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0 INTRODUCTION

A non-Archimedean analytic space plays an important rol@nous studies in mod-
ern number theory. There are several ways to formulate aAmohimedean analytic
space, and one of them is given by Berkovich in [Ber1] and 2ReBerkovich intro-
duced the spectrum#y (/) of a Banach algebra over a complete valuation field
k. The space#x(<) is to a Banach algebra” what Spech) is to a ringA. We note
that.#y(<7) is called the Berkovich spectrum in modern number thearythe same
notion is originally defined by Bernard Guennebaud in [GuBje class of Banach
algebras topologically of finite type over a complete vabrafield is significant in
analytic geometry, just as the class of algebras of finite tyer a field is significant
in algebraic geometry. A Banach algebra topologically atditype is called anfé-
noid algebra, and the Berkovich spectrum of &inaid algebra is called arffnoid
space. The spacé#(</) is a compact HausdfitG-topological space. For the notion
of G-topology, see [BGR]. Berkovich formulated an analgi@ace by gluingfinoid
spaces with respect to a certain G-topology, just as Grdikek did a scheme by
gluing &fine schemes with respect to the Zariski topology. We rematkath dfinoid
space is studied well, while few properties are known forBeekovich spectrum of a
general Banach algebra.

Throughout this pape andk denote a topological space and a complete valuation
field respectively. Here galuation fieldmeans a field endowed with a valuation of
height at most 1, and we allow the case where the valuatioivialt We study the un-
derlying topological space of the Berkovich spectrum B} of the Banach algebra
Chd(X, k) of bounded continuousvalued functions orX. In Theoreni 21, we prove
that BSG(X) is naturally homeomorphic to the Stone space X)F{ssociated t,
where UFK) is a topological space und¥r(Definition[1.1) constructed using the set
of ultrafilters of a Boolean algebra associatecKtoThis homeomorphism is signifi-
cant because UK is an initial object in the category of totally disconnett®mpact
Hausdoff spaces undeX (Definition[1.2). As a consequence, BER) satisfies the
same universality, and hence is independeit df/e note that Banaschewski proved
the existence of such an initial object only for zero-dinienal spaces i [Ban] Satz
2, while we deal with a general topological space in this papé also remark that
many of our results are verified by Alain Escassut and Nicelametti in [EM1] and
[EM2] under the assumption that is metrisable by an ultrametric. Therefore our
results are generalisations of some of their results.

We have three applications of Theorem| 2.1, which connecisAtchimedean analy-
sis and general topology.

First, Gy(X, k) satisfies the weak version of the automatic continuity taeoif k

is a local field (Theorerh 41.6). Namely, for a Bandehlgebra«, every injective
k-algebra homomorphism: Cyy(X, k) — & with closed image is continuous. In
particular, it gives a criterion for the continuity of a fafitll linear representation of
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Cud(X, k) on a Banach space.

Second, for an extensiok/k of complete valuation fields, the ground field ex-
tension BSG(X) — BSG(X) induced by the inclusion g(X,k) — Cupg(X, K)

is a homeomorphism (Proposition ¥.9). There is another rgidield extension
K&Cha(X, k) — Cpa(X, K) given by the universality of the complete tensor prod-
uct® in the category of Banack-algebras. We will see theffierence of those two
in Theoreni 4.112.

Finally, we show that the natural continuous m¥p— UF(X) is a homeomor-
phism onto the image if and only X is zero-dimensional and Hausdib{Lemma
[4.13). We establish Gel'fand theory for totally disconmeekctompact Hausdfir
spaces in this case (Theorem 4.19) using a non-Archimeda@ralisation of Stone—
Weierstrass theoreni([Berl] 9.2.5. Theorem). Here, Gadiflaeory means a natural
contravariant-functorial one-to-one correspondence/éen the collectior’(X) of
equivalence classes of totally disconnected compact Heflishaces which contain
X as a dense subspace and the&s€K) of closedk-subalgebras of g(X, k) separat-
ing points ofX.

We remark that the Berkovich spectrum of a Banach algebraadogous to the
Gel'fand transform of a commutativ@*-algebra. We study Berkovich spectra in
this paper expecting that many facts for Gel'fand trans®atso hold for Berkovich
spectra. For example, it is well-known that an initial objecthe category of com-
pact Hausddf spaces undeX exists and is constructed as the Gel'fand transform
AMc(Cpg(X, C)) of the commutativeC*-algebra Gq(X, C) of bounded continuoug-
valued functions oiX. Therefore our result for the universality of Bg®) is a direct
analogue of this fact. We recall another construction ofratial object in the cat-
egory of compact Hausdfirspaces undeX. The Stone€ech compactificatioX

of X is constructed as a closed subspace of a direct product edopthe closed
unit discC° c C, and it admits a canonical continuous map- X such that every
bounded continuou8-valued function onX uniquely extends to a continuous func-
tion onBX. This extension property guarantees th&tis also an initial object in
the category of compact Hausdiospaces undeX. One sometimes assumes tbxat
is a completely regular Hausdbspace in the definition g#X so thatX — gXis a
homeomorphism onto the image, but we do not because we atiowpactifications
of X whose structure morphism is not injective. Imitating thestouction ofgX, we
construct a compactification X) of X as a closed subspace of a direct product of
copies of the closed unit did¢ c k. We also compare BCX) and SG(X), and
prove that they are naturally homeomorphic to each otheeiXdvhenk is a local
field or a finite field.

In §1.7, we recall the definition of Berkovich spectra. §b.2, we recall the Stone
space UFX) associated t&X. In §1.3, we show the universality of UK{.

In §2.1, we state the main theorem (Theoréml] 2.1). In order tofyet;
we construct two set-theoretical maps supp: B3¢ — Spec(Gq(X, k)) and
Ch,: Spec(Gd(X,k)) — UF(X). We show that the composite ¢h, = Ch, o
supp: BSG(X) — UF(X) is a homeomorphism. Its proof is not straightforward,
and is completed in the following two subsections§Bad, we show that every closed
prime ideal of Gy(X, k) is maximal. In§2.3, we verify that the image of supp coin-
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cides with the subset of closed prime ideals, and we provétthaestriction of Chon
the image of supp is bijective. After that, we verify thats(Jyis a homeomorphism,
and this completes the proof of Theoreml 2.1.

In §3.7, we compare BSECX) and SG(X) in the case wheré& is a local field or a
finite field. In§3.2, we observe a connection between B&) andsX. We show
that BSG,(X) is homeomorphic t@X for specialX’s.

In §4], we deal with the three applications of Theofeni 2.1 meertabove.

1 PRELIMINARIES

In this section, we recall the definition of the Berkovichajpem. #,(<”) of a Banach

algebraeZ, and the Stone space Uf)(associated tX. For more details, see [Berl]
and [Ber?2] for Berkovich spectra, and see [Ban], [Jah], 2htand [Sto3] for Stone
spaces.

1.1 BERKOVICH SPECTRA

A Banach k-algebraneans a pair4,|| - ||) of a unital associative commutatike
algebrage7 and a complete submultiplicative non-Archimedean ndjrim|: & —
[0, ). We often write< instead of &, || - ||) for short. Let 7, ]| - ||) be a Banach
k-algebra. Sinces is unital, it admits a canonical ring homomorphigm» <7, and
we also denote by € &7 the image ofa € k. Amapx: o/ — [0, ») is said to be a
bounded multiplicative seminoraf (<, || - ||) if the following conditions hold:

() x(f —g) < maxx(f),x(g)}foranyf,ge <.
(i) x(fg) = x(f)x(g) foranyf,ge <.
(i) x(f) <||f||foranyf e «.
(iv) x(a) = |al for anya € k.

We denote byz(<7) = .#(<7,| - ||) the set of bounded multiplicative seminorms of
(«, ] - II) endowed with the weakest topology for which for aing .o, the map
f* (f) — [0, )
X B X(f)
is continuous. We call#(<7) the Berkovich spectrum ofef, || - ||). By [Berl] 1.2.1.

Theorem, #i(<7) is a compact Hausdfirspace, and is non-empty if and onlydf #
0.

1.2 STONE SPACES

A U c X is said to beclopenif it is closed and open. We denote by OQ(c 2X
the set of clopen subsets ¥f A topological space is said to bezero-dimensional
if CO(X) forms an open basis of. The space CO{) possesses much information
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about the topology oK whenX is zero-dimensional. The most elementary example
of a zero-dimensional space is the underlying topologipatse ofk. For eactc € k
ande > 0, the subsets df of the forms{c’ e k| |c' —c| < €}, {c e k|| -] < €},

{¢ ek||c—c|>¢€},and{c’ ek||c’ —c| > €} are clopen.

The set COX) is a Boolean algebra with respect\o A, —, and L given by setting
UvV :=UuV,UAV :=UnV,-U = X\U, and_L:= 0 respectively fotJ,V € CO(X).

We recall the notion of an ultrafilter of a Boolean algebrar feaders who are not
familiar with Boolean algebras and filter§, [Joh] ahd [Sto8yht be helpful. For a
Boolean algebraX, v, A, =), an.Z c Ais said to be dilter of (A, v, A, -) if it satisfies

the following:

(i) - Le.Z.
(i) aAnbe Z foranya,be .Z.
(i) avbe # foranyae Aandbe .#.

