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1. introduction

The Picard group of a given moduli stack carries important informations on the
geometry of the moduli problem one is dealing with. Since Mumford’s pioneer
work in [Mum65], the subject has been widely developed and nowadays the lit-
erature on the computation of the Picard group of moduli stacks is quite vast.
Remarkable examples are the Picard groups of the moduli stacks of curves pos-
sibly with level structures (see e.g. [AC87], [Cor91], [Kou94], [Jar01], [Mor01],
[Cor07], [GV08], [Put12]) and of the moduli stacks of principal bundles over
curves (see e.g. [DN89], [Kou91], [Kou93], [BL94], [KN97], [LS97], [BLS98],
[Sor99], [Fal03], [BK05], [BH10]).
The aim of this paper is to compute and give explicit generators for the Picard
group of the degree-d universal Jacobian stack J acd,g over the moduli stackMg

of smooth curves of genus g and of its compactification J acd,g over the mod-

uli stack Mg of stable curves of genus g, constructed by Caporaso in [Cap94]
and [Cap05] and later generalized by the first author in [Mel09]. Moreover,
we will compare our results with the computation of the divisor class group
of the Caporaso’s universal compactified Jacobian scheme Jd,g, carried out by
Fontanari in [Fon05] (based upon the work of Kouvidakis in [Kou91]). The mo-
tivation for this work comes from the wish of understanding the (log)canonical
model of Jd,g and its relation to the different modular compactifications of the

universal Jacobian. The Kodaira dimension and the Iitaka fibration of Jd,g

were computed by Farkas-Verra in [FV13] for d = g, by Bini, Fontanari and
the second author in [BFV12] when Jd,g has finite quotient singularities (which
occurs exactly when d+g−1 and 2g−2 are coprime) and by Casalaina-Martin,
Kass and the second author in [CMKVb] in the general case. An alternative

compactification J
ps

d,g of the universal Jacobian over Schubert’s moduli space

M
ps

g of pseudo-stable curves was recently found by G. Bini, F. Felici and the

two authors in [BFMV] (see also [BMV12]). We expect that J
ps

d,g is the first

step towards the construction of the canonical model of Jd,g, analogously to

the fact that M
ps

g is the first step towards the construction of the canonical

model ofMg (see [HH09]). Clearly, in order to verify this, one needs an explicit

description of the (rational) Picard group of Jd,g, which naturally embeds into

the (rational) Picard group of the stack J acd,g.
Before describing our results, we need to briefly recall the definitions of the
stacks J acd,g and J acd,g, referring to Section 2 for more details. The degree-d
universal Jacobian stack J acd,g is the (Artin) stack whose fiber over a scheme
S consists of families of smooth curves C → S over S endowed with a line
bundle L over C of relative degree d over S. The stack J acd,g is contained

as a dense open substack in the degree-d compactified Jacobian stack J acd,g,
whose fiber over a scheme S consists of families of quasistable curves X → S
endowed with a properly balanced line bundle over X of relative degree d over
S (see 2.1 for the definitions). The stack J acd,g is smooth and irreducible

Documenta Mathematica 19 (2014) 457–507



Picard Group of the Compactified Universal Jacobian 459

of dimension 4g − 4, and it is endowed with a (forgetful) universally closed

surjective morphism Φ̃d to the stack Mg of stable curves.

The stack J acd,g is naturally endowed with the structure of a Gm-stack, since
the group Gm naturally injects into the automorphism group of every object
(C → S,L) ∈ J acd,g(S) as multiplication by scalars on L. Therefore J acd,g
becomes a Gm-gerbe over the Gm-rigidification J d,g := J acd,g ( Gm. We call

νd : J acd,g → J d,g the rigidification map. Analogously, J acd,g is a Gm-gerbe
over its rigidification Jd,g := J acd,g ( Gm which is an open dense substack of

J d,g. The stack J d,g is smooth and irreducible of dimension 4g − 3, and the

morphism Φ̃d : J acd,g → Mg factors through Φd : J d,g → Mg, which is again
a universally closed surjective morphism.
Caporaso’s compactification Jd,g of the universal Jacobian variety Jd,g over the

moduli scheme Mg of stable curves (see [Cap94]) is an adequate moduli space

for J acd,g and for J d,g (in the sense of [Alp2]) and even a good moduli space
(in the sense of [Alp1]) if our base field k has characteristic zero. We will call
it simply the moduli space for J acd,g and for J d,g

1.
The main result of this paper is a description of the Picard groups of the stacks
J acd,g and Jd,g and of their compactifications J acd,g and J d,g. Since J acd,g ⊂
J acd,g and Jd,g ⊂ J d,g are open inclusions of smooth stacks, the natural

restriction morphisms Pic(J acd,g) → Pic(J acd,g) and Pic(J d,g) → Pic(Jd,g)
are surjective. Moreover, since νd is a Gm-gerbe, the pull-back morphisms
ν∗d : Pic(J d,g) → Pic(J acd,g) and ν∗d : Pic(Jd,g) → Pic(J acd,g) are injective.
Therefore, the above Picard groups are related by the following commutative
diagram

(1.1) Pic(J acd,g) // // Pic(J acd,g)

Pic(J d,g)
?�

ν∗
d

OO

// // Pic(Jd,g)
?�

ν∗
d

OO

in which the horizontal arrows are surjective and the vertical arrows are injec-
tive. We will prove that the four Picard groups of diagram (1.1) are generated
by boundary line bundles and tautological line bundles, which we are now going
to define.

1In the literature, the universal (resp. universal compactified) Jacobian stack is often
called the universal (resp. universal compactified) Picard stack and it is denoted by Picd,g

(resp. Picd,g), see e.g. [Cap05], [Mel09], [BFV12]. Similarly the universal (resp. universal
compactified) Jacobian scheme is often called the universal (resp. universal compactified)

Picard scheme and it is denoted by Pd,g (resp. P d,g), see e.g. [Cap94]. Following [CMKVa]
and [BFMV], we prefer here to use the word universal (resp. universal compactified) Ja-

cobian stack/scheme and consequently the symbols J acd,g, J acd,g, Jd,g and Jd,g for two
reasons: (i) the word Jacobian stack/scheme is used only for curves while the word Pi-
card stack/scheme is used also for varieties of higher dimensions and therefore it is more
ambiguous; (ii) the expression “the Picard group of the Picard stack/scheme” seems a bit
cacophonic.
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In Section 3, we describe the irreducible components of the boundary divisor
J acd,g \ J acd,g. Clearly, the boundary of J acd,g is the pull-back via the

morphism Φ̃d : J acd,g → Mg of the boundary of Mg. Recall that Mg \Mg =
[g/2]⋃

i=0

δi, where δ0 is the irreducible divisor whose generic point is an irreducible

curve with one node and, for i = 1, . . . , [g/2], δi is the irreducible divisor whose
generic point is the stable curve with two irreducible components of genera i

and g− i meeting in one point. In Theorem 3.2, we prove that δ̃i := Φ̃−1
d (δi) is

irreducible if either i = 0 or i = g/2 or the number 2g−2
(2g−2,d+g−1) does not divide

(2i − 1) and, otherwise, that Φ̃−1
d (δi) is the union of two irreducible divisors,

that we call δ̃1i and δ̃2i (see Section 3 for the precise description of these two

divisors). Since J acd,g is a smooth stack, the boundary divisors {δ̃i, δ̃
1
i , δ̃

2
i }

are Cartier divisors and therefore they give rise to line bundles on J acd,g that

we denote by {O(δ̃i),O(δ̃1i ),O(δ̃2i )} and we call the boundary line bundles of
J acd,g. Note that the irreducible components of the boundary of J d,g are

the divisors δi := νd(δ̃i), δ
1

i := νd(δ̃
1
i ) and δ

2

i := νd(δ̃
2
i ). The associated line

bundles {O(δi),O(δ
1

i ),O(δ
2

i )} are called boundary line bundles of J d,g and

clearly we have that ν∗dO(δi) = O(δ̃i), ν
∗
dO(δ

1

i ) = O(δ̃1i ) and ν
∗
dO(δ

2

i ) = O(δ̃2i )
(see Corollary 3.3).
In Section 5, we introduce the line bundles K1,0, K0,1, K−1,2 and Λ(m,n) (for

n,m ∈ Z) on J acd,g, which we call tautological line bundles. The tautological
line bundles are defined in terms of the determinant of cohomology dπ(−) and
of the Deligne pairing 〈−,−〉π applied to the universal family π : J acd,g,1 →
J acd,g (see §2.6 for the definition and basic properties of the determinant of
cohomology and of the Deligne pairing). More precisely, we define

K1,0 := 〈ωπ, ωπ〉π ,

K0,1 := 〈ωπ,Ld〉π,

K−1,2 := 〈Ld,Ld〉π,

Λ(n,m) = dπ(ω
n
π ⊗ Lm

d ),

where ωπ is the relative dualizing sheaf for π and Ld is the universal line bun-
dle on J acd,g,1. Following a strategy due to Mumford [Mum83], we apply the

Grothendieck-Riemann-Roch theorem to the morphism π : J acd,g,1 → J acd,g
in order to produce relations among the tautological line bundles, at least in
the rational Picard group. In particular, we prove in Theorem 5.2 that all
the tautological line bundles can be expressed in Pic(J acd,g) ⊗ Q in terms
of Λ(1, 0), Λ(0, 1) and Λ(1, 1). Therefore, we define the tautological sub-
group Pictaut(J acd,g) ⊆ Pic(J acd,g) as the subgroup generated by the line
bundles Λ(1, 0), Λ(0, 1), Λ(1, 1) together with the boundary line bundles of
J acd,g. Similarly, we consider the subgroup Pictaut(J acd,g) ⊆ Pic(J acd,g)
generated by the restriction of Λ(1, 0), Λ(0, 1), Λ(1, 1) to J acd,g. Moreover,
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using the pull-back morphism ν∗d (see diagram (1.1)), we can define the tau-

tological subgroups Pictaut(J d,g) := (ν∗d)
−1(Pictaut(J d,g)) ⊆ Pic(J d,g) and

Pictaut(Jd,g) := (ν∗d)
−1(Pictaut(Jd,g)) ⊆ Pic(Jd,g).

After these preliminaries, we can now state the main results of this paper,
concerning the Picard groups of J acd,g and Jd,g and of their compactifications

J acd,g and J d,g. We prove that all the Picard groups in question are free
and generated by tautological line bundles and boundary line bundles (if any).
More precisely, we have the following.

Theorem A. Assume that g ≥ 3.

(i) The Picard group of J acd,g is freely generated by Λ(1, 0), Λ(0, 1) and
Λ(1, 1).

(ii) The Picard group of J acd,g is freely generated by the boundary line bun-
dles and the tautological line bundles Λ(1, 0), Λ(0, 1) and Λ(1, 1).

Theorem B. Assume that g ≥ 3.

(i) The Picard group of Jd,g is freely generated by the tautological line bundles
Λ(1, 0) and

(1.2) Ξ := Λ(0, 1)
d+g−1

(d+g−1,d−g+1) ⊗ Λ(1, 1)−
d−g+1

(d+g−1,d−g+1) .

(ii) The Picard group of J d,g is freely generated by the boundary line bundles
and the tautological line bundles Λ(1, 0) and Ξ.

Let us now sketch the strategy that we use to prove Theorems A and B. Since
the stack J acd,g is smooth we have a natural exact sequence
(1.3) ⊕

kd,g ∤ (2i−1)

or i=g/2 or i=0

〈O(δ̃i)〉
⊕

kd,g |(2i−1)

and i6=0,g/2

〈O(δ̃1i ),O(δ̃2i )〉 → Pic(J acd,g) → Pic(J acd,g) → 0.

In Theorem 4.1, we prove that the above exact sequence is also exact on the
left, or in other words that the boundary line bundles are linearly independent
in the Picard group of J acd,g. In order to prove this, we use the same strategy
used by Arbarello-Cornalba in [AC87] to prove the analogous statement for the

boundary line bundles of Mg: we construct some test curves F̃j → J acd,g,
in number equal to the number of boundary line bundles, and prove that the

intersection matrix between these test curves F̃j and the boundary line bundles

of J acd,g is non-degenerate. This reduces the proof of Theorem A(ii) to the
proof of Theorem A(i).
Moreover, using the fact that the pull-back morphism ν∗d : Pic(J d,g) →
Pic(J acd,g) is injective and it sends the boundary line bundles of J d,g into

the boundary line bundles of J acd,g, we get that also the boundary line bun-

dles of J d,g are linearly independent (see Corollary 4.6), or in other words that
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we have an exact sequence:
(1.4)

0 →
⊕

kd,g ∤ (2i−1)

or i=g/2 or i=0

〈O(δi)〉
⊕

kd,g |(2i−1)

and i6=0,g/2

〈O(δ
1

i ),O(δ
2

i )〉 → Pic(J d,g) → Pic(Jd,g) → 0.

This reduces the proof of Theorem B(ii) to the proof of Theorem B(i).
The Picard groups of J acd,g and of Jd,g are related via the following exact
sequence coming from the Leray spectral sequence for the étale sheaf Gm with
respect to the rigidification map νd : J acd,g → Jd,g (see (6.1)):

0 → Pic(Jd,g)
ν∗
d−→ Pic(J acd,g)

res
−→ PicBGm = Hom(Gm,Gm) ∼= Z

obs
−→ Br(Jd,g).

The map res is the restriction to the fibers of νd (which are isomorphic to the
classifying stack BGm of the multiplicative groupGm) and obs sends 1 ∈ Z into
the class [νd] of the Gm-gerbe νd : J acd,g → Jd,g in the cohomological Brauer
group Br(Jd,g) := H2

ét(Jd,g,Gm) of Jd,g. In Theorem 6.4, we prove that the
order of [νd] is the greatest common divisor (d+1− g, 2g− 2). In proving this,
we interpret in Proposition 6.6 the order of [νd] as the smallest natural number
m for which there exists an m-Poincaré line bundle (in the sense of Definition
6.5) on the universal family J acd,g,1 over Jd,g. Using Proposition 6.6, Theorem
6.4 follows then from a result of Kouvidakis (see [Kou93, p. 514]). Note also
that by combining Theorem 6.4 and Proposition 6.6, we recover the well-known
result of Mestrano-Ramanan ([MR85, Cor. 2.9]): there exists a Poincaré line
bundle on J acd,g,1 if and only if (d + 1 − g, 2g − 2) = 1. We conjecture that
the cohomological Brauer group Br(Jd,g) is generated by [νd] (see Conjecture
6.9 and the discussion following it).
From the computation of the order of [νd] and the above exact sequence, we get
that res(Pic(J acd,g)) = (2g−2, d+1−g) ·Z. Moreover, we compute the values

of the map res on the generators of the tautological subgroup Pictaut(J acd,g) ⊆
Pic(J acd,g) in Lemma 6.2 and deduce that res(Pictaut(J acd,g)) = (2g − 2, d+
1−g)·Z. This easily reduces the proof of Theorem A(i) to the proof of Theorem
B(i). Furthermore, it shows that Pictaut(Jd,g) is generated by Λ(1, 0) and the
line bundle Ξ of (1.2).
The Picard group of Jd,g can be determined with the help of the following
exact sequence

(1.5) 0 → Pic(Mg)
Φ∗

d−→ Pic(Jd,g)
χd−→ Z,

where the map χd sends a line bundle L ∈ Pic(Jd,g) to the integer m ∈ Z

such that the class of the restriction of L to the fiber Φ−1
d (C) = Jd(C) in the

Néron-Severi group NS(Jd(C)) is isomorphic to m times the class θC of the
theta divisor (see Section 7 for more details). A well-known result of Harer
and Arbarello-Cornalba says that Pic(Mg) is freely generated by the Hodge
line bundle Λ if g ≥ 3 (see Theorem 2.12) and we prove in Lemma 5.1 that
Φ∗

d(Λ) = Λ(1, 0). On the other hand, a result of Kouvidakis in [Kou91] implies

that Im(χd) ⊆
2g − 2

(2g − 2, d+ 1− g)
· Z. In Theorem 7.2, we compute the values
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of χd on the generators of the tautological subgroup Pictaut(Jd,g) ⊆ Pic(Jd,g)

and we deduce that χd(Pic
taut(Jd,g)) =

2g − 2

(2g − 2, d+ 1− g)
·Z. From the exact

sequence (1.5), we deduce now that Pictaut(Jd,g) = Pic(Jd,g) is free of rank
two; Theorem B(i) now follows.
In the last Section of the paper, we relate the Picard group of the moduli stack
J d,g with the divisor class group Cl(Jd,g) of its moduli scheme Jd,g, which was
computed by Fontanari [Fon05] based upon the work of Kouvidakis [Kou91]
on the Picard group of the open subscheme J0

d,g ⊂ Jd,g consisting of pairs

(C,L) such that C does not have non-trivial automorphisms. Fontanari proved
in [Fon05] that the boundary of Jd,g is the union of the irreducible divisors

∆̃i := φ−1
d (∆i) for i = 1, . . . , [g/2], where φd : Jd,g → Mg is the natural map

towards the moduli scheme of stable curves of genus g and ∆i ⊆ Mg is, as

usual, the irreducible divisor of Mg whose generic point is an irreducible curve
with one node if i = 0 or, for i > 0, the union of two irreducible components
of genera i and g − i meeting in one point. Moreover, Fontanari proved that
there is an exact sequence

(1.6) 0 →

[g/2]⊕

i=0

Z · ∆̃i → Cl(Jd,g) → Cl(Jd,g) → 0,

where the last map is the restriction map and the first map sends each ∆̃i into
its class in Cl(Jd,g). The Picard group of J d,g and the divisor class group of

Jd,g are related by the pull-back via the natural map Ψd : J d,g → Jd,g, which
induces a map from the exact sequence (1.4) into the exact sequence (1.6). In
Section 8 we prove the following result.

