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Abstract. Let o be the ring of integers in a finite extension of Qp.
If G is a finite group and Γ is a maximal o-order containing the group
ring o[G], Jacobinski’s conductor formula gives a complete description
of the central conductor of Γ into o[G] in terms of characters of G.
We prove a similar result for completed group algebras o[[G]], where
G is a p-adic Lie group of dimension 1. We will also discuss several
consequences of this result.
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Introduction

Let o be the ring of integers in a number field K (or in a finite extension K of
Qp) and consider the group ring o[G] of a finite group G over o. The central
conductor F(o[G]) consists of all elements x in the center of o[G] such that
xΓ ⊆ o[G], where Γ ⊆ K[G] is a chosen maximal o-order containing o[G], i.e.

F(o[G]) = {x ∈ ζ(o[G]) | xΓ ⊆ o[G]} .

Here, we write ζ(Λ) for the center of a ring Λ. A result of Jacobinski [Ja66]
(see also [CR81, Theorem 27.13]) gives a complete description of the central
conductor in terms of the irreducible characters of G. More precisely, we have

F(o[G]) =
⊕

χ

|G|

χ(1)
D−1(o[χ]/o), (1)

1The author acknowledges financial support provided by the DFG
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where D−1(o[χ]/o) denotes the inverse different of o[χ], the ring of integers in
K(χ) := K(χ(g) | g ∈ G), with respect to o, and the sum runs through all
absolutely irreducible characters of G modulo the following Galois action: If
χ is an absolutely irreducible character of G and σ belongs to Gal(K(χ)/K),
then σ acts on χ as σχ(g) = σ(χ(g)) for every g ∈ G. Jacobinski’s main interest
was in determining annihilators of Ext; in fact, he showed that

F(o[G]) · Ext1o[G](M,N) = 0

for all o[G]-lattices M and o[G]-modules N . For instance, it can be deduced
from this result that |G|/χ(1) annihilates Ext1o[G](Mχ, N) if Mχ is an o[G]-
lattice such that K ⊗o Mχ is absolutely simple with character χ. Later,
Roggenkamp [Ro71] showed that the annihilators obtained in this way are in
fact the best possible in a certain precise sense.

In this article we consider completed group algebras o[[G]], where o denotes
the ring of integers in a finite extension K of Qp and G is a p-adic Lie group
of dimension 1. Hence G may be written as a semi-direct product H ⋊ Γ with
finite H and a cyclic pro-p-group Γ, isomorphic to Zp. We will exclude the
special case p = 2, as we will make heavily use of results of Ritter and Weiss
[RW04] (where the underlying prime is assumed to be odd) on the total ring
of fractions QK(G) of o[[G]]. However, it turns out that the results provided
by Ritter and Weiss are not sufficient for our purposes and so we shall have
to determine the structure of QK(G) in more detail, thereby generalizing and
extending results of Lau [La12] (where K = Qp and G is pro-p). We will do
this in the first section. In section 2 we provide the necessary preparations
for our main theorem including results on reduced traces and conductors. The
main theorem will then be stated and proved in section 3. More precisely, if we
define the central conductor in complete analogy to the group ring case, then
we have an inclusion

⊕

χ/∼

|H |wχ
χ(1)

·D−1(oχ/o)oχ[[Γ
′
χ]] ⊆ F(o[[G]]), (2)

where the sum runs through all absolutely irreducible characters of G with
open kernel up to a certain explicit equivalence relation. Moreover, wχ is the
index of a certain subgroup (depending on χ) in G and oχ denotes the ring
of integers in Kχ := K(χ(h) | h ∈ H). Finally, Γ′

χ is a cyclic pro-p-group
which has an explicitly determined topological generator. We will give precise
definitions later in the text. The inclusion (2) is not far from being an equality.
In fact, we show that its ‘χ-part’ becomes an equality after localization at any
height 1 prime ideal of oχ[[Γ

′
χ]] that does not contain p. It is an equality if

G = H × Γ is a direct product or if no skewfields occur in the Wedderburn
decomposition of QK(G) (in fact it suffices to suppose that the Schur indices
are not divisible by p). Moreover, we will also explicitly determine the central
conductor whenever G is a pro-p-group; we use this to give an example where
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(2) is a proper inclusion.

The proof of Jakobinski’s central conductor formula does not carry over
unchanged to the present situation for two reasons. First, the completed group
algebra is an order over the power series ring o[[T ]], but there is no canonical
choice of embedding of o[[T ]] into ζ(o[[G]]). Secondly and more seriously, the
ring o[[T ]] is a regular local ring, but it is not a Dedekind domain. Further-
more, even if we localize at a height one prime ideal, the residue field will
not be finite. Hence we do not have the well elaborated theory of maximal
orders over discrete valuation rings with finite residue field at our disposal. In
the aforementioned two cases, when G = H × Γ is a direct product or when
no skewfields occur in the Wedderburn decomposition, we will overcome this
problem by replacing our chosen maximal o[[T ]]-order by a suitable maximal
o-order. When G is a pro-p-group, it is the explicit description of the occurring
skewfields due to Lau [La12] which allows us to determine the central conductor.

Finally, we derive some consequences in section 4. In particular, we obtain
results for the corresponding Ext-groups in analogy to the group ring case.
We also apply our main result to the theory of non-commutative Fitting
invariants introduced by the author [Ni10] and further developed in [JN13].
This theory may be applied to o[[G]]-modules even if G is non-abelian, but in
contrast to the commutative case, the Fitting invariant of a finitely presented
o[[G]]-module M might not be contained in the annihilator of M . To obtain
annihilators one has to multiply by a certain ideal H(o[[G]]) of ζ(o[[G]]) which
is hard to determine in general. However, it is easily seen that H(o[[G]]) always
contains the central conductor so that our main theorem provides a method
to compute explicit annihilators of a finitely presented o[[G]]-module, at least,
if we are able to compute its Fitting invariant.

Acknowledgement. The author is indebted to Henri Johnston for his
many suggestions and helpful remarks.

1 The total ring of fractions of a completed group algebra

Let p be an odd prime and let G be a profinite group containing a finite normal
subgroup H such that G/H ≃ Γ for a pro-p-group Γ, isomorphic to Zp; thus
G can be written as a semi-direct product H ⋊ Γ and is a p-adic Lie group of
dimension 1. We denote the completed group algebra Zp[[G]] by Λ(G) that is

Λ(G) := Zp[[G]] = lim
←−

Zp[G/N ],

where the inverse limit is taken over all open normal subgroups N of G. If
K is a finite field extension of Qp with ring of integers o, we put Λo(G) :=
o⊗Zp Λ(G) = o[[G]]. We fix a topological generator γ of Γ and choose a natural

number n such that γp
n

is central in G. Since we also have that Γp
n

≃ Zp, there

Documenta Mathematica 19 (2014) 601–627



604 Andreas Nickel

is an isomorphism o[[Γp
n

]] ≃ o[[T ]] induced by γp
n

7→ 1 + T . Here, R := o[[T ]]
denotes the power series ring in one variable over o. If we view Λo(G) as an
R-module (or more generally as a left R[H ]-module), there is a decomposition

Λo(G) =

pn−1
⊕

i=0

R[H ]γi.

Hence Λo(G) is finitely generated and free as an R-module and is an R-order in
the separable L := Quot(R)-algebra QK(G) := L⊗RΛo(G). Note that QK(G)
is obtained from Λo(G) by inverting all regular elements. By [RW04, Lemma
1] we have QK(G) = K ⊗Qp Q(G), where Q(G) := QQp(G) denotes the total
ring of fractions of Λ(G).
Let Qc

p be an algebraic closure of Qp and denote by Irr (G) the set of absolutely
irreducible Qc

p-valued characters of G with open kernel. Fix χ ∈ Irr (G). Let η

be an irreducible constituent of resGHχ. Then G acts on η as ηg(h) = η(g−1hg)
for g ∈ G, h ∈ H , and we set

St(η) := {g ∈ G : ηg = η}, e(η) :=
η(1)

|H |

∑

h∈H

η(h−1)h, eχ :=
∑

η|resGHχ

e(η).

Choose a finite Galois extension E of K such that the character χ has a re-
alization Vχ over E. By [RW04, Corollary to Proposition 6] eχ is a primitive
central idempotent of QE(G). In fact, it is shown that every primitive central
idempotent of Qc(G) := Qc

p ⊗Qp Q(G) is an eχ, and eχ = eχ′ if and only if

χ = χ′ ⊗ ρ for some character ρ of G of type W (i.e. resGHρ = 1).
By Clifford theory [CR81, Proposition 11.4] the irreducible constituents of
resGHχ are precisely the conjugates of η under the action of G, each occur-
ring with the same multiplicity zχ. By [RW04, Lemma 4] we have zχ = 1 and
thus equalities

resGHχ =

wχ−1
∑

i=0

ηγ
i

, eχ =

wχ−1
∑

i=0

e(ηγ
i

) =
χ(1)

|H |wχ

∑

h∈H

χ(h−1)h, (3)

where wχ := [G : St(η)]. Note that wχ is a power of p as H is a subgroup of
St(η). We now put

Kχ := K(χ(h) | h ∈ H) ⊆ K(η) := K(η(h) | h ∈ H)

and note that Kχ = Kχ⊗ρ whenever ρ is of type W . As g−1Hg = H , we
have K(ηg) = K(η) for every g ∈ G and thus K(η) does not depend on the
particular choice of irreducible constituent of resGHχ.
We let σ ∈ Gal(Qc

p/K) act on χ as σχ(g) = σ(χ(g)) for all g ∈ G and similarly

on characters of H . Note that the actions on resGHχ and η factor through
Gal(Kχ/K) and Gal(K(η)/K), respectively.
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Lemma 1.1. The degree [K(η) : Kχ] divides wχ; in particular, it is a power of
p.

