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INTRODUCTION

In this paper we give a general approach to relative modaliep of modules over Lie
algebroids. As a special case one recovers Simpson’s “heliaa Hodge filtration”
moduli space (seé [Si4] and [$i5]). This allows to considigigd sheaves and sheaves
with integrable connections at the same time as objectesponding to different
fibers of the relative moduli space of modules over a defaonaif a Lie algebroid
over an affine line.

A large part of the paper is devoted to generalizing vari@assf concerning vector
bundles with connections to modules over Lie algebroidgalrticular, we introduce
restricted Lie algebroids, which generalize Ekedahl'®lafions [EK]. In positive
characteristic we define@curvature for modules over restricted Lie algebroidssThi
leads to a deformation of the morphism givengegurvature on the moduli space of

1Author’s work was partially supported by Polish Nationalidce Centre (NCN) contract number
2012/07/B/ST1/03343.
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510 ADRIAN LANGER

modules to the Hitchin morphism corresponding to the ttivia algebroid structure.
In the special case of bundles with connections on curvesi#éformation was already
studied by Y. Laszlo and Ch. Pauly [LP].

We prove Langton’s type theorem for the moduli spaces of rezdaver Lie alge-
broids. We compare it via Rees’ construction with Simpsamdictive construction
of gr-semistable Griffiths transverse filtration (see [hi%pncluding that the latter
must finish.

This leads to the main application of our results. Namely,alb&in a canonical
gr-semistable Griffiths transverse filtration on a moduleravLie algebroid. This im-
plies a recent conjecture of Lan-Sheng-Zuo that semissisiems of Hodge sheaves
on liftable varieties in positive characteristic are stflyrsemistable.

The rank 2 case of this conjecture was proven in [LSZ], th& fanase in[[Li]. Re-
cently, independently of the author Lan, Sheng, Yang andZ8¥Z] also proved the
Lan-Sheng-Zuo conjecture using a similar approach. Houy¢lvey give a different
proof that Simpson’s inductive construction must finish.eyfalso obtain a slightly
weaker result proving their conjecture only for an algebcdosure of a finite field.

The results of this paper are usedlin [La3] to prove Bogonisitype inequality for
Higgs sheaves on varieties liftable modpk

0.1 NOTATION

If X is a scheme anc is a quasi-coherent’x-module then we seE* =
sComg, (E,Ox) andV(E) = Speq S’E).

Let Sbe a scheme of characterispd(i.e., Os is anFp-algebra). ByFS : S— Swe
denote ther-th absolute Frobenius morphiswf S which corresponds to thp'-th
power mapping os. If X is anS-scheme, we denote (/S the fiber product of
X andS over the (1-st) absolute Frobenius morphisnofThe absolute Frobenius
morphism ofX induces theelative Frobenius morphismys: X — X1/,

Let X be a projective scheme over some algebraically closed Kieldet £'x (1) be
an ample line bundle oX. For any coherent she& on X we define itsHilbert
polynomialby P(E)(n) = x(X,E(n)) for n€ Z. If d is the dimension of the support
of E then we can write

r(E)nd

P(E)(n) = T + lower order terms im.

The (rational) number = r(E) is called thegeneralized ranlof E (note that ifX is
not integral then the generalized rank of a sheaf dependkeopdlarization). The
quotientp(E) = % is called thenormalized Hilbert polynomiadf E.

In caseX is a variety then for a torsion free sheafthe generalized rank(E) is a
product of the degree of with respect tavx (1) and of the usual rank.

If X is normal anck is a rankr torsion free sheaf oK then we define thelopep (E)
of E as the quotient of the degree of &et (A" E)** with respect tax (1) by the
rankr. In some cases we consider generalized slopes defined sjitkaeto a fixed

1-cycle class, coming from a collection of nef divisorsXn
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SEMISTABLE MODULES OVER LIE . .. 511

Let us recall thak is slope semistabli for every subsheaE’ C E we haveu(E’) <
H(E).

1 MODULI SPACES OF MODULES OVER SHEAVES OF RINGS OF DIFFERENTIAL
OPERATORS

In this section we recall some definitions and the theoremxistemnce of moduli
spaces of modules over sheaves of rings of differentialaipes. This combines the
results of Simpson [Si2] with the results 6f [Llal] and [La2].

Let S be a locally noetherian scheme and fet X — S be a scheme of finite type
overS. A sheaf of (associative and unitaf}s-algebras<” on Xis a sheafZ on X of
(possibly non-commutative) rings @fy-bimodules such that the image bf'os —
& is contained in the center @f .

Let us recall after [Si2] that aheaf of rings of differential operators on X oveis&
sheaf/\ of 0s-algebras orX, with a filtrationA\g C A1 C ... by subsheaves of abelian
subgroups satisfying the following properties:

1. A=UZoNi andAi-Aj C Aigj,
2. the image otx — A is equal ta/\g,

3. the left and right’x-module structures on @N) := Aj/A;_1 coincide and the
Ox-modules Gi(A) are coherent,

4. the sheaf of gradedx-algebras Gi\) := &2, Gri(A\) is generated in degree
1, i.e., the canonical graded morphism from the ter@gralgebral® Gri(A)
of Gr1(A) to Gr(A\) is surjective.

Note that in positive characteristic, the sheaf of ringsrgétalline differential opera-

tors (seel[BMR] or Subsectidn 2.2) is a sheaf of rings of diffeial operators, but the
sheaf of rings of usual differential operators is not asrta@dt never is generated in
degree 1.

Assume thatS is a scheme of finite type over a universally Japanese Rind-et

f : X — Sbe a projective morphism d®-schemes of finite type with geometrically
connected fibers and léty (1) be anf-very ample line bundle. LeA be a sheaf of
rings of differential operators oX overS.

A A-moduleis a sheaf of (lefty\-modules orX which is quasi-coherent with respect
to the induced’x-module structure.

Let T — Sbe a morphism oR-schemes withT locally noetherian ove8. Let us
setXr = X xsT and letp be the projection oKr ontoX. ThenAr = Ox; ®p-14,
p~1A has a natural structure of a sheaf of rings of differenti@rapors oy overT.
Moreover, ifE is aA-module onX then the pull bacler = p*E has a natural structure
of aAr-module.

Note that ifE is aA-module ancE’ C E is a quasi-coherentx-submodule such that
A1-E’ C E thenE' has a unique structure 6fmodule compatible with thA-module
structure orE (i.e., such thaE’ is aA-submodule oE).
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512 ADRIAN LANGER

LetY be a projective scheme over an algebraically closed fdldith fixed polar-
ization) and let\y be a sheaf of rings of differential operators ¥n Let E be a
Ay-module which is coherent as afi,-module. E is calledGieseker (semi)stable
if it is of pure dimension as a#y-module (i.e., all its associated points have the
same dimension) and for aryy-submodulé= C E we have inequalitp(F) < p(E)
(p(F) < p(E), respectively) of normalized Hilbert polynomials.

Every Gieseker semistabfe,-moduleE has afiltration 3=Ey CE; C ... CEn=E by
Ay-submodules such that the associated graefgE; /E;_1 is aGieseker polystable
Ay-module (i.e., it is a direct sum of Gieseker stablemodules with the same nor-
malized Hilbert polynomial). Such a filtration is calledardan—Hblder filtration of
this Ay-module.

Now let us go back to the relative situation, i.&.0n X overS(overR).

A family of Gieseker semistable-modules on the fibres oftp X7 = X xgT —
T is aAr-moduleE on Xy which is T-flat (as andx;-module) and such that for
every geometric point of T the restriction ofE to the fibreX; is pure and Gieseker
semistable as A-module.

We introduce an equivalence relatisnon such families by saying th&t~ E’ if and
only if there exists an invertibl&r-moduleL such thaE’ ~ E ® p;L.

Let us define the moduli functor

MM (X/S,P) : (SchB)° — Sets
from the category of locally noetherian schemes @&&rthe category of sets by

~ equivalence classes of families of Gieseker
M (X/S,P)(T) = { semistablé\-modules on the fibres ot — T,
which have Hilbert polynomigh.

Then we have the following theorem summing up the resultsimipSon and the
author (se€ [Si2, Theorem 4.7], [llal, Theorem 0.2] and|[0&&orem 4.1]).

THEOREM 1.1. Let us fix a polynomial P. Then there exists a quasi-projecv
scheme M(X/S,P) of finite type over S and a natural transformation of functors

¢ : MM (X /S P) — Homg(-,M" (X /S P)),

which uniformly corepresents the functo*kX /S, P).

For every geometric points S the induced mag(s) is a bijection. Moreover, there
is an open schemeM(X /S P) c M (X /S P) that universally corepresents the sub-
functor of families of geometrically Gieseker stafAlenodules.

In general, for every locally noetheri&scheme we have a well defined morphism
MA(X/S,P) xsT — MAT (X1 /T,P) which is a bijection of sets iT is a geometric
point of S,

Let us recall that a schemd” (X /S P) uniformly corepresents MX /S, P) if for
every flat base change — S the fiber producM”(X/S,P) xsT corepresents the
fiber product functor Hory(-, T) X pomg(.5) M (X/S,P).

K
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SEMISTABLE MODULES OVER LIE . .. 513

2 LIE ALGEBROIDS

2.1 LIE ALGEBROIDS AND DE RHAM COMPLEXES

Let f : X — Sbe a morphism of schemes. sheaf ofds-Lie algebras on Xs a pair
(L,[-,-]L) consisting of a (leftyx-moduleL (which is anf~!¢s-bimodule) with a
morphism off ~10s-modules, ], : L®¢-14,L — L, which is alternating and which
satisfies the Jacobi identity. A homomorphism of sheave@sifie algebras orX is
an Ox-linear morphisnL — L" which preserves the Lie bracket. As usualferL(U)
we definead: L(U) — L(U) by (adx)(y) = [X,Y]L.

n

LetTos(L) = @nzol ®¢-14 - ®-14, L be the tensor algebra bfover f~10s (itis a
non-commutativd ~10's-algebra). Let us recall that thmiversal enveloping algebra
%gs(L) of a Lie algebra sheafL,[-,-].) is defined as the quotient df;(L) by the
two-sided ideal generated byp y — y® x— [x,y]. for all local sectionx,y € L.