Theorem C. The pull-back map Ψ∗
d : Cl(Jd,g) → Pic(J d,g) induced by the

natural map Ψd : J d,g → Jd,g fits into a commutative diagram with exact rows

0 // ⊕[g/2]
i=0 Z · ∆̃i

//

αd��

Cl(Jd,g) //

Ψ∗
d

��

Cl(Jd,g) //

βd

��

0

0 //

⊕

kd,g∤ 2i−1

or i=g/2

〈O(δi)〉
⊕

kd,g |2i−1

and i6=g/2

〈O(δ
1
i ),O(δ

2
i )〉 // Pic(J d,g) // Pic(Jd,g) // 0,

such that:

(i) the map βd is an isomorphism;
(ii) the map αd satisfies

αd(∆̃i) =





O(δi) if kd,g ∤ (2i− 1),

O(δ
1

i ) +O(δ
2

i ) if kd,g | (2i− 1) and i 6= g/2,

O(2δi) if kd,g | (2i− 1) and i = g/2.

It is likely that the same techniques used in this paper could lead to the com-
putation of the Picard group of the degree-d compactified universal Jacobian
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stack J acd,g,n over the stack Mg,n of n-pointed stable curves of genus g con-

structed in [Mel10] and of the universal vector bundle over Mg constructed in
[Pan96]. We plan to come back to these problems in a near future.
The paper is organized as follows. In Section 2, we summarize the known
properties of the stacks J acd,g and J d,g as well as the properties of their

moduli scheme Jd,g (see 2.1). Moreover, we recall some basic facts about the
Picard group of a stack and how to construct natural line bundles on moduli
stacks by using the determinant of cohomology and the Deligne pairing (see
2.6). Finally, we recall the computation of the Picard group of the stack Mg of
stable curves of genus g by Harer and Arbarello-Cornalba (see 2.11). In Section
3, we describe the boundary divisors of J acd,g and we explain how they are

related to the pull-back of the boundary divisors of Mg. In Section 4, we show

that the line bundles on J acd,g associated to the boundary divisors are linearly

independent. In Section 5, we introduce the tautological line bundles on J acd,g
and we study the relations among them. In Section 6, we compare the Picard
groups of J acd,g and of Jd,g using the Leray’s spectral sequence associated to
the rigidification map νd : J acd,g → Jd,g. Moreover, we compute the order
of the Gm-gerbe νd in the Brauer group of Jd,g. In Section 7, we compute
the Picard group of Jd,g using the fibration Φd : Jd,g → Mg. Moreover,
we investigate the relation between the line bundle Ξ and the universal theta
divisor (see 7.1) and we prove that the pull-back via the Abel-Jacobi map
provides an isomorphism between the Picard groups of J acd,g and of the d-th
symmetric product of the universal curve Mg,1 → Mg, when d > 2g − 2 (see

7.2). In Section 8, we compare the Picard group of J d,g with the divisor class

group of its moduli scheme Jd,g.

1.1. Relation to algebraic topology. After a preliminary version of this
manuscript has been posted on arXiv, J. Ebert and O. Randal-Williams posted
on arXiv a preliminary version of the paper [ERW12], which contains, among
other things, some results that are closely related to Theorem A(i) and Theorem
B(i) in the case when our base field k is the field of complex numbers. We now
explain the relation between our results and the results of [ERW12].

In [ERW12], the authors introduce two holomorphic stacks Holdg and Pickg ,

defined as follows (see [ERW12, Sec. 4.1] for details): Holdg is the holomorphic
stack whose fibers over a topological space B consists of families of Riemann
surfaces π : E → B of genus g equipped with a fiberwise holomorphic line
bundle L→ E of relative degree d; Picdg is the holomorphic stack parametrizing
families of Riemann surfaces of genus g equipped with a section of the associated
bundle of Jacobian varieties of degree d. There is a morphism φdg : Holdg → Picdg
defined by sending a fiberwise holomorphic line bundle to its isomorphism class.
It turns out that φdg is a gerbe with band C∗ (see [ERW12, Thm. 4.5]).
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The relation with our algebraic stacks J acd,g and Jd,g (over the complex num-
bers) is provided by a commutative diagram

(1.7) (J acd,g)an //

νd

��

Holdg

φd
g

��
(Jd,g)

an // Picdg

where (J acd,g)an and (Jd,g)
an are the analytifications of the complex algebraic

stacks J acd,g and Jd,g. The horizontal maps are most likely isomorphisms
although we have not checked this in detail.
The authors of loc. cit. consider tautological classes κi,j ∈ H2i+2j(Holdg ,Z) for
i ≥ −1 and j ≥ 0 defined by associating to every element (π : E → B,L →
E) ∈ Holdg(B) the cohomology class

(1.8) κi,j(π : E → B,L→ E) := π!(c1(T
vE)i+1 · c1(L)

j) ∈ H2i+2j(B,Z),

where T vE is the relative tangent line bundle of the family π : E → B of
Riemann surfaces, which is of course dual to the sheaf ωπ of relative differentials
of π. In particular, the classes κi,0 are the pull-back to Holdg of the Mumford-
Morita-Miller classes κi on Mg. Moreover, one denotes by λ the pull-back to
Holdg of the Hodge class on Mg.
Among other beautiful results, Ebert and Randal-Williams compute the an-
alytic Néron-Severi group NS, the topological Picard group Pictop and the
second cohomology group with integer values H2(−,Z) of the above two stacks
(see [ERW12, Thm. C, Thm. E]), under the assumption that g ≥ 6.

Theorem 1.1 (Ebert, Randal-Williams). Assume that g ≥ 6. Then

(i) NS(Holdg) = Pictop(Hol
d
g) = H2(Holdg ,Z) is freely generated by λ, κ−1,2,

and ζ :=
κ0,1 − κ−1,2

2
.

(ii) NS(Picdg) = Pictop(Hol
d
g) = H2(Picdg ,Z) is the subgroup of H2(Holdg ,Z)

generated by λ and

η :=
d κ0,1 + (g − 1)κ−1,2

(2g − 2, g + d− 1)
.

The diagram (1.7) gives two natural homomorphisms

(1.9)
c1 : Pic(J acd,g) → H2(Holdg ,Z),

c1 : Pic(Jd,g) → H2(Picdg,Z).

The next result is obtained by comparing Theorems A(i) and B(i) with Theorem
1.1.

Corollary 1.2. Assume that g ≥ 6. The homomorphisms of (1.9) are iso-
morphisms.

Documenta Mathematica 19 (2014) 457–507



466 Margarida Melo and Filippo Viviani

Proof. The fact that the first map in (1.9) is an isomorphism follows by com-
paring Theorem A(i) and Theorem 1.1(i) by mean of the formulas

(*)





c1(Λ(1, 0)) = λ,

c1(Λ(1, 1)) =
κ−1,2 − κ0,1

2
= −ζ,

c1(Λ(0, 1)) =
κ−1,2 + κ0,1

2
+ λ = ζ + κ−1,2 + λ,

where the first formula follows from Lemma 5.1 and the last two formulas
follow from Theorem 5.2 together with the facts that c1(K−1,2) = κ−1,2 and
c1(K(0, 1)) = −κ0,1. Note that the minus sign appearing in this last equality is
due to the fact that in defining the classes κi,j ∈ H2(Holdg ,Z) (see (1.8)), Ebert
and Randal-Williams use the relative tangent sheaf while our definition (5.1)
of the tautological line bundles Ki,j ∈ Pic(J acd,g) uses its dual sheaf, namely
the sheaf of relative differentials.
The fact that the second map in (1.9) is an isomorphism follows by comparing
Theorem B(i) and Theorem 1.1(ii) using the formula

c1(Ξ) =
(d+ g − 1)c1(Λ(0, 1))− (d− g + 1)c1(Λ(1, 1))

(d+ g − 1, d− g + 1)
=

= η +
d+ g − 1

(d+ g − 1, d− g + 1)
λ.

�
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Notations.

1.3. We fix two integers g ≥ 2 and d: g will always denote the genus of the
curves and d the degree of the Jacobian varieties. Given two integers m and
n, we set (n,m) for the greatest common divisor of n and m. In particular the
greatest common divisor

(2g − 2, d+ 1− g) = (2g − 2, d− 1 + g) = (d+ 1− g, d− 1 + g)
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will appear often in what follows. Similarly the number

(1.10) kd,g :=
2g − 2

(2g − 2, d+ g − 1)

will appear repeatedly throughout the paper and hence it deserves a special
notation.

1.4. We work over an algebraically closed field k of characteristic 0. All the
schemes and stacks we will deal with are of finite type over k.
There are two places in our work where the assumption on the characteristic
of k is used. The first one is the explicit computation of the Picard group
of Mg by Harer and Arbarello-Cornalba (see Theorem 2.12 for the precise
statement), which is known to be true only in characteristic zero (in positive
characteristic, the same statement remains true for the rational Picard group
of Mg by the work of Moriwaki in [Mor01]). The second one is a result of
Kouvidakis [Kou91] (see Theorem 7.1), whose proof over the complex numbers
does not immediately extend to a base field k of positive characteristics2.

1.5. We will often assume, for simplicity, that g ≥ 3. This is the case for two
of the main results of this paper, namely Theorems A and B.
The reason for this assumption is that the Picard group of Mg is freely
generated by the Hodge line bundle Λ and the boundary line bundles
{O(δ0), . . . ,O(δ[g/2])} if g ≥ 3 (see Theorem 2.12) while if g = 2 then Pic(Mg)
is still generated by Λ and the boundary line bundles but with the relation
Λ10 ⊗ O(−δ0 − 2δ1) = 0 (see 2.11). Indeed, all the above mentioned results
continue to hold for g = 2 if we add the relation pull-backed from the relation
Λ10 ⊗O(−δ0 − 2δ1) = 0 in Pic(M2) or its image Λ10 = 0 in Pic(M2).

2. Preliminaries

2.1. The stacks J acd,g and J d,g and their moduli space Jd,g

Let J acd,g be the universal Jacobian stack over the moduli stackMg of smooth
curves of genus g. The fiber of J acd,g over a scheme S is the groupoid whose
objects are families of smooth curves C → S endowed with a line bundle L over
C of relative degree d over S and whose arrows are the obvious isomorphisms.
J acd,g is a smooth irreducible (Artin) algebraic stack of dimension 4g − 4

endowed with a natural forgetful morphism Φ̃d : J acd,g → Mg.
The multiplicative group Gm naturally injects into the automorphism group
of every object (C → S,L) ∈ J acd,g(S) as multiplication by scalars on L,
endowing J acd,g with the structure of a Gm-stack in the sense of [Hof07, Def.
3.1] or, equivalently, with a Gm-2-structure in the sense of [AGV09, Appendix
C.1].
There is a canonical procedure to remove such automorphisms, called Gm-
rigidification (see [ACV03, Sec. 5], [Rom05, Sec. 5] and [AGV09, Appendix
C]). The outcome is a new stack Jd,g := J acd,g ( Gm together with a smooth
and surjective map νd : J acd,g → Jd,g. Indeed, the map νd makes J acd,g into

2We thank F. Poma, M. Talpo and F. Tonini for pointing out this to us.
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a gerbe banded by Gm (or a Gm-gerbe in short) over Jd,g (we refer to [Gir71]

for the theory of gerbes). The forgetful map Φ̃d factors via νd and we get a
commutative diagram

J acd,g

Φ̃d ##GG
GG

GG
GG

G

νd // Jd,g

Φd||zz
zz

zz
zz

Mg

The new stack Jd,g is a smooth, irreducible and separated Deligne-Mumford
stack of dimension 4g − 3 and the map Φd is representable.
A modular compactification of the stacks J acd,g and Jd,g was described by
Caporaso in [Cap05] for some degrees and later by Melo in [Mel09] for the
general case, based upon previous work of Caporaso in [Cap94]. Let us review
this compactification.

Definition 2.2. [Cap94, Sec. 3.3] A connected, projective nodal curve X is
said to be quasistable if it is (Deligne-Mumford) semistable and if the excep-
tional components of X do not meet.

Definition 2.3. [BFMV, Def. 3.5] Let X be a quasistable curve of genus
g ≥ 2. A line bundle L of degree d on X (or its multidegree) is said to be
properly balanced if

• for every subcurve Z of X the following (“Basic Inequality”) holds

(2.1) mZ(d) :=
dwZ

2g − 2
−
kZ
2

≤ degZ L ≤
dwZ

2g − 2
+
kZ
2

:=MZ(d),

where wZ := degZ(ωX) and kZ := ♯(Z ∩X \ Z).
• degE L = 1 for every exceptional component E of X .

Remark 2.4. In order to check that a line bundle is properly balanced, it is
enough to check the basic inequality (2.1) for all subcurves Z such that Z and
Zc are connected (see [BFMV, Rmk. 3.8]).

Let J acd,g be the category fibered in groupoids whose fiber over a scheme S
consists of the groupoid whose objects are families of quasistable curves C → S
endowed with a line bundle L of relative degree d, whose restriction to each
geometric fiber is properly balanced (we say that L is properly balanced), and
whose arrows are the obvious isomorphisms. The multiplicative group Gm

injects into the automorphism group of every object (C → S,L) ∈ J acd,g(S)
as multiplication by scalars on L. As in the smooth case, the rigidification
morphism νd : J acd,g → J d,g := J acd,g(Gm endows J acd,g with the structure

of a Gm-gerbe over J d,g.

