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ABSTRACT. This paper discusses some examples showing that the crys-
talline cohomology of even very mildly singular projectivarieties tends

to be quite large. In particular, any singular projectiveety with at worst
ordinary double points has infinitely generated crystallomhomology in

at least two cohomological degrees. These calculatioyscréically on
comparisons between crystalline and derived de Rham cologymo
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Fix an algebraically closed fieldof characteristip > 0 with ring of Witt vectorsiV'.
Crystalline cohomology is &/-valued cohomology theory for varieties ovel(see
[Gro68, Ber74]). It is exceptionally well behaved on properoothk-varieties: the
W-valued theory is finite dimensional [BO78], and the cormesfingW¥[1/p]-valued
theory is a Weil cohomology theory [KM74] robust enough tpsort ap-adic proof
of the Weil conjectures [Ked06] (in conjunction with rigidlzomology to deal with
open or singular varieties).

Somewhat unfortunately, crystalline cohomology is oftargé and somewhat un-
wieldy outside the world of proper smooth varieties. Forregke, the crystalline
cohomology of a smooth affine variety of dimension0 is always infinitely gener-
ated as dV-module by the Cartier isomorphism (see Renfark 2.4). Eversayat
is not a topological invariant: Berthelot and Ogus showe@8E, Appendix (A.2)]
that the0'" crystalline cohomology group of a fat point ila? has torsion (see also
Exampld_34). In this paper, we give more examples of suckpawed behaviour:

THEOREM. Let X be a proper Icik-variety. Then the crystalline cohomology Xf
is infinitely generated if any of the following conditionsétisfied:

(1) X has at least one isolated toric singularity, such as a node carve.
(2) X has at least one conical singularity of low degree, such a®@inary
double point of any dimension.

DOCUMENTA MATHEMATICA 19 (2014) 673-687



674 BHARGAV BHATT

The statement above is informal, and we refer the readeetbdly of this paper —
see examplds 3.6, 36,3112, &nd 8.13 — for precise formulkatiln contrast to the
Berthelot-Ogus example, our examples are reduced and kEiddhot know if these
calculations are indicative of deeper structure; see @ard8il below.

Our approach to the above calculation relies on lllusieidsvée de Rham cohomol-
ogy [lI72]. This theory, which in hindsight belongs to dezd algebraic geometry,
is a refinement of classical de Rham cohomology that workiibdr singular va-
rieties; the difference, roughly, is the replacement of ¢béangent sheaf with the
cotangent complex. Theorems from [Bhal2] show: (a) derdedRham cohomol-
ogy agrees with crystalline cohomology for Ici varietieadgb) derived de Rham
cohomology is computed by a “conjugate” spectral sequertesar;-terms come
from coherentohomology on the Frobenius twist. These results transfeutations
from crystalline cohomology to coherent cohomology, where much easier to lo-
calise calculations at the singularities (see the proofropBsitiol3.1). As a bonus,
this method yields a natural (infinite) increasing boundeldblw exhaustive filtration
with finite-dimensional graded pieces on the crystallineanology ofanylci proper
variety.

We conclude by asking if finiteness properties of crystalinhomology characterize
smooth varieties (somewhat analogously to Quillen’s ottoje [Avro9)):

QuEsTION 0.1 Do there exisanysingular propek:-varieties with finite dimensional
crystalline cohomology ovet? Do there exisanysingular finite typek-algebrasA
whose crystalline cohomology relative kois finitely generated over the Frobenius
twist AV C A?

We do not know what to expect, and simply note here that dérileeRham theory
(seeqdd)) shows that the sought-after examples cannot simultaheba Ici and admit
lifts to W5 compatible with Frobenius.

ORCANISATION OF THIS PAPER. In {I], we review the relevant results from derived
de Rham cohomology together with the necessary categtdckiground. Next, we
study (wedge powers of) the cotangent complex of some cdamjpiersections if2.
This analysis is used 8.1 to provide examples of some singular projective vargeti
(such as nodal curves, or Ici toric varieties) whose criisatohomology is always
infinitely generated; all these examples admit local liét$it; where Frobenius also
lifts. Examples which are not obviously liftable (such adinary double points in
high dimensions) are discussedji.2.

NOTATION. Letk andW be as above, and sBt, = W/p?. For ak-schemeX, let

X ™) denote the Frobenius-twist &f; we identify the étale topology o and X (V).

We useH, . (X/k) and H[, . (X/W) to denote Berthelot's crystalline cohomology
groups relative td: and W respectively. All sheaves are considered with respect to
the Zariski topology (unless otherwise specified), andesisor products are derived.
We say thatX lifts to W, compatibly with Frobenius if there exists a fl&t-scheme

X lifting X, and a magl — X lifting the Frobenius map oX and lying over the
canonical Frobenius lift ofl’;. For fixed integers < b € Z, we say that a complex

K over some abelian category has amplitudein] if H*(K) = 0fori ¢ [a,b] C Z.
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A complexK of abelian groups is connected (resp. simply connecteld) (<) = 0
fori > 0 (resp. fori > 0). An infinitely generated module over a ring is one that is
not finitely generated. All gradings are indexed Bynless otherwise specified. If
A is a graded ring, therl(—3) is the gradedd-module defined byl(—j); = A;_;;

we setM (—j) := M ®4 A(—j) for any gradedd-complexM. We useA for the
category of simplices, andh(A) for the category of chain complexes over an abelian
categoryA.

