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ABSTRACT. Let X be a smooth projective R-scheme, where R is a
smooth Z-algebra. As constructed by Hesselholt, we have the absolute
big de Rham-Witt complex WQ3 of X at our disposal. There is
also a relative version WO p with W(R)-linear differential. In this
paper we study the hypercohomology of the relative (big) de Rham-
Witt complex after truncation with finite truncation sets S. We show
that it is a projective Wg(R)-module, provided that the de Rham
cohomology is a flat R-module. In addition, we establish a Poincaré
duality theorem. explicit description of the relative de Rham-Witt
complex of a smooth A-ring, which may be of independent interest.
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INTRODUCTION

Let X be a scheme over a perfect field k£ of characteristic p > 0. The de
Rham-Witt complex W5 /i Was defined by Illusie [III79] relying on ideas of
Bloch, Deligne and Lubkin. It is a projective system of complexes of W (k)-
modules on X, which is indexed by the positive integers. If X is smooth then
the hypercohomology of W, 2% Ik admits a natural comparison isomorphism to
the crystalline cohomology of X with respect to Wy, (k).

Langer and Zink have extended Illusie’s definition of the de Rham-Witt complex
to a relative situation, where X is a scheme over Spec(R) and R is a Z,)-algebra
[LZ04]. If p is nilpotent in R and X is smooth, then they construct a functorial
comparison isomorphism

HA (X, Wy p) = Heyy (X Wi (R)).

crys
The big de Rham-Witt complex W% was introduced, for any commutative
ring A, by Hesselholt and Madsen [HMOI]. The original construction relied
on the adjoint functor theorem and has been replaced by a direct and explicit
method due to Hesselholt [Hes].

IThis work has been supported by the SFB/TR 45 “Periods, moduli spaces and arithmetic
of algebraic varieties”
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568 ANDRE CHATZISTAMATIOU

Again, it is a projective system of graded sheaves [S — W% ], but the index
set consists of finite truncation sets; that is, finite subsets S of N5 having the
property that whenever n € S, all (positive) divisors of n are also contained in
S. For the ring of integers, WQ} has been computed by Hesselholt [Hes|. It
vanishes in degree > 2, but WQ% is non-zero.

Let X be an R-scheme. In this paper we will consider the relative version

of the (big) de Rham-Witt complex, which is constructed from WQ% by killing
the ideal generated by WQj,. The relation with the de Rham-Witt complex of
Langer-Zink is given in Proposition [LZT if R is a Z,)-algebra then

W{Lp,wp"*l}ﬂ*A/R = WnQZ/R-

In the following we will use the notation W;, = Wy, ,,
prime p has been fixed.
It is natural to consider W% /R 85 2 sheaf of complexes on the scheme

pn—1}, assuming that a

yeen

Ws(X), which is obtained by gluing Spec(Wg(4;)) for an affine covering
X =, Spec(A;). Then the components WSQg( /R form quasi-coherent sheaves,
and are coherent under suitable finiteness conditions.

Our purpose is to show that the de Rham-Witt cohomology

i def 704 *
Hipw (X/Ws(R)) = H (Ws(X), WsQy,p)
is as well-behaved as the usual de Rham cohomology. The main theorem of the
paper is the following.

THEOREM 1 (cf. Theorem ZZT). Let R be a smooth Z-algebra. Let X
be a smooth and proper R-scheme. Suppose that the de Rham cohomology
H;r(X/R) of X is a flat R-module. Then H}py, (X/Wgs(R)) is a finitely gen-
erated projective Wg(R)-module for all finite truncation sets S. Moreover, for
an inclusion of finite truncation sets T C S, the induced map

(0.0.1) Hipw (X/Ws(R)) @wgr) Wr(R) = Higw (X/Wr(R))

s an isomorphism.

If R is a smooth Z-algebra and X/R is smooth and proper, then there is a
non-zero integer NV such that the assumptions of the theorem hold for the base
change X ® g RIN1]/R[N~1]. Curves and abelian varieties are examples where
the de Rham cohomology is flat (see Remark [2Z.2:2)).

In order to prove Theorem [II, we will construct for all maximal ideals m of R
and n,j > 0, a natural quasi-isomorphism:

RT(WoQ%/r) @, () Wa(R/m7) = RT(WoQ% g r/mi ) (R/mi)):

where p = char(R/m). The right hand side is RT" of the de Rham-Witt complex
defined by Langer and Zink. Thus it computes the crystalline cohomology,
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which in our case is a free W, (R/m’)-module. Taking the limit ]'&nj, this will
yield the flatness of

Hipw (X/Wa(R)) ®w,,(r) Wn(lim R/m?)

as W, (@] R/mJ)-module for all maximal ideals m, which is sufficient in order

to conclude the flatness of the de Rham-Witt cohomology.
Concerning Poincaré duality we will show the following theorem.

THEOREM 2 (cf. Corollary B37). Let R be a smooth Z-algebra. Let X —
Spec(R) be a smooth projective morphism such that Hjp(X/R) is a flat R-
module. Suppose that X s connected of relative dimension d. If the canonical
map _
Hp(X/R) — Hom p(H2 (X/R), F)

is an isomorphism, then the same holds for the de Rham-Witt cohomology:

Hirw (X/Ws(R)) = Homy, (r) (Hpw (X/Ws(R)), Ws(R)),
for all finite truncation sets S.

In fact, de Rham-Witt cohomology is equipped with a richer structure than
the W(R)-module structure, coming from the Frobenius operators

On : Hipw (X/Ws(R)) = Hapw (X/Ws/m(R)),
for all positive integers n, and where S/n := {s € S | ns € S}. These are
Frobenius linear maps satisfying ¢, © ¢m = dpm.
The relationship with the Frobenius action on the crystalline cohomology of

the fibers is as follows. Let m be a maximal ideal of R, set k = R/m and
p = char(k). If Hj,(X/R) is torsion-free then there is a natural isomorphism

Hpw (X/Wa(R)) @w, (ry Wa(k) = Hepy (X @ k/Wa(k),
and ¢, ®F}, corresponds via this isomorphism to the composition of H, 2ry s (Frob)
with the projection.
As will be made precise in Section [3] the projective system

Hip (X/W(R)) €[S v Hipy (X/Ws(R))],

together with the Frobenius morphisms {¢, }nen.,, defines an object in a rigid
®-category Cr. Maybe the most important property of Cg is the existence of
a conservative, faithful ®-functor

T :Cr — (R-modules), T(H.pw (X/W(R))) = Hip(X/R).

Moreover, Cg has Tate objects 1(m), m € Z, and the first step towards Poincaré
duality will be to prove the existence of a natural morphism in Cg:
H2 0 (X/W(R)) — 1(—d) (d = relative dimension of X/R).

Then it will follow easily that

o

Hjpw (X/W(R)) = Hom(Hfy (X/W(R)), 1(~d)),
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provided that the assumptions of Theorem [2] are satisfied. Taking the under-
lying W(R)-modules one obtains Theorem [21

ACKNOWLEDGEMENTS. After this manuscript had appeared on arXiv, we re-
ceived a letter from professor James Borger who informed us that he had al-
ready obtained Theorem [ for R = Z[N~!], in a joint work with Mark Kisin
by using similar methods.
I thank Andreas Langer and Kay Riilling for several useful comments on the
first version of the paper.
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1. RELATIVE DE RHAM-WITT COMPLEXES

1.1. WITT VECTORS. For the definition and the basic properties of the ring of
Witt vectors we refer to [Hes, §1]. We briefly recall the notions in this section.
A subset S C N={1,2,...} is called a truncation set if n € S implies that all
positive divisors of n are contained in S. For a truncation set S and n € S, we
define S/n:={se€ S |sn e S}.

Let A be a commutative ring. For all truncation sets S we have the ring of
Witt vectors Wg(A) at our disposal. The ghost map is the functorial ring
homomorphism

gh = (gha)nes : Ws(A) = [[ A gha((a)ses) =Y d-a}/".
nes d|n

It is injective provided that A is Z-torsion-free.
For all positive integers n, there is a functorial morphism of rings

F,: WS(A) - WS/n(A)a

DOCUMENTA MATHEMATICA 19 (2014) 567599



DE RHAM-WI1TT COHOMOLOGY 571

called the Frobenius. Moreover there is a functorial morphism of Wg(A)-
modules, the Verschiebung,

Vi WS/n(A) - WS(A)a

where the source is a Wg(A)-module via F),. For all coprime positive integers
n,m € N we have

F,oV,=n, F,oV,=V,oF, ((m,n) =1).
We have a multiplicative Teichmiiller map
[-]: A= Wg(A), ar [a:=(a,0,0,...) € Wg(A),
and if S is finite then every element a € Wg(A) can be written as
a=_Vi(as)
seS

with unique elements (as)ses in A.