Proof. Fix σ in Gal(K(η)/Kχ). As σ acts trivially on resGHχ, the character
ση also is an irreducible constituent of resGHχ. Hence there are irreducible
constituents η1, . . . , ηs of resGHχ such that resGHχ may be written as

resGHχ =

s
∑

i=1

∑

σ∈Gal(K(ηi)/Kχ)

σηi.

Then wχη(1) = χ(1) =
∑s
i=1[K(ηi) : Kχ]ηi(1) = s[K(η) : Kχ]η(1) as desired.

By [RW04, Proposition 5] there is a unique element γχ ∈ ζ(Q
c(G)eχ) such that

γχ acts trivially on Vχ and γχ = γwχ · c = c · γwχ , where c ∈ (Qc
p[H ]eχ)

×. An
analysis of the proof in fact shows that c ∈ (E[H ]eχ)

× if both χ and η have
realizations over E. We can and do assume this in the following. Again by
[RW04, Proposition 5] the element γχ generates a procyclic p-subgroup Γχ of

(QE(G)eχ)
×. Moreover, γχ induces an isomorphism QE(Γχ)

≃
−→ ζ(QE(G)eχ)

by [RW04, Proposition 6].
We let σ ∈ Gal(E/K) act on QE(G) = E ⊗K Q

K(G) as σ(x ⊗ y) = σ(x) ⊗ y
for all x ∈ E and y ∈ QK(G). We then have

σ(eχ) = eσχ, σ(γχ) = γσχ (4)

for every σ ∈ Gal(E/K); here, the latter equality follows from the uniqueness
of γσχ. By (3) we have σ(eχ) = eχ whenever σ ∈ Gal(E/Kχ); in particular, we
have an action of Gal(E/Kχ) on ζ(QE(G)eχ).
For a finite extension F of Qp let U1

F denote the group of principal units in F .

Lemma 1.2. Fix χ ∈ Irr (G). Then there is a principal unit x = xχ ∈ U
1
E with

the following properties.

(i) The element γ′χ := xγχ is invariant under the action of Gal(E/Kχ) on

ζ(QE(G)eχ).

(ii) Let m ≥ 0 be an integer. If γp
m

acts trivially on Vχ, then xp
m

belongs to
U1
Kχ

.

Moreover, if Γ′
χ denotes the procyclic p-subgroup generated by γ′χ, then

QE(Γχ)
Gal(E/Kχ) = QKχ(Γ′

χ).

Proof. We first observe that all claims do not depend on the choice of E. To
see this let F be a second finite Galois extension of K such that the character
χ can be realized over F . Replacing F by EF we may assume E ⊆ F . If
there is an x ∈ U1

E with (i) and (ii), then we may use the same x for F
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as U1
E ⊆ U1

F . Conversely, suppose there is an x ∈ U1
F which fulfills (i) and

(ii) with E replaced by F . Let σ ∈ Gal(F/E) be arbitrary. Then σ acts
trivially on γχ as γχ ∈ ζ(Q

E(G)eχ), and it acts trivially on γ′χ by (i). Hence
σ(x) = σ(γ′χ)σ(γχ)

−1 = γ′χγ
−1
χ = x and thus x ∈ U1

F ∩ E = U1
E as desired.

Finally, as Gal(F/E) acts trivially on γχ, we have QF (Γχ)
Gal(F/E) = QE(Γχ),

and thus the last statement of the Lemma does not depend on E either.
We now may assume that E is obtained from Kχ by adjoining roots of unity.
More precisely, the group G/ ker(χ) is finite as χ has open kernel, and by
[CR81, Theorem 15.16] we may take E = Kχ(ζ), where ζ is a root of unity
of order |G/ ker(χ)|. Let us denote by µp(E) the group of all p-power roots of
unity in E. Let σ ∈ Gal(E/Kχ) be arbitrary. Then resGHχ = resGH

σχ and thus
σχ = χ⊗ρσ for some character ρσ of type W . Hence σ(γχ) = γσχ = ζσγχ with
ζσ := ρσ(γ)

−wχ ∈ µp(E) by [RW04, Proposition 5]. The assignment

Gal(E/Kχ)→ µp(E), σ 7→ ζσ = γσ−1
χ

is a 1-cocycle. Let E0 be the maximal unramified extension of Kχ in E. Then
E = E0(µp(E)) and thus H1(Gal(E/E0), µp(E)) = 1 by [NSW08, Proposition
9.1.6]. By the inflation-restriction sequence this yields an isomorphism

H1(Gal(E0/Kχ), µp(E0)) ≃ H
1(Gal(E/Kχ), µp(E)). (5)

The natural map H1(Gal(E0/Kχ), µp(E0))→ H1(Gal(E0/Kχ), U
1
E0

) is trivial,
as the latter group vanishes by [NSW08, Proposition 7.1.2]. This and (5)
imply that there is an a ∈ µp(E) · U1

E0
⊆ U1

E such that ζσ = aσ−1 for all
σ ∈ Gal(E/Kχ). We put x := a−1; then γ′χ := xγχ is easily seen to be
invariant under the action of Gal(E/Kχ).
Now let m ≥ 0 be an integer such that γp

m

acts trivially on Vχ. Then also
cp
m

= (γχγ
−wχ)p

m

acts trivially on Vχ and belongs to (E[H ]eχ)
×. So we must

have cp
m

= eχ. We deduce that γp
m

χ = γp
mwχeχ and thus σ(γp

m

χ ) = γp
m

χ for
every σ ∈ Gal(E/Kχ). We obtain

σ(xp
m

) = σ((γ′χ)
pm)σ(γp

m

χ )−1

= (γ′χ)
pm(γp

m

χ )−1

= xp
m

;

hence xp
m

belongs to U1
E ∩Kχ = U1

Kχ
.

For the last assertion, we observe that U1
E is a Zp-module and therefore

ΛoE (Γχ) = ΛoE (Γ′
χ) (6)

as (γ′χ)
z = xzγzχ for every z ∈ Zp (see also [Hi93, Lemma 1, p.199]). Hence also

QE(Γχ) = Q
E(Γ′

χ) and thus

QE(Γχ)
Gal(E/Kχ) = QE(Γ′

χ)
Gal(E/Kχ) = QKχ(Γ′

χ)

as desired.
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Remark 1.3. The principal unit x and the element γ′χ are unique up to a
principal unit in Kχ. To see this let y ∈ U1

E be a second principal unit which
fulfills (i) and (ii) of Lemma 1.2 with γ′χ replaced by γ′′χ := yγχ. Then yx−1 =
γ′′χ(γ

′
χ)

−1 is a principal unit which is invariant under Gal(E/Kχ) and thus
belongs to U1

Kχ
.

Example. Assume that G = H × Γ is a direct product. Then wχ = 1 and
resGHχ = η is irreducible. If χ(γ) = χ(1), then γχ = γeχ and we may choose
γ′χ = γχ. If χ(γ) 6= χ(1), we may write χ = χ′ ⊗ ρ with χ′(γ) = χ′(1) = χ(1)
and some character ρ of type W . By [RW04, Proposition 5] we have γχ =
γχ′ρ(γ)−1 = ρ(γ)−1γeχ. Then x = ρ(γ) fulfills (i) and (ii) of Lemma 1.2 and
we find that γ′χ = γχ′ = γeχ = γ′χ′ .

Definition 1.4. Let χ, ψ ∈ Irr (G). We say that χ and ψ are equivalent overK
(and write χ ∼K ψ) if there is σ ∈ Gal(Kχ/K) such that σ(resGHχ) = resGHψ.

Note that if χ ∼K ψ, then we have Kχ = Kψ and via (4) an isomorphism
QKχ(Γ′

χ) ≃ Q
Kψ(Γ′

ψ). Moreover, we have χ ∼K χ⊗ρ whenever ρ is a character
of type W .

Proposition 1.5. Let G be a p-adic Lie group of dimension 1 and let K be a
finite extension of Qp. Then there is an isomorphism

ζ(QK(G)) ≃
⊕

χ∈Irr (G)/∼K

QKχ(Γ′
χ),

where the sum runs through all χ ∈ Irr (G) up to the above equivalence relation.