There is a natural morphism of category fibered in groupoids Φ̃d : J acd,g →
Mg obtained by sending (C → S,L) ∈ J acd,g(S) into the stabilization Cst →
S ∈ Mg(S) of the family of quasi-stable curves C → S. Clearly, the morphism

Φ̃d factors through a morphism Φd : J d,g → Mg.
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The following theorem summarizes the known properties of J acd,g and of J d,g,
proved in [Cap05] under the assumption that (d + g − 1, 2g − 2) = 1 and in
[Mel09] for arbitrary d, and of their moduli space Jd,g constructed in [Cap94].

Theorem 2.5 (Caporaso, Melo).

(1) J acd,g (resp. J d,g) is an irreducible and smooth quotient stack of
finite type over k and of dimension 4g − 4 (resp. 4g − 3). It contains
the stack J acd,g (resp. Jd,g) as a dense open substack.

(2) The morphism Φ̃d : J acd,g → Mg (resp. Φd : J d,g → Mg) is surjec-
tive and universally closed.

(3) There exists a projective irreducible normal variety Jd,g, endowed with

a surjective morphism φd : Jd,g → Mg, which is an adequate moduli
space in the sense of [Alp2] (and even a good moduli space in the sense
of [Alp1] if char(k) = 0) for J acd,g and J d,g.

Indeed, if (and only if) (d+1− g, 2g− 2) = 1 then J d,g is a Deligne-Mumford

stack, the morphism Φd is proper and Jd,g is a coarse moduli space for J d,g.
For later use, we record the morphisms introduced in this subsection into the
following commutative diagram:

(2.2) J acd,g

Φ̃d

��

νd // J d,g

Φd{{wwwwwwww

Ψd // Jd,g

φd

��
Mg

// Mg

2.6. The Picard and the Chow groups of a stack
In this subsection, we are going to briefly recall the definition and the main
properties of the Picard group and of the Chow group of an algebraic stack
that we are going to use later. We refer to [Edi12] for a nice survey on the
subject.
Let X be an Artin stack of finite type over k. The definition of the (functorial)
Picard group of X was introduced by Mumford (see [Mum65, p. 64]).

Definition 2.7 (Mumford). A line bundle L on X is the data consisting of
a line bundle L(f) ∈ Pic(S) for every morphism f : S → X from a scheme

S and, for every composition of morphisms T
g
→ S

f
→ X , an isomorphism

L(f ◦ g) ∼= g∗L(f), with the obvious compatibility requirements.
The tensor product of two line bundles L andM on X is the new line bundle L⊗
M on X defined by (L⊗M)(f) := L(f)⊗M(f) together with the isomorphisms
(L⊗M)(f ◦ g) ∼= g∗(L⊗M)(f) induced by those of L and M .
The abelian group consisting of all the line bundles on X together with the
operation of tensor product is called the Picard group of X and is denoted by
Pic(X ).

If X is isomorphic to a quotient stack [X/G], where X is a scheme of finite type
over k and G is a group scheme of finite type over k, then Pic(X ) is isomorphic
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to the group PicG(X) of G-linearized line bundles on X in the sense of [GIT65,
I.3] (see e.g. [EG98, Prop. 18]).
The (operational) Chow groups of an Artin stack X were introduced by Edidin-
Graham in [EG98, Sec. 5.3] (see also [Edi12, Def. 3.5]), generalizing the
definition of the operational (or bivariant) Chow groups of a scheme (see [Ful98,
Chap. 17]).

Definition 2.8 (Edidin-Graham). An i-th Chow cohomology class c on X is
the data consisting of an element c(f) belonging to the i-th operational Chow
group Ai(S) for every morphism f : S → X from a scheme S and, for every

composition of morphisms T
g
→ S

f
→ X , an isomorphism c(f ◦ g) ∼= g∗c(f),

with the obvious compatibility requirements.
The sum of two i-th Chow cohomology classes c and d on X is the new i-th
Chow cohomology class c⊕d on X defined by (c⊕d)(f) := c(f)⊕d(f) together
with the isomorphisms (c⊕ d)(f ◦ g) ∼= g∗(c⊕ d)(f) induced by those of c and
d.
The abelian group consisting of all the i-th Chow cohomology classes on X
together with the operation of sum is called the i-th Chow group of X and is
denoted by Ai(X ).

If X is isomorphic to a quotient stack [X/G], where X is a scheme of finite
type over k and G is a group scheme of finite type over k, then Ai(X ) is
isomorphic to the i-th (operational) equivariant Chow group Ai

G(X) defined
by Edidin-Graham in [EG98, Sec. 2.6] (see [EG98, Prop. 19]).
The first Chern class gives an homomorphism

(2.3)
c1 : Pic(X ) −→ A1(X )

L 7→ c1(L)

where c1(L) ∈ A1(X ) is defined by setting c1(L)(f) := c1(L(f)) for every
morphism f : S → X from a scheme S.
In the sequel, we will use the following results concerning the Picard group of
a smooth quotient stack.

Fact 2.9 (Edidin-Graham). Let X be a smooth quotient stack, i.e. X = [X/G]
where X is a smooth variety and G is an algebraic group acting on X.

(i) The first Chern class map c1 : Pic(X ) → A1(X ) is an isomorphism.
In particular, every Weil divisor D on X is a Cartier divisor and hence
it gives rise to a line bundle OX (D) on X .

(ii) Given a Weil divisor D of X with irreducible components Di, there is an
exact sequence

⊕

i

Z · 〈OX (Di)〉 → Pic(X ) → Pic(X \ D) → 0.

(iii) If Y is a closed substack of X of codimension greater than 1 then there is
an isomorphism

Pic(X )
∼=→ Pic(X \ Y).

Documenta Mathematica 19 (2014) 457–507



Picard Group of the Compactified Universal Jacobian 471

Proof. Part (i) follows from [EG98, Cor. 1]. Part (ii) follows from [EG98, Prop.
5]. Part (iii) follows from [EG98, Lemma 2(a)]. �

By Theorems 2.5, all the properties stated in Fact 2.9 hold for the stacks we will
deal with, namely J acd,g, Jd,g, J acd,g and J d,g. Moreover, it is well-known

that the same properties hold true for Mg and Mg.
There are two standard methods to produce line bundles on a stack parametriz-
ing nodal curves with some extra-structure (as J acd,g), namely the determinant
of cohomology (introduced in [KM76]) and the Deligne pairing (introduced in
[Del87]). Let us review briefly the definition and main properties of these two
constructions, following the presentation given in [ACG11, Chap. 13, Sec. 4
and 5].
Let π : X → S be a family of nodal curves, i.e. a proper and flat morphism
whose geometric fibers are nodal curves. Given a coherent sheaf F on X flat
over S (e.g. a line bundle on X), the determinant of cohomology of F is a line
bundle dπ(F) ∈ Pic(S) defined as it follows: we choose a complex of locally free
sheaves f : K0 → K1 on S such that ker f = π∗(F) and coker f = R1π∗(F)
(this is always possible) and we set

dπ(F) := detK0 ⊗ (detK1)−1.

The determinant of cohomology is functorial, multiplicative for short exact
sequence and its first Chern class is equal to

(2.4) c1(dπ(F)) = c1(π!(F)) := c1(π∗(F))− c1(R
1π∗(F)).

For more details, the reader is referred to [ACG11, Chap. 13, Sec. 4].
Given two line bundles M and L on the total space of a family of nodal curves
π : X → S, the Deligne pairing of M and L is a line bundle 〈M,L〉π ∈ Pic(S)
which can be defined as

(2.5) 〈M,L〉π := dπ(M⊗L)⊗ dπ(M)−1 ⊗ dπ(L)
−1 ⊗ dπ(OX).

The Deligne pairing is functorial, symmetric and bilinear in each factor, and
its first Chern class satisfies

(2.6) c1(〈M,L〉π) = π∗(c1(M) · c1(L)).

For more details, the reader is referred to [ACG11, Chap. 13, Sec. 5].

Remark 2.10. Since the determinant of cohomology and the Deligne pairing
are functorial, we can extend their definition to the case when π : Y → X is a
representable, proper and flat morphism of Artin stacks whose geometric fibers
are nodal curves.

2.11. The Picard group of Mg

In this subsection, in order to fix the notation, we recall the description of the
Picard group Pic(Mg).

The universal family π : Mg,1 → Mg is a representable, proper and flat mor-
phism whose geometric fibers are nodal curves. Applying the determinant of
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cohomology to the relative dualizing sheaf ωπ (see 2.6), we define the Hodge
line bundle

(2.7) Λ := dπ(ωπ) ∈ Pic(Mg).

Using the functoriality of the determinant of cohomology, it is easily checked
that Λ associates to a family of stable curves {f : C → S} ∈ Mg(S) the line
bundle

Λ(f) = det f∗(ωC/S)⊗ det(R1f∗(ωC/S))
−1 =

g∧
f∗(ωC/S) ∈ Pic(S).

We will abuse the notation and denote also with Λ the restriction of Λ to Mg

is also denoted by Λ.
Recall that the boundary Mg \ Mg decomposes as the union of irreducible
divisors δi for i = 0, . . . , [g/2] which are defined as follows: δ0 is the boundary
divisor of Mg whose generic point is an irreducible nodal curve of genus g

with one node while, for any 1 ≤ i ≤ [g/2], δi is the boundary divisor of Mg

whose generic point is a stable curve formed by two irreducible components
of genera i and g − i meeting in one point. We will denote by ∆i ⊂ Mg the

image of δi ⊂ Mg via the natural map Mg → Mg. We set δ :=
∑

i δi and

denote by O(δ) the associated line bundle on Mg (see Fact 2.9(i)). Similarly

for O(δi) ∈ Pic(Mg).

The Picard groups of Mg and of Mg are described by the following theorem
proved by Arbarello-Cornalba in [AC87, Thm. 1], based upon a result of Harer
[Har83].

Theorem 2.12 (Harer, Arbarello-Cornalba). Assume that g ≥ 3. Then

(i) Pic(Mg) is freely generated by Λ.

(ii) Pic(Mg) is freely generated by Λ,O(δ0), · · · ,O(δ[g/2]).

If g = 2, then Pic(Mg) (resp. Pic(Mg)) is still generated by Λ (resp. by
Λ,O(δ0),O(δ1)) but with the extra relation Λ10 = 0 (resp. Λ10⊗O(−δ0−2δ1) =
0), see respectively [Vis98] and [Cor07].

3. Boundary divisors of J acd,g

The aim of this Section is to describe the irreducible components of the bound-
ary divisor J acd,g and their relationship with the boundary divisors of Mg.

Consider the following divisors in the boundary of J acd,g:

(A) δ̃0 is the divisor whose generic point is a pair (C,L) where C is an irre-
ducible curve of genus g with one node and L is a degree d line bundle on
it.

(B) For 1 ≤ i ≤ g/2 and kd,g ∤ (2i− 1), δ̃i is the divisor whose generic point is
a pair (C,L), where C is formed by two smooth irreducible curves C1 and
C2 of genera respectively i and g − i meeting in one point, and L is a line
bundle of multidegree

(degC1
L, degC2

L) =

([
d
2i− 1

2g − 2
+

1

2

]
,

[
d
2(g − i)− 1

2g − 2
+

1

2

])
.
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(C) For 1 ≤ i < g/2 and kd,g | (2i − 1), δ̃1i (resp. δ̃2i ) is the divisor whose
generic point is a pair (C,L1) (resp. (C,L2)), where C consists of two
smooth irreducible curves C1 and C2 of genera respectively i and g − i
meeting in one point, and L1 and L2 are line bundles of multidegree

(degC1
L1, degC2

L1) =

(
d
2i− 1

2g − 2
−

1

2
, d

2(g − i)− 1

2g − 2
+

1

2

)
.

(degC1
L2, degC2

L2) =

(
d
2i− 1

2g − 2
+

1

2
, d

2(g − i)− 1

2g − 2
−

1

2

)
.

(D) If g is even and kd,g | (g−1) (i.e. d is odd), δ̃g/2 is the divisor whose generic
point is a pair (C,L), where C is formed by two smooth irreducible curves
C1 and C2 both of genera g/2 meeting in one point, and L is a line bundle
of multidegree

(degC1
L, degC2

L) =

(
d− 1

2
,
d+ 1

2

)
.

Note that in the above cases (C) and (D), the divisibility condition kd,g |
(2i−1) is equivalent to the condition thatMCi

(d) and mCi
(d) are integers (see

Definition 2.3). Moreover, the case (D) is different from the case (C) since in
the case (D) the two components C1 and C2 have the same genus and hence
it is not possible to distinguish “numerically” a line bundle of multidegree
(degC1

L, degC2
L) =

(
d−1
2 , d+1

2

)
from one of multidegree (degC1

L, degC2
L) =(

d+1
2 , d−1

2

)
.

3.1. Notation: Sometimes it is convenient to unify the notation for the cases
(A) and (B) and for the cases (C) and (D). For this reason, we always assume

that kd,g ∤ (2 · 0− 1) = −1 (even when kd,g = 1) and we set δ̃1g/2 = δ̃2g/2 = δ̃g/2
if g is even and kd,g | (g − 1) (i.e. if g is even and d is odd).

As usual, we denote by O(δ̃i) the line bundle on J acd,g associated to δi and

similarly for O(δ̃1i ) and O(δ̃2i ). Using the above Notation 3.1, we also set

(3.1) δ̃ :=
∑

kd,g∤(2i−1)

δ̃i +
∑

kd,g |(2i−1)

(δ̃1i + δ̃2i ),

and we denote by O(δ̃) ∈ Pic(J acd,g) its associated line bundle. Note that,

according to Notation 3.1, if g is even and d is odd then δ̃g/2 = δ̃1g/2 = δ̃2g/2

appears with coefficient two in δ̃.

Via the natural forgetful map Φ̃d : J acd,g → Mg, we can relate the boundary

divisors of J acd,g with those of Mg as follows.

Theorem 3.2.

(i) The boundary J acd,g\J acd,g of J acd,g consists of the irreducible divisors

{δ̃i : kd,g ∤ (2i− 1) or i = g/2} and {δ̃1i , δ̃
2
i : kd,g | (2i− 1) and i < g/2}.
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(ii) For any 0 ≤ i ≤ g/2, we have

Φ̃∗
dO(δi) =

{
O(δ̃i) if kd,g ∤ (2i− 1),

O(δ̃1i + δ̃2i ) if kd,g | (2i− 1).

In particular, Φ̃∗
d O(δ) = O(δ̃).

Proof. By construction we have that J acd,g \ J acd,g = Φ̃−1
d (Mg \ Mg) (see

2.1) and moreover Mg \Mg =
⋃

i δi (see 2.11). By the Definition 2.3, it is easy
to check that we have a set-theoretical equality

(3.2) Φ̃−1
d (δi) =

{
δ̃i if kd,g ∤ (2i− 1),

δ̃1i ∪ δ̃
2
i if kd,g | (2i− 1).

Finally, by looking at their definition, it is easy to see that the divisors δ̃i, δ̃
1
i , δ̃

2
i

are irreducible. This completes the proof of part (i).
Part (ii) is equivalent to proving that we have a scheme-theoretic equality in

(3.2). To achieve that, we need a local description of the morphism Φ̃d :

J acd,g → Mg at a general point (C,L) of δ̃i or of δ̃
1
i ∩ δ̃2i . Recall that locally

at (C,L), the morphism Φ̃d looks like

q : [Def(C,L) /Aut(C,L)] → [DefCst /Aut(Cst)],

where DefCst(resp. Def(C,L)) is the miniversal deformation space of the sta-

bilization Cst of C (resp. of the pair (C,L)) and Aut(Cst) (resp. Aut(C,L))
is the automorphism group of Cst (resp. the automorphism group of the pair
(C,L)). Using the results on the local structure of J acd,g given in [BFV12,
Sec. 2.15], we can describe explicitly the above morphism q at a general point

of δ̃i or of δ̃
1
i ∩ δ̃

2
i in the boundary of J acd,g. To this aim, we need to distinguish

between the case kd,g ∤ (2i− 1) (cases (A) and (B)) and the case kd,g | (2i− 1)
(cases (C) and (D)).