ACKNOWLEDGEMENTS. |thank Johan de Jong, Davesh Maulik, and Mircea Mustata
for inspiring conversations. In particular, Examlplel 3.5wléscovered in conversation
with de Jong and Maulik, and was the genesis of this paperh B@rre Berthelot
and Arthur Ogus had also independently calculated a vaoiahis example (unpub-
lished), and | thank them for their prompt response to enmgjliiries. |1 am further
grateful to the anonymous referee for references and cotsmen

1. REVIEW OF DERIVED DERHAM THEORY

In this section, we summarise some structure results ive@ide Rham theory that
will be relevant in the sequel. We begin by recallingfind some standard techniques
for working with filtrations in the derived category; thisgpides the language neces-
sary for the work in[[Bhal2] reviewed #i.2.

1.1. SOME HOMOLOGICAL ALGEBRA. In the sequel, we will discuss filtrations on
objects of the derived category. To do so in a homotopy-aitenanner, we use the
following model structure:

ConsTRUCTION 1.1. Fix a small category, a Grothendieck abelian categdyand
setA = Fun(I,B). We endowCh(3B) with the model structure of [Curll, Proposi-
tion 1.3.5.3]: the cofibrations are termwise monomorphjsuhde weak equivalences
are quasi-isomorphisms. The categbun (I, Ch(B)) = Ch(Fun(I,B)) = Ch(A)
inherits a projective model structure ly [Lui09, PropasitA.2.8.2] where the fibra-
tions and weak equivalences are defined termwise By [[.lr@@position A.2.8.7],
the pullbackD(B) — D(A) induced by the constant mdp— {1} has a left Quillen
adjoint D(A) — D(B) that we call a “homotopy-colimit ovef”. In fact, exactly
the same reasoning shows: given a igap I — J of small categories, the pull-
back ¢* : D(Fun(J,B)) — D(Fun(I,B)) induced by composition withp has
a left Quillen adjoint¢; : D(Fun(I,B)) — D(Fun(J,B)) if Ch(Fun(Z,B)) and
Ch(Fun(J, B)) are given the projective model structures as above; we oéten to
¢ as a “homotopy-colimit along fibres gf” The most relevant examples ¢ffor us
are: the projectiona°P? — {1}, A°PP x N — N andN — {1}.

Using Construction 11, we can talk about increasing fittret on objects of derived
categories.

CoNsTRUCTION 1.2 Let B be a Grothendieck abelian category, andet:=
Fun(N, B), whereN is the category associated to the paSetvith respect to the
usual ordering. There is a homotopy-colimit func®r: D(A) — D(B) which
is left Quillen adjoint to the pullbacO(B) — D(A) induced by the constant map
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N — {1}; we informally refer to an objeck’ € D(A) as an increasing (dN-
indexed) exhaustive filtration on the objdctK) € D(B). There are also restriction
functors[n]* : D(A) — D(B) for eachn € N, and mapgn|* — [m]* forn < m
coherently compatible with composition. For eacle N, the cone construction de-
fines a functogr,, : D(A) — D(B) and an exact trianglgr — 1]* — [n]* — gr,
of functorsD(A) — D(B); for a filtered objectk’ € D(B), we often usesr,, (K)
to denotegr,, applied to the specified lift o to D(A). AmapK; — Ky in D(A)

is an equivalence if and only [h]* K1 — [n]* K> is so for alln € N if and only if
gr,, (K1) — gr,(K>2) is so for alln € N. Given a cochain complek over B, the
associatiom — 7<, K defines an object aD(A) lifting the image ofK' € D(B)
underF'.

REMARK 1.3. The “cone construction” used in Constructfonl1.2 to defjrngneeds
clarification: there is no functdfun([0 — 1], D(B)) — D(B) which incarnates the
chain-level construction of the cone. However, the samestcoationdoesdefine a
functor D(Fun([0 — 1],B)) — D(B), which suffices for the above application (as
there are restriction functof3(A) — D(Fun([0 — 1], B)) for each mag0 — 1] —

N in N).

1.2. THE DERIVED DE RHAM COMPLEX AND THE CONJUGATE FILTRATION.
We first recall the definition:

CONSTRUCTION 1.4. For a morphismf : X — S of schemes, followingll72,
§VIIL.2], the derived de Rham compledRx/s € Ch(Mod;-1¢,) is defined as
the homotopy-colimit overA°PP of the simplicial cochain complesaj,./f,1os €
Fun(A°PP, Ch(Mods-10,)), whereP, is a simplicial freef 'O g-algebra resolu-
tion of Ox. When S is an F,-scheme, the de Rham differential is linear over
the p*"-powers, sodRx,s can be viewed as an object Oifn(ModoX(l)), where
XM = X xgmob S is the (derived) Frobenius-twist f (which is the usual one if

f is flat).

