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ABSTRACT. Let o be the ring of integers in a finite extension of Q,.
If G is a finite group and I is a maximal o-order containing the group
ring o[G], Jacobinski’s conductor formula gives a complete description
of the central conductor of I' into 0[G] in terms of characters of G.
We prove a similar result for completed group algebras o[[G]], where
G is a p-adic Lie group of dimension 1. We will also discuss several
consequences of this result.
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INTRODUCTION

Let o be the ring of integers in a number field K (or in a finite extension K of
Q) and consider the group ring o[G] of a finite group G over o. The central
conductor F(0[G]) consists of all elements z in the center of o[G] such that
2T C 0[G], where I' C K[G] is a chosen maximal o-order containing o[G], i.e.

F(o[G]) = {z € ((o[G]) | 2T € o[G]}.

Here, we write ((A) for the center of a ring A. A result of Jacobinski [Ja66]
(see also [CR81, Theorem 27.13]) gives a complete description of the central
conductor in terms of the irreducible characters of G. More precisely, we have

|Gl

X(l)g_l(ﬂ[xl/t’), (1)

FlolG) =P

X
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602 ANDREAS NICKEL

where ®71(0[x]/0) denotes the inverse different of o[y], the ring of integers in
K(x) == K(x(9) | g € G), with respect to o, and the sum runs through all
absolutely irreducible characters of G modulo the following Galois action: If
X is an absolutely irreducible character of G and o belongs to Gal(K (x)/K),
then o acts on x as “x(g) = o(x(g)) for every g € G. Jacobinski’s main interest
was in determining annihilators of Ext; in fact, he showed that

F(0[G]) - Extyig (M, N) =0

for all o[G]-lattices M and o[G]-modules N. For instance, it can be deduced
from this result that |G|/x(1) annihilates Exti[G] (M,,N) if M, is an o[G]-
lattice such that K ®, M, is absolutely simple with character x. Later,
Roggenkamp [Ro71] showed that the annihilators obtained in this way are in
fact the best possible in a certain precise sense.

In this article we consider completed group algebras o[[G]], where o denotes
the ring of integers in a finite extension K of Q, and G is a p-adic Lie group
of dimension 1. Hence G may be written as a semi-direct product H x I'" with
finite H and a cyclic pro-p-group I', isomorphic to Z,. We will exclude the
special case p = 2, as we will make heavily use of results of Ritter and Weiss
[RW04] (where the underlying prime is assumed to be odd) on the total ring
of fractions Q¥ (G) of o[[G]]. However, it turns out that the results provided
by Ritter and Weiss are not sufficient for our purposes and so we shall have
to determine the structure of Q¥ (G) in more detail, thereby generalizing and
extending results of Lau [Lal2| (where K = Q, and G is pro-p). We will do
this in the first section. In section 2 we provide the necessary preparations
for our main theorem including results on reduced traces and conductors. The
main theorem will then be stated and proved in section 3. More precisely, if we
define the central conductor in complete analogy to the group ring case, then
we have an inclusion

Hlwy -1 0,/0)o,[[I" 0
D 2 /ool € FlG)), @)

X/~

where the sum runs through all absolutely irreducible characters of G with
open kernel up to a certain explicit equivalence relation. Moreover, w, is the
index of a certain subgroup (depending on x) in G and o, denotes the ring
of integers in K, := K(x(h) | h € H). Finally, I} is a cyclic pro-p-group
which has an explicitly determined topological generator. We will give precise
definitions later in the text. The inclusion (2) is not far from being an equality.
In fact, we show that its ‘y-part’ becomes an equality after localization at any
height 1 prime ideal of o, [[I"} ] that does not contain p. It is an equality if
G = H x T is a direct product or if no skewfields occur in the Wedderburn
decomposition of Q¥ (@) (in fact it suffices to suppose that the Schur indices
are not divisible by p). Moreover, we will also explicitly determine the central
conductor whenever G is a pro-p-group; we use this to give an example where
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A CoNDUCTOR FORMULA FOR COMPLETED GROUP ALGEBRAS 603
(2) is a proper inclusion.

The proof of Jakobinski’s central conductor formula does not carry over
unchanged to the present situation for two reasons. First, the completed group
algebra is an order over the power series ring o[[T"]], but there is no canonical
choice of embedding of o[[T]] into ((0[[G]]). Secondly and more seriously, the
ring o[[T]] is a regular local ring, but it is not a Dedekind domain. Further-
more, even if we localize at a height one prime ideal, the residue field will
not be finite. Hence we do not have the well elaborated theory of maximal
orders over discrete valuation rings with finite residue field at our disposal. In
the aforementioned two cases, when G = H x I' is a direct product or when
no skewfields occur in the Wedderburn decomposition, we will overcome this
problem by replacing our chosen maximal o[[T]]-order by a suitable maximal
o-order. When G is a pro-p-group, it is the explicit description of the occurring
skewfields due to Lau [Lal2] which allows us to determine the central conductor.

Finally, we derive some consequences in section 4. In particular, we obtain
results for the corresponding Ext-groups in analogy to the group ring case.
We also apply our main result to the theory of non-commutative Fitting
invariants introduced by the author [Nil0] and further developed in [JN13].
This theory may be applied to o[[G]]-modules even if G is non-abelian, but in
contrast to the commutative case, the Fitting invariant of a finitely presented
o[[G]]-module M might not be contained in the annihilator of M. To obtain
annihilators one has to multiply by a certain ideal H(o[[G]]) of {(0[[G]]) which
is hard to determine in general. However, it is easily seen that H(o[[G]]) always
contains the central conductor so that our main theorem provides a method
to compute explicit annihilators of a finitely presented o[[G]]-module, at least,
if we are able to compute its Fitting invariant.

ACKNOWLEDGEMENT. The author is indebted to Henri Johnston for his
many suggestions and helpful remarks.

1 THE TOTAL RING OF FRACTIONS OF A COMPLETED GROUP ALGEBRA

Let p be an odd prime and let G be a profinite group containing a finite normal
subgroup H such that G/H ~ T for a pro-p-group I', isomorphic to Z,; thus
G can be written as a semi-direct product H x I' and is a p-adic Lie group of
dimension 1. We denote the completed group algebra Z,[[G]] by A(G) that is

AMG) = Z,[[G]] = lim Z, [G/N],

where the inverse limit is taken over all open normal subgroups N of G. If
K is a finite field extension of Q, with ring of integers o, we put A°(G) :=
0®z, A(G) = o[[G]]. We fix a topological generator v of I" and choose a natural
number n such that v*" is central in G. Since we also have that T?" ~ Zy, there
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604 ANDREAS NICKEL

is an isomorphism of[["?"]] ~ o[[T]] induced by v*" — 1 + T. Here, R := o|[T]]
denotes the power series ring in one variable over o. If we view A°(G) as an
R-module (or more generally as a left R[H]-module), there is a decomposition

Hence A°(Q) is finitely generated and free as an R-module and is an R-order in
the separable L := Quot(R)-algebra Q¥ (G) := L ®r A°(G). Note that Q¥ (Q)
is obtained from A°(G) by inverting all regular elements. By [RW04, Lemma
1] we have Q¥ (@) = K ®q, Q(G), where Q(G) := Q% (G) denotes the total
ring of fractions of A(G).

