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1 Introduction

Let g =
∑∞

n=1 anq
n be a holomorphic cuspidal Hecke eigenform of weight 1

on Γ1(N) with Dirichlet character ǫ. Deligne and Serre [DS74] constructed a
Galois representation

ρg : Gal(Q/Q) → GL2(C),

which is irreducible, unramified outside N and characterised by ρg(Frobℓ) hav-
ing characteristic polynomial X2 − aℓX + ǫ(ℓ) for all primes ℓ ∤ N . Here, and
throughout, Frobℓ denotes an arithmetic Frobenius element. Let now p ∤ N be
a prime number. Reducing ρg modulo (a prime above) p and semisimplifying
yields a Galois representation

ρg : Gal(Q/Q) → GL2(Fp),

which is still unramified outside N (in particular, at p) and still satisfies the
respective formula for the characteristic polynomials at all unramified primes.
In fact, ρg only depends on the reduction of (the coefficients of) g modulo (a
prime above) p.
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In this article, we shall work more generally and study normalised cuspidal
Katz eigenforms g over Fp of weight 1 on Γ1(N) with Dirichlet character ǫ and
q-expansion (at ∞)

∑∞
n=1 anq

n for p ∤ N (see Section 2). Unlike when the
weight is at least 2, not all such g can be obtained by reducing holomorphic
weight 1 forms. The first such nonliftable example was found by Mestre (see
Appendix A of [Edi06]). Nevertheless, g also has an attached Galois repres-
entation ρg which is unramified outside Np and such that the characteristic
polynomials at unramified primes look as before. In their study of companion
forms, Gross, Coleman and Voloch proved that ρg is also unramified at p in
almost all cases.

Proposition 1.1 (Gross, Coleman, Voloch). If p = 2, assume that a2p 6= 4ǫ(p)
(i.e. a2 6= 0). Then the residual representation ρg is unramified at p.

Proof. The case p > 2 is treated by [CV92] without any assumption on ap.
[Gro90] proves the result for all p (i.e. including p = 2), but with the extra
condition, subject to some unchecked compatibilities, which have now been
settled by Bryden Cais in [Cai07], Chapter 10.

In this article we give a somewhat different proof and remove the condition in
the case p = 2. The main objective, however, is to extend the representation
ρg to a 2-dimensional Galois representation with coefficients in the weight 1
Hecke algebra and to show, in most cases, that it is also unramified outside N ,
in particular at p, with the natural characteristic polynomials at all unramified
primes.
We now introduce the notation necessary to state the main result. Let
S1(Γ1(N);Fp)Katz be the Fp-vector space of cuspidal Katz modular forms of
weight 1 on Γ1(N) over Fp and let T1 be the Hecke algebra acting on it, i.e. the
Fp-subalgebra inside EndFp

(S1(Γ1(N);Fp)Katz) generated by all Hecke operat-
ors Tn for n ∈ N (see also Section 2). Let m be the maximal ideal of T1 defined

as the kernel of the ring homomorphism T1
Tn 7→an−−−−−→ Fp. Let T1,m denote the

localisation of T1 at m. For the representation ρg we shall also write ρ
m

.

Theorem 1.2. Assume that ρ
m

is irreducible and that, if ρ
m

is unramified at p,
then ρ

m
(Frobp) is not scalar.

Then there is a Galois representation

ρm : Gal(Q/Q) → GL2(T1,m)

which is unramified outside N and such that for all primes ℓ ∤ N (including
ℓ = p) the characteristic polynomial of ρm(Frobℓ) is X2−TℓX+ 〈ℓ〉 ∈ T1,m[X ].

Note that we are not assuming that ρ
m

is unramified at p, but, that this can
be deduced from the theorem. This removes the condition in the case p = 2
from Proposition 1.1.

Corollary 1.3. The representation ρg is unramified outside N and the char-
acteristic polynomial of ρg(Frobℓ) equals X2 − aℓX + ǫ(ℓ) for all primes ℓ ∤ N ,
including ℓ = p.
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Proof. If ρ
m

= ρg is reducible, then it is automatically unramified at p as it
is semisimple. If ρ

m
is irreducible, the result follows by reducing ρm (from

Theorem 1.2) modulo m.

The proof of Theorem 1.2 will be given in Section 4 and we will illustrate the
theorem with examples in Section 5. The essential point that makes the proof
work is that cusp forms of weight 1 over Fp sit in weight p in two different
ways; on q-expansions the situation is precisely the same as in the theory of
oldforms, when passing from level N to level Np. Let us call this ‘doubling’.
We shall see that it leads to a ‘doubling of Hecke algebras’ and finally to a
‘doubling of Galois representations’. It is from the latter that we deduce the
main statement.
In the proof of Theorem 1.2 we use essentially that ρ

m
satisfies multiplicity

one (see Section 3); hence, the case when ρ
m

is unramified at p with scalar
ρ
m
(Frobp), where multiplicity one fails by Corollary 4.5 of [Wie07], has to

remain open here.
Since the present article was finished and first put on arXiv (arXiv:1102.2302),
I made some unsuccessful efforts to remove the multiplicity one-assumption.
Since then, Frank Calegari and David Geraghty released an impressive pre-
print [CG12], in which they manage to extend Theorem 1.2 to all cases (for odd
primes p) and, moreover, achieve an R = T-theorem, using a detailed analysis
of the local deformation rings. They also prove that the relevant multiplicity
is 2 if it is not 1, completing the main result of [Wie07].
We finish this introduction by expressing our optimism that the methods of
the present paper might generalise to some extent to Hilbert modular forms.
We intend to investigate this in future work.

Acknowledgements

I would like to thank Mladen Dimitrov for clarifying discussions and Jean-Pierre
Serre for comments and hints on analysing the examples. I also thank Kevin
Buzzard for some comments on the first version of this article. Thanks are also
due to the referee for a careful reading, pointing out a notational ambiguity
and some helpful remarks.
I acknowledge partial support during the writing of this work by the SFB/TRR
45 and the SPP 1489 of the Deutsche Forschungsgemeinschaft.