The following theorem summarises the relevant results fish@12] about this con-
struction:
THEOREM 1.5. Let X be ak-scheme. Then:

(1) The complexiR x/, € Ch(ModoX(l)) comes equipped with a canonical
increasing bounded below separated exhaustive filtraRdgf™ called the
conjugatdiltration. The graded pieces are computed by

Cartier; : grfonj(dRX/k) ~ N'Lxa) /[

In particular, if X is Ici, thenFil¢*" (dRx/x) is a perfectO y o) -complex for
all i.

(2) The formation ofiR x/, and the conjugate filtration commutes wittale
localisation onX (1),

(3) There exists a canonical morphism

RI(XW, dRy/x) = Rlarys(X /K, O)
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that is an isomorphism wheX is an Ici k-scheme.
(4) Ifthere is a lift of X to W5 together with a compatible lift of Frobenius, then
the conjugate filtration is split, i.e., there is an isomoigrh

Di>o0 /\i LX(l)/k[—i] ~ dRX/k
whose restriction to thé" summand on the left spliartier;.

REMARK 1.6. Theoreni_Lb can be regarded as an analogue of the resultstiErCa
(as explained il [DI87], say) and Berthelot [Ber74] to thegsilar case. In particular,
whenX is quasi-compact, quasi-separated and Ici, parts (1) anaf (Bheoreni_1b
together with the end of RemdrkL.7 yield a “conjugate” spgsequence

EYT: HP(XW N Lya) ) = HEL(X/E).

crys

In the sequel, instead of using this spectral sequence, Ivdikeictly use the filtration
ondRx/, and the associated exact triangles; this simplifies bogkkgef indices.

REMARK 1.7. We explain the interpretation of Theorém]|1.5 using the laigguof
41.7. LetB = Mod(O x) ), and letA = Fun(N, B). The construction of the derived
de Rham complexR x,, € D(B) naturally lifts to an objec€ € D(A) underF if
P, — Ox is the canonical freé-algebra resolution of x, thenQ}./k ®P.<1> Ox
defines an object ab (Fun(A°PP x N, B)) via (m,n) = (7<aQp, ;) ® pw Oxa,
and its homotopy-colimit oveA°PP (i.e., its pushforward alond (Fun(A°PP x
N,B)) — D(Fun(IN, B))) defines the desired obje€t € D(A). This construc-
tion satisfiesn]*€ ~ Fil{™ (dRx/;), sogr, (€) ~ gre®™(dRy ) foralln € N.
This lift € € D(A) of dRx/, € D(B) is implicit in any discussion of the con-
jugate filtration ondR x; in this paper (as in Theorem 1.5 (1), for example). In
the sequel, we abuse notation to &y, also denote€ € D(A). WhenX is
quasi-compact and quasi-separated, cohomology commutksfiliered colimits,
SORT(XM, dR ;) =~ colim, RI'(X M, Fili™™(dR ;). In particular, when re-
stricted to proper varieties, derived de Rham cohomologybeawritten as a filtered
colimit of (complexes of) finite dimensional vector spatwesctoriallyin X.

2. SOME FACTS ABOUT LOCAL COMPLETE INTERSECTIONS

In order to apply Theorefm 1.5 to compute crystalline cohamglwe need good con-
trol on (wedge powers of) the cotangent complex of an Icigliagty. The following
lemma collects most of the results we will usefBill.

LemMA 2.1 Let(A,m) be an essentially finitely presented loéahlgebra with an
isolated Ici singularity at{m}. Let N = dimy(m/m?) be the embedding dimension.
Then:

(1) A"Lyyy is a perfect complex for ath. Forn > N, A"L 4/, can be rep-
resented by a complex of finite frdemodules lying between cohomological
degrees—n and—n + N with differentials that aré) modulom.

(2) Foranyn > N, the complex\" L 4, has finite length cohnomology groups.

(3) Foranyn > N, the groupH ~"*~ (A" L 4 ;) is non-zero.
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(4) For any n > N, there exists an integed < ¢ < N such that
H="*N=i(A"L 4 1) is non-zero.

(5) Ifdim(A) > 0andn > N, thenH " (A"L,,;) = 0, so the intege¥ in (4)
is strictly less thanVv.

Proof. Choose a polynomial algebid = k[z1,...,zy] and a mapP — A such
thatQ}D/k Qp A — Qi/k is surjective. By comparing dimensions, the induced map
Q}D/k Qp AR A/m — Qi,/k @4 A/mis an isomorphism. Now consider the exact
triangle

LA/p[—l] — Q})/k: Rp A — LA/k-

The Ici assumption od and the choice oP ensure thal 4, p[—1] is a freeA-module
of some rank-. SinceSpec(A) is singular atn, we must have: > 0. The previous
triangle then induces a (non-canonical) equivalence

(A@"‘ EN A@N) ~ La.

