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Abstract. We study the 0-th local cohomology module H0
m(R(f))

of the jacobian ring R(f) of a singular reduced complex projective
hypersurface X , by relating it to the sheaf of logarithmic vector fields
alongX . We investigate the analogies betweenH0

m
(R(f)) and the well

known properties of the jacobian ring of a nonsingular hypersurface.
In particular we study self-duality, Hodge theoretic and Torelli type
questions for H0

m
(R(f)).
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1. Introduction

In this paper we focus on the relation existing between a (singular) projective
hypersurface and the 0-th local cohomology of its jacobian ring. Most of the
results we will present are well known to the experts, and perhaps the only
novelty here is a unifying approach obtained by relating the local cohomology
to the sheaf of logarithmic vector fields along X . We will take the opportunity
to introduce what seem to us some interesting open problems on this subject.
Consider the polynomial ring P = C[X0, . . . , Xr] in r+1 variables, r ≥ 2, with
coefficients in C. Given a reduced polynomial f ∈ P homogeneous of degree d
let X := V (f) ⊂ Pr be the hypersurface defined by f . The jacobian ring of f
is defined as

R = R(f) := P/J(f)

where

J(f) :=

(
∂f

∂X0
, . . . ,

∂f

∂Xr

)

is the gradient ideal of f .
If X is nonsingular then J(f) is generated by a regular sequence, and R(f) is
a Gorenstein artinian ring with socle in degree σ := (r + 1)(d − 2). It carries
information on the geometry ofX and on its period map. This classical case has
been studied by Griffiths and his school. In [25] Griffiths has shown the relation
existing between the jacobian ring of a nonsingular projective hypersurface and
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the Hodge decomposition of its primitive cohomology in middle dimension, and
studied the relation of R(f) with the period map (see also [44] for details and
[7] for a survey).
Assume now that X ⊂ Pr is singular, but reduced. In this case the jacobian
ring is not of finite length, in particular it is not artinian Gorenstein any more.
It contains information on the structure of the singularities and on the global
geometry of X . This situation has been studied extensively, both from the
point of view of singularity theory (see e.g. [24, 35, 40, 45, 46]) and in relation
with the (mixed) Hodge theory of U := Pr \X (see [8, 6, 9, 10, 15]). Our main
purpose is to indicate a method to distinguish the global information contained
in R(f) from the local one coming from the nature of the singularities.
Our starting point is the observation that, if X is nonsingular, we have a
canonical identification of P -modules

R(f) =
⊕

j∈Z

H1(T 〈X〉(j − d))

where T 〈X〉 is the subsheaf of TPr of logarithmic vector fields along X . If X is
singular this identification does not hold, but the P -module on the right hand
side is the 0-th local cohomology of R(f). We will see that this object contains
relevant global informations about X .
To any finite type graded P -module one can associate a coherent sheaf M∼ on
Pr and there is a well-known exact sequence involving the local cohomology
graded modules (see [26], Prop. 2.1.5):

(1) 0 // H0
m(M) // M // H0

∗ (M
∼) // H1

m(M) // 0

where we used the notation Hi
∗(F) =

⊕
ν∈Z

Hi(F(ν)) for a coherent sheaf F .

In case M = R(f) with X singular both Hi
m
(R(f)) are finite length modules

that carry interesting information about the hypersurface X . In particular,
H0

m
(R(f)) contains global information about X , while H1

m
(R(f)) is related

with the singularities of X . We want to collect evidence supporting the follow-
ing principle:

Most properties of the jacobian ring R(f) in the nonsingular case are transferred
to the local cohomology module H0

m(R(f)) if X is a singular hypersurface.

In particular one expects the following in some generality:

(a) Self-duality, extending the analogous property of Artinian Gorenstein
algebras.

(b) Existence of a connection with moduli of X, in particular with first
order locally trivial deformations of X .

(c) Existence of a relation with the Hodge decomposition of the middle
dimension primitive cohomology a nonsingular model of X .

(d) Torelli type results, stating the possibility of reconstructing X from
H0

m
(R(f)), under some hypothesis.

Question (a) has already attracted the attention of several authors and some
results are known. One is led naturally to consider more generally the 0-th
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local cohomology of algebras of the form P/I where I = (f0, . . . , fr) is an
ideal generated by r + 1 homogeneous polynomials, of degrees d0, . . . , dr. The
following result is a special case of [38], Theorem 4.7:

Theorem 3.2. Assume that dim[Proj(P/I)] = 0. Then there is a natural
isomorphism:

H0
m(P/I) ∼= [H0

m(P/I)(σ)]∨

where σ =
∑r

i=0 di − r − 1. In particular we have natural isomorphisms

H0
m
(P/I)k ∼= H0

m
(P/I)∨σ−k, 0 ≤ k ≤ σ

We include an independent proof of Theorem 3.2, more related with our point
of view, which uses a spectral sequence argument and is an adaptation of the
standard proof of Macaulay’s Theorem (see e.g. [44]). I am also aware of work
in progress of H. Hassanzadeh and A. Simis about extensions of Theorem 3.2
to a local algebra situation. Taking I = J(f), as a special case we obtain:

Theorem 3.4. Assume that the hypersurface X has only isolated singularities.
Then:

H0
m
(R(f))k ∼= H0

m
(R(f))∨σ−k, 0 ≤ k ≤ σ

where σ = (r + 1)(d− 2).

