not nec-
essarily) coisotropic subgroup K of G, of type I and C respectively. Then, with
notation of Definition 2.1, we have

(
Iq(K)

g)!
= Iq

( ◦
K
)

,
(
Cq(K)

▽)�
= Cq

( ◦
K
)

.

Proof. Theorem 5.12(a) gives Iq(K)
g
= Iq

(
K〈⊥〉

)
, and Proposition 5.10 yields

(
Iq
(
K〈⊥〉

)!)g
=
((

Iq(K)
g)!)g

= Iq(K)
g
= Iq

(
K〈⊥〉

)

so that
(
Iq
(
K〈⊥〉

)!)g
= Iq

(
K〈⊥〉

)
. Then Theorem 5.12 gives

Iq
(
K〈⊥〉

)!
= Iq

(
(K〈⊥〉)〈⊥〉

)
= Iq

( ◦
K
)

by Proposition 2.2. Therefore
(
Iq(K)

g)!
= Iq

(
K〈⊥〉

)!
= Iq

( ◦
K
)
as claimed.

Similarly, Theorem 5.12(b) gives Cq(K)
▽
= Cq

(
K〈⊥〉

)
, and the first remark

after Proposition 5.10 yields

(
Cq

(
K〈⊥〉

)� )▽
=
((

Cq(K)▽
)� )▽

= Cq(K)▽ = Cq

(
K〈⊥〉

)

so that
(
Cq

(
K〈⊥〉

)� )▽
= Cq

(
K〈⊥〉

)
. Then again by Theorem 5.12(d) we get

Cq

(
K〈⊥〉

)�
= Cq

(
(K〈⊥〉)〈⊥〉

)
= Cq

( ◦
K
)

still by Proposition 2.2. Thus
(
Cq(K)

▽)�
= Cq

(
K〈⊥〉

)�
= Cq

( ◦
K
)
as claimed.

Remark 5.14. One might guess that the analogue to this Corollary holds true
for weak quantizations of type I and C as well: actually, we have no clue about
that, in either sense.

We now consider the “compatibility” among different Drinfeld-like maps acting
on quantizations of different types over a single pair (subgroup, space). Indeed,
we show that Drinfeld’s functors preserve the subgroup-space correspondence
— Proposition 5.15 — and the orthogonality correspondence — Proposition
5.17 — (if either occurs at the beginning) between different quantizations as
mentioned.

Proposition 5.15. Let K be a closed subgroup of G, and let Ψ and Φ be the
map mentioned in §2.1. Then the following holds:
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(a) Let Cq and Iq be as in Section 3. If Ψ(Cq) = Iq , then Ψ
(
Cq
▽
)
= Iq

g .

(b) Let Iq and Cq be as in Section 3. If Φ(Iq) = Cq , then Φ
(
Iq

g
)
= Cq

▽ .

(c) Let Cq and Iq be as in Section 3. If Ψ(Cq) = Iq , then Ψ
(
Cq

�
)
⊆ Iq

! .

(d) Let Iq and Cq be as in Section 3. If Φ(Iq) = Cq , then Φ
(
Iq

!
)
= Cq

� .

Proof. Claims (a) and (c) both follow trivially from definitions.

As to claim (b), let η ∈ Cq
+ = Φ(Iq)

+
, so that ∆(η) ∈ η ⊗ 1 + Fq ⊗ Iq . Then

η∨ := (q − 1)
−1

η enjoys

∆
(
η∨
)
∈ η∨⊗ 1 + Fq ⊗ (q − 1)

−1 Iq ⊆ η∨⊗ 1 + Fq
∨⊗ Iq

g

whence η∨∈
(
Fq

∨
)coIq

g

=: Φ
(
Iq

g
)
. Since Cq

▽ is generated (as a subalgebra) by

(q − 1)
−1 Cq

+ , we conclude that Cq
▽ ⊆ Φ

(
Iq

g
)
.