Let T' C A be a multiplicative set and suppose that S is a finite truncation set.
We can consider T' via the Teichmiiller map as multiplicative set in Wg(A).
Then the natural ring homomorphism

T71WS(A) — Ws(TilA).
is an isomorphism. If 7' C Z is a multiplicative set then
Ws(A) @z T 7 — We(T™1A)

is an isomorphism.
Let S be a truncation set, and let n be a positive integer; set T := S\{s €

S;m | s}. Then T is a truncation set and we have a short exact sequence of
Ws(A)-modules:

S
(1.1.1) 0 = W (A) L2 We(A) 2L Wi(A) — 0.

EXAMPLE 1.1.1. We have Wg(Z) = [],cgZ- Va(1), and the product is given
by Vin(1)- V(1) = ¢ Vi e(1), where ¢ = (m,n) is the greatest common divisor
[Hes, Proposition 1.6].

1.1.2. The following theorem will be very useful throughout the paper.

THEOREM 1.1.3. (Borger-van der Kallen) Let S be a finite truncation set, and

let n be a positive integer. Let p: A — B be an étale ring homomorphism. The
following hold.

(1) The induced ring homomorphism Wg(A) — Wg(B) is étale.
(2) The morphism

Ws(B) @ws(a),m, Ws/n(A) = Wg/n(B), b®ar Fyb) Wg(p)(a),

18 an isomorphism.
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The references for this theorem are [Borllal Theorem B] [Borllb, Corol-
lary 15.4] and [vdK86, Theorem 2.4] (cf. [Hes, Theorem 1.22]).

By using Theorem[I.T3] the exact sequence (I.I]), and induction on the length
of S, we easily obtain the following corollary.

COROLLARY 1.1.4. Let p: A — B be an étale ring homomorphism. Let S be a
finite truncation set.

(i) For an inclusion of truncation sets T C S, the map
Ws(B) @vws(a) Wr(4) = Wr(B)

18 an isomorphism.
(ii) Let n be a positive integer. For any A-algebra C, the natural ring
homomorphism

Ws/n(C) ®Fn,Ws(A) Ws(B) — WS/n(C XA B), cRb—c- Fn(b)
18 an isomorphism.

NoTATION 1.1.5. If a prime p has been fixed then we set W, :=
Wiipp2,.pn—1y-

1.1.6. Let p be a prime. Let R be a Z,)-algebra. Since all primes different
from p are invertible in R, the same holds in Wg(R). The category of Wg(R)-
modules, for a finite truncation set S, factors in the following way. Set

1
€1,5 1= H (1- ZVg(l)) € Ws(R),
primes £ # p
S/e#£0

and €, s = %Vn (6175/.,1) for all positive integers n with (n,p) = 1. Of course,
if S/n =0 then e, = 0. In the following we will simply write €, for €, s. For
all positive integers n # n’ with (n,p) =1 = (n,p) the equalities

631 = €n, €n€n =0,
hold. Moreover, if (m,p) = 1 = (n,p) then
€ ifm|n
F _ n/m )
m(€n) {0 if m{n.
Since Z(n,p):l €, = 1 we obtain a decomposition of rings
(1.1.2) WsR) = [ eWs(R).
n>1,(n,p)=1

NotaTION 1.1.7. For a finite truncation set S we denote by S, the elements
in S that are p-powers, that is S, = SN {p’ | i > 0}.

The map
S/n
R, © Fu s Ws(R) = Wgm, (R)
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DE REAM-WITT COHOMOLOGY 573
induces an isomorphism ¢, Wgs(R) = W g/, (R). Thus
M — @ enM
n>1,(n,p)=1
defines an equivalence of categories

(1.1.3) (Ws(R)-modules) — H (W(s/n), (R)-modules).
n>1,(n,p)=1

1.1.8.  The following two lemmas are concerned with maximal ideals in Wg(R).

LEMMA 1.1.9. Let R be a ring. Let S be a finite truncation set. For ev-
ery mazimal ideal m C Wg(R) there exists a mazimal ideal p C R such that
Ws(R) = Wg(R)/m factors through Wg(R,).

Proof. Set k = Wg(R)/m, we distinguish two cases:

(1) k has characteristic 0,
(2) k has characteristic p > 0.

In the first case we can factor

Ws(R) — Ws(R) ®7 Q = Ws(R KRz Q) — k.

Since W (R @7 Q) 25 [[,.5 R © Q, the claim follows.
Suppose now that k£ has characteristic p > 0. We have a factorization

WS(R) — Ws(R) KRz Z(p) = Ws(R KRz Z(p)) — k.

By decomposing

Wg (R ® Z(p)) = H e, Wg (R X Z(p))

n>1,(n,p)=1

~ S/n
=11, R(S/n)pan

I Wem, (ReZy),

n>1,(n,p)=1

we can reduce to the case where S consists only of p-powers. Finally, V,(a)? =
pVp(a?), for all a € Wg,,(R ® Z), hence Vj(a) maps to zero in k. Therefore
Ws(R ® Z(p)) — k factors through Ws(R ® Z(p)) — W{l}(R ® Z(p)) =R®

Lp) 2, k. In this case we can take p = ker(R - R® Lp) 2 k). O

LEMMA 1.1.10. Let p be a prime. Let R be a ring such that every mazimal ideal

p satisfies char(R/p) = p > 0. Let S be a p-typical finite truncation set. Then
RS

every mazimal ideal m of Wg(R) is of the form ker(Wg(R) —— R — R/p),

for a unique maximal ideal p of R.
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Proof. Let m be a maximal ideal of Wg(R), set k = Wg(R)/m. We claim that
char(k) = p. Suppose that char(k) # p. From the commutative diagram

Ws(R) ——= Ws(R) @ Z[p~ ' —=k

g o

Hses R—— Hses R® Z[pil]

we conclude that there is a factorization Wg(R) LUING - JEN k, but there are no
epimorphism R — k to a field of characteristic # p.
Thus we may suppose that char(k) = p. Because V,(a)? = pV,(a?) for all

R,
a € Wg/,(R), we obtain a factorization Wg(R) — R — k, which defines
p = ker(R — k). O

1.2. RELATIVE DE RHAM-WITT COMPLEX. For every commutative ring A we
have the absolute de Rham-Witt complex
S — Wst

constructed by Hesselholt [Hes|, at our disposal. The absolute de Rham-Witt
complex is the initial object in the category of Witt complexes [Hes, §4]. In
this section we will define the relative version, which is studied in this paper.

DEFINITION 1.2.1. Let A be an R-algebra. Let S be a truncation set and g > 0.
We define
W p = lim WrQ%/ (WTQ}% -WTQ?;l)
TCS
T finite
For ¢ = 0, the definition means WSQ%/R =Ws(A).

We get an induced anti-symmetric graded algebra structure on WsQ% /R> that
is, wi - wp = (fl)deg(wl)deg(w)w2 Wy,

Recall that by construction of Wg§2%, there is, for all finite truncation sets .S,
a surjective morphism of graded Wg(A)-algebras

such that 7(da) = da for all a € Wg(A).

LEMMA 1.2.2. Let S be a finite truncation set.

(1) The morphism ([LZJ) induces a surjective morphism of anti-symmetric
graded algebras

which by abuse of notation is called ™ again.
(2) WsSd}  is a differential graded algebra and (LZ22) is compatible with
the differential.
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Proof. For (1). This follows from 7(da ® da) € dlog[—1] - WsQY [Hes, §3] and
dlog[—1] € WgQl.

For (2). The differential d : WgQ} , — Ws(l} p is well-defined, because
WsQ% is generated by WgQk. It satisfies dod = 0, because dlog[—1] € WgQk.
The compatibility of 7 with d follows from 7(da) = da for all « € Wg(4). O

1.2.3. Induced from the absolute de Rham-Witt complex, we obtain for all
positive integers n:
(1.2.3) F, :WSQZ‘/R — WS/nQZ‘/R,
(1.2.4) Vi WSy g = WsQY s
and S — Ws% /R forms a Witt complex. Note that, computed in the absolute
de Rham-Witt complex, we have
Valda - w) = Vo (FrdVy(a) - w) = dVy(a) - Vi (w),

hence V,(Wg,,Qk - Wg/, Q% ") € Wk - Ws Q.
The following equalities hold for the maps (LZ3), (LZ4):

VoFnd =dV,F,, dV,d=0.
PRrROPOSITION 1.2.4. The Witt complexr S — WSQZ/R is the initial object in
the category of Witt complexes over A with W(R)-linear differential.