Proof. Since there are only finitely many central primitive idempotents eχ
of Qc(G), we may choose a finite Galois extension E of K such that E[H ]
contains each eχ. We will use the fact that the center of QK(G) coincides
with the Gal(E/K)-invariants of ζ(QE(G)). For this let σ be an element of
Gal(E/K). Fix χ, ψ ∈ Irr (G). Then σ(eχ) = eσχ, and σ(eχ) = eψ if and only
if resGHψ = σ(resGHχ). In particular, the action of Gal(E/K) on eχ factors
through Gal(Kχ/K), and we may write

ζ(QK(G)) =
⊕

χ∈Irr (G)/∼K

ζ(QK(G)εχ), εχ :=
∑

σ∈Gal(Kχ/K)

σ(eχ) ∈ ζ(Q
K(G)).

(7)
Now let β ∈ ζ(QK(G)εχ). We view β as an element in ζ(QE(G)εχ) which is
invariant under Gal(E/K). We may therefore write

β = (βσ)σ ∈
⊕

σ∈Gal(Kχ/K)

ζ(QE(G)σ(eχ)) ≃
⊕

σ∈Gal(Kχ/K)

QE(Γσχ)

where, by abuse of notation, σ denotes also a chosen lift of σ in Gal(E/K).
As we have already mentioned before, the uniqueness of γχ implies that γσχ =
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σ(γχ) for every σ ∈ Gal(E/K); thus β is determined by β1, and β1 lies in
QE(Γχ)

Gal(E/Kχ) = QKχ(Γ′
χ), where the equality is Lemma 1.2. Now β 7→ β1

induces an isomorphism ζ(QK(G)εχ) ≃ Q
Kχ(Γ′

χ).

Remark 1.6. In the special case, where K = Qp and G is a pro-p-group, a
similar result has been established by Lau [La12] using a different method. The
same is true for Corollary 1.9 below.

Corollary 1.7. Let K be a finite extension of Qp with ring of integers o.

Choose a maximal R-order Λ̃o(G) containing Λo(G). Then

ζ(Λ̃o(G)) ≃
⊕

χ∈Irr (G)/∼K

Λoχ(Γ′
χ),

where oχ denotes the ring of integers in Kχ.

Proof. This follows from Proposition 1.5 as Λoχ(Γ′
χ) is the integral closure of

R in QKχ(Γ′
χ).

Remark 1.8. Here, Λ̃o(G) is an order over R = o[[T ]], where we have identified
1+T with γp

n

for a chosen large n. Let us fix a χ ∈ Irr (G) in each equivalence
class over K. If m = m(χ) is sufficiently large, then γp

m

acts trivially on Vχ
and hence γp

m

χ = (γp
m

)wχeχ. Enlarging n and m if necessary (for the finitely
many χ), we may assume that pn = pm · wχ. Hence we may also assume that
the inclusion

R = o[[T ]] ֌ Λoχ(Γ′
χ)

is induced by 1 + T 7→ γ
pn/wχ
χ = x−p

m

(γ′χ)
pm ∈ Λoχ(Γ′

χ), where x−p
m

belongs
to U1

Kχ
by Lemma 1.2. We will fix such an n for the rest of the paper.

Corollary 1.9. The algebra QK(G) has Wedderburn decomposition

QK(G) ≃
⊕

χ∈Irr (G)/∼K

(Dχ)nχ×nχ ,

where nχ ∈ N and Dχ is a skewfield with center QKχ(Γ′
χ). If sχ denotes the

Schur index of Dχ, then we have an equality χ(1) = nχsχ.

Proof. All assertions are immediate from Proposition 1.5 apart from the last
equality. Let us denote the simple component (Dχ)nχ×nχ by Aχ. With E
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sufficiently large as in Proposition 1.5 we compute

(nχsχ)
2 = dimQKχ (Γ′

χ)
(Aχ)

= [Kχ : K]−1 · dimQK(Γ′
χ)
(Aχ)

(i)
= [Kχ : K]−1 · dimQE(Γχ)(E ⊗K Aχ)

(ii)
= [Kχ : K]−1 ·

∑

σ∈Gal(Kχ/K)

dimQE(Γχ)(Q
E(G)eσχ)

(iii)
= [Kχ : K]−1 ·

∑

σ∈Gal(Kχ/K)

σχ(1)2

= χ(1)2

Here, (i) follows from the equality QE(Γ′
χ) = Q

E(Γχ) which was established in
the proof of Lemma 1.2 (confer equation (6)). The isomorphism E ⊗K Aχ ≃
⊕

σ∈Gal(Kχ/K)Q
E(G)eσχ implies (ii), and (iii) is shown in the proof of [RW04,

Proposition 6].

Remark 1.10. In the case K = Qp and G a pro-p-group one can determine
the occurring skewfields explicitly (see [La12, Theorem 1] and also (15) below).

Theorem 1.11. Fix χ ∈ Irr (G) and let Aχ = (Dχ)nχ×nχ be the corresponding
simple component of QK(G). Then E ⊗K Aχ splits whenever one (and hence
every) irreducible constituent η of resGHχ can be realized over E. More precisely,
we then have an isomorphism

E ⊗K Aχ ≃
⊕

σ∈Gal(Kχ/K)

(

QE(Γ′
χ)
)

χ(1)×χ(1)
.

Proof. Recall that L = QK(Γp
n

) for our fixed sufficiently large n. Let E be
a finite extension of K and let L′ := E ⊗K L = QE(Γp

n

). As L′-vector space
and more generally as left L′[H ]-module, we have a decomposition

QE(G) =

pn−1
⊕

i=0

L′[H ]γi.

Now fix χ ∈ Irr (G) and let η be an irreducible constituent of resGHχ. Suppose
that η has a realization over E. Recall the definition (7) of εχ. As Kχ ⊆
K(η) ⊆ E, we have a decomposition

E ⊗K Aχ = QE(G)εχ =
⊕

σ∈Gal(Kχ/K)

QE(G)σ(eχ).

As the centers of QE(G)σ(eχ), σ ∈ Gal(Kχ/K) are isomorphic fields via (4)
(compare also the proof of Proposition 1.5), it suffices to show that QE(G)eχ
splits.
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Since E is a subfield of L′ we have L′[H ]e(η) ≃ L′
η(1)×η(1) and similarly for

every other irreducible constituent of resGHχ. We obtain

QE(G)eχ =

pn−1
⊕

i=0

L′[H ]eχγ
i

=

pn−1
⊕

i=0

wχ−1
⊕

j=0

L′[H ]e(ηγ
j

)γi

≃

pn−1
⊕

i=0

wχ−1
⊕

j=0

L′
η(1)×η(1)γ

i,

where we have used equation (3) for the second equality. We now choose an in-
decomposable idempotent fη = fηe(η) of L′[H ]e(η) ≃ L′

η(1)×η(1). Observe that

for a second indecomposable idempotent f ′
η of L′[H ]e(η) we have an isomor-

phism fηL
′[H ]f ′

η ≃ L
′. As QE(G)eχ is a simple algebra over its center QE(Γ′

χ)

by Corollary 1.9, and fη is also an idempotent in QE(G)eχ, it suffices to show
that fηQ

E(G)eχfη is a field, namely QE(Γ′
χ). For this, we first observe that

fη,i := γifηγ
−i is also an indecomposable idempotent for every 0 ≤ i < pn, and

belongs to L′[H ]e(ηγ
i

) as γie(η)γ−i = e(ηγ
i

) and H is normal in G. However,

e(η) = e(ηγ
i

) if and only if wχ divides i, and thus

fηL
′[H ]fη,i ≃

{

L′ if wχ | i
0 otherwise.

Since e(ηγ
j

)γifη = fη,ie(η
γj )γi we therefore have

fηQ
E(G)eχfη ≃

pn−1
⊕

i=0
wχ|i

L′γi =

w−1
χ pn−1
⊕

i=0

L′γwχi.

We conclude that dimL′(fηQ
E(G)eχfη) = w−1

χ pn. However, recall that

L′ = QE(Γp
n

) and γp
n

identifies with γ
pn/wχ
χ = x−p

n/wχ(γ′χ)
pn/wχ by Re-

mark 1.8, where x−p
n/wχ ∈ U1

Kχ
⊆ (L′)×. As L′-vector space we therefore

have a decomposition

QE(Γ′
χ) =

w−1
χ pn−1
⊕

i=0

L′(γ′χ)
i.

Thus we also have dimL′(QE(Γ′
χ)) = w−1

χ pn. Since QE(Γ′
χ) = ζ(QE(G)eχ) is

contained in fηQ
E(G)eχfη, we are done.
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Corollary 1.12. There is a finite Galois extension E of K such that

QE(G) ≃
⊕

χ∈Irr (G)/W

(QE(Γχ))χ(1)×χ(1),

where the sum runs through all χ ∈ Irr (G) modulo twists with characters of
type W . In particular, no skewfields occur in the Wedderburn decomposition of
the semi-simple algebra QE(G).