Let Qj, be an algebraic closure of Q, and denote by Irr (G) the set of absolutely
irreducible Qf-valued characters of G with open kernel. Fix x € Irr (G). Let n
be an irreducible constituent of res §x. Then G acts on 1 as n9(h) = (g~ 'hg)
for g € G, h € H, and we set

St = {geGn? =}, eln) :%Zn(h% = S en).

heH n\resgx

Choose a finite Galois extension F of K such that the character x has a re-
alization V) over E. By [RWO04, Corollary to Proposition 6| e, is a primitive
central idempotent of QF (G). In fact, it is shown that every primitive central
idempotent of Q°(G) := Qj ®g, Q(G) is an ey, and e, = ey if and only if
X = X’ ® p for some character p of G of type W (i.e. resGp = 1).

By Clifford theory [CR81, Proposition 11.4] the irreducible constituents of
res gx are precisely the conjugates of 1 under the action of G, each occur-
ring with the same multiplicity z,. By [RW04, Lemma 4| we have z, = 1 and
thus equalities

wy—1 wy—1

res @y = Z n”i, ey = Z e(n”i) = |I)§(|31)) Z x(h™Hh, (3)
i=0 X

=0 heH

where w, := [G : St(n)]. Note that w, is a power of p as H is a subgroup of
St(n). We now put

Ky = K(x(h) | h € H) C K(n) = K(n(h) | h € H)

and note that K, = K,g, whenever p is of type W. As g"'Hg = H, we
have K(n9) = K(n) for every g € G and thus K(n) does not depend on the
particular choice of irreducible constituent of res fl X-

We let 0 € Gal(Q5,/K) act on x as “x(g) = o(x(g)) for all g € G' and similarly
on characters of H. Note that the actions on res %x and n factor through
Gal(K,/K) and Gal(K(n)/K), respectively.
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A CoNDUCTOR ForMULA FOR COMPLETED GROUP ALGEBRAS 605

LEMMA 1.1. The degree [K(n) : K,] divides w,; in particular, it is a power of
p.

Proof. Fix o in Gal(K(n)/K,). As o acts trivially on res %y, the character
?n also is an irreducible constituent of res %X- Hence there are irreducible
constituents 7, ...,ns of res flx such that res flx may be written as

S
resgx = Z Z 715

i=1 ceGal(K (1n:)/Kx)

Then wy,n(1) = x(1) = >0 [K () : Ky]ni(1) = s[K(n) : Ky]n(1) as desirecé

By [RW04, Proposition 5| there is a unique element 7, € ((Q°(G)e,) such that
Yx acts trivially on V) and v, = v"“x - ¢ = ¢ - y"x, where ¢ € (Q5[H]e,)*. An
analysis of the proof in fact shows that ¢ € (E[H]e,)* if both x and 7 have
realizations over E. We can and do assume this in the following. Again by
[RW04, Proposition 5] the element ~, generates a procyclic p-subgroup Iy of
(QF(G)ey)*. Moreover, 7, induces an isomorphism QF (T'y) — ((QF(G)ey)
by [RW04, Proposition 6].

We let 0 € Gal(E/K) act on QF(GQ) = E®k QK (G) as oz ®@y) = o(z) @y
for all z € E and y € Q¥ (G). We then have

olex) =eay, o(vy) =7y (4)

for every o € Gal(E/K); here, the latter equality follows from the uniqueness
of 4o. By (3) we have o(ey) = e, whenever 0 € Gal(E/K,); in particular, we
have an action of Gal(E/K,) on ((QF(G)e,).

For a finite extension F of Q, let U} denote the group of principal units in F.

LEMMA 1.2. Fiz x € Irr (G). Then there is a principal unit v = z,, € Up, with
the following properties.

(i) The element vy, := a7y is invariant under the action of Gal(E/K,) on
C(QE(G)ex)'
(ii) Let m >0 be an integer. If ~AP" acts trivially on Vi, then 2" belongs to
UL
X
Moreover, if F;( denotes the procyclic p-subgroup generated by 'y;(, then
QE(FX)Gal(E/KX) _ QKX (F;()

Proof. We first observe that all claims do not depend on the choice of E. To
see this let F' be a second finite Galois extension of K such that the character
x can be realized over F. Replacing F' by FF we may assume F C F. If
there is an x € U} with (i) and (ii), then we may use the same z for F
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606 ANDREAS NICKEL

as UL C Uj. Conversely, suppose there is an z € U} which fulfills (i) and
(ii) with E replaced by F. Let ¢ € Gal(F/E) be arbitrary. Then o acts
trivially on v, as v, € ((QF(G)ey), and it acts trivially on Yy by (i). Hence
o(z) = o(¥)o(r) ™t = %! = x and thus © € Up N E = Uf as desired.
Finally, as Gal(F/FE) acts trivially on 7, , we have Q' (T',)¢21("/E) = QF(T, ),
and thus the last statement of the Lemma does not depend on F either.

We now may assume that E is obtained from K, by adjoining roots of unity.
More precisely, the group G/ker(x) is finite as y has open kernel, and by
[CR81, Theorem 15.16] we may take E = K, (¢), where ¢ is a root of unity
of order |G/ ker(x)|. Let us denote by p,(E) the group of all p-power roots of
unity in E. Let 0 € Gal(E/K,) be arbitrary. Then res §x = res §7y and thus
X = X ® po for some character p, of type W. Hence o(7y) = Yoy, = {57y With
Co = po(7)~"x € pp(E) by [RWO04, Proposition 5|. The assignment

Gal(E/Ky) = up(E), o (= 'y;*l

is a 1-cocycle. Let Ey be the maximal unramified extension of K, in F. Then
E = Ey(up(E)) and thus H'(Gal(E/Ey), up(E)) = 1 by [NSWO08, Proposition
9.1.6]. By the inflation-restriction sequence this yields an isomorphism

H' (Gal(Eo/Kx), tp(Eo)) =~ H' (Gal(E/Ky), up(E)). ()

The natural map H'(Gal(Eo/Ky), iy (Eo)) — H'(Gal(Ey /K, ), Ug, ) is trivial,
as the latter group vanishes by [NSWO08, Proposition 7.1.2]. This and (5)
imply that there is an a € p,(E) - Up, C Ug such that {; = a”~! for all
o € Gal(E/Ky). We put x := a~'; then ~} := xvy is easily seen to be
invariant under the action of Gal(E/K,).

Now let m > 0 be an integer such that 4*" acts trivially on Vy. Then also
" = (1, y™Wx)P" acts trivially on V; and belongs to (E[H]e,)*. So we must
have ¢®” = e,. We deduce that ngm = 4" xe, and thus a(%’zm) = vﬁm for
every o € Gal(E/K,). We obtain

m m

o(z”") = o((V)P o(vE" )t
= ()P ()

= [L‘p ’

hence 27" belongs to UL N K, = U}(X.
For the last assertion, we observe that U}, is a Z,-module and therefore

ATP(Ty) = A°(T) (6)

as (7,)° = z%7% for every z € Z,, (see also [Hi93, Lemma 1, p.199]). Hence also
Q¥ (Iy) = QF(T",) and thus

QE(FX)Gal(E/KX) — QE(F;()Gal(E/KX) — QKX (1—\;()

as desired. 0
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REMARK 1.3. The principal unit x and the element ’y;( are unique up to a
principal unit in K. To see this let y € UL be a second principal unit which
fulfills (i) and (ii) of Lemma 1.2 with ~, replaced by vy := yyy. Then yr =
V(Y)Y is a principal unit which is invariant under Gal(E/K,) and thus

belongs to U}(X.