Conversely, let ϕ ∈ Φ
(
Iq

g
)
. Then ∆(ϕ) ∈ ϕ⊗ 1+Fq

∨⊗Iq
g , and there exists

n ∈ N such that ϕ+ := (q − 1)
n
ϕ ∈ Iq , so that ∆(ϕ+) ∈ Fq ⊗ Iq + Iq ⊗ Fq

(since Iq ĖFq ). Then

∆(ϕ+) ∈
(
ϕ+ ⊗ 1 + (q − 1)

n
Fq

∨⊗ Iq
g
)⋂ (

Fq ⊗ Iq + Iq ⊗ Fq

)

or equivalently

∆(ϕ+) − ϕ+ ⊗ 1 ∈
(
(q − 1)

n
Fq

∨⊗ Iq
g
)⋂ (

Fq ⊗ Iq + Iq ⊗ Fq

)
(5.10)

Now, the description of Iq
g given in the proof of Proposition 5.1 implies that

(
(q − 1)

n
Fq

∨⊗ Iq
g
)⋂ (

Fq ⊗ Iq + Iq ⊗ Fq

)
= Fq ⊗ Iq

this together with (5.10) yields ∆(ϕ+) ∈ ϕ+⊗1+Fq⊗Iq , hence ϕ+ ∈ Fq
coIq =:

Φ(Iq) = Cq and so ϕ ∈ (q − 1)n Cq
⋂
Fq

∨ . On the other hand, the description

of Cq
▽ in the proof of Proposition 5.3 implies that (q − 1)−n Cq

⋂
Fq

∨ ⊆ Cq
▽ ,

hence we get ϕ ∈ Cq
▽ , q.e.d.

We finish with claim (d). For the inclusion Φ
(
Iq

!
)
⊇ Cq

� , let κ ∈ Cq
� . Since

Φ
(
Iq

!
)
contains the scalars, we may assume that κ ∈ Ker (ǫ), thus ∆(κ) =

κ⊗1+1⊗κ+δ2(κ) . By Proposition 5.7, we have Cq
�
Ėℓ Uq

′ ; thus ∆(κ)−κ⊗1 =

1⊗ κ+ δ2(κ) ∈ Uq
′ ⊗ Cq

� , and more precisely

∆(κ)− κ⊗ 1 = 1⊗ κ+ δ2(κ) ∈ Uq
′ ⊗
(
Cq

�
)+

.

Since Cq
� ⊆ Ψ

(
Cq

�
)
⊆ Iq

! , by claim (c), we get ∆(κ) − κ ⊗ 1 ∈ Uq
′ ⊗ Iq

! ,

so κ ∈
(
Uq

′
)coIq

!

=: Φ
(
Iq

!
)
. Thus Cq

� ⊆ Φ
(
Iq

!
)
. For the converse inclusion,
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let η ∈ Φ
(
Iq

!
)
; again, we can assume η ∈ Ker (ǫ) too. As Iq

! ⊆ Iq , we get

η ∈ Φ
(
Iq

!
)
⊆ Φ

(
Iq
)
= Cq . Then δn(η) ∈ Uq

⊗n⊗ Cq for all n ∈ N+ , so

δn(η) ∈ (q−1)
n

(
n−1∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq

⊗(n−s)

)⋂ (
Uq

⊗(n−1)⊗ Cq

)
⊆

⊆ (q−1)
n
Uq

⊗(n−1)⊗ Cq

hence δn(η) ∈ (q−1)
n
Uq

⊗(n−1)⊗ Cq (n ∈ N+ ) and η ∈ Cq , which means that

η ∈ Cq
� .

Remark 5.16. The inclusion Ψ
(
Cq

�
)
⊆ Iq

! of Proposition 5.15(c) is not an
identity in general — indeed, counterexamples do exist.

Finally, we look at what happens when our Drinfeld-like recipes are applied to
a pair of quantizations associated with a same subgroup / homogeneous spaces
with respect to some fixed double quantization (in the sense of Section 3). The
result reads as follows:

Proposition 5.17. Let
(
Fq[G] , Uq(g)

)
be a double quantization of (G, g) .