Proof. This is an immediate consequence of Theorem 1.11 and Corollary 1.9
once we observe that QE(Γχ) = Q

E(Γ′
χ) by (6) if E is sufficiently large.

Corollary 1.13. Write η(1) = sηnη, where sη denotes the Schur index of η.
Then sχ divides sη[K(η) : Kχ] and nη divides nχ.

Proof. By definition of the Schur index there is a field E of minimal degree sη
over K(η) such that η can be realized over E. However,

E ⊗K Aχ ≃ E ⊗K Q
Kχ(Γ′

χ)⊗QKχ (Γ′
χ)
Aχ

≃
⊕

σ∈Gal(Kχ/K)

E ⊗Kχ Q
Kχ(Γ′

χ)⊗QKχ (Γ′
χ)
Aχ

≃
⊕

σ∈Gal(Kχ/K)

QE(Γ′
χ)⊗QKχ (Γ′

χ)
Aχ

splits by Theorem 1.11. Now [Re03, Theorem 28.5] implies that sχ divides

[QE(Γ′
χ) : Q

Kχ(Γ′
χ)] = [E : Kχ] = sη[K(η) : Kχ].

Moreover, we have

wχsηnη = wχη(1) = χ(1) = nχsχ | nχsη[K(η) : Kχ] | nχsηwχ,

where the last divisibility is due to Lemma 1.1. Thus nη divides nχ as claimed.

Example. Assume that H is a p-group. Then sη = 1 for all irreducible
characters η of H by a result of Roquette [Ro58]. However, Lau [La12] gives
examples, where sχ = [K(η) : Kχ] is non-trivial.

Let us denote the global dimension of a ring Λ by gl.dim (Λ). The following
lemma is only needed to justify Remark 3.6 below and can be skipped on a
first reading.

Lemma 1.14. Let A be a separable L-algebra of finite dimension over L and let
Λ be a maximal R-order in A. If A is split, then there is a maximal o-order ∆
in Λ such that R⊗o ∆ = Λ (and thus L⊗o ∆ = A).
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Proof. There are natural numbers k > 0 and ni, 1 ≤ i ≤ k such that A =
⊕k

i=1 Ai and Ai ≃ Lni×ni . We put Λ̃i := Rni×ni and Λ̃ :=
⊕k

i=1 Λ̃i. Observe

that this is a maximal R-order in A by [Re03, Theorem 8.7]. Then ∆̃ :=
⊕k

i=1 oni×ni is a maximal o-order in
⊕k

i=1Kni×ni and has R ⊗o ∆̃ = Λ̃ and

L ⊗o ∆̃ = A. Since global dimension is invariant under Morita equivalence
(cf. [Ra69, Corollary, p. 476]), we have

gl.dim (Λ̃i) = gl.dim (R) = 2.

Moreover, Λ̃i/rad(Λ̃i) is a matrix ring over the residue field of R and thus a

simple artinian ring. As likewise Λ decomposes into Λ =
⊕k

i=1 Λi, where each
Λi is a maximal R-order in Ai, we may apply [Ra69, Theorem 5.4] in each
simple component: there is a unit ai ∈ Ai such that Λi = a−1

i Λ̃iai. We put

a :=
∑k

i=1 ai so that Λ = a−1Λ̃a. We further put ∆ := a−1∆̃a. Then ∆ is a
maximal o-order in Λ, and we have

R⊗o ∆ = a−1(R ⊗o ∆̃)a = a−1Λ̃a = Λ

as desired.

2 Traces and conductors

Let R be a noetherian integrally closed domain with quotient field L. If A
is a simple L-algebra, we denote by trA/L the reduced trace from A to L. If
A is separable, then by [Re03, Theorem 9.26] the reduced trace gives rise to
a symmetric associative nondegenerate bilinear form A × A → L which sends
(a, b) to trA/L(ab). Note that if A = L′ is a field, then tr L′/L = TrL′/L is the
ordinary trace of fields. Now let Λ be an R-order in A. By a Λ-lattice we mean
a finitely generated Λ-module which is torsionfree as R-module. We consider
duality with respect to the trace form: For each full left Λ-lattice M in A (that
is A⊗Λ M = A) we associate the dual right Λ-lattice

D(M/R) :=
{

x ∈ A | trA/L(xM) ⊆ R
}

.

In particular, applying this construction to the two-sided Λ-lattice Λ we obtain
a two-sided Λ-lattice D(Λ/R) which (by abuse of language) we will call the
inverse different of Λ with respect to R. If D(Λ/R) happens to be invertible,
we call D(Λ/R) := D(Λ/R)−1 the different of Λ with respect to R.

Lemma 2.1. Let R be a noetherian integrally closed domain with quotient field
L and let A be a simple separable L-algebra. Let L ⊆ L′ ⊆ ζ(A) be fields and
denote the integral closure of R in L′ by R′. Then for every maximal R-order
Λ in A, we have

D(Λ/R) ⊇ D(Λ/R′)D(R′/R)

with equality if D(R′/R) is invertible.
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Proof. As Λ is also a maximal R′-order by [Re03, Theorem 10.5], we have
Λ = R′Λ and D(Λ/R′) is defined. Let a ∈ D(Λ/R′) and b ∈ D(R′/R) be
arbitrary. Then

trA/L(abΛ) = trL′/L(trA/L′(abΛ)) = tr L′/L(btrA/L′(aΛ)) ⊆ tr L′/L(bR
′) ⊆ R

as desired. Now assume that D(R′/R) = D(R′/R)−1 is invertible. We conclude

x ∈ D(Λ/R) ⇐⇒ tr L′/L(trA/L′(xΛ)) ⊆ R

⇐⇒ tr L′/L(trA/L′(xR′Λ)) ⊆ R

⇐⇒ tr L′/L(R
′trA/L′(xΛ)) ⊆ R

⇐⇒ trA/L′(xΛ) ⊆ D(R′/R)

⇐⇒ trA/L′(xD(R′/R)Λ) ⊆ R′

⇐⇒ xD(R′/R) ⊆ D(Λ/R′)

⇐⇒ x ∈ D(Λ/R′)D(R′/R).

Now let A be a semisimple L-algebra and let Tr be the ordinary trace map from
A to L. For every x ∈ A we associate the homomorphism Tr x ∈ HomL(A,L)
defined by Tr x(a) := Tr (xa) for all a ∈ A. Let Λ be an R-order in A. For
a full left Λ-lattice M in A we may also consider duality with respect to the
ordinary trace form:

Dord (M/R) := {x ∈ A | Tr (xM) ⊆ R} = {x ∈ A | Tr x(M) ⊆ R}

is a right Λ-lattice in A. We have a canonical homomorphism of right Λ-modules

δM : Dord (M/R)→M+ := HomR(M,R), x 7→ Tr x|M , (8)

where λ ∈ Λ acts on f ∈ M+ as fλ(m) := f(λm) for all m ∈ M . Similar
observations hold for full right Λ-lattices in A.
Recall that an R-module M is called reflexive if the canonical map M →M++,
m 7→ [f 7→ f(m)] is an isomorphism.

Proposition 2.2. Let R be a noetherian integrally closed domain with quotient
field L. Let A be a semisimple L-algebra and let Λ be an R-order in A. If the
ordinary trace Tr gives rise to a nondegenerate bilinear form A × A → L,
(a, b) 7→ Tr (ab), then the homomorphism δM in (8) is an isomorphism for
every full Λ-lattice M in A. In particular, Dord (Dord (M/R)/R) = M if and
only if M is reflexive.

Proof. As the bilinear form A × A → L, (a, b) 7→ Tr (ab) is nondegenerate,
we have Tr x = Tr y if and only if x = y. It follows that the map δA : A →
HomL(A,L), x 7→ Tr x is injective and thus an isomorphism of L-vector spaces
as both sides have the same dimension over L. It is also a homomorphism of

Documenta Mathematica 19 (2014) 601–627



614 Andreas Nickel

right A-modules. Now let M be a full left Λ-lattice in A. Then δM is just
the restriction of δA to Dord (M/R) and thus injective. However, by [NSW08,
Remark p.268] restriction to M yields an isomorphism

M+ ≃ {φ ∈ HomL(A,L) | φ(M) ⊆ R}

= {Tr x | x ∈ A, Tr x(M) ⊆ R}

= {Tr x | x ∈ Dord (M/R)} .

Hence the image of δM is M+ as claimed.

We now return to the case L = Quot(R), where R = o[[T ]] is the power series
ring in one variable over the ring of integers o in K. Recall that as an L-vector

space we have QK(G) =
⊕pn−1

i=0 L[H ]γi =
⊕pn−1

i=0 Lγi[H ]. We denote by Tr
the ordinary trace map from QK(G) to L.

Lemma 2.3. The elements γih, 0 ≤ i < pn, h ∈ H form an L-basis of QK(G)
and

Tr (γih) =

{

pn|H | if γi = h = 1
0 otherwise.

Its dual basis with respect to Tr is given by (pn|H |)−1h−1γ−i, 0 ≤ i < pn,
h ∈ H.