Suppose first that kd,g ∤ (2i − 1). Consider a general point (C,L) of δ̃i.
Since C = Cst is a general element of δi, it is well-known that DefC =
Spf k[[x1, · · · , x3g−3]] and

(3.3) Aut(C) =

{
{1} if i 6= 1,

Z/2Z if i = 1,

where, in the second case, the unique non-trivial automorphism is the ellip-
tic involution on the elliptic tail of C. On the other hand, we have that
Def(C,L) = Spf k[[x1, · · · , x3g−3, t1, · · · , tg]] and Aut(C,L) = Gm acts trivially
on it (see [BFV12, Proof of Thm. 1.5, Cases (1) and (2)]), where the coordi-
nates xi’s correspond to the deformation of the curve C and the coordinates
tj ’s correspond to the deformation of the line bundle L. The morphism q is
given by the natural equivariant projection Def(C,L) ։ DefC . Moreover, we
can choose local coordinates x1, · · · , x3g−3 for DefC in such a way that the first
coordinate x1 corresponds to the smoothing of the unique node of C and, if
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i = 1, the action of the generator of Aut(C) = Z/2Z sends x1 into −x1 and
fixes the other coordinates. For such a choice of the coordinates, we have that

the equation of δi inside DefC is given by (x1 = 0) and the equation of δ̃i inside
Def(C,L) is given by (x1 = 0). Since q∗(x1) = (x1), we conclude in this case.
Suppose now that kd,g | (2i − 1) (hence that i > 0 by Notation 3.1). If

i < g/2 then a general point (C,L) of δ̃1i ∩ δ̃2i consists of the two general
curves C1 and C2 of genera respectively i and g − i joined by a rational curve

R ∼= P1. By convention, in the case i = g/2 and kd,g | (g − 1), we set δ̃1g/2 ∩

δ̃2g/2 to be the closure of the locus of curves consisting of two smooth curves

of genera g/2 joined by a rational curve R ∼= P1. The stabilization Cst is
obtaining by contracting the rational curve R to a node n and it will be a
general point of δi. As before, we have that DefCst = Spf k[[x1, · · · , x3g−3]],
where x1 can be chosen as the coordinate corresponding to the smoothing of
the node n, and Aut(Cst) is as in (3.3). On the other hand, by [BFV12,
Proof of Theorem 1.5, Case (3)], we have that Aut (C,L) = G2

m, Def(C,L) =
Spf k[[u1, v1, x2, · · · , x3g−3, t1, · · · , tg]] where u1 corresponds to the node C1∩R
and v1 corresponds to the node C2∩R. Moreover, the action of G2

m on Def(C,L)

is given by (λ, µ) · (u1, v1) = (λµ−1u1, λ
−1µv1) while it is the identity on the

other coordinates. The morphism q is induced by the equivariant morphism
Def(C,L) → DefCst that, at the level of rings, sends x1 into u1 · v1 and xi into
xi for i > 1. The equation of δi inside DefCst is given by (x1 = 0) while the

equations of δ̃1i and δ̃2i inside Def(C,L) are given by (u1 = 0) and (v1 = 0)

(note that in the special case i = g/2 and kd,g | (g − 1), the divisor δ̃g/2, even

though irreducible, has two branches locally at (C,L), which we call δ̃1g/2 and

δ̃2g/2, whose equations are (u1 = 0) and (v1 = 0)). Since q∗(x1) = (u1 · v1), we

conclude also in this case.
�

As a Corollary of the above Theorem 3.2, we can determine also the irreducible

components of the boundary of J d,g. We set δi := νd(δ̃i), δ
1

i = νd(δ̃
1
i ) and δ

2

i :=

νd(δ̃
2
i ) according to the above Cases (A)–(B), where as usual νd : J acd,g → J d,g

is the rigidification map.

Corollary 3.3.

(i) The boundary J d,g \Jd,g of J d,g consists of the irreducible divisors {δi :

kd,g ∤ (2i− 1) or i = g/2} and {δ
1

i , δ
2

i : kd,g | (2i− 1) and i < g/2}.
(ii) For any 0 ≤ i ≤ g/2, we have

{
ν∗d O(δi) = O(δ̃i) if kd,g ∤ (2i− 1),

ν∗d O(δ
j

i ) = O(δ̃ji ) if kd,g | (2i− 1) and j = 1, 2.

Proof. The Corollary follows straightforwardly from Theorem 3.2 and the fact
that νd : J acd,g → J d,g is a Gm-gerbe such that ν−1

d (Jd,g) = J acd,g. �
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4. Independence of the boundary divisors

The aim of this Section is to prove that the line bundles corresponding to the
irreducible components of the boundary of J acd,g are linearly independent in

Pic(J acd,g). More precisely, we will prove the following result.

Theorem 4.1. We have an exact sequence
(4.1)

0 →
⊕

kd,g ∤ 2i−1

or i=g/2

〈O(δ̃i)〉
⊕

kd,g |2i−1

and i6=g/2

〈O(δ̃1i )〉 ⊕ 〈O(δ̃2i )〉 → Pic(J acd,g) → Pic(J acd,g) → 0,

where the right map is the natural restriction morphism and the left map is the
natural inclusion.

Using Theorem 3.2(i) and Fact 2.9(ii), we have that the exact sequence (4.1) is
exact except perhaps to the left. It remains to prove that the map on the left
is injective, or in other words that the line bundles associated to the boundary
divisors of J acd,g are linearly independent in Pic(J acd,g).
The strategy that we will use to prove this is the same as the one used by
Arbarello-Cornalba in [AC87]: we shall construct maps B → J acd,g from
irreducible smooth projective curves B (i.e. families of quasistable curves of
genus g parametrized by B, endowed with a properly balanced line bundle of
relative degree d) and compute the degree of the pullbacks of the boundary
divisors of Pic(J acd,g) to B. Actually, we will construct liftings of the families
Fh (for 1 ≤ h ≤ (g− 2)/2), F and F ′ used by Arbarello-Cornalba in [AC87, p.
156-159]. For that reason, we will be using their notations.
Note that, for every n ∈ Z, there are isomorphisms

(4.2)
φ̃nd : J acd,g

∼=
−→ J acd+n(2g−2),g

(C → S,L) 7→ (C → S,L⊗ ω⊗n
C/S).

Clearly, φ̃nd is an isomorphism of Gm-stacks and therefore, by passing to the

Gm-rigidification, it induces an isomorphism φnd : J d,g

∼=
→ J d+n(2g−2),g.

Since J acd,g ∼= J acd′,g if d ≡ d′ mod (2g−2) (see 4.2), throughout this section
we can make the following

Assumption 4.2. The degree d satisfies 0 ≤ d < 2g − 2.

The Family F̃
Start from a general pencil of conics in P2. Blowing up the four base points of
the pencil, we get a conic bundle φ : X → P1. The four exceptional divisors
E1, E2, E3, E4 ⊂ X of the blow-up of P2 are sections of φ through the smooth
locus of φ. Note that φ will have three singular fibers consisting of two incident
lines. Let C be a fixed irreducible, smooth and projective curve of genus g − 3
and p1, p2, p3, p4 four points of C. We construct a surface Y by setting

Y =
(
X

∐
(C × P1)

)
/(Ei ∼ {pi} × P1 : i = 1, · · · , 4).
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We get a family f : Y → P1 of stable curves of genus g: the general fiber of f
consists of C and a smooth conic Q meeting in 4 points (see Figure 1 below),
while the three special fibers consist of C and two lines R1 and R2 such that
|R1 ∩R2| = 1, |R1 ∩ C| = |R2 ∩ C| = 2 (see Figure 2 below).

C

Q

g − 3

Figure 1. The general fiber of f : Y → P1

R1 R2

C

Figure 2. The three special fibers of f : Y → P1

Choose a line bundle L of degree d on C, pull it back to C × P1 and call it
again L. Since L is trivial when restricted to {pi} × P1, we can glue it with
the trivial line bundle on X and, thus, we obtain a line bundle L on the family
Y → P1 of relative degree d.

Lemma 4.3. The line bundle L is properly balanced.

Proof. Since the property of being properly balanced is an open condition, it
is enough to check that L is properly balanced on the three special fibers of
f : Y → P1. According to Remark 2.4, it is enough to check the basic inequality
for the three subcurves R1∪R2, R1 and R2. The balancing condition for R1∪R2

∣∣∣∣degR1∪R2
(L) −

d · 2

2g − 2

∣∣∣∣ ≤
4

2
,
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is true because degR1∪R2
(L) = 0 and 0 ≤ d < 2g − 2. The balancing condition

for each of the subcurves Ri (i = 1, 2) is
∣∣∣∣degRi

(L)−
d · 1

2g − 2

∣∣∣∣ ≤
3

2
,

which is satisfied because degRi
(L) = 0 and 0 ≤ d < 2g − 2. �

We call F̃ the family f : Y → P1 endowed with the line bundle L. Forgetting
the line bundle L, we are left with the family F of [AC87, p. 158]. We can
compute the degree of the pull-backs of the boundary classes in Pic(J acd,g) to

the curve F̃ :
(4.3)




degF̃ O(δ̃0) = −1,

degF̃ O(δ̃i) = 0 if 1 ≤ i and kd,g ∤ (2i− 1) or i = g/2,

degF̃ O(δ̃1i ) = degF̃ O(δ̃2i ) = 0 if 1 ≤ i < g/2 and kd,g | (2i− 1).

The first relation follows from the fact that degF̃ O(δ̃0) = degF O(δ0) (by using
the projection formula) and the relation degF O(δ0) = −1 proved in [AC87, p.

158]. The last two relations follow by the obvious fact that F̃ does not meet

the divisors δ̃i or δ̃
1
i and δ̃2i for i ≥ 1.

The Families F̃ ′
1 and F̃ ′

2

We start with the same family of conics φ : X → P1 that we considered in

the construction of the family F̃ . Let C be a fixed irreducible, smooth and
projective curve of genus g−3, E be a fixed irreducible, smooth and projective
elliptic curve and take points p1 ∈ E and p2, p3, p4 ∈ C. We construct a surface
Z by setting

Z =
(
X

∐
(C × P1)

∐
(E × P1)

)
/(Ei ∼ {pi} × P1 : i = 1, · · · , 4).

We get a family g : Z → P1 of stable curves of genus g: the general fiber of g
consists of C, E and a smooth conic Q intersecting as in Figure 3. The three
special fibers consist of C, E and two lines R1 and R2, intersecting as shown
in Figure 4.
We choose two line bundles of degree d and d− 3 on C, we pull them back to
C × P1 and call them, respectively, L1 and L2. Similarly, we choose two line
bundles of degree 0 and 1 on E, we pull them back to E × P1 and call them,
respectively, M1 andM2. We glue the line bundle L1 (resp. L2) on C×P1, the
line bundle M1 (resp. M2) on E×P1 and the line bundle OX (resp. ω−1

X/P1 , the

relative anti-canonical bundle of φ : X → P1) on X , obtaining a line bundle
M1 (resp. M2) on Z of relative degree d.

Lemma 4.4. The line bundle M1 is properly balanced if 0 ≤ d ≤ g − 1. The
line bundle M2 is properly balanced if g − 1 ≤ d < 2g − 2.

Proof. The proof is straightforward and similar to the one of Lemma 4.3: we
leave it to the reader.
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E

Q

C

Figure 3. The general fibers of g : Z → P1.

E
C

R1

R2

Figure 4. The three special fibers of g : Z → P1.

�

If 0 ≤ d ≤ g−1, we call F̃ ′
1 the family g : Z → P1 endowed with the line bundle

M1; if g − 1 ≤ d < 2g − 2, we call F̃ ′
2 the family g : Z → P1 endowed with

the line bundle M2. Both families F̃ ′
1 and F̃ ′

2, when defined, are liftings of the
family F ′ of [AC87, p. 158]. We can compute the degree of the pull-backs of

some of the boundary classes in Pic(J acd,g) to the curves F̃ ′
1 and F̃ ′

2, in the

ranges of degrees where they are defined (note that Φ̃−1
d (δ1) is the union of two
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irreducible divisors if and only if kd,g = 1, i.e. iff d = g − 1):
(4.4)




deg
F̃ ′

1
O(δ̃1) = deg

F̃ ′
2
O(δ̃1) = −1 if d 6= g − 1,

deg
F̃ ′

1
O(δ̃11) = deg

F̃ ′
2
O(δ̃21) = −1

and deg
F̃ ′

1
O(δ̃21) = deg

F̃ ′
2
O(δ̃11) = 0 if d = g − 1,

deg
F̃ ′

1
O(δ̃i) = deg

F̃ ′
2
O(δ̃i) = 0 if 1 < i and kd,g ∤ (2i− 1) or i = g/2,

deg
F̃ ′

1
O(δ̃ji ) = deg

F̃ ′
2
O(δ̃ji ) = 0 if 1 < i < g/2

and kd,g | (2i− 1), for j = 1, 2.

The first relation follow, by using the projection formula, from the relation
degF ′ O(δ1) = −1 proved in [AC87, p. 159]. The second relation is deduced in

a similar way using the projection formula and the (easily checked) fact that F̃ ′
1

does not meet δ̃21 and that F̃ ′
2 does not meet δ̃11 . The last two relations follow

from the fact that F̃ ′
1 and F̃ ′

2 do not meet the divisors δ̃i or δ̃
1
i and δ̃2i for i > 1.

The Families F̃h,1 and F̃h,2 (for 1 ≤ h ≤ g−2
2 )

Fix irreducible, smooth and projective curves C1, C2 and Γ of genera h, g−h−1
and 1, and points x1 ∈ C1, x2 ∈ C2 and γ ∈ Γ. Consider the surfaces Y1 =
C1 × Γ, Y3 = C2 × Γ and Y2 given by the blow-up of Γ × Γ at (γ, γ). Let us
denote by p2 : Y2 → Γ the map given by composing the blow-down Y2 → Γ×Γ
with the second projection, and by π1 : Y1 → Γ and π3 : Y3 → Γ the projections
along the second factor. As in [AC87, p. 156], we set (see also Figure 5):

A = {x1} × Γ,

B = {x2} × Γ,

E = exceptional divisor of the blow-up of Γ× Γ at (γ, γ),

∆ = proper transform of the diagonal in Y2,

S = proper transform of {γ} × Γ in Y2,

T = proper transform of Γ× {γ} in Y2.

We construct a surface X by identifying S with A and ∆ with B. The surface
X comes equipped with a projection f : X → Γ. The fibers over all the points
γ′ 6= γ are shown in Figure 6, while the fiber over the point γ is shown in Figure
7.
We will first construct several line bundles over the three surfaces Y1, Y2 and
Y3, and then we will glue them in a suitable way.
Consider the line bundles Mi (i = 1, · · · , 4) on Y2 given by

M1 := OY2 , M2 := OY2(∆), M3 := OY2(∆ + E), M4 := OY2(2∆ + E).
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A

❄ ❄

ΓΓ Γ

π1 π3C1
B

S

Γ ∆

T

E

C2

Figure 5. Constructing f : X → Γ.

C1
h

Γ
1

C2

g − h− 1

Figure 6. The general fiber of f : X → Γ.

E

C1 C2 Γ

Figure 7. The special fiber of f : X → Γ.