EXAMPLE. Assume that G = H x I' is a direct product. Then w, = 1 and
res &y = 7 is irreducible. If x(v) = x(1), then v, = ve, and we may choose
Yy = Yx- Ex(7) # x(1), we may write x = x' ® p with x'(v) = x'(1) = x(1)
and some character p of type W. By [RWO04, Proposition 5| we have v, =
Y p(7) 7t = p(7)"'vey. Then z = p(v) fulfills (i) and (ii) of Lemma 1.2 and
we find that v, = v =vey =7,

DEFINITION 1.4. Let x, 9 € Irr (G). We say that x and 1) are equivalent over K
(and write x ~x ) if there is 0 € Gal(K, /K) such that 7 (res §x) = res ).

Note that if x ~x %, then we have K, = K, and via (4) an isomorphism
QFx(T) ~ QFv (I'},). Moreover, we have x ~x x®p whenever p is a character
of type W.

PROPOSITION 1.5. Let G be a p-adic Lie group of dimension 1 and let K be a
finite extension of Q,. Then there is an isomorphism

(k@)= @ I,

xelrr (G)/~x
where the sum runs through all x € Irr (G) up to the above equivalence relation.

Proof. Since there are only finitely many central primitive idempotents e,
of Q%G), we may choose a finite Galois extension E of K such that E[H]
contains each e,. We will use the fact that the center of Q¥ (G) coincides
with the Gal(E/K)-invariants of ((QF(G)). For this let o be an element of
Gal(E/K). Fix x,¢ € It (G). Then o(ey) = eoy, and o(e,) = ey if and only
if res Gy = “(res$x). In particular, the action of Gal(E/K) on e, factors
through Gal(K, /K), and we may write

(R¥@) = @ AQ¥(@ey), exi= D oley) €C(QK(Q)).

x€Irr (G)/~Kk oceGal(K,/K)
(7)

Now let 8 € ((Q%(G)ey). We view S as an element in ((QF(G)e,) which is
invariant under Gal(E/K). We may therefore write

B=(Bs)s € @ C(QE(G)U(eX)) = @ QE(F"X)

oceGal(Ky /K) c€Gal(Ky /K)

where, by abuse of notation, ¢ denotes also a chosen lift of ¢ in Gal(E/K).
As we have already mentioned before, the uniqueness of v, implies that v-, =
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o(vy) for every o € Gal(E/K); thus f§ is determined by 1, and £; lies in
QE(FX)Gal(E/Kx) = QKx (I'}), where the equality is Lemma 1.2. Now (3 +— (3,
induces an isomorphism ¢(Q* (G)ey) ~ QFx(T'). O

REMARK 1.6. In the special case, where K = Q, and G is a pro-p-group, a
similar result has been established by Lau [Lal2] using a different method. The
same is true for Corollary 1.9 below.

COROLLARY 1.7. Let K be a finite extension of Qp, with ring of integers o.
Choose a mazimal R-order A°(G) containing A°(G). Then

@)= P ATy,

x€lr (G)/~k
where o, denotes the ring of integers in K.

Proof. This follows from Proposition 1.5 as A°x(I"}) is the integral closure of
R in QFx () O

REMARK 1.8. Here, A°(G) is an order over R = o[[T)], where we have identified
1+T withy*" for a chosen large n. Let us fix a x € Irr (G) in each equivalence
class over K. If m = m(x) is sufficiently large, then AP" acts trivially on Vy
and hence 'ygzm = ('ypm)erX. Enlarging n and m if necessary (for the finitely
many x), we may assume that p™ = p™ - w,. Hence we may also assume that
the inclusion

R = o[[T]] — A°(T})

is induced by 1 + T — vfzn/w" = a7P" (7L )P" € A°X(T,), where x7P" belongs
to U}(X by Lemma 1.2. We will fix such an n for the rest of the paper.

COROLLARY 1.9. The algebra QK(G) has Wedderburn decomposition

@)~ B (Dngxny

x€lrr (G)/~Kk

where n, € N and Dy, is a skewfield with center Q¥x(T). If s, denotes the
Schur index of D, then we have an equality x(1) = nysy.

Proof. All assertions are immediate from Proposition 1.5 apart from the last
equality. Let us denote the simple component (Dy),, xn, by Ay. With E
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sufficiently large as in Proposition 1.5 we compute

(nysy)® = dimgr, (F&)(AX)
= [K,: K]71 -dimQK(F;()(AX)
D [Ky s K] dimge e ) (B ®k Ay)
(Z) (K, : K]t Z dimQE(px)(QE(G)e“x)
o€Gal(Kx/K)

KK Y (1)
o€Gal(Ky /K)

Here, (i) follows from the equality Q¥ (I",) = Q¥(T'y) which was established in
the proof of Lemma 1.2 (confer equation (6)). The isomorphism F @k A, ~
Do ccarx, /i) Q7 (G)esy implies (ii), and (iii) is shown in the proof of [RW04,
Proposition 6]. O

REMARK 1.10. In the case K = Q, and G a pro-p-group one can determine
the occurring skewfields explicitly (see [Lal2, Theorem 1] and also (15) below).

THEOREM 1.11. Fiz x € Irr (G) and let Ay = (Dy)n, xn, be the corresponding
simple component of Q¥(G). Then E @k A, splits whenever one (and hence
every) irreducible constituentn of res gx can be realized over EE. More precisely,
we then have an isomorphism

EoxAv= @ (Q°C)), -
o€Gal(Ky /K)

Proof. Recall that L = QX (I'"") for our fixed sufficiently large n. Let E be
a finite extension of K and let L' :== E @y L = QF(I'?"). As L'-vector space
and more generally as left L'[H]-module, we have a decomposition

p"—1

Q@) = @ LN

Now fix x € Irr (G) and let 17 be an irreducible constituent of res & x. Suppose
that n has a realization over E. Recall the definition (7) of . As K, C
K(n) C E, we have a decomposition

E®k Ay = QE(G)EX = @ QE(G)U(ex)-
seCal(K, /K)

As the centers of QF (G)o(ey), o € Gal(K,/K) are isomorphic fields via (4)
(compare also the proof of Proposition 1.5), it suffices to show that QF(G)e,
splits.

DOCUMENTA MATHEMATICA 19 (2014) 601-627



610 ANDREAS NICKEL

Since FE is a subfield of L’ we have L'[H]e(n) ~ qu(l)xn(l) and similarly for
every other irreducible constituent of res ¢ x. We obtain

QE(G)eX

€X’Y

EB
1 .
@ Je(n” )y*
=0 7=0
prt—1wy—1

12

. _
Lyyysnmy?'s
i=0 =0

where we have used equation (3) for the second equality We now choose an in-
decomposable idempotent f, = fye(n) of L'[H]e(n) = L; ., - Observe that
for a second indecomposable idempotent f; of L'[H]e(n) we have an isomor-
phism f, L'[H]f; ~ L'. As Q¥(G)e, is a simple algebra over its center Q¥ (T, )
by Corollary 1.9, and f,, is also an idempotent in QF(G)e,, it suffices to show
that f,Q"(G)ey fy is a field, namely QF (T, ). For this, we first observe that
fni =" fyy~" is also an indecomposable idempotent for every 0 <7 < p”, and
belongs to L'[He(n"") as yie(n)y~" = e(y"') and H is normal in G. However,
e(n) = e(n") if and only if w,, divides 4, and thus

L' ifw, i

/ L~
Sl [H] fy.i >~ { 0 otherwise.