Proof. It is clear that these elements form an L-basis of QK(G). Now let
0 ≤ i < pn and h ∈ H . We use the same basis to compute Tr (γih). For every
0 ≤ j < pn and h′ ∈ H , we have to write γihγjh′ as an L-linear combination
of these basis elements. However, γihγjh′ = γi+jhjh

′ with hj := γ−jhγj ∈ H .
This actually belongs to this basis if i+ j < pn; if i+ j ≥ pn, then γi+jhjh

′ =
γp

n

γi+j−p
n

hjh
′ with γp

n

∈ L = QK(Γp
n

). Since only the diagonal entries of
the corresponding pn|H |×pn|H | matrix contribute to Tr (γih), we now suppose
that γjh′ = γi+jhjh

′ if i+ j < pn, and that γjh′ = γi+j−p
n

hjh
′ if i + j ≥ pn.

In both cases we must have hj = 1 and thus h = 1. In the first case, we also
have j = i + j which forces i = 0, whereas in the second case j = i + j − pn

which gives i = pn. This contradicts i < pn and so the latter case does not
occur. We see that this matrix has all diagonal entries equal to zero if γih 6= 1;
hence Tr (γih) = 0 in this case. That Tr (1) = pn|H | is clear. It is now easily
checked that (pn|H |)−1h−1γ−i, 0 ≤ i < pn, h ∈ H is the dual basis.

Lemma 2.4. Let K ′ be a finite field extension of K with ring of integers o′ and
let a be a principal unit in some finite extension of K ′. Let n ∈ N0 and suppose
that ap

n

belongs to U1
K′ . Consider Λo

′

(Γ) as R-order via the embedding

ιa,n : R֌ Λo
′

(Γ), 1 + T 7→ (aγ)p
n

.

Then the inverse different

D(Λo
′

(Γ)/R) =
{

x ∈ QK
′

(Γ) | TrQK′ (Γ)/L(xΛ
o
′

(Γ)) ⊆ R
}
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is given by
D(Λo

′

(Γ)/R) = p−nD−1(o′/o)Λo
′

(Γ),

where D−1(o′/o) denotes the usual inverse different of o′ with respect to o. In
particular, D(Λo

′

(Γ)/R) is invertible.

Proof. First, we consider the case a = 1 and n = 0. If x1, . . . , xk form an o-
basis of o′, then x1, . . . , xk are also an o[[T ]]-basis of o′[[T ]] which is isomorphic
to Λo

′

(Γ) via 1 + T 7→ γ. Hence its dual basis with respect to the ordinary
trace TrK′/K of fields, is also a dual basis with respect to TrQK′ (Γ)/L. Hence

D(Λo
′

(Γ)/R) equals D−1(o′/o)Λo
′

(Γ) and is invertible in this case. For the
general case let ι′a,n : Λo

′

(Γ) ֌ Λo
′

(Γ) be induced from γ 7→ (aγ)p
n

. Then
ιa,n = ι′a,n ◦ ι1,0. We may therefore assume o = o′ by the first part of the proof
and an application of Lemma 2.1. The inverse different only depends upon the
image of R in Λo(Γ). However, ιa,n(R) = ι1,n(R) as ap

n

∈ U1
K′ . Thus we may

also assume a = 1. But in this case the result follows from Lemma 2.3 with
G = Γ.

By Corollary 1.9 we may write QK(G) =
⊕

χ∈Irr (G)/∼K
Aχ, where Aχ =

(Dχ)nχ×nχ , nχ ∈ N and Dχ is a skewfield with Schur index sχ and center
QKχ(Γ′

χ). Again by Corollary 1.9, we have χ(1) = sχnχ. Hence the ordinary
trace may be written as

Tr =
∑

χ∈Irr (G)/∼K

χ(1)tr χ, (9)

where tr χ denotes the reduced trace from Aχ to L. Moreover, we have

tr χ = TrQKχ (Γ′
χ)/L

◦ trAχ/QKχ (Γ′
χ)
, (10)

where TrQKχ (Γ′
χ)/L

denotes the ordinary trace of fields and trAχ/QKχ (Γ′
χ)

de-

notes the reduced trace from Aχ into its center. Recall from Remark 1.8 that
we have fixed a sufficiently large integer n ≥ 0 such that R = o[[T ]] embeds into
Λoχ(Γ′

χ) via 1 + T 7→ (x−1γ′χ)
pn/wχ . Now Lemma 2.1 and Lemma 2.4 (with

the embedding ιa,m, where a = x−1 and pm = pn/wχ) imply that the following
definition does not depend on the choice of the embedding.

Definition 2.5. Choose a maximal R-order Λ̃o(G) containing Λo(G). We
have a decomposition Λ̃o(G) =

⊕

χ∈Irr (G)/∼K
Λ̃o
χ(G), where each Λ̃o

χ(G) is a

maximal R-order in Aχ. For sufficiently large n we call the two-sided Λ̃o
χ(G)-

lattice

Dχ(Λ̃
o(G)) = Dnorm(Λ̃

o

χ(G)/R) := pnD(Λ̃o

χ(G)/R) =

= pn ·
{

x ∈ Aχ | tr χ(xΛ̃
o

χ(G)) ⊆ R
}

the normalized inverse different.
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Definition 2.6. Let Λ ⊆ Λ̃ be a pair of rings. Then

(Λ̃ : Λ)l :=
{

x ∈ Λ̃ | xΛ̃ ⊆ Λ
}

is called the left conductor of Λ̃ into Λ. Similarly,

(Λ̃ : Λ)r :=
{

x ∈ Λ̃ | Λ̃x ⊆ Λ
}

is called the right conductor of Λ̃ into Λ.

Proposition 2.7. Let Λ̃o(G) be a maximal R-order containing Λo(G). Then
Λo(G), the maximal order Λ̃o(G) as well as the left conductor (Λ̃o(G) : Λo(G))l
and the right conductor (Λ̃o(G) : Λo(G))r are reflexive (and thus free) R-
modules.

Proof. We first observe that R is a 2-dimensional regular local ring and thus
every reflexive R-module is free (and vice versa) by [NSW08, Proposition 5.1.9].
As Λo(G) is free over R, it is also reflexive. Moreover, every maximal R-order
is reflexive by [Re03, Theorem 11.4]. Finally, let M := (Λ̃o(G) : Λo(G))r (the
argument for (Λ̃o(G) : Λo(G))l is similar). We denote by P (R) the set of prime
ideals of R of height 1. AsM is R-torsionfree, the proof of [NSW08, Proposition
5.1.8] shows that we have an injection M ֌ M++ =

⋂

p∈P (R)Mp, where the

equality is [NSW08, Lemma 5.1.2]. Now let x ∈
⋂

p∈P (R)Mp be arbitrary;

we have to show that x ∈ M . For every p ∈ P (R) we have x ∈ Λ̃o(G)p and

Λ̃o(G)px ⊆ Λo(G)p. Thus x ∈
⋂

p∈P (R) Λ̃
o(G)p = Λ̃o(G) and

Λ̃o(G)x =
⋂

p∈P (R)

Λ̃o(G)px ⊆
⋂

p∈P (R)

Λo(G)p = Λo(G),

that is x ∈M .

We now establish the following analogue of Jacobinski’s conductor formula
[CR81, Theorem 27.8].

Theorem 2.8. Let Λ̃o(G) be a maximal R-order containing Λo(G). Then

(Λ̃o(G) : Λo(G))l = (Λ̃o(G) : Λo(G))r =
⊕

χ∈Irr (G)/∼K

|H |

χ(1)
Dχ(Λ̃

o(G)).

Proof. Put M := (Λ̃o(G) : Λo(G))r ; then M is the largest left Λ̃o(G)-lattice
in Λo(G). So its ordinary dual Dord (M/R) is the smallest right Λ̃o(G)-lattice
containing Dord (Λ

o(G)/R). Since Λo(G) is free over R with basis γih, 0 ≤ i <
pn, h ∈ H , we therefore have

Dord (M/R) = Dord (Λ
o(G)/R)Λ̃o(G) = (pn|H |)−1Λ̃o(G),
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where we have used Lemma 2.3 for the second equality. However, M is reflexive
by Proposition 2.7 and so Proposition 2.2 yields

M = Dord (Dord (M/R)/R) =

= Dord ((p
n|H |)−1Λ̃o(G)/R) = pn|H |Dord (Λ̃

o(G)/R).

The theorem now follows from the equalities

Dord (Λ̃
o(G)/R) =

⊕

χ∈Irr (G)/∼K

Dord (Λ̃
o

χ(G)/R)

Dord (Λ̃
o

χ(G)/R) = χ(1)−1D(Λ̃o

χ(G)/R)

= (χ(1)pn)−1Dχ(Λ̃
o(G)),

as a similar argument works for (Λ̃o(G) : Λo(G))l.