This is a generalization of Macaulay’s Theorem, that states the self-duality of
R(f) in the case X nonsingular. The theorem, in an equivalent form, appeared
already in [12], Theorem 1. A similar result for hypersurfaces with isolated
quasi-homogeneous singularities is proved in [20]. We also refer the reader to
the recent preprint [19] where all these duality results are reconsidered and
further generalized. For recent related work see [36, 37].
As mentioned before, we interpret H0

m
(R(f)) by means of the sheaf T 〈X〉, also

denoted by Der(−logX), associated to any hypersurface X in a smooth variety
M (see §2 where we recall its definition). Precisely we show that there is an
identification:

(2) H0
m
(R(f)) = H1

∗ (T 〈X〉(−d))

(Proposition 2.1). In particular:

(3) H0
m(R(f))d = H1(T 〈X〉)

The right hand side is the space of first-order locally trivial deformations ofX in
Pr (see [31], §3.4.4). Therefore (3) generalizes what happens in the nonsingular
case, when we have the identification of R(f)d with the space of first order
deformations of X in Pr modulo projective automorphisms [7]. Thus (3) gives
an answer to (b).
In passing note that Theorem 3.4 and (2) together imply the self-duality of
H1

∗ (T 〈X〉(−d)) in the case when X has isolated singularities. This fact is quite
straightforward when r = 2 but it is not so when r ≥ 3, since T 〈X〉 is not even
locally free.

As of Question (c), one expects that there exists a relation between the local
cohomology of R(f) and the Hodge decomposition of the middle primitive
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cohomology of a nonsingular model X ′ ofX . We collect some evidence that this
relation exists at least for strictly normal crossing hypersurfaces. In particular
we show that for such hypersurfaces one has an isomorphism

H0
m(R(f))d−r−1

∼=

s⊕

i=1

H0(Xi,Ω
r−1
Xi

)

where X1, . . . , Xs are the irreducible components of X (see Theorem 5.1 for a
precise statement). This result and duality imply a result completely analogous
to Griffiths’ for strictly normal crossing plane curves (Corollary 5.2). We also
prove a result for surfaces in P

3 indicating that the local cohomology contains
information on how the various components intersect (Theorem 5.3).
Question (d) is related to interesting issues that have been widely considered
in the case of arrangements of hyperplanes and of hypersurfaces, but from
a different point of view. Several authors have investigated the problem of
reconstructing certain arrangements of hyperplanes and of hypersurfaces from
their sheaf of logarithmic differentials (see [2, 16, 22, 42, 43]). Our Question
(d) is quite different, at least when r ≥ 3, while it is essentially equivalent to
it when r = 2. We discuss the problem and we give a few examples.
In the paper we also consider the question of freeness of the sheaf T 〈X〉, which
is a special case of the condition H0

m(R(f)) = 0. We overview some of the
known results in the case r = 2.
In detail the paper is organized as follows. §2 is devoted to the relation between
local cohomology of the jacobian ring of X and the sheaf T 〈X〉. In §3 we
consider the self duality properties. §4 is devoted to generalities on sheaves of
logarithmic differentials and §5 to the Hodge theoretic properties of the local
cohomology. In the next §6 we discuss the Torelli problem (d) above, and its
relations with related reconstruction problems. §7 treats the freeness of T 〈X〉.
Acknowledgements. I am grateful to H. Hassanzadeh and A. Simis for use-
ful remarks concerning Theorem 3.2, to D. Faenzi for his help with Example
(36), to E. Arbarello, F. Catanese, A. Lopez and J. Valles for helpful conver-
sations. All the examples have been computed using Macaulay2 [23].
After posting the first version of this paper I became aware of references [12] and
[38]. I am thankful to D. Van Straten, and M. Saito for calling my attention on
them and for some helpful remarks. Finally it is a pleasure to thank A. Dimca
for his correspondence and for bringing Example 5.7 to my attention.
I am a member of INDAM-GNSAGA. This research has been supported by the
project MIUR-PRIN 2010/11 Geometria delle varietà algebriche.

2. Logarithmic derivations and local cohomology

We will adopt the following standard notation and terminology. Consider the
graded polynomial ring P =

⊕
k≥0 Pk = C[X0, . . . , Xr], in r+1 variables, r ≥ 2,

with coefficients in C, and denote bym =
⊕

k≥1 Pk its irrelevant maximal ideal.

A graded P -module M =
⊕

k Mk is TF -finite if M≥k0
:=
⊕

k≥k0
Mk is of finite
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type for some k0. If M is TF -finite we let

M∨ =
⊕

k

(M∨)k =
⊕

k

M∨
−k =

⊕

k

HomC(M−k,C)

For any coherent sheaf F on Pr and 0 ≤ i ≤ r we let

Hi
∗(F) =

⊕

k∈Z

Hi(Pr,F(k))

which is a graded P -module.
Consider a reduced polynomial f ∈ P homogeneous of degree d. Let X :=
V (f) ⊂ Pr be the hypersurface defined by f and let

R(f) := P/J(f)

be the jacobian ring of f (or of X) where

J(f) :=

(
∂f

∂X0
, . . . ,

∂f

∂Xr

)

is the gradient ideal of f . The scheme Proj(R(f)) is called the jacobian scheme
of f , or the singular scheme of X (see [1]), and also denoted by Sing(X). We
denote by Jf = J(f)∼ ⊂ OPr the ideal sheaf associated to J(f), and by

Jf/X = Jf/IX ⊂ OX

its image in OX . Then Jf/X is called the jacobian ideal sheaf of X . Note that

OX/Jf/X = OSing(X) = T 1
X(−d) where T 1

X is the first cotangent sheaf of X, .
A more useful description of the jacobian ring is the following. Consider the
diagram of sheaf homomorphisms:

(4) 0 // K // OPr(−d+ 1)r+1
∂f // OPr

// T 1
X(−d) // 0

0 // K // OPr(−d+ 1)r+1 ∂f // Jf //
?�

OO

0

where ∂f is defined by the partials of f , and K = ker(∂f). It induces

H0
∗ (OPr (−d+ 1))r+1 // P // R(f) // 0

H0
∗ (OPr (−d+ 1))r+1 // J(f)sat //

?�

OO

H1
∗ (K)
?�

OO

// 0

where J(f)sat is the saturation of J(f). The following are clearly equivalent
conditions:

(a) X is nonsingular.
(b) T 1

X = 0.
(c) R(f) has finite length.
(d) R(f) = H1

∗ (K).
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When they are not satisfied then H1
∗ (K) is just a submodule of finite length of

R(f) and we have an identification:

(5) H1
∗ (K) =

J(f)sat

J(f)
= H0

m(R(f))

where H0
m
(M) denotes the 0-th local cohomology of a graded P -module with

respect to m.
We also have the exact sequence:

(6) 0 // T 〈X〉 // TPr

η // Jf/X(d) // 0

where T 〈X〉 := ker(η) is the sheaf of logarithmic vector fields along X and η is
defined as:

η

(
∑

i

Ai(X)
∂

∂Xi

)
=
∑

i

Ai
∂f

∂Xi

the sheaf T 〈X〉 is also denoted by Der(−logX) in the literature [30]. We then
have the following commutative diagram with exact rows and columns:

0 0

0 // T 〈X〉 // TPr

OO

η // Jf/X(d)

OO

// 0

0 // K(d)

∼=

OO

// OPr (1)r+1

OO

∂f // Jf (d) //

OO

0

OPr

OO

f // IX(d)

OO

// 0

0

OO

0

OO

where the middle vertical is the Euler sequence. From this diagram we deduce
the isomorphisms:

T 〈X〉 ∼= K(d)(7)

H1
∗ (Jf/X) ∼= H1

∗ (Jf ) (= H2
∗ (K) if r ≥ 3)(8)

Now we can prove the following:

Proposition 2.1. In the above situation we have a canonical isomorphism:

H0
m(R(f)) ∼= H1

∗ (T 〈X〉(−d))(9)

In particular
R(f) ∼= H1

∗ (T 〈X〉(−d))

if X is nonsingular.

Proof. It follow directly from (5) and (7). The last assertion is obvious. �
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Corollary 2.2. The vector space H0
m
(R(f))d is naturally identified with the

space of first order locally trivial deformations of X in Pr modulo the action of
PGL(r + 1).

Proof. The proposition identifiesH0
m(R(f))d withH1(T 〈X〉) which is the space

of first order locally trivial deformations of the inclusionX ⊂ Pr (see [31], §3.4.4
p. 176). �

Remarks 2.3. (i) It is easy to compute that for X ⊂ P2 the Chern classes of
T 〈X〉(k) are:

c1(T 〈X〉(k)) = 3− d+ 2k, c2(T 〈X〉(k)) = d2 − (3 + k)d+ 3 + 3k + k2 − t1X

where t1X = h0(T 1
X) = h0(OSing(X)). Moreover:

−χ(T 〈X〉) =
1

2
d(d+ 3)− t1X − 8

which is the expected dimension of the family of locally trivial deformation
of X modulo PGL(3). This is explained by the fact that T 〈X〉 is the sheaf
controlling the locally trivial deformation theory of X in P2 (see [31]).

(ii) If X is a normal crossing arrangement of d ≥ r+2 hyperplanes then T 〈X〉
is the dual of a Steiner bundle [16], in particular it is locally free, and these
bundles are known to be stable [3]. In the special case d = r + 2 we have
T 〈X〉 = Ω(1). If 1 ≤ d ≤ r + 1 then

T 〈X〉 = Od−1
Pr

⊕
OPr(1)r+1−d

and these bundles are not stable.
(iii) If X ⊂ P2 is nonsingular then T 〈X〉 is stable ([41], Lemma 3).

In the case of plane curves we have more generally:

Proposition 2.4. Let X ⊂ P2 be of degree d ≥ 4. Then T 〈X〉 is stable if and

only if (f0, f1, f2), where fi = ∂f
∂Xi

, has no syzygies of degree [(d− 1)/2]. In

particular T 〈X〉 is stable if X is nonsingular.

Proof. Twist T 〈X〉 by k = [(d− 3)/2]. Then c1(T 〈X〉(k)) = 0,−1 according
to whether d is odd or even, and T 〈X〉 is stable if and only if H0(T 〈X〉(k)) = 0
([29], Lemma 1.2.5 p. 165). The exact sequence

0 // T 〈X〉(k) // OP2(k + 1)
(f0,f1,f2)// Jf (d+ k) // 0

identifiesH0(T 〈X〉(k)) with the space of syzygies of (f0, f1, f2) of degree k+1 =
[(d− 1)/2].
In the nonsingular case (f0, f1, f2) has no syzygies of degree less than d − 1
because they form a regular sequence. �

Example 2.5. Let f = Xα
1 X

d−α
0 −Xd

2 , with 2 ≤ α < d, and d ≥ 4. Then T 〈X〉
is not stable because (f0, f1, f2) has the linear syzygy (αX0,−(d− α)X1, 0).
Additional interesting informations concerning the syzygies of (f0, f1, f2) for a
singular plane curve are in [11].
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3. Self-duality of the local cohomology

In this section we will consider a situation slightly more general than before.
Let

I = (f) = (f0, . . . , fs) ⊂ P

be a proper homogeneous ideal, whose generators have degrees d0, . . . , ds re-
spectively, and let R = P/I. Denote by Y = Proj(R) and by I = I∼ ⊂ OPr .
We have an exact sequence:

(10) 0 // K //
⊕

j=0,...,s OPr (−dj)
f // I // 0

where K := ker(f). The 0-th and 1-st local cohomology modules of R (with
respect to m) are defined respectively as:

H0
m(R) := H1

∗ (K)

H1
m(R) := H1

∗ (I) (= H2
∗ (K) if r ≥ 3)

They are graded P -modules of finite length. In case m
k ⊂ I for some k > 0,

i.e. Y = ∅, we have
H0

m(R) = R, H1
m(R) = (0)

There is a standard exact sequence:

(11) 0 // H0
m(R) // R // H0

∗ (OY ) // H1
m(R) // 0

Assume now that s = r. Denote by

E :=
⊕

j=0,...,r

OPr(−dj)

and let
σ :=

∑

j

(dj − 1) =
∑

j

dj − r − 1

Consider the Koszul complex:

E• : 0 // E−r−1
// E−r

// · · · // E−1
f // E0 // 0

where E−p =
∧p E . For every k ∈ Z we can consider the twist E•(k) and

the two corresponding spectral sequences of hypercohomology. Taking direct
sums over all k we can collect them in the following two spectral sequences of
hypercohomology:

Apq
1 = Hq

∗(Ep)
Bpq

2 = Hp
∗ (Hq(E•))

where Hq(E•) is the q-th cohomology sheaf of E•. In particular H0(E•) = OY .
In the A-spectral sequence we have in particular:

(12) A00
2 = · · · = A00

r+1 = coker[H0
∗ (E−1) −→ H0

∗ (E0)] = R

(13) A−r−1r
2 = · · · = A−r−1r

r+1 = ker[Hr
∗(E−r−1) −→ Hr

∗ (E−r)] = [R(σ)]∨

and
dr+1 : [R(σ)]∨ = A−r−1r

r+1 −→ A00
r+1 = R
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We denote by H
i
∗(E

•) the i-th hypercohomology of E•.