Using that degE O(E) = −1, we get that the restrictions of Mi to E and T
have degrees:

(degE Mi, degT Mi) =





(0, 0) if i = 1,

(1, 0) if i = 2,

(0, 1) if i = 3,

(1, 1) if i = 4.
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Notice that the diagonal ∆ of Γ×Γ is such that OΓ×Γ(∆)|∆ = O∆ since Γ is an

elliptic curve. By applying the projection formula to the blow-up Y2 → Γ× Γ,
we get that OY2(∆)|∆ = O∆(−γ). Using this, we can easily compute the
restrictions of Mi to S and ∆ (which are canonically isomorphic to Γ):

(4.5) (Mi)|∆ =

{
OΓ if i = 1, 3

OΓ(−γ) if i = 2, 4
and (Mi)|S =

{
OΓ if i = 1, 2

OΓ(γ) if i = 3, 4.

Consider now the integers α1, α2 defined by:




α1 :=

⌊
d(2g − 2h− 3)

2g − 2

⌋
, α2 :=

⌈
d(2g − 2h− 3)

2g − 2

⌉
,

if
d(2g − 2h− 3)

2g − 2
≡

1

2
mod Z

α1 = α2 := the unique integer which is closest to
d(2g − 2h− 3)

2g − 2
,

otherwise.

Take two line bundles on C2 of degrees α1 and α2, and call, respectively, L1

and L2 their pull-backs to Y3 = C2 × Γ. We may assume that L1 = L2 if
α1 = α2.
Analogously, consider the integers β1, β2 defined by:




β1 :=

⌊
d(2h− 1)

2g − 2

⌋
, β2 :=

⌈
d(2h− 1)

2g − 2

⌉
, if

d(2h− 1)

2g − 2
≡

1

2
mod Z

β1 = β2 := the unique integer which is closest to
d(2h− 1)

2g − 2
, otherwise.

Consider two line bundles on C1 of degrees β1 and β2, and call, respectively,
N1 and N2 their pull-back to Y1 = C1 × Γ. We may assume that N1 = N2 if
β1 = β2.
We now want to define two (possibly equal) line bundles I1 and I2 on X , by
gluing in a suitable way some of the line bundles on Y1, Y2 and Y3, we have
just defined. We shall distinguish between several cases:

CASE A: d(2g−2h−3)
2g−2 6≡ 1

2 mod Z (i.e. α1 = α2). In this case, we have that

(4.6) α1 −
1

2
<
d(2g − 2h− 3)

2g − 2
< α1 +

1

2
and β1 −

1

2
<
d(2h− 1)

2g − 2
≤ β1 +

1

2
.

Subcase A1: 0 ≤ d ≤ g − 1. Using the inequalities (4.6), we get that

−1 ≤ −1 +
d

g − 1
= −1 + d−

d(2g − 2h− 3)

2g − 2
−
d(2h− 1)

2g − 2
< d− α1 − β1 <

(4.7) < 1 + d−
d(2g − 2h− 3)

2g − 2
−
d(2h− 1)

2g − 2
= 1 +

d

g − 1
< 2.

If d− α1 − β1 = 0 then we define I1 = I2 to be equal to the line bundle on X
obtained by gluing N1, M1 and L1 = L2, which is possible since, by (4.5), we
have that (N1)|A = OΓ = (M1)|S and (L1)|B = OΓ = (M1)|∆.
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Otherwise, if d − α1 − β1 = 1, then we define I1 = I2 to be equal to the
line bundle on X obtained by gluing the sheaves N1, M2 and L1 ⊗ π∗

3OΓ(−γ),
which is possible since, by (4.5), we have that (N1)|A = OΓ = (M2)|S and
(L1 ⊗ π∗

3OΓ(−γ))|B = OΓ(−γ) = (M2)|∆.
Subcase A2: g − 1 < d < 2g − 2.
Arguing similarly to the above inequality (4.7), we get that d−α1 − β1 = 1, 2.
If d−α1 − β1 = 1, then we define I1 = I2 to be equal to the line bundle on X
obtained by gluing N1⊗π∗

1OΓ(γ), M3 and L1, which is possible since, by (4.5),
we have that (N1⊗π

∗
1OΓ(γ))|A = OΓ(γ) = (M3)|S and (L1)|B = OΓ = (M3)|∆.

If d − α1 − β1 = 2, then we define I1 = I2 to be equal to the line bundle
on X obtained by gluing N1 ⊗ π∗

1OΓ(γ), M4 and L1 ⊗ π∗
3OΓ(−γ), which is

possible since, by (4.5), we have that (N1⊗π∗
1OΓ(γ))|A = OΓ(γ) = (M4)|S and

(L1 ⊗ π∗
3OΓ(−γ))|B = OΓ(−γ) = (M4)|∆.

CASE B: d(2g−2h−3)
2g−2 ≡ 1

2 mod Z (i.e. α1 = α2 − 1).

In this case, we have that α1 +
1
2
d(2g−2h−3)

2g−2 = α2 −
1
2 , β1 −

1
2 <

d(2g−2h−3)
2g−2 ≤

β1 +
1
2 , and that β2 −

1
2 ≤ (2h−1)

2g−2 < β2 +
1
2 . So, arguing similarly to the above

inequality (4.7), we get that

d− α1 − β2 =

{
1 if 0 ≤ d ≤ g − 1,

2 if g − 1 < d < 2g − 2.

If 0 ≤ d ≤ g − 1, we define I1 to be equal to the line bundle on X obtained
by gluing the sheaves N2, M2 and L1 ⊗ π∗

3OΓ(−γ), which is possible since,
by (4.5), we have that (N2)|A = OΓ = (M2)|S and (L1 ⊗ π∗

3OΓ(−γ))|B =
OΓ(−γ) = (M2)|∆.
If g−1 < d < 2g−2, we define I1 to be equal to the line bundle onX obtained by
gluing N2⊗π∗

1OΓ(γ), M4 and L1⊗π∗
3OΓ(−γ). which is possible since, by (4.5),

we have that (N2 ⊗ π∗
1OΓ(γ))|A = OΓ(γ) = (M4)|S and (L1 ⊗ π∗

3OΓ(−γ))|B =
OΓ(−γ) = (M4)|∆.
Similarly, we get that

d− α2 − β1 =

{
0 if 0 ≤ d < g − 1,

1 if g − 1 ≤ d < 2g − 2.

If 0 ≤ d < g − 1, we define I2 to be equal to the line bundle on X obtained
by gluing N1, M1 and L2, which is possible since, by (4.5), we have that
(N1)|A = OΓ = (M1)|S and (L1)|B = OΓ = (M1)|∆.
If g−1 ≤ d < 2g−2, we define I2 to be equal to the line bundle on X obtained
by gluing N1 ⊗ π∗

1OΓ(γ), M3 and L2, which is possible since, by (4.5), we have
that (N1 ⊗ π∗

1OΓ(γ))|A = OΓ(γ) = (M3)|S and (L2)|B = OΓ = (M3)|∆.

Lemma 4.5. The line bundles I1 and I2 on X are properly balanced of relative
degree d.

Proof. The proof is straightforward and similar to the one of Lemma 4.3: we
leave it to the reader.

�
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We call F̃h,1 the family f : X → Γ endowed with the line bundle I1 and F̃h,2

the family f : X → Γ endowed with the line bundle I2. Note that F̃h,1 = F̃h,2

if and only if we are in case A, which happens exactly when kd,g ∤ 2h + 1.

Both families F̃h,1 and F̃h,2 are liftings of the family Fh of [AC87, p. 156]. We
can compute the degrees of the pull-backs of some of the boundary classes in

Pic(J acd,g) to the curves F̃h,1 and F̃h,2:

(4.8)



deg
F̃h,1

O(δ̃h+1) = −1 if kd,g ∤ 2h+ 1 or h+ 1 = g/2,

deg
F̃h,1

O(δ̃1h+1) = deg
F̃h,2

O(δ̃2h+1) = −1 if kd,g | 2h+ 1 and h+ 1 6= g/2,

deg
F̃h,1

O(δ̃2h+1) = deg
F̃h,2

O(δ̃1h+1) = 0 if kd,g | 2h+ 1 and h+ 1 6= g/2,

deg
F̃h,1

O(δ̃i) = 0 if h+ 1 < i and kd,g ∤ (2i− 1) or i = g/2,

deg
F̃h,1

O(δ̃ji ) = deg
F̃h,2

O(δ̃ji ) = 0 if h+ 1 < i < g/2 and kd,g | (2i− 1),

for j = 1, 2.

The first relations follow, by using the projection formula, from the relation
degFh

O(δh+1) = −1 proved in [AC87, p. 157]. The second and third rela-
tions are deduced in a similar way using the projection formula and the (easily

checked) fact that F̃h,1 does not meet δ̃2h+1 and F̃h,2 does not meet δ̃1h+1. The

last two relations follow from the fact that F̃h,1 and F̃h,2 do not meet the

divisors δ̃i or δ̃
1
i and δ̃2i for i > h+ 1.

With the help of the above families, we can finally conclude the proof of our
main theorem.

Proof of Theorem 4.1. As observed before, it is enough to prove that the line

bundles associated to the boundary divisors {δ̃i : kd,g ∤ 2i − 1 or i = g/2},

{δ̃1i , δ̃
2
i : kd,g | 2i − 1 and i 6= g/2} (for 0 ≤ i ≤ g/2) are linearly independent

on J acd,g. Suppose there is a linear relation

(4.9) O




∑

kd,g ∤ 2i−1

or i=g/2

aiδ̃i +
∑

kd,g |2i−1

and i6=g/2

(a1i δ̃
1
i + a2i δ̃

i
2)


 = O,

in the Picard group of J acd,g. We want to prove that all the above coefficients
ai, a

1
i and a2i are zero. Pulling back the above relation (4.9) to the curve

F̃ → J acd,g and using the formulas (4.3), we get that a0 = 0. Pulling back

(4.9) to the curves F̃ ′
1 → J acd,g and F̃ ′

2 → J acd,g (in the range of degrees in
which they are defined) and using the formulas (4.4), we get that a1 = 0 if
kd,g ∤ 1 (i.e. if d 6= g − 1) or that a11 = a21 = 0 if kd,g | 1 (i.e. if d = g − 1).

Finally, by pulling back the relation (4.9) to the families F̃h,1 → J acd,g and

F̃h,2 → J acd,g (for any 1 ≤ h ≤ (g − 2)/2) and using the formulas (4.8), we
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get that ah+1 = 0 if kd,g ∤ (2h + 1) or h + 1 = g/2 and a1h+1 = a2h+1 = 0 if
kd,g | (2h+ 1) and h+ 1 6= g/2, which concludes the proof. �

As a corollary of the above Theorem 4.1, we can prove that the boundary line
bundles of J d,g are linearly independent.

Corollary 4.6. We have an exact sequence
(4.10)

0 →
⊕

kd,g ∤ 2i−1

or i=g/2

〈O(δi)〉
⊕

kd,g |2i−1

and i6=g/2

〈O(δ
1

i )〉⊕〈O(δ
2

i )〉 → Pic(J d,g) → Pic(Jd,g) → 0,

where the right map is the natural restriction morphism and the left map is the
natural inclusion.

Proof. As observed before, the only thing to prove is that the above se-
quence is exact on the left, or in other words that the boundary line bun-

dles {O(δ),O(δ
1

i ),O(δ
2

i )} are linearly independent in Pic(J d,g). This follows
from Theorem 4.1 using Corollary 3.3(ii) and the fact that the pull-back map
ν∗d : Pic(J d,g) → Pic(J acd,g) is injective, as observed in the introduction (see
diagram (1.1)).

�

5. Tautological line bundles

The aim of this section is to introduce some natural line bundles on J acd,g,
which we call tautological line bundles, and to determine the relations among
them.
Let π : J acd,g,1 → J acd,g be the universal family over J acd,g (see [Mel10] for a

modular description of J acd,g,1). The stack J acd,g,1 comes equipped with two
natural line bundles: the universal line bundle Ld and the relative dualizing
sheaf ωπ. Since π is a representable, flat and proper morphism whose geometric
fibers are nodal curves, we can apply the formalism of the determinant of
cohomology and of the Deligne pairing (see 2.6) to produce some natural line
bundles on J acd,g which we call tautological line bundles:

(5.1)

K1,0 := 〈ωπ, ωπ〉π ,

K0,1 := 〈ωπ,Ld〉π ,

K−1,2 := 〈Ld,Ld〉π,

Λ(n,m) = dπ(ω
n
π ⊗ Lm

d ) for m,n ∈ Z.

By abuse of notation, we use the same notation for the restriction of a tau-
tological class to the open substack J acd,g. Using Facts 2.4 and 2.6, the first
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Chern classes of the above tautological line bundles are given by

(5.2)

κ1,0 := c1(K1,0) = π∗(c1(ωπ)
2),

κ0,1 := c1(K0,1) = π∗(c1(ωπ) · c1(Ld)),

κ−1,2 := c1(K−1,2) = π∗(c1(Ld)
2),

λ(n,m) = c1(Λ(n,m)) = c1(π!(ω
n
π ⊗ Lm

d )) for any n,m ∈ Z.

Note that, if k = C, the image of the classes κi,j via the natural map
A1(J acd,g) → H2(J acd,g,Z) → H2(Holdg ,Z) are, up to sign, the κi,j classes
that were considered by Erbert and Randal-Williams in [ERW12, Sec. 2.4].

The pull-back of the Hodge line bundle (2.7) of Mg via the natural map Φ̃d :

J acd,g → Mg is a tautological line bundle on J acd,g.

Lemma 5.1. We have that Φ̃∗
d(Λ) = Λ(1, 0).

Proof. Consider the diagram

(5.3) J acd,g,1
Φ̃d,1 //

π

��

Mg,1

π

��
J acd,g

Φ̃d // Mg

Recall from Section 2.1 that the map Φ̃d sends an element (C → S,L) ∈
J acd,g(S) into the stabilization Cst → S ∈ Mg(S). Now it is well-known that
for every quasi-stable (or more generally semistable) curve X with stabilization
morphism ψ : X → Xst, the pull-back via ψ induces an isomorphism ψ∗ :

H0(Xst, ωXst)
∼=
→ H0(X,ωX). Therefore, the relative dualizing sheaves of the

families π and π are related by

(5.4) Φ̃∗
d,1(ωπ) = ωπ.

We conclude by using the functoriality of the determinant of cohomology. �

There are some relations between the tautological line bundles on J acd,g, as
shown in the following.

Theorem 5.2. The tautological line bundles on J acd,g satisfy the following

relations in the rational Picard group Pic(J acd,g)⊗Q:

(i) K1,0 = Λ(1, 0)12 ⊗O(−δ̃),
(ii) K0,1 = Λ(1, 1)⊗ Λ(0, 1)−1,
(iii) K−1,2 = Λ(0, 1)⊗ Λ(1, 1)⊗ Λ(1, 0)−2,

(iv) Λ(n,m) = Λ(1, 0)6n
2−6n−m2+1 ⊗ Λ(1, 1)mn+(m2 ) ⊗ Λ(0, 1)−mn+(m+1

2 ) ⊗

O
(
−
(
n
2

)
· δ̃
)
.

Proof. Since the first Chern class map c1 : Pic(J acd,g) → A1(J acd,g) is an
isomorphism by Fact 2.9(i), it is enough to prove the above relations in the
rational Chow group A1(J acd,g)⊗Q.
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Following the same strategy as in the proof of Mumford’s relations among
the tautological classes of Mg (see [ACG11, Chap. 13, Sec. 7]), we apply the

Grothendieck-Riemann-Roch Theorem to the morphism π : J acd,g,1 → J acd,g:

(5.5) ch (π! (ω
n
π ⊗ Lm

d )) = π∗
(
ch(ωn

π ⊗ Lm
d ) · Td(Ωπ)

−1
)
,

where ch denotes the Chern character, Td denotes the Todd class and Ωπ is
the sheaf of relative Kähler differentials.
Using (2.4), we can compute the degree one part of the left hand side of (5.5):

(5.6) ch (π! (ω
n
π ⊗ Lm

d ))1 = c1 (π! (ω
n
π ⊗ Lm

d )) = c1 (dπ (ω
n
π ⊗ Lm

d )) = λ(n,m).