Proof. Let S — E§ be a Witt complex over A with W(R)-linear differential,
that is, d(aw) = ad(w) for a € Wg(R) and w € E¥. We only need to show that
the canonical morphism

[S — WsQ4] — [S — EY]
factors through [S — W% / gl- It is enough to check this for finite truncation

sets. Because 7 (L2])) is surjective, we conclude that WgQkL is generated by
elements of the form da with a € Wg(R), which implies the claim. O

As a corollary we obtain the following statement.

COROLLARY 1.2.5. Let A be an R-algebra, let p be a prime, and set R :=
R ®z Ly, A= ARy Z(py- There is a unique isomorphism
[S — WSQ*A’/R’] — [S — @1 WTQ‘Z/R X7z Z(p)]
TCS
T finite
of Witt complexes over A’.

PROPOSITION 1.2.6. Let R be a Zy-algebra and let A, B be R-algebras. Let S
be a finite truncation set.

(1) Via the equivalence from (LI1.3) we have

(1.2.5) WSQZ/R — @ W(S/n)pQ*A/R-

n>1,(n,p)=1
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(2) For a morphism f : A — B the induced morphism fg : WSQZ/R —
WSQ*B/R maps to

fs = @ Js/m),
n>1,(n,p)=1
via the equivalence from (LI3]).
Proof. For (1). The claim follows from [HMOI, Proposition 1.2.5]. In the
notation of loc. cit. the right hand side (L23) equals "W, and i,

preserve initial objects, since both functors admit a right adjoint.
For (2). Follows immediately from the construction in (1). O

PROPOSITION 1.2.7. Let R be a Zy)-algebra, let A be an R-algebra. Then
n+— W{17p7.“,pnfl}Qik4/R

is the relative de Rham- Witt complex n WnQZ/R defined by Langer and Zink

[LZ04].

Proof. We have a restriction functor

i* : (Witt systems over A with W(R)-linear differential) —
(F-V-procomplexes over the R-algebra A),
where we use the definition of [Hes| §4] for the source category and the definition
of [LZ04, Introduction] for the target category. The functor i* admits a right
adjoint functor i, defined in [HMOI, §1.2]. Therefore i*([S — WgsQ} p]) is

the initial object in the category of F-V-procomplexes as is the relative de
Rham-Witt complex constructed by Langer and Zink [LZ04]. O

1.2.8. Let S be a finite truncation set. Let A — B be an étale morphism of
R-algebras. For all ¢ > 0 the induced morphism of Wg(B)-modules

(1.2.6) WS(B) Ows(4) WSQ%/R = WsQ%/R

is an isomorphism. Indeed, this follows immediately from the analogous fact
for the absolute de Rham-Witt complex [Hesl Theorem C].

LEMMA 1.2.9. Let R — R be an étale ring homomorphism. Let A be an
R-algebra. Then, for all truncation sets S,

W p — Wsy
18 an isomorphism.
Proof. We may assume that S is finite. The assertion follows from
WsQp @wg(r) Ws(A) = WsQp Qwyry Ws(R) @wy(ry Ws(A)

o

— Wsﬂ}z OWs(R) Ws(A)
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1.2.10. For every truncation set S we have a functor
W : (Schemes) — (Schemes), X — Wg(X).

This functor has been studied by Borger [Borllb|, our notation differs slightly:
the notation is W* in [Borl1h].

For an affine scheme U = Spec(A), we have Wg(U) = Spec(Wg(A4)). If X is
separated and (U;);cs is an affine covering of X, then Wg(X) is obtained by
gluing Wg(U;) along Wg(U; xx Uj). In particular, (Wg(U;))ier is an affine
covering of Wg(X). The functor is extended to non-separated schemes in the
usual way.

If T C S is an inclusion of finite truncation sets then

TS - WT(X) — Ws(X)
is a closed immersion and functorial in X.

ProprosITION 1.2.11. Let X be an R-scheme and let S be a finite truncations
set. There is a unique quasi-coherent sheaf of Wg(O)-modules WSQg(/R for

the étale topology of Ws(X) such that F(WS(SpeC(A)),WSQg(/R) = WSQ?L‘/R
for every étale map Spec(A) — X with the evident restriction maps.

Proof. Let us glue a quasi-coherent sheaf Wsﬂg( /R O Ws(X). Indeed, suppose

first that X is separated. Let (Spec(A4;))icr be an affine covering and set
Spec(A;;) = Spec(A;) x x Spec(A;). For every i, the Wg(A;)-module WSQii/R
defines a quasi-coherent sheaf WSQgPeC(A%)/R on Wg(Spec(4;)). Since

F(Ws(SpeC(Aij)), WSQgpec(Ai)/R) = WSQZ‘%/R@WS(A%)WS(AM) :WsQi‘“/R,

by using (L2.8]), we can glue to a quasi-coherent sheaf WsQx,zr on Wg(X).
Independence of the covering and Wg (])*Wgﬂi(/R = WSQ‘[IJ/R, for every étale
map jJ: U — X, can be checked by using (LZ6]) again. a

PROPOSITION 1.2.12. If Wg(X) — Wg(Spec(R)) is of finite type and Wg(X)
is noetherian, then Wsﬂg( /R is coherent.

Proof. We have a surjecti}ve morphism Q%WS(X)/WS(R) — WSQ])'(/R and the
assumptions imply that Q{WS (X)/Ws(R) is coherent. O
1.2.13. If f: X — Y is a morphism of R-schemes then we get

Wsﬂqy/R — WS(f)*WSQg(/R-
For an inclusion of truncation sets T' C .S, we obtain

Wsﬂ — ZTys*WTQq

q
X/R X/R
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The following diagram is commutative:

WSOl Ws(£). W

l |

ZT,S*WTQ(;]//R e ZT,S*WT(f)*WTQg(/R — WS(f)*ZT,S*WTﬂg(/R-

The differential, the Frobenius and the Verschiebung operations are defined in
the evident way:

d: WsQ% = WsQL L,

F, : Wsﬂg(/R — ZS/n,S*WS/nﬂg(/R’
Vi : Zs/n,s*WS/an(/R — WSQ%{/R'

DEFINITION 1.2.14. Let X be an R-scheme, let S be a finite truncation set.
We define

Hpw (X/Ws(R)) == H'(Ws(X), WsQY,p),
where the right hand side is the hypercohomology for the Zariski topology.

1.2.15. Note that F,, and V,, are not morphisms of complexes. For all positive
integers n and all finite truncation sets we set

(1.2.7) én =niF, : Wsﬂg(/R — Zs/n’s*ws/nﬂg(/R,
to get a morphism of complexes
* ¢77/ *
WSQX/R — ZS/n,S*WS/nQX/R~
Suppose that X is smooth over R of relative dimension d. Then we set

Bn = ndqun : ZS/n,S*VVS/nQg(/R - WSQg(/R

(we will prove WSQg(/R = 0 if ¢ > d in Proposition [LZT7(ii)). We obtain a

morphism of complexes
B t15/m,5sWs/nxp = WsQy s
satisfying the equalities:

¢n o ﬂn = nd+1’

Bu(X- dn(x)) =nVu(X) -z for all 2 € WsQy/p and X € 15/n, 5. Ws/n Q-

In Section Bl we will study the {¢y,}n>1 operations induced on the de Rham-
Witt cohomology.
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1.2.16. Note that the Hodge to de Rham spectral sequence and the quasi-
coherence of WSQg( /R imply the following fact. Assume X is separated and

Ws(X) is a noetherian scheme. Let (U;) be an open affine covering for X,
we denote by i = (Wg(U;)) the induced covering of Wg(X). Then we can
compute H’ i (X/Wg(R)) by using the Cech complex for 81:

H(C(8L, WsQx,/ ) = Hipw (X/Ws(R)).

In the derived category we have a quasi-isomorphism:
C(U, WsQy, p) ——> RT(WsQ%,p)-
ProprosITION 1.2.17. Let R be a flat Z-algebra. Let X be a smooth R-scheme.
Let S be a finite truncation set.
(i) For all non-negative integers q, WSQg(/R is Z-torsion-free, that is, mul-
tiplication by a non-zero integer is injective.
(ii) Let d be the relative dimension of X/R. Then WSQ%{/R = 0 for all
q>d.

Proof. For (i) it suffices to prove that WSQg(/R@Z(p) = Wsﬂg(,/R, is p-torsion-
free for all primes p, where X' = X ®z Z(,) and R’ = R ®z Z,). For (ii) it
suffices to show that Wsﬂg(,/R, vanishes.