3 A formula for the central conductor

Definition 3.1. Let Λ̃o(G) be a maximal R-order containing Λo(G). Then the
central conductor of Λ̃o(G) into Λo(G) is defined to be

F(Λo(G)) = F(Λ̃o(G)/Λo(G)) := ζ(Λo(G)) ∩ (Λ̃o(G) : Λo(G))l

= ζ(Λo(G)) ∩ (Λ̃o(G) : Λo(G))r

=
{

x ∈ ζ(Λo(G)) | xΛ̃o(G) ⊆ Λo(G)
}

.

Remark 3.2. We will see below that the central conductor only depends on
Λo(G) and not on the choice of maximal order containing Λo(G). Hence the
notation F(Λo(G)) is justified.

By Corollary 1.9 we may write QK(G) =
⊕

χ∈Irr (G)/∼K
Aχ, where each Aχ ≃

(Dχ)nχ×nχ is simple. Similarly, Λ̃o(G) decomposes into
⊕

χ∈Irr (G)/∼K
Λ̃o
χ(G),

where each Λ̃o
χ(G) is a maximal R-order in Aχ with center Λoχ(Γ′

χ). The

central conductor is an ideal in ζ(Λ̃o(G)) =
⊕

χ∈Irr (G)/∼K
Λoχ(Γ′

χ) and so we
may write

F(Λ̃o(G)/Λo(G)) =
⊕

χ∈Irr (G)/∼K

Fχ(Λ̃
o(G)/Λo(G)),

where each Fχ(Λ̃
o(G)/Λo(G)) is an ideal in Λoχ(Γ′

χ). We define

dχ := QKχ(Γ′
χ) ∩D(Λ̃o

χ(G)/Λ
oχ(Γ′

χ)).

We denote by Pχ the set of prime ideals of Λoχ(Γ′
χ) of height 1.

Lemma 3.3. The fractional Λoχ(Γ′
χ)-ideal dχ is a reflexive Λoχ(Γ′

χ)-module

which does not depend on the choice of maximal order Λ̃o(G).
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Proof. We first show that dχ is reflexive. As it is torsionfree, we have an
injection dχ ֌ d++

χ =
⋂

p∈Pχ
(dχ)p. Now let x ∈

⋂

p∈Pχ
(dχ)p. Then clearly

x ∈ QKχ(Γ′
χ) and

trAχ/QKχ (Γ′
χ)
(xΛ̃o

χ(G)p) ⊆ Λoχ(Γ′
χ)p

for all p ∈ Pχ. This implies

trAχ/QKχ (Γ′
χ)
(xΛ̃o

χ(G)) ⊆
⋂

p∈Pχ

trAχ/QKχ (Γ′
χ)
(xΛ̃o

χ(G)p)

⊆
⋂

p∈Pχ

Λoχ(Γ′
χ)p

= Λoχ(Γ′
χ).

Thus x belongs to QKχ(Γ′
χ) ∩D(Λ̃o

χ(G)/Λ
oχ(Γ′

χ)) = dχ as claimed.

Now let Λ̆o(G) be a second maximal R-order containing Λo(G). Then likewise
Λ̆o(G) decomposes into

⊕

χ∈Irr (G)/∼K
Λ̆o
χ(G), where each Λ̆o

χ(G) is a maximal
R-order in Aχ. We put

d̆χ := QKχ(Γ′
χ) ∩D(Λ̆o

χ(G)/Λ
oχ(Γ′

χ)).

Fix a height 1 prime ideal p ∈ Pχ. By [AG60, Proposition 3.5] there is a unit

aχ ∈ Aχ such that Λ̆o
χ(G)p = aχΛ̃

o
χ(G)pa

−1
χ . Now let x ∈ QKχ(Γ′

χ). Then

trAχ/QKχ (Γ′
χ)
(xΛ̆o

χ(G)p) = trAχ/QKχ (Γ′
χ)
(xaχΛ̃

o

χ(G)pa
−1
χ )

= trAχ/QKχ (Γ′
χ)
(aχxΛ̃

o
χ(G)pa

−1
χ )

= trAχ/QKχ (Γ′
χ)
(xΛ̃o

χ(G)p),

where the second equality holds, since x is central in Aχ. Hence

trAχ/QKχ (Γ′
χ)
(xΛ̆o

χ(G)p) ⊆ Λoχ(Γ′
χ)p⇐⇒trAχ/QKχ (Γ′

χ)
(xΛ̃o

χ(G)p) ⊆ Λoχ(Γ′
χ)p,

that is (dχ)p = (d̆χ)p for all p ∈ Pχ. As both dχ and d̆χ are reflexive, this

implies dχ = d̆χ as desired.

Let πχ be a prime element in oχ and put pχ := πχΛ
oχ(Γ′

χ) ∈ Pχ.

Lemma 3.4. There is an integer rχ ≤ 0 such that dχ = p
rχ
χ . If the Schur index

sχ is not divisible by p, then rχ = 0 and thus dχ = Λoχ(Γ′
χ).

Proof. Let ∆χ be a maximal order in Dχ. Then (∆χ)nχ×nχ is a maximal order
in Aχ by [Re03, Theorem 8.7]. Let α ∈ (∆χ)nχ×nχ be the matrix with a 1 in
the upper left corner and zeros everywhere else. Let x ∈ dχ. Then in particular

trAχ/QKχ (Γ′
χ)
(xα) = x · trAχ/QKχ (Γ′

χ)
(α) = x · sχ ∈ Λoχ(Γ′

χ). (11)
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Here, the first equality follows from linearity of the reduced trace as x belongs
to QKχ(Γ′

χ). For the second equality we compute

trAχ/QKχ (Γ′
χ)
(α) = trDχ/QKχ (Γ′

χ)
(1) = sχ.

As sχ is an integer, it follows from (11) that x ∈ Λoχ(Γ′
χ)p for every p ∈ Pχ,

p 6= pχ. However, dχ is reflexive by Lemma 3.3 and thus we must have dχ = p
rχ
χ

for some integer rχ. Since obviously Λoχ(Γ′
χ) ⊆ dχ, we have rχ ≤ 0. Finally,

if p does not divide sχ, then by (11) we have x ∈ Λoχ(Γ′
χ)p for every p ∈ Pχ

including pχ and thus rχ = 0 in this case.

Theorem 3.5. Let Λ̃o(G) be a maximal order containing Λo(G). Then
F(Λ̃o(G)/Λo(G)) does not depend on the choice of maximal order Λ̃o(G) and
we have an equality

F(Λo(G)) = F(Λ̃o(G)/Λo(G)) =
⊕

χ∈Irr (G)/∼K

|H |wχ
χ(1)

·D−1(oχ/o)dχ.

Here, dχ = p
rχ
χ for some integer rχ ≤ 0. In particular, we have an inclusion

|H |wχ
χ(1)

·D−1(oχ/o)Λ
oχ(Γ′

χ) ⊆ Fχ(Λ̃
o(G)/Λo(G)), (12)

which becomes an equality after localization at every p ∈ Pχ different from pχ.
Moreover, the inclusion (12) is an equality in each of the following cases:

(i) G = H × Γ is a direct product.

(ii) The Schur index sχ is not divisible by p.

(iii) There is a maximal oχ-order ∆χ contained in Λ̃o
χ(G) such that

Λoχ(Γ′
χ)⊗oχ ∆χ = Λ̃o

χ(G).

Remark 3.6. Fix a p-adic Lie-group G of dimension 1. Then (ii) and (iii)
hold for all χ whenever K is sufficiently large. This follows from Theorem 1.11
and Lemma 1.14.

Remark 3.7. If p does not divide the order of the commutator subgroup of G,
then Λo(G) is a direct sum of matrix rings over commutative rings by [JN13,
Proposition 4.5]. In particular, no skewfields occur in the Wedderburn decom-
position of QK(G) and thus (ii) holds for every χ ∈ Irr (G).

Proof of Theorem 3.5. Let us define

δ−1
χ := pnD−1(Λoχ(Γ′

χ)/R) = wχ ·D
−1(oχ/o)Λ

oχ(Γ′
χ),

where the second equality follows from Lemma 2.4 and Remark 1.8.

Lemma 3.8. We have an equality Dχ(Λ̃
o(G)) = D(Λ̃o

χ(G)/Λ
oχ(Γ′

χ)) · δ
−1
χ .
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Proof. This is a special case of Lemma 2.1.