Let us now compute the degree one part of the right hand side of (5.5). Note
that, as proved in [ACG11, p. 383], we have that c1(Ωπ) = c1(ωπ) and that
c2(Ωπ) is the class of the nodal locus of the morphism π. In particular, we have
that

(5.7) π∗(c2(Ωπ)) = δ̃ ∈ A1(J acd,g),

where δ̃ is the total boundary divisor (3.1) of J acd,g. The first three terms of
the inverse of the Todd class of Ωπ are equal to
(5.8)

Td(Ωπ)
−1 = 1−

c1(Ωπ)

2
+
c21(Ωπ) + c2(Ωπ)

12
+. . . = 1−

c1(ωπ)

2
+
c1(ωπ)

2 + c2(Ωπ)

12
+. . .

Using the multiplicativity of the Chern character, we get

ch(ωn
π ⊗ Lm

d )

(5.9)

=

(
1 + c1(ωπ) +

c1(ωπ)
2

2
+ . . .

)n

·

(
1 + c1(Ld) +

c1(Ld)
2

2
+ . . .

)m

=

(
1 + nc1(ωπ) +

n2c1(ωπ)
2

2
+ . . .

)
·

(
1 +mc1(Ld) +

m2c1(Ld)
2

2
+ . . .

)

= 1+ [nc1(ωπ) +mc1(Ld)]+

+

[
n2c1(ωπ)

2

2
+ nmc1(ωπ) · c1(Ld) +

m2c1(Ld)
2

2

]
+ . . .

Combining (5.8) and (5.9) and using (5.2) together with (5.7), we can compute
the degree one part of the right hand side of (5.5)
[
π∗

(
ch(ωn

π ⊗ Lm
d ) · Td(Ωπ)

−1
)]

1
= π∗

([
ch(ωn

π ⊗ Lm
d ) · Td(Ωπ)

−1
]
2

)

=π∗

[
6n2 − 6n+ 1

12
c1(ωπ)

2 +
2nm−m

2
c1(ωπ) · c1(Ld) +

m2

2
c1(Ld)

2 +
c2(Ωπ)

12

]

(5.10) =
6n2 − 6n+ 1

12
κ1,0 +

2nm−m

2
κ0,1 +

m2

2
κ−1,2 +

δ̃

12
.
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Putting together (5.6) and (5.10), we get the relation

(5.11) λ(n,m) =
6n2 − 6n+ 1

12
κ1,0 +

2nm−m

2
κ0,1 +

m2

2
κ−1,2 +

δ̃

12
.

Formula (5.11) for n = 1 and m = 0 gives that

(*) λ(1, 0) =
κ1,0
12

+
δ̃

12
,

which proves part (i). By substituting (*) into (5.11), we get

(5.12) λ(n,m) = (6n2 − 6n+ 1)λ(1, 0) +
2nm−m

2
κ0,1 +

m2

2
κ−1,2 −

(
n

2

)
δ̃.

Formula (5.12) for (n,m) = (0, 1) and (n,m) = (1, 1) gives that

(**)




λ(0, 1) = λ(1, 0)−

κ0,1
2

+
κ−1,2

2
,

λ(1, 1) = λ(1, 0) +
κ0,1
2

+
κ−1,2

2
,

The system of equations (**) is equivalent to the system

(***)

{
κ0,1 = λ(1, 1)− λ(0, 1),

κ−1,2 = −2λ(1, 0) + λ(0, 1) + λ(1, 1),

which also proves parts (ii) and (iii). Substituting (***) into (5.12), we get the
following relation

(5.13) λ(n,m) = (6n2 − 6n+ 1−m2)λ(1, 0)+

+

[
−mn+

(
m+ 1

2

)]
λ(0, 1) +

[
mn+

(
m

2

)]
λ(1, 1)−

(
n

2

)
δ̃,

which proves part (iv). �

By a slight generalization of Lemma 5.1, it is easy to see that the relations in
Theorem 5.2(i) and in Theorem 5.2(iv) with m = 0 are the pull-back to J acd,g
of Mumford’s relations among the tautological classes of Mg (see [ACG11,
Chap. 13, Thm. (7.6)]).

Remark 5.3. The proof of Theorem 5.2 works a priori only in the rational
Picard group of J acd,g, since it uses the Grothedieck-Riemann-Roch theorem
which is valid only in the rational Chow group. However, since the Picard
group of J acd,g is torsion-free (as it follows from Theorem A(ii), to be proved
in §7), the relations in the above Theorem hold true a posteriori also in the
integral Picard group of J acd,g.

Motivated by Theorem 5.2, we can now define the tautological subgroup of the
Picard group of the stacks J acd,g and J acd,g.
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Definition 5.4. The tautological subgroup Pictaut(J acd,g) ⊆ Pic(J acd,g) is
the subgroup generated by the line bundles associated to the boundary divisors
of J acd,g (see Section 3) and by the tautological line bundles Λ(1, 0), Λ(0, 1)
and Λ(1, 1).
The image of Pictaut(J acd,g) ⊆ Pic(J acd,g) via the natural restriction

map Pic(J acd,g) → Pic(J acd,g) is defined to be Pictaut(J acd,g); hence,

Pictaut(J acd,g) ⊆ Pic(J acd,g) is the subgroup generated by the tautological
line bundles Λ(1, 0), Λ(0, 1) and Λ(1, 1).

6. Comparing the Picard groups of J acd,g and Jd,g

The aim of this Section is to study the pull-back map

ν∗d : Pic(Jd,g) → Pic(J acd,g)

induced by the map νd : J acd,g → Jd,g (see Section 2.1). To this aim, consider
the Leray spectral sequence for the étale sheaf Gm with respect to the map νd:

Ep,q
2 = Hp

ét(Jd,g, (R
qνd)∗Gm) =⇒ Hp+q

ét (J acd,g,Gm).

The first terms of the above spectral sequence give rise to the exact sequence

0 → H1
ét(Jd,g, (R

0νd)∗Gm) −→ H1
ét(J acd,g,Gm) −→

−→H0
ét(Jd,g, (R

1νd)∗Gm) −→ H2
ét(Jd,g, (R

0νd)∗Gm).

Since νd is a Gm-gerbe, we have that (R0νd)∗Gm = Gm and (R1νd)∗Gm =
PicBGm, where PicBGm is canonically identified with the group (Gm)∗ ∼= Z
of characters of Gm. By plugging these isomorphisms into the above long exact
sequence, we get the exact sequence

(6.1) 0 → Pic(Jd,g)
ν∗
d−→ Pic(J acd,g)

res
−→ Z

obs
−→ Br(Jd,g),

where the above maps admits the following interpretation (which one can easily
check via standard cocycle computations): ν∗d is the pull-back map induced
by νd; res is the restriction to the fibers of νd (it coincides with the weight
map defined in [Hof07, Def. 4.1] and with the character appearing in the
decomposition in [Lie08, Prop. 3.1.1.4]) and obs (the obstruction map) sends
1 ∈ Z = (Gm)∗ into the class [νd] of the Gm-gerbe νd in the (cohomological)
Brauer group Br(Jd,g) := H2

ét(Jd,g,Gm) (see [Gir71, Chap. IV.3]).
Since ν∗d is injective, we can define a tautological subgroup of Pic(Jd,g) by inter-
secting Pic(Jd,g) (which we identify with its image via ν∗d) with the tautological

subgroup Pictaut(J acd,g), as follows.

Definition 6.1. The tautological subgroup of Pic(Jd,g) is defined as

Pictaut(Jd,g) := Pictaut(J acd,g) ∩ Pic(Jd,g) ⊆ Pic(J acd,g).

In order to compute generators for Pictaut(Jd,g), we need first to compute the

map res from (6.1) on the generators of Pictaut(J acd,g).
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Lemma 6.2. We have that




res(Λ(1, 0)) = 0,

res(Λ(0, 1)) = d− g + 1,

res(Λ(1, 1)) = d+ g − 1.

Proof. Using the functoriality of the determinant of cohomology, we get that
the fiber of Λ(1, 0) = dπ(ωπ) over a point (C,L) ∈ J acd,g is canonically isomor-

phic to detH0(C, ωC)⊗det−1H1(C, ωC). Since Gm acts trivially onH0(C, ωC)
and on H1(C, ωC), we get that res(Λ(1, 0)) = 0.
Similarly, the fiber of Λ(0, 1) over a point (C,L) ∈ J acd,g is canonically iso-

morphic to detH0(C,L) ⊗ det−1H1(C,L). Since Gm acts with weight one on
the vector spaces H0(C,L) and H1(C,L), Riemann-Roch gives that

res(Λ(0, 1)) = dimH0(C,L)− dimH1(C,L) = χ(C,L) = d+ 1− g.

Finally, the fiber of Λ(1, 1) over a point (C,L) ∈ J acd,g is canonically isomor-

phic to detH0(C,L ⊗ ωC)⊗ det−1H1(C,L⊗ ωC). Since Gm acts with weight
one on the vector spaces H0(C, ωC ⊗ L) and H1(C, ωC ⊗ L), Riemann-Roch
gives that

res(Λ(1, 1)) = dimH0(C, ωC ⊗ L)− dimH1(C, ωC ⊗ L) =

= χ(C, ωC ⊗ L) = d+ 2g − 2 + 1− g = d− 1 + g.

�

Combining the above Lemma 6.2 with Definition 5.4, we get the following

Corollary 6.3.

(i) The image of Pictaut(J acd,g) via the map res of (6.1) is the subgroup
generated by (d+ g − 1, d− g + 1) = (d+ g − 1, 2g − 2).

(ii) Pictaut(Jd,g) is generated by Λ(1, 0) and

(6.2) Ξ := Λ(0, 1)
d+g−1

(d+g−1,d−g+1) ⊗ Λ(1, 1)−
d−g+1

(d+g−1,d−g+1) .

Corollary 6.3(i) combined with the exact sequence (6.1) gives that the order
of [νd] in the Brauer group Br(Jd,g) divides (d + g − 1, 2g − 2). Indeed the
following is true:

Theorem 6.4. The order of [νd] in Br(Jd,g) is equal to (d+ 1− g, 2g − 2).

In order to prove the theorem, we will reinterpret the order of [νd] in terms of
the existence of a (generalized) Poincaré bundle.
Consider the universal family π : J acd,g,1 → J acd,g. The Gm-rigidification of
J acd,g,1, denoted by Jd,g,1 := J acd,g,1 ( Gm, has a natural map π̃ : Jd,g,1 →
Jd,g which is indeed the universal family over Jd,g. However, the universal
(or Poincaré) line bundle Ld on J acd,g,1 does not necessarily descend to a line
bundle on Jd,g,1. Instead, it turns out that there always exists on Jd,g,1 an
m-Poincaré line bundle as in the definition below.
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Definition 6.5. Let m ∈ Z. An m-Poincaré line bundle for Jd,g is a line
bundle L on Jd,g,1 such that the restriction of L to the fiber π̃−1(C,L) ∼= C
over a geometric point (C,L) of Jd,g is isomorphic to Lm.

The above definition generalizes the classical definition of Poincaré line bundle,
which corresponds to the case m = 1.

Proposition 6.6. The order of [νd] in the group Br(Jd,g) is equal to the small-
est number m ∈ N such that there exists an m-Poincaré line bundle for Jd,g.

Proof. In order to prove the statement, we need to introduce some auxiliary
stacks. Given m ∈ Z, consider the stack J acmd,g whose fiber J acmd,g(S) over a
scheme S consists of families C → S of smooth curves of genus g endowed with
a line bundle L of relative degree d and whose morphisms between two objects
(C′ → S′,L′) and (C → S,L) are given by a triple (g, φ, η) where

C′
φ //

��
�

C

��
S′

g // S

is a Cartesian diagram and η : L′m → φ∗(Lm) is an isomorphism of line bundles
on C′. Note that J ac1d,g

∼= J acd,g.
The multiplicative group Gm injects into the automorphism group of every ob-
ject (C → S,L) ∈ J acmd,g(S) as multiplication by scalars on L. The rigidifica-
tion J acmd,g(Gm is isomorphic to Jd,g and the natural map νmd : J acmd,g → Jd,g

is a Gm-gerbe. By construction, the class of [νmd ] in Br(Jd,g) is equal to
[νmd ] = m · [νd].
Consider the universal family πm : J acmd,g,1 → J acmd,g. The fiber of J acmd,g,1
over a scheme S consists of the triples (C → S, σ,L), where (C → S,L) ∈
J acd,g(S) and σ is a section of the morphism C → S. The morphisms between
two objects (C′ → S′, σ′,L′) ∈ J acmd,g,1(S

′) and (C → S, σ,L) ∈ J acmd,g,1(S) are
given by the isomorphisms (g, φ, η) as above satisfying the relation σ◦g = φ◦σ′.
The Gm-rigidification of J acmd,g,1 is isomorphic to Jd,g,1 and therefore we get
a Cartesian diagram:

(6.3) J acmd,g,1
πm

//

ν′m
d

��
�

J acmd,g

νm
d

��
Jd,g,1

π̃ // Jd,g

On the stack J acmd,g,1 there is a universal line bundle Nm, defined as follows:
to every morphism from a scheme f : S → J acmd,g,1, which corresponds to
an object (C → S, σ,L) ∈ J acmd,g,1(S) as above, we associate the line bundle

Nm(f) := σ∗(Lm) ∈ Pic(S); to every morphism S′ g
→ S

f
→ J acmd,g,1, cor-

responding to the morphism (g, φ, η) between two objects (C → S, σ,L) and
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(C′ → S′, σ′,L′) as above, we associate the isomorphism

Nm(f ◦ g) = σ′∗(L′m)
σ′∗(η)
−→ σ′∗φ∗(Lm) = g∗σ∗(Lm) = g∗Nm(f).

We have now the tools that we need to prove the result. Since [νmd ] = m[νd] ∈
Br(Jd,g), the period of [νd] is equal to the smallest m ∈ N such that the
Gm-gerbe νmd is trivial and this happens precisely when there exists a section
σm
d : Jd,g → J acmd,g of νmd . Since the diagram (6.3) is Cartesian, the existence

of a section σm
d of νmd is equivalent to the existence of a section σ′m

d of ν′md .
If such a section exists, then the pull-back (σ′m

d )∗Nm is an m-Poincaré line
bundle on Jd,g, by the above description of Nm. Conversely, the existence of
a Poincaré line bundle on Jd,g allows us to define a section σ′m

d of ν′md by the
above description of J acmd,g,1.

�

Proof of Theorem 6.4. Consider the group

Ad,g := {m ∈ Z : there exists an m-Poincaré line bundle L on J acd,g,1}

Proposition 6.6 gives that the positive generator of Ad,g is equal to the order
of [νd] in Br(Jd,g). On the other hand, the positive generator of Ad,g is equal
to (d + g − 1, 2g − 2) by [Kou93, Application at p. 514]. This concludes the
proof.

�

Remark 6.7. From Proposition 6.6 and Theorem 6.4, we recover the following
well-known result due to Mestrano-Ramanan ([MR85, Cor. 2.9]): there exists
a Poincaré line bundle on Jd,g,1 if and only if (d+ 1− g, 2g − 2) = 1.

Remark 6.8. It is possible to prove that the index of [νd] is equal to (d + g −
1, 2g − 2) (recall that the index of [νd] is the smallest m ∈ N such that [νd]
is represented by a projective bundle over Jd,g of relative dimension m − 1).
Since we will not need this result, we do not include a proof here.