Proposition 3.1. In the above situation, suppose that dim(Y ) ≤ 0. Then

H
0
∗(E

•) = H0
∗ (OY )

Im(dr+1) = H0
m
(R), A00

∞ = R/H0
m
(R), A−rr

∞ = H1
m
(R)

and the exact sequence of edge homomorphisms

0 // A00
∞

// H0
∗(E

•) // A−rr
∞

// 0

coincides with the sequence:

(14) 0 // R/H0
m
(R) // H0

∗ (OY ) // H1
m
(R) // 0

Proof. Let x ∈ Pr. Then

depthx(IY )

{
≥ r if x ∈ Y

=r+1 otherwise

Therefore, by [18], Thm. 17.4 p. 424, (Hq)x = 0 if q ≤ −2 for all x ∈ Pr, and
(H−1)x = 0 if x /∈ Y . Therefore Hq = 0 if q ≤ −2 and H−1 is supported on Y .
It follows that Hp(H−1) = 0 for all p > 0. Now we decompose E• into short
exact sequences of sheaves as follows:

(15) 0 // E−r−1
// E−r

// I−r+1
// 0

(16) 0 // I−r+1
// E−r+1

// I−r+2
// 0

etc., up to:

0 // I−2
// E−2

// I−1
// 0

(17) 0 // I−1
// K−1

// H−1 // 0

(18) 0 // K−1
// E−1

// IY // 0

The map dr+1 is obtained from a diagram chasing out of these sequences. Since
the Ei’s are direct sums of O(k)’s, from (15) and comparing with (13) we deduce

A−r−1r
r+1

∼= Hr−1
∗ (I−r+1)

and from (16), etc, we have isomorphisms

A−r−1r
r+1

∼= Hr−1
∗ (I−r+1) ∼= · · · ∼= H1

∗ (I−1)

Now we use (17) and we obtain a surjective map:

H1
∗ (I−1) // H1

∗ (K−1) // 0

But from sequence (18) it follows that

H1
∗ (K−1) = H0

m(R)

and this proves that Im(dr+1) = H0
m
(R). Therefore it also follows that

A00
∞ = A00

r+1/Im(dr+1) = R/H0
m
(R)
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Now observe that A−rr
∞ = Hr

∗(I−r+1). A diagram chasing similar to the previ-
ous one shows that

Hr
∗(I−r+1) ∼= H1

∗ (IY )

Since H1
∗ (IY ) = H1

m(R) we obtain the identification A−rr
∞ = H1

m(R).
Noting that the B-spectral sequence degenerates at B2, we get in particular
that

H
0
∗(E

•) = H0
∗ (H

0(E•)) = H0
∗ (OY )

Therefore the edge exact sequence is (14). �

As a consequence we can now derive the following:

Theorem 3.2. Let I = (f0, . . . , fr) with deg(fj) = dj, R = P/I and Y =
Proj(R). Assume that dim(Y ) ≤ 0. Then there is a natural isomorphism:

H0
m(R) ∼= [H0

m(R)(σ)]∨

where σ =
∑r

j=0 dj − r − 1. Therefore we have natural isomorphisms

H0
m(R)k ∼= H0

m(R)∨σ−k, 0 ≤ k ≤ σ

Proof. The surjective map:

dr+1 : [R(σ)]∨ // H0
m(R)

dualizes as an injective map:

d
∨
r+1 : H0

m
(R)∨ // R(σ)

whose image must be contained in H0
m(R)(σ) because it consists of elements

which are killed by m
σ+1. But then Im(d∨

r+1) = H0
m
(R)(σ) because H0

m
(R)∨

and H0
m(R)(σ) have the same dimension as vector spaces. �

Remark 3.3. As already stated in the Introduction, Corollary 3.2 is a special
case of [38], Theorem 4.7. The case Y = ∅ of course corresponds to the situation
when the elements f0, . . . , fr form a regular sequence, and this happens if and
only if Hq(E•) = 0 for all q. In this case the hypercohomology H

•
∗(E

•) is zero
in all dimensions, because the B2-spectral sequence is zero. It follows that the
map:

dr+1 : A−r−1r
r+1 −→ A00

r+1

is an isomorphism, which means that we have an isomorphism [R(σ)]∨ ∼= R.
This is the well known duality theorem of Macaulay for Gorenstein artinian
algebras ([44], Th. II6.19, p. 172).

As a special case of Theorem 3.2 we obtain the following (see also [12], Theorem
1):

Theorem 3.4. Assume that the hypersurface X has at most isolated singular-
ities. Then:

H0
m
(R(f))k ∼= H0

m
(R(f))∨σ−k, 0 ≤ k ≤ σ

where σ = (r + 1)(d− 2).
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Remark 3.5. In case X is nonsingular the jacobian ring R = R(f) is Goren-
stein artinian with socle in degree σ. The self duality of R(f) is induced by a
pairing

Rk ×Rσ−k −→ Rσ
∼= C

where the first map is induced by multiplication of polynomials and the last
isomorphism is obtained from the trace map for local duality.

Corollary 3.6. Assume that X has only isolated singularities. Then there
are natural isomorphisms:

H1(T 〈X〉(−d+ k)) ∼= H1(T 〈X〉(σ − d− k))∨

for all k.