Via the decomposition we may suppose that S = {1,p,...,p""1}. Cer-
tainly we may assume that X’ = Spec(B) and that there exists an étale ring
homomorphism R'[z1,...,24] = B. By using ([L26) we are reduced to the

case B = R'[x1,...,24]. The claim follows in this case from the explicit de-
scription of the de Rham-Witt complex in [LZ04, §2], more precisely [LZ04,
Proposition 2.17]. O

1.3. FINITENESS.

ProrosiTiON 1.3.1. Let R be a flat and finitely generated Z-algebra. Let X
be a flat and proper scheme of relative dimension d over R. Let S be a finite
truncation set. The following hold.

(i) For all non-negative integers 1,5 the cohomology  group

Hi(WS(X),WSQg(/R) is a finitely generated WS(R)—module.
(i) For alli>d and j > 0, we have Hi(WS(X),WSQJX/R) =0.
(ili) For all i, the de Rham-Witt cohomology H}py (X/Wg(R)) (Defini-

tion[I.2.17) is a finitely generated Wg(R)-module.
(iv) Suppose X/R is smooth. Then H'py (X/Ws(R)) =0 for all i > 2d.

Proof. For (i). We denote by f : X — Spec(R) the structure morphism.
The scheme Wg(X) is noetherian, because it is of finite type over Spec(Z).
By [Borllbl Proposition 16.13] the induced morphism Wg(f) : Wg(X) —

Ws(R) is proper. Moreover, WSQJ)'(/R defines a coherent sheaf on Wg(X) (see

Proposition [212).
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For (ii). The fibers of Wg(f) at closed points of Spec(Wg(R)) have dimension
d. In fact, as topological spaces they are disjoint unions of the corresponding
fibers of f. This implies the claim.

For (iii). Follows from (i) via the Hodge to de Rham spectral sequence.

For (iv). Again this follows from the Hodge to de Rham spectral sequence,
statement (ii), and Proposition [L2T7(ii). O

2. DE RHAM-WITT COHOMOLOGY
2.1. REDUCTION MODULO AN IDEAL.

2.1.1.  Recall that W,, = Wy; ,  n-1y whenever a prime p has been fixed
(Notation [LTH). The goal of this section is to prove the following theorem.

THEOREM 2.1.2. Let R be a flat Zy)-algebra, let B be a smooth R-algebra, and
let n be a positive integer. Let I C R be an ideal such that p™ € I for some m.
Choose a Wy, (R)-free resolution

Ti=...oT 257 1t570

of Wo(R/I). There exists a functorial quasi-isomorphism of complexes of
Wi (R)-modules

(2.1.1) Wollp g @w,(r) T = Wald(p 1)/ (r/1)-
In particular, we obtain an isomorphism
(2.1.2) WaS )k O, (ry W (R/T) = Wkl s 1) /ry 1>

in the derived category of W, (R)-modules.

More precisely, functoriality means that for any morphism A — B of smooth
R-algebras, the diagram

WoQ% g @w,r) T —— Wallip 15y r/1)

| |

Walll g Ow,(r) T —— Walkiy 14y (r/1)
is commutative.

Remark 2.1.3. The proof of Theorem 2.1.2] does not go beyond the methods
of [LZ04], so that the theorem may be well-known but we couldn’t provide a
reference.

Proof of Theorem [Z1.2. We define the morphism (ZI1]) by
Wolp g Ow,(r) T = Wnllp g @w, (r) Wa(R/I) = Walkig /1y /(r/1):

so that the functoriality of (ZI.1]) is obvious.

1.Step: The first step is the reduction to B = R[z1,...,z4]. We can use the
Cech complex (see [LZI6) in order to reduce to the case where there exists an
étale morphism A = R[zq,...,24] — B.
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Note that p™ = 0 in W, (R/I). Since WSy g is p-torsion-free (Proposi-

tion [L2.17), we see that
(2.1.3) Wl Sl iy Wa B/ ) = Wi /07 @ 1y eon W/

is a quasi-isomorphism. Clearly, morphism ([ZT2) factors through ZT3). It

will be easier to work modulo p"™, because dF "™ = p"™ F;*™d vanishes modulo
pnm X

Set ¢ = nm + n, we claim that
(2.1.4)
(WC(B)/p"m Sw.(ayjpm Wl /P id © d) = (Wa /P, d)
b@w = FI™(b) - w,

is an isomorphism of complexes. Note that W¢(A) acts on W, ,/p™™ via

nm

W.(A) ——— W, (A), and therefore ([2Z.I.4)) is a morphism of complexes. Theo-
rem [[LT.3] implies that

We(B) ®@w,a) M = Wn(B) @w,(ay M, b@m— E2™(b) @ m,

is an isomorphism for all W,,(A)-modules M. Thus the claim follows from

(C24).
On the other hand, Corollary [[T4] shows that for every W, (4/I)-module M
the map

W.(B)/p™™ Qw.(A)/prm M — Wo(B/I) Qw, a1 M, b®@m — F:m(b) ® m,

is an isomorphism. This yields an isomorphism of complexes

(WC(B)/ P"" Ow.(a)/prm WX asray)(ryn) id @ d) = Waldp/1m))(r/1)> D-
Finally, since W,(B)/p™™ is étale over W,.(A)/p™™, we are reduced to proving
that

Wal2a m/ "™ @, () sy War(R/T) = Wal¥a 1)/ (ry1)

is a quasi-isomorphism.
2.Step: Proof of the case B = R[x1,...,24]. In this case it follows from [LZ04]
§2] and the proof of [LZ04, Theorem 3.5] that

*

Dy (B, eal/ W (R) — Vv, (8w (r) — Wl

is a quasi-isomorphism, where the first morphism is induced by z; — [z;].
The same statement holds for R/I, hence the assertion follows from the quasi-
isomorphism

W (R)[@1,0ns]/ W (R) @, (r) Wn(R/I) = QW (R/D)w1,.eoswa] /W (R/T) -
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COROLLARY 2.1.4. Let R be a flat and finitely generated Z-algebra, and let
m C R be a mazimal ideal; set p = char(R/m). Let X be a smooth and proper
R-scheme, let n,j be positive integers. There is a natural quasi-isomorphism
of complezxes of W, (R)-modules:

RT(Wo %) @, () Wa(R/m7) = RE(WoSQ% /i /(R /mi))-

Proof. The claim follows from Theorem by using Cech complexes (see
[216). 0
2.2. FLATNESS.

THEOREM 2.2.1. Let R be a smooth Z-algebra. Let X be a smooth and proper
R-scheme. Suppose that the de Rham cohomology Hjp(X/R) of X is a flat
R-module. Then H}py (X/Wgs(R)) is a finitely generated projective Wg(R)-
module for all finite truncation sets S. Moreover, for an inclusion of finite
truncation sets T C S, the induced map

(2:2.1) i (X/Ws(R)) @iy () Wr(R) = Hipw (X/Wr(R))
18 an isomorphism.

Remark 2.2.2. Let R be a smooth Z-algebra. Let X be a smooth and proper R-
scheme. We know that H},(X/R) is a coherent R-module and H};(X/R)®7zQ
is a flat R®zQ-module. The first assertion follows from the Hodge to de Rham
spectral sequence, the second assertion follows from the existence of a Gauss —
Manin connection. Therefore we can find an integer N > 0 such that the base
change X @ R[N~'] has R[N~!]-flat de Rham cohomology.

If all H(X, Q&/R) are flat R-modules then H},(X/R) is a flat R-module,
because in this case the Hodge to de Rham spectral sequence degenerates at
FE,. Examples include curves or abelian varieties over R.

Since Wg(R) is a noetherian ring and we know that H}p, (X/Wg(R)) is a
finitely generated Wg(R)-module (Proposition [[331]), it remains to show that
it is flat. This is a local property and can be checked after localization at
maximal ideals of Wg(R). Our proof relies on Theorem 2T 2 or, more precisely,
Corollary Z T4l

LEMMA 2.2.3. Let R be a finitely generated Z-algebra. Let m be a mazimal ideal
of R, let n be a positive integer, and set p = char(R/m). Then W, (Ry) —
Wn@inz R/m%) is faithfully flat.

Proof. By Lemma [[LT.1(0, both rings are local. Thus we only need to prove
flatness.