Afilter % of (A, v, A, -) is said to be awltrafilter if % ¢ A and if for any filter.7’
of (A,V,A,-), # c F ¢ Aimplies.# = .Z’. Itis equivalent to the condition that
1¢ Z and eithera € .# or L a € % holds for anya € A. For eachS c A, the
smallest filter# of (A, v, A, =) containingS exists. ThenZ is a proper subset & if
andonly ifa; A --- A ap #L foranyn € N\{0} and @y, ..., a,) € A". For any filter.7
of (A, v, A, =) with F C A, there exists an ultrafilte#” of (A, v, A, =) containing#
by Boolean prime ideal theorem. The set of ultrafiltersff\, A, =) is endowed with
the topology described in the following way: Its subgetis open if and only if for
any.# € %, there is ara € .# such thaty €  for any ultrafilter? of (A, v, A, =)
containinga. Applying this construction to CX), we denote by UFX) the resulting
topological space, and we call it tf8tone spacassociated tX. For example, the
subset

F(X) ={U € COX) | xe U} c CO(X)

is an ultrafilter of (COK), v, A, =) for any x € X, and we call such an ultrafilter a
principal ultrafilter.

1.3 UNIVERSALITY OF THE STONE SPACE

We denote by CX, Y) the set of continuous magfs X — Y for topological spaces
X andY, and by Top the category of topological spaces and contmuoaps. We
also deal with the full subcategory TDCHTapTop of totally disconnected compact
Hausdoff spaces.

DerINITION 1.1 For a categony, a full subcategory” c ¢, and anA € ob(%),
a ¢’-object under As a pair B, f) of aB € ob(¥”) and anf € Homy (A, B). Here
we regardB as an object o% through the inclusios” — ¥¢’. We call f the structure
morphism of B, f) or simply of B. We denote byA/%” the category of6’-objects
underA and morphisms compatible with the structure morphisms.
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In the cases” = ob(Top), for anX € ob(Top) and aY, f) € ob(X/%”), we call f the
structure map o¥. We often abbreviatey( f) to Y.

DerINITION 1.2, For a categorg’, an object of ¢’ is said to benitial if Hom« (1, A)
consists of one morphism for aye ob(%).

An initial object is unique up to a unique isomorphism if itigs. For example, for
a categorys’, a full subcategory” c ¢, and anA € ob(¥), a (B,t) € ob(A/%”) is
initial if and only if the map

Hom4(A,C) — Homy (B,C)

f » fou

is bijective for anyC € ob(%”). In other wordsB is an initial ”-object unde’A with
respect ta if and only if for anyC € ob(¢”) and anyg: A — C, there exists a unique
39: B—> Csuchthag=go..

THEOREM 1.3. The correspondence %~ UF(X) gives a functorUF: Top —
TDCHTopwhich is the left adjoint functor of the inclusiGloCHTop — Top.

We remark that [BJ] Proposition 5.7.12 and the universalitthe Stone€ech com-
pactification imply Theorem 113. We will prove Theorem| 1.&mexplicit way at the
end of this subsection. For the proof, we prepare severahisrand a proposition.
We note that for a categofy and a full subcategory” c ¢, a functord: € — €”’
is a left adjoint functor of the inclusioh: ¥’ — % if and only if there is a natural
transforme: id¢ — | o J such that the induced map

Home (J(A), B) — Homy(A, I(B))
f > fou

is bijective for anyA € ob(¥) andB € ob(¥”). This is equivalent to the condition
thatJ(A) is initial in A/%” with respect to the adjunctian: A — 1(J(A)) = J(A) for
anyA € ob(¥). In order to give a proof of Theorem 1.3, we show several &umen-
tal properties of the Stone Space. We remark that this ginestarnative proof of
Theorem 3.13 in [Tar].

An x € X is said to be &luster pointof an.# € UF(X) if .# contains all clopen
neighbourhood ok. Eachx € X is a cluster point of the principal ultrafilte¥ (x) €
UF(X). Unlike a set-theoretical ultrafilter, the existence ofuster point gives a strict
restriction to an ultrafilter as is shown in the following leva. An ultrafilter consists
of open subsets, and hence carries more information on plodoigy of X than a set-
theoretical ultrafilter does.

LeMMA 1.4. If an.# € UF(X) has a cluster point, thet# is a principal ultrafilter.

Proof. Let x € X be a cluster point of#. Then.# contains the principal ultrafilter
Z(X), and hence coincides with (x) by the maximality of an ultrafilter. O

For a non-empty family# of sets, we sef).# = Nueszr U. We give an explicit
description of the set of cluster points of a filter.
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LemMA 1.5, The set of cluster points of a#f € UF(X) coincides with") .#.

Proof. For a cluster poink € X of #, one hasx € N #(xX) = N % by Lemmd_1}.
For anx € N %, assume that there isth € CO(X) such thatx e U ¢ .#. Then one
obtainsX\U € .7, and it contradicts the conditione () .%. Thusx s a cluster point
of #. o

LemMmA 1.6. If X is a discrete infinite set, thedF(X) contains a non-principal ul-
trafilter.

Proof. The cardinality of the set of principal ultrafilters is at méX, while #UF(X)
coincides with 2™ in the case wherX is a discrete infinite set by [Enhg] 3.6.11. The-
orem. m]

ProrosITION 1.7. Suppose that X is zero-dimensional.
(i) X is compact if and only if every ultrafilter has at leasteotiuster point.
(i) X is Hausdoyfif and only if every ultrafilter has at most one cluster point.

(iif) X is a totally disconnected compact Hausgi@pace if and only if every ultra-
filter has precisely one cluster point.

The assertion is an analogue of the classical result fothsetretic ultrafilters, and
the following proof imitates the proof of it. For the classicesult, se€ [Erig] 1.6.11.
Proposition and 3.1.24. Theorem.

Proof. WhenX is zero-dimensional is Hausdoff if and only if X is totally discon-
nected, and therefore the criteria (i) and (ii) immediateiply the criterion (iii).

If X is compact, an ultrafilter has a cluster point because thlersattion) .% is
non-empty by the finite-intersection property of a compaeice. On the other hand,
suppose that every ultrafilter has at least one cluster pdkssume thafX is not
compact. Sinc& is zero-dimensional, there is a clopen coverigf X which has no
finite subcovering. The set’ = {U € CO(X) | X\U € %} of complements satisfies
¥ = 0 and any finite intersection of clopen subset/ins non-empty. Therefore
there is anZ € UF(X) containing?’. One has\.% c N ¥ = 0, which contradicts
the assumption that every ultrafilter has at least one alpsiet by LemmaZ1l5. Thus
X is compact.

If X is Hausdoff, then the continuous mag (-): X — UF(X) is injective because
X is zero-dimensional. Suppose that every ultrafilter has@trane cluster point.
Assume thak is not Hausddf. There are two distinct pointgy € X such that any
clopen neighbourhoods sfandy have non-empty intersection. In other words, one
hasU NV # 0 forany U, V) € % (X) x.Z(y). Take a clopen neighbourhobde .% (x)

of x. By the argument above, one hdsU ¢ .#(y), and henc&) € .Z(y). It implies
Z(X) c Z(y), and therefore7 (x) = .Z (y) by the maximality of an ultrafilter. Botk
andy are two distinct cluster points of (X) = .#(y), and it contradicts the assumption
that every ultrafilter has at most one cluster point. THus Hausdoff. m|

As a consequence, for a zero-dimensional spgame obtains the following criteria.

DOCUMENTA MATHEMATICA 19 (2014) 769-799



776 TOMOKI MIHARA

(i)’ The spaceXis compact if and only if#(-) is surjective.
(i)’ The spaceX is Hausdoft if and only if % () is injective.
(iii)” The spaceX is a totally disconnected compact Haudtiepace if and only if
Z(-) is bijective.
We remark that the bijectivity af#(-) in (iii)” can be replaced by the condition that
% (-) is a homeomorphism by the following three lemmas.
LEMMA 1.8 The.Z(-): X - UF(X) is continuous and its image is dense.

Proof. For aU € CO(X), the pre-image of the open sub$st € UF(X) | U € %}
isU c Xitself. ThereforeZ(-) is continuous. Let# c CO(X) be an ultrafilter, and
% < UF(X) an open neighbourhood &f. By the definition of the topology of UK,
there is aU € CO(X) such that € . and? = {%’ e UFX) |U € F'} Cc % .
ThenU # 0 becaus® ¢ %, and henceZ (U) # 0. Since#(U) c #(X)n Yapc
F(X)N %, one concludes# (X) N Z + 0. m|

LemMA 1.9. The spac@&JF(X) is a totally disconnected compact Hausgiepace.

This assertion is contained in the general fact of the Stpaeesin [Sto?] Theorem
IV 2, but we give a proof for reader’s convenience.

Proof. For aU € CO(X), one has
UF(X) = {# e UF(X) |U € ZF} U{F € UF(X) | X\U € .Z},

and hence CO(UK)) forms an open basis of UKJ. Therefore by Propositidn 1.7
and Lemma_1]8, it sfices to show that UK) is compact and Hausd®y because a
continuous map from a compact space to a HauBdpace is a closed map.