2 Modular forms and Hecke algebras of weight one

In this section we provide the statements on modular forms and Hecke algebras
that are needed for the sequel. In particular, we deduce a ‘doubling of Hecke
algebras’ from a ‘doubling of modular forms’.
We shall use the following notation and assumptions throughout the article.

Notation 2.1. • Let p be a prime number and N ≥ 5 an integer not di-
visible by p.
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• Frobℓ always denotes an arithmetic Frobenius element at ℓ.

• ζn always denotes a primitive n-th root of unity (for n ∈ N).

• If R is a ring, M , N are R-modules and S ⊆ M is a subset, then we put

HomR(M,N)S=0 := {f ∈ HomR(M,N) | f(s) = 0 ∀ s ∈ S}.

Katz modular forms

For the treatment in this article, it is essential to dispose of the geometric defini-
tion of modular forms given by Katz. Since the tools we need are nicely exposed
in [Edi06], we follow this article, and, in particular, we work with Katz modular
cusp forms for the moduli problem [Γ1(N)]′Fp

of elliptic curves with an embed-
ding of the group scheme µN . We use the notation Sk(Γ1(N);Fp)Katz for these.
Replacing Fp by a field extension F of Fp, one also defines Sk(Γ1(N);F)Katz.
By flatness, Sk(Γ1(N);F)Katz = F⊗Fp

Sk(Γ1(N);Fp)Katz.
Let Tk(Γ1(N);Fp)Katz be the Fp-subalgebra of End

Fp
(Sk(Γ1(N);Fp)Katz) gen-

erated by all Hecke operators Tn and let T′
k(Γ1(N);Fp)Katz be its subalgebra

generated only by those Tn with p ∤ n. Note that both contain the diamond
operators due to the formula ℓk−1〈ℓ〉 = T 2

ℓ −Tℓ2 for a prime ℓ. The q-expansion
principle (see e.g. [DI95], Theorem 12.3.4) and the formula a1(Tnf) = an(f)
show that the pairing Tk(Γ1(N);Fp)Katz × Sk(Γ1(N);Fp)Katz → Fp, given by
〈T, f〉 = a1(Tf) is nondegenerate and, thus, provides the identification

HomFp
(Tk(Γ1(N);Fp)Katz,F)

ϕ 7→
∑

∞

n=1
ϕ(Tn)q

n

−−−−−−−−−−−−→ Sk(Γ1(N);F)Katz (2.1)

for F/Fp.

Classical modular forms

It is useful to point out the relation with classical holomorphic cusp forms,
for which we use the notation Sk(Γ1(N)) and Sk(Γ1(N))cl. The corresponding
Hecke algebra Tk(Γ1(N))cl is defined as the Z-subalgebra of EndC(Sk(Γ1(N))cl)
generated by all Hecke operators Tn. By the existence of an integral structure
and the q-expansion principle, the map HomZ(Tk(Γ1(N))cl,C) → Sk(Γ1(N))cl
which sends a map ϕ to the Fourier series

∑∞
n=1 ϕ(Tn)q

n with q = q(z) = e2πiz

is an isomorphism. We let Sk(Γ1(N);R)cl = HomZ(Tk(Γ1(N))cl, R) for any
Z-algebra R. Note Sk(Γ1(N);C)cl = Sk(Γ1(N))cl. Note also that due to the
freeness and the finite generation of Tk(Γ1(N))cl as a Z-module

R2 ⊗R1
Sk(Γ1(N);R1)cl ∼= Sk(Γ1(N);R2)cl (2.2)

for any R1-algebra R2. For a subring R ⊆ C the R-module Sk(Γ1(N);R)cl
agrees with the subset of Sk(Γ1(N)) consisting of those forms with q-expansion
having coefficients in R, as e.g. in [DI95], Section 12.3.
The following proposition states that for weights at least 2, Katz cusp forms
over Fp coincide with reductions of classical ones of the same level Γ1(N).
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Proposition 2.2. Let k ≥ 2. Assume N 6= 1 or p ≥ 5.

(a) There is an isomorphism Sk(Γ1(N);F)cl ∼= Sk(Γ1(N);F)Katz which is com-
patible with the Hecke operators and q-expansions for any F/Fp.

(b) The map Fp ⊗Z Tk(Γ1(N))cl
1⊗Tn 7→Tn−−−−−−−→ Tk(Γ1(N);Fp)Katz is an isomorph-

ism of rings.

Proof. (a) By Theorem 12.3.2 of [DI95] (see also Lemma 1.9 of [Edi97] for the
cases N < 5) one has

Fp ⊗Z[ 1

N
] Sk(Γ1(N);Z[

1

N
])Katz

∼= Sk(Γ1(N);Fp)Katz

compatible with the Hecke operators. By [Edi06], 4.7, one also has

Sk(Γ1(N);Z[
1

N
])Katz

∼= Sk(Γ1(N);Z[
1

N
])cl.

Both identifications respect q-expansions. Invoking them together with Equa-
tion (2.2) gives the statement.

(b) From (a) it follows that Fp ⊗Z Tk(Γ1(N))cl
1⊗Tn 7→Tn−−−−−−−→ Tk(Γ1(N);Fp)Katz is

a surjection of rings. To see it is an isomorphism it suffices to invoke Equations
(2.1) and (2.2) to give:

HomFp
(Tk(Γ1(N);Fp)Katz,Fp) ∼= Sk(Γ1(N);Fp)Katz

(a)∼=
Sk(Γ1(N);Fp)cl ∼= HomZ(Tk(Γ1(N))cl,Fp) ∼= HomFp

(Fp⊗ZTk(Γ1(N))cl,Fp),

which is the map induced from 1 ⊗ Tn 7→ Tn due to the compatibility of q-
expansions.

Note that the corresponding statement for weight k = 1 is false. We shall
explain examples in Section 5. That failure is actually la raison d’être of this
article.