The mapT’ must be0 modulom as A9Y — L 4,1 induces an isomorphism af©
after reduction module, so the above presentation yields an identification

L, ®ak = (K®7[1]) & k&N,
Computing wedge powers gives
) A" (Lage) @a k= &0 o (A (ON) @ T (k") ) [n — dl,

wherel* is the divided-power functor; here we use thatV'[1]) = I'"(V)[n] for a
flat k-moduleV over a ringk (see|[Qui70§7]). We now show the desired claims:

(1) The perfectness of" L 4, follows from the perfectness df 4. The de-
sired representative complex can be constructed as a Kosmyplex on the
mapT above (see the proof of LemmaR.5 (4) below); all differdatigill be
0 modulom by functoriality sincel” is so.

(2) We must show that A" LA/k)p = 0 for anyp € Spec(A) — {m} andn >
N. The functorA™ L_ ;, commutes with localisation, so we must show that
A" Ly, 1 = 0 forp andn as before, but this is cleart,, is the localisation of
smoothk-algebra of dimensior dim(A) < N for any suchy.

(3) By (1), H*"*N(A”LA/k) = 0 if and only if A"L 4/, has amplitude in
[-n, —n+ N —1]. However, in the latter situation, the compleXL 4/, ®a k
would have no cohomology in degreei+ N, contradicting formuld{*); note
thatr > 1 by the assumption th&pec(A) is singular aim.

(4) Assume the assertion of the claim is false. Then (3) shbasA\" L 4, is
concentrated in a single degree, 86L 4/, ~ M[-n + N] for some fi-
nite lengthA-module M. By (1), M has finite projective dimension. The
Auslander-Buschbaum formula and the fact thas Cohen-Macaulay then
show that the projective dimension bf is actuallydim(A). Hence M ® 4 k
has at mostlim(A) + 1 non-zero cohomology groups. On the other hand,
formula [¥) shows that\" L 4, ® 4 k hasN + 1 distinct cohomology groups.
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Hence,N < dim(A), which contradicts the assumption ttsatec(A) is sin-
gular atm.

(5) SetM := H~"(A"L ), and assum@/ # 0. ThenM has finite length by
(2), and occurs as the kernel of a map of frieenodules by (1). Non-zero fi-
nite lengthR-modules cannot be found inside frBemodules for anys; -ring
R of positive dimension, which is a contradiction since coetintersections
ares;. O

REMARK 2.2 The assumptionlim(A) > 0 is necessary in Lemnia2.1 (5). For
example, se#d = k[e]/(€?). ThenN = dimy(m/m?) = 1, andL 4, ~ A[l] & A.
Applying A™ for n > 0, we get

AN (L) = T"(A)[n] @ T (A)[n — 1],
which certainly has non-zero cohomology in degree

Using LemmdZ]1, we can show that the crystalline cohomofafggn isolated Ici
singularity is infinitely generated in a very strong sense:

COROLLARY 2.3. Let(A, m) be asin Lemm@a?2.1. Assume thaadmits a lift toil,
compatible with Frobenius. Then

(1) Hi,yo(Spec(A)/k) ~ @0 H° (Spec(A) M, AL 40 1. [i — j]) for all i.
(2) HY,.(Spec(A)/k) is infinitely generated as an(!)-module.

Proof. Note that /7 _(Spec(A)/k) is an A(Y)-module since any divided-power

crys
thickening ofA is anA(")-algebra.
(1) This follows from Theoreiin 115 (4) and the vanishing oftégquasi-coherent
sheaf cohomology on affines.
(2) This follows from Lemm&?2]1 (3). O

REMARK 2.4. Let us explain the phrase “strong sense” appearing beforel-Co
lary 2Z3. If A is an essentially smooth-algebra, thenH;  (Spec(A)/k) is in-
finitely generated ovek, but not overA(): the Cartier isomorphism shows that
Hi,yo(Spec(A)/k) = Qi) ., which is a finite (and even locally free))-module.
Itis this latter finiteness that also breaks down in the diggetting of Corollarj2]3.
We also record a more precise result on the wedge powers ebtaagent complex
for the special case of the co-ordinate ring of a smooth sypéace; this will be used
in §3.2.

LEMMA 2.5. Let A be the localisation ab of k[xo, ..., zx]/(f), wheref is a homo-
geneous degreé polynomial defining a smooth hypersurfaceR. Assume 1 d.
Then

(1) Ais graded.

(2) The quotientV = A/(FL, ..., 22L) is a finite length gradedi-module
whose non-zero weighjsare contained in the interval < j < (d —2)(N +
1).