Then:

(a) Let Cq and Iq be weak quantizations and assume that Cq = Iq
⊥ and

Iq = Cq
⊥ . Then Iq

! =
(
Cq
▽
)⊥

and Cq
▽ ⊆

(
Iq

!
)⊥

. If, in addition, either

one of Cq or Iq is strict, then also Cq
▽ =

(
Iq

!
)⊥

.

(b) Let Cq and Iq be weak quantizations and assume that Iq = Cq
⊥ and

Cq = Iq
⊥ . Then Cq

� =
(
Iq

g
)⊥

and Iq
g ⊆

(
Cq

�
)⊥

. If, in addition,

either one of Cq or Iq is strict, then also Iq
g =

(
Cq

�
)⊥

.

Proof. Both in claim (a) and in claim (b) the orthogonality relations between Cq

and Iq and between Cq and Iq are considered w.r.t. the pairing between Fq[G]
and Uq(g), and the subsequent orthogonality relations are meant w.r.t. the

pairing between Fq[G]
∨
and Uq(g)

′
. Indeed, by Theorem 4.1,

(
Uq(g)

′
, Fq[G]

∨
)

is a double quantization of
(
G∗, g∗

)
. (a) First, ǫ(Iq) = 0 because Iq is a

coideal. Then x = δ1(x) ∈ (q − 1)Uq for all x ∈ Iq
! , hence Iq

! ⊆ (q − 1)Uq .
Thus we have 〈

Cq, Iq
!
〉
⊆ (q − 1)C

[
q, q−1

]
.

Now let J = JFq
be the ideal of Fq, and take ci ∈ Cq ∩ J (i = 1, . . . , n) ; then

〈ci, 1〉 = ǫ(ci) = 0 (i = 1, . . . , n) . Given y ∈ Iq
! , look at

〈
n∏

i=1

ci , y

〉
=

〈
n
⊗
i=1

ci ,∆
n(y)

〉
=

〈
n
⊗
i=1

ci ,
∑

Ψ⊆{1,...,n}

δΨ(y)

〉
=

=
∑

Ψ⊆{1,...,n}

〈
n
⊗
i=1

ci , δΨ(y)

〉
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Consider the summands in the last term of the above formula. Let |Ψ| = t
(t ≤ n) , then

〈
n
⊗
i=1

ci , δΨ(y)
〉

=
〈

⊗
i∈Ψ

ci , δt(y)
〉
·
∏
j 6∈Ψ

〈
cj , 1

〉

by definition of δΨ . Thanks to the previous analysis, we have
∏

j 6∈Ψ〈cj , 1〉 = 0
unless Ψ = {1, . . . , n} , and in the latter case

δΨ(y) = δn(y) ∈ (q − 1)
n

n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq

⊗(n−s) .

The outcome is
〈

n
⊗
i=1

ci , y

〉
=

〈
n
⊗
i=1

ci , δn(y)

〉
∈

∈

〈
n
⊗
i=1

ci , (q − 1)
n

n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq

⊗(n−s)

〉
= 0

because y ∈ Iq
! and Iq = Cq

⊥ by assumption. Therefore one has〈
(q−1)

−n(Cq
⋂
J
)n
, Iq

!
〉

= 0 , for all n ∈ N+ . In addition,
〈
1 , Iq

!
〉

=

ǫ
(
Iq

!
)

= 0 . The outcome is
〈
Cq
▽, Iq

!
〉

= 0 , whence Iq
! ⊆

(
Cq
▽
)⊥

and

Cq
▽ ⊆

(
Iq

!
)⊥

.

Now we prove also
(
Cq
▽
)⊥

⊆ Iq
! . Notice that Cq

▽ ⊇ Cq , whence
(
Cq
▽
)⊥

⊆

Cq
⊥

= Iq ; therefore
(
Cq
▽
)⊥

⊆ Iq . Pick now η ∈
(
Cq
▽
)⊥

(inside Uq
′). Since

η ∈ Uq
′ , for all n ∈ N+ we have δn(η) ∈ (q − 1)

n
Uq

⊗n , and from η ∈
(
Cq
▽
)⊥

we get also that η+ := (q − 1)−nδn(η) enjoys
〈(

Cq
⋂
JFq

)⊗n
, η+

〉
= 0 —

acting as before — so that

η+ ∈
((

Cq
⋂
JFq

)⊗n
)⊥

=
∑

r+s=n−1
Uq

⊗r ⊗
(
Cq
⋂
JFq

)⊥
⊗ Uq

⊗s .