Doubling of weight one forms

Towards the goal of this article, the construction and study of a Galois repres-
entation into the weight 1 Hecke algebra, it is necessary to increase the weight,
since weight 1 is not a cohomological weight. The increased weight will enable
us to see the Galois representation on the Jacobian of a modular curve, thus,
permitting the use of geometric tools.
We shall map weight 1 forms into weight p. This can be done in two different
ways: multiplying by the Hasse invariant A (a modular form over Fp of weight
p − 1 with q-expansion 1); the Frobenius F (f) = fp. The former does not
change the q-expansion and the latter maps

∑∞
n=1 anq

n to
∑∞

n=1 anq
np. The

formula for F is clear for modular forms over Fp; if we work with coefficients in
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F/Fp, then as in [Edi06] we take the F-linear extension of F . Note that on the
level of q-expansions, the two maps A and F correspond precisely to the two
degeneracy maps from level N to Np. Hence, weight one forms in weight p are
very analogous to oldforms. That is the price to pay for the use of geometric
tools.
Let F/Fp and consider the map

Ψ :
(

S1(Γ1(N);F)Katz

)⊕2 → Sp(Γ1(N);F)Katz,

(f, g) 7→ A(f) + F (g) = Af + gp.
(2.3)

By Proposition 4.4 of [Edi06] this is an injection. We shall write Tp for the
Hecke operator in weight 1 and Up for the one in weight p. According to
Equation (4.2) of loc. cit. one has

〈a〉◦Ψ = Ψ◦
(

〈a〉 0
0 〈a〉

)

, Tn ◦Ψ = Ψ◦
(

Tn 0
0 Tn

)

, Up ◦Ψ = Ψ◦
(

Tp id
−〈p〉 0

)

(2.4)

for p ∤ n and a ∈ Z/NZ×.

The weight one Hecke algebra and doubling of Hecke algebras

>From now on we use the abbreviations Tk and T′
k for Tk(Γ1(N);Fp)Katz and

T′
k(Γ1(N);Fp)Katz, respectively. Note that Equation (2.4) implies that T′

p acts
on S1(Γ1(N);F)Katz via the embedding given by A. In particular, mapping
Tn 7→ Tn for p ∤ n defines a ring surjection T′

p ։ T′
1. Define

I := T′
p ∩ UpT

′
p,

where the intersection is taken inside Tp. We shall see in Corollary 2.6 (c) that
I is the kernel of the previous surjection.

Lemma 2.3. (a) Inside Sp(Γ1(N);F)Katz the equality

HomFp
(Tp,F)

T′

p=0 = FS1(Γ1(N);F)Katz

holds (via Equation (2.1)).

(b) Inside Sp(Γ1(N);F)Katz the equality

UpHomFp
(Tp,F)

T′

p=0 = AS1(Γ1(N);F)Katz

holds (via Equation (2.1)).

Proof. (a) As T′
p is generated as Fp-vector space by the Hecke operators Tn for

p ∤ n, the left hand side is equal to {f ∈ Sp(Γ1(N);F)Katz | an(f) = 0 ∀n s.t. p ∤
n}. As this is precisely the kernel of Θ defined in [Kat77], part (3) of the main
theorem of loc. cit. implies that it is equal to FS1(Γ1(N);F)Katz. (b) follows
from Equation (2.4), namely one has UpF = A.
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Proposition 2.4. (a) Let f ∈ S1(Γ1(N);F)Katz satisfy an(f) = 0 whenever
p ∤ n. Then f = 0.

(b) T′
1 = T1.

(c) Tp = T′
p + UpT

′
p as T′

p-modules.

(d) There are T,D ∈ T′
p such that U2

p − TUp +D = 0 in Tp.

(e) I is an ideal of Tp.

Proof. (a) The theorem of [Kat77] already used in the previous proof gives a
contradiction for f 6= 0, since that f is in the kernel of Θ and has weight 1,
so that it would have to come from an even smaller weight under Frobenius,
which is impossible.
(b) If T1/T

′
1 were nonzero, then S1(Γ1(N);Fp)

T′

1
=0 = HomFp

(T1,Fp)
T′

1
=0

would be nonzero and, hence, there would be a nonzero f ∈ S1(Γ1(N);Fp)Katz

such that an(f) = 0 whenever p ∤ n. This is, however, excluded by (a).
(c) Let g ∈ Sp(Γ1(N);Fp)

T′

p+UpT
′

p=0 = HomFp
(Tp,Fp)

T′

p+UpT
′

p=0. Now g satis-
fies an(g) = 0 whenever p2 ∤ n. Thus, there is f ∈ S1(Γ1(N);Fp)Katz such that
Ff = g (again by [Kat77]) satisfying an(f) = 0 whenever p ∤ n, so that by (a)
it is zero, implying the claim.
(d) This is immediate from (c).
(e) Let x ∈ T′

p ∩ UpT
′
p. Thus, there is y ∈ T′

p such that x = Upy. We have

Upx = U2
py = TUpy −Dy = Tx−Dy ∈ T′

p,

whence Upx ∈ I.

Let m
′ be a maximal ideal of T′

p. By Tp,m′ and T′
p,m′ we denote localisation

at m
′. We also use similar notation in similar circumstances.

Lemma 2.5. Let m′ be a maximal ideal of T′
p.

(a) The following statements are equivalent:

(i) T′
p,m′ 6= Tp,m′ .

(ii) There is a normalised eigenform g ∈ S1(Γ1(N);Fp)Katz with q-

expansion
∑∞

n=1 anq
n such that the map T′

p

Tn 7→an−−−−−→ Fp defines a
ring homomorphism with kernel m′.

If the equivalent statements hold, then we say that m′ comes from weight 1.

(b) We have Tp,m′
∼=

∏n
i=1 Tp,m̃i

with n ∈ {1, 2}, where the m̃i are the maximal
ideals of Tp containing m

′.

If one of the m̃i is ordinary (meaning that Up ∈ T×
p,m̃i

), then all are and

we say that m′ is ordinary.