The most important example of a sheaf/af-Lie algebras oiX is the relative tangent
sheafTy ;s = Zergg(Ox, Ox) with a natural bracket given 41, Do) = D1D> — DoDy
for local &s-derivationsD1, D, of Ox.

DEerINITION 2.1 An Os-Lie algebroid on Xis a triple (L, [-,-]., a) consisting of a
sheaf of0s-Lie algebragL,[,-].) onX and a homomorphism : L — Ty /s, X — 0,
of sheaves o¥s-Lie algebras orX, which satisfies the following Leibniz rule

X fylL = ox(f)y+ f [x,ylL

for all local sectiond € 0x andx,y € L (in the formula we treat as anv’s-derivation
of Ox). We say that. is smoothif it is coherent and locally free as afx-module.L
is quasi-smoottif it is coherent and torsion free as @x-module.

The mapa in the above definition is usually calleéde anchor A Lie algebroid is a
sheaf of Lie-Rinehart algebras (seel[Ri]). It is also a sgaxse of the more general
notion of a Lie algebra in a topos defined by lllusie (s€e [Ha@itre VIII, Definition
1.1.5)).

A homomorphism of’s-Lie algebroids LandL’ on X is a homomorphisrh — L’ of
sheaves o¥s-Lie algebras orX which commutes with the anchors.

Note that anZ’s-Lie algebroid onX with the zero anchor map corresponds to a sheaf
of Ox-Lie algebras.

DEFINITION 2.2. A de Rham complex on X overisSa pair(A°*M,dy,) consisting
of the exterior algebrA® M := Az M of an &x-moduleM and ands-anti-derivation
dy i A°M — A*M of degree 1 (i.e.dy(xAy) = (dyX) Ay+ (—1)Ix A dyy for all

local section € A M andy € \* M) such thatdy,)? = 0. We say that\* M, dy) is

smoothif M is coherent and locally free.

A de Rham complex is a special case of a sheaf of graded-comtiveutlifferen-
tial graded algebras. A special case of a de Rham complexisi¢hRham com-
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514 ADRIAN LANGER

plex (Q;(/S,d;(/s), which is the unique de Rham complex extending the canoni-
cal Os-derivationdy s : Ox — Qy/s (uniqueness follows becausgy s is gener-
ated bydy ,s0x as a leftox-module). By the universal property af ;s we have
Dergg(Ox,M) ~Homg, (Qx/s,M) and hence for every de Rham comp{#X M, dy)

we have a unique morphism of de Rham comple(ﬂ;’@s, d)’(/s) — (A*M,dy). This
morphism induces a well defined map on the hypercohomologyyg:

HbR(X/S) 1= H*(Q% ) = H*(A\'M).

To everyUs-Lie algebroid(L, [-,-]_,a) on X we can associate a de Rham complex
(A*M,dy,) onX overSfor M =L*. This is done by the following well known formula
generalizing the usual exterior differential:

(de)(lla"'7|k+l) = rif(_l)i+la|i(_m(lla"'7ﬂa"'7|k+l)2 ~
+ Yacicjerpa (DMl d T e k)

forme /\kM andly,...,Ix;1 € L. This gives a functor from the category of Lie alge-
broids to the category of de Rham complexes.

On the other hand, to every de Rham complgtM,dy,) on X over Swe can as-
sociate a Lie algebroid structure an= M*. The anchol. — Tyx/s = (Qx/s)* is
obtained as the transpose of thg-homomorphisnfy ;s — M corresponding to the
Os-derivationdy : ©x — M. The bracket orL can be read off the above formula
definingdy : M — A?M. This provides a functor in the opposite direction: from the
category of de Rham complexes to the category of Lie algdbrdihese functors are
quasi-inverse on subcategories of smooth objects.

If L is a smoothrs-Lie algebroid onX then the corresponding de Rham complex is
denoted by(Q},d?). In this case we set

Hbr(L) = H'(Q}, df).

We have the following standard spectral sequence assdd¢@tee de Rham complex
of L:

EJ —HI(X/S Q)= H5E (L)

2.2 UNIVERSAL ENVELOPING ALGEBRA OF DIFFERENTIAL OPERATORS

DEFINITION 2.3. A sheaf of0s-Poisson algebras on 36 a pair(«/,{-,-}) consist-
ing of a sheafw” of commutative, associative and unita-algebras with a Poisson
bracket{-, -} such that(<7,{-,-}) is a sheaf ofs-Lie algebras orX satisfying the
Leibniz rule

{X,y-Z} = {X7y} "Z+Y- {X7Z}
forallx,y,ze «.
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SEMISTABLE MODULES OVER LIE . .. 515

Let A be a sheaf of rings of differential operators ¥rover S such that\g = 0.
Let us assume that is almost commutative.e., the associated graded(@j is a
sheaf of commutativéx-algebras. Then GA) has a natural structure of a sheaf of
Os-Poisson algebras of with the Poisson bracket given by

{Ix,[y]} := (xy—yx modAi,j_2) € Griyj_1(A),

where[x] € Gri(A\) is the class ok € A andly] € Grj(A) is the class of € Aj. The
Poisson bracket induces @i-Lie algebroid structure on GfA). The Lie bracket on
Gri(A) is equal to the Poisson bracket and the anchor ma@r; (A) — Ty s is given
by sendingx] to the &s-derivationy — {[x],y}, y € Ox = Grp(N).

On the other hand, it is an Os-Lie algebroid onX then we can associate toa
sheaf of rings of differential operators &hoverSin the following way. We define an
Os-Lie algebra structure obh = Ox @ L by setting

[f+x,9+Y]p = ax(g) — ay(f) +[xylL

for all local sectionsf,g € Ox andx,y € L. Let %ﬁs(li) be the universal enveloping
algebra of_ and IetOZZﬁS(E) be the sheaf of subalgebras (without unit!) generated by
the image of the canonical mgp: L — %,(L) (note that in general this map need not
be injective). We defind as the quotient o?igs(f_) by the two-sided ideal generated
by all elements of the forry (f)i; (x) —ip (fx) forall f € Ox andx e L. LetALj be
the left&x-submodule of\| generated by products of at mgstlements of the image
of L in A_. This defines a filtration of\_ equipping it with structure of sheaf of rings
of differential operators (since the canonical graded tisrmp S® Gry(AL) — Gr(AL)

is surjective, the constructel is almost commutative). We call_ the universal
enveloping algebra of differential operators associated.t

By the Poincare-Birkhoff-Witt theorem, if the Lie algebddi is smooth therL —
Gri(AL) is an isomorphism and the canonical epimorph&in— Gr(AL) is an iso-
morphism of sheaves of gradét,-algebras (see [Ri, Theorem 3.1]). This implies
that if L is quasi-smooth then the canonical map> AL is injective.

If L =Ty sand the anchor map is identity, th&p is denoted by’ ;s and it is called
the sheaf of crystalline differential operataisee [BMR]). In [BO] the authors call
it the sheaf of PD differential operators. In the charast&rizero case the sheAf
and the correspondence between Lie algebroids and shefkiagoof differential
operators was studied by Simpson'in |Si2, Theorem 2.11]suiifsequent corrections
by Tortella in [To, Theorem 4.4].

We can also consider twisted versions of sheaves of ringsffefrehtial operators
associated to a Lie algebroid (see |[BB] and [To]).

Let A be an almost commutative sheaf of rings of differential apms onX over
S such that\g = 0x. ThenA; has ands-Lie algebra structure oX given by the
usual Lie brackef-,-] coming fromA and the anchor map given by sendig A;
to f — [x, f]. ThenA; — Gry(A) is a homomorphism ofs-Lie algebras with kernel
being the sheabx (with a trivial Os-Lie algebroid structure).

The following definition is motivated by [BB, Definition 23]:
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516 ADRIAN LANGER

DEFINITION 2.4. A generalized’s-Picard Lie algebroiconX is ands-Lie algebroid
L equipped with a sectior:Iof L inducing an exact sequence®é-Lie algebroids

0—0x Lo L0,

whered is taken with the triviali’s-Lie algebroid structure.

To any generalizeds-Picard Lie algebr0|d_ we can associate an almost commuta-
tive sheaf of rings of differential operatofg on X over S such thath; o= Ox and
/\L,1 =L /\L is constructed as a quotient of the universal envelopingtatyof dif-
ferential operatord; by the two-sided ideal generated by-11. As in [BB, Lemma
2.1.4], this defines a fully faithful functor from the categmf generalized Picard
Lie algebroids to the category of almost commutative shea¥eings of differential
operators.

The analogous construction can be also found.in [To], wHeratithor construcfSE

by gluing local pieces.

3 MODULES OVER LIE ALGEBROIDS

3.1 MODULES WITH GENERALIZED CONNECTIONS

Let X be anSscheme. LeM be a coherentx-module with ands-derivationdy :
Ox — M. A dy-connectionon a coherentx-moduleE is an Os-linear morphism
0:E — E®g, M satisfying the following Leibniz rule

O(fe) = fO(e) +exdu(f)

for all local sectiond € 0k ande c E.

Note that notion ofdy-connection depends on the choice of derivatignand not
only the sheaM. For example ifM = Qy s then the standard derivatialy s leads
to a sheaf with a usual connection whereas the zero denivigtials to a Higgs sheaf
(but without any integrability condition).