Moreover δn(η) ∈ JUq

⊗n , hence δn(η) ∈
(
(q−1)nUq

⊗n
)⋂

JUq

⊗n =

(q−1)
n
JUq

⊗n , so

η+ ∈
((

Cq
⋂
JFq

)⊗n
)⊥⋂

JUq

⊗n =

=

( ∑
r+s=n−1

Uq
⊗r ⊗

(
Cq
⋂
JFq

)⊥
⊗ Uq

⊗s

)⋂
JUq

⊗n =

=
∑

r+s=n−1
JUq

⊗r ⊗
((

Cq
⋂
JFq

)⊥⋂
JUq

)
⊗ JUq

⊗s .

Since
(
Cq
⋂
JFq

)⊥⋂
JUq

= Cq
⊥⋂ JUq

= Iq
⋂
JUq

= Iq , we have

η+ ∈
∑

r+s=n−1

JUq

⊗r⊗ Iq ⊗ JUq

⊗s
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whence

δn(η) ∈ (q−1)n
∑

r+s=n−1
Uq

⊗r⊗ Iq ⊗ Uq
⊗s ∀ n ∈ N+ .

Being, in addition, η ∈ Iq , for we proved that
(
Cq
▽
)⊥

⊆ Iq , we get η ∈ Iq
! .

Therefore
(
Cq
▽
)⊥

⊆ Iq
! , q.e.d.

Finally, assume that Cq or Iq are strict quantizations. Then we must still prove

that Cq
▽ =

(
I !
q

)⊥
. Since Cq = Iq

⊥ and Iq = Cq
⊥ , it is easy to check that Cq

is strict if and only if Iq is; therefore, we can assume that Iq is strict.

The assumptions and Theorem 5.11 (b) give Iq =
(
I !
q

)g
; moreover, Iq := Iq

!

is strict. Then we can apply the first part of claim (b) — which is proved, later
on, in a way independent of the present proof of claim (a) itself — and get(
Iq

g
)⊥

=
(
Iq

⊥
)�
. Therefore

Cq
▽ =

(
Iq

⊥
)▽

=
(((

I !
q

)g)⊥ )▽
=
((

Iq
g
)⊥)▽

=
((

Iq
⊥
)� )▽

. (5.11)

Now, it is straightforward to prove that Iq strict implies that Iq
⊥ is strict as

well. Then Proposition 5.11(d) ensures
((
Iq

⊥
)� )▽

= Iq
⊥ . This along with

(5.11) yields Cq
▽ =

((
Iq

⊥
)� )▽

= Iq
⊥ =

(
I !
q

)⊥
, ending the proof of (a). (b)

With much the same arguments as for (a), we find as well that

〈
Iq

g, Cq
�
〉

∈
〈
J⊗(n−1)⊗ Iq , Uq

⊗(n−1)⊗ Cq

〉
⊆
〈
Iq ,Cq

〉
= 0

because Iq = Cq
⊥ ; this means that

Iq
g ⊆

(
Cq

�
)⊥

, Cq
� ⊆

(
Iq

g
)⊥

. (5.12)

Let now κ ∈
(
Iq

g
)⊥
q

(
⊆ Uq

′
)
. Since κ ∈ Uq

′ , we have δn(κ) ∈

(q − 1)nUq
⊗n for all n ∈ N ; moreover, from κ ∈

(
Iq

g
)⊥

it follows that

κ+ := (q − 1)
−n

δn(κ) ∈ Uq
⊗n enjoys

〈
J⊗(n−1) ⊗ Iq , κ+

〉
= 0 , so that

κ+ ∈
(
J⊗(n−1) ⊗ Iq

)⊥
=
∑

r+s=n−2 Uq
⊗r⊗J⊥⊗Uq

⊗s⊗Uq + Uq
⊗(n−1)⊗Iq

⊥
.