Suppose now that m
′ comes from weight one with g ∈ S1(Γ1(N);Fp)Katz

as in (a). Then m
′ is ordinary. Furthermore, n = 2 if and only if the

polynomial X2 − ap(g)X + ǫ(p) has two distinct roots in T′
p/m

′.
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Proof. (a) Statement (ai) means that Up ∈ Tp,m′ is not contained in

T′
p,m′ , i.e. that Tp,m′/T′

p,m′ 6= 0 and, equivalently, Sp(Γ1(N);Fp)
T′

p,m′=0

Katz,m′ =

HomFp
(Tp,m′ ,Fp)

T
′

p,m′=0 6= 0. This, however, is equivalent to the existence
of a cusp form f ∈ Sp(Γ1(N);Fp)Katz such that an(f) = 0 for all p ∤ n and such
that it is an eigenfunction for all Tn with p ∤ n with eigenvalues corresponding
to m

′. By the theorem of [Kat77] used already in the proof of Lemma 2.3,
any such is of the form f = Fh with h ∈ S1(Γ1(N);Fp)Katz. Hence, there
is a normalised eigenform g ∈ S1(Γ1(N);Fp)Katz such that the an(g) are the
eigenvalues of Tn on f for p ∤ n, whence (aii).

Conversely, the existence of g implies that Sp(Γ1(N);Fp)
T′

p,m′=0

Katz,m′ 6= 0, as it
contains Fg, so that T′

p,m′ 6= Tp,m′ .
(b) The product decomposition into its localisations is a general fact of Artinian
rings. If T′

p,m′ = Tp,m′ , there is nothing to show. So we assume now that this
equality does not hold. >From Proposition 2.4 (d) we have the surjection of
rings

T′
p,m′ [X ]/(X2 − TX +D)

X 7→Up−−−−→ Tp,m′ .

Taking it mod m
′ yields F[X ]/(X2 − T̄X + D̄) on the left hand side with

F = T′
p/m

′, which has at most two local factors, depending on whether the
quadratic equation has two distinct roots or a double one. Thus there can at
most be two local factors on the right hand side. Modulo m

′, the quadratic
polynomial is in fact X2−ap(g)X+ ǫ(p), which follows from the explicit shape
of Up given in Equation (2.4); see also Corollary 2.6 (a). The ordinarity is now
also clear since ǫ(p) is non-zero in F.

We remark that it can happen that ap(g)
2 6= 4ǫ(p) (this is the so-called p-

distinguished case), but that nevertheless the algebra Tp,m′ is local because the
distinct roots of X2 − ap(g)X + ǫ(p) might only lie in a quadratic extension
of F. (In a previous version of this article we had referred to the case when
Tp,m′ is non-local as ‘p-distinguished’, which was very misleading.)
We assume henceforth that m′ comes from weight 1 and is hence ordinary. We
write Ψm

′ for the localisation of Ψ (from Equation (2.3)) at m
′ and similarly

Im′ = T′
p,m′ ∩ UpT

′
p,m′ .

Corollary 2.6. Let m′ be a maximal ideal of T′
p which comes from weight 1.

(a) We have
(

S1(Γ1(N);Fp)Katz,m′

)⊕2 Ψ
m

′∼= Sp(Γ1(N);Fp)
I
m

′=0
Katz,m′ . The operator

Up acts on the left hand side as
(

Tp 1
−〈p〉 0

)

. The operator Tn for p ∤ n acts

as
(

Tn 0
0 Tn

)

.

(b) There is a natural isomorphism Tp,m′/Im′
∼= T1,m′⊕T1,m′ of T′

p,m′-modules.

The operator Up acts on the right hand side as
(

Tp −〈p〉
1 0

)

. The operator Tn

for p ∤ n acts as
(

Tn 0
0 Tn

)

.
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(c) The ring homomorphism T′
p,m′

Tn 7→Tn−−−−−→ T1,m′ is surjective with kernel Im′ .

Proof. (a) By Lemma 2.5, Up is invertible and by Proposition 2.4 (e), Im′ is
an ideal of Tp,m′ . Thus, we have Im′ = U−1

p Im′ = T′
p,m′ ∩ U−1

p T′
p,m′ . Since by

Proposition 2.4 (c) T′
p,m′ + UpT

′
p,m′ = Tp,m′ , we have the natural isomorphism

Tp,m′/Im′
∼= Tp,m′/T′

p,m′ ⊕ Tp,m′/(UpT
′
p,m′) of T′-modules. It follows that

HomFp
(Tp,m′ ,F)Im′=0 ∼= HomFp

(Tp,m′ ,F)T
′

p,m′=0 ⊕HomFp
(Tp,m′ ,F)U

−1

p T′

p,m′=0

= HomFp
(Tp,m′ ,F)T

′

p,m′=0 ⊕ UpHomFp
(Tp,m′ ,F)T

′

p,m′=0

∼= A(S1(Γ1(N))Katz)m′ ⊕ F (S1(Γ1(N))Katz)m′

= im(Ψm
′),

using Lemma 2.3. Moreover, Equation (2.1) gives an isomorphism

Sp(Γ1(N);Fp)
I
m

′=0
Katz,m′

∼= HomFp
(Tp,m′ ,F)Im′=0.

The shapes of Up and Tn are taken from Equation (2.4).
(b) Using Equation (2.1), (a) can be reformulated as an isomorphism

HomFp
(Tp,m′/Im′ ,Fp) ∼= HomFp

(Tp,m′ ,Fp)
I
m

′=0 ∼= HomFp
(T1,m′ ,Fp)

⊕2.

Dualising it yields the statement, and the matrices are just the transposes of
the matrices in the previous part.
(c) The algebra generated by the Tn with p ∤ n on the left hand side of (b)
is T′

p,m′/Im′ and on the right hand side T′
1,m′ , which equals T1,m′ by Proposi-

tion 2.4 (b).

We refer to (b) as ‘doubling of Hecke algebras’. Part (c) is the key for the
definition of the Galois representation with coefficients in T1,m′ .

Passage to weight two

In order to work on the Jacobian of a modular curve, we pass from weight p to
weight 2, which is only necessary if p > 2. We assume this for this subsection.

Proposition 2.7. Let N ≥ 5, p ∤ N , p > 2 and m̃ be an ordinary maximal
ideal of the Hecke algebra Tp(Γ1(N);Fp)Katz. Then there is a unique maximal
ideal m2 of Fp ⊗Z T2(Γ1(Np))cl such that Tn 7→ Tn for all n defines a ring
isomorphism Tp(Γ1(N);Fp)Katz,m̃

∼= (Fp ⊗Z T2(Γ1(Np))cl)m2
.

Proof. This is due to Hida and follows, for instance, from combining Proposi-
tion 2.2 and [KW08], Proposition 2.3.