3.2 GENERALIZED HIGGS SHEAVES

Assume thatA\* M, dy) is a de Rham complex and I[Etbe a coherentix-module.
Then ady-connection] : E — E®M can be extended to a morphid : E ®g,
A'M — E®4, AT1M by setting

Oi(e® w) = e dyw+ (—1)'0(e) A w,
wheree € E andw € A'M are local sections. As usually one can check that the

curvature K= 01 0 O is Ox-linear andl; 1 o Di(e® w) = K(e) A w. We say that
(E, D) is integrableif the curvatureK = 0. If (E, ) is integrable then the sequence

2
0-EBEeMBERAM ..
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becomes a complex. The hypercohomology groups of this eangre denoted by
HLr(X,E) :=H'(E® A*M, 0).

Let A*M be the de Rham complex corresponding to the extefigalgebra ofM
with zero anti-derivatiordy. Then a coherenfx-module with an integrablély-
connectiond : E — E®g, M is called anM-Higgs sheaf The corresponding homo-
morphism@ is Ox-linear and it is called aM-Higgs field(or just a Higgs field). A
system of M-Hodge sheaviesinM-Higgs sheafE, 8) with decompositiofe = B E!
suchtha® : E! — EI=*®@ M. ForM = Qy 5 we recover the usual notions of a Higgs
sheaf and a system of Hodge sheaves.

To be consistent with notation in the characteristic zesecéhe hypercohomology
groupsH'(E® A* M, 6) of the complex associated to dHiggs sheaf are denoted
by Hp, (X, E). The following lemma can be proven in the same way as [Sil,rham
2.5]:

LEmMMA 3.1. Let X be a smooth d-dimensional projective variety over an al
gebraically closed field k and letE,6) be an M-Higgs sheaf. Then we have
Xpol(X,E) = rkE - Xpol (X, O%). Moreover, if E is locally free then we have a per-
fect pairing _ _

Hbai (X, E) @ H3S (X, E*) = k

induced by Serre’s duality.

3.3 MODULES OVER LIE ALGEBROIDS AND COHIGGS SHEAVES

LetL be ands-Lie algebroid orX and letE be andx-module. Let us recall that a (left)
AL-module structure ok is the same as dirmodule structure, i.e., a homomorphism
0: L — &ndgE of sheaves ofs-Lie algebras oiX (in particular,[d is &x-linear)
satisfying Leibniz’s rule

O(x)(fe) = ax(f)e+ O(fx)(e)

for all local sectionsf € 0x, xe L andee E. One can also look dt-modulesE as
modulesE over the sheaf of’s-Lie algebrad. = Ox & L on X defined in Subsection
[2.2, which satisfy equalityfy)e = f(ye) for all local sectionsf € 0k, y € L' and
ecE.

Proof of the following easy lemma is left to the reader:

LEMMA 3.2. Let L be a smootls-Lie algebroid L and lef A* QL,dg)L) be the as-
sociated de Rham complex. Then we have an equivalence gbdatebetween the
category of L-modules and coherefi-modules with integrableg] -connection.

Let L be a coheren’x-module. Let us provide it with the triviad’s-Lie algebroid
structure, i.e., we take zero bracket and zero anchor mapidicase we say thétis
a trivial Lie algebroid For a trivial Lie algebroid the corresponding sheaf of sirng
differential operatorg\ is equal to the (commutative) symmetrix-algebraS°(L).
In this casean L-coHiggs sheais a (left)/A_.-module, coherent as arik-module. IfL
is smooth then giving ah-coHiggs sheaf is equivalent to giving &n-Higgs sheaf.
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If L is smooth therV (L) — X is a vector bundle and we can take its projective com-
pletionm:Y = P(L® 0x) — X. The divisor at infinityD =Y — V(L) is canoni-
cally isomorphic taP(L). OnY we have the tautological relatively ample line bundle
Op(Laoy)(1). If Ox(1) is anS-ample polarization oiX then for sufficiently largen

the line bundles = Op( s 6,)(1) @ TT'(Ox(n)) is alsoS-ample.

By definition anyL.-coHiggs sheaf gives rise to a coheréiy, \-module. The follow-

ing lemma describes image of the corresponding functor [@i#3, Lemma 6.8 and
Corollary 6.9]):

LEmMA 3.3. We have an equivalence of categories between L-coHiggysbead
coherent sheaves on Y, whose support does not intersect &erlthis equivalence
pure sheaves correspond to pure sheaves of the same dimemgiahe notions of
(semi)-stability are the same when considered with resjpeptlarizationstx (1) on
Xande onY.

This lemma suggests another construction of the moduli esps;,(X/S,P) =
ML (X/S,P) of Gieseker semistable-coHiggs sheaves (with fixed Hilbert poly-
nomial P) on X/S using construction of the moduli spab&(Y/S P) of Gieseker
semistable sheaves of pure dimensipa dim(X/S) onY/S (with Hilbert polyno-
mial P). Namely,M(Y/S,P) is constructed as a GIT quotieRt/G, whereR is some
parameter space ar@lis a reductive group acting dR ThenMBo,(X/S, P) can be
constructed as the quotieRt//G, whereR' is the G-invariant subscheme & corre-
sponding to subsheaves whose support does not int@&sect

3.4 MODULES ON VARIETIES OVER FIELDS

In this subsection we take &he spectrum of an algebraically closed fikldVe also
assume thaX is normal and projective with fixed polarizatiar (1).
We say that a sheaf with &t-connection(E, 0) is slope semistablé E is torsion free
as andx-module and if for any’x-submoduleéE’ C E such thatd(E’) C E' @4 M
we have

H(E") < p(E).
We say thatE, ) is slope stabldf we have stronger inequality(E") < p(E) for
every properdx-submoduleE’ C E preserved byl and such that r€’ < rkE. In
much the same way we can introduce notions of slope (setiljstfor M-Higgs
sheaves and systemsMfHodge sheaves. In each case to define (semi)stability we
use only subobjects in the corresponding category.

Let us fix a smoothtk-Lie algebroidL on X. We have a natural action &, on Q-
Higgs sheaves given by sendiftg, 6) to (E,t0) fort € G The following lemmais a
simple generalization of the well known fact in case of ustiggs bundles (see, e.g.,
[Si1, Lemma 4.1]) but we include proof for completeness. a$egertion in the positive
characteristic case is slightly different to that of [Silmhima 4.1]. The difference
comes from the fact that fde= IF, everyt € k* is a root of unity.

LEMMA 3.4. Arank r torsion freeQ, -Higgs sheafE, 0) is a fixed point of th& -
action if and only if it has a structure of system@f-Hodge sheaves.

DOCUMENTA MATHEMATICA 19 (2014) 509-540



SEMISTABLE MODULES OVER LIE . .. 519

Proof. Taking reflexivization we can assume tltais reflexive. By assumption for
everyt € G, there exists an isomorphism 6f-modulesf : E — E (depending o)
such thatf @ =t8f. On the subsat) whereE is locally free, the coefficients of the
characteristic polynomial of define sections ofx. SinceX is normal and projective
we havedx (U) = 0x(X) =k, so they are constant. Hence we can decompdseéo
eigensubsheavds = HE,, whereE, = ker(f —A)" for A € k* (eigenvalue 0 does
not occur ad is an isomorphism). Sindd —tA)'6 =t"8(f —A)", the Higgs fieldd
mapsE, to E;, . If we taket such that! # 1 for j =0, ..., r then for every eigenvalue
the elements ,tA,....t"A are pairwise distinct. So there exigtssuch thatioA is an
eigenvalue butio—1) is not an eigenvalue. Thef = @Dj,<j<iEix defines a system
of Q| -Hodge sheaves which is a direct summandmfo). So we can complete the
proof by induction on the rankof E. O

CoROLLARY 3.5. A system ofQ, -Hodge sheavesE,0) is slope (or Gieseker)
semistable if and only if it is slope (respectively, Giespgemistable as af, -Higgs
sheaf.

Proof. It is sufficient to prove that the maximal destabilizifdg-Higgs subsheaf of a
system ofQ _-Hodge sheavefE, 0) is a system of), -Hodge sheaves. This follows
from the above lemma and the fact that the maximal destaigl2, -Higgs subsheaf
is unique so it is preserved by the natutal-action. O

3.5 HITCHIN’S MORPHISM FOR MODULI SPACES OF L-COHIGGS SHEAVES

Let G be a quasi-cohereuts-module. Consider the functor which to &schemer
associates Hopy (G, O7). Itis representable by th@schemeV(G). In particular,
for m: T = V(G) — Swe get the tautological homomorphism

Ag € Homgwe) (TG, Oy(G)) = Homgg(G, .0y (G)) = HOMgg_a1g(S'G, S’G)

corresponding to the identity d&tG.
If Gis alocally free sheaf of finite rank th&hG) — Sis a vector bundle with sheaf
of sections isomorphic tG*.

The following lemma was explained to the author by C. Simpson

LEMMA 3.6. Let f: X — S be a flat projective morphism of noetherian schemes and
let G be a locally free sheaf on X. Then the funct§(¥l/S, G) which to an S-scheme
h: T — S associates X1 /T,Gr) is representable by an S-scheme.