In addition, δn(κ) ∈ JUq

⊗n , where JUq
:= Ker

(
ǫ : Uq −→ C

[
q, q−1

])
; therefore

δn(κ) ∈
(
(q − 1)

n
Uq

⊗n
)⋂

JUq

⊗n = (q − 1)
n
JUq

⊗n , which together with the
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above formula yields

κ+ ∈
(
J⊗(n−1) ⊗ Iq

)⊥⋂
JUq

⊗n =

=

( ∑
r+s=n−2

Uq
⊗r⊗J⊥⊗Uq

⊗s⊗Uq

)⋂
JUq

⊗n +
(
Uq

⊗(n−1)⊗Iq
⊥
)⋂

JUq

⊗n =

=
∑

r+s=n−2
JUq

⊗r⊗
(
J⊥⋂ JUq

)
⊗JUq

⊗s⊗JUq
+ JUq

⊗(n−1)⊗
(
Iq

⊥⋂ JUq

)
=

= JUq

⊗(n−1) ⊗
(
Iq

⊥⋂ JUq

)
= JUq

⊗(n−1) ⊗
(
Cq

⋂
JUq

)
⊆ Uq

⊗(n−1) ⊗ Cq

where in the third equality we used the fact that J⊥
⋂
JUq

= {0} . So κ+ ∈

Uq
⊗(n−1) ⊗ Cq , hence δn(κ) ∈ (q − 1)

n
Uq

⊗(n−1) ⊗ Cq for all n ∈ N+ : thus

κ ∈ Cq
� . Therefore

(
Iq

g
)⊥

⊆ Cq
� , which together with the right-hand side

inequality in (5.12) gives Cq
� =

(
Iq

g
)⊥

.

In the end, suppose also that one between Cq and Iq is strict. As Iq = Cq
⊥

and Cq = Iq
⊥ , one sees easily that Iq is strict if and only if Cq is; then we can

assume that Cq is strict. We want to show that Iq
g =

(
Cq

�
)⊥

.

The assumptions and Theorem 5.11(d) give Cq =
(
C �
q

)▽
. Moreover, we have

that Cq is strict by Proposition 5.3(3) and Proposition 5.7 (3). Then we can

apply the first part of claim (a), thus getting
(
Cq
▽
)⊥

=
(
Cq

⊥
)!
. Therefore

Iq
g =

(
Cq

⊥
)g

=
(((

C �
q

)▽)⊥ )g
=
((
Cq
▽
)⊥)g

=
((
Cq

⊥
)! )g

(5.13)

Now, one proves easily that Cq strict implies Cq
⊥ strict. Then Theorem 5.11(c)

yields
((
Cq

⊥
)! )g

= Cq
⊥ . This and (5.13) give Iq

g=
((
Cq

⊥
)! )g

= Cq
⊥=

(
Cq

�
)⊥

,

which eventually ends the proof of (b).

6 Examples

In this last section we will give some examples showing how our general con-
structions may be explicitly implemented. Some of the examples may look
rather singular, but our aim here is mainly to draw the reader’s attention on
how even badly behaved cases can produce reasonable results. It has to be
remarked that a wealth of new examples of coisotropic subgroups of Poisson
groups have been recently produced ([25]), to which our recipes could be inter-
estedly applied.

N.B.: for the last two examples — Subsections 6.2 and 6.3 — one can perform
the explicit computations (that we just sketch) using definitions, formulas and
notations as in [5], §6, and in [11], §7.
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6.1 Quantization of Stokes matrices as a GL ∗
n–space