Proof. Use (9) and Theorem (3.4). �

Observe that, in case the hypersurface X is singular with isolated singularities
and r ≥ 3, the sheaf T 〈X〉(−d) is reflexive of rank r but not locally free (see
[30]). Therefore the duality statement of Corollary 3.6 is not a consequence of
standard properties of locally free sheaves.
On the other hand if r = 2 then T 〈X〉(−d) is locally free of rank two and its
first Chern class is given by:

c1(T 〈X〉(−d)) = 3− 3d

Then Corollary 3.6 follows directly from the straightforward fact that for every
locally free sheaf E of rank two on P2 we have

H1(E(k)) ∼= H1(E(σ − k))∨

where σ = −c1(E)− 3.
It is not clear how far one can go relaxing the hypothesis of Theorem 3.4, as
the next two examples show.

Example 3.7. The ruled cubic surface X ⊂ P
3 has equation

XT 2 − Y Z2 = 0

and is singular along the line T = Z = 0. The local cohomology has only one
non-zero term in degree 2, and:

h0
m(R(f))2 = 1

Since σ = 4, the symmetry condition H0
m
(R(f))k ∼= H0

m
(R(f))σ−k is fullfilled

even though X doesn’t satisfy the hypothesis of Theorem 3.4.

Example 3.8. A quartic surface with a double conic X ⊂ P3 has equation:

(ZT −XY )2 + (X + Y + Z + T )2(X2 + Y 2 + Z2 + T 2) = 0

The table of its local cohomology dimensions is:
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j h0
m
(R)j

0 0
1 0
2 1
3 4
4 5
5 1
6 0
7 0
8 0

Since σ = 10, we see that self-duality does not hold in this case.

4. Logarithmic differentials

Let’s restrict for a moment to the case when our X ⊂ Pr of degree d is nonsin-
gular. Then Griffiths’ Theorem identifies:

(19)

r⊕

p=1

Hr−p,p−1(X)0 =

r⊕

p=1

H1(T 〈X〉(KPr + (p− 1)X)

thanks to Proposition 2.1, which identifies

r⊕

p=1

H1(T 〈X〉(KPr + (p− 1)X) =
r⊕

p=1

R(f)pd−r−1

The right hand side of (19) is well defined if X is just a reduced hypersurface
in a projective manifold Z of dimension r, after replacing Pr with Z. In such
a situation it is convenient to consider, together with TZ〈X〉, the sheaves of
logarithmic differentials along X which are defined as follows:

Ωk
Z(logX) := {ω ∈ Ωk

Z(X) : dω ∈ Ωk+1
Z (X)}, k = 0, . . . , r

In particular Ω0
Z(logX) = OZ and Ωr

Z(logX) = KZ + X . For k 6= 0, r these
sheaves are not locally free in general. For k = 1 one has:

Ω1
Z(logX) := HomZ(TZ〈X〉,OZ)

and this sheaf is reflexive ([30], n. 1.7). By definition we have inclusions

Ωk
Z ⊂ Ωk

Z(logX) ⊂ Ωk
Z(X)

which in turn induce the inclusions:

(20) Ωk
Z(logX)(−X) ⊂ Ωk

Z ⊂ Ωk
Z(logX)

We collect in the following Lemmas the properties we need about the sheaves
of logarithmic differentials.

Lemma 4.1. The following conditions are equivalent:

(i) TZ〈X〉 is locally free.
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(ii)

Ωk
Z(logX) =

k∧
Ω1

Z(logX)

for all k = 1, . . . , r.
(iii)

∧r
Ω1

Z(logX) = Ωr
Z(logX)(= KZ +X)

If the above conditions are satisfied then we have a canonical identification:

(21) TZ〈X〉(KZ +X) = Ωr−1
Z (logX)

Proof. The equivalence of the conditions stated is Theorem 1.8 of [30]. From
(iii) we obtain c1(TZ〈X〉) = −(KZ +X). Therefore:

TZ〈X〉(KZ +X) = TZ〈X〉c1(TZ〈X〉∨)

=

r−1∧
TZ〈X〉∨

=

r−1∧
Ω1

Z(logX)

by (i) = Ωr−1
Z (logX)

�

The following are examples such that TZ〈X〉 is locally free (see [30]):

• X nonsingular.
• Z is a surface (r = 2).
• X has normal crossing singularities at every point (it is a normal cross-
ing divisor). Recall that this means that for each x ∈ X the local
ring OX,x is formally, or etale, equivalent to OZ,x/(t1 · · · tk) for some
1 ≤ k ≤ r−1, where t1, . . . , tk are part of a local system of coordinates.

Recall that X ⊂ Z is a strictly normal crossing divisor if it is a normal crossing
divisor whose irreducible components X1, . . . , Xs are nonsingular.

Lemma 4.2. Assume that X = X1 ∪ · · · ∪Xs ⊂ Z is a strictly normal crossing

divisor. Denote by X̂1 = X2 ∩ · · · ∩Xs, and by Y1 = X1 ∩ X̂1. Then there are
exact sequences, for a = 1, . . . , r = dim(Z):

0 // Ω1
Z

// Ω1
Z(logX) // ⊕s

i=1 OXi

// 0(22)

0 // Ωa
Z(logX̂1) // Ωa

Z(logX)
R // Ωa−1

X1
(logY1) // 0(23)

0 // Ωa
Z(logX)(−X1) // Ωa

Z(logX̂1) // Ωa
X1

(logY1) // 0(24)

where R is the residue operator.

Proof. see [21], §2.3. �

Note that, by twisting (24) byOZ(−X̂1) we obtain the following exact sequence:
(25)

0 // Ωa

Z(logX)(−X) // Ωa

Z(logX̂1)(−X̂1) // Ωa

X1
(logY1)(−Y1) // 0
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For future reference it is worth emphasizing that when X = X1 is irreducible
and nonsingular then the sequences (23) and (25) become respectively:

0 // Ωa
Z

// Ωa
Z(logX)

R // Ωa−1
X

// 0(26)

0 // Ωa
Z(logX)(−X) // Ωa

Z
// Ωa

X
// 0(27)

Lemma 4.3. Assume that X ⊂ Z is an irreducible and nonsingular divisor.
For each k = 0, . . . , r − 1 consider the composition:

λ : Hk(Ωk
X)

δ // Hk+1(Ωk+1
Z )

ν∗

k+1 // Hk+1(Ωk+1
X )

where δ is a coboundary map of the sequence (26) and ν∗k+1 is induced by the
second homomorphism in the sequence (27). Then λ is the map defined by
the Lefschetz operator corresponding to the Kahler metric on X associated to
OX(X).