Proof. Since certain twist of5* by a relatively very ample line bundle is relatively
globally generated, we can emb@&chs a subbundle into a direct suq of relatively
very ample line bundles. Then we can again embed the qudig@ into K, with

K> a direct sum of relatively very ample bundles. Then for &schemel we have
an exact sequence

0 H(X/S.G)(T) = H(X/SK1)(T) = H(X/S.Ka)(T).
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But we can assume that all the higher direct images«pfvanish and then by
the Grauert's theorertl®(X/S K1) is representable by the bundig f.K;) — S.
Similarly, ﬂO(X/S, Kj) is representable by the bundi§f.K;) — S. Therefore
HO(X/S G) is represented by the kernel of the map between bundlesisTaigector
subscheme o¥(f.K;) — S. O

We will also need the following well-known lemma:

LEMMA 3.7. Let f: X — S be a flat family of irreducible d-dimensional schemes
satisfying Serre’s conditio(S;). Let E be an S-flat coherewtx-module such that

E ®K(s) is pure of dimension d for every poin&sS. Then there exists a relatively big
open subset jU C X such that E* — j,(E|y) is an isomorphism.

Consider a flat projective morphisifn: X — S of noetherian schemes. Letbe a
smoothds-Lie algebroid onX and let us recall tha®, = L*. Consider the functor
which to anS-scheméh: T — Sassociates

PHOXr/T.SQLT).

i=1

By Lemma[3.b this functor is representable bySasschemeV' (X /Sr) — S.

Let us also assume th&t/Sis a family ofd-dimensional varieties satisfying Serre’s
condition(S,). If T is anS-scheme thedXy /T is also a flat family ofd-dimensional
varieties satisfying Serre’s conditi@¢fy).

Assume that is a trivial Os-Lie algebroid and consider a familf, 6 : E - E®
Q1) of L-coHiggs sheaves of pure dimensiba: dim(X/S) on the fibres oKy — T.
Then there exists an open subketC Xt such thatE is locally free onU and the
intersection o with any fiber ofXr — T has a complement of codimension at least
2. Let us considep\'Olu : A'(Elu) — A'(Elu ®¢, Qut|u). We have a well defined
surjection)\'(Elu ®4, Qu|u) = A'Elu ®4, SQLT|u, given by

(Ee1@A) A AEBRA) = (B1A ... AG)® (A1 A),
whereey, ..., € E andAy, ..., Aj € QL 7. So we get a morphism of sheaves

oy — (fnd(jx (/\IE)|U ®(7U SQL,T|U (_1)—ﬁ>®ldeL’T|U

The corresponding sectian (6|y) € H(U,SQ t|u) is just an evaluation of thie

th elementary symmetric polynomial dfjy. By Lemmal3.Y this section extends
uniquely to sectioroi(8) € HO(Xr /T,SQL 7). In this way we can define &-point
0(E,8) = (01(6),....Gr(8)) of V- (X/Sir).

Let P be a polynomial of degre= dim(X/S) corresponding to (some) rankorsion
free sheaves on the fibres ¥f— S. Consider the moduli spadd,,(X/S,P) of
Gieseker semistable-coHiggs sheaves with Hilbert polynomil Then the above
construction defines a morphism of functors inducing theesponding morphism
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of coarse moduli spacés, : M5, (X/S,P) — V-(X/Sr). This morphism is called
Hitchin’s morphism

There is also a stack theoretic version of Hitchin’s morphisThe moduli stack of
L-coHiggs sheaves is defined as a lax functor between 2-a#sdry

ME,(X/SP): (ScyS) —  (groupoid$
T — AM(T),

where.Z (T) is the category whose objects drdlat families of pured-dimensional
L-coHiggs sheaves with Hilbert polynomiBlon the fibres oiX;y — T, and whose
morphisms are isomorphisms of coherent sheaves. T#gp(X/S,P) is an alge-
braic stack for the fppf topology ofSclyS). As above we can construct Hitchin's
morphism.#,(X/S,P) — V-(X/Sr). By abuse of notation, we also denote this
morphism byH, .

As in the usual Higgs bundle and characteristic zero case,can construct the
total spectral schem&/“(X/Sr) c V(L) xsV-(X/Sr), which is finite and flat
overX xsV-(X/Sr). This subscheme has the property that for any farfiy9 :

E - E®Q_ 1) of L-coHiggs sheaves of pure dimensidron the fibres ofXy —
T, the corresponding coherent sheaf ®iLt) is set-theoretically supported on
WH(X/Sr) XyL(x/sr) T- This can be seen as follows. Lebe a geometric point of
at whichE is locally free. Ther8’L @ k(x) acts orV = E®K(x) via 8(x). Let us recall
that over an algebraically closed field any finitely dimensiovector space which is
irreducible with respect to a set of commuting linear magssdimension 1. Therefore
V has afiltration &=Vg C V1 C ... C V; =V with quotients\/i =V, /Vi_1 of dimension
1 overk(x) and such tha8(x) acts onV' as multiplication byA; € (L@ Kk(x))*. Itis
clear from our definition that € L @ k(x) acts orV via 8; := 6(x)" (1) in such a way
that in the characteristic polynomial

de(t I - 6‘[) :tr + O’l(er)tr71+ + Gr(er)

we haveg;(8;) = (1)’ Yi<ji<..<ji<rAjy---Aji- This and the Cayley—Hamilton the-
orem show that the coherent sheaf¥(Lt) corresponding tdE, 6) has a scheme-
theoretic support contained W-(X/Sr) XyLx/gry T and it coincides with it set-
theoretically.

Note that in the curve case there exists a different intésios of Higgs bundles
using cameral covers. Such an approach allows to deal witargereductive groups
(see [DG] for the characteristic zero case). In positiverati@ristic the analogous
construction requires some restrictions on the charatiedf the base field.

The following theorem can be proven in a similar way as thelcharacteristic zero
version [Si3, Theorem 6.11]. It also follows from Langtotype Theoreri 513.

THEOREM 3.8. Hitchin’s morphism H : M5, (X/S,P) — VL(X/Sr) is proper.
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3.6 DEFORMATION OF A LIE ALGEBROID OVER AN AFFINE LINE.

Let Rbe a commutative ring with unity. Ldt: X — Sbe a morphism oR-schemes.
Let AL = SpecR[t] and letp; : X xr A% — X be the projection onto the first factor.
Let us consider aWs-Lie algebroidL on X and the morphisnf x id : X xRA%Q —
SxrAg of Reschemes. We can define iy, _,1-Lie algebroidL® on X xg Ag by

takingLR := p;L with Lie bracket given by-, -], := pj[-,-] ®t and the anchor map
given byaR:= pia ot.

The universal enveloping algebra of differential opersidt := A r associated taR

can be constructed as a subsheapph,_ generated by sections of the form‘/\i,
whereA; are local sections ofi_;.

If R=kis a field ands € A*(k) — {0} then the restricted sheaf|x. (s is naturally
isomorphicto\,.. The sheaf\ﬂxX{o} is naturally isomorphic to the associated graded
sheaf of algebras @Y_. This gives a deformation @, to its associated graded sheaf
of algebras (or a quantization of the commutative algebuy Ggr

Let T be anS-scheme and let us fix € HO(T/R,07). Let E be a coherent, -
module and lejpx and pt be the projections oK xsT onto X andT, respectively.
Let (M,dy) be a coherenf’x-module with anZs-derivation.

Then we seM = p;M anddy = pydwm - p5A. A dyi-connection orE is called a
A-dwv-connection This generalizes the usual notion/ofconnection.

For the constant sectioh= 0 € H%(T /R, ¢r) an integrable\ -dy-connection is just
an M-Higgs field. Similarly, forA = 1 € H%(T /R ¢r) we recover the notion of a
dyi-connection.

Assume thal is a smoothos-Lie algebroid onX. Let us fix a morphism oRR-
scheme§ — SxrA% and letA € HO(T/R &) be the section corresponding to the
composition ofT — Sxr A% with the canonical projectio® xr Ak — AL, Since
T Xgpat X xr Ak = X7, an LR-module structure on a coheredif, -moduleE is

equivalent to giving an integrabke-dg, -connection.

4 LIE ALGEBROIDS IN POSITIVE CHARACTERISTIC

4.1 SHEAVES OF RESTRICTED LIE ALGEBRAS

Let R be a commutative ring (with unity) of characterispicand letL be a LieR-
algebra. We define the universal Lie polynomiglby the formula

1
Sj (X1, X2) = -3 Z adXg (1) adXg(p—1)(X2)
g

in which we sum overalb : {1,...,p— 1} — {1,2} taking j times value 1.

Let A be an associativR-algebra. Fox € A we define afk) : A— A by the formula
(ad(x))(y) = xy—yxfor y € A. Then we have the following well known Jacobson’s
formulas:

ad(xP) = ad(x)P
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(X+y)P=xP+yP+ 5 sj(xy).
0<J<p

Let X be a scheme over a sche®ef characteristigp > 0. A sheaf of restricted’s-
Lie algebras on Xs a sheaf of0s-Lie algebradL,[-,-]) on X equipped with go-th
power operatioh. — L, x — /P!, which satisfies the following conditions:

1. (fx)IP! = £Px[P! for all local sections € ¢sandx e L,
2. adxlPl) = (adx))P forxe L,
3. (x+y) P =xPlyPlp 5, psi(xy) forallxyeL.

A homomorphism of sheaves of restrictéd-Lie algebragp : L — L' on X is such a
homomorphism of sheaves 6&-Lie algebras oiX thatd (xP)) = ¢ (x)P! forall xe L.

Let &7 be a sheaf of associativgs-algebras orX. It has a natural structure of a
sheaf of restricteds-Lie algebras orX with bracket]x,y] = xy— yx and p-th power
operationxPl = xP for local sections,y € .«7.

Now let L be a sheaf of restricted’s-Lie algebras orX. For any homomorphism
¢ : L — o of sheaves of0's-Lie algebras onX we can defineyy : L — & by
Y(x) = (¢(x))P — ¢(xP) for x € L. The mapy measures how far ig from being a
homomorphism of sheaves of restrici€g-Lie algebras orX.