As a first example, we mention the following. A well-known structure of Poisson
group, typically known as the standard one, is defined on SLn ; then one can
consider its (connected) dual Poisson group SL ∗

n , which in turn is a Poisson
group as well. The set of Stokes matrices — i.e. upper triangular, unipotent
matrices — of size n bears a natural structure of Poisson homogeneous space,
and even Poisson quotient, for SL ∗

n . In [5], Section 6, it was shown that one
can find an explicit quantization, of formal type, of this Poisson quotient by a
suitable application of the QDP procedure for formal quantizations developed
in that paper.
Now, let us look at the explicit presentation of the formal quantization U~(sln)
considered in [loc. cit.]. One sees easily that this can be turned into a presenta-
tion of a global quantization (of sln again), i.e. a QUEA Uq(sln) in the sense of
Section 3. Similarly, Drinfeld’s QDP (for quantum groups) applied to U~(sln)
provides a formal quantization F~[[SL

∗
n]] := U~(sln)

′ of the function algebra
over the formal group SL ∗

n ; but then the analogous functor for the global ver-
sion of QDP yields (cf. Theorem 4.1) a global quantization Fq[SL

∗
n] := Uq(sln)

′

of the function algebra over SL ∗
n . In a nutshell, Fq [SL

∗
n] is nothing but (a suit-

able renormalization of) an obvious C
[
q, q−1

]
–integral form of F~[[SL

∗
n]] .

Carrying further on this comparison, one can easily see that the whole analysis
performed in [5] can be converted into a similar analysis for the global context,
yielding parallel results; in particular, one ends up with a global quantization
— of type C, in the sense of Section 3 — of the space of Stokes matrices. More
in detail, this quantization is a strict one, as such is the quantum subobject
one starts with.
Since all this does not require more than a word by word translation, we refrain
from filling in details.

6.2 A parametrized family of real coisotropic subgroups

Coisotropic subgroups may come in families, in some cases inside the same con-
jugacy class (which is responsible for different Poisson homogeneous bivectors
on the same underlying manifold). An example in the real case was described
in detail in [2]. The setting is the one of standard Poisson SL2(R) , which con-
tains a two parameter family of 1– dimensional coisotropic subgroups described,
globally, by the right ideal and two-sided ideal

Iµ,ν :=
{
a− d+ 2 q

1

2µb , q νb+ c
}
· Fq

[
SL2(R)

]
(6.1)

where a, b, c, d are the usual matrix elements generating Fq

[
SL2(R)

]
, with ∗–

structure in which they are all real (thus q∗ = q−1 ) and µ, ν ∈ R . The corre-
sponding family of coisotropic subgroups of classical SL2(R) may be described
as

Kµ,ν :=

{(
d− 2µb b
−νb d

) ∣∣∣∣ b, d ∈ R , d2 + νb2 = 1

}
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(adapting our main text arguments to the case of right quantum coisotropic
subgroups, this is quite trivial and we will do it without further comments).
The corresponding SL2(R)–quantum homogeneous spaces have local descrip-
tion given as follows: Cµ,ν is the subalgebra generated by

z1 = q−
1

2 (ac+ νbd) + 2µbc , z2 = c2 + νd2 + 2µq−
1

2 cd ,

z3 = a2 + νb2 + 2µq−
1

2 ab .
(6.2)

Using commutation relations — see (12) in [3] — it is easily seen that Cµ,ν has
a linear basis given by

{
zp1z

q
2 , z

p
1z

r
3

∣∣ p, q, r ∈ N
}
.

Proposition 6.1. The subalgebra Cµ,ν is a right coideal of Fq

[
SL2(R)

]
and is

a strict quantization — of type C — of Kµ,ν .

Proof. The first statement is proven in [3]. As for the second we will first show
that zp1z

q
2 , z

p
1z

r
3 6∈ (q − 1)Fq

[
SL2(R)

]
for any p, q, r ∈ N . This may done by

considering their expression in terms of the usual basis
{
apbrcs , bhckdi

}
of

Fq

[
SL2(R)

]
. In fact we do not need a full expression of monomials zp1z

r
2 or

zp1z
r
3 in terms of this basis, which would lead to quite heavy computations. It

is enough to remark that, for example, since

zp1z
r
2 =

(
q−

1

2 ac+ b(νd+ 2µc)
)p (

c2 + (νd+ 2µq−
1

2 c)d
)r

we can get an element multiple of apcp+2r only from (ac) · · · · (ac) · c · · · · c ,
which is of the form qhapcp+2r 6∈ Fq

[
SL2(R)

]
. Since no other elements may

add up with this one, we have zp1z
r
2 6∈ (q− 1)Fq

[
SL2(R)

]
. A similar argument

works for zp1z
r
3 .