Proof. The Lefschetz operator L : Hk(X,C) −→ Hk+2(X,C) is the composi-
tion:

Hk(X,C)
γ // Hk+2(Z,C)

ν∗

// Hk+2(X,C)

where γ is the Gysin map and ν∗ is induced by the inclusion

X
� � ν // Z

([44], v. II, (2.11) p. 57). Moreover γ is the cokernel of the map:

ρ : Hk+1(U,C) −→ Hk(X,C)

induced by the residue operator, where U = Z \X . More precisely, we have an
isomorphism ([44], Corollary I.8.19 p. 198)

H•(U,C) ∼= H
•(Ω•(logX))

(where H denotes hypercohomology) and the map ρ is induced by the residue
operators R of the exact sequences (26). Therefore the restriction of γ to
Hk(Ωk

X) is identified with δ (see [44], Prop. I.8.34 p. 210). On the other hand

ν∗k+1 is the restriction of ν∗ to Hk+1(Ωk+1
Z ). �

5. Local cohomology and Hodge theory

We now come back to the original situation of a reduced hypersurface X =
V (f) ⊂ Pr of degree d. By Proposition 2.1 for p = 1, . . . , r we can identify

(28) H0
m
(R(f))pd−r−1 = H1

∗ (T 〈X〉(KPr + (p− 1)X))

Moreover, if T 〈X〉 is locally free then, by Lemma 4.1, we also have:

(29) H0
m
(R(f))pd−r−1 = H1(Ωr−1(logX)(p− 2)X)

Our first result is the following:
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Theorem 5.1. Assume that X ⊂ Pr is a strictly normal crossing hypersurface,
with irreducible components X1, . . . , Xs. Then we have:

H0
m
(R(f))d−r−1

∼=

s⊕

i=1

H0(Xi,Ω
r−1
Xi

)

Proof. Since T 〈X〉 is locally free we have the identification (29) for p = 1:

H0
m(R(f))d−r−1 = H1(Ωr−1(logX)(−X))

Assume first r ≥ 3. Consider the exact sequence (25) for a = r − 1. Since

h0(Pr,Ωr−1
Pr (logX̂1)(−X̂1)) = 0

we obtain the exact sequence:

0 // H0(Ωr−1

X1
) // H0

m
(R(f))d−r−1

// H1(Ωr−1

Pr
logX̂1)(−X̂1)) // 0

where the zero on the right is H1(Ωr−1
X1

). Now the conclusion follows by
induction on s.
If r = 2 and s = 1 use (27) and Lemma 4.3. If s ≥ 2 use (25) and induction. �

Corollary 5.2. Let X = X1 + · · · + Xs ⊂ P2 be a strictly normal crossing
plane curve. Then

H0
m
(R(f))d−3

∼=

s⊕

i=1

H0(Xi, ωXi
), H0

m
(R(f))2d−3

∼=

s⊕

i=1

H1(Xi,OXi
)

Proof. It follows from the theorem, from the self duality theorem 3.4, and Serre
duality applied to each component Xi. �

When r ≥ 3 the relation between the other graded pieces H0
m
(R(f))pd−r−1,

p = 2, . . . , r, of the local cohomology and the primitive middle cohomology
of the components of X is more complicated because the intersections of the
components contribute non-trivially. As an example we compute the dimension
of the middle term in the case r = 3.

Theorem 5.3. Let X = X1 + · · · + Xs ⊂ P3 be a strictly normal crossing
surface, whose components have degrees d1, . . . , ds respectively. Then:

h0
m
(R(f))2d−4 =

s∑

i=1

dim[H1,1(Xi)0] +
∑

1≤i<j≤s

g(Xi ∩Xj)

where g(Xi ∩Xj) =
1
2didj(di + dj − 4) + 1 is the genus of the curve Xi ∩Xj.

Proof. By induction on s. If s = 1 the formula is true by Griffiths’ Theorem.
Assume s ≥ 2. Then H0

m(R(f))2d−4 = H1(Ω2
P3(logX)), by (29). We let

X̂1 = X2 + · · ·+Xs

Y1 = X1 ∩ (X2 + · · ·+Xs)

Ŷ1 = X1 ∩ (X3 + · · ·+Xs)
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We have the following diagram of exact sequences:

(30) 0

��
Ω1

X1
(logŶ1)

��
0 // Ω2

P3(logX̂1) // Ω2
P3(logX) // Ω1

X1
(logY1) //

��

0

OX1∩X2

��
0

We claim the following:

(a) h0(Ω1
X1

(logY1)) = s− 2.

(b) H2(Ω2
P3(logX̂1)) = 0.

(c) H2(Ω1
X1

(logŶ1)) = 0.

Assume that (a),(b),(c) are proved. Then from the above diagram we deduce
the exact sequence:
(31)

0 // H1(Ω2

P3
(logX̂1)) // H1(Ω2

P3
(logX)) // H1(Ω1

X1
(logY1)) // 0

The term on the right in (31) can be computed using the vertical exact sequence
of diagram (30). Assume first that s = 2. In this case Y1 = X1 ∩ X2 and
recalling (a) we obtain:

0 → H0(OX1∩X2
) → H1(Ω1

X1
) → H1(Ω1

X1
(log(X1 ∩X2)) → H1(OX1∩X2

) → 0

whence:

H1(Ω1
X1

(log(X1 ∩X2)) = dim[H1,1(X1)0] + g(X1 ∩X2)

If s ≥ 3 then the map

H0(OX1∩X2
) −→ H1(Ω1

X1
(logŶ1))
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is zero by (a). Therefore, applying induction, from the vertical exact sequence
of diagram (30) we deduce:

dim[H1(Ω1
X1

(logY1))] = dim[H1(Ω1
X1

(logŶ1))] + g(X1 ∩X2)

= dim[H1,1(X1)0] +

s∑

i=3

g(X1 ∩Xi) + g(X1 ∩X2)

= dim[H1,1(X1)0] +

s∑

i=2

g(X1 ∩Xi)

By induction we have:

h1(Ω2
P3(logX̂1)) =

s∑

i=2

dim[H1,1(Xi)0] +
∑

2≤i<j≤s

g(Xi ∩Xj)

Therefore, putting all these computations together the claimed expression for
h0
m(R(f))2d−4 follows. We still have to prove (a),(b) and (c).