(3) TheA-linear Koszul compleX := K 4({ % }) of the sequence of partials is
equivalenttoM @ M (—d)[1] as a graded4-complex.
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(4) Forn > N, we have an equivalence of graddedcomplexes
N"L g i[—n] =~ M((N+1)(d—1)—nd)[-N—-1]&M ((N+1)(d—1)—nd—d)[-N].

(5) Assume thalV andd satisfyN(d —2) < d+2. Fix jandnwith N < j < n.
Then all graded:-linear maps

A*Laskl—n] = N Las|—4][1]
are nullhomotopic as gradektlinear maps.

Proof. Let S = k[zo, ..., zn] denote the polynomial ring. We note first the assump-
tionp t dimplies (by the Euler relation) thdtlies in the ideal/(f) C .S generated by
the sequenceg—ji} of partials. Sincef defines a smooth hypersurface, the preceding
sequence cuts out a zero-dimensional schenfg ind hence must be a regular se-
quence by Auslander-Buschbaum. In particular, eéghs non-zero of degre¢— 1.

We now prove the claims:

(1) Thisis clear.

(2) Sincef € J(f), the quotientM is identified withS/.J(f), so the claim
follows from [Voi07, Corollary 6.20].

(3) Consider theS-linear Koszul complexl. := Kg( g—gfi}) of the sequence
of partials. Since the partials span a regular sequenceg, iwe have an
equivalencel, ~ S/J(f) ~ A/J(f) ~ M of gradedS-modules. Now
the complexK is simply L ®s A ~ M ®g A. Since M is already an
A-module, we get an identificatiohl ~ M ®4 (A ®s A) as gradedA-
modules, where the right hand side is given tiienodule structure from

the last factor. The resolutioﬁS(—d) EN S) ~ A then shows that

K~M®a (A(fd) LA A) ~ M e M(—d)[1].

(4) SetL = (f)/(f*), E = Qg ®s A, andc : L — E to be the map defined
by differentiation. Then the two-term complex defineddiyg identified with
L. Taking wedge powers fat > N then shows (se¢ [KS04, Corollary
1.2.7], for example) that the complex

(%) T(L)QANY(E) = T Y L)@ AN (E) = - — TN (D)@ AN HY(E)

computes\" L 4, [—n]; here the term on the left is placed in degfeeEx-
plicitly, the differential

(L) @4 AF(E) = T (L) @ AMY(E)
is given by
Yilf) ®@w = Y1 (f) @ (c(f) Aw) = (=D - 71 (f) @ (w A df).

In particular, if we trivialiseI(L) using v;(f), then this differential is
identified with left-multiplication bydf in the exterior algebra*(E). We

leave it to the reader to check that the compl[eX (**) abovesdsriorphic to
K((N 41)(d—1) — nd)[-N — 1]; the rest follows from (3).
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(5) LetM’ = M((N +1)(d—1))[-N — 1]. ThenM" is, up to a shift, a graded
A-module whose weights lie in an interval size(df— 2)(N + 1) by (2). By
(4), we have

AL ajp[—n] =~ M'(—nd) & M'(—nd — d)[1]
and
N Lagel—gl[1) = M'(~ja)[1] & M’(~jd — d)[2].

Thus, we must check that all gradiedinear maps\f’(—nd—d) — M’ (—jd)
are nullhomotopic. Twisting, it suffices to shaW’ andM’((n+1— j)d) do
not share a weight. If they did, thén + 1 — j)d < (d — 2)(INV + 1). Since
j < n, thisimplies2d < (d — 2)(N + 1), i.e.,d + 2 < N(d — 2), which
contradicts the assumption. O

REMARK 2.6. The assumptiodV(d — 2) < d + 2 in LemmaZ5b (5) is satisfied in
exactly the following casesN > 5 withd = 2, N = 3,4 with d < 3, N = 2 with

d < 5,andN = 1 with anyd > 1. In particular, an ordinary double point of any
dimension satisfies the assumptions of Lerimé 2.5 in any oalccteristic. We also
remark that in this case (i.e., whén= 2), the proof of Lemm&2]5 (5) shows that the
space of gradef-linear maps\" L 4 ;,[—n] — A/ L 4 ,[—j][1] is simply connected.

REMARK 2.7. Lemmal[Zb (5) only refers to space of gradédinear maps
AL 4 x[—n] = N L a,[—7][1], and not the space of such gradédinear maps. In
particular, it can happen that a gradédinear mapA™ L 4 /. [—n] — A7 L4 [—j][1]
is nullhomotopic as a gradédlinear map, but not as as-linear map.

Theoren 16 will be used to control on the mpdrystalline cohomology of an Ici
k-scheme. To lift these results W', we will use the following base change isomor-
phism; see[[BdJ11] for more details.

LEMMA 2.8. LetX be afinite type Ick-scheme. Then tH& -compleXRTc,ys(X/W)
has finite amplitude, and there is a base change isomorphism

RTcrys(X/W) @ k ~ RE grye(X/K).