In a similar way we prove that any C
[
q, q−1

]
–linear combination of the zp1z

q
2 ’s

and the zs1z
r
3 ’s is in (q − 1)Fq

[
SL2(R)

]
if and only if all coefficients are in

(q − 1)C
[
q, q−1

]
. Therefore Cq is strict, q.e.d.

It makes therefore sense to compute C ▽
µ,ν ; to this end, we can resume a detailed

description of Uq(sl
∗
2 ) := Fq

[
SL2(R)

]∨
— apart for the real structure, which

is not really relevant here — from [11], §7.7. From our PBW-type basis we

have that C ▽
µ,ν is the subalgebra of Fq

[
SL2(R)

]∨
generated by the elements

ζi :=
1

q−1

(
zi − ε(zi)

)
∈ Fq

[
SL2(R)

]∨
(i = 1, 2, 3) . Since we know that

H+ :=
a− 1

q − 1
, E :=

b

q − 1
, F :=

c

q − 1
, H− :=

d− 1

q − 1
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are algebra generators of Uq(sl
∗
2 ) := Fq

[
SL2(R)

]∨
, we deduce that

ζ1
q − 1

= q−
1

2 (F + νE) + (q − 1)
(
q−

1

2H+F + q−
1

2 νEH− + 2µEF
)

ζ2 − ν

q − 1
= 2 (νH− + µq−

1

2F ) + (q − 1)
(
F 2 + νH2

− + 2µq−
1

2FH−

)

ζ3 − 1

q − 1
= 2 (H+ + µq−

1

2E) + (q − 1)
(
H2

+ + νE2 + 2µq−
1

2H+E
)

(6.3)

In the semiclassical specialization Uq(sl
∗
2 )

q−→1
−−→ Uq(sl

∗
2 )
/
(q − 1)Uq(sl

∗
2 ) one

has that E 7→ e , F 7→ f , H± 7→ ±h , where h, e, f are Lie algebra generators
of sl∗2 ; therefore the semiclassical limit of the right hand side of (6.3) is the Lie
subalgebra generated by f + ν e , −ν h + µ e , h + µ e , or, equivalently, the 2–
dimensional Lie subalgebra generated by f+ν e and h+µ e (the three elements
above being linearly dependent) with relation [ h + µ e , f + ν e ] = f + ν e . The
quantization of this coisotropic subalgebra of sl ∗2 is therefore the subalgebra
generated inside Uq(sl

∗
2 ) by the quadratic elements (6.3).

Similar computations can be performed starting from Iµ,ν . The transformed

Ig
µ,ν is the right ideal generated by the image of a− d+ 2 q

1

2µb and qνb + c ,

i.e. the right ideal generated by H+ −H− +2 q
1

2µE and q νE +F ; also, from
its semiclassical limit it is easily seen that this again corresponds to the same
coisotropic subgroup of the dual Poisson group SL 2(R)

∗ .
All this gives a local — i.e., infinitesimal — description of the (2–dimensional)
coisotropic subgroups K ⊥

µ,ν in SL 2(R)
∗
.

6.3 The non coisotropic case

Let us finally consider the case of a non coisotropic subgroup. We will con-
sider the embedding of SL2(C) into SL3(C) corresponding to a non simple
root, which easily generalizes to higher dimensions. Computations will only be
sketched.
Let h be the subalgebra of sl3(C) spanned by E1,3 , F1,3 , H1,3 = H1 + H2 .
Easy computations show that the standard cobracket values are