Proof of (a). Use the exact sequence (22) with Z = X1 and X = Y1, and the
fact that the image of the coboundary map is the space generated by the Chern
classes of X1 ∩X2, . . . , X1 ∩Xs, which is 1-dimensional.

Proof of (c). Use the vertical sequence in (30) and induction on s ≥ 2.

Proof of (b). Assume s = 1. The map H1(Ω1
X1

) −→ H2(Ω2
P3) coming from the

sequence

0 // Ω2
P3

// Ω2
P3(logX1) // Ω1

X1

// 0

is surjective (this follows from Lemma 4.3 and Hodge theory). Therefore since
H2(Ω1

X1
) = 0, it follows that H2(Ω2

P3(logX1)) = 0. The general case of (b) now
follows by induction, from (c) and from the exact row in (30). �

We give a few examples illustrating these results.

Example 5.4. Let f = X0(X
3
0 +X3

1 +X3
2 ). Then X = V (f) = Λ ∪ C ⊂ P

2 is
a strictly normal crossing reducible plane quartic, consisting of a line Λ and a
nonsingular cubic C. One computes that:

H0
m(R)1 ∼= C ∼= H1,0(X ′) = H1,0(C)

H0
m(R)5 ∼= C ∼= H0,1(X ′) = H0,1(C)

The complete table is:
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j h0
m
(R)j dim(R(f)j) h0(OSing(X)(j))

0 0 1 1
1 1 3 2
2 3 6 3
3 4 7 3
4 3 6 3
5 1 4 3
6 0 3 3
7 0 3 3
8 0 3 3

The conclusion of Corollary 5.2 fails even in the simplest cases if one weakens
the assumptions about the singularities of X , as the following two examples
show.

Example 5.5. A 1-cuspidal plane quartic f = X2
0X

2
1 +X2

1X
2
2 +X4

1 +X4
2 . Here

the table is:

j h0
m(R)j dim(R(f)j) h0(OSing(X)(j))

0 0 1 1
1 1 3 2
2 4 6 2
3 5 7 2
4 4 6 2
5 1 3 2
6 0 1 2
7 0 1 2
8 0 1 2

Then X ′ has genus two, has self-dual local cohomology but h0
m
(R)1 = 1 =

h0
m(R)5 < 2.

Example 5.6. A reducible plane quartic consisting of a nonsingular cubic and
of an inflectional tangent:

f = X0(X
2
0X1 +X0X

2
1 +X3

2 )

In this case the table is:

j h0
m
(R)j dim(R(f)j) h0(OSing(X)(j))

0 0 1 1
1 0 3 3
2 1 6 5
3 2 7 5
4 1 6 5
5 0 5 5
6 0 5 5
7 0 5 5
8 0 5 5
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Example 5.7. A strictly normal crossing quintic surface. (This example has
been kindly suggested by A. Dimca). As an illustration of Theorem 5.3 consider
X = V (f) ⊂ P3, where

f(X0, . . . , X3) = (X2
0 +X2

1 +X2
2 +X2

3 )(X
3
0 +X3

1 +X3
2 +X3

3 )

Then X = X1 +X2 is the union of a quadric and a cubic, and C = X1 ∩X2 is
a canonical curve (of genus 4). The table of local cohomology is:

j h0
m
(R)j dim(R(f)j) h0(OC(j))

0 0 1 1
1 0 4 4
2 1 10 9
3 5 20 15
4 10 31 21
5 13 40 27
6 11 44 33
7 5 44 39
8 1 46 45
9 0 51 51
10 0 57 57
11 0 63 63
12 0 69 69
13 0 75 75

Note that

h0
m
(R)6 = 11 = (2− 1) + (7 − 1) + 4 = h1,1(X1) + h1,1(X2) + g(C)

as expected.

6. Torelli-type questions

Following a terminology introduced in [16], a reduced hypersurface X ⊂ Pr is
called Torelli in the sense of Dolgachev-Kapranov if it can be reconstructed
from the sheaf T 〈X〉. In their paper [16] they studied the Torelli property
of normal crossing arrangements of hyperplanes. Their main result has been
later improved by Vallès in [43]. For arbitrary arrangements of hyperplanes the
Torelli problem has been settled in [22]. In [42] it is proved that a smooth hyper-
surface is Torelli if and only if it is not of Sebastiani-Thom type. E. Angelini [2]
studied certain normal crossing configurations of smooth hypersurfaces proving
that they are Torelli in several cases.
We want to consider a different reconstruction problem, namely we ask:

Question: Under which circumstances can X be reconstructed from

H0
m
(R(f)) ∼= H1

∗ (T 〈X〉(−d))
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In the nonsingular case this is merely the question of reconstructability of
X from its jacobian ring. This question has been considered extensively in
the literature, even in the singular case. The typical result one would like to
generalize is the following:

Theorem 6.1. (i) [17] Let f and f ′ be homogeneous polynomials of degree
d defining reduced hypersurfaces in Pr. If J(f)d = J(f ′)d then f and
f ′ are projectively equivalent.

(ii) [5] Let f ∈ P be a generic polynomial of degree d ≥ 3. Then f is
determined by J(f)d−1, up to a constant factor.

In this respect the following result is relevant:

Theorem 6.2 ([27]). A locally free sheaf F of rank two on P2 can be recon-
structed from the P -module H1

∗ (F).