We note that W, (R) is a noetherian ring, because R is a finitely generated
Z-algebra. Indeed, let x1,...,24 be generators for R, we claim that W, (R)
is a finitely generated module over the subring S, of W, (R) generated by
[21],...,[z4]. By using induction on n, we only need to show that the ideal
V'~ !(R) is a finitely generated S,-module. We have

(@] - V;;n_l(r) = V;;n_l(wfnil -r) for all r € R,
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hence {Vr =1 (2l -+ af) | 0 < i < p" ! — 1 for all k} is a set of generators.
Therefore W, (Ry), being a localization of W,,(R), is a noetherian ring. Obvi-
ously, we have the equalities

VVnQE1 R/mz) = %ian(R/mz) = @Wn(Rm)/Wn(miRm)'
Moreover, it is easy to check that (W, (m'Ry)); and (W, (mRy)?); induce the
same topology on W;,(Ry). Therefore

(2.2.2) lm W, (R) /W (mBim)” = i W, (Run) /Wi (m Run),
which implies flatness. O

LEMMA 2.2.4. Let R be a finitely generated Z-algebra. Let m be a mazimal
ideal of R, let n be a positive integer, and set p = char(R/m). Let C be a
bounded complex of W, (Ruw)-modules such that H'(C) is a finitely generated
Wi (Rw)-module for all i. Then, for all i,

H'(C) @, (1) Wallim B/md) = lim H' (C &}y () Wa(R/m)) .
J J

Proof. Set R := @j R/m’. The map is induced by C' — C®H‘;Vn(Rm)Wn(R/mj)
and the W, (R)-module structure on the right hand side.

As a first step we will prove that H* (C ®HV“V”(Rm) W (R/mj)) is a finite group.
Clearly, we may assume that C' = Cj is concentrated in degree 0. Since Cj is

finitely generated we conclude that TorZV"(R"‘) (Co, Wy, (R/m7)) is a finitely gen-

erated W,,(R/m’)-module for all i. The ring W,,(R/m/) contains only finitely
many elements, hence

H™(C &y, oy WalR/w)) = Tor;(Co, W (R/m7))

is finite.

By using Lemma 2.2.3 and the first step (all R!lim vanish) we can reduce the
assertion to the case of a complex C' = Cj that is concentrated in degree zero
(hence Cj is finitely generated). In this case we need to show:

(2) Co @w, (o) Wa(R) = lim (Co @w, (rp) Wa(R/m)),
(b) lim_ Tor;(Co, Wy (R/mI)) = 0 for all i > 0.
Claim (a) follows from [222). Claim (b) follows from (a) and the flatness of

Wi (Rm) = Wih(R). O

PROPOSITION?.2.5. Assumptions as in Corollary[Z.1.7} Set X; := X®@rR/mI,
R;:=R/m/, R = ]'&nj, R;.
(i) For all i and n, we have a functorial isomorphism
(223)  Hipw(X/Wa(R)) @w, ) Wa(R) = lim H' (X, Wn X /g,)-
j
(ii) Suppose furthermore that the following conditions are satisfied:
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(1) There exists a lifting ¢ : R — R of the absolute Frobenius on R/m;
let p: R — W, (R) be the induced ring homomorphism. By abuse
of notation we will denote the restriction of p to R by p again.

(2) The de Rham cohomology H}n(X/R) is a locally free R-module.

Then there is an isomorphism

HY(X;, WSk ) = Hp(X/R) @R, Wa(R;)

which is natural in the following sense. For all | > j we have a com-
mutative diagram

H (X0, WaSy, ) —— Hip(X/R) @, WalR1)
\L lid@Wn(Rl—)RJ‘)
H'(X;, W”Q}j/Rj) — Hip(X/R) @r,p Wa(R;).

For a morphism of R-schemes f : X — Y, where Y/R satisfies the
same assumptions as X, the following diagram is commutative:

HY(Y;, Wo 2y ) —= Hip(Y/R) ®r,p Wa(R;)

lf* lf*®id

H'(X;, Walx, /r,) — Hip(X/R) @pr,p Wa(R)).

Proof. For (i). Set C'= RU(WnSly, ) @w,, (r) Wn(Bm). In view of Proposition
[[371 the assumptions for Lemma 2274 are satisfied. Applying the lemma and
using Corollary 2.1.4] implies the claim.

For (ii). Consider the following cartesian squares

X; Xn,j XorR

| | |

h, ~
Spec(R;) ——> Spec(Wy(R;)) —2= Spec(R),

where X, ; is by definition the fibre product. Note that R 2 W, (R) =, Ris
the identity, which implies that the left hand square is cartesian.
By the comparison theorem [LZ04, Theorem 3.1] we have a functorial isomor-
phism

H' (X5, Wallx jr,) = Hepyo (X /Wa(R;))-
By the comparison isomorphism of crystalline cohomology with de Rham co-
homology due to Berthelot-Ogus we get

Hpyo (X5 /Wi(R))) = Hip (X, /Wa(R;))
= HZIR(X/R) ®R,p Wn(Rj)-
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For the last isomorphism we have used condition (2) on the de Rham cohomol-
ogy of X. O

Proof of Theorem[2.2.1l. Without loss of generality we may assume that R is
integral. It suffices to show the flatness of Hpy (X/Ws(R)) when considered
as a Wg(R)-module. This can be checked after localizing at maximal ideals. By
using Lemma [T it suffices to prove that HYpy, (X/Wg(R)) @we(r) Ws(Rm)
is a flat Wg(Rm)-module for every maximal ideal m C R. Similarly, it is
sufficient to prove (Z21)) after tensoring with Wy (Rp).

Let m C R be a maximal ideal, and set p = char(R/m). By using the de-
composition of WsQ¥% p @ Zp) from Proposition together with (LI3)
we may assume that S is p-typical, say S = {1,p,...,p" '}, and hence
T:{]"p7"'7pm71}' R N

Since R is a smooth Z-algebra, there is a lifting ¢ : R — R of the absolute
Frobenius of R/m, where R= @j R/mJ. Therefore Proposition implies

Hiypyw (X/Wa(R)) @w,(m) Wa(R) = lim H'(X;, W, Q% /)
J

= Hin(X/R) ®r,, Wa(R),

and we can prove the flatness by using Lemma 223

Tensoring (ZZ1) with W, (R) (recall that T = {1,p,...,p™'}) and by using
Proposition Z2Z3\ii), we see that (Z21)) ® W,,(R) is induced by the identity
on the de Rham cohomology. Hence it is an isomorphism by Lemma 223 O

3. POINCARE DUALITY

3.1. A RIGID ®-CATEGORY.

DEFINITION 3.1.1. Let R be a Z-torsion-free ring and @ a non-empty truncation
set. We denote by Cé% r the category with objects being contravariant functors
S — Mg from finite truncation sets contained in @ to sets, together with

e a Wg(R)-module structure on Mg, for all truncation sets S C @, such
that the maps Mg — My, for T C S, are morphisms of Wg(R)-
modules when My is considered as a Wg(R)-module via the projection
™ Ws(R) — WT(R),

e for all positive integers n and all truncation sets S C @, maps

On : Ms — Mgy,

such that

— ¢n O P = Ony, for all n,m,
— ¢p, is a morphism of Wg(R)-modules when Mg /n is considered as
a Ws(R) module via F,, : Wg(R) = Wg/,(R),
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— for all truncation sets T' C S C @ the following diagram is com-
mutative:

Mg —22s Ms;p

Ny

MT $ MT/TL'

The functor S — Mg is required to satisfy the following properties.

e For all truncation sets S C @, the Wg(R)-module Mg is finitely gen-
erated and projective.
e For all truncation sets T'C S C Q:

Wr(R) OWs(R) Mg — Mrp

is an isomorphism.
e There is a positive integer a such that there exist morphisms

(3.1.1) B Mg/ — Ms,

for all positive integers n and all finite truncation sets S C @, satisfying
the following properties:
~ fn is a morphism of Wg(R)-modules when Mg/, is considered as
a Ws(R) module via Fy, : Wg(R) — Wg/,(R),
— Bn(A - on(@)) =n" 1V, (X) - @, for all 2 € Mg, X € Wg/,,(R),
— ¢n 0 fn =n"
Morphisms between two objects in Cb, g are morphism of functors that are
compatible with the [S — Wg(R)]-module structure and commute with ¢,, for
all positive integers n. We simply write C}, for C{Vw’ R

Remark 3.1.2. Note that the [, are not part of the datum; we can always
change f3,, — n’f, for a non-negative integer b.

For an inclusion of truncation sets @@ C @', we have an evident functor
Cor = Co.r

PROPOSITION 3.1.3. Let M € ob(Cq ). Let S C Q be a finite truncation set.
Fiz a > 0 and B, as in[T 11l

(1) For all positive integers n,m with (n,m) = 1 we have
d)noﬂm :ﬂmod)na

considered as morphisms Mg/, — Mg/p.
(2) For all positive integers n,m we have

ﬂn o ﬂm = ﬂnma

considered as morphisms Mgy, — Ms.