Since e(n”j Wik = fn,ie(nvj )" we therefore have

P -1 wilp" -1
F2QF (G)ex fr = @ L'y = @ Ly,
i=0 1=0

We conclude that dimz:(f,Q%(G)eyf,) = w 'p". However, recall that

" = QF(I'*") and 47" identifies with A2 /"% = 377" /uwx (74)P"/*x by Re-
mark 1.8, where z7P"/%x ¢ U}(X C (L')*. As L'-vector space we therefore
have a decomposition

QP = B L)

Thus we also have dimz,(Q”(T,)) = wy'p™. Since QF(I'}) = ¢((Q¥(G)ey) is
contained in f, Q% (G)e, f,, we are done. O
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COROLLARY 1.12. There is a finite Galois extension E of K such that

QE(G) =~ @ (QE(FX))X(l)XX(l)’

x€lrr (G)/W

where the sum runs through all x € Irr (G) modulo twists with characters of
type W. In particular, no skewfields occur in the Wedderburn decomposition of
the semi-simple algebra QF (Q).

Proof. This is an immediate consequence of Theorem 1.11 and Corollary 1.9
once we observe that Q”(T'y) = QF(I"}) by (6) if E is sufficiently large. ~ O

COROLLARY 1.13. Write (1) = syn,, where s, denotes the Schur index of 7.
Then s, divides s,;[K(n) : Ky] and n, divides n,,.
Proof. By definition of the Schur index there is a field F of minimal degree s,,
over K(n) such that n can be realized over E. However,
Eog Ay ~ Eog Q(I) ®gx, (%) Ax
D  Eex, QT Sorry) Ax
oceGal(Ky/K)

B ) @orry Ax

c€Gal(K, /K)

12

12

splits by Theorem 1.11. Now [Re03, Theorem 28.5] implies that s, divides
[QF(T) : Q"X (T)] = [E: K] = sy [K(n) : K.
Moreover, we have
Wy syny = wyn(1) = x(1) = nysy | nysy[K(n) « Ky] | nyspwy,

where the last divisibility is due to Lemma 1.1. Thus n,, divides n, as claimed.
O

EXAMPLE. Assume that H is a p-group. Then s, = 1 for all irreducible
characters i of H by a result of Roquette [Ro58]. However, Lau [Lal2] gives
examples, where s, = [K(n) : K] is non-trivial.

Let us denote the global dimension of a ring A by gl.dim (A). The following
lemma is only needed to justify Remark 3.6 below and can be skipped on a
first reading.

LEMMA 1.14. Let A be a separable L-algebra of finite dimension over L and let
A be a mazimal R-order in A. If A is split, then there is a mazximal o-order A
in A such that R®, A = A (and thus L ®, A = A).
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Proof. There are natural numbers £ > 0 and n;, 1 < ¢ < k such that A =
@le A; and A; ~ Ly, xn,. We put A; = Ry, xn,; and A= G}le A;. Observe
that this is a maximal R-order in A by [Re03, Theorem 8.7]. Then A :=
@le On;xn,; 18 @ maximal o-order in @le Ky, xn; and has R®, A = A and
L ®, A = A. Since global dimension is invariant under Morita equivalence
(cf. [Ra69, Corollary, p. 476]), we have

gl.dim (A;) = gl.dim (R) = 2.

Moreover, A;/rad(A;) is a matrix ring over the residue field of R and thus a
simple artinian ring. As likewise A decomposes into A = G}le A;, where each
A; is a maximal R-order in A;, we may apply [Ra69, Theorem 5.4] in each
simple component: there is a unit a; € A; such that A; = a; 1A;a;. We put
a:= 3" a;sothat A = a~'Aa. We further put A := ¢~'Aa. Then A is a
maximal o-order in A, and we have

R®A=a"'(R®, A)a=a"tha=A

as desired. 0

2 TRACES AND CONDUCTORS

Let R be a noetherian integrally closed domain with quotient field L. If A
is a simple L-algebra, we denote by tr 4,7, the reduced trace from A to L. If
A is separable, then by [Re03, Theorem 9.26] the reduced trace gives rise to
a symmetric associative nondegenerate bilinear form A x A — L which sends
(a,b) to tr 4/ (ab). Note that if A= L’ is a field, then tr 1./, = Tr 1/, is the
ordinary trace of fields. Now let A be an R-order in A. By a A-lattice we mean
a finitely generated A-module which is torsionfree as R-module. We consider
duality with respect to the trace form: For each full left A-lattice M in A (that
is A®x M = A) we associate the dual right A-lattice

D(M/R) :={x € A|tra/ (zM) C R}.

In particular, applying this construction to the two-sided A-lattice A we obtain
a two-sided A-lattice D(A/R) which (by abuse of language) we will call the
inverse different of A with respect to R. If D(A/R) happens to be invertible,
we call D(A/R) := D(A/R)™! the different of A with respect to R.

LEMMA 2.1. Let R be a noetherian integrally closed domain with quotient field
L and let A be a simple separable L-algebra. Let L C L' C ((A) be fields and
denote the integral closure of R in L' by R'. Then for every mazimal R-order
A in A, we have

D(A/R) 2 D(A/R")D(R'/R)

with equality if D(R'/R) is invertible.
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Proof. As A is also a maximal R’-order by [Re03, Theorem 10.5], we have
A = R'A and D(A/R’) is defined. Let a € D(A/R’) and b € D(R'/R) be
arbitrary. Then

trA/L(abA) = trL//L(trA/L/(abA)) = trL//L(btrA/L/(aA)) Q tI‘L//L(bR/> g R
as desired. Now assume that D(R’'/R) = D(R'/R)~! is invertible. We conclude

x € D(A/R) trp p(trayp(zA)) C R
tr o p(tra/p(xR'A) CR
tr /o (R'tr ayp(xA)) C R
tra/(zA) € D(R'/R)

tr 4,0 (2D (R'/R)A) C R
#D(R'/R) € D(A/R)

¢ € D(A/R')D(R'/R).

[N I A

O

Now let A be a semisimple L-algebra and let Tr be the ordinary trace map from
A to L. For every x € A we associate the homomorphism Tr, € Homp, (A4, L)
defined by Tr,(a) := Tr(za) for all a € A. Let A be an R-order in A. For
a full left A-lattice M in A we may also consider duality with respect to the
ordinary trace form:

Dora (M/R) :={x € A|Tr(eM) C R} ={x € A| Tr,(M) C R}
is a right A-lattice in A. We have a canonical homomorphism of right A-modules
Sm : Dora (M/R) — M™ := Homg(M, R), x> Tr.|u, (8)

where A € A acts on f € M+ as fA(m) := f(Am) for all m € M. Similar
observations hold for full right A-lattices in A.

Recall that an R-module M is called reflezive if the canonical map M — M™*™,
m+— [f — f(m)] is an isomorphism.

PROPOSITION 2.2. Let R be a noetherian integrally closed domain with quotient
field L. Let A be a semisimple L-algebra and let A be an R-order in A. If the
ordinary trace Tr gives rise to a nondegenerate bilinear form A x A — L,
(a,b) — Tr(ab), then the homomorphism pr in (8) is an isomorphism for
every full A-lattice M in A. In particular, Dora (Dora (M/R)/R) = M if and
only if M is reflexive.