Remembering Tp,m′ =
∏n

i=1 Tp,m̃i
(see Lemma 2.5), we obtain that after loc-

alisation at ordinary m
′, the Hecke algebra Tp,m′ acts on the p-torsion of the

Jacobian of X1(Np). We shall henceforth use this action without specifying
the isomorphism from Proposition 2.7 explicitly.
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3 The Galois representation of weight one

In this section we shall construct the Galois representation ρm, identify it on
the Jacobian of a suitable modular curve and derive that it ‘doubles’ from the
‘doubling of Hecke algebras’.
We collect some statements and pieces of notation which are in place for the
whole of this section.

Notation 3.1. Next to Notation 2.1 we use the following pieces of notation
and the following assumptions.

• Tp = Tp(Γ1(N);Fp)Katz denotes the full Hecke algebra acting on the space
Sp(Γ1(N);Fp)Katz and T′

p is its subalgebra generated by those Tn with
p ∤ n. The p-th Hecke operator is denoted Up.

• T1 is the Hecke algebra on S1(Γ1(N);Fp)Katz and it is equal to T′
1 (see

Proposition 2.4). The p-th Hecke operator is denoted Tp.

• The map T′
p

Tn 7→Tn−−−−−→ T1 defines a ring surjection with kernel I = T′
p ∩

UpT
′
p (see Corollary 2.6 (c)).

• Let m′ be a maximal ideal of T′
p which comes from weight 1 and corres-

ponds to a normalised eigenform g ∈ S1(Γ1(N);Fp)Katz (see Lemma 2.5).
Let ǫ be the Dirichlet character of g. Then m

′ is ordinary (see
Lemma 2.5). Denote by m the maximal ideal of T1 the preimage of
which in T′

p is m
′, whence T′

p/m
′ = T1/m. Then m corresponds to the

Gal(Fp/Fp)-conjugacy class of g, i.e. it is the kernel of the ring homo-

morphism T1
Tn 7→an(g)−−−−−−−→ Fp.

• Either Tp,m′
∼= Tp,m̃1

× Tp,m̃2
(the non-local case), or Tp,m′ is local (see

Lemma 2.5).

Existence

By work of Shimura and Deligne there is a Galois representation

ρ
m
= ρ

m
′ : Gal(Q/Q) → GL2(T1/m) = GL2(T

′
p/m

′)

characterised by the property that it is unramified outside Np and

charpoly(ρ
m
)(Frobℓ) = X2 − TℓX + 〈ℓ〉 ∈ T1/m[X ] ∼= T′

p/m
′[X ]

for all primes ℓ ∤ Np. Under the assumption that ρ
m

is absolutely irreducible,
Carayol in [Car94], Théorème 3, shows the existence of a Galois representation

ρm′ : Gal(Q/Q) → GL2(T
′
p,m′)
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characterised by the property that it is unramified outside Np and

charpoly(ρm′(Frobℓ)) = X2 − TℓX + 〈ℓ〉 ∈ T′
p,m′ [X ]

for all primes ℓ ∤ Np. In fact, the reference gives a twist of this representation.
Later on, we are going to be more precise about which twist it is. As a general
rule, we denote ρ a representation with coefficients in a finite field or Fp and ρ
when the coefficients are in a Hecke algebra.

Proposition 3.2. Let m be a maximal ideal of T1 such that ρ
m

is absolutely
irreducible. Then there is a Galois representation

ρm : Gal(Q/Q) → GL2(T1,m)

characterised by the property that it is unramified outside Np and

charpoly(ρm(Frobℓ)) = X2 − TℓX + 〈ℓ〉 ∈ T1,m[X ]

for all primes ℓ ∤ Np.

Proof. It suffices to compose ρm′ with GL2(T
′
p,m′) → GL2(T1,m) coming from

Corollary 2.6 (c).

The p-divisible group for p = 2

Assume for the moment that p = 2. Let J be the Jacobian J1(N) of X1(N),
which is defined over Q. Let G be the m

′-component of the p-divisible group
J [p∞]Q attached to J .
A word of explanation is necessary (see also [Gro90], Section 12). The maximal
ideals m̃ of Tp containing m

′ correspond under pull-back to unique maximal
ideals of the Hecke algebra Zp ⊗Z Tp(Γ1(N))cl, using Proposition 2.2. This
Hecke algebra acts on the Tate module of J and localisation at each m̃ gives
a direct factor of it. Then G is the direct product of the (at most two by
Lemma 2.5) corresponding p-divisible groups. If Tp,m′ is non-local, then we
shall denote by G1 and G2 the two p-divisible groups such that G = G1 ×G2.

The p-divisible group for p > 2

Assume now p > 2. We proceed very similarly to the above: Let J be the Jac-
obian J1(Np) of X1(Np), which is defined over Q. Let G be the m

′-component
of the p-divisible group J [p∞]Q attached to J .
Here we use that the ideals m̃ of Tp containing m

′ correspond to unique maximal
ideals of the Hecke algebra Fp⊗ZT2(Γ1(Np))cl by Proposition 2.7. In turn they
give rise, by taking preimages, to unique maximal ideals of Zp⊗ZT2(Γ1(Np))cl.
For each of these (at most two, by Lemma 2.5) maximal ideals we take the p-
divisible group of the corresponding factor of the Tate module of J . Thus, if
Tp,m′ is non-local, then G is of the form G1 ×G2.
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Properties of the p-divisible group

We assume that G (and G1 and G2 in the non-local case) is as defined above
(for either p = 2 or p > 2).

Proposition 3.3. The p-divisible group G acquires good reduction over Zp[ζp].
Let G0 and Ge be the connected component and the étale quotient of G
over Zp[ζp], respectively.

(a) The module G0[p](Qp) is unramified over Qp(ζp) and there is an iso-

morphism G0[p](Qp) ∼= Tp,m′ of Tp,m′-modules, under which any arithmetic

Frobenius Frobp ∈ Gal(Qp/Qp(ζp)) acts as U−1
p .

(b) The exact sequence 0 → G0 → G → Ge → 0 gives rise to the exact sequence

0 → Tp,m′ → G[p](Qp) → HomFp
(Tp,m′ ,Fp) → 0

of Tp,m′-modules, under the identification of (a) and its dual.