LEMMA 4.1. The mapy : L — & is additive and its image commutes with the image
of ¢. In particular, [¢(L), g(L)] = 0.

Proof. Let us take sectionsy € L(U) for some open subskt c X. From Jacobson’s
formulain.«/ we have

(Ox+Y)P=0()P+dW)°+ > si((x), ()

o<<p

On the other hand, from definition of a sheaf of restricteddlgebras we have

DY) = dP) +00P) + T (9. 0(¥)).

0<j<p

S0 subtracting these equalities we get additivityyof
Now we need to prove tha(x), ¢ (y)] = 0. But we have

[0, 0(y)] =add(x)?)(¢(y)) = (add (x))*(d(y))

and
[0 (<P, 0 ()] = ¢ (X y]) = d(adxP)(y)) = ¢ (adX)P(y)) = (add (X))P(9(¥)).
so subtracting yields the required equality. O
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Therestricted universal enveloping algebﬁﬁ[g](L) of a sheaf of restricted’s-Lie
algebrad. on X is the quotient of the universal enveloping algelara (L) by the
two-sided ideal generated by all elements of the faPm x[P! for local sectionx € L.
If S= X andL is locally free as a®x-module therL is contained in%f/[g] (L). More-
over, ifxy, ..., % are local generators afas angx-module therxill...xirr with0<ij<p
for all j, form a local basis o?/(ﬁ[fj(L) as andx-module. In particular?/éz](L) is lo-

cally free of rankp™ L. In this case for any shea# of associative algebras otand
any homomorphisnp : L — <7 of sheaves of Lie algebras of) the mapy : L — &7

is Fx-linear, i.e.,(fx) = fPy(x) for all f € &x andx € L (this follows from the
first condition in the definition of a sheaf of restricted Ligebras). So by adjunction
Y induces arvx-linear mapFgL — <7 that by abuse of notation is also denoted by

Y. Then the restricted universal enveloping aIge‘B’rﬂ(L) has the following uni-
versal property. For any sheaf of associativeﬁx-algeéras and any homomaorphism
¢ : L — o/ of sheaves obx-Lie algebras withp : L — < equal to zero, there exists a

unigue homomorphisr : %gg (L) — & of sheaves of associativé-algebras such
that¢ : L — 7 is the composition of the natural map— %ﬁ[z](L) with @.

4.2 RESTRICTED LIE ALGEBROIDS

Note that the relative tangent sheBf,;s has a natural structure of a sheaf of re-
stricted Os-Lie algebras orX in which the p-th power operation o@s-derivation
D: 0x — 0¥ is defined as the derivation acting on functions asttle power differ-
ential operatoDP. In fact, Ty /s with the usual Lie bracket and thisth power oper-
ation is a sheaf of restricteds-Lie subalgebras of the associative algefiral 5,0
taken with the natural structure of a sheaf of restricfgdlie algebras orX. This
motivates the following definition:

DEFINITION 4.2. A restricted0s-Lie algebroidon X is a quadrupléL, [-,-],- [P, a)
consisting of a sheaf of restrictefis-Lie algebras(L,[-,-],-IP)) on X and a homo-
morphism of sheaves of restrictéd-Lie algebrasx : L — Tx,s on X satisfying the
Leibniz rule and the following formula:

(Fx)[Pl = £PxPl 4 aP 2(f)x
forall f € &x andx € L.

As in the non-restricted case we can defirigvéal restricted Lie algebroidas a trivial
Lie algebroid with the zer@-th power operationTy ;s with the usual Lie bracket and
p-th power operation will be called tretandard restricted’s-Lie algebroid on X

The last condition in the definition requires certain coriipétly of the p-th power
operation ori with the anchor map anéx-module structure df. It can be explained
by the fact that, as expected, a restrictggdLie algebroid onX with the zero anchor
map is a sheaf of restrictedy-Lie algebras. In fact, the formula in the definition
comes from the following Hochschild’s identity:
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LEMMA 4.3. (seel[Hb, Lemma 1])et A be an associativiép-algebra and RC A a
commutative subalgebra. If for an elemerd A we havgadx)(R) C R then for any
element re R we have

(rx)P = rPxP 4 (ad(rx))P~1(r)x.

A similar formula can be found as [Ka1, Proposition 5.3]Haligh with a sign error
as pointed out by A. Ogus ih [Og]).

The following criterion allows us to check when a submodila cestricted Lie alge-
broid is a restricted Lie subalgebroid. It generalizes Wwethwn Ekedahl’s criterion
allowing to check when a submodule of the tangent bundle elefinl-foliation (see
[EK, Lemma 4.2]).

LEMMA 4.4. 1. Let L be an&x-submodule of as-Lie algebroid L on X. Then
the Lie bracket on L induces afix-linear map
NI

sending x\y to the class of,y]. If this map is the zero map thehik anJs-Lie
subalgebroid of L.

2. If L' is an Os-Lie subalgebroid of a restricteds-Lie algebroid L then the p-th
power map induces affx-linear morphism EL’ — L/L’. If this map is the
zero map then'lis a restrictedds-Lie subalgebroid of L.

Proof. Let us takef € Ox andx,y € L'. The first part follows from the equality
[, fy] = fx.y] + ax(f)y = f[xy] modL’.
To prove the second part note that

(X+y)[p] — X[p] +y[p] + Z Sj (va) = X[p] +y[p] mOdL,,
o<Jj<p

sinces;j(x,y) € L', as thes; are Lie polynomials. Therefofg;L’ — L/L’ is additive.
Hence to prove that it i®’x-linear it is sufficient to note that

(Fx)P = £PxPl 4 aP 2(f)x = £PxP modL'.

Let us consider the following commutative diagram

FX
YA =5 V(R o) 25 v

\l

in which L’ is the pull back ol via X’ — X.
The following lemma is an analogue 0f [BMR, Lemma 1.3.2]:

N\
<
—~
—
~

X——

<
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LEMMA 4.5. Let L be a restrictedVs-Lie algebroid on X. Then the map L — AL
sending » L to I(x) := xP — x[P) € A is F-linear and its image is contained in the
center ZA) of AL. In particular, if L smooth then 1 extends to &k -linear inclusion
S'L — Fy/s.Z(AL).

Proof. Lemma[4.8 proves that the-th power operation satisfies,;; = (ax)? and
(fx)[Pl — £Px[Pl = (fx)P — £PxPin AL for all f € Oy andx € L. Hencel is F;-linear.
Lemmd4.1L implies that its image is containedif\, ).

For anyf € Ox andx € L we havexfP — fPx = ay(fP) = 0in A_, asay is anOs
derivation. Therefor@y, C Fx/s.Z(/\L) which together with the first part proves the
required assertion. O

Note that the above lemma shows that cgntains a commutative subalgebra
S’(F;/SL’), so/\_ defines a quasi-coherent shéafon V(FL).

Let/\[Lp] be the quotient of\_ by the two-sided ideal generated ify) for x € L. We
call it therestricted universal enveloping algebra of differentiplkoators of L

LEMMA 4.6. Let L be smooth of rank m. Théy is a locally freedy)-module of
rank p".

Proof. The canonical embeddinig L — A_ induces an embedding L — AP Let
us take an open subdgtc X such that (U) is a freedx (U )-module with generators

X1,..,Xm. The kernel ofAL(U) — /\,[_p] (U) is generated by element&), ..., 1(Xm)
which are in the center o (U). Buti(x) = X’ modA_ p_1, so by the Poincare-

Birkhoff-Witt theoremA” has local generatofgx; )... j(xm) ™ for 0 < i < p. Hence
j(x1)'t...j(Xm)'™ for 0 <'i; < plocally generaté\_ as anS*(F{L)-module and\_ is
locally free of rankp™. O

Lemmé[4.5 shows that If is smooth theminduces ary -linear mapl’ — Fx /5. AL
and a homomorphism of sheaves/@f:-algebras

S(L) = Fyys(Z(AL)) C AL = FxysAL.

In particular, it makeg\| into a quasi-coherent sheaf 8f(L')-modules. This sheaf
defines orVV(L') a quasi-coherent sheaf 6f;/-algebras\| . Note that by construc-
tion
AL = Fx/s«\L = Fx/S*T&i\L = Tli'EX/S*i\L,
so we have
AL = Fx/saAd.
By an explicit computation as in Lemrha#t.6 one can prove theviting theorem:

THEOREM4.7. Assume that XS is smooth of relative dimension d and L is smooth
of rank m. Ther\|_is a locally freedy;/)-module of rank prd.
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By [BMRJNin the special case wheln= Ty s is the standard’s-Lie algebroid onX,

the sheaf\| is a sheaf of Azumay@&y -algebras. In this case we have a canonical

splitting L B
F;/S/\ll_ ~ fndgw AL.

* /
FX/SL )

4.3 RELATION WITH GROUPOID SCHEMES

This subsection contains a quick tour on relation betweeralgebroids and groupoid
schemes of height 1. This is analogous to the well-known relation between re-
stricted Lie algebras and group schemes of height

Let us recall that groupoidis a small category in which every morphism is an iso-
morphism. LetX andR be S.schemes. Ars-groupoid scheme @& a quintuple of
Smapss,t : R— X (“source and target objects,: R x(sy) R— R (“composition”),

e: X — R(“identity map”) and : R— R (“inverse map”) such that for evefscheme

T the quintuples(T), t(T), c(T), &(T) andi(T) defines in a functorial way a groupoid
with morphismsR(T) and objectsX(T).

For anS-groupoid schemé& we denote by # the kernel ofs,0r — 0x. We say
that G is infinitesimalif sis an affine homeomorphism ang’ is a nilpotent ideal.
An infinitesimal S-groupoid scheme is dieight< 1 if (s;t) : R— X xgX factors
through the first Frobenius neighbourhood of the diagongl, (hroughX x1/s) X).