Proof. As the bilinear form A x A — L, (a,b) — Tr(ab) is nondegenerate,
we have Tr, = Tr, if and only if + = y. It follows that the map d4 : A —
Homyp, (A, L), x — Tr, is injective and thus an isomorphism of L-vector spaces
as both sides have the same dimension over L. It is also a homomorphism of
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right A-modules. Now let M be a full left A-lattice in A. Then d,; is just
the restriction of d4 to Dopq (M/R) and thus injective. However, by [NSWO08,
Remark p.268] restriction to M yields an isomorphism

M*T =~ {¢€Homp(AL)|¢(M)C R}
= {Tr,|z€ A, Tr,(M)C R}
= {Tr, |2z € Doya(M/R)}.

Hence the image of dy; is M™T as claimed. O

We now return to the case L = Quot(R), where R = o[[T]] is the power series
ring in one variable over the ring of integers o in K. Recall that as an L-vector
space we have Q¥ (GQ) = @fial LIH]y = @fial L~'[H]. We denote by Tr
the ordinary trace map from Q¥ (G) to L.

LEMMA 2.3. The elements v'h, 0 < i < p", h € H form an L-basis of Q¥ (G)

and | _
iy | p"H ifyy=h=1
Tr (y'h) = { 0 otherwise.

Its dual basis with respect to Tr is given by (p"|H|)"*h=ty=% 0 < i < p,
heH.

Proof. Tt is clear that these elements form an L-basis of Q¥ (G). Now let
0<i<p®andh € H. We use the same basis to compute Tr (v*h). For every
0<j<p"and k' € H, we have to write y'h+/h’ as an L-linear combination
of these basis elements. However, v'hy/h’ = v h;h’ with h; :==y7hy? € H.
This actually belongs to this basis if i + j < p™; if i 4+ j > p", then v h;h/ =
AP IR ! with 4P € L = QK (T?"). Since only the diagonal entries of
the corresponding p™|H | x p™| H| matrix contribute to Tr (yh), we now suppose
that v7h/ = 4"+t h;h' if i + j < p", and that ¥ h' = v TI=P" ' if i + j > p™.
In both cases we must have h; = 1 and thus h = 1. In the first case, we also
have j = i + j which forces ¢« = 0, whereas in the second case j = ¢+ j — p"
which gives ¢ = p™. This contradicts ¢ < p™ and so the latter case does not
occur. We see that this matrix has all diagonal entries equal to zero if y'h # 1;
hence Tr (y'h) = 0 in this case. That Tr (1) = p"|H]| is clear. It is now easily
checked that (p"|H|)"*h=1y~% 0 <i < p", h € H is the dual basis. O

LEMMA 2.4. Let K’ be a finite field extension of K with ring of integers o’ and
let a be a principal unit in some finite extension of K'. Let n € Ny and suppose
that a?” belongs to Uf,. Consider A° (T') as R-order via the embedding

tan : R— A(D), 14T~ (ay)"".
Then the inverse different

D(A”(T)/R) = {ac € QX' () | T gur 1y 1 (@A (T)) € R}
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s given by

D(A®(T)/R) = p~"D (o /o) A® (T),

where D~1(0’ /o) denotes the usual inverse different of o’ with respect to o. In
particular, D(A° (T')/R) is invertible.

Proof. First, we consider the case a = 1 and n = 0. If x1,..., 2, form an o-
basis of o', then x4, ...,z are also an o[[T]]-basis of o’[[T]] which is isomorphic
to A"/(F) via 1 + T ~ . Hence its dual basis with respect to the ordinary
trace Tr g/ of fields, is also a dual basis with respect to Tr g (), Hence
D(A°(I')/R) equals ®~(0’/0)A® (T) and is invertible in this case. For the
general case let ¢, , : A°(T) — A°(T) be induced from v — (ay)?". Then
lan = L;m ot1,0. We may therefore assume o = o’ by the first part of the proof
and an application of Lemma 2.1. The inverse different only depends upon the
image of R in A°(T"). However, (o, (R) = t1,,(R) as a?" € Uk,. Thus we may
also assume a = 1. But in this case the result follows from Lemma 2.3 with
G=T. O

By Corollary 1.9 we may write Q¥ (G) = ®XEITT(G)/NK Ay, where A, =
(Dy)nyxny> ny € N and D, is a skewfield with Schur index s, and center

Qfx (I'}). Again by Corollary 1.9, we have x(1) = syn,. Hence the ordinary
trace may be written as

Tr = Z x(1)try, 9)

x€lrr (G)/~K

where tr, denotes the reduced trace from A, to L. Moreover, we have

o = Tr grex g1 0 4, /¥ 1y (10)

where Tr gx, (r)/L denotes the ordinary trace of fields and tr 4 ,ory ) de-
notes the reduced trace from A, into its center. Recall from Remark 1.8 that
we have fixed a sufficiently large integer n > 0 such that R = o[[T]] embeds into
AX(TY) via 1+ T (x_l'y;)pn/wX. Now Lemma 2.1 and Lemma 2.4 (with
the embedding ¢4, m, where a = 7! and p™ = p" /w,) imply that the following
definition does not depend on the choice of the embedding.

DEFINITION 2.5. Choose a mazimal R-order A°(G) containing A°(G). We

have a decomposition A°(G) = ®XEITT(G)/NK A;(G), where each ]\;(G) is a

mazimal R-order in A,. For sufficiently large n we call the two-sided ]\;(G)—
lattice

Dy (A°(G)) = Duorm(A3(G)/R) := p"D(A3,(G)/R) =
=p"- {ac € Ay | try(@A2(G)) C R}

the normalized inverse different.
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DEFINITION 2.6. Let A C A be a pair of rings. Then
(A:A) = {x€/~\|x/~\§A}

is called the left conductor of A into A. Similarly,
(A:A), = {xeﬂmng}

is called the right conductor of A into A.

PROPOSITION 2.7. Let A°(G) be a mazimal R-order containing A°(G). Then
A°(@), the mazimal order A°(G) as well as the left conductor (A°(G) : A°(G)),
and the right conductor (A°(G) : A°(QG)), are reflexive (and thus free) R-
modules.

Proof. We first observe that R is a 2-dimensional regular local ring and thus
every reflexive R-module is free (and vice versa) by [NSW08, Proposition 5.1.9].
As A°(QG) is free over R, it is also reflexive. Moreover, every maximal R-order
is reflexive by [Re03, Theorem 11.4]. Finally, let M := (A°(G) : A°(G)), (the
argument for (A°(G) : A°(G)); is similar). We denote by P(R) the set of prime
ideals of R of height 1. As M is R-torsionfree, the proof of [NSWO08, Proposition
5.1.8] shows that we have an injection M — M*F = (), _p g My, where the
equality is [NSWO08, Lemma 5.1.2]. Now let z € (,cp

we have to show that € M. For every p € P(R) we have z € A°(G), and
A°(G)pz C A°(G)p. Thus @ € (yep(p) A°(G)p = A°(G) and

(r) My be arbitrary;

that is z € M. O

We now establish the following analogue of Jacobinski’s conductor formula
[CR81, Theorem 27.8].