Proof. This follows immediately from applying [Wie07], Proposition 2.2, Co-
rollary 2.3 and Theorem 3.1 for all maximal ideals m̃ ⊂ Tp containing m

′. We
stress that those results were all derived from [Gro90].

Since in this article we are using arithmetic Frobenius elements, and on modular
curves (with level structure of the type µN →֒ E[N ]) geometric ones are more
natural, we have to twist our representations at various places.
It is well-known that ρ

m
⊗ ǫ−1 is contained in the m

′-kernel G[p](Q)[m′] of
G[p](Q) (possibly more than once, see e.g. [Wie07], Proposition 4.1).
The following theorem is the result of the work of many authors. We do not
intend to give all the original references, but, content ourselves by referring to
a place in the literature where the statements appear as we need them.

Theorem 3.4 (Mazur, Wiles, Gross, Ribet, Buzzard, Tilouine, Edixhoven,
W.). Assume that ρ

m
is absolutely irreducible. Then the following statements

are equivalent:

(i) ρ
m

is unramified at p and ρ
m
(Frobp) is non-scalar or ρ

m
is ramified at p.

(ii) G[p](Q)[m̃] ∼= ρ
m

for any maximal ideal m̃ ⊂ Tp containing m
′, i.e. ρ

m

satisfies multiplicity one on the Jacobian.

(iii) Tp,m′
∼= HomFp

(Tp,m′ ,Fp), i.e. Tp,m′ is Gorenstein.

If the equivalent statements hold, then G[p](Q) ∼= Tp,m′ ⊕ Tp,m′ .

Proof. For the implication (i) ⇒ (ii) we refer, for instance, to [KW08], The-
orem 1.2. The implication (ii) ⇒ (i) is the content of [Wie07], Corollary 4.5.
The equivalence of (ii) and (iii) is proved, for instance, in [KW08], Proposi-
tion 2.2 (b). That (ii) implies the final statement is, for example, proved in
[KW08], Proposition 2.1.
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Note that by Proposition 1.1 the case that ρ
m

is ramified at p is known not
to occur in almost all cases. We are proving in Corollary 1.3 that it actually
never occurs.

The Galois representation on the Jacobian

We proceed under the following assumptions:

Assumption 3.5. We continue to use Notation 2.1 and 3.1. Moreover:

• ρ
m

denotes the residual Galois representation introduced above. It is the
residual representation attached to g. We assume that ρ

m
is absolutely

irreducible.

• Let G (and G1, G2 in the non-local case) be the p-divisible group intro-
duced earlier.

• We assume that ρ
m

satisfies multiplicity one on the Jacobian so that
G[p](Q) ∼= Tp,m′ ⊕ Tp,m′ (see Theorem 3.4).

• Let ǫ̃ : Gal(Q/Q) ։ Gal(Q(ζN )/Q) ∼= Z/(N)×
a 7→〈a〉−−−−→ T′×

p . Note that

composing ǫ̃ with T′×
p,m′ → (T′

p/m
′)× equals ǫ, the Dirichlet character

of g, seen as a character of Gal(Q/Q).

The next proposition can be considered as a ‘doubling of Galois representa-
tions’.

Proposition 3.6. We use Assumption 3.5. Let ρI
m

′
:= G[p](Q) ⊗T′

p,m′
T1,m.

Then there is an isomorphism

ρI
m

′

∼=
(

ρm ⊗ ǫ̃−1
)

⊕
(

ρm ⊗ ǫ̃−1
)

.

of T1,m[Gal(Q/Q)]-modules.

Proof. >From [Car94], 3.3.2, and Theorem 3.4 it follows that H := G[p](Q) ∼=
Tp,m′ ⊕ Tp,m′ as Tp,m′ [Gal(Q/Q)]-modules and that it is characterised by the
property that it is unramified outside Np and that the characteristic polynomial
of Frobℓ is X2 − Tℓ/〈ℓ〉X + 1/〈ℓ〉 ∈ T′

p,m′ [X ] for all primes ℓ ∤ Np. We recall
that [Car94] works with geometric Frobenius elements, whereas we are using
arithmetic ones, accounting for the differences in the formulae.
By Théorème 2 of loc. cit., H is obtained by scalar extension of some
T′
p,m′ [Gal(Q/Q)]-module H ′ ∼= T′

p,m′ ⊕ T′
p,m′ , i.e. H = H ′ ⊗T′

p,m′
Tp,m′ . Note

that in this description H is a Gal(Q/Q)-module via an action on H ′ and a
Tp,m′ -module via the natural action on Tp,m′ in the tensor product.
Next we have the following isomorphisms of T′

p,m′ [Gal(Q/Q)]-modules:

H⊗Tp,m′
Tp,m′/Im′

∼=
(

H ′⊗T′

p,m′
Tp,m′

)

⊗Tp,m′
Tp,m′/Im′

∼= H ′⊗T′

p,m′
Tp,m′/Im′

∼= H ′ ⊗T′

p,m′

(

T1,m ⊕ T1,m

) ∼=
(

H ′ ⊗T′

p,m′
T1,m

)

⊕
(

H ′ ⊗T′

p,m′
T1,m

)

,
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where we used Corollary 2.6 (b). Note that the T′
p,m′ [Gal(Q/Q)]-action factors

through to give a T1,m[Gal(Q/Q)]-action.
Recall that ρm : Gal(Q/Q) → GL2(T

′
p,m′/Im′) ∼= GL2(T1,m) is characterised by

it being unramified outside Np and the characteristic polynomial of Frobℓ for
ℓ ∤ Np being equal to X2 − TℓX + 〈ℓ〉. Hence, the characteristic polynomial of
(ρm ⊗ ǫ̃−1)(Frobℓ) is X2 − Tℓ/〈ℓ〉X + 1/〈ℓ〉. Since H ′ ⊗T′

p,m′
T1,m satisfies the

same properties, it agrees with ρm ⊗ ǫ̃−1 by [Car94], Théorème 1.