An S-groupoid scheme is calldihite (flat) if sis finite (respectively, flat).

If X is smooth over a perfect fieldthen restricted-Lie subalgebrak of the standard
k-Lie algebroidTy  such thatTy /L is locally free are in bijection with finite flat
height 1 morphismX — Y (seel[Ek, Proposition 2.4]). Note that a sheaf of restricted
k-Lie subalgebras ofy  is automatically a restrictektLie subalgebroid offy . So
the following proposition generalizes the above fact (arabirects/[Ek, Proposition
2.3)):

PROPOSITION4.8. Let X/S be a smooth morphism. Assume that for every point
x € X the set ts~1(x)) is contained in an affine open subset of X. Then there exists
an equivalence of categories between the category of fiait&€fgroupoid schemes of
height< 1 with X/S as a scheme of objects and with locally free “conormal sheaf
#/ _#? and the category of smooth restrictei:-Lie algebroids on XS.

Proof. We sketch the proof leaving details to the reader.

If Gis afinite, flat, infinitesima®-groupoid scheme then we defibas the Lie algebra
of this groupoid, i.e., the dual of7 /_#2. It has a natural structure of a sheaf of
restricted?s-Lie algebras. Sinc& has height< 1, L is equipped with the anchor
map.

In the other direction, to a smooth restrict€ég-Lie algebroidL on X /Swe associate

/\,[_p} which comes with a canonical homomorphisrrﬁ&algebras(\,[_p] — A[Ti]/s' But

/\[Trj/S is ands-subalgebra of the sheaf of rings of “true” differential ogers and the
“morphisms”R of the groupoid scheme can be defined as the spectrum of thefdua

AP O
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4.4 MODULES OVER RESTRICTED LIE ALGEBROIDS

If E is a module over a restrictefs-Lie algebroidlL then: L — &£nd 4 E leads to a
morphism
g:L—&ndgE
defined by sendingto (0(x))P — O(x[P) for x € L.
Let us se?(f) = f and(0(x))°(e) = e. Using Leibniz’ rule one can easily see that

@t = 5 (7)ak oo e

for any sectiond € 0x(U), xe L(U) ande € E(U) and any open subsetC X. In
particular, we have

(O(x))P(fe) = al(f)e+ f(O(x))P(e).
Since
O(P)(fe) = e (F)e+ FOXP)(e)

anda,;; = af we see that for any € L the image(x) is Ox-linear. So we can
consideny as the mapping : L — &nd g, E. This mapping is called thp-curvature
morphismof the L-moduleE. The following lemma generalizels [Kal, Proposition
5.2]:

LEMMA 4.9. The p-curvature morphismy : L — &nd 4, E is K-linear and its image
commutes with the image @fin £nd-E.
Proof. By Lemma4.1 we know thap is additive and its image commutes with the
image of(d. So it is sufficient to check that
w(tx) = fPy(x)

for all local sectiond € &k andx € L. Applying Hochschild’s identity to elementfs
and(x) in &nd.E we obtain

(O(fx)P = fPOXP+ (ad FO(x))P~(H)O(X) = FPOX)P + afy (F)O(X).

From the definition of a restricted’s-Lie algebroid and&x-linearity of 0 : L —
&nd g ,E we have

O((fx)P) = FPOKP) + af(F)D(x).
Subtracting these equalities we get the required identity. O

By the above lemma@ defines andx-linear mapL — Fx .&ndg E and hence the
adjoint Ox-linear map

Y KL — &ndg E,
which will also be called the-curvature morphism. Note thgt makesE into an
FxL-coHiggs sheaf (integrability of thiegL-coHiggs field follows from the lemma).
Another way of seeing it is that iE is a A_.-module then by Lemm@a4.5 it has a
structure ofS*(K;L)-module given by theg-curvaturey_.
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Example4.10 Let L be a smooth trivial restricted’s-Lie algebroid onX. Then
giving anL-module is equivalent to giving*L-module structure oE. In this case the
p-curvature morphisng : F{L — &nd 4, E is obtained by composing the canonical
inclusionFgL — SPL with the action mafsPL — &'nd s, E.

Example4.11 Let X be a smooti$-scheme and let us fix € H(0s). Let us denote

by T)g\ /s the restricteds-Lie algebroid structure offiy /s with Lie bracket[-, ']TQ/S =

Al .]TX/S’
given by

anchor mam given by multiplication byA and thep-th power operation

Pl _ 5p-1_ P
X5 =A XTy s

forx € Tx,s. The apparently strange formula for theh power operation comes from

the requirement

a(x[ij )= A -x[ij — (@(x)P = AP.XP,
X/S X/S

Giving aT){‘/S-moduIe is equivalent to giving a coherefiz-moduleE with an inte-
grableA-connectiori] : E — E ®g, Qx/s. In this case the above definpeturvature

of the T){‘/S-module gives a more conceptual approach togheirvature of anvx-
module withA -connectionE, ) defined in[[LP, Definition 3.1].

Remarkd.12 If ; and[, are twoL-module structures o then¢g = 0; — Oy : L —
&nd g E is Ox-linear and its image lies i'nd 5, E. In particular, if thep-curvatures

Y (O1) andyy (Oz) are equal thew is zero on the kernel ok — /\[Lp] and hence it
induces the homomorphisﬁ{p] — &nd g E of Ox-algebras.

DEFINITION 4.13 We say that the@-curvature of E, O) is nilpotent of level less than
| if (E,D) satisfies one of the following equivalent conditions:

1. There exists a filtratioM™ =0c M™ 1 c ... ¢ M® = (E, ) of lengthm < |
such that the associated gradethodule hag-curvature 0.

2. For any open subskt C X and any collectiof{ Xy, ..., X } of sections ofL(U)
we havey (xq)...¢n(x) =0.

We say that h@-curvature of(E, 0) is nilpotent of level lif it is nilpotent of level less
than(l + 1) but not nilpotent of level less thdn(for | = 0 we require simply that the
p-curvature is nilpotent of level less than 1).

4.5 DEFORMATION OF HITCHIN’S MORPHISM FOR RESTRICTED LIE ALGE-
BROIDS

This subsection contains a partial generalization of tisellte of Laszlo and Pauly
[LP] to higher dimensions. Note that in general, the direwlague of their[[LP,
Proposition 3.2] is not expected to be true.
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Let Sbe a noetherian scheme of characterigtiend letX — S be a flat, projective
family of d-dimensional varieties satisfying Serre’s condit{&). LetL be a smooth
restrictedds-Lie algebroid orX. Let us fix a polynomialP and a relatively ample line
bundle onX/S. We define the moduli stack as a lax functor between 2-categby

ME(X/SP): (SchS) — (groupoid$
T — AM(T),

where.# (T) is the category whose objects ardlat families of pured-dimensional
L-modules with Hilbert polynomidP on the fibres oKt — T, and whose morphisms
are isomorphisms of coherent sheaves. One can provethéx /S P) is an algebraic
stack for the fppf topology ofSchlyS). If M is a coherentx-module considered as
an Os-Lie algebroid onX with the trivial structure, then the corresponding moduli
stack is denoted byzM, (X /S,P).

The p-curvature defines a morphism of stacks

Wi AN XISP) - (XIS P)
ED) -  (EwD)

Let us consider the deformatitff of L over an affine line\! overF, (see Subsection
[3.8). For simplicity of notation, in the following we skip iting Fp,. LR has a natural
structure of a smooth restricteg, ,:-Lie algebroid orX x A with the p-th power

operation given byl[_Fl = pl( p ]) ®tP~L. We can treat.R as a family of restricted
Os-Lie algebroids orX parameterized byi’. For example, itX /Sis smooth and we
fix A € HO(0s) = Hom(S A') then forL = Tx/s with the standard restricteﬁ’s—Lie

algebroid structure, the pull-back bR along(ids,A) : S— Sx A! givesT. X/S from

Exampld4.11.
We have a commutative diagram

H
XXAI

M (X x AL/Sx ALP )H///XXAl (XXAl/SXAl )HVM“L (X x Al/Sx AL r)

| |

Mo (X/S,P) > VE(X/ST) S VRL(X/Sr),

where the vertical arrows are induced by the base changbe/zero section 0S —
Sx A and VL(X/Sr) — VR (X/Sr) is the canonical morphism induced by the
absolute Frobenius oK. Roughly speaking, this diagram says that fheurvature
morphismW, deforms to thep-th power of the Hitchin morphism.

Let .#ilp"(X/S,P) be the substack Q%L(X/S, P) of L-modules with nilpotenp-
curvature. By definition? maps.#ilp“(X/S,P) into {0} x A' = A’ and the corre-
sponding map will be still denoted Bl. The stacks#“(X/S,P) and.#ilp-(X/S,P)
contain open substacks?“S(X /S P) and .#ilp-S%(X /S P) parametrizing slope
semi-stable objects (openness of semistability is a stdr@ercise left to the reader).
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By boundedness theorem (see [Lal]) these substacks areitef tijipe. Theo-
rem[5.1 implies that the morphisri&ss: .#7L"sS(X /S, P) — VL (X/Sr) x Al and
Nilp-S%(X /S P) — Al are universally closed.

Let.#ilp|°%(X /S, P) be the substack oft'il p~5(X /S, P) parametrizing objects with
nilpotentp-curvature of levek |. Note that it is a closed substack, since nilpotence
of level < | is a closed condition. Thereforeilp"°(X/S,P) — Al is universally
closed (see [LP, Proposition 5.1] for a special case of tgewion).