We make the following

Conjecture 6.9. The cohomological Brauer group Br(Jd,g) of Jd,g is gener-
ated by the class [νd] of the Gm-gerbe νd : J acd,g → Jd,g.

Using the notation of Section 1.1, the above conjecture must be compared with
the result of Ebert and Randal-Williams who proved in [ERW12, Thm. B] that,

for g ≥ 6, H3(Picdg,Z) is cyclic of order (2g− 2, d+ g− 1) and generated by the

Dixmier-Douday class of the C∗-gerbe φdg : Holdg → Picdg . From the diagram
(1.7) and the coboundary map coming from the exponential sequence of locally

constant sheaves 0 → Z → C
exp
−→ C∗ → 0, we get a map cl : Br(Jd,g) →

H2(Picdg,C
∗) → H3(Picdg,Z) which clearly sends the class of νd into the class

of φdg. A positive answer to Conjecture 6.9 together with Theorem 6.4 would
imply that the above map cl is an isomorphism for g ≥ 6.
From the above Theorem 6.4, we deduce the following
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Corollary 6.10.

(i) The image of Pic(J acd,g) via the map res of (6.1) is the subgroup gener-
ated by (d+ g − 1, 2g − 2).

(ii) The pull-back map ν∗d induces an isomorphism

ν∗d : Pic(Jd,g)/Pic
taut(Jd,g)

∼=
−→ Pic(J acd,g)/Pic

taut(J acd,g).

Proof. Part (i) follows from the exact sequence (6.1) together with Theorem
6.4.
Part (ii): using Corollary 6.3(i) and part (i), we get the following commutative
diagram with exact rows:

0 // Pic(Jd,g)
ν∗
d // Pic(J acd,g)

res // Z · 〈(d+ g − 1, 2g − 2)〉 // 0

0 // Pictaut(Jd,g)
ν∗
d //?�

OO

Pictaut(J acd,g)
res //

?�

OO

Z · 〈(d+ g − 1, 2g − 2)〉 // 0

The conclusion follows from the snake lemma. �

7. The Picard group of Jd,g

In this subsection we will determine the Picard group of the stack Jd,g, using a
strategy similar to the one used by Kouvidakis [Kou91] to determine the Picard
group of J0

d,g, the open subset of Jd,g consisting of pairs (C,L) where C is a
smooth curve without non-trivial automorphisms.
Consider the representable morphism Φd : Jd,g → Mg. Clearly the fiber of Φd

over C ∈ Mg is the degree-d Jacobian Jd(C) of C. Since Φd has connected
fibers, the pull-back map Φ∗

d : Pic(Mg) → Pic(Jd,g) is injective. The cokernel
of Φ∗

d is denoted by RPic(Jd,g) and is called classically the group of rationally
determined line bundles of the family Jd,g → Mg (see e. g. [Cil87]). Therefore,
we have the following exact sequence

(7.1) 0 → Pic(Mg)
Φ∗

d→ Pic(Jd,g) → RPic(Jd,g) → 0.

Since the fiber of Φd over C ∈ Mg is the degree-d Jacobian Jd(C) of C, we
have a natural map

(7.2) ρC : Pic(Jd,g) → Pic(Jd(C)) → NS(Jd(C)),

where the first map is the restriction to the fiber Φ−1
d (C) = Jd(C) and the

second map is the projection of the Picard group of Jd(C) onto the Néron-
Severi group of Jd(C), which parametrizes divisors on Jd(C) up to algebraic
equivalence. We will use additive notation for the group law on NS(Jd(C)).
Consider now the theta divisor Θ(C) ⊂ Jg−1(C) and denote by θC ∈
NS(Jg−1(C)) its algebraic equivalence class. By choosing an isomorphism

tM : Jd(C)
∼=
→ Jg−1(C) given by sending L ∈ Jd(C) into L ⊗M ∈ Jg−1(C)

for some M ∈ Jg−1−d(C), we can pull-back θC to get a well-defined (i.e. inde-
pendent of the chosen isomorphism tM ) class in NS(Jd(C)) which, by a slight
abuse of notation, we will still denote by θC . Since, for a very general curve
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C ∈ Mg, NS(J
d(C)) is generated by θC (see e. g. [Kou91, Lemma 2]), it

follows that there is a morphism of groups

(7.3) χd : Pic(Jd,g) −→ Z

sending L ∈ Pic(Jd,g) to the integer m such that ρC(L) = mθC for every
C ∈ Mg (see also [Kou91, p. 840]). We will need the following two results of
Kouvidakis, describing the image and the kernel of the above map χd. Actually,
Kouvidakis proves these results in [Kou91] for the variety J0

d,g, but a close
inspection reveals that the same proof works for Jd,g.

Theorem 7.1 (Kouvidakis).

(i) kerχd = ImΦ∗
d.

(ii) Imχd ⊆
2g − 2

(2g − 2, d+ g − 1)
· Z ⊆ Z.

Part (i) follows from [Kou91, Thm. 3]; part (ii) follows from [Kou91, Formula
(*), p. 844]. Note that part (i) implies (and it is indeed equivalent to) that the
map χd factors as

(7.4) χd : Pic(Jd,g) ։ RPic(Jd,g) →֒ Z.

We now compute the image of the map χd on the tautological subgroup
Pictaut(Jd,g) of Pic(Jd,g) (see Definition 6.1).

Theorem 7.2. We have that

χd(Pic
taut(Jd,g)) =

2g − 2

(2g − 2, d+ g − 1)
· Z ⊆ Z.

Proof. According to Corollary 6.3(ii), Pictaut(Jd,g) is generated by the tau-
tological classes Λ(1, 0) and Ξ. Lemma 5.1 gives that Λ(1, 0) = Φ∗

d(Λ); hence
clearly χd(Λ(1, 0)) = 0 (this is the easy inclusion in Theorem 7.1(i)). Therefore,
the proof will follow if we show that

(7.5) χd(Ξ) =
2g − 2

(2g − 2, d+ g − 1)
,

or equivalently that

(7.6) ρC(Ξ) =
2g − 2

(2g − 2, d+ g − 1)
θC
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for any C ∈ Mg. In order to prove this, consider the following diagram
(7.7)

LC Ld

C × J acd(C)
p

vvmmmmmm id×νC

""DD
DD

DD
DD

DD
DD

DD

// J acd,g,1
π

xxrrrrrr

��9
9

9
9

9
9

9
9

9
9

9
9

J acd(C)

νC

!!CC
CC

CC
CC

CC
CC

C
�

// J acd,g

νd

��;
;

;
;

;
;

;
;

;
;

;
;

�

C × Jd(C)

p2vvllllllll

// Jd,g,1

π̃yyrrr
rr

r

Jd(C)

��

// Jd,g

Φd��
C

� � // Mg

where the Cartesian square on the left is the fiber of the Cartesian square on the
right over the point C ∈ Mg and LC is the fiber of the universal line bundle Ld

over C ∈ Mg. In particular, the stack J acd(C) is the degree-d Jacobian stack
of C (i.e. the stack whose fiber over a scheme S is the groupoid of line bundles
on C×S of relative degree d over S) and LC is the universal (or Poincaré) line

bundle for J acd(C).
The map νC : J acd(C) → Jd(C) is a Gm-gerbe which is well-known to be

trivial, or in other words J acd(C) ∼= Jd(C) × BGm. Therefore, there exists

a section s of νC and we can define L̃C := (id×s)∗(LC). By construction, we

have that L̃|C×{M} = M for any M ∈ Jd(C). Any line bundle on C × Jd(C)

with this property is called a Poincaré line bundle for Jd(C). Indeed, any
Poincaré line bundle for Jd(C) is isomorphic to (id×s)∗(LC) for a uniquely
determined section s of νC . Moreover, two Poincaré line bundles for Jd(C)
differ by the tensor product with the pull-back of a line bundle on Jd(C). Note

that for any Poincaré line bundle L̃C = (id×s)∗(LC) for J
d(C), we have that

(id×νC)∗(L̃C) = (id×νC)∗((id×s)∗(LC)) = LC .
Recalling the definition of Ξ from Corollary 6.3(ii) and applying the functo-
riality of the determinant of cohomology to the above diagram (7.7), we get
that

(7.8) ρC(Ξ) =
d+ g − 1

(d+ g − 1, d− g + 1)
[dp2(L̃C)]−

−
d− g + 1

(d+ g − 1, d− g + 1)
[dp2 (L̃C ⊗ p∗1(ωC))],

where p1 : C × Jd(C) denotes the projection onto the first factor and L̃C is
any Poincaré line bundle for Jd(C). Note that the fact that Ξ ∈ Pic(Jd,g)

guarantees that the right hand side of (7.8) is independent of the choice L̃C .
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In order to compute the right hand side of (7.8), we can choose a Poincaré line

bundle L̃C for Jd(C) that satisfies the following

Condition (*): [(L̃C)|p−1
1 (r)] = 0 ∈ NS(Jd(C)) for any r ∈ C.

Indeed, since L̃C can be seen as a family of line bundles on Jd(C) parametrized
by C, if condition (*) holds for a certain point r0 ∈ C then it holds for all points

r ∈ C. However, up to tensoring L̃C with the pull-back of a line bundle on

Jd(C), we can always assume that (L̃C)|p−1
1 (r0)

is the trivial line bundle on

Jd(C), q.e.d.

With the above condition on L̃C , we can prove the following two claims.

Claim 1: If L̃C satisfies condition (*) then

[dp2(L̃C ⊗ p∗1(M))] = [dp2(L̃C)] ∈ NS(Jd(C)) for any M ∈ J(C).

Indeed, write M = OC(−γ + δ) with γ =
∑

i airi and δ =
∑

j bjrj effective
divisors on C. From the exact sequences defining the structure sheaves of
p−1
1 (δ) ⊂ C × Jd(C) and p−1

1 (γ) ⊂ C × Jd(C), we get




0 → L̃C ⊗ p∗1OC(−γ) → L̃C → (L̃C)|p−1
1 (γ) → 0,

0 → L̃C ⊗ p∗1OC(−γ) → L̃C ⊗ p∗1(M) → (L̃C)|p−1
1 (δ) → 0.

From the multiplicativity of the determinant of cohomology applied to the
above exact sequences, we get

dp2(L̃C ⊗ p∗1M)⊗ dp2(L̃C)
−1 = dp2((L̃C)|p−1

1 (δ))⊗ dp2((L̃C)|p−1
1 (γ))

−1 =

=
⊗

j

(L̃C)
bj

p−1
1 (rj)

⊗

i

(L̃C)
−ai

p−1
1 (ri)

.

Claim 1 follows now by condition (*).

Claim 2: If L̃C satisfies condition (*) then

[dp2(L̃C)] = θC ∈ NS(Jd(C)).

Indeed, choose a line bundle M ∈ Jd−g+1(C) and consider the Cartesian dia-
gram

(id×tM )∗(L̃C) L̃C

C × Jg−1(C)
id×tM //

p′
2

��

C × Jd(C)

p2

��
Jg−1(C)

tM // Jd(C),

where tM is the map sending L ∈ Jg−1(C) into L⊗N ∈ Jd(C). The line bundle

L̃′
C := (id×tM )∗(L̃C)⊗ p∗1(M)−1 is clearly a Poincaré line bundle for Jg−1(C)

and it satisfies condition (*) since L̃C satisfies condition (*) by assumption.
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Therefore, using the functoriality of the determinant of cohomology and Claim
1, we get the following equality in NS(Jg−1(C)):

(7.9) [t∗Mdp2(L̃C)] = [dp′
2
((id×tM )∗(L̃C))] = [dp′

2
(L̃′

C ⊗ p∗1(M))] = [dp′
2
(L̃′

C)].

Claim 2 now follows from the well-known fact that dp′
2
(L̃′

C) ∈ Pic(Jg−1(C))

is the line bundle associated to the theta divisor Θ(C) ⊂ Jg−1(C) for any

Poincaré line bundle L̃′
C for Jg−1(C).

Now choosing a Poincaré line bundle L̃C that satisfies condition (*), formula
(7.8) together with Claim 1 and Claim 2 gives that

ρC(Ξ) =
d+ g − 1

(d+ g − 1, d− g + 1)
θC −

d− g + 1

(d+ g − 1, d− g + 1)
θC =

=
2g − 2

(2g − 2, d+ g − 1)
θC ,

which proves (7.6). �

By combining the above results, we can now prove the main Theorems A and
B from the introduction.

Proof of Theorem B. Let us first prove Theorem B(i). By combining Theorem
7.1(ii) with Theorem 7.2, we get that χd(Pic(Jd,g)) = χd(Pic

taut(Jd,g)). By
Theorem 7.1(i), the kernel of χd is equal to Φ∗

d(Pic(Mg)), which is generated by

Λ(1, 0) = Φ∗
d(Λ) by Theorem 2.12 and Lemma 5.1; hence ImΦ∗

d ⊂ Pictaut(Jd,g).
We deduce that

(7.10) Pictaut(Jd,g) = Pic(Jd,g).

Therefore, Pic(Jd,g) is generated by Λ(1, 0) and by Ξ by Corollary 6.3(ii).
Consider now the exact sequence (7.1). Combining the factorization of χd

provided by (7.4) with formula (7.5), we get that RPic(Jd,g) is free of rank
one. On the other hand, using Theorem 2.12 (since g ≥ 3 by assumption),
we know that Pic(Mg) is free of rank one. Therefore the exact sequence (7.1)
gives that Pic(Jd,g) is free of rank two, which concludes the proof of part (i).
Theorem B(ii) follows now from part (i) and Corollary 4.6. �

Proof of Theorem A. Let us first prove Theorem A(i). From (7.10) and Corol-
lary 6.10(ii), we deduce that

(7.11) Pictaut(J acd,g) = Pic(J acd,g).

Therefore, Pic(J acd,g) is generated by Λ(1, 0), Λ(0, 1) and Λ(1, 1) by Definition
5.4. Moreover, the exact sequence (6.1) together with Theorem B(i) implies
that Pic(J acd,g) is free of rank three. Part (i) is now proved.
Theorem A(ii) follows now from part (i) and Theorem 4.1.

�

We can now compare our computation of Pic(Jd,g) (see Theorem B(i)) with
the computation of Pic(J0

d,g) carried out by Kouvidakis in [Kou91].
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Remark 7.3. Assume that g ≥ 3. Then the natural map Ψd : Jd,g → Jd,g is an
isomorphism over the open subset J0

d,g ⊂ Jd,g parametrizing pairs (C,L) ∈ Jd,g
such that C does not have non-trivial automorphisms. In other words, the map
Ψd induces an isomorphism

Ψd : J 0
d,g := Ψ−1

d (J0
d,g)

∼=
−→ J0

d,g.

Therefore, we get a natural homomorphism

(7.12) ψ : Pic(Jd,g) → Pic(J 0
d,g)

∼=
−−→
Ψ∗

d

Pic(J0
d,g),

where the first homomorphism is the natural restriction map.
If g ≥ 4, then the codimension of Jd,g \J 0

d,g inside Jd,g is at least two and hence

the map ψ is an isomorphism by Fact 2.9(iii). Hence Theorem B(i) recovers
[Kou91, Thm. 4]. However, this does not hold anymore if g = 3 since in this
case Jd,g \J 0

d,g is a divisor inside Jd,g, namely the pull-back of the hyperelliptic

(irreducible) divisor in M3, whose class in A1(Mg) is equal to 9λ (see [HM98,
Chap. 3, Sec. E]). Therefore, by Fact 2.9(ii), we get that Pic(J 0

d,g)
∼= Pic(J0

d,g)

is the quotient of Pic(Jd,g) by the relation Λ(1, 0)9 = 0.