DOCUMENTA MATHEMATICA 19 (2014) 567—-599



DE RHAM-WI1TT COHOMOLOGY 587

(3) For all truncation sets T C S the following diagram is commutative:

Proof. The ring Wg(R) is Z-torsion-free, because it can be considered via the
ghost map as a subring of [[,.g R, and R is Z-torsion-free by assumption.
Since Mg is a flat Wg(R)-module, it is Z-torsion-free.
For (1). Since image(¢,,) D m* Mg/, it is sufficient to prove

¢noﬂmo¢m :ﬂmo¢no¢m~
This follows from B, © ¢ = Vi (1)m@~1 and ¢y, 0 ¢y = ¢ © P
For (2). We may argue as in (1) by composing with o¢y,.
Bnoﬁmo¢nm(x) = Bn(vm(l)ma_1¢n(x)) = ma_lna_lvnm(l)x = Bnmo(bnm(x)-
For (3). We may argue as in (1) by composing with o¢,,. The computation is
straightforward. O

LEMMA 3.1.4. Let f : M — N be a morphism in C&R, and choose a positive

integer a and Burn, By as in (Z1T). Then fso Barn = BNn © fs/m for all
S,n. In particular, the choice of the B, in Definition 311 depends only on the
positive integer a.

Proof. Again, we may use that Mg is Z-torsion-free. Now,
nBnf(x) = Bu(f(n*2)) = Bn(f(dnfbn(x)))
= ﬁn(bnf(ﬁn(x)) = na_lvn(l)f(ﬁn(x))
= f(nailvn(l)ﬂn(m)) = f(ﬂn(bnﬂn(m)) = naf(ﬂn(x))
]
PROPOSITION 3.1.5 (Tensor products). For two objects M, N in Cq p we set
(M ®N)s := Ms @wg(ry Ns;  &n = drn @ ON.n-

Then M ® N defines an object in Cgy p.

Proof. This is a straightforward calculation. We can take Syonn = Bymn ®
BN,n- O

The tensor product equips Cé?’ g With the structure of a ®-category with identity
object 1, where
15 = Ws(R), ¢1,n = Fn.

DEFINITION 3.1.6. (Tate objects) Let b be a non-negative integer. We define
the object 1(—b) in Cg, g by

1(7b)3 = WS(R)a ¢1(—b),n = ann~
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For an object M in Cb, s Ms is Z-torsion-free, hence we get an isomorphism:
Home,, (M, N) = Homg, (M ®1(~b), N @ 1(~b))
DEFINITION 3.1.7. We denote by Cq, r the category with objects M (b), where

M is an object in C&,),R and b € Z. As morphisms we set
Home,, (M (b1), N(b2)) = Homey, (M @ 1(by — ¢), N ® 1(ba — ¢)),
where ¢ € Z is such that by — ¢, by — ¢ < 0.
For two truncation sets Q C @', we have an obvious functor
Cq',r — Cq,R-

The category Cq,r is additive and via M +— M (0) the category Cg p is a full
subcategory of Cq.r. For M € Cg g, we have M(—b) = M ® 1(-b) if b is
non-negative. For an integer b, the functor

Cor—Cor M(n)— M(n+b)

is an equivalence and has M (n) — M (n — b) as inverse functor.
For M (b1), N(b2) in Co,r we set

M(b1) ® N(b2) := (M @ N)(b1 + b2).

The tensor product equips Cg, g with the structure of a ®-category with identity
object 1.

3.1.8. Internal Hom. The reason for introducing the new category Cq r is the
internal Hom construction.

Let M, N be two objects in Cé7R, fix positive integers ans, an and By a1, Bn,N
as in (B.LI). In a first step we are going to define an object Hom'(M, N) in
C&,),R that depends on the choice of ay;. We set

Hom'(M, N)s := Homy(g)(Ms, Ng).
We note that
Homy g (r) (Ms, Ns) @wg(ry Wr(R) = Homyy,(r) (M7, Nr),
since Mg is finitely generated and projective. We define
¢n : Homyyg(ry(Ms, Ns) — HomWS/n(R)(MS/n,NS/n)
én(f) = ¢n o fo By

This definition depends on ay;. It is easy to check that Hom'(M, N) is an
object in Cg, g (take B, (f) := Bn o fo¢n and a = ap +an). We set

(3.1.2) Hom(M, N) = Hom' (M, N)(axr)

as an object in Cg r. In view of Lemma B.T.4] this definition is independent of
any choices. For two objects M (b1), N(b2) in Cg,r we set

Hom (M (by), N (b)) := Hom(M, N)(by — by).
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3.1.9. For three objects M, N, P in Cg r we have an obvious natural isomor-
phism
Hom(M ® N, P) = Hom(M, Hom(N, P)).
PROPOSITION 3.1.10. For objects M, N in Cg r we have a natural isomorphism
Hom(1,Hom(M, N)) — Hom(M, N).

Proof. We may assume that M, N € C(, . Fix apy and Sar,, as in @.ILT). We
need to show that

Hom(1(—ays), Hom'(M, N)) = Hom(M, N),
and know that
Hom(1(—aps), Hom' (M, N)) =
={[S+ fs] | fs @wgsr)y Wr(R) = frfor T C S CQ,
&N o fs 0o PBrm =n"" fgy, foralln,S CQ.}
Since ¢nr,n(Ms) D n* Mg/, we have
N0 fs 0 Brn =n" fs/n < Onn 0[50 Brn © Onn =1 f5/n 0 Orin
S ¢Npno fso n =1y, (1) = n™ f/n © drrn
S nMPy o fs=n"fg, 0Prn
& ONn o fs = fs/moPmn-

For M € Cq r we define the dual by
MY := Hom(M, 1).
It equips Cq, g with the structure of rigid ®-category. We have
MY ® N = Hom(M, N).

3.1.11. Functoriality.

PROPOSITION 3.1.12. Let R — A be a ring homomorphism between Z-torsion-
free rings. The assignment

(S Ms]— [S = Ms @wgry Ws(A)], [n+—= ¢n] = [0 ¢p @ F,],
(S fs] = [S = fs @ idwg(a)]
defines a functor
Cor—Coha

The functor can be extended in the obvious way to a functor Co r — CQ,A-

Proof. Straightforward. O
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3.1.13.  Our motivation for introducing Cg r comes from geometry.

PROPOSITION 3.1.14. Assumptions as in Theorem[Z21l Let Q be a non-empty
truncation set. For all i > 0 the assignment

SHH&RW(X/WS(R)), n = ¢n,

defines an object in Cy g.

Proof. Theorem [ZZT] implies that these modules are projective and finitely
generated. For the construction of ¢,, and (3, see Section [L2.17] |

DEFINITION 3.1.15. Let X — Spec(R) be a morphism such that the assump-
tions of Theorem 2.2.1] are satisfied. For all i, we denote by H}py (X/W(R))
the object in Cg that is given by S +— Hpy (X/Wg(R)) (Proposition B.1.14).
We call H},y (X/W(R)) the de Rham-Witt cohomology of X .

3.1.16. Let X,Y be smooth proper schemes over R such that the assumptions
of Theorem [Z.2.1] are satisfied for X and Y. The multiplication

induces a morphism in Cg:

(3.13)  Hipw (X/W(R)) ® Higyy (Y/W(R)) = Hify (X x5 Y/W(R).

3.2. THE TANGENT SPACE FUNCTOR. We have a functor of rigid ®-categories

T :Cq,r — (finitely generated and projective R-modules)
T(M(n)) := My.

PROPOSITION 3.2.1. The functor T is conservative, i.e. if T(f) is an isomor-
phism then f is an isomorphism.

Proof. 1t is sufficient to consider a morphism f : M — N in Cé7R. We need
to show that fs : Mg — Ng is an isomorphism provided that f;) is an
isomorphism. We may choose a positive integer a and Bas.n, By .n as in @LI).
By Lemma [3.1.4] the morphism f commutes with £,,.