Let us note that the fiber of#’ilp-*%(X/S,P) — Al over 0 is equal to the moduli
stack of semistable-coHiggs sheavelE, 8) with vanishingp-curvature (see Exam-
ple[4.10). In particular[[LP, Remark 5.1] is false.

On smooth projective curves of genys 2 the proof of [LP, Lemma 5.1] shows that
a vector bundle with & -connection of level less thdncan be extended to a Higgs
bundle with the Higgs fiel® satisfyingd' = 0. In particular, fol = 1 we get the zero
Higgs field.

—~—L,ss
So one could hope that in this case, e.g.4fflp; (X/S P) — Al is the open sub-

stack of #ilps5(X /S P) — AL, which over 0 is the moduli substack of semistable
—~—1L,ss
sheaves thenvilp; (X/S,P) — Al is also universally closed as suggestedby [LP,

Remark 5.1]. However, this expectation is false. In casesshaoth projective curve
X of genusg > 2 there exists a semistable bun@evhose Frobenius pull badk; E

is not semistable. BUESE carries a canonical connectidftan and (F{E, Ocan) is
semistable. After pulling back vixk — X, whereK = k((t)), and twisting byt,
this provides a semistable vector bundle with@nnection orXk which cannot be
extended to a semistable family of;; so that the Higgs field at the special fibre
vanishes. Otherwise, we would get a contradiction with ogss of the usual semista-
bility of vector bundles.

5 DEFORMATIONS OF SEMISTABLE SHEAVES AND THE LAN-SHENG-ZUO
CONJECTURE

5.1 LANGTON’S THEOREMS

Let Rbe a discrete valuation ring with maximal idealyenerated byr€ R. LetK be
the quotient field oR and let us assume that the residue fleld R/mis algebraically
closed.

Let X — S= SpedR be a smooth projective morphism andlebe a smoottUs-Lie
algebroid onX. Let us fix a collectioDyg, D1, ...,Dn-1) of nrelatively nef divisors
onX/Ssuch thaDy = D1. In the following stability of sheaves on the fiber6f> S
is considered with respect to this fixed collection.

The following theorem generalizes well known Langton’sateen [Li, Theorem 2)].
We recall the proof as it is not available in the generaligttive need. The notation
introduced in this proof will be also used in proof of Theol&d.

THEOREMS.1. Let F be an R-flat’x-coherent L-module of relative pure dimension
n such that the k-module k = F ®rK is slope semistable. Then there exists an
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L-submodule E- F such that k = Fx and E is a slope semistableg:tmodule on X

Proof. First let us note that we can assume thats torsion free as a#x -module
(this follows, e.g., from[[HL, Proposition 4.4.2] or can beopen using a similar
method as below). We use without warning the fact that foRdlat F the degrees of

F« andF with respect taDy,...,Dn_1) coincide. This follows from the fact th&t

has a finite locally free resolution ofiand intersection products are compatible with
specialization (seé [SGA6, Expose X, Appendice]).

Let us setF® := F. If FQ is not slope semistable then we take the maximal desta-
bilizing L-submoduleB® in F2 and denote by! the kernel of the composition
FO— F2 — G :=R2/BY% If R} is semistable then we get the required submodule
of F. Otherwise, we repeat the same procedurerfbr In this way we construct a
sequence of-modulesk = F® 5 F1 5 F2 5 ... and the main point of the proof is to
show that this process cannot continue indefinitely.

Let us assume otherwise. First, let us note that we have skact sequences

0-G"—-F"—B"->0,

whereG" = F'/B". LetC" be the kernel of the compositi@+! — F* — BM.
If C, = 0 thenBy, 1 C By and henceu(B™1) < pu(B"). If C" # 0 then

H(C") < HUmax(G") < p(B"),

where the first inequality comes from the fact tBat_ G" and the second one follows
from the fact thaB" C F is the maximal destabilizing subsheaf &&ti= F'/B".

We claim thaty(B™1) < u(B"). If u(C") > p(B™?) then this inequality follows
from the above inequality. If1(C") < p(B™1) thenu(B™1) < u(B"1/C"). But
B"*1/C" is isomorphic to a subsheaf 8 andB" is semistable, so in this case we
also haveu(B™?) < pu(B").

Therefore the sequendg (B")} is non-increasing. Byt (B™1) < u(B") is possible
for only finitely manyn sincer! u(B") € Z are bounded below by u(F). Therefore
for all largen we haveC" = 0, i.e., we have inclusionB" > B™1 5 ... andG"
G"t1 ¢ .... For sufficiently largen these sequences consist of torsion free sheaves
with the same slope, so they must stabiliz8@ndG, respectively. TheR =B&G
forn>> 0. SetR:= Ii{r_n R/m"R and letK be the quotient field oR. Note thatF /F"

is R/ n"-flat and asfx -module has a filtration with quotients isomorphicGo Then

Q:=limF /F"is a destabilizing quotient ¢i; . But the Harder—Narasimhan filtration
—

is stable under base field extension and therdfgrie also unstable, contradicting our
assumption. O

Our exposition of proof of Langton’s theorem is based lon|[kiif{h some small
changes (one of the inequalities in proof bf [HL, Theorem.2]Bs false and we
need to give a slightly different argument).

Note that in the above theorem we allow the case wheb;alare zero. In this case
we claim that there exists dasubmodulee C F such thaEx = Fx andEy is torsion
free as0x, -module (by definition slope semistable sheaves are tofsiet).
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Let us recall that every slope semistablenoduleE has a Jordan—Haolder filtration
Eo=0CE; C ... C Enhy= E by L-submodules such that the associated graded sheaf
Gr(E) = ®E;/E;_1 is slope polystabld.e., a direct sum of slope stable (torsion free)
L-modules of the same slope.

The following theorem is motivated by theory of moduli spgeed it generalizes [Lt,
Theorem 1)].

THEOREM 5.2. Assume that the collectiofDo,D1,...,Dn-1) consists of relatively
ample divisors. Let F be an R-flatx-coherent L-module of relative pure dimension
n such that the k-module k = F ®rK is slope semistable. LetjEand B be L-
submodules of F such thé; )k = (E2)k = Fx, (E1)k and(Ez)k are slope semistable.
Then the reflexivizations of the associated graded slopestadile sheaveSr((Ep)k)
and Gr((Ez)k) are isomorphic. Moreover, if at least one @; )k and (Ez) is slope
stable then there exists an integer n such thatE1"E,.

Proof. We prove only the second part, leaving proof of the first onéhtoreader.
Assume thatE; ) is slope stable. Consider the discrete valuation dig,, wheren

is the generic point oK. Multiplying E; by some power oft, we can assume that
E1®ey Ox.n C E2®6, Ox n and the induced malp; @ k(n) — Ex@k(n) is non-zero.

But E; andE; are torsion free s&; C E,. Since(E;)k is slope stable the non-zero
map (E1)x — (E2)k between slope semistable sheaves of the same slope must be an
inclusion. Since the Hilbert polynomials (; )x and(Ey)k coincide (from flatness of

E; andEy), it must be an isomorphism. O

Let Y be a projective scheme over a fidkdand letLy be ak-Lie algebroid onY.

Let us fix an ample line bundi&y (1) onY. Let Colj(Y) be the full subcategory
of the category ot.-modules which are coherent & -modules and whose objects
are sheaves supported in dimensjod. Then we can consider the quotient category
Cohf; 4 (Y) := Colfj(Y)/Coty_4(Y). For any object of Cdf,(Y) one can define
its Hilbert polynomial which can be used to define notion @nf§stability in this
category.

We can generalize Langton’s theorem to singular schemée atast of dealing with
only one ample polarization. In this case compatibility mtersection product with
specialization follows from computation of the Hilbert ppbmial. One can also gen-
eralize Theorem 511 so that it works for other kinds of sthbils defined above.

Let X — SpecR be a projective morphism with relatively ample line bundig(1)
and letL be a smootlUs-Lie algebroid onX. The following Langton’s type theorem
generalizes [Si4, Theorem 10.1] and [HL, Theorem 2.B.1]:

THEOREM 5.3. Let F be an R-flatVx-coherent L-module of relative dimension d.
Assume that thed-module k = F ®rK is pure of dimension d and semistable in
Coitd,(XK) for some d < d. Then there exists an L-submodulecH- such that

Ex = Fx and E is semistable itCoh} 4 (X).

Proof. The proof is almost the same as the proof of [HL, Theorem 2.Bibwever,
there are a few small problems that we meet in the proof. Tkedine is that we
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need to define reflexive hulls of sheaves on the special Kpefhis can be done by
embedding into a fixed smootiR-scheme (e.g., use some multiple of the polarization
0Ox (1) to embedd into some projective space ovey.

The second problem is the same as before: one of the indgsatitproof of [HL,
Theorem 2.B.1] is false and we need to use a slightly diffemegument similar to the
one used in proof of Theordmb.1. We sketch the necessargebasing the notation
of proof of [HL], Theorem 2.B.1]. IC" # 0 then we only have

P(C") < pmax(G") < p(B")modQ[T]5_1.

Hence if py5(C") > pgs(B™!) then pys(B™?!) < pys(B"). If pas(C") <
Pa.5(B"1) then we haveyy 5(B™1) < pg s(B"/C") < pg 5(B"). This proves that if
C" # 0 then we always havey 5(B"™) < pgs(B") as needed in the argument.
The last problem is the use of Quot-scheme5 inl[HL], which dioexist as projective
schemes in our situation. This can be solved as in proof obiierd5.1. O

THEOREMS5.4. Let F be an R-flat’x-coherent L-module of relative pure dimension
d such that the k-module k = F ®grK is semistable it€olf; 4 (X« ) for some d< d.