δ(E13) = E13 ∧ (H1 +H2) + 2E23 ∧ E12

δ(F13) = F13 ∧ (H1 +H2)− 2F23 ∧ F12

δ(H1 +H2) = 0

(6.4)

and, therefore, the corresponding embedding SL2(C) −֒→ SL3(C) is not

coisotropic. To compute the coisotropic interior
◦
h of h , consider that 〈H1+H2〉

is, trivially, a subbialgebra of h , thus contained in
◦
h . Let X := (H1 +H2) +

αE13 + βF13 : then

δ(X) = X ∧ (H1 +H2) + 2 (αE23 ∧ E12 − βF23 ∧ F12)
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shows that no such X is in
◦
h , unless α = 0 = β . The outcome is that we have

◦
H =




γ 0 0
0 1 0
0 0 γ−1


 ⊆ SL3(C)

with γ ∈ C∗ . Correspondingly

h〈⊥〉 =
( ◦
h
)⊥

=
〈
e1,2 , e1,3 , e2,3 , f1,2 , f1,3 , f2,3 , h2.2

〉 (
⊆ sl3(C)

∗
)

and, thus SL3(C)
∗
/
H〈⊥〉 is a 1– dimensional Poisson homogeneous space —

with, of course, zero Poisson bracket.
Let us consider now any weak quantization Cq(H) of H . It should certainly
contain the subalgebra of Uq(sl3) generated by the root vectors E1,3 , F1,3 ,

together with K1K
−1
3 and Ĥ1,3 :=

(
K1K

−1
3 − 1

)/
(q − 1) . The equality

∆(E1,3) = E1,3 ⊗K1K
−1
3 + 1⊗ E1,3 + (q − 1)E1,2 ⊗ E2,3

tells us that, in order to be a left coideal, such a quantization should also
contain either (q − 1)E1,2 or (q − 1)E2,3 (and thus, as expected, it cannot be

strict). Let us try to compute some elements in Cq(H)
�
. Certainly, since

δ2
(
Ĥ1,3

)
= Ĥ1,3 ⊗

(
K1K

−1
3 − 1

)
= (q − 1) Ĥ1,3 ⊗ Ĥ1,3

we can conclude that (q − 1)Ĥ1,3 ∈ Cq(H)
�
. On the other hand,

δ2(E1,3) = (q − 1)E1,3 ⊗ Ĥ1,3 + (q − 1)E1,2 ⊗ E2,3

implies that (q − 1)E1,3 6∈ Cq(H)� , while (q − 1)2E1,3 ∈ Cq(H)� .
All this means the following.
Within Cq(H)

�
we find a non-diagonal matrix element of the form (q−1) t1,3 :

it belong to (q−1)Uq(sl3)
′
but not to (q−1)Cq(H)

�
, so that

Cq(H)
�⋂

(q−1)Uq(sl3)
′ % (q−1)Cq(H)

�

which means that the quantization Cq(H)
�
is not strict. On the other hand, we

know by Proposition 5.7(3) that Cq(H)
�
is proper. Therefore, we have an ex-

ample of a quantization (of type Cq , still by Proposition 5.7(3)) which is proper,
yet it is not strict. In addition, in the specialization map π : Uq(sl3)

′ −−։

Uq(sl3)
′
/
(q−1)Uq(sl3)

′
the element (q−1) t1,3 is mapped to zero, i.e. it yields a

trivial contribution to the semiclassical limit of Cq(H)
�
— which here is meant

as being π
(
Cq(H)�

)
= Cq(H)�

/
Cq(H)�

⋂
(q − 1)Uq(sl3)

′ . With similar com-

putations it is possible to prove, in fact, that the only generating element in
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C(H)
�
having a non-trivial semiclassical limit is (q−1)Ĥ1,3 . Therefore, through

specialization at q = 1 , from C(H)
�
one gets only π

(
Cq(H)

�)
= C

[
t2,2
]
: in-

deed, this in turn tells us exactly that Cq(H)
�
is a quantization, of proper type,

of the homogeneous SL3(C)
∗
–space SL3(C)

∗
/
H〈⊥〉 (whose Poisson bracket is

trivial).
Remark. It is worth stressing that this example — no matter how rephrased
— could not be developed in the language of formal quantizations as a direct
application of the construction in [5], for only strict quantizations were taken
into account there.
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