THEOREM 2.8. Let A°(G) be a mazimal R-order containing A°(G). Then

(A°(Q): (O = (A°(@) : Ay = D) %DM"(G»
x€lrr (G)/~k

Proof. Put M := (A°(G) : A°(G)),; then M is the largest left A°(G)-lattice
in A°(G). So its ordinary dual Dorq (M/R) is the smallest right A°(G)-lattice
containing Doyq (A°(G)/R). Since A°(G) is free over R with basis y'h, 0 < i <
p", h € H, we therefore have

Dora (M/R) = Dora (A°(G)/R)A®(G) = (p"[H|) ' A°(G),
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where we have used Lemma 2.3 for the second equality. However, M is reflexive
by Proposition 2.7 and so Proposition 2.2 yields

M = Dord (Dord (M/R)/R) = ~
= Dowa (0" |H|)"'A°(G)/R) = p"|H|Dora (A°(G)/R).

The theorem now follows from the equalities

Dora (A°(G)/R) = P  Dua(AUG)/R)
X€lrr (G)/~x
Dora (AY(G)/R) = x(1)"'D(AS(G)/R)
= (x(W)p") ' Dx(A°(G)),
as a similar argument works for (A°(G) : A°(G));. O

3 A FORMULA FOR THE CENTRAL CONDUCTOR

DEFINITION 3.1. Let Z\(’(G) be a maximal R-order containing A°(G). Then the
central conductor of A°(G) into A°(G) is defined to be

FA(G) = F(R(G)/A°(G)) = C(A°(G)N (A°(G) : A°(G))
= NG N (R(G) : A°(G)),
= {eecn @) 1280 c a6}

REMARK 3.2. We will see below that the central conductor only depends on
A°(G) and not on the choice of maximal order containing A°(G). Hence the
notation F(A°(G)) is justified.

By Corollary 1.9 we may write Q~K (G) = ®xelrr (G)/~x A, where each~ A, ~
(Dy)n, xn, is simple. Similarly, A°(G) decomposes into €D, cr,y () AY(G),
where each /N\;(G) is a maximal R-order in A, with center A°x(T"). The

central conductor is an ideal in ((A°(G)) = @ A°x(I",) and so we
may write

X€lrr (G)/~k
FR(@/N@) = D FA(G)/A(G),
Xx€lrr (G)/~k
where each F, (A°(G)/A°(@)) is an ideal in A°x (I',). We define
Ky Ao 0y
— QRX(I) N D(AL(G)/A™ ().
We denote by Py the set of prime ideals of A®x(I") ) of height 1.

LeMMA 3.3. The fractional A°x(T})-ideal dy is a reflexive A°x (I )-module
which does not depend on the choice of mazimal order A°(G).
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Proof. We first show that d, is reflexive. As it is torsionfree, we have an
injection d, — dft = Myep, (dx)p- Now let € (ycp (dy)p- Then clearly

x € QKX(I‘;() and
tr 4 /oxx (F;()(xj\;(G)p) C ATy

for all p € P,.. This implies

trAX/QKX(F;()(z]\;(G)) < ﬂ trAX/QKX(F;()(x]\;(G)P)
pEPy

ﬂ AOX(F;();:

pEPy

= A(TY).

N

Thus = belongs to QFx(I'}) N D(]\;’((G)/A"X (I',)) = dy as claimed.

Now let A°(@) be a second maximal R-order containing A°(G). Then likewise
A°(G) decomposes into B, c1,; ()~ A% (G), Where each A (G) is a maximal
R-order in A,. We put

dy == QFx(T") N D(AS(G)/A°X(T%)).

Fix a height 1 prime ideal p € P,. By [AG60, Proposition 3.5] there is a unit
ay € Ay such that A%(G), = a, A% (G)pagt. Now let 2 € QFx(I',). Then

v

trAX/QKx(er)(xA;(G)p) = trAX/QKx(F;()(‘TaXA (G)parh)

= tr AX/QKX (F;()(‘TA;(G)JJ))
where the second equality holds, since x is central in A,. Hence

tI'A /QKX F/ (:CA (G)F) g AUX (F;()p<:>trAX/QKX(F;)(Z'AS((G)F’) g on(r;)p,

that is (dy)p = (dy)p for all p € Py. As both d, and d, are reflexive, this

implies d, CZ as desued O
Let 7, be a prime element in o, and put p, := 7, A°x(I"}) € Py.

LEMMA 3.4. There is an integer r < 0 such that d, = px<. If the Schur index
sy is not divisible by p, then ry = 0 and thus d,, = A°x(I") ).

Proof. Let Ay be a maximal order in D,. Then (A, )y, xn, is a maximal order
in Ay by [Re03, Theorem 8.7|. Let o € (Ay)n, xn, be the matrix with a 1 in
the upper left corner and zeros everywhere else. Let x € d,. Then in particular

tr 4 sorx (F;)(za) =x-try  orx (F;)(a) =5, € A(T)). (11)
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Here, the first equality follows from linearity of the reduced trace as x belongs
to QFx (I}, ). For the second equality we compute

tr Ay /QFx (F;)(a) =tr D, /Q¥x (F;()(l) = Sx-

As s, is an integer, it follows from (11) that z € A°x(T"}), for every p € Py,
p # py. However, d, is reflexive by Lemma 3.3 and thus we must have d, = py*
for some integer r. Since obviously A°(I"} ) C d,, we have r, < 0. Finally,
if p does not divide sy, then by (11) we have z € A°x(I"} ), for every p € Py
including p, and thus ry, = 0 in this case. O

THEOREM 3.5. Let A°(G) be a mazimal order containing A°(G).  Then
F(A°(G)/A°(G)) does not depend on the choice of mazimal order A°(G) and

we have an equality
FA(@) =FA(@)/A (@)= P |H(|—11H)X D7 0y /0)dy.
x€lrr (G)/~x X

T - . . .
Here, d, = py* for some integer ry < 0. In particular, we have an inclusion

|H|’LUX —1 ox (T AO© o
T DT /AT S F(A(G)/A(E)), (12)

which becomes an equality after localization at every p € P, different from p,,.
Moreover, the inclusion (12) is an equality in each of the following cases:

(i) G=H x T is a direct product.
(1t) The Schur index s, is not divisible by p.

(i11) There is a mazimal oy-order A, contained in ]\;’((G) such that
AX(TY) @0, Ay = AS(G).

REMARK 3.6. Fiz a p-adic Lie-group G of dimension 1. Then (i) and (iii)
hold for all x whenever K is sufficiently large. This follows from Theorem 1.11
and Lemma 1.14.

REMARK 3.7. If p does not divide the order of the commutator subgroup of G,
then A°(QG) is a direct sum of matriz rings over commutative rings by [JN183,
Proposition 4.5]. In particular, no skewfields occur in the Wedderburn decom-
position of Q¥(G) and thus (i) holds for every x € Irr (G).