Let E; and B be L-submodules of F such thd; )k = (Ez);{ = F, (E1)k and (E2)k

are semistable irﬁ:olﬁtyd,(xk) and at least one of them is stable. Then there exists an

integer n such that E= n"E; in Cotfj 4 (X« ).

5.2  SEMISTABLE FILTRATIONS ON SHEAVES WITH CONNECTION

Let L be a smooth Lie algebroid on a normal projective vardétgefined over an
algebraically closed field. Let us consider a torsion free coherért-moduleE with

an integrablelg, -connectiort] (i.e., anL-module whose underlying sheaf is coherent
and torsion free as afix-module). We say that a filtratidB=N° >N > ... D N" =

0 satisfiesGriffiths transversalityf O(N') € N1 @, Q| and the quotientsl' /N1

are torsion free. For every such filtration the associatediep object Gy(E) :=

@; N'/NI*1 carries a canonic#?, -Higgs field8 defined byl. Note that(Gry(E), 8)

is a system of.-Hodge sheaves. A convenient way of looking at this is by mean
of the Rees construction. More preciselyN?t is a Griffiths transverse filtration on
(E,O) then we can consider the subsheaf

E(E,N*) =S tIN'®@ Oy, u C PXE

on X x Al. By Griffiths transversality of the filtratiotN® the connectiortd] on
&(E,N*)|xxg,, €xtends to &-dg, -connection orX x Al(i.e., we getam.R-module on
X x A1). In the limit ast — 0 we get exactly the above described systerh-bfodge
sheavesGry(E), 0).

In the remainder of this section to define semistability we asfixed collection
(Do, D1,...,Dn-1) of nef divisors such thddy = D;.

After Simpson|[Si4] we say that a Griffiths transverse filomtN® on (E, D) is slope
gr-semistablef the associated?, -Higgs sheaf(Gry(E), 6) is slope semistable. A
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partial L-operis a triple (E,O,N*) consisting of a torsion free coherefix-module
E with an integrablelg, -connectior] and a Griffiths transverse filtratidd® which
is slope gr-semistable.

THEOREM5.5. If (E,0) is slope semistable then there exists a canonically defined
slope gr-semistable Griffiths transverse filtratiort Hn (E,0) providing it with a
partial L-oper structure. This filtration is preserved byetautomorphisms dE, 0).

Proof. Let R be a localization ofA! at 0 and let. be the smooth Lie algebroid on
Xr = X x| SpecR obtained by restricting ofR from X x, Al. Consider the trivial
filtration E = N° > N1 = 0. It satisfies Griffiths tranversality so we can associate to
it via the Rees construction and restrictingXg, an R-flat &,-coherent_-module
FO=F (in factF = (pE, n0)).

Now suppose that we have defined laisubmoduleE™ ¢ F coming by restriction
from the Rees construction associated to a Griffiths transevidtrationN of E. If the
associate®, -Higgs sheaF' = (G, (E), 6,) is semistable then we get the required
filtration. Otherwise, we consider its maximal destahiligl), -Higgs subsheaB".
But (G, (E), Bn) is a system of), -Hodge sheaves, so by Corolldry]®3 is also

a system ofQ_-Hodge sheaves. Let us wri® = @B, whereBp, C Grfj (E) =
N'/NTL. Then we can define a new Griffiths transverse filtrafiifa, on E by

setting
m

E/N
N,?lpker(E% {] ”).
Bmfl

Let F™1 denote the restriction t¥r of the LR-module associated by the Rees con-
struction toN;, ;. We need to prove that this procedure cannot continue iritgfin
To show it, it is sufficient to check that we follow the same gedure as the one
described in the proof of Theordmb.3.

By constructionniF" ¢ F™  F" and in particular{ ™ = F. On the other hand,

on the special fiber kg — SpecR we have a short exact sequence

0— FY/B"— FM! = (Gry,.,(E),6hi1) - B"—0
coming from the definition of the filtratioNy, ;. This shows thattF" is the kernel of
the compositiofF™* — FM* — B". But thenF"*1 is the kernel of the composition
F" — R — F/B". Now the proof of Theorerm 5.3 shows that this procedure must
finish.
Since the Harder—Narasimhan filtration is canonically aefjrthe above described
procedure is also canonical and the obtained filtration ésgnved by the automor-
phisms of(E, O). O

In the following the canonical filtratioN® from Theoreni 515 will be calle8impson’s
filtration of (E,J) and denoted bi{2. The reason is that apart from many spectacular
results due to Simpson in non-abelian Hodge theory, theteari®n of the filtration
described in the proof of the above theorem was done by Simipg&i4, Section 3]

for the usual Higgs bundles on complex projective curvesvéi@r, our proof of the
fact that the procedure stops is different.

DOCUMENTA MATHEMATICA 19 (2014) 509-540



536 ADRIAN LANGER

Theoren{5.b generalizes [$i4, Theorem 2.5] to higher diimessas asked for at
the end of([Si4, Section 3]. Indeed, in the characteristio zase every vector bundle
with an integrable connection has vanishing Chern clagsgmrticular, any saturated
subsheaf of such a vector bundle which is preserved by theeation (is locally free
and) has vanishing Chern classes. So any vector bundle witiiegrable connection
is slope semistable (with respect to an arbitrary polaonat This argument fails in
the logarithmic case which shows that the above theoremasraat analogue in this
case.

Note that there can be many slope gr-semistable filtratioagiging (E, ) with a
partialL-oper structure. This depends on the choice of the Griffiirsstverse filtration
at the beginning of our procedure (in the proof of Theoferhe5ised the canonical
choice). In general, all the obtained filtrations are rel@s described by the following
corollary which follows from Theorem3.2:

COROLLARY 5.6. If N* and M* are two slope gr-semistable Griffiths transverse filtra-
tions on(E, O) then the reflexivizations of the associated-graded slopestableQ, -
Higgs sheaves obtained from their Jordaréiéter filtrations are isomorphic. In par-
ticular, if the associate®, -Higgs sheaf is slope stable thél, ) carries a unique
gr-semistable Griffiths transverse filtration.

The above corollary generalizés [Si4, Corollary 4.2]. Nib@ Simpson'’s proof does
not work so easily in our situation as in higher dimensionslov@ot have appropriate
moduli spaces at our disposal.

Let us also note that any slope gr-semistable filtration @arefined so that the asso-
ciated graded, -Higgs sheaf is slope polystable (in which case its refleaiion is
uniquely determined byE, [0) up to an isomorphism).

As an immediate application of Theorém]5.5 we also get thieviahg interesting
corollary:

COROLLARY 5.7. Let L be a smooth trivial Lie algebroid. LéE, 6) be a torsion free,
slope semistabl@ -Higgs sheaf on X. Then we can deform it to a slope semistable
system of), -Hodge sheaves.

5.3 Hiccs-DE RHAM SEQUENCES

Let k be an algebraically closed field of characterigiic- 0. Let X be a smooth
projectivek-variety of dimensiom that can be lifted to a smooth schenié over
Wa(K).

Let MIC,_1(X/k) be the category o¥x-modules with an integrable connection
whose p-curvature is nilpotent of level less or equal o— 1. Similarly, let
HIG,_1(X/k) denote the category of Higgs,,-modules with a nilpotent Higgs sheaf
of level less or equal tp — 1. In this case one of the main results of Ogus and Volo-
godsky (se€ OV, Theorem 2.8]) says that:

THEOREM5.8. The Cartier operator

Cy/y . N”Cp_l(X/k) — H|Gp_l(X//k)
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defines an equivalence of categories with quasi-inverse
C,Y . tHIGp-1(X/K) = MIC 51 (X' /).
A small variant of the following lemma can be found in proof©¥| Theorem 4.17]:

LEMMA 5.9. Let(E,0) € HIGp_1(X'/S). Then

C, (E)] = Fi El.

where [-] denotes the class of a coherefikx-module in Grothendieck's K-group
Ko(X).

As a corollary to Theorein 5.8 and Lemmal5.9 we get the follgwin

CoOROLLARY 5.10. Let (E, 8) be a torsion free Higgs sheaf with nilpotent Higgs field
of level less than p. Then it is slope semistable if and onheifcorresponding sheaf
with integrable connectiofV,0) : C}/y,(E, 0) is slope semistable.

Now let (E, ) be a rank torsion free Higgs sheaf with nilpotent Higgs field. Let us
assume that < p so that level of nilpotence dE, 0) is less tharp. Let us recall the
following definition taken from([LSZ].

DeriNITION 5.11 A Higgs—de Rham sequenecg(E, 0) is an infinite sequence

(Vo, Oo) (Vi,01)

N

(Eo, 60) = (E1,61)

in whichC™1=C, 1/ is the inverse Cartier transform\® is a Griffiths transverse
filtration of (Vi, ;) and(Ei11 := Grn (M), 6i41) is the associated Higgs sheaf.

The following theorem proves the conjecture of Lan-Sheng-LSZ, Conjecture
2.8]:

THEOREM5.12. If (E, 0) is slope semistable then there exists a canonically defined
Higgs—de Rham sequence

(Vo, Oo) (Vi,01)

N

(Eo, 60) = (E1,61)

in which each(V;, ;) is slope semistable an(E;,1,6.1) is the slope semistable
Higgs sheaf associated {®;, ;) via Simpson’s filtration.
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Proof. The proofis by induction on inddx Once we defined slope semistatig 6),

we can construdV;, 0 ), which is slope semistable by Corollary5.10. So by Theorem
there exists Simpson’s filtration dki, ;) and hence we can construct a slope
semistable Higgs shedE; 1,61). Since(Ei11,6.1) is a system of Hodge sheaves
andr < p, it satisfies the nilpotence condition required to de@né. O

In the above theorem slope semistability is defined witheesto an arbitrary fixed
collection(Dy,...,Dn-1) of nef divisors onX.
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