By Theorem 2.8 and the definition of the central conductor we obtain

Fχ(Λ̃
o(G)/Λo(G)) = Λoχ(Γ′

χ) ∩

(

|H |

χ(1)
·Dχ(Λ̃

o(G))

)

for each χ ∈ Irr (G). Hence it must be shown that

Λoχ(Γ′
χ) ∩

(

|H |

χ(1)
·Dχ(Λ̃

o(G))

)

=
|H |

χ(1)
δ−1
χ dχ (13)

for each character χ. We note that

|H |

χ(1)
δ−1
χ dχ ⊆

|H |

χ(1)
Dχ(Λ̃

o(G)) ⊆ Λ̃o(G);

so each element of |H|
χ(1)δ

−1
χ dχ is integral over R, and thus lies in Λoχ(Γ′

χ). This

gives one inclusion in (13). Now let y ∈ Λoχ(Γ′
χ). Then by Lemma 3.8 we have

y ∈
|H |

χ(1)
·Dχ(Λ̃

o(G)) ⇐⇒ yδχ ⊆
|H |

χ(1)
D(Λ̃o

χ(G)/Λ
oχ(Γ′

χ))⇐⇒ yδχ ⊆
|H |

χ(1)
dχ

giving the reverse inclusion in (13). Lemma 3.3 and Lemma 3.4 imply the
remaining assertions apart from the claim that rχ = 0 in case (i) and (iii).
Let us first assume that G = H × Γ is a direct product. Choose a maximal
o-order M(H) containing o[H ]. Let χ ∈ Irr (G). Then resGHχ = η is an
irreducible character of H and there is a character ρ of type W such that χ⊗ρ
is trivial on Γ. As χ ∼K χ ⊗ ρ, we may henceforth assume that ρ = 1. We
then have wχ = 1, Kχ = K(η), eχ = e(η) and γχ = γeχ = γ′χ. Then M(H)εχ

is a maximal oχ-order such that Λ̃o
χ(G) := Λoχ(Γ) ⊗oχ M(H)εχ is a maximal

R-order in Aχ. It follows that (i) is a special case of (iii).
Now assume that (iii) holds and let y ∈ (dχ)pχ be arbitrary. We have to show
that y ∈ Λoχ(Γ′

χ)pχ . As the reduced trace is QKχ(Γ′
χ)-linear, we may alter y

by a unit in Λoχ(Γ′
χ)pχ so that we may assume that y = πkχ for an appropriate

integer k; in particular, we then have y ∈ Kχ. By hypothesis there is a maximal
oχ-order ∆χ contained in Λoχ(Γ′

χ) such that QKχ(Γ′
χ) ⊗oχ ∆χ = Aχ. Hence

an oχ-basis of ∆χ is also a QKχ(Γ′
χ)-basis of Aχ which we may use to compute

the reduced trace. Hence y ∈ Kχ has

trKχ⊗oχ∆χ/Kχ
(y∆χ) ⊆ Λoχ(Γ′

χ)pχ ∩Kχ = oχ

and we have to show that y ∈ oχ; in other words we shall show that Kχ ∩
D−1(∆χ/oχ) = oχ. Suppose that this is not true. Then oχ is properly contained
in Kχ ∩ D−1(∆χ/oχ). Then p−1

χ ⊆ D−1(∆χ/oχ) and thus pχ∆χ contains
D(∆χ/oχ). However, if Pχ denotes the radical of ∆χ, then pχ∆χ = Pe

χ for
some positive integer e and D(∆χ/oχ) = Pe−1

χ by [Re03, Theorems 20.3 and
14.3], a contradiction.
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Example. Assume that G = H × Γ is a direct product and thus

Λo(G) = Λo(Γ)[H ] = Λo(Γ)⊗o o[H ]. (14)

Let χ ∈ Irr (G). As we have seen in the proof of Theorem 3.5 we then have
wχ = 1, Kχ = K(η) and γ′χ = γeχ. Hence

F(Λo(G)) =
⊕

χ∈Irr (G)/∼K

|H |

χ(1)
·D−1(oχ/o)Λ

oχ(Γ) = Λo(Γ)⊗o F(o[H ])

which can be shown more directly using (14) and Jacobinski’s central conduc-
tor formula (1). So the main obstacle to derive Theorem 3.5 directly from
Jacobinski’s result is the fact that in general G = H ⋊ Γ is only semi-direct.

We finally determine the integers rχ wheneverG is a pro-p-group. For simplicity
we will also assume that K = Qp. Then Kχ = Qp,χ and oχ =: Zp,χ denotes
the ring of integers in Qp,χ. Let Qη and Qχ be the maximal ideals in Zp[η] and
Zp,χ, respectively. If x is a rational number, we let ⌊x⌋ ∈ Z denote the largest
integer such that ⌊x⌋ ≤ x.

Theorem 3.9. Assume that G is a pro-p-group and a p-adic Lie group of
dimension 1. Fix χ ∈ Irr (G) and let Aχ ≃ (Dχ)nχ×nχ be the corresponding

simple component of Q(G). Write D(Zp[η]/Zp,χ) = Q
kχ
η for some integer kχ ≥

0. Then Dχ is a cyclic skewfield with Schur index sχ = [Qp(η) : Qp,χ] and

rχ = −⌊
kχ
sχ
⌋.

Proof. By [La12, Theorem 1] we know that Dχ is a cyclic skewfield with
Schur index sχ = [Qp(η) : Qp,χ]. More precisely, the extension Qp(η)/Qp,χ
is cyclic and totally ramified, as G is pro-p and thus Qp(η) is a subfield of
Qp(ζpm) for some positive integer m. Let σ be a generator of the Galois group
Gal(Qp(η)/Qp,χ). Then by [La12, Theorem 1] the skewfield Dχ is given by

Dχ ≃

sχ−1
⊕

i=0

(

QQp(η)(Γsχ)
)

γi, (15)

where γsχ is a topological generator of Γsχ ≃ Zp and for x ∈ QQp(η)(Γsχ) we
have γx = σ(x)γ (note that this is not the same Γ as in G = H ⋊ Γ; it is just
a topological group isomorphic to Zp which we again denote by Γ). Then Dχ

has center QQp,χ(Γsχ) which is isomorphic to QQp,χ(Γ′
χ) under the isomorphism

(15). Now let d =
∑sχ−1
i=0 xiγ

i ∈ Dχ be arbitrary, xi ∈ Q
Qp(η)(Γsχ), 0 ≤ i < sχ.

We claim that

trDχ/QQp,χ (Γsχ )(d) = TrQQp(η)(Γsχ )/QQp,χ (Γsχ )(x0). (16)
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For this one only has to check that we have an isomorphism

Qp(η)⊗Qp,χ Dχ ≃ (QQp(η)(Γ))sχ×sχ

x0 7→











x0
σ(x0)

. . .

σsχ−1(x0)











γ 7→













0 γ

γ
. . . 0
. . . 0

...
γ 0













From this one can easily compute the reduced trace in (16). Now put

Σχ :=

sχ−1
⊕

i=0

(

ΛZp[η](Γsχ)
)

γi ⊆ Dχ.

Then Σχ is a ΛZp,χ(Γsχ)-order in Dχ. Moreover, QηΣχ is a two-sided ideal of
Σχ, since γQη = σ(Qη)γ = Qηγ. We consider the ΛZp,χ(Γsχ)pχ -order Σpχ :=
(Σχ)pχ in Dχ. Then QηΣpχ is again two-sided and we have

(QηΣpχ)
sχ = QχΣpχ = pχΣpχ ⊆ rad(Σpχ).

Hence also QηΣpχ ⊆ rad(Σpχ) by [Re03, §6, Exercise 3]. We now observe that
γ 7→ 1 + T induces an isomorphism

Σχ/QηΣχ ≃ Fp[[T ]].

Moreover, this isomorphism induces

Σpχ/QηΣpχ ≃ Fp((T ))

and thus the inclusion QηΣpχ ⊆ rad(Σpχ) is an equality. Moreover, the order
Σpχ is quasi-local. As Qη is a principal ideal, there is a short exact sequence

0→ Σpχ → Σpχ → Fp((T ))→ 0

and thus the projective dimension of Fp((T )) considered as left Σpχ-module
equals 1. Now [Ra69, Corollary 1.3] gives that also gl.dim (Σpχ) = 1. It then
follows from [AG60, Theorem 2.3] that Σpχ is a maximal ΛZp,χ(Γsχ)pχ -order.
By (16) we find that

trDχ/QQp,χ (Γsχ )(Σpχ) = TrQQp(η)(Γsχ )/QQp,χ (Γsχ )(Λ
Zp[η](Γsχ)pχ)

= TrQp(η)/Qp,χ(Zp[η])Λ
Zp,χ(Γsχ)pχ

= Q
r′χ
χ ΛZp,χ(Γsχ)pχ ,
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where r′χ ∈ Z is maximal such that

Zp[η] ⊆ Q
r′χ
χ D(Zp[η]/Zp,χ)

−1 = Q
sχr

′
χ−kχ

η

and thus r′χ = ⌊
kχ
sχ
⌋. Now let x ∈ QQp,χ(Γsχ). Then x belongs to (dχ)pχ if and

only if

trDχ/QQp,χ (Γsχ )(x · Σpχ) = x · trDχ/QQp,χ (Γsχ )(Σpχ) ⊆ ΛZp,χ(Γsχ)pχ

and thus if and only if x ∈ p
−r′χ
χ . Therefore we have rχ = −r′χ = −⌊

kχ
sχ
⌋ as

desired.