Theorem 6.2 suggests that, at least in P2, the reconstructability of X from the
module H1

∗ (T 〈X〉) is equivalent to the reconstructability of X from the sheaf
T 〈X〉. In fact we have the following:

Theorem 6.3. A reduced plane curve is Torelli in the sense of Dolgachev-
Kapranov if and only if it can be reconstructed from the local cohomology of its
jacobian ring.

Proof. It is an immediate consequence of Theorem 6.2 and of the fact that
T 〈X〉 is locally free for reduced plane curves. �

Theorem 6.3 of course applies to Torelli arrangements of lines, that have been
characterized as recalled above, and to normal crossing arrangements of suffi-
ciently many nonsingular curves of the same degree n (see [2] for the precise
statement). Much less is known in the irreducible case, even for plane curves.
For partial results in this direction we refer the reader to [14]. The Torelli
property is related with freeness, that we are going to discuss next.

7. Freeness

According to Proposition 2.1 the vanishing of H0
m(R(f)) is equivalent to that

of H1
∗ (T 〈X〉) and it is a necessary condition for the freeness of T 〈X〉. If X is

nonsingular then H0
m
(R(f)) = R(f) is never zero, and therefore T 〈X〉 cannot

be free. The same is true if Sing(X) 6= ∅ and has codimension ≥ 2 in X ,
because then T 〈X〉 is not even locally free.
In general little seems to be known about the freeness of T 〈X〉, even in the
case r = 2. We will mostly restrict to this case in the remaining of this section.
Look at the exact sequence:

(32) 0 // T 〈X〉(−1) // O3
P2

∂f // Jf (d− 1) // 0

Then

c1(T 〈X〉(−1)) = 1− d, c2(T 〈X〉(−1)) = (d− 1)2 − t1X
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where t1X = dim(T 1
X). If T 〈X〉(−1) = O(−a)⊕O(−b) is free then

(33) a+ b = d− 1, ab = (d− 1)2 − t1X

They imply together that:

(34) a2 + ab+ b2 = t1X

Observe also that, since under the restriction a + b = d − 1 the product ab
attains its maximum when (a, b) is balanced, we deduce from (33) the following
inequality:

(35) (d− 1)2 − I ≤ t1X

where:

I =

{
(d−1)2

4 if d is odd
d(d−2)

4 if d is even

These conditions easily imply the following result, whose part (1) is proved in
a different way in [33] and part (2) has been subsequently generalized in [14]
(see Remark 7.2 below).

Proposition 7.1. (1) If X is nodal then it is not free unless f = X0X1X2.
(2) If X is irreducible, has n nodes and κ ordinary cusps as its only singularities

and it is free then κ ≥ d2

4 .

Proof. 1) If X is nodal of degree d = a + b + 1 then t1X ≤
(
a+b+1

2

)
. It follows

that

(d− 1)2− t1X ≥ (a+ b)2−

(
a+ b+ 1

2

)
=

(
a+ b

2

)
= ab+

1

2
[a(a− 1)+ b(b− 1)]

and this inequality is incompatible with the second condition (33) unless a =
b = 1. This leaves space for the existence of only one free (reducible) nodal
curve: the curve given by f = X0X1X2, which is in fact free.
2) Recalling that t1X = n+2κ and combining the inequality n+κ ≤

(
d−1
2

)
with

(35) we obtain:

(d− 1)2 − I ≤ κ+

(
d− 1

2

)

Now both possibilities for I give the desired inequality after an easy calculation.
�

Remark 7.2. In the recent preprint [14] it has been proved that all curves of
degree d ≥ 4 having only nodes and cusps are not free (see loc.cit., Example
4.5(ii)). The method of proof is quite different, so we believe it can be useful
to maintain the present weaker statement and its more elementary proof.

Several examples of free arrangements of lines are known. A notable example is
the dual of the configuration of flexes of a nonsingular plane cubic. It consists
of 9 lines meeting in 12 triple points. Another free arrangement is given by
f = X0X1X2(X0−X1)(X1−X2)(X0−X2): it has 4 triple points and 3 double
points (see [39], Ex. 3.4).
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The first example of free irreducible plane curve has been given by Simis in
[33]. It is the sextic X given by the polynomial:

(36) f = 4(X2 + Y 2 +XZ)3 − 27(X2 + Y 2)2Z2

It has 4 distinct singular points, defined by the ideal

rad(J) = (Y Z, 2X2 + 2Y 2 −XZ)

One of them is a node and the other three are E6-singularities. This curve is
dual to a rational quartic C with three nodes and three undulations (hyper-
flexes). The E6-singularities of X are dual to the undulations of C. They have
δ-invariant 3 and Tjurina number 6. Thus t1X = 3 · 6 + 1 = 19. Therefore
a+ b = 5 and ab = 25− 19 = 6 and necessarily

T 〈X〉(−1) = O(−3)⊕O(−2)

An interesting example is the irreducible plane quintic curve X of equation
X5

1 −X2
0X

3
2 = 0. It has an E8 and an A4 singularity. They have respectively

δ = 4, 2 thus making the curve rational. On the other hand they have Milnor
(equal to Tjurina) numbers equal to 8, 4 respectively, thus making t1X = 12.
The dual X∨ is again a quintic. According to (33), if X were free one should
have

T 〈X〉(−1) = O(−2)⊕O(−2)

But (f0, f1, f2) has a linear syzygy (Example 2.5) and therefore this cannot be.
Other series of free irreducible plane curves are given in [4, 28, 32, 34, 39]. For
a detailed discussion of freeness and more examples in the case of plane curves
we refer to [14].

Example 7.3. The Steiner quartic surface in P3, has equation in normal
(Weierstrass) form: Z2T 2 + T 2Y 2 + Y 2Z2 = XY ZT . It is irreducible and
singular along the three coordinate axes for the origin (0, 0, 0, 1). The jacobian
ideal is

J = (Y ZT, 2Y Z2−XZT+2Y T 2, 2Y 2Z−XY T+2ZT 2, XY Z−2Y 2T−2Z2T )

and it turns out that Jsat = J . Therefore H0
m(R(f)) = 0. Nevertheless it can

be computed that T 〈X〉 is not free.
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