Proof. By a Mayer-Vietoris argument, we immediately reduce to th&eovhereX =
Spec(A) is affine. In this case, leb be thep-adic completion of the divided power
envelope of a surjectio®” — A from a finite type polynomialV -algebraP. Then
RIcrys(X/W) is computed by

Since this complex has finite amplitude, the first claim isvero Next, if ) = P/p,
andDj is the divided power envelope &} — A, thenRI.,,s(X/k) is computed by

Q*P()/k ®P0 DO
The claim now follows from the well-known fact that is W -flat (sinceA is Ici), and
D ®w k ~ Dy (see[BBM82, Lemma 2.3.3] for a proof). O
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3. EXAMPLES

We come to the main topic of this paper: examples of singulaper Ici k-varieties
with large crystalline cohomology. 8.1, using lifts of Frobenius, we show that cer-
tain singular proper varieties (such as nodal curves, gusén Ici toric varieties) have
infinitely generated crystalline cohomology. J8.2, we show that a single ordinary
double point (or worse) on an Ici proper variety forces aliste conomology to be
infinitely generated.

3.1. FROBENIUS-LIFTABLE EXAMPLES. We start with a general proposition which
informally says: a proper Idi-variety has large crystalline cohomology if it contains
an isolated singular point whose étale local ring lift$ite compatibly with Frobenius.
Note that Icik-algebras always lift td15, so this is really a condition on Frobenius.

ProrosiTioN 3.1. Let X be proper Icik-scheme. Assume:

(1) There is a closed point € X that is an isolated singular point (but there
could be other singularities o).

(2) There is a lift tolW, of the Frobenius endomorphism of the henselian ring
ok .

SetN = dimy(m,/m2). Then there exists an integeér< i < N such that:
(1) HY,.(X/k)is infinitely generated ove.

(2) HY,./(X/k) is infinitely generated ovet.

(3) At Iezst one of 1\t (X/W)[p] and HY,.(X/W)/p is infinitely generated
overk.

(4) Atleast one ofZ\1 (X /W)[p] and HL[/(X/W)/p is infinitely gener-
ated overk.

If dim(Ox ) > 0, then the integef above can be chosen to be strictly less thén

Proof. The desired integerwill be found in the proof of (2) below.
(1) Consider the exact triangle

Fﬂi\(;nj(de/k) — dRX/k —Q

in the category o) x ) -complexes, wher& is defined as the homotopy-
cokernel. Theoreni 1.5 (1) and the Ici assumption ¥nshow that
Fily" (dRxy,) is a perfect complex o&X (M), so H (X, Fil¢™ (dRx 1))

is a finite dimensional vector space for aby properness. By Theordm 1.5
(3), to show thatHC"\[ys(X/k) is infinitely generated, it suffices to show that

HN(X™ Q) is an infinite dimensionat vector space. First, we show:

CramM 3.2 The natural mafRI'(X,Q) — Q, is a projection onto a sum-
mand ask-complexes.

Proof of Claim. Letj : U — X be an affine open neighbourhoodxotuch
thatU has an isolated singularity at and letj’ : V = X — {z} C X. By
TheoreniLb (2)Q|yny =~ 0 sinceU NV is k-smooth. Hence, the Mayer-
Vietoris sequence for the covél, V'} of X and the compleX degenerates
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to show

RI(X,Q) ~RI'(U,Q) & RT'(V, Q).
It now suffices to show thakI'(U, Q) ~ Q,. By Theoreni 15 (1)Q|, ad-
mits an increasing bounded below separated exhaustiaibitrwith graded
piecesA" Ly [—k] for n > N. Since cohomology commutes with fil-
tered colimits (adJ is affine), RI'(U, Q) also inherits such a filtration with
graded pieces computed BY'(U, A" Ly )y, [—k]) forn > N. Applying the
same analysis t@, reduces us to checking thBI'(U, \" L) /i [—n]) =~

A" L o) /k[—n] forn > N. Butthisis clear: fom > N, A" Ly ,[—n]
X,z

is a perfect complex o/(!) that is supported only at and has stalk

/\"Log) /k[_n]' O

To compute the stalk,., defineQ’ via the exact triangle
Fﬂ‘j@“j(dR% ) = dRer o — Q.

ThenQ, = Q' by Theoren{1}5 (2), the finite length property ©f, and
the fact that(f)%w ®ox. M ~ M for any finite lengthO x ,-module M.
Moreover,Q’ can be computed using the Frobenius lifting assumption and

Theoreni L5 (4):

Q, ~ ¢ Z@iozN-f-l A" Log;) nj.

,h/k[*

x

Thus, to prove that7V (X (1) Q) is infinitely generated, it suffices to show
that HV(Q,) is infinitely generated. This follows from the formula above
and Lemma2]1 (3).

(2) By combining the proof of (1) with Lemnia 2.1 (4) and thegmghole prin-
ciple, one immediately finds an integex i < N such thatd [\, /(X /k) is
infinitely generated ovet. LemmdZ.1L (5) shows that we can choose such an
iwithi < N if dim(Ox ;) > 0.