Example. We continue the example in [La12, p. 1233]. For this let p = 3
and let H be the cyclic group of order 9. Choose a generator h of H . We
put G = H ⋊ Γ, where the action of Γ on H is determined by γhγ−1 = h4.
Let η be the irreducible character of H with η(h) = ζ9. Then St(η) = H ×
〈γ3〉 and χ = indGSt(η)χ

′ with χ′(h) = η(h) and χ′(γ3) = 1 is an irreducible
character of G with open kernel. We have χ(1) = wχ = 3 and Qp(η) = Qp(ζ9),
Qp,χ = Qp(ζ3). We see that sχ = [Qp(ζ9) : Qp(ζ3)] = 3. Moreover, the
different D(Zp[ζ9]/Zp[ζ3]) is easily computed and we find that kχ = 3. Thus

rχ = −⌊
kχ
sχ
⌋ = −1 is non-trivial and (12) is a proper inclusion in this case.

4 Consequences of the central conductor formula

In this section we derive several consequences of our main Theorem 3.5.

4.1 Extensions of lattices

Corollary 4.1. Let M be a Λo(G)-lattice and let N be a finitely generated
Λo(G)-module. Then





⊕

χ∈Irr (G)/∼K

|H |wχ
χ(1)

·D−1(oχ/o)dχ



 · ExtiΛo(G)(M,N)

is finite for all integers i ≥ 1.

Proof. An R-module M is finite if and only if it is pseudo-null, i.e. Mp = 0
for every height one prime ideal p of R. We do induction on the integer i. As
Rp is a Dedekind domain for every height one prime ideal p, the case i = 1 is
now immediate from Theorem 3.5 and [CR81, Theorem 29.4]. For k sufficiently
large, there is an exact sequence

M ′
֌ Λo(G)k ։M.

Documenta Mathematica 19 (2014) 601–627



624 Andreas Nickel

Then M ′ also is a Λo(G)-lattice. Applying HomΛo(G)(−, N) to the above exact
sequence gives isomorphisms

ExtjΛo(G)(M
′, N) ≃ Extj+1

Λo(G)(M,N)

for all integers j ≥ 1. The case j = i− 1 gives the induction step.

Example. The stronger statement that the central conductor annihilates
ExtiΛo(G)(M,N) is not true. Assume that G = Γ and K = Qp. Then Corollary

4.1 simply asserts that ExtiΛ(Γ)(M,N) is finite for every finitely generated
torsionfree Λ(Γ)-module M and every finitely generated Λ(Γ)-module N .
Suppose that ExtiΛ(Γ)(M,N) = 0 for every finitely generated Λ(Γ)-module N ;
then M is projective and thus free as Λ(Γ)-module. However, there are many
examples of torsionfree Λ(Γ)-modules which are not free (take for example the
maximal ideal of Λ(Γ)).

For χ ∈ Irr (G) we put a−1
χ := (D−1(oχ/o) ∩K) · R ⊇ R.

Corollary 4.2. We have

⋂

χ∈Irr (G)/∼K

|H |wχ
χ(1)

· a−1
χ ⊆ R ∩ F(Λ

o(G)).

In fact, if rχ = 0 for all χ ∈ Irr (G), then a proof similar to that of [CR81,
Theorem 27.13(ii)] shows that the inclusion in Corollary 4.2 is an equality.

For every Λo(G)-module M let Υ(M) :=
{

eχ | eχ · Q
K(G) ⊗Λo(G) M = 0

}

.

Corollary 4.3. Let M and N be Λo(G)-lattices and let i ≥ 1 be an integer.
Then





⋂

eχ 6∈Υ(M)

|H |wχ
χ(1)

· a−1
χ



ExtiΛo(G)(M,N)

is finite. In particular,
(

⋂

χ∈Irr (G)/∼K

|H|wχ
χ(1) · a

−1
χ

)

· ExtiΛo(G)(M,N) is finite

for every Λo(G)-lattices M and N and every integer i ≥ 1.

Proof. The last assertion is an immediate consequence of Corollary 4.1 and
Corollary 4.2. The first assertion is also easy and is shown exactly in the same
way as [CR81, Theorem 29.9].

Corollary 4.4. Let M and N be Λo(G)-lattices and assume that
QK(G) ⊗Λo(G) M is absolutely simple. Then there is a unique idempotent

eχ 6∈ Υ(M) and for every integer i ≥ 1 we have that
|H|wχ
χ(1) ·Ext

i
Λo(G)(M,N) is

finite.
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Example. Assume that p divides |H | and that K = Qp. We consider Λ(Γ)
as Λ(G)-module in the natural way; then Q(G)⊗Λ(G)Λ(Γ) is absolutely simple
and eχ0 is the unique idempotent not contained in Υ(Λ(Γ)), where χ0 denotes
the trivial character. Moreover, we have χ0(1) = 1 and wχ0 = 1. Let ∆(G,Γ)
be the kernel of the augmentation map aug : Λ(G) ։ Λ(Γ) which sends each
h ∈ H to 1. We then have an exact sequence

HomΛ(G)(Λ(Γ),∆(G,Γ)) ֌ HomΛ(G)(Λ(Γ),Λ(G))
aug ∗−→ HomΛ(G)(Λ(Γ),Λ(Γ))

։ Ext1Λ(G)(Λ(Γ),∆(G,Γ)).

We have a canonical isomorphism HomΛ(G)(Λ(Γ),Λ(Γ)) ≃ Λ(Γ), f 7→
f(1) and the image of aug ∗ in Λ(Γ) under this identification is given by
aug ((

∑

h∈H h)Λ(G)) = |H |Λ(Γ). We therefore have a canonical isomorphism

Ext1Λ(G)(Λ(Γ),∆(G,Γ)) ≃ Λ(Γ)/|H |Λ(Γ);

in particular, this module is not finite. However, |H |Ext1Λ(G)(Λ(Γ),∆(G,Γ)) =
0 is finite.

4.2 Non-commutative Fitting invariants

For the following we refer the reader to [Ni10]. Let A be a separable L-algebra
and Λ be an R-order in A, finitely generated as R-module, where R is an
integrally closed complete commutative noetherian local domain with field of
quotients L. Let N and M be two ζ(Λ)-submodules of an R-torsionfree ζ(Λ)-
module. Then N and M are called nr(Λ)-equivalent if there exists an integer
n and a matrix U ∈ Gln(Λ) such that N = nr(U) ·M , where nr : A → ζ(A)
denotes the reduced norm map which extends to matrix rings over A in the
obvious way. We denote the corresponding equivalence class by [N ]nr(Λ). We
say that N is nr(Λ)-contained in M (and write [N ]nr(Λ) ⊆ [M ]nr(Λ)) if for all
N ′ ∈ [N ]nr(Λ) there exists M ′ ∈ [M ]nr(Λ) such that N ′ ⊆M ′. We will say that
x is contained in [N ]nr(Λ) (and write x ∈ [N ]nr(Λ)) if there is N0 ∈ [N ]nr(Λ)

such that x ∈ N0. Now let M be a finitely presented (left) Λ-module and let

Λa
h
−→ Λb ։M (17)

be a finite presentation of M . We identify the homomorphism h with the
corresponding matrix in Ma×b(Λ) and define S(h) = Sb(h) to be the set of all
b× b submatrices of h if a ≥ b. The Fitting invariant of h over Λ is defined to
be

FittΛ(h) =

{

[0]nr(Λ) if a < b
[

〈nr(H) | H ∈ S(h)〉ζ(Λ)

]

nr(Λ)
if a ≥ b.

We call FittΛ(h) a Fitting invariant of M over Λ. One defines Fittmax
Λ (M)

to be the unique Fitting invariant of M over Λ which is maximal among all
Fitting invariants of M with respect to the partial order “⊆”.
We now specialize to the situation in this article, where Λ is Λo(G). Then
Theorem 3.5 and [JN13, Corollary 6.2] imply the following result.
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Corollary 4.5. Let M be a finitely presented Λo(G)-module. Then





⊕

χ∈Irr (G)/∼K

|H |wχ
χ(1)

·D−1(oχ/o)dχ



 · Fittmax
Λo(G)(M) ⊆ AnnΛo(G)(M).

Together with Corollary 4.2 and [Ni10, Lemma 3.4] this yields the following
corollary.

Corollary 4.6. Let M be a finitely presented Λo(G)-module. Then




⋂

eχ 6∈Υ(M)

|H |wχ
χ(1)

· a−1
χ



 · Fittmax
Λo(G)(M) ⊆ AnnΛo(G)(M).

Remark 4.7. Note that in fact H(Λo(G)) · Fittmax
Λo(G)(M) ⊆ AnnΛo(G)(M),

where H(Λo(G)) is a certain ideal of ζ(Λo(G)) which always contains the central
conductor. In general, however, this containment is not an equality. Though
the ideal H(Λo(G)) is hard to determine in general, considerable progress is
made in [JN13]; in particular, by [JN13, Proposition 4.5] one knows that
H(Λo(G)) equals ζ(Λo(G)) (to wit: is best possible) if and only if p does not
divide the order of the commutator subgroup of G (which is finite).
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