For 7,94 € UF(X) with .# # ¢, take aU € CO(X) contained in precisely one
of them. Then the complemedt\U is contained in the other one. Therefore the
partition

UF(X) = {Z € UF(X) |U € Z} U {Z € UF(X) | X\U € .7}

by clopen subsets of UK] separates and¥. Thus UFK) is Hausdoff.
Assume that UEX) is not compact. There is a clopen coverigof UF(X) which
has no finite subcovering. In particular, the subset

¥ = {U € CO(UFX)) | UF(X)\U € %}

satisfies\ ¥ = 0 and any finite intersection of clopen subsets belonging tcs
non-empty. Since the mag () is continuous, the inverse image

FOV ={ZOHV) | Ver]

is a non-empty subset of CRY satisfying that"\ .#(-)*? = 0 and any finite inter-
section of clopen subsets belonging#(-)* ¥ is non-empty. Therefore there is an
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Z € UF(X) containingZ (-)*¥ by the facts recalled i§1.2. SinceZ covers UFK),
there is aU € % containing.#. The pre-image/ € Z(-)*¥ of the complement
UF(X)\U € 7 is contained in# becauseZ(:)*¥ c .%. By the definition of the
topology of UFK), there is aW € .%# such thatW € ¥ implies¥ € U for any
¢ € UF(X). In particular, for anyx € W, W c . (x) and henceZ(x) € U. There-
fore one obtain®Vv c . (-)"}(U). SinceV,W € .#, one has/ N W € .Z and hence
VNW # 0. Take arx e VNW ¢ X. SinceV = .Z(-)"1(UF(X)\U), one hasZ(x) ¢ U,
which contradicts the conditione W c .%(-)"1(U). Thus UFK) is compact. m|

LEmMmA 1.10 If X is a totally disconnect compact Hausgspace, then#(-): X —
UF(X) is a homeomorphism.

In particular,.%(-): UF(X) — UF(UF(X)) is a homeomorphism without the assump-
tion onX by Lemmd_1.D.

Proof. The assertion immediately follows from Proposition] 1.9 ,(liemmda1.8, and
LemmalI®, because every continuous map between compastéffitspaces is
closed. o

Proof of Theoreri 113By Lemma1.8 and Lemnia 1.9, (UR), #(-)) is an object of
X/TDCHTop. LetY, Z € Top andf € C(Y, Z). For anZ € UF(Y), the subset

UF(f)..7 = {U e COY) | ¢ *(U) € 7.

is an ultrafilter of COZ). The map UF{).: UF(Y) — UF(Z) is continuous by the
definition of the topologies of UM) and UFZ). The correspondencés~s UF(Y)
andf ~» UF(f). gives a functor UF: Top» TDCHTop. Therefore it sfices to show
that (UF(X), .# () is an initial object ofX/ TDCHTop.

Let (Y, ¢) be an object o)X/ TDCHTop. Since the image of is dense in URX) by
Lemmd 1.8 and is Hausdoff, a continuous extension UEY: UF(X) — Y is unique
if it exists. The diagram

X — Y

70| EC
UF) —2, UFY)

commutes by the definitions of7 () and UF({)., and the right vertical map is a
homeomorphism by Lemma_1]10. Therefore one obtains a emnis extension
F ()L o UF(p).: UF(X) = Y of ¢. m]

2 MAIN RESULT

2.1 STATEMENT OF THE MAIN THEOREM

We denote by gq4(X, k) the Banactk-algebra of bounded continuousralued func-
tions onX endowed with the supremum norm. We put REQ = .Z(Cpa(X, K)).
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Let denote the evaluation map
uw: X = BSG(X)
X = (W)= f(X)0),
which is continuous by the definition of the topology of B$X).

THEOREM 2.1 There is a natural homeomorphidB8G(X) = UF(X) compatible
with ¢ and % (-).

In other words, there is a natural transfodm BSG; — UF such thatd(Y) lies in
Homy,rochtop((BSC(Y), w), (UF(Y), .#(-))) for any topological spac¥. In particular,
it gives an isomorphism (BS&J, «) = (UF(X),.%#(-)) in X/TDCHTop, and hence
(BSC(X), i) satisfies the same universality as (MF(% (-)) does.

COROLLARY 2.2. The spac8SG(X) is initial in X/ TDCHTopwith respect tax.
COROLLARY 2.3. The functor

BSCG: Top — TDCHTop
X s BSG(X)
is a left adjoint functor of the inclusion of the full subogdey.
COROLLARY 2.4. The image ofi: X — BSC(X) is dense.

In order to prove Theorem 2.1, we introduce two set-thecaibthaps supp and Ch
For anx € BSC(X), its support supp{) = {f € Cpq(X,K) | X(f) = 0} is a closed
prime ideal. We call the map

supp: BSG(X) — Spec(Gd(X, k))
X +—  suppk)

the support map. For am € Spec(Gg(X, K)), the family Ch, = {U € CO(X) |

1y, ¢ m}is an ultrafilter, where J: X — k denotes the characteristic function of
U € CO(X). Indeed, Ch is stable undeu becausenis an ideal, and is stable under
N becausenis a prime ideal. The maximality of Ghfollows from the property that
either , e mor 1x,u = 1 - 1y € mholds for anyU € CO(X) becausen is a prime
ideal. We call the map

Ch,: Spec(Gya(X, k)) — UF(X)
m +— Chy
the characteristic map. We put &k, := Ch, o supp: BSG(X) — UF(X).
ExaMPLE 2.5. For anx € X, supp{(X)) c Cpd(X K) is the maximal ideal consist-

ing of functions vanishing ax, and one has Ghypg) = Z(X). Thus Clyppis an
extension of the continuous map(-): X — UF(X) via .

We prove that Chyppis @ homeomorphism undét in three steps 2.2 and§2.3.
First, we show that every closed prime ideal gf k) is a maximal ideal. Second,
we verify that the image of supp coincides with the subsetaxfed prime ideals, and
study the restriction of Ghon the image of supp. Finally, we prove thatsGJgis a
homeomorphism.
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2.2 MAXIMALITY OF A CLOSED PRIME IDEAL

We prove that every closed prime ideal of4C¢, k) is a maximal ideal. We remark
that this is proved by Alain Escassut and Nicolas MainatfEM1] Theorem 12 in
the case wherX is an ultrametric space. Here we assume nothinj,cend henc&
is not necessarily metrisable.

PROPOSITION 2.6. For any m, m, € Spec(Gd(X, K)) with my ¢ mp, Chy, = Chy,.

Proof. The conditionmy, c m, implies Chy,, ¢ Chy, by definition. Since Cf, is an
ultrafilter, the inclusion guarantees g&h= Chy,. mi

PropPOSITION 2.7. For closed prime ideals mmy, ¢ Cya(X, K), the equalityChy, =
Chy, implies m = my.

Proof. Suppose Ch, = Chy, for closed prime idealsy, my ¢ Cyha(X, K). It suffices

to showm; ¢ m,. Take an element € m;. For a positive real numbet, we set

U = {xe X||f(X)] < €}, and therJ. c X is a clopen subset, because it is preimage
of the clopen subsdt € k | [f(X) — c| < €} by the continuous functiorf. Set

fe .= (1 -1y, )f € Cpa(X. k). Sincef € my, one hasf. € my. The absolute value
of f. + 1y, € Cpa(X, k) at each point irX has a lower bound mjg, 1}, and hence its
inverse is bounded and continuous. It implies that 1y, is invertible in Gqy(X, k),

and thereforeJ, ¢ my. One hadJ, € Chy, = Chy,, and hence * 1, = 1x\u, € M.
Thusf. = (1-1y,)f € mp, and the inequalityjf — f|| = ||1y_ |l < e guarantee$ e m,

by the closedness ofy,. O

ProposITION 2.8. Every closed prime ideal @y4(X, k) is a maximal ideal.

We note that for a Banadkialgebraes, every maximal ideal ofs is a closed prime
ideal by [BGR] 1.2.4. Corollary 5, but the converse does ratlhin general. For
example, the Tate algebkél'} has a non-maximal closed idg@} c k{T}.

Proof. For a closed prime ideahy c Cpq(X, k), take a maximal ideaty c Cpg(X, K)
containingm;. Thenny, is also a closed prime ideal by [BGR] 1.2.4. Corollary 5. The
assertion immediately follows from Proposition]2.6 andf@sition2.7. o

2.3 PROOF OF THE MAIN THEOREM

ProrosiTiON 2.9. The image o$uppis the subset of closed prime ideals.

Proof. Every closed prime ideah ¢ Cyy(X, k) is @ maximal ideal by Propositign 2.8,
and hence there is ate BSG(X) such that supp = mby the argument in the proof
of [Ber]] 1.2.1. Theorem. m]

ProposITION 2.10. The restriction ofCh, on the image o$uppis bijective.
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Proof. If X = 0, then Spec((X, k)) = UF(X) = 0, and hence we may assutde: 0.

By Propositio 2.7 and Propositién 2.9, itfoes to verify the surjectivity. Take an
ZF € UF(X). Set

m:= {f € de(X, k)

inf f = X, K).
ngigupl (o] O}Cde( .K)

Thenm c Cpg(X, K) is an ideal, and ¥ m becauségl(x)| = 1 for anyx € X # 0. We
verify that the map

I-1l7: Cod(X,K) — [0, )
f - ng;iguplf(x)lﬂlfll

is continuous. The ma- || is continuous at any € Cpq(X, k) with ||f|lz = O
because for ang € Cpg(X, K)\{f}, there is dJg € .F with sup,, |T(X)| < |If —gll and
hence

IA

lloll.# JQ;: iguplf(X) - (f =9I

nt_supmax(1f (L I( - Q)3 < If - gl

IA

The mag| - ||~ is locally constant at any € Cypg(X, k) with || f||= # 0 because for any
g € Cpa(X K) with [If —gll < [If|l#, we have

lolz < Jg;, feuuplf(X) -(f-9MXI < Ulg; iuupmax{lf(X)l, I(f —9)(¥)N}
< JQ;: max{iguplf(X)l,llf - gll} = Ifllz.