Let n := max{s | s € S}; by induction we know that fr is an isomorphism for
T = S\{n}. Set I = ker(Wg(R) = Wr(R)), we know that I = {V,(\) | A €
R}. Tt suffices to show that

(3.2.1) IMs 25 INg

is an isomorphism. If f5(V,,(A\)x) = 0 then n® 1V, (\)fs(z) = 0 and therefore
Bn(Adn fs(x)) = Bn(A-fr1y (@n(2x))) vanishes. Since 3, is injective, we conclude
A ¢n(x) =0, hence

0= Bn(\-dn(z)) =n*"V,( Nz,
which implies V,,(A)x = 0.
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For the surjectivity of (B21]) we note that, by induction, for every y € Ng
there is ¢ € Mg with fs(x) —y € INg. Therefore it suffices to show that I*Ng
is contained in the image of fg. Now,
Vi) - Vin(Aa) = 0 V(A - Xg).
Thus
Vn(>‘1) e Vn(Aa)y = fS(ﬂnf{ﬁ(Al T )\a : ¢n(y)))
O
COROLLARY 3.2.2. Let X,Y be smooth proper schemes over R such that the
assumptions of Theorem [Z.21] are satisfied for X and Y. If
@ Hir(Y/R) ®r HiR(X/R) — Hyp(X xrY/R)
i+j=n
18 an isomorphism then
@ Hjpy (X/W(R)) @ H) gy (Y/W(R)) = Hjpy (X x5 Y/W(R))
i+j=n
(see BI3)) is an isomorphism in Cg.
Proof. This is an application of Proposition [3.22.1], because

T(Hapw (—/W(R))) = Hyp(~/R).

ProprosITION 3.2.3. The functor T is faithful.

Proof. Tt is sufficient to consider a morphism f: M — N in C&),R' We need to
show that fs : Mg — Ng vanishes provided that f{;y is zero. We may choose a
positive integer a and Barn, BN, as in (B 11). By Lemma BT4] the morphism
f commutes with £,.

Let n := max(S); by induction we know that fr = 0 for T = S\{n}, so that
for all z € Mg the image fs(z) is of the form fg(z) = V,,(A)y. Since

0= fryodn(z) =¢no fs(x) =n A du(y),
we conclude \ - ¢,,(y) = 0 and n®~1V,,(\)y = 0, hence fg(x) = 0. O
3.2.4. The following proposition shows that an object in Cé% Ry Where R is

a Zp)-algebra, is determined by the p-typical part, that is, on its values for
truncation sets consisting of p-powers. Recall the notation S, from Notation

CT7

ProproSITION 3.2.5. Let R a Z-torsion-free ring. Let Q) be a truncation set.
Suppose p is a prime such that {1 € R for all primes £ € Q\{p}. Let M, N be
Co, r-modules.

(1) Via the equivalence of (LL3):

MS — @ M(S/n)p-
nes,(n,p)=1
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(2) If f: M — N is a morphism in C, p then fs ®nES,(n,p)=1 fis/n),
via the equivalence (LI13)).
(3) The restriction functor
Co.r = Ca,.r
is an equivalence of categories.
Proof. For (1). First one proves that the projection ;Mg — Mg, is an iso-
morphism (see Notation [LT.7 for Sp,). The second step is the isomorphism
On t €nMs — e1Mg)p,
with £= 3, as inverse.
Statement (2) is obvious, and (3) follows from (1) and (2). O
PROPOSITION 3.2.6. Let R a Z-torsion-free ring. Let QQ be a truncation set.
Suppose p~t € R for all primes p € Q. Then
T :Cq r — (finitely generated and projective R-modules)

defines an equivalence of categories.
Proof. Straightforward. |

3.2.7. Let P be a set of primes (maybe infinite). We set Zp := Z[p~! | p € P)].
Let A be a commutative ring. We denote by Mod 4 the category of A-modules.
We define the category Mody4, p to be the category with objects

((Mp)pePa (ap,l)p,leP)a
where Mp is an A®ZZP\{p}—module, and Qpy Mg@zp\{l} Zp — Mp®ZP\{p} Zp
is an isomorphism of A ® Zp-modules such that
Qpy,p1 = id, Qpy,py © Opy ps = Cpy ps for all p1,p2,p3 € P.
The morphisms of Mod 4, p are defined in the evident way.
If P is finite and non-empty, then the evident functor
RP : MOdA — MOdA’p

is an equivalence of categories, because we can glue quasi-coherent sheaves.
If P is infinite then this may fail to be an equivalence, but we still have the
following properties, whose proof is left to the reader.

LEMMA 3.2.8. Suppose P # 0.
(i) Rp is faithful.
(ii) For every N € Moda such that N — N ®gz Zp is injective, and every
M € Mody the following map is an isomorphism:
Homaod, (M, N) =5 Homuod, ,(Rp(M), Rp(N)).

(iti) Suppose that A — A ® Zp is injective. Let M = ((M,), (aps)) €
Moda,p be such that M), is a finitely generated and projective A ®gz
Zp\ (py-module for all p € P. Then there exists a finitely generated and

projective M € Mod 4 such that Rp(M) = M.
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For a positive integer a, we denote by C&%R,a the full subcategory of C@R
consisting of objects such that there exist {8, }, as in 11 for a.

DEFINITION 3.2.9. Let @ be a non-empty truncation set, and let P be the set
of primes of (). We denote by EC'Q R.a the category with objects

(Mp)pep, (ape)pecp),
where
o M, € ob(Cbp’R(gZP\{p%a) for all p € P,

o o, T(My) ®Zp 1oy LP SN T(Mp) ®Zp (py Lp is an isomorphism such
that

Qpy,p1 = id, Qpy,py © Opy ps = Qpy ps for all p1,p2,p3 € P.

The morphisms are defined in the evident way.

Broadly speaking the next proposition shows that the category Cé% R,q 18 glued
from the local components via the functor 7.

ProproOSITION 3.2.10. Let R be a Z-torsion-free ring, and let a be a positive
integer. For every non-empty truncation set Q) the evident functor

! !
Co.ra = LLQ.Ra
is an equivalence of categories.

Proof. The claim follows easily from Proposition B.2.5] Proposition B.2.6] and
Lemma [3.2.8 O

3.3. PROOF OF POINCARE DUALITY.

3.3.1. Let f: X — Spec(R) be a smooth, projective morphism of relative
dimension d between noetherian schemes such that Hj,(X/R) is a flat R-
module. Suppose furthermore that Spec(R) is integral and the field of fractions
of R has characteristic zero.
We know that H°(X, Ox) is a finite étale R-algebra and

Hgp(X/R) = H°(X, Ox).

Since H}r(X/R) is flat, we have

Hip(X/R) @r k(y) — Hap(Xy/k(y)),
for every point y € Spec(R), and X, being the fibre of y. In particular, we
obtain
(3.3.1) HY(X,0x) @r k(y) = H°(X,,Ox,).

By Grothendieck-Serre duality we see that y > dimy,) HY(X,, wx,) is a con-
stant function, thus H(X, wx/r) is a finitely generated projective R-module
and we have

HYX,wx/r) ®r k(y) = HY(X,,wx,)
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for every point y € Spec(R). Since the Hodge to de Rham spectral sequence
degenerates at the generic point of Spec(R), we conclude:

o

HY(X,wx/r) = Hiz(X/R).

Recall that we have a trace map
Tr: HY(X,wx/r) = R;
we will also denote by Tr the induced map H?%4(X/R) — R. The duality
pairing
H(X,0x) x HY(X,wx/g) = R

induces a duality pairing

HY%(X/R) x H34(X/R) — R.
Note that the fibres of f are connected if H°(X,Ox) = R. Moreover, the
equality HY(X,0x) = R implies that the fibres are geometrically connected

by using B3.T]).

Suppose now that H°(X,Ox) = R, and set ¢y := Tr (1) € Hd(X,wX/R) =
H24(X/R). For a generically finite R-morphism g : X — Y, where Y satisfies
the same assumptions as X (in particular, Y/R is of relative dimension d), we
have a pull-back map

9" Hig(Y/R) = HY(Y,wy/r) = HY(X,wx/r) = Hyx(X/R)
which is dual to the trace map
g« HY(X,Ox) = H(Y,Oy), g.(1) = deg(g),
thus ¢g*(cy) = deg(g) - cx.

PROPOSITION 3.3.2. Let R be a smooth Z-algebra. Let X be a smooth projective
scheme over R such that H}p(X/R) is a projective R-module. Suppose that X
is connected of relative dimension d. There is an isomorphism

Hfw (X/W(R)) 2 Hpy (X/W(R)) © 1(—d)
and a natural morphism in Cg:
Hfw (X/W(R)) = 1(—d)

Proof. Certainly, we may suppose that Spec(R) is integral.

1.Step: Reduction to X/R has geometrically connected fibres.

Set L = H°(X,0x), L is a finite étale R-algebra. It suffices to show the
existence of an isomorphism

(3.3.2) H2 0 (X/W(L) 5 1(—d)
in Cr, such that 7y is the trace map. In view of
Higew (X/W(L)) = Hifw (X/W(R)),
B32) yields in Cg:
(333)  Hifw (X/W(R)) =5 Hipw (X/W(R)) © 1(~d) 7% 1(~d),
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with tr : Hpy (X/W(R)) — 1 being defined by the usual trace map
Hpw (X/Ws(R)) = Ws(L) = Ws(R).