(3) The base change isomorphism from Lenima 2.8 gives a skact sequence

0 = H((X/W)/p = H((X/k) = HIEH(X/W)[p] = 0,

crys c crys

so the claim follows from (1).
(4) The same argument as (3) works using (2) instead of (1). O

We need the following elementary result on Frobenius [ifsin

LEMMA 3.3. Let A be ak-algebrathat admits a lift tdV; together with a compatible
lift of Frobenius. Then the same is true for any iet&le A-algebra B (such as the
henselisatior4 at a point).

Proof. This follows by deformation theory sindez, 4 = 0 for B as above. O
Specialising Propositidn 3.1 leads to the promised exasnple

ExaMPLE 3.4. Let X = Spec(k[z]/2™) for somen > 1. ThenH}.  (X/k),

crys

HY\ o (X/k), HL (X/W)/p, and H}, (X /W)[p] are all infinitely generated. To

crys
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see this, note first that Propositibn13.1 applies directhcsiX is a proper Icik-
scheme with a lift of Frobenius td’;. Moreover, sinceX can be realised as a sub-
scheme ofA', the only non-zero cohomology groups dig,,. and HY, . (over WV,
as well as ovek). The rest follows directly from Propositi .1 once we Wrihat
HY (X/W) = W. For this, note thatZ’. .(X/W) is the kernel of the differen-

crys crys
tial dg : R — R - dz, whereR = WE](\W) is the pd-envelope of the evident
closed immersionX — Spec(W{z]). We may viewR as the set of power series
f=>,ax’ € K[z] (whereK = W[;]) such that; - [i/e]! € W for all 4. In
particular,R is a subring ofK'[z], so the kernel ofi; is just the constant power series
(asK has characteristig¢), which showsH?  (X/W) = W as desired.

crys
ExampLE 3.5. Let X be a proper nodat-curve with at least one node. Then
H! (X/k)and HZ  (X/k) are infinitely generated. MoreoveH? . (X/W)/p,
and at least one off!  (X/W)/p and HZ,  (X/W)[p], are infinitely generated.
Most of these claims follow directly from Propositibn 8.1:nadal curve is always
Ici, and the henselian local ring at a node &nis isomorphic to the henselisa-
tion of k[x,y]/(xy) at the origin, which is a one-dimensional local ring that ad-
mits a lift to W compatible with Frobenius by LemrhaB.3. It remains to shaat th
H (X/W)[p] is finitely generated. As pointed out by de Jong, the strosgee-
mentH}  (X/W) = Ois true. Ifu : (X/W)crys = Xzar is the natural map (i.e.,
u(F)(U € X) = T((U/W)erys, F|v)), thenRiu, O x/w,crys is NoN-zero only for
0<1<2, andRQU*(f)X/WmyS is supported only at the noded he rest follows from
the Leray spectral sequencefdg,, has cohomological dimensidn

ExaMPLE 3.6. Let X be a proper Ick-scheme. Assume thate X (k) is an isolated

singular point (but there could be other singularitiesdnsuch that@*;(’z is toric of
embedding dimensioN. ThenH[) . (X/k) is infinitely generated, and at least one of
HY (X/W)andHLHH(X/W)[p] is infinitely generated oveil”. This follows from
Propositio 3.1 and Lemnia 3.3 since toric rings lifite compatibly with Frobenius
(use multiplication byp on the defining monoid). Some specific examples are: any
proper toric variety with isolated Ici singularities, onyaproper singulak-scheme of
dimension< 3 with at worst ordinary double points.

ExaMPLE 3.7. Let (F,e) be an ordinary elliptic curve ovér, and letX be a proper

Ici k-surface with a singularity at € X (k) isomorphic to the one on the affine cone
overE C P7 embedded vié(3e]); for example, we could tak& to be the projective
cone onE C Pi. ThenHJ  (X/k) and one ofHZ, (X /k) or H. (X/k) are
infinitely generated ovek. This can be proven using Propositlonl3.1 and the theory
of Serre-Tate canonical lifts. Since we prove a more geradl shaper result in

Exampld_3.1B, we leave details of this argument to the reader
3.2. CONICAL EXAMPLES. Our goal here is to show that the presence of an ordinary
double point forces crystalline cohomology to be infinitgbnerated. In fact, more

1proof sketch: Replace the Zariski topology with the Nisobwiopology in the foundations of crys-
talline cohomology, and then use that every nodal curvess®liich locally planar. This observation yields
a three-term de Rham complex computing the stalk3‘f.. O x /1y, crys-

DOCUMENTA MATHEMATICA 19 (2014) 673-687



TORSION IN THE CRYSTALLINE COHOMOLOGY OF . .. 685

generally, we show the same for any proper Ici variety thasingularity isomorphic
to the cone on a low degree smooth hypersurface. We starewdld hocdefinition.