Thereford| - || # is continuous. Sinc@} c [0, ) is closedmis a closed ideal. For
f,g € Cpa(X, k) with fg € m, suppose ¢ m. We proveg € m. If g = 0, theng € m.
Therefore we may assunge# 0. Sincef ¢ m, there is somep > 0 such that the
clopen subseV = {x € X | |[f(X)| < €} does not belong to*¥ for any 0< € < .
Let 0 < € < &. The conditionfg € m implies that there is somd € % such
that sup., [((f)(X)| < €2. Since.Z is an ultrafilter, one haX\V € .# and hence
U\V =UN(X\V) € .Z. Foranx € U\V, the inequalityg(x)| = | f(X)| "} f (X)g(X)| < €
implies supcy\v [9(X)| < €. One obtainglgll = O, and hencg € m. Thereforem
is a closed prime ideal. Léf € .. One getd|1yll# = 1 by definition, and hence
U € Chy. Itimplies.# c Chy,. Since.% is an ultrafilter, one conclude% = Chy,.
Thus.Z is contained in the image of Gy, by Proposition 2.9. O

Proof of Theorerh 2]1The map Chyppis compatible withy and.Z#(-) as is shown in
Exampld 2.b. We prove that GRpis a homeomorphism. We first prove the bijectivity.
Since the restriction of Ghon the image of supp is bijective by Propositlon 2.10,
we have only to show that supp is injective. For that purpésea maximal ideal

m c Cuy(X, k), we consider the relation between the quotient semirprram|| atm
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and the map - [lcr, defined in the proof of Propositian 2]10. For e Cpg(X, k), one
has

If +mil =inf|If —gll > inf [If - dlicn, = inf [Iflicy, = lIflich,
gem gem gem

Take arr € R with ||f|lch, < r. Set
U:={xe X]||f(X)]>r}.

ThenU c X is clopen by an argument similar to the one in the proof of Bsitpn
[24. IfU € Chy, then one has

f = inf sup|f(x)|> inf sup|f(X)]> inf r=r

Ifllc, = jnf suplfe)l = jnf  sup |f() = inf
and hence it contradicts the conditipfilch, < r. ItimpliesU ¢ Chy, and therefore
1y € m. One obtains

If +mil<iif -ufll=lxufll <

One getd|f + ml| = [[fllch,-

Next, we prove that the mdp|ich, is a bounded multiplicative seminorm opdCX; k).
Itis a bounded power-multiplicative seminorm by definitiand it sufices to show the
multiplicativity. Let f,g € Cyoa(X, K) such that|fgllch, < IIfllcn,lldllch,. In particular,
[[fllch,llgllch, # 0 andf,g ¢ m. Take ane > O such that < ||f|lch,, € < ||9llck,, and
lIfglich, < (Iflich, — €)(llglich, — €)- Set

V1= {xe X[ If(I > Ifllcn, — €}
V, = {x € X|19(x)| > lIdlicn, — €} -
ThenVy, V2 ¢ X are clopen. IV, ¢ Chy, thenX\V; € Chy, but the inequality

Ifllch, < sup [T(X)] < Ifllch, — €
XeX\Vy
contradicts the condition> 0. Therefore/; € Chy,. Similarly, one obtain¥, € Chy,,
and hencé/; NV, € Chy,. Then the inequality

Ifdlich, < (Ifllcn, = )(Idllen, =€) < inf  sup ()] g

m xeV1NVoNnW

< ngghn iumrlalf(X)g(X)l = |Ifdlich,

holds, and it is a contradiction. Thii$gdllch, = IIfllcn,lldllch,. We conclude that the
mapl|| - llch, iS @ bounded multiplicative seminorm, and hence corresptmd point
in BSG(X).

Now take anx € BSG(X). Sincey := || - llch,4x € BSG(X) coincides with the
quotient seminornij - +supp)||, one hax(f) < y(f) forany f € Cpy(X, K). Itimplies
that x gives a bounded multiplicative norm of the complete resifielel k(y) aty,
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because supp) is a maximal ideal. It impliex = y becausg/(f) = y(f1)? <
x(f1)~1 = x(f) forany f € k(y)*. Thusx s reconstructed from its imagedy Ch,pp
and hence Clppis injective.

Finally, we verify the continuity of Chpp, Take aU € CO(X), and setZ = {¥ ¢
UF(X) | U € #}. The pre-image o# by Chyyppis the subset

{x € BSG(X) | U € Chapd¥)} = {x € BSG(X) | 1y ¢ supp&)}
= {x€ BSG(X) | x(1y) > 0} c BSG(X),

and it is open by the definition of the topology of B&K). Therefore Chyppis a con-
tinuous bijective map between compact Hausidgpaces, and is a homeomorphism.
This completes the proof. m]

We give several corollaries. These are generalisationsméf results in [EM1] and
[EM2Z]. In those papers, Alain Escassut and Nicolas Mailetal with ultrametric
spaces, while we deal with general topological spaces. \Wmanle that they deal
with not only the class of bounded continuous functions, dsb that of bounded
uniformly continuous functions with respect to the unifastructure associated to the
ultrametric.

COROLLARY 2.11 The mapsuppgives a bijective map froBSG(X) to the set of
maximal ideals oC,4(X, k), and every maximal ideal @yq(X, k) is the support of a
unique bounded multiplicative seminorm Ggy(X, k).

This is a generalisation of [EM1] Theorem 16 for the class @fifided continuous
functions.

Proof. We proved that the injectivity of supp in the proof of Theor2d, and the
image of supp coincides with the subset of maximal ideals top®&sition[2.8 and
Propositior Z.B. Thus the assertion holds. m]

COROLLARY 2.12 Every bounded multiplicative seminorm @gq4(X, k) is of the
form

Il : Coa(X, k) — [0, 00)
f - Jgg,fguplf(x)l

for a unique# € CO(X).

Proof. Let x € BSG(X). We proved the equalitx = || - [ich,,4x In the proof of
Theoren{ 2. The uniqueness of & € CO(X) follows from the surjectivity of
Chsypp mi

We denote by URK]) the set of set-theoretical ultrafilters ¥f We compare UFX|)
with UF(X) through the bijection Clyppin Theoreni Z1.
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COROLLARY 2.13 The inclusionCO(X) — 2X is a Boolean algebra homomor-
phism, and induces a surjective map

(-NCOX)): UF(X) — UF(X)
U  UNCOX).

For %,%" € UF(X)]), the equalitylimy [f(X)] = limg. |[f(X)| holds for any fe
Chd(X, K) if and only if 2 n CO(X) = %’ n CO(X).

Proof. Let .# € UF(X). Since.Z is a family of subsets oK which is closed under
intersections and satisfi@s¢ .%#, there is anz € UF(X|) containing.#. It implies
the surjectivity of the given correspondence. Ete UF(X|) andf € Cyy(X K).
The limit limg, |f(X)| exists because the boundednesd a@fuarantees that(X) is
relatively compact irR. Moreover, sinceZ N CO(X) c %, we have||f|l4 ncox) =
limg, | f(X)|. Thus the second assertion follows from the injectivitytad inverse map
of Chsypp: BSG(X) — UF(X). m]

COROLLARY 2.14 Every bounded multiplicative seminorm @gqy(X, k) is of the
form

Coa(X,k) — [0, )
f - |I02r/n|f(X)|

for a 7 € UF(X|), wherelimy, |f(X)| denotes the limit of th&-valued continuous
function|f|: X - R: x |f(X)| along% for each fe Cyy(X, k).

This together with Corollary 2.13 is a generalisation of [EMorollary 16.3.

Proof. Every x € BSG(X) is presented a- ||# by .# = ChsypdX). By Corollary
[2.13, there is & < UF(X|) containing#, and satisfiex(f) = ||f|l# = limy |f(X)|
forany f € Cyy(X K). O

A topological spac« is said to bestrongly zero-dimensioné#lfor any disjoint closed
subsetd, F’ c X there is aU € CO(X) such thatF ¢ U c X\F’. We note that
every strongly zero-dimensional Hausff@apace is zero-dimensional. For example,
every topological space metrisable by an ultrametric isshdipuntable strongly zero-
dimensional Hausdéispace.

COROLLARY 2.15 Suppose that X is strongly zero-dimensional. Bt 7%’ €
UF(X]), the equalitylimg, |f(X)| = limg. |f(X)] holds for any fe Cyy(X k) if and
onlyif Fn F’ # 0 for any closed subsets F' c X withFe % and F € %".

This is a generalisation of [EM1] Theorem 4 for the class ofifmted continuous
functions, and together with Corollary 2]13 implies [EMTjdorem 1. We remark if
we removed the assumption of the strong zero-dimensigntién there are obvious
counter-examples. For example, a connected space is tienggly zero-dimensional
unless it has at most one point, and evemalued continuous function on a connected
space is a constant function. In particular, every setretezal ultrafilter gives the
same limit.
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Proof. To begin with, suppose that the equality §imf(x)| = limg |f(x)| holds for
any f € Cpg(X, k). Then we haves n CO(X) = %’ n CO(X) by Corollary{Z.1B. Let
F,F’ c X be closed subsets withe % andF’ € %’. Assum&nNF’ = (. Then there
isaU € CO(X) such thatr c U c X\F’ because is strongly zero-dimensional. We
obtainU € 7 n CO(X) andX\U € 7’ n CO(X), and hence

lim |14 (91 = I1ullzncopy = 1 # 0 = Iullz ncopy = lim [1u (X,

where 1,: X — kdenotes the characteristic functionf It contradicts the assump-
tion. ThuskF N F" # 0.