Proof of Theorem 3.5. Let us define

5yt = p"D T A (IY)/R) = wy D (0, /o)A (),
where the second equality follows from Lemma 2.4 and Remark 1.8.
LEMMA 3.8. We have an equality D, (A°(G)) = D(A;(G)/A"X (T7)) - 0"
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Proof. This is a special case of Lemma 2.1. O

By Theorem 2.8 and the definition of the central conductor we obtain

~ o ~
FR(©)/8°(0) = A= () 0 (175 D))
for each x € Irr (G). Hence it must be shown that
H| ~ |H| ._
A (T ﬁ<|—~D A°G)—5 'd 13
( X) X(l) X( ( )) X(l) X X ( )
for each character y. We note that
[H| o H| (& i
—6d, € —D,(A(GQ)) C A(G);
e € D (R(6) € R(@)
so each element of %5;%& is integral over R, and thus lies in A°x(I"} ). This

gives one inclusion in (13). Now let y € A°x(I"}). Then by Lemma 3.8 we have

y e |H] Dy (A°(Q)) < yd, C ﬂD(A;(G)/A"X(F;)) <= ydy C 5]

x(1) x(1) x(1)
giving the reverse inclusion in (13). Lemma 3.3 and Lemma 3.4 imply the
remaining assertions apart from the claim that r, = 0 in case (i) and (iii).
Let us first assume that G = H x I' is a direct product. Choose a maximal
o-order MM (H) containing o[H]. Let x € Irr(G). Then resGy = n is an
irreducible character of H and there is a character p of type W such that x ® p
is trivial on I'. As x ~kg x ® p, we may henceforth assume that p = 1. We
then have w, =1, K, = K(n), ey = e(n) and v, = ve, = 7;. Then M(H )e,
is a maximal o,-order such that A;(G) = AX(I") ®,, M(H)ey is a maximal
R-order in A, . It follows that (i) is a special case of (iii).

Now assume that (iii) holds and let y € (dy)p, be arbitrary. We have to show
that y € A°x(I'} ), . As the reduced trace is Q%x(I"} )-linear, we may alter y
by a unit in A% (I} )p, so that we may assume that y = 7r>’2 for an appropriate
integer k; in particular, we then have y € K. By hypothesis there is a maximal
oy-order A, contained in A°x(I";) such that Q%x(I"}) ®,, A, = Ay. Hence
an 0,-basis of A, is also a QFx (I} )-basis of A, which we may use to compute
the reduced trace. Hence y € K, has

dy

trKX®uXAX/KX(yAx) C AT )p, N Ky =0y

and we have to show that y € o,; in other words we shall show that K, N
D~1(A,/oy) = 0y. Suppose that this is not true. Then o, is properly contained
in K, N®7"(Ay/0y). Then p! € D (A, /0y) and thus p,A, contains
D(Ay/oy). However, if P, denotes the radical of Ay, then p, A, = P for
some positive integer e and D(Ay /o) = P by [Re03, Theorems 20.3 and
14.3], a contradiction. O
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EXAMPLE. Assume that G = H x I is a direct product and thus
A°(G) = A°(D)[H] = A°(T) ®, o[H]. (14)

Let x € Irr (G). As we have seen in the proof of Theorem 3.5 we then have
wy =1, K, = K(n) and v, = ve,. Hence

1Al

) 27 e /AN (L) = A%(T) @, F(o[H))

FA@G)= P

x€lrr (G)/~k

which can be shown more directly using (14) and Jacobinski’s central conduc-
tor formula (1). So the main obstacle to derive Theorem 3.5 directly from
Jacobinski’s result is the fact that in general G = H x I is only semi-direct.

We finally determine the integers r,, whenever G is a pro-p-group. For simplicity
we will also assume that K = Q,. Then K, = Q,, and o, =: Z,, denotes
the ring of integers in @, . Let 9, and 9, be the maximal ideals in Z,[n] and
Zy,, respectively. If x is a rational number, we let |x] € Z denote the largest
integer such that [z]| < x.

THEOREM 3.9. Assume that G is a pro-p-group and a p-adic Lie group of
dimension 1. Fiz x € Irr (G) and let Ay ~ (Dy)n, xn, be the corresponding
simple component of Q(G). Write D(Zyn|/Zp,y) = fo‘ for some integer k, >
0. Then D, is a cyclic skewfield with Schur index s, = [Qp(n) : Qp | and

k
x = *LfJ

Proof. By [Lal2, Theorem 1] we know that D, is a cyclic skewfield with
Schur index s, = [Qp(n) : Qp]. More precisely, the extension Qp,(7)/Qp.y
is cyclic and totally ramified, as G is pro-p and thus Q,(n) is a subfield of
Qp(¢pm) for some positive integer m. Let o be a generator of the Galois group
Gal(Qp(1n)/Qp,x). Then by [Lal2, Theorem 1] the skewfield D, is given by

sy—1

Dy~ P (Q@pm)(psx)) . (15)
1=0

where 7®x is a topological generator of I'*x ~ 7Z,, and for = € QU (1) (T5x) we
have yx = o(z)y (note that this is not the same I' as in G = H x T'; it is just
a topological group isomorphic to Z, which we again denote by I'). Then D,
has center Q@ (I"x) which is isomorphic to QUrx (I, ) under the isomorphism
(15). Now let d = Zfial z7" € D, be arbitrary, z; € Q@M (I'*x), 0 < i < s,.
We claim that

tr DX/QQVX (st)(d) = TI' Q@p(’ﬂ) (F‘SX)/QQP,X(FSX)(‘TO)' (16)
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For this one only has to check that we have an isomorphism

Qp(n) ®q,, Dy = (Q¥M(T)),, xs,

To
o(zo)
Tog >
O'SX_I(ZEQ)
0 Y
Yo 7
0 :
v 0

From this one can easily compute the reduced trace in (16). Now put

sx—1

== P (AZPW (FSX)) ~i C D,

=0

Then X, is a AZrx(I'*x)-order in D,,. Moreover, 9,3, is a two-sided ideal of
Sy, since 79, = o(Q,)y = Q7. We consider the AZ»x(I'*x), -order X, :=
(Xy)p, in Dy. Then 9, is again two-sided and we have

(QnXp, )™ = QX = pEp, Crad(Xy, ).

Hence also Q,%,, C rad(3,, ) by [Re03, §6, Exercise 3]. We now observe that
v+ 1+ T induces an isomorphism

T/ QX = Fp[[TT].
Moreover, this isomorphism induces
Zp, /Ay Zp, = Fp((T)

and thus the inclusion 9,3, C rad(X, ) is an equality. Moreover, the order
Yp, is quasi-local. As 9, is a principal ideal, there is a short exact sequence

0— pr - pr - ]FP((T)) =0

and thus the projective dimension of F,((7")) considered as left ¥, -module
equals 1. Now [Ra69, Corollary 1.3| gives that also gl.dim (X, ) = 1. It then
follows from [AG60, Theorem 2.3] that ¥, is a maximal A% x(I'*x), -order.
By (16) we find that
tr DX/QQP,X(FSX)(EPX) = Tr Q@p<n>(r5x)/g@p,x(r5x)(AZp[n] (T*)p,)
= Trq, /@y, (Zpln) AP (D),

— QAT ().,
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where r;( € 7Z is maximal such that

/
sxrx—kx

Zyln) © QVD(Zyln)/Zpy) ™" = 2

and thus | = \_’;—ij Now let z € Q@ x(I'*x). Then z belongs to (dy),, if and

only if
tr DX/QQP,X(FSX)(:C Yy ) =a-tr DX/QQP,X(FSX)(EPX) C APrx (),

and thus if and only if z € p,, . Therefore we have r, = —rl = —\_I;—zj as

desired. O

EXAMPLE. We continue the example in [Lal2, p. 1233]. For this let p = 3
and let H be the cyclic group of order 9. Choose a generator h of H. We
put G = H x I', where the action of I' on H is determined by yhy~! = h.
Let n be the irreducible character of H with n(h) = (9. Then St(n) = H x
() and x = ind gt(n)x’ with x'(h) = n(h) and x'(7®) = 1 is an irreducible
character of G with open kernel. We have x(1) = w,, = 3 and Q,(n) = Q, (o),

Qpx = Qp(¢3). We see that s, = [Qp(o) : Qp(¢3)] = 3. Moreover, the
different D(Zy[Co]/Zp[¢3]) is easily computed and we find that k, = 3. Thus

Ty = — LE—;‘J = —1 is non-trivial and (12) is a proper inclusion in this case.