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We deal with the cases when Tp,m′ is
local or not separately.
Let us first remark that N ≥ 5 can be assumed without loss of generality as
follows. One can increase the level at some unramified auxiliary prime q ≥ 5,
q 6= p and apply the theorem in level Nq, yielding a Galois representation
with coefficients in the weight 1 Hecke algebra for Γ1(Nq) which is unrami-
fied outside Nq. Since the Hecke algebra for Γ1(N) is a quotient of the one
for Γ1(Nq), one obtains the desired Galois representation, which is hence also
unramified outside Nq. Choosing a different auxiliary q, one sees that the
Galois representation for Γ1(N) is unramified at the auxiliary prime.

No tame ramification

We first show that there cannot be any tame ramification.

Lemma 4.1. Let T be a finite dimensional local F-algebra with maximal ideal m
for a finite extension F/Fp. If A ∈ ker(GLn(T) → GLn(T/m)) is a matrix such
that Ap−1 = 1, then A = 1.

Proof. There is a matrix M all of whose entries are in m such that A = 1+M .
Thus A = Apr

= (1 +M)p
r

= 1+Mpr

for all r ∈ N. As m is a nilpotent ideal
and all entries of Mpr

lie in m
pr

, it follows that M = 0.

Proposition 4.2. Let T be a finite dimensional local F-algebra with maximal
ideal m for a finite extension F/Fp. Let C be a subgroup of Z/(p − 1) and
ρ : C → GLn(T) a representation such that the residual representation ρ : C →
GLn(T/m) is trivial. Then ρ is trivial.

Proof. As ρ is trivial, ρ takes its values in ker(GLn(T) → GLn(T/m)). But,
this group does not have any nontrivial element of order dividing p − 1 by
Lemma 4.1, whence ρ is the trivial representation.

Corollary 4.3. Let T be a finite dimensional local F-algebra with maximal
ideal m for a finite extension F/Fp. Let ρ : Gal(Qp/Qp) → GL2(T) be a repres-

entation and let ρ : Gal(Qp/Qp) → GL2(T/m) be its residual representation.
Assume that the semisimplification of ρ is unramified and that the restriction
of ρ to Gal(Qp/Qp(ζp)) is unramified.
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Then ρ is unramified.

Proof. As the semisimplification of ρ is unramified and the restriction of ρ to
Gal(Qp/Qp(ζp)) is also unramified, it follows that ρ is unramified. Moreover,
the image of the inertia group has to be a subgroup of Z/(p − 1), whence it
acts trivially by Proposition 4.2.

The non-local case

Proof of Theorem 1.2 – the non-local case. Note that the assumptions of The-
orem 1.2 imply that Assumption 3.5 is satisfied due to Theorem 3.4. We now
assume that we are in the non-local case, i.e. Tp,m′

∼= Tp,m̃1
× Tp,m̃2

. Let
mi ∈ Fp[X ] be the minimal polynomial of U−1

p acting on Tp,m̃i
. Then m1 and

m2 are powers of coprime irreducible polynomials. We obtain

G[p](Q)/Im′ = G1[p](Q)/Im′ ⊕G2[p](Q)/Im′

and Gi[p](Q)/Im′ is characterised by the fact that mi(U
−1
p ) annihilates it.

>From Proposition 3.6 it follows that G[p](Q)/Im′ is isomorphic to
(

ρm ⊗
ǫ̃−1

)

⊕
(

ρm ⊗ ǫ̃−1
)

as T1,m[Gal(Q/Q)]-modules. But, as such G1[p](Q)/Im′
∼=

G2[p](Q)/Im′ , thus for both i = 1, 2 we have ρm ⊗ ǫ̃−1 ∼= Gi[p](Q)/Im′ .
We are now going to work locally and let G = Gal(Qp/Qp(ζp)) and I its inertia
group. By Proposition 3.3 (a) applied to Gi we obtain for i = 1, 2 that

G0
i [p](Qp)/Im′ →֒

(

Gi[p](Qp)/Im′

)I ∼=
(

ρm ⊗ ǫ̃−1
)I

and that Frobp on the left hand side acts through U−1
p , whence the image of the

map is annihilated by mi(Frobp). As the polynomials m1 and m2 are coprime,
G0[p](Qp)/Im′

∼= G0
1[p](Qp)/Im′⊕G0

2[p](Qp)/Im′ is a subrepresentation of
(

ρm⊗
ǫ̃−1

)I
. Counting Fp-dimensions, it follows that

G0[p](Qp)/Im′
∼=

(

ρm ⊗ ǫ̃−1
)I ∼= ρm ⊗ ǫ̃−1.

Consequently, ρm is unramified at p, using Corollary 4.3 and taking into account
that the semisimplification of ρ

m
restricted to Gal(Qp/Qp) is unramified at p.

Moreover, again due to Proposition 3.3 (a) the characteristic polynomial of
Frobp on ρm ⊗ ǫ̃−1 is the one of U−1

p , which is X2 − Tp/〈p〉X + 1/〈p〉 (see
Corollary 2.6), so that the one of ρm(Frobp) is as claimed.

The local case

Proposition 4.4. Let R be a local Fp-algebra which is finite dimensional as
an Fp-vector space and let m be its maximal ideal. Put F = R/m. Let G be a
group. Let M,N,Q be R[G]-modules which are free of rank 2 as R-modules and
suppose we have an exact sequence

0 → N
α−→ M ⊕M → Q → 0
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of R[G]-modules. Suppose further that N := R/m ⊗R N is indecomposable as
an F[G]-module.
Then N ∼= M ∼= Q as R[G]-modules.

Proof. Write M := R/m ⊗R M . Counting dimensions as F-vector spaces it
follows that the sequence

0 → N
α−→ M ⊕M → Q → 0

is an exact sequence of F[G]-modules. Consider the composite map

φi : N
α→֒ M ⊕M

pri−−→ M

for i = 1, 2, where pri is the projection on the i-th summand. Note that the φi

are homomorphisms of R[G]-modules. Tensor φi with R/m to obtain

φi : N
α→֒ M ⊕M

pri−−→ M.