DerFINITION 3.8. A local k-algebraA is called dow degree coné its henselisation
is isomorphic to the henselisation at the origin of the gy, ...,z x]/(f), where
f is a homogeneous degré@olynomial defining a smooth hypersurfacd® such
that N(d — 2) < d + 2. The integewl is called thedegreeof this cone; ifd = 2, we
also callA anordinary double pointA closed pointz € X on a finite typek-scheme
X is calledlow degree conical singularitgrespectively, amrdinary double pointif
O’;(,x is a low degree cone (respectively, an ordinary double point

We start by showing that the conjugate spectral sequenceaweistually degenerate
for low degree cones:

ProrosiTION 3.9. Let A be low degree cone of degrée Assume 1 d. Then for
n > dim(A), the extensions

gre®(dR 4 5,) — FilS™™ (AR /) /Fﬂf;;;jj( a(dRaze)[1]

n—1

occurring in the conjugate filtration are nullhomotopic wheiewed as:-linear ex-
tensions. In particular, there exigtlinear isomorphisms

Fil5™ (dRA/k)/Fﬂfi(i);j(A)(dRA/k) = B i) 1875 (AR k-
splitting the conjugate filtration for any > dim(A).

Proof. By replacingA with its henselisation and then using the étale invariasfce
cotangent complexes and Theorem 1.5 (2), we may asstiimsehe localisation of
klxo,...,xn]/(f) at the origin for some homogeneous degigmlynomial f defin-
ing a smooth hypersurface RY. In particular,A is graded. Also, by functoriality,
the conjugate filtration is compatible with the grading. &ethat the extensions in
guestion arise from the triangles
Fili?™} (AR /) /Filigm 4 (ARoa/k) —
— FIPY (AR 4 k) /Fili 1) (dRasx) — gri™ (dRayx)-
These triangles (and thus the corresponding extensioasjiewed as living in the
derived category of gradddvector spaces. By induction, we have to show the fol-
lowing: assuming a graded splitting
$n1 : FI™™ (AR k) / Fﬂfl?;j(A)(dRA/k) ~ @;'L;dlim(A)+1gr50nj (dRayx)
of the conjugate filtration, there exists a graded splitting
S Fﬂ%orlj (dRA/k)/Fﬂz?;j(A) (dRA/k) ~ @?Z(iim(A)_i,-lgr;OHj (dRA/k)a
of the conjugate filtration compatible wit),_;. Chasing extensions, it suffices to
show: fordim(A) < j < n, all graded maps
gr (dRoagk) = g™ (dRaye)[1]
are nullhomotopic. This comes from Lemmal2.5 (5) and The@&h(1). O
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REMARK 3.10 An inspection of the proof of Propositign 8.9 coupled withniek
[2.8 shows that ifd is an ordinary double point, then the isomorphism

Fﬂ‘;"“j (dRA/k)/Fﬂfi(i);j(A) (dRayk) ~ @?:dim(A)Jrlgr;OHj (dRa/k)

is unique, up to non-uniqgue homotopy. We do not know any appins of this
uniqueness.

Using Propositio 3]9, we can prove infiniteness of cryistaltcohomology for some
cones:

COROLLARY 3.11 LetX be a proper Icik-scheme. Assume that there is low degree
conical singularity at a closed point € X with degreel and embedding dimension
N. Ifp t d, thenHY (X/k) and H] ;' (X/k) are infinitely generated:-vector
spaces.

Proof. We combine the proof strategy of Proposition] 3.1 with Prijms3.9. More
precisely, following the proof of Propositign 8.1 (1), itfces to show tha’ is in-
finitely generated when regarded as a complek-wéctor spaces. No@’ admits an
increasing bounded below separated exhaustive filtratitmhgraded pieces given by
gr;"“j(dRo;;( i) forn>N. By Propositio 3.0, there is a (non-canonical) isomor-
phism -

Q' ~ Dn>N A" Log(l.),,n/k[—n].

x

The rest follows from Lemm@a 2.5 (4) (note that embedding dishan inloc. cit. is
N + 1, so we must shift by). O

We can now give the promised example:

ExampLE 3.12 Let X be any proper Ici variety that contains an ordinary double
pointz € X (k) of embedding dimensioV with p odd; for example, we could take
X to be the projective cone over a smooth quadri®f—*. ThenH[\| (X/k) and
HY-1(X/k) are infinitely generated by Corollary 3]11.

crys

All examples given so far have rational singularities, sore@rd an example that is
not even log canonical.

ExamvmpLE 3.13 Let X be any proper Ici surface that contains a closed point
x € X (k) with O’;(,x isomorphic to the henselisation at the vertex of the cone ave
smooth curve” C P? of degree< 5. If p > 7, thenH3 (X /k) andHZ, (X /k) are
infinitely generated by Corollafy 3:11.

REMARK 3.14. We do not know whether the ordinary double point from Example
312 admits a lift td> compatible with Frobenius in arbitrary dimensions; simjla
for the cones in Example_3.113 (except for ordinary ellipticves).
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