The morphism (B33)) is functorial because it induces the usual trace map after
evaluation at {1}. Therefore we may assume R = L in the following.
2.Step: Proposition [B.2.6] implies the existence of a unique isomorphism

e:1(~d) ®Q = Hifyy (X/W(R) © Q
that induces Tr™ ' after evaluation at {1}. In other words, there is a unique
system (es)s with es € H3%,, (X/Wgs(R)) ® Q such that
(1) mgr(es) =er for all T C S, where mg 7 is induced by the projection
Higw (X/Ws(R)) = Hifow (X/Wr(R)),
(2) ¢n(es) =nd- es/n for all n, S,
(3) €1} = Tr_l(l).
Our goal is to show
(3.3.4) es € Higw (X/Ws(R))

for every finite truncation set S. The strategy of the proof will be to show this
for X = P% first. The next step will be to prove that (8.3.4) is local in Spec(R).
Locally on Spec(R) we can find generically finite morphisms to P4, which can
be used together with the explicit description of de Rham-Witt cohomology
after completion (Proposition [Z28]) to prove the claim.

3.Step: Suppose X = P%. For any finite S, we get a morphism of Wg(R)-
schemes

9s : Ws(PR) = Py, (n)
induced by Z+ + [Z*] on the standard affine covering. The morphisms gg are
J J

compatible with the Frobenius morphisms provided that the action on Pg&/s( R)
is given by @5 (x;) = .
We obtain

%, d (md d d d
g H (PWS(R)aWIPgVS(R)/WS(R)) —H (WS(PR)aQWS(Pg)/WS(R))

= HY(Ws(Ph), WsQGa /r) = Hifw (Ph/Ws(R)).

o 1 .
Note that Tr : Hd(ngs(R)’wP\ffvs(R)/Ws(R)) — Wg(R) and dg := Tr™ (1) satis-

fies ¢ (65) = nt- d5/n- Therefore es = g*(d5), which proves (3.3.4) in the case
of a projective space.
4.Step: We claim that in order to prove ([3.3.4) it is sufficient to prove

(3.3.5) es € Hg%W(X/Ws(R)) ®WS(R) Ws(Rm)

for every maximal ideal m. Indeed, let .# be the coherent sheaf on Spec(Wg(R))
associated to M = H3%,.(X/Wg(R)). For every m, we can choose an open
affine neighborhood Uy, C Spec(R) and a section ey, € .F(Wg(Uy)) mapping
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to es € M ®wy(r) Ws(Rw). The section ey is unique and the sections (em)m
glue to a section of # on J,, Ws(Un) = Wg(Spec(R)), which proves the claim.
Let R be the completion @j R/mJ. For every integer n, we have

nRN Ry = ﬂ(an +m?) = nRy,
j=1

and thus (R, ®z Q) N R = Ry as intersection in R ®7 Q. Therefore

(3.3.6) es € Hg%W(X/Ws(R)) OWs(R) Ws(R)

implies ([B.335]).

5.5tep: We will show [B3:6). We may pass from Spec(R) to a neighborhood
Spec(R’) of m. Let R’ be such that there exists a generically finite R’-morphism

f 1 X Xspee(r) Spec(R') — P
The existence is proved in Proposition below. Then eg = mf*(eg),

because the classes (mf*(es))s satisfy the properties listed in the second
step.

Set p = char(R/m). To prove (B.3.6) we may assume that S = {1,p,...,p" 1}.
Then Proposition 222.5)ii) yields the claim, because for the de Rham cohomol-
ogy we know that f*(Tr~'(1)) is divisible by deg(f). O

PROPOSITION 3.3.3. Let Y be of finite type over Spec(Z). Let X/Y be smooth
projective such that X is connected of relative dimension d. For every closed
point y € Y there is open meighborhood U of y, and a generically finite U -
morphism X xy U — ]P"(i].

In order to prove Proposition [3.3.3] we will need a sequence of lemmas.

LEMMA 3.3.4. Let R be a local noetherian ring. Let X/R be a smooth projective
R-scheme such that every connected component of X has relative dimension
d > 0 over Spec(R). Let £ be a relative ample line bundle. There is n >
0 satisfying the following property: for every k > 1 there is a section s €
HO(X,.Z%*) such that V(s) is smooth of relative dimension d — 1 over R.

Proof. Let y € Spec(R) denote the closed point. For n > 0 we have
HY(X,, .,?1?}2) =0 for all i > 0. By semicontinuity we get H'(X,.#%") = 0 for
all ¢ > 0, and

HO(X, 25") — HO(X,, 43")
is surjective. Replace .Z by a power such that this holds for all n > 1.
If the residue field of R is infinite then we can find a section s, € H%(X,, .,?1?}2)
such that V (s, ) is smooth of dimension d—1. In the case of a finite residue field
we have to use [Poo04] and may have to replace £ by a high enough power
again.
Let s be a lifting of s, to HO(X, £®"), set H := V(s). If d = 0 then H is empty,
because it has empty intersection with the special fibre. For d > 1, H is flat
by the local criterion for flatness, because it has transversal intersection with
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the special fibre. Since H — Spec(R) is flat and the special fibre is smooth, we
conclude that H is smooth. By Chevalley’s theorem, H is of relative dimension
d—1. |

Remark 3.3.5. H is empty if and only if d = 0.

LEMMA 3.3.6. Assumptions as in Lemma[3.54} There is n > 1 and sections
505+ .,8q4 € HY (X, £®") such that

(1) Mio V(si) s empty,
(2) ﬂgzl V(si) is finite over R and non-empty.

Proof. Let m and s € HO(X, #®™) such that H = V(s) is a smooth hyper-
surface as in Lemma [3:3.41 Without loss of generality m = 1. For k& > 0, we
get, a surjective map

HY(X, 2%%) — H°(H, ZF").

By induction on d we can find sy, ..., sg.a-1 € H°(H, Diﬂ‘%k), for some k > 1,

satisfying the desired properties for H. Note that Sjﬁ,ov ceey st g1, forall j > 1,
also satisfy the properties, hence we may suppose k > 0. Choose some liftings
50,81, ++,84-1 € HO(X, Z%k). Then sg,51,...,84_1,5" satisfy the required
properties. O

Proof of Proposition[3.3.3. Let £ be a relative ample line bundle. Apply
Lemma [3.3.6 to the local ring of Y at y. The sections sq,...,sq extend to
X Xy Spec(U) for an open affine neighborhood U of y. After possibly shrink-

ing U we have _, V(s;) = 0 so that
X xy Spec(U) — P¢,

defined by sg,...,sq, is well-defined. The second property of Lemma [3.3.0]
implies that the morphism is generically finite. g

COROLLARY 3.3.7. Let R be a smooth Z-algebra. Let X — Spec(R) be a smooth
projective morphism such that H;n(X/R) is a projective R-module. Suppose
that X 1is connected of relative dimension d. If the canonical map

(3.3.7) Hin(X/R) — Homp(H2%"(X/R), R)

is an isomorphism, then

(3.3.8) sy (X/W(R)) > Hom(H2ii (X/W(R)), 1(~d)).

Proof. In view of Proposition and (3I13) we get a morphism in Cg:
Hapw (X/W(R)) © Higy (X/W(R)) = Higw (X/W(R)) = 1(~d)

inducing (33.8). Now, T'BE38) = (3310 proves the claim. O

DOCUMENTA MATHEMATICA 19 (2014) 567599



598 ANDRE CHATZISTAMATIOU

Remark 3.3.8. Note that the map
Hip(X/R) = Homp(Hg '(X/R), R)
induced by the pairing
Hip(X/R) @r Hyg '(X/R) — Hif(X/R) = R

is an isomorphism if for every closed point y € Spec(R) the Hodge-to-de-Rham
spectral sequence for the fibre at vy,

(3.3.9) HI(Xy, Q% ) = Had (Xy/k(y)),

degenerates. Indeed, since the de Rham cohomology is locally free, it is also
stable under base change and it suffices to show that, for every closed point
y € Spec(R), the Poincaré pairing for the fibre at y,

Hip(Xy/k(y)) @reyy Hify ' (Xy/k(y) = HIZ(Xy/k(y) = k(y),

is non-degenerate. This follows easily from the degeneration of the Hodge-to-
de-Rham spectral sequence and Serre duality.

The degeneration of the spectral sequence ([33.9) is known in the following
cases:

o H/(X, Q&/R) is torsion-free for all i, j,
e dim X, < char(k(y)).

As an example, we have abelian schemes or curves over R.
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