Next, suppose tha@ N F’ # 0 for any closed subsefs F’ c X with F € % and
F’ € %’. In order to verifyZz n COX) = %’ n CO(X), it suffices to showzZ N
COX) c 7’ N CO(X) by symmetry. Let € % n CO(X). SinceU N (X\U) =
0, we haveX\U ¢ %’ n CO(X) by the assumption. Therefote € %’ N CO(X)
by the maximality of an ultrafilter. Thu& n COX) c %’ n CO(X), and hence
% N COMX) = ' n COX). It implies that the equality limy |f(X)| = limg |f(X)|
holds for anyf € Cy4(X, k) by Corollary{2.18. m|

COROLLARY 2.16 The residue field of a maximal ideal Gf4(X, K) is k if and only
if it is a finite extension of k.

This is a generalisation of [EM2] Theorem 3.7 for the clasdadinded continuous
functions.

Proof. Letm c Cpy(X, k) be a maximal ideal whose residue field is a finite extension
K of k. Take an arbitraryf € K. SinceK is a finite extension ok, f is algebraic
overk. We provef € k. Assumef ¢ k. Let P(T) € k[T] denote the minimal
polynomial of f overk. Let L denote a decomposition fieR] and fix an embedding
K — L. We endowlL with a unique extension of the valuation kf Sincef ¢ Kk,
P(T) is an irreducible polynomial ovet with zerosf, ..., fq in L\k. SincelL is a
finite extension ok, k is closed inL. Therefore for any € N N [1,d], the map
&1k [0,00): @ |a— fj| is a continuous map witki(a) > r; for anya e k for
somer; € (0,c0). In particular, we havéP(a)l = [1%,& (@) > [I%,r > 0. On
the other hand, sincK is the residue field of, there is anF € Cyy(X, k) whose
image inK is f. ThenF satisfiesP(F) € m. By the proof of Propositiof 2.10,
m coincides with the support of the bounded multiplicativens®rm|| - |lcn,, and
hence there is & € Chy, such that sup, |P(F)(X)| < ]‘1?:l ri by the definition of
Il llch,. SinceU # 0, there exists ax € U. However, we havé&(x) € k, and hence
IP(F)(X)| = IP(F(X)| > ]’Iidzl ri. Itis a contradiction. Thu$ € k. We conclude that
K=k O

COROLLARY 2.17. Anideal | ¢ Cyy(X k) coincides withCpq(X, K) if and only if |
satisfies

inf sup|f(x)| >0
XxeX fes

for some non-empty finite subsetS.
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This is a generalisation of [EM1] Theorem 5 for the class ofifed continuous
functions.

Proof. The suficient implication is obvious becauseel Cyy(X, k). Suppose that
does not coincides withg(X, k). Take a maximal ideah c Cyy(X, k) containingl.
Let S ¢ mbe a finite subset. Sinde ||ch, satisfied|fllcy, = 0 for any f € m, we
have that for any € (0, ), there is &J € Chy, such that sup, |f(X)| < € for any
f € S. In particular, we obtain infx sup.g | T (X)| = O for any non-empty finite subset
Scl. O

We remark that Corollafy 2.17 is also verified in a direct wathwo use of our results.
Indeed, let c Cpy(X, k) be an ideal such that there is a non-empty finite subset
with r = infyex SUB g [T (X)] > 0. We putUs = {x € X | [f(X)| = r} € CO(X) for each
f € S. Then by the assumption, the family = {U¢ | f € S} coversX. Taking a
total order onS, we putS = {fo,..., fg}. Then settindJ; := U\ Ulj_:]bUfj for each
i € NN[0, d], we obtain a refinemery, ..., Uq} of 7 consisting of pairwise disjoint
clopen subsets. For eatlke N N [0, d], we havelf(X)| > r for anyx € Uj, and hence
g = (1-1y) + 1y f is an invertible element of &(X, k) with ||gi‘1|| < maxrt,1},
where 1, : X — k denotes the characteristic functionlf We obtain

d d
1=Zlui=_ 1u,g7 i el,
i=0 i=0

and thud = Cyy(X, K).

3 RELATED RESULTS

3.1 ANOTHER CONSTRUCTION

In the case wherk is a local field or a finite field, we show that B&&) coincides
with a space SEX) defined in this section. Herelacal field means a complete
valuation field with non-trivial discrete valuation and feresidue field.

DEerFINITION 3.1 Denote by Gg(X, k)(1) c Cpg(X, k) the subset Cf, k°) of bounded
continuousk-valued functions otX which take values in the subrirkg c k of integral
elements, and consider the evaluation map

X - (k) CoaR()

X = (F(X))fecuyx k@)

By the definition of the direct product topology.is continuous. Denote by &(X) c
(k°)Cx®@) the closure of the image @f. We also denote by, the continuous map
X — SG(X) induced by, .

If kis a local field or a finite field, then (X) is a totally disconnected compact
Hausdoff space because sok.
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ProrosiTiON 3.2 The spac&Ci(X) satisfies the following extension property: For
any f e Cpy(X k), there is a uniqu&G(f) € Cpa(SCGi(X), K) such that f= SG(f)oy,.
Moreover, the equalitjff|| = ||SG(f)|| holds.

Proof. The uniqueness of SCf) and the norm-preserving property is obvious be-
causa,(X) c SG(X) is dense an#l is Hausdoft. We construct the extension §C).
Note that|k| c [0, ) is bounded if and only ifk| = {0, 1}. Thereforek| c [0, o)
is unbounded or closed. It implies that that there isaaa k* such that|f|| < |al.
For anx = (Xg)gecouxiyw) € SG(X), the valueax,1; € Kk is independent of the
choice of ana € kX, and we set SEf)(X) = axy15. Indeed, leta;,a, € k*
and supposdf|| < min{lai],|az]}. For anyy € X, one hasuk(y)ailf = allf(y)
andtl’((y)ailf = aglf(y). It implies alt’k(y)ailf = azt’k(y)ailf € k. Since the image
4 (X) c SG(X) is dense, one obtairgXx, 1y = X1 € k. By the discussion
above, one gets (f) o ¢, = f. The map S@f) is continuous by the definition
of SG(X). m]

COROLLARY 3.3. Fora(Y,¢) € X/Top, there is a unigue continuous map
SCG(p): SG(X) — SC(Y)
such thatSG(p) o ¢ = ¢, o ¢.

Proof. The uniqueness of () follows from the facts thaX is dense in S({y) and
that SG(Y) is Hausdoff. By Propositio 3.2, one has a unique continuous map

SG(p): SG(X) — (ko)cbd(Y,k)(l)

extending the composite

X 25 Y 255 SG(Y) o (k)

Its image lies in the closed subspace&G becauseX is dense in SEX). One
obtains a continuous map 8@): SG(X) — SCG(Y) such that SQdp) ot = op. O

Thus one obtains a functor

SG: Top - TDCHTop
Y s SG(Y)
(p:Y—>2Z) ~ (SGlp): SG(Y) — SG(2))

with an obvious natural transform: idrp, — SG.. We compare BScwith SG; in
the case wherkis a local field or a finite field.

LemMA 3.4 Suppose that k is a local field or a finite field endowed with the t
ial valuation, and that X is a totally disconnected compaetusidoyf space. Then
ty.: X = SG(X) is a homeomorphism.
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Proof. By the assumption df, SG(X) is a totally disconnected compact Haud@lor
space. Therefore it $lices to verify the injectivity of;, because a continuous map
from a compact space to a Hausfi@pace is a closed map. Lety € X with X # v.
Since X is zero-dimensional and Hausdiprthere is aJ € CO(X) such thatx € U
andy ¢ U. Then one hag(X)1, = 1 # 0 = ¢(y)1,, and hence(x) # 4 (y). Thus
tp.: X — SG(X) is injective. O

ProposiTION 3.5. Suppose that k is a local field or a finite field endowed with the
trivial valuation. ThenSG(X) is initial in X/ TDCHTopwith respect ta,.

We remark that the assumption on the base fiééchot necessary whexis compact.
Analysis of continuous functions on a compact space is @latesical.

Proof. For a (Y, ¢) € ob(X/TDCHTop), we construct a continuous extension
v SG(X) > Y
of ¢ in an explicit way. An extension is unique if it exists, because the imageXof

is dense in SEEX) andY is Hausdoft. Consider the commutative diagram

X —5 v

, ,
Lkl l‘k .

SG(X) 0 SCG(Y)

By Lemmd 3.4, the right vertical map is a homeomorphism, aredabtains a contin-
uous mapy = ¢, * o SG(y): SG(X) = Y. O

COROLLARY 3.6. Suppose that k is a local field or a finite field endowed with the
trivial valuation.

(i) The space&sG(X) is homeomorphic tBSC(X) under X.

(il) The spaceBSG(X) satisfies the extension property for a bounded continuous
k-valued function on X in Propositién_3.2.

(iif) The natural homomorphis@(BSG(X), k) — Cpy(X, K) is an isometric isomor-
phism.

(iv) The spaceBSG(X) consists of k-rational points, and the residue field of any
maximal ideal ofCpg(X, K) is k.