7.1. Relation between Ξ and the universal theta divisor. There is a
close relationship between the line bundle Ξ ∈ Pic(Jd,g) ⊂ Pic(J acd,g) and the
universal theta divisor Θ ⊂ J acg−1,g, which is the closed substack parametriz-
ing pairs (C,L) ∈ J acg−1,g such that h0(C,L) > 0. Observe that Θ naturally

descends to a divisor on the rigidification Jg−1,g , which we denote by Θ and
we call the universal theta divisor on Jg−1,g. By construction, the restric-

tion of Θ to any fiber Φ−1
d (C) = Jg−1(C) is isomorphic to the theta divisor

Θ(C) ⊂ Jg−1(C).
Consider first the special case d = g−1. From the definition (6.2) of Ξ and using
the definition (5.1) of the tautological line bundles, we get that Ξ = Λ(0, 1) =
dπ(Lg−1), where Lg−1 is the universal line bundle on the universal family over
J acg−1,g. It is well know that dπ(Lg−1) is the line bundle associated to the
universal theta divisor, or in other words we have that

(7.13) Ξ = O(Θ) if d = g − 1.

For an arbitrary d, we consider the stack S
1/kd,g
g of kd,g-spin curves, where as

usual

kd,g =
2g − 2

(2g − 2, d+ 1− g)
.

Recall that S
1/kd,g
g is the stack whose fiber over a scheme S consists of the

groupoid of families of smooth curves C → S of genus g, plus a line bundle η
on C of relative degree (d− g+1, 2g− 2) over S endowed with an isomorphism

η⊗kd,g ∼= ωC/S . The stack S
1/kd,g
g is a smooth Deligne-Mumford stack endowed

with a (forgetful) finite and étale map S
1/kd,g
g → Mg of degree (2g)kd,g . We
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have a diagram

(7.14) F

π

��

s̃

))RRRRRRRRRRRRRRR

p̃2

vvmmmmmmmmmmmmmmm

��

J acd,g,1

π2

��

J acg−1,g,1

π1

��

S
1/kd,g
g ×Mg

J acd,g

p2
vvnnnnnnnnnnnn

s
((QQQQQQQQQQQQ

J acd,g J acg−1,g

where p2 is the projection onto the second factor and s sends the element

(C → S, η,L) ∈ S
1/kd,g
g ×Mg

J acd,g(S) into (C → S,L⊗η−ed,g ) ∈ J acg−1,g(S),
where

ed,g :=
d− g + 1

(d− g + 1, 2g − 2)
.

The universal family F is endowed with a universal line bundle Ld of relative
degree d which is the pulled-back from J acd,g,1 and a universal spin line bundles

ηkd,g
which is pulled-back from the universal family above S

1/kd,g
g . By the

definition of the morphism s, we get that

(7.15) s̃∗(Lg−1) = η
−ed,g
kd,g

⊗ Ld.

The relation between the line bundle Ξ ∈ Pic(J acd,g) and the universal theta
divisor Θ ⊂ J acg−1,g is provided by the following.

Lemma 7.4. We have that

p∗2(Ξ) = s∗O(kd,g ·Θ)⊗ 〈ηkd,g
, ηkd,g

〉
−

kd,g(kd,g+ed,g)ed,g
2

π .

Proof. By the definition (6.2) of Ξ and the standard properties of the determi-
nant of cohomology, we compute

(7.16) p∗2(Ξ) = dπ(Ld)
d+g−1

(2g−2,d+1−g) ⊗ dπ(ωπ ⊗ Ld)
− d−g+1

(2g−2,d+1−g) =

= dπ(Ld)
kd,g+ed,g ⊗ dπ(η

kd,g

kd,g
⊗ Ld)

−ed,g .

Using (7.13) and (7.15) together with standard properties of the determinant
of cohomology, we get that

(7.17) s∗(O(kd,g ·Θ)) = s∗(dπ1(Lg−1)
kd,g ) = dπ(η

−ed,g
kd,g

⊗ Ld)
kd,g .

In order to compare (7.16) and (7.17), we apply the Grothedieck-Riemann-Roch

theorem to the sheaf ηnkd,g
⊗ Lm

d on the universal family π : F → S
1/kd,g
g ×Mg
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J acd,g. After some easy computations similar to the ones done in the proof of
Theorem 5.2 which we leave to the reader, we get that

(7.18) c1(dπ(η
n
kd,g

⊗ Lm
d )) =

6n2 − 6kd,gn+ k2d,g
12

c1(〈ηkd,g
, ηkd,g

〉π)+

+
2mn− kd,gm

2
c1(〈ηkd,g

,Ld〉π) +
m2

2
c1(〈Ld,Ld〉π).

Using the above formula (7.18), we can compute the difference between the
first Chern classes of the line bundles in (7.16) and in (7.17):

c1(p
∗
2(Ξ))− c1(s

∗(O(kd,g ·Θ))) =

= (kd,g + ed,g)c1(dπ(Ld))− ed,gc1(dπ(η
kd,g

kd,g
⊗ Ld))− kd,gc1(dπ(η

−ed,g
kd,g

⊗ Ld)) =

= −
kd,g(kd,g + ed,g)ed,g

2
c1(〈ηkd,g

, ηkd,g
〉π).

The result now follows since c1 : Pic(S
1/kd,g
g ×Mg

J acd,g) → A1(S
1/kd,g
g ×Mg

J acd,g) is an isomorphism (see Fact 2.9(i)).
�

Remark 7.5. Using the computation of the Picard group of the moduli stacks
of spin curves by Jarvis [Jar01], it can be proved that the pull-back morphism

p∗2 : Pic(J acd,g) → Pic(S
1/kd,g
g ×Mg

J acd,g) is injective. Therefore, Lemma
7.4 uniquely determines the line bundle Ξ. However, while the definition (6.2)
extends naturally to J acd,g, we do not know how to extend the formula of

Lemma 7.4 to J acd,g. The problem is that we do not know how to extend
the correspondence between J acd,g and J acg−1,g given in diagram (7.14) to a

correspondence between J acd,g and J acg−1,g.

7.2. Relation between J acd,g and the universal d-th symmetric

product. The referee pointed out to us an interesting connection between
the Picard groups of J acd,g and of the d-th symmetric product Symd Mg,1 of
the universal curve Mg,1 → Mg, when d > 2g − 2.

The fiber of the stack Symd Mg,1 (for d ≥ 1) over a scheme S is the groupoid
whose objects are families of smooth curves C → S of genus g together with an
effective divisor D ⊂ C of relative degree d over S, and whose arrows are the
obvious isomorphisms. Consider the universal Abel-Jacobi morphism

(7.19)
Ãd : SymdMg,1 −→ J acd,g

(C → S,D) 7→ (C → S,OC(D)),
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and the induced commutative diagram

(7.20) SymdMg,1 ×Mg
Mg,1

π̃

��
�

Âd // Jd,g,1

π

��
Symd Mg,1

Ãd //

Ad

((PPPPPPPPPPPPP
J acd,g

νd
{{ww

ww
ww

ww
w

Jd,g

Φd

��
Mg

If d > 2g − 2 then Ad is a projective bundle of relative dimension d− g whose
class [Ad] in the Brauer group Br(Jd,g) is equal to the class [νd] of the Gm-gerbe
νd, as it follows easily from [MR85, Lemma 2.1]. Therefore, the exact sequence
(6.1) induced by the Gm-gerbe νd maps into the analogous exact sequence for
the projective bundle Ad:

(7.21) 0 // Pic(Jd,g)
ν∗
d // Pic(J acd,g)

res //

Ã∗
d

��

Z

∼=

��

obs // Br(Jd,g)

0 // Pic(Jd,g)
A∗

d // Pic(Symd Mg,1)
r̃es // Z

õbs // Br(Jd,g)

where the maps in the second exact sequence of the above diagram admit
the following interpretation (which one can easily check via standard cocycle
computations): A∗

d is the pull-back map induced by Ad; r̃es is the restriction

to the generic fiber of Ad and õbs (the obstruction map) sends 1 ∈ Z into
the class [Ad] of the projective bundle Ad in the (cohomological) Brauer group
Br(Jd,g) := H2

ét(Jd,g,Gm).

The above diagram (7.21) implies that the pullback map Ã∗
d is an isomorphism.

Moreover the pullback of the tautological line bundles on J acd,g can be ex-

pressed as tautological line bundles on SymdMg,1. Indeed, from the Cartesian
square at the top of diagram (7.21), we get that

(7.22) Â∗
d(ωπ) = ωπ̃ and Â∗

d(Ld) = O(Dd),

where ωπ̃ is the relative dualizing line bundle for π̃ and Dd is the univer-
sal degree-d divisor on SymdMg,1 ×Mg

Mg,1. Using the functoriality of the
determinant of cohomology, we get

(7.23)

Ã∗
d(Λ(1, 0)) = dπ̃(ωπ̃) := Λ̃(1, 0),

Ã∗
d(Λ(0, 1)) = dπ̃(O(Dd)) := Λ̃(0, 1),

Ã∗
d(Λ(1, 1)) = dπ̃(ωπ̃(Dd)) := Λ̃(1, 1).
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Therefore, combining Theorem A(i), (7.21) and (7.23), we deduce the following

Corollary 7.6. Assume that g ≥ 3 and that d > 2g− 2. The Picard group of

Symd Mg,1 is freely generated by Λ̃(1, 0), Λ̃(0, 1) and Λ̃(1, 1).

Remark 7.7. The referee pointed out to us that Corollary 7.6 could be
proved independently from Theorem A(i), using the computations contained
in [Kou94]. In turn, this can be used to give an alternative proof of Theorems
A(i) and B(i) (at least for d > 2g−2). However, this alternative approach does
not give a modular description of the generators of the Picard groups of J acd,g
and of J d,g, since it is not known how to extend the Abel-Jacobi morphism

over the boundary of Mg.

8. Relation with the moduli space Jd,g

The aim of this section is to relate the Picard group of the stack J d,g with

the divisor class group and the rational Picard group of its moduli space Jd,g,
computed by Fontanari in [Fon05, Thm. 5, Cor. 1], based upon the results of
Kouvidakis [Kou91].
Recall that, given a variety Y , the divisor class group Cl(Y ) is the group of
Weil divisors modulo rational equivalence. If Y is normal, denoting by Yreg the
open subset of regular points of Y , then we have that

(8.1) Pic(Y ) →֒ Cl(Y ) ∼= Cl(Yreg) ∼= Pic(Yreg).

Recall that Jd,g is a normal variety (see Theorem 2.5) and it is endowed with

a morphism φd : Jd,g → Mg into the coarse moduli space of stable curves of
genus g (see diagram (2.2)).

Theorem 8.1 (Fontanari). Set ∆̃i := φ−1
d (∆i) ⊂ Jd,g for i = 0, · · · , [g/2].

(i) The divisors ∆̃i are irreducible and we have an exact sequence

0 →

[g/2]⊕

i=0

Z · ∆̃i → Cl(Jd,g) → Cl(Jd,g) → 0.

(ii) The natural inclusion Pic(Jd,g) →֒ Cl(Jd,g) is of finite index, i.e. every

Weil divisor on Jd,g is Q-Cartier.

We have therefore a commutative diagram with exact rows:

0 // ⊕[g/2]
i=0 Z · ∆̃i

//

αd��

Cl(Jd,g) //

Ψ∗
d

��

Cl(Jd,g) //

βd

��

0

0 //

⊕

kd,g ∤ 2i−1

or i=g/2

〈O(δi)〉
⊕

kd,g|2i−1

and i6=g/2

〈O(δ
1
i ),O(δ

2
i )〉 // Pic(J d,g) // Pic(Jd,g) // 0,

where the map Ψ∗
d is the pull-back map induced by Ψd : J d,g → Jd,g. We can

now prove Theorem C from the introduction.
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Proof of Theorem C. In order to prove part (i) of Theorem C, consider the
commutative diagram, obtained by pulling back divisors along the two fibra-
tions Jd,g → Mg and Jd,g →Mg:

Cl(Mg) Cl(Jd,g)

0 // Pic((Mg)reg) //

γd

��

Pic((Jd,g)reg) //

βd

��

RPic((Jd,g)reg) //

βd

��

0

0 // Pic(Mg) // Pic(Jd,g) // RPic(Jd,g) // 0,

The map γd is well-known to be an isomorphism (see e. g. [AC87, Prop. 2]).
The map βd is an isomorphism since the group of rational determined line
bundles RPic of a fibration is birational on the base (see [Cil87, Lemma 1.3])
and the map Jd,g → Mg is representable. Since the rows of the above diagram
are exact, we conclude that βd is an isomorphism, q.e.d.
In order to prove part (ii) of Theorem C, we need a local description of the

morphism Ψd : J d,g → Jd,g at the general point of ∆̃i. This was carried on in

[BFV12, Proof of Thm. 1.5] for the morphism νd ◦Ψd : J acd,g → Jd,g, but it
is very easy to adapt the description in loc. cit. to the morphism Ψd (simply
by passing to the Gm-rigidification).
If kd,g ∤ (2i − 1) (which corresponds to the cases (1) and (2) of loc. cit.) then

the morphism Ψd is an isomorphism locally at the general point of ∆̃i (see

[BFV12, p. 25]). Therefore Ψ∗
d(∆̃i) = O(δi).

If kd,g | (2i − 1) (which corresponds to the case (3) of loc. cit.) then the
morphism Ψd looks like (after neglecting trivial coordinates)

X := [Spf k[[x, y]]⊗̂A/Gm]
p

−→ X := Spf k[[x, y]]/Gm⊗̂A = Spf k[[xy]]⊗̂A,

where A = Spf k[[y1, · · · , y4g−4]], Gm acts via λ · (x, y) = (λx, λ−1y) and triv-

ially on A (see [BFV12, p. 26]). In this local description, the divisor ∆̃i

corresponds to the divisor (xy = 0) on X and the divisors δ̃1i and δ̃2i corre-
spond to the divisors (x = 0) and (y = 0) on X (note that in the particular

case i = g/2 and kd,g | (g−1), the divisor δ̃g/2, even though irreducible, locally

analytically splits into two components, which we can call δ̃1g/2 and δ̃2g/2, so

that the above description remains valid also in this case). From the explicit
form of the map p, it is clear that p∗(xy = 0) = (x = 0) + (y = 0), from which
we deduce that

Ψ∗
d(∆̃i) =

{
O(δ

1

i + δ
2

i ) if i < g/2,

O(2δg/2) if i = g/2.

Part (ii) is now proved.
�
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[Cap05] L. Caporaso: Néron models and compactified Picard schemes over
the moduli stack of stable curves. Amer. J. Math. 130 (2008), no. 1,
1–47.

[CMKVa] S. Casalaina-Martin, J. L. Kass, F. Viviani: The Local Structure of
Compactified Jacobians. Preprint arXiv:1107.4166v2.

Documenta Mathematica 19 (2014) 457–507



Picard Group of the Compactified Universal Jacobian 505

[CMKVb] S. Casalaina-Martin, J. L. Kass, F. Viviani: The singularities and
birational geometry of the universal compactified Jacobian. In prepa-
ration.

[Cil87] C. Ciliberto: On rationally determined line bundles on a family of
projective curves with general moduli. Duke Math. J. 55 (1987), no.
4, 909–917.

[Cor91] M. Cornalba: A remark on the Picard group of spin moduli space.
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9)
Mat. Appl. 2 (1991), no. 3, 211–217.

[Cor07] M. Cornalba: The Picard group of the moduli stack of stable hy-
perelliptic curves. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.
Rend. Lincei (9) Mat. Appl. 18 (2007), no. 1, 109–115.
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Sci. École Norm. Sup. 32 (1999), 127–133.
[Vis98] A. Vistoli: The Chow ring ofM2. Invent. Math. 131 (1998), 635–644.

Margarida Melo
Departamento de Matemática
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