4 CONSEQUENCES OF THE CENTRAL CONDUCTOR FORMULA
In this section we derive several consequences of our main Theorem 3.5.

4.1 EXTENSIONS OF LATTICES

COROLLARY 4.1. Let M be a A°(G)-lattice and let N be a finitely generated
A°(GQ)-module. Then

|H|w - i
@ X(l)x D 1(0X/0)d>( ! EXtA“(G) (Mv N)
XEIrr (G)/~ Kk

1s finite for all integers i > 1.

Proof. An R-module M is finite if and only if it is pseudo-null, i.e. M, = 0
for every height one prime ideal p of R. We do induction on the integer i. As
Ry is a Dedekind domain for every height one prime ideal p, the case i = 1 is
now immediate from Theorem 3.5 and [CR81, Theorem 29.4]. For k sufficiently
large, there is an exact sequence

M’ >—>A°(G)k — M.
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Then M’ also is a A°(G)-lattice. Applying Homyegy(—, V) to the above exact
sequence gives isomorphisms

Exth o ) (M, N) = Ext)} () (M, N)

for all integers j > 1. The case j = ¢ — 1 gives the induction step. O

ExXAMPLE. The stronger statement that the central conductor annihilates
Extj\o(G)(M, N) is not true. Assume that G =T and K = Q,. Then Corollary
4.1 simply asserts that Extj\(r)(M,N ) is finite for every finitely generated
torsionfree A(T')-module M and every finitely generated A(L')-module N.
Suppose that Extk(F)(M, N) = 0 for every finitely generated A(T")-module N;
then M is projective and thus free as A(T')-module. However, there are many
examples of torsionfree A(T")-modules which are not free (take for example the
maximal ideal of A(T")).

For x € Irr (G) we put a ' := (D7 '(0,/0)NK)-R2 R.

COROLLARY 4.2. We have

0
N | Hwy L' € RNF(A°(G)).
x(1)
XETr (G) /i

In fact, if r, = 0 for all x € Irr(G), then a proof similar to that of [CR81,
Theorem 27.13(ii)] shows that the inclusion in Corollary 4.2 is an equality.
For every A°(G)-module M let Y(M) := {ey | ey - Q% (G) ®po(c) M = 0}.

COROLLARY 4.3. Let M and N be A°(G)-lattices and let i > 1 be an integer.
Then

H .
N Hlwy 1 Ext)o (g (M, N)
x(1) X
ex @Y (M)
. . . Hlw _ i . .
s finite. In particular, (ﬂxem(G)/NK ‘X(‘—l)x . axl) - Extio(g) (M, N) is finite
for every A°(G)-lattices M and N and every integer i > 1.

Proof. The last assertion is an immediate consequence of Corollary 4.1 and
Corollary 4.2. The first assertion is also easy and is shown exactly in the same
way as [CR81, Theorem 29.9]. O

COROLLARY 4.4. Let M and N be A°(G)-lattices and assume that
oK(@) ®npe(q) M is absolutely simple. Then there is a unique idempotent
ex & Y(M) and for every integer i > 1 we have that [H [y -Extj\u(G)(M, N) is

x(1)
finite.
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EXAMPLE. Assume that p divides |H| and that K = Q,. We consider A(T")
as A(G)-module in the natural way; then Q(G) ®x ey A(I') is absolutely simple
and e, is the unique idempotent not contained in Y (A(T')), where xo denotes
the trivial character. Moreover, we have xo(1) = 1 and w,, = 1. Let A(G,T)
be the kernel of the augmentation map aug : A(G) - A(I") which sends each
h € H to 1. We then have an exact sequence

aug

HomA(G) (A(F), A(G, F)) — HomA(G) (A(F), A(G)) — HomA(G) (A(F), A(F))

— Bxtj ) (AT), A(G,T)).

We have a canonical isomorphism Homyg)(A(T),A(T')) ~ A(T), f =
f(1) and the image of aug, in A(T') under this identification is given by
aug ((3_cpy P)A(G)) = |[H|A(T'). We therefore have a canonical isomorphism

Exty () (AT), A(G,T)) = A(T)/|H|A(T);

in particular, this module is not finite. However, |H|Ext}\(G) (AM),A(G,T)) =
0 is finite.

4.2 NON-COMMUTATIVE FITTING INVARIANTS

For the following we refer the reader to [Nil0]. Let A be a separable L-algebra
and A be an R-order in A, finitely generated as R-module, where R is an
integrally closed complete commutative noetherian local domain with field of
quotients L. Let N and M be two ((A)-submodules of an R-torsionfree ¢(A)-
module. Then N and M are called nr(A)-equivalent if there exists an integer
n and a matrix U € Gl,(A) such that N = nr(U) - M, where nr : A — ((A4)
denotes the reduced norm map which extends to matrix rings over A in the
obvious way. We denote the corresponding equivalence class by [N];:a). We
say that N is nr(A)-contained in M (and write [N]n.a) € [M]nra)) if for all
N’ € [N]nra) there exists M’ € [M],(a) such that N € M’. We will say that
x is contained in [N]n.a) (and write € [Nl,y(a)) if there is No € [N]nra)
such that € Nyg. Now let M be a finitely presented (left) A-module and let

A AY s (17)

be a finite presentation of M. We identify the homomorphism A with the
corresponding matrix in M, x»(A) and define S(h) = Sp(h) to be the set of all
b x b submatrices of h if a > b. The Fitting invariant of h over A is defined to
be
. [O]Hr(/\) if a<bd
Fittp(h) = .
itta(h) { (ur(H) | H € S(M)e)] e, B a>b.

We call Fitty(h) a Fitting invariant of M over A. One defines Fitty**(M)
to be the unique Fitting invariant of M over A which is maximal among all
Fitting invariants of M with respect to the partial order “C”.

We now specialize to the situation in this article, where A is A°(G). Then
Theorem 3.5 and [JN13, Corollary 6.2] imply the following result.
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COROLLARY 4.5. Let M be a finitely presented A°(G)-module. Then

Hlw _ s pmax
@ | (|1)X D7 oy /0)dy | - Fittye () (M) S Annpe () (M)
x€Ilrr (G)/~k X

Together with Corollary 4.2 and [Nil0, Lemma 3.4] this yields the following
corollary.

COROLLARY 4.6. Let M be a finitely presented A°(G)-module. Then

|H|’LU — s pmax
ﬂ Tl)x . Clxl . FlttAo(G)(M) Q AnnAo (@) (M)

REMARK 4.7. Note that in fact H(A°(G)) - FittRd({) (M) C Annpeq)(M),
where H(A°(Q)) is a certain ideal of ((A°(G)) which always contains the central
conductor. In general, however, this containment is not an equality. Though
the ideal H(A°(G)) is hard to determine in general, considerable progress is
made in [JN13[; in particular, by [JN13, Proposition 4.5] one knows that
H(A(@)) equals C(A°(G)) (to wit: is best possible) if and only if p does not
divide the order of the commutator subgroup of G (which is finite).
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