Proof. We deal only with (iv). Since every maximal ideal of{CX, k) is the support
of anx € BSG(X) as is referred in the proof of Proposition2.9, iffsees to verify
the first assertion. We recall that for a Bandehlgebrass, anx € # (<) is said
to be ak-rational point if its supportf € A | x(f) = 0} is a maximal ideal ofs
whose residue field ik. The isomorphism C(BSEX), k) — Cyy(X, K) in (iii) gives
an identification BSQX) = .#Z(C(BSG(X), k)). The assertion immediately follows
from a non-Archimedean generalisation of Stone—\Weiesstilaeorem ([Beil] 9.2.5.
Theorem (i)) for C(BSE(X), k). m|
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In particular, concerning Corollaty 3.6 (iv), any point 08Bi(X) is peaked in the
sense that the complete residue field is a peaked Bakabipebra ([Berl] 5.2.1,
Definition). A Banachk-algebrags is said to bepeakedif for any extensionK/k
of complete valuation fields, the norm o#®K is multiplicative. The notion of a
peaked point is useful when we consider the topology-thmademultiplication of
points of analytic group. Corollafy 3.6 (iv) does not holdemtk = C,. Indeed,
consider the rigid analytic discllL‘Cp) = Mc,(Cpiz}). It admits a natural embed-
ding C) — Dl(cp) into a dense subset. The boundggalgebra homomorphism
¢: Cp{z = Cud(Cy, Cp) sending the variableto the coordinate functior Cp = Cp
induces a continuous mag : BSC: (C}) — Dl(cp) underCy. Since BSE,(CY)
and DH(Cp) are compact Hausdfispaces, the image @f contains the closure of the
dense subse€t;, c D*(Cp). Thereforey* is surjective. Sinc€, is not spherically com-
plete, there is § € DY(C,) of type 4. Take arx € BSC,(Cp) in ¢ X(y). The induced
boundedC,-algebra homomorphisgy: C,{z}/supp§) — Cud(Cy, Cp)/suppf) gives
an extension of fields transcendental oGgrbecause is of type 4. Thus the point
X € BSC,(Cyp) is notCp-rational.

3.2 RELATION TO THE STONE-CECH COMPACTIFICATION

A compact Hausdd¥space is totally disconnected if and only if it is zero-dirsienal,
and hence undeX, the notion of an initial totally disconnected compact Hinrg
space is equivalent to that of an initial zero-dimensiomathpact Hausddf space.
Banaschewski constructed a zero-dimensional compactdddtispace/ X underx

in the case wher&X is zero-dimensional in_[Ban], and proved tha( is initial. In
the case wher¥ is a zero-dimensional Hausdbspace, the structure map— ¢X

is a homeomorphism onto the image aflis sometimes called the Banaschewski
compactification.

Let p be a prime number. By the argument above, BER) is one of the general-
isation of/’X. The Stone€ech compactificatiogX has a universality as an initial
object in the category of compact topological spaces uiXgdemd hence there is a
unique continuous mgpX — BSCy, (X) underX. Then a natural question arises:
“When is the magX — BSCqy (X) is @ homeomorphism?” In other words, “When
is pX totally disconnected?” In such a case, BS(X) satisfies the extension prop-
erty for an Archimedean bounded continuous functiofXoihis connection between
the Archimedean analysis and the non-Archimedean andb@ks interesting. It is
well-known that ifX is an infinite discrete space, thg is totally disconnected. In
particular, one hagN = BSCq, (N). Furthermore, Banaschewski proyéX is home-
omorphic to/X if X is a second countable zero-dimensional Haugdpace ([Ban]
Satz 6. Korollar 2). In this casgX is totally disconnected and hence is homeomor-
phic to BSG,,(X). For example, the closed unit dis; c C, for a prime number

¢ € N is a second countable zero-dimensional Hau$dgrace, and hence one has
BC; = BSCy,(C)).

We do not know whether there is an example of a totally diseoted or zero-
dimensional spacX such that the magX — BSCy (X) is not a homeomor-
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phism. Banaschewski gave the following necessary comdftio the bijectivity of
BX — BSCqy,(X) in [Ban] Satz 2. For a normal zero-dimensional spA¢cé the con-
tinuous maBX — BSCy, (X) is a homeomorphism, thexiis of Cech-dimension 0,
i.e. any finite open covering of admits a finite clopen refinement. Therefore if there
is a normal zero-dimensional space of positiech-dimension, then it is an example.

4  APPLICATIONS

4.1 AvuTOoMATIC CONTINUITY THEOREM

One of important classical problems for a commutat/ealgebra is Kaplansky
Conjecture on automatic continuity problem, which clairhattevery injectiveC-
algebra homomorphisi: Cpy(X, C) — & is continuous for any Banadb-algebra
<. Consider the following weak version: every injectiealgebra homomorphism
! Cpa(X,C) — & with closed image is continuous for any Bana&tlalgebracs.

It was proved by Kaplansky, and Solovay showed that the ctunje is independent
of the axiom of ZFC. For more details about the automatic ioaity problem, see
[Bal]. [Sol], and [Wo0]. Now it is natural to consider an angbus question in the
non-Archimedean case, and we prove its weak version in tiisection.

DEeFINITION 4.1 Let .« be a Banack-algebra, anan c &7 a maximal ideal whose
residue fieldK is a finite extension ok. For eachf € .7, we denote byf(m) the
image off in K, and by|f(m)| the norm off (m) with respect to a unique extension of
the norm ofk.

LEMMA 4.2, Let &/ be a Banach k-algebra. For a maximal ideal m .« whose
residue field is k, the canonical projectiorf - .«//m = k gives a decompaosition
&/ = k® m as the orthogonal direct sum, i.e. the equality

lla+ gll = max|al, llgll}
holds for any & k and ge m.

Proof. Since the composite — &/ -» &/ /mis a bijectivek-linear homomorphism,
one obtains a decompositie#l = k@ m as the direct sum df-vector spaces. Take
an elemenf € o/, and denote by (m) € k the image off in the quotients’ /m =

k. In order to prove the orthogonality of the direct sum, iffimes to show|f|| =
max{|f(m)|,||If — f(m)|l}. The inequality< is obvious. If|f(m)| # ||f — f(m)||, the
equality follows from the general property of a non-Archahean norm, and hence
we may assumg (m)| = ||f — f(m)||. If f(m) = 0, then one hagf — f(m)|| = 0 and
thereforef = f(m) + (f — f(m)) = 0. Supposd(m) # 0. Assumé|f|| < |f(m)|. Then
one hag|f(m)~1f|| < 1, and hence

f— f(m) = —f(M)(L - F(M)f) e K'e* = 7™

by [BGR] 1.2.4. Proposition 4. It contradicts the fdct f(m) € m, and thug|f|| =
[f(m)[ = max{|f(m)L, I — f(m)I}}. o
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We may apply Lemm@a4l2 to any maximal ideal g§(X, k) by Corollary(3.6 (iv).

CoOROLLARY 4.3. Suppose that k is a local field or a finite field endowed with
the trivial norm. For any maximal ideal nt Cpy(X, k), the canonical projection
Chd(X, k) - Cpy(X, K)/m gives a decompositidd,g(X, k) = k@ m as the orthogonal
direct sum of k-Banach spaces.

This is a partial generalisation 0f [EM1] Theorem 7, whichtss that ifX is an ultra-
metric space anklis locally compact, then the same holds.

ProrosiTiON 4.4. Suppose that k is a local field or a finite field endowed with the
trivial norm. Let Max(Gyy(X,K)) c Spec(Gqy(X, k)) denote the subset of maximal
ideals. Then the equality

Ifll= sup [f(m)
meMax(Coa(X.K)

holds for any fe Cpq(X, K). In particular, the norm ofC,y(X, k) is determined by the
algebraic structure of it.

Proof. Since the norm of gy(X, k) is power-multiplicative, the equality

Il = sup x(f)
xeBSC(X)
holds for anyf € Cpy(X, k) by [Berl] 1.3.1. Theorem. This gives the assertion because
supp: BSG(X) — Spec(Gq(X K)) is bijective onto Max(Gy(X, k)) by the proof of
Theoreni Zl1, and because the condition (iv) in the defindfcmbounded multiplica-
tive seminorm ir§1.7 guarantees(f) = |f(supp))| by Corollary(3.6 (iv). m|

ProposITION 4.5. Suppose that k is a local field. Then every complete norm on the
underlying k-algebra o€,4(X, K) is equivalent to each other.

Proof. Sincek is a local field, the norm df is not trivial, and hence the boundedness
of a k-linear homomorphism between normkdector spaces is equivalent to the
continuity. Therefore it sfices to show that the identity id :p&X, K) — Cpg(X,K) is a
homeomorphism with respect to the metric topologies giwearbarbitrary complete
norm|| - |" of the source and the supremum ndtm| of the target. By Lemm@a4.2
applied to (Gq(X, k), - |I') and Corollanfi 4}, id is &-linear contraction map, and
hence is continuous. Moreover, since the nornk &f not trivial, the open mapping
theorem holds by [BGR] 2.8.1. Theorem, and therefore id is@en map. Thus id is

a homeomorphism. m]

THEOREM 4.6. Suppose thatk is alocal field, and letbe a Banach k-algebra. Then
any injective k-algebra homomorphigm Cpy(X, k) — & whose image is closed is
continuous.

Proof. Since the underlying metric spaces gf(X, k) and.< are complete, it dtices
to show thaty sends a Cauchy sequence iy, k) to a Cauchy sequence i
Let] - |I': Cpa(X,K) — [0, o0) denote the composite gf and the norm ofes. Then
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sincey is a bijective homomorphism dfalgebras]| - ||" is a norm of thek-algebra
Coda(X, K). Since the image af is closed]| - || is complete, and hence is equivalent to
the supremum norm by Proposition4.5. We concludeghiatcontinuous. m|

The automatic continuity theorem immediately yields aeciitn for the continuity of
a faithful representation over a local field.

COROLLARY 4.7. Suppose that k is a local field. Let V be a Banach k-vector space
andp: Cpy(X, k) xV — V ak-linear representation of a k-algeb@y(X, k) satisfying
the following conditions:

(i) The k-linear operatorgs: V. — V:v — p(f,v) is bounded for any fe
Cod(X, K).

(i) The k-linear representatiop is faithful, i.e. the equalitps = 0 implies f=0
for any f € Cpy(X, K).