Note that the cases dimF im(φi) ≤ 1 for i = 1, 2 cannot occur: If one of the
dimensions is 1 and the other 0 or if both are 0, then one has a contradiction
to the injectivity of α. If both are 1, then N ∼= im(φ1) ⊕ im(φ2) as F[G]-
modules, which contradicts the assumed indecomposability of N . Hence, there
is i ∈ {1, 2} such that dimF im(φi) = 2. Hence, φi is an isomorphism N → M .
It follows that φi : N → M is surjective. Indeed, tensoring the exact sequence

N
φi−→ M → S → 0 over R with R/m, shows that S = R/m⊗R S = 0, whence

S = 0 by Nakayama’s lemma. As N and M are finite sets, φi is an isomorphism
of R[G]-modules.

Proof of Theorem 1.2 – the local case. Note that the assumptions of The-
orem 1.2 imply that Assumption 3.5 is satisfied due to Theorem 3.4. We
now assume that Tp,m′ is local. We are going to deduce the statement from
Proposition 4.4. For R we take T1,m and we let G := Gal(Qp/Qp(ζp)). In
Proposition 3.6 we have seen that ρI

m
′
is isomorphic to

(

ρm⊗ ǫ̃−1
)

⊕
(

ρm⊗ ǫ̃−1
)

as R[G]-modules and we take M to be ρm ⊗ ǫ̃−1.
Next we reduce the exact sequence of Proposition 3.3 (b) modulo Im′ . Due
to multiplicity one, it remains exact (since it is split as a sequence of Tp,m′-
modules), whence we obtain an exact sequence of R[G]-modules

0 → ρ̃ → ρI
m

′
→ Ge[p](Qp)/Im′ → 0,

where ρ̃ = G0[p](Qp)/Im′ . By Proposition 3.3 (a) we know that ρ̃ is unrami-
fied as a G-module and it is free of rank 2 over R. Moreover, any arithmetic
Frobenius at p acts through multiplication by U−1

p . Also Ge[p](Qp)/Im′ is free
of rank 2 as an R-module. Taking ρ̃ modulo m we obtain an indecomposable
R/m[G]-module, where the indecomposability is due to the formula for Up (see
Corollary 2.6). Hence, we take N to be ρ̃, restricted to G.
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Thus, from Proposition 4.4 we obtain ρm ⊗ ǫ̃−1 ∼= ρ̃ as T1,m[Gal(Qp/Qp(ζp))]-
modules, and, in particular, that ρm is unramified at p, using Corollary 4.3 and
taking into account that the semisimplification of ρ

m
restricted to Gal(Qp/Qp)

is unramified at p. Moreover, again due to Proposition 3.3 (a) the characteristic
polynomial of Frobp on ρm⊗ǫ̃−1 is the one of U−1

p , which is X2−Tp/〈p〉X+1/〈p〉
(see Corollary 2.6), so that the one of ρm(Frobp) is as claimed.

5 Examples

We illustrate Theorem 1.2 by two examples. They both appeared first in
Mestre’s appendix to [Edi06] and we work them out in our context.
Both examples are of the following shape. Let F be a finite field of character-
istic p and T := F[ǫ] := F[X ]/(X2). Then we have the split exact sequence of
groups:

0 → Mat2(F)
0 A 7→1+ǫA−−−−−−→ SL2(T)

ǫ 7→0−−−→ SL2(F) → 1,

where Mat2(F)
0 denotes the 2× 2-matrices of trace zero (considered here as an

abelian group with respect to addition), on which SL2(F) acts by conjugation
(i.e. it is the adjoint representation). If p > 2, then this representation is
irreducible, if p = 2 it has non-trivial submodules.

Example p = 2, N = 229

In this case there is only one normalised eigenform g ∈ S1(Γ1(N);F2)Katz

and thus only a unique maximal ideal m ⊂ T1. For example using Magma

([BCP97]) and a package developed by the author (see Appendix B of [Edi06]
for an old version), one computes that T1

∼= F2[ǫ] and that ρ
m

= ρg :

Gal(Q/Q) ։ SL2(F2) ∼= S3. If ker(ρg) = Gal(Q/K), then K is the Hil-

bert class field of Q(
√
229). Let us call G the image of ρm : Gal(Q/Q) →

SL2(T) coming from Theorem 1.2. It turns out that G ∩ Mat2(F2)
0 =

{( 0 0
0 0 ) , (

0 1
1 0 ) , (

1 1
0 1 ) , (

1 0
1 1 )} (with the intersection being taken with respect to

the map A 7→ 1 + ǫA) and that G ∼= S4. In fact, this example can be obtained
by reducing ρf , where f is a holomorphic weight 1 cuspidal eigenform with ρf
having projective image S4.
Hence, the fact that ρm is unramified at 2, which follows from Theorem 1.2,
can already be deduced from the theorem of Deligne and Serre.

Example p = 2, N = 1429

In this case there is a normalised eigenform g ∈ S1(Γ1(N);F2)Katz such that
the image of ρg is isomorphic to SL2(F8). As SL2(F8) is not a quotient of
any finite subgroup of GL2(C), this implies, as noted by Mestre, that g is not
the reduction of any holomorphic weight 1 eigenform. Let m be the maximal
ideal of T1 corresponding to g. One computes that T1,m

∼= F8[ǫ]. If ker(ρg) =
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Gal(Q/K), then K is a Galois extension of Q with Galois group SL2(F8) which
is unramified outside the prime 1429.
Now consider ρm : Gal(Q/Q) → SL2(T1,m) from Theorem 1.2 and let L be
the Galois extension of Q such that Gal(Q/L) ∼= ker(ρm), which is unramified
outside 1429. After checking many Frobenius traces it seems very likely that
L is K(

√
1429) and, hence, that G := im(ρm) ∼= SL2(F8) × Z/(2). Explicitly,

G ∩Mat2(F2)
0 = {( 0 0

0 0 ) , (
1 0
0 1 )}.

In this case it is clear that L is unramified at 2 without appealing to The-
orem 1.2. However, the remarkable phenomenon is that this extension L/Q is
detected by weight one Katz forms through their Hecke algebras. This points
in the direction that one should ask if T1,m is in fact a universal deformation
ring of ρ

m
in the category of local Fp-algebras with residue field T1/m for the

local conditions of being unramified at p and minimally ramified elsewhere.
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