(iif) The image of the induced k-algebra homomorphsmCyy(X, k) — %k (V) is
closed, wherez,(V) is the Banach k-algebra of bounded operators on V.

Thenp. is bounded, and in particulan: Cpq(X,K) x V — V is continuous.

4.2 GROUND FIELD EXTENSIONS

We study the ground field extensions ofyC, k). We note that there are two dis-
tinct notions of the ground field extensions. One is given Xtgrding the scalar of
functions, and the other is given by tensoring the scalar.

ProrosiTiON 4.8. Let K and L be complete valuation fields. Then there exists a
unique homeomorphisBSC« (X) = BSC_(X) compatible with the evaluation maps.

We remark that we do not assume tiaandL contains the same base fidddand
hence, for example, it is possible to cho@ggandF,((T)) for K andL respectively.

Proof. The assertion holds because BK) and BSG(X) are initial objects with
respect to the evaluation mapsXiTDCHTop by Corollary 2.P. m|

ProrosiTiON 4.9. Let K/k be an extension of complete valuation fields. Then the
ground field extensioBSC«(X) — BSCG(X) associated with the natural embedding
Chd(X, k) — Cpy(X, K) is a homeomorphism.

Proof. The ground field extension above is compatible with the extadn maps, and
coincides with the unigue homeomorphism in Propos(iioh 4.8 m|

Now we consider the other ground field extension, namelycthnicalk-algebra
homomorphisnK®,Cpq(X, k) — Cuq(X, K) induced by the universal property of the
complete tensor product in the category of Banleelgebras. In fact, the ground field
extension is not an isomorphism in general, and it yieldstarasn for a topological
property ofX and the valuation of.
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LeMMA 4.10 The k-subalgebra dEyq4(X, k) consisting of locally constant bounded
functions is dense.

Proof. Take anf € Cyy(X, K). If f =0, thenf is locally constant. Suppode# 0. For
ane > 0, the pre-image of every open disc of radéus k by f is clopen. Therefore
one obtains a pairwise disjoint clopen coverifxgof X such that the imagé(U) is
contained in an open disc of radibdn k for anyU € % . Fix anay € f(U) for
eachU € 7. The infinite sumg = Y9 avly: X — k convergences pointwise
to a locally constant continuous function. The obvious irediy |g(X)| < ||f]| holds
for any x € X, and hencg is bounded. One hdd — g|| < € by the definition of the
disjoint clopen covering”, and hence thk-subalgebra of locally constant functions
is dense in gg(X, K). O

LEMMA 4.11 Suppose thatk is spherically complete (IEGR] 2.4.4. Dédinit). Let
K/k be an extension of complete valuation fields. Then the aldiounded K-algebra
homomorphisni k: K&Cpd(X, K) = Cpa(X, K) is an isometry.

For example, a local field and every field endowed with thégtivorm are spherically
complete. We will use this lemma f&t, endowed with the trivial normQ endowed
with the trivial norm, andp,.

Proof. Take anf € K&Cuy(X,K). If f = 0, then|u ()l = O = |/f||, and hence
we assumd # 0. In particular,X # @ and both ofK&,Cpq(X, k) and Gg(X, K) are
non-zero BanaclK-algebras. Therefore the norm of the boundtedlgebra homo-
morphismeg i is 1 becausex k(1) = 1 and the power-multiplicativity of the norm
of Cpa(X, K) guaranties thadkx is submetric. Set := ||f||/2, and take an element
g=>",a®0g € K&k Co(X K) with [|f —gll < €in K&Cpg(X, k). We may assume
a # 0 for anyi = 1,...,n without loss of generality. By Lemnia_4]10, there is a
locally constant boundekivalued functiorg, € Cpy(X, K) such that|gi — g/l < lag]te
foreachi = 1,...,n. In particular, setting/ := >}’ ; & ® g € K ® Cyd(X, k), one has

Dla-d) }
i=1

and hencdg’|| = ||f||. Sincek is spherically complete, the finite dimensional normed
k-vector subspacka; + --- + ka, c K is k-Cartesian by[[BGR] 2.4.4. Proposition
2, and hence there is an orthogonal bdsis..,b, € K of kay + --- + ka,. Ex-
pressingay, ..., a, as ak-linear combination oby, . .., by, one obtains an expression
g = X" big’ by a unique systeny; , . . ., g € Cod(X, k) of k-valued locally constant
functions. For any € X, one has

D big'™
i=1

by the orthogonality oby, .. ., by, and hence

If-dl=If-9+(@-g)l < max{nf -all,

< max|If - gl maxi,lalllg - gill} < e <Ifl,

le /(@) ()] = = maxi®,|g/" (X)lbi|

llew k(@) = suplekk(9) (X = supmax™, [billgi’"(x)] = max™, |bi| suplgi’ ()|
XeX XeX XeX
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= maxy|billlg’ll = [Ig']l.
Sincek k is aK-linear contraction map, one géfs «(9')ll = |lg’ll. We conclude

llek(F =@ < NIF = gl < € < IIFll = g1l = llew /(@)

and thus

llek (I = Newpie(F = ) + e @I = Nlew(@IE = 1N = 1IF11-
O

We denote byF c k the topological closure of the field of fractions of the image
of the canonical ring homomorphisih— k. We remark thaf is F, if and only if

k is of characteristip > 0, and isQ otherwise. In the former casg,is F, endowed
with the trivial valuation. In the latter casE,is Q endowed with the trivial norm if
and only ifk is of equal characteristic (0), and isQp, if and only if k is of mixed
characteristic (0p). In particular,F is spherically complete. We determine when
LyE k&Cpd(X, F) — Cpa(X, K) is an isomorphism. The following shows thajCX, k)

is “naive” enough if and only i is compact ok is suficiently small in some sense.

THEOREM 4.12 Suppose that X is zero-dimensional and Haugddrhen the fol-
lowing are equivalent:

(i) The space X is compact, or k is a local field or a finite field@ned with the
trivial norm.

(i) The k-subalgebra o€,4(X, k) generated by idempotents is dense.
In addition if F # Q, then (i) and (ii) are equivalent to the following:

(iii) The homomorphismayg: k&rCpd(X,F) — Cpd(X,K) is an isometric isomor-
phism.

(iv) The spac8SG(X) consists of k-rational points.

(v) The map «: X <= BSG(X) induces an isometric isomorphism
C(BSG(X), K) = Coa(X, K).

(vi) The spacdBSG(X) satisfies the extension property for a bounded continuous
k-valued functions in Propositidn 3.2.

We remark that a similar relation between (i) and (iv) is aledfied by Alain Escas-
sut and Nicolas Mainetti in [EM1] in the case whetds an ultrametric space. For
example, they proved in Theorem 7 thalXifis an ultrametric space andis locally
compact, then (iv) holds.

Proof. Assume (i). We verify (ii). Take afi € Cpg(X, K). If kis a local field or a finite
field, the closed dis¢a € k | |a| < ||f|]} c kis compact. OtherwisX is compact.
Therefore for are > 0, there is a finite pairwise disjoint clopen coveriig of X
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such that the imagé(U) c k is contained in an open disc of radiasn k for any
U € . Fixing anay € f(U) for eachU € %, one had|f — X9 aulull < €. Thus
k-subalgebra of gy(X, k) generated by idempotents is dense.

Assume (ii). We verify (iii). Sinceyr is an isometry by Lemma 4111, it fices to
show that the image of,r is dense. An idempotent ofygX X, k), which is a character-
istic function on a clopen subset ¥f is contained in the subsetX, F) c Cypa(X, K).
Therefore the image of the natural homomorphiieap Cpy(X, F) — Cpg(X, K) is dense
by (ii), and hence the image afr is dense.

Assume (iii). We verify (iv) in the cas& # Q. For anx € BSG(X), consider
the compositex': Cog(X,F) — k(X) of x and the natural embedding,{{X,F) —
Cod(X, k), wherek(x) is the completed residue field at SinceF is contained irk,
the charactex’ defines an element € BSG:(X). Recall thatf = F, or Q, now.
Since BSG(X) consists offi-rational points by Corollarl 316 (iv), the image xfis
contained inF c k. Therefore (iii) guarantees that the imagexaé contained in the
closure of the&-vector subspace & x) generated b¥ c k, namely, the 1-dimensional
vector subspace c k(x). It impliesk(x) = k.

Assume (iv). We verify (v) in the case # Q, and hence suppose that B$K)
consists ok-rational points. Then the Gel'fand transformqyCX, k) — C(BSGi(X), K)
is an isometric isomorphism by [Berl] 9.2.7. Corollary,(#nd coincides with the
boundeck-algebra homomorphism induced Ly

Assume (v). We verify (vi) in the case # Q, and hence suppose thatinduces
an isometric isomorphism C(B&X), k) — Cpy(X, k). Take anf € Cpq(X, k). The
extension off on BSG(X) is unique because the imagewfis dense by Corollary
[Z.4 andk is Hausdoft. Sincey induces an isomorphism C(B&X), k) — Cpg(X, k),
there is anf’ € C(BSG(X), k) whose image ig, or in other wordsf’ is the extension
of f on BSG(X).

Assume that (vi) an@ # Q hold, or that (ii) andf = Q hold. We verify (i). Suppose
that X is non-compact andt is neither a local field nor a finite field. Sinc€is a
zero-dimensional and non-compact, there is/ar UF(X) without a cluster point by
Propositiof L.J7. In particulagZ contains an infinite descending chain= Ug 2 U; 2
-+-. Indeed, for anyJ € .# andx € U # 0, there is &V € CO(X) such thatv € .%,
V c U, andx ¢ V because is not a cluster point of#. One obtains an infinite set
7 = {Uj\Ui;1 | i € N} of pairwise disjoint clopen subsets ¥f If the residue field
k of k is an infinite field, seY := k and take a set-theoretical lift: Y < k° of the
canonical projectiolk® —» Y. Otherwise, the imag*| c (0, ) is dense becaude
is neither a local field nor a finite field. S¥t:= |k*| N (1/2,1) c (0, «), and take
a set-theoretical lifp: Y — k° of the norm| - |: k — [0, ). SinceY is dense in
(1/2,1), itis an infinite set. In both cases, end®wvith the discrete topology. Since
Y is an infinite set, there is an injective mapN — Y. The compositeoy: N — k°
is an injective continuous map, and the image is a closedelessubspace because
lo(y) — oY) > 1/2 for anyy,y’ € Y. SinceZ c CO(X) is an infinite covering ok,
there is an injective may: N — %/. Then the pointwise convergent infinite sum

fi= > (@) lup: X - K

neN
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determines a locally constant bounded functionXonThere is a non-principal ul-
trafilter # € CO() by Lemmall.b. Now assumB # Q. By the conditions
(vi), there is a continuous extension BRE): BSG(X) — k of f. Moreover, tak-
ing a representative, € W(n) for eachn € N, one obtains a continuous map
X: N - X < BSG(X). Since BSg(X) is an object ofX/TDCHTop, a unique
continuous extension B&(X): UF(N) = BSC((N) — BSC(X) of x exists. The com-
posite BSG(f) o BSG(x): UF(N) —» BSC(X) — kis a continuous extension of the
compositef o X = p o y: N — k. In particular, BSE(f) o BSG(X) is continuous at
# € UF(N), but it contradicts the fact thato v is an injective map whose image is
a closed discrete subspace. An injective net whose imagsdeete and closed never
has a limit. It is a contradiction. Therefore one obtdins Q, and (ii) holds by the
assumption. Take klinear combinatioryg = Y, a1y, € Cya(X, k) of idempotents
with ||f — gl < 1. Now the image ofj contains at mosh points, and hence there
is an integem e N such thatg(x) ¢ y(m) for any x € X identifying the cosetk
as a family of disjoint clopen subsets kif in the tautological sense. Then one has
[f(xm) — 9(Xm)| = 1, and it contradicts the conditigif — g|| < 1. ThusX is compact,
orkis a local field or a finite field. m]

Since we did not use the assumption thag Q in the proof that (ii) withF # Q
implies (iii), the condition thadyr is an isometric isomorphism is weaker than (ii).

4.3 NON-ARCHIMEDEAN GEL’FAND THEORY

We establish non-Archimedean Gel'fand theory for a zeroatisional Hausdfr
space. We recall that a completely regular HauSdspace is a topological space
which can be embedded in a direct product of copies of theedlosit discC° c C

as a subspace. On the other hand, a non-Archimedean coantefm completely
regular Hausddf space ovek is a topological space which can be embedded in a
direct product of copies of the closed unit discc k as a subspace. We call such a
topological space aon-Archimedean completely regular Haus@iepaceoverk. A
direct product of copies df° is a zero-dimensional Hausdbspace. A subset of a
zero-dimensional Hausdispace is again a zero-dimensional Haufidgpace, and
so is a non-Archimedean completely regular Hau§dspace ovek. Now we verify
that the converse also holds in the case whése local field or a finite field.

LEMmMA 4.13 Suppose thatk is a local field or a finite field endowed with tivéat
norm. The following are equivalent:

(i) The space X is zero-dimensional and Hauggior

(i) The space X is Hausdgrand bounded continuous k-valued functions separates
a pointand a disjoint closed subset of X, i.e. for argy X and any closed subset
F c X with x¢ F, there is an fe Cpg(X, k) such that {x) = 0 and f(y) = 1 for
anyye F.

(i) The continuous mag,: X — SG(X) is a homeomorphism onto the image.

(iv) The space X is embedded in a direct product of copie$ a$la subspace.
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We note that the description of (ii)-(iv) seem to depend anlihse fielck while (i)
does not. Therefore the notion of “a non-Archimedean cotapleegular Hausddf
space” is independent of the base field.

Proof. Recall that SEI(X) is a closed subspace of a direct product of copids adnd
hence (iii) implies (iv). Moreover, (iii) implies (i) as we entioned in the beginning
of this section.

Assume (i). We verify (ii). Letx e X andF c X be a closed subset with¢ F. Since
X is zero-dimensional, there is a clopen neighbourhdod X of x contained in the
open subseX\F c X, and the characteristic functiogl, separateg andF.

Assume (ii). We verify (iii). SinceX is Hausdoff, a point ofX is closed. Fok,y € X
with x # y, take anf € Cpy(X, k) which separateg andy. Thenf # 0. Since the
valuation ofk is discrete or trivial, the imagé| c [0, o) is closed. By the definition
of the supremum nornfiCpq(X, K)|| C [0, o) is contained in the closure (4 c [0, ),
and hencdiCpg(X, K)|| C |K|. Therefore there is ame k* such that O« ||f|| = |al. Then
one haglaf| = 1 anda*f € Cpqy(X, k)(1) separates andy. Therefore one has
1t (X) # ¢ (y) comparing theirg*f)-th entry, and, is injective. In order to prove that
1, s an open map onto the image, take an open subsetX. For anx € U, take an
f € Cpa(X, K) such thatf (x) = 0 andf(y) = 1 for anyy € X\U. By the same argument
as above, there is ane k* such that|f|| = |al. Then the pre-image by of the open
subseV c SG(X) given by the condition that thea(' f)-th entry is contained in the
open neighbourhookl{a™!} c k of 0 € kis an open neighbourhood &fcontained in
U. Therefore the imagg(U) contains the open neighbourhodan ¢ (X) of ¢ (X) in

4 (X), and thug; (U) c ¢ (X) is open. We conclude thgfis a homeomorphism onto
the image. m]

PROPOSITION 4.14 The mapg: X — BSG(X) is ahomeomorphism onto the image
if and only if X is zero-dimensional and Hausgor

Proof. By Propositioii 4.B, it is reduced to the case whHereQ, for a prime number
p € N. The assertion immediately follows from Corollaryl3.6 ficlL,emma4.13. o

DEFINITION 4.15 Let &/ c Cpg(X, K) be a closedk-subalgebra. Fok, X € X,
we write X ~o X if f(X) = f(X) for any f € &/. The binary relation~., is an
equivalence relation, and we denote Xy the quotient spac¥/ ~.. We says/
separates points of if the conditionx ~ ., X’ impliesx = X' for anyx, X' € X.

LEmMMA 4.16. The map;: X — SG(X) uniquely factors through the canonical pro-
jection X » X/Cpq(X, k), and the induced map/Xpq(X, k) — SCG(X) is an injective
continuous map.

Proof. Itimmediately follows from the definitions ofc,,xx and SG(X). O

LEmMA 4.17. Suppose that X is zero-dimensional and HaugdofFhenCpg(X, k)
separates points of X.

Proof. By Lemmd4.1IB and Lemnia4]16, the projectlor» X/Cpq(X, K) is injective.
O
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DEerFINITION 4.18 A topological spaceY, f) underX is said to bdaithful if f: X —
Y is a homeomorphism onto the image, tofbk if f(X) is dense inY, and to beully
faithful if it is full and faithful. We denote byX/TDCHTop; c X/TDCHTop the full
subcategory of fully faithful totally disconnected compBausdoff spaces undexX.

By Lemmal[4.1B,X/TDCHTop; is a non-empty category if and only X is zero-
dimensional and Hausd®r Suppose thaX is zero-dimensional and HausdorThe
isomorphism relation iXX/ TDCHTop; is an equivalence relation in a class. We denote
by €' (X) the classX/TDCHTop;)/ = of equivalence classes. The cl&s§X) is not a
proper class. Indeed, for any, ) € ob(X/TDCHTop;), f extends tof : UF(X) - Y

by TheoreniI]3. Since UK] is compact and( is Hausdoff, f(UF(X)) c Y is a
closed subspace containing the dense subsfatec Y, and hencd is a surjective
closed map. Thereforey(f) is obtained as a quotient of UK), and%'(X) admits a
set-theoretical representative.

THEOREM 4.19 Suppose that k is a local field or a finite field endowed with
the trivial norm, and that X is zero-dimensional and HaugtloThen there is a
contravariant-functorial one-to-one correspondencewssn¢’(X) and the set of
closed k-subalgebras @f,4(X, k) separating points of X.

Proof. Denote bys” (X) the set of close#i-subalgebras of g(X, k) separating points
of X. The correspondences are given in the following way:

€ (X) — ¢’ (X)
[f: X< Y] ~s o Im(fa: C(Y,K) © Cog(X, k)
[X = BSG(X) » ()] e~ (# € Cpa(X, K)).

They are the inverses of each other by the generalised Stdgierstrass theorem
([Berl] 9.2.5. Theorem). We remark that for any fully faithfotally disconnected
compact Hausddi space Y, f) under X, the associated bounded homomorphism
f2: C(Y,k) — Cpy(X, K) is an isometry because¢is a dense subspacefand hence

its image is closed. On the other hand for any cloketibalgebrazz’ of Cyy(X, k)
separating points aX, the associated continuous m&p— BSCG(X) -» #(«) is

a homeomorphism onto the image which is a dense subspaejdeecis a dense
subspace of BSEX), the condition thatey’ separates points ¥fguarantees the in-
jectivity, and every continuous map between compact Hatissisaces BSgX) and
(<) is a closed map. O
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