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Abstract. We conjecture that for every dimension n 6= 3 there exists
a noncompact hyperbolic n-manifold whose volume is smaller than the
volume of any compact hyperbolic n-manifold. For dimensions n ≤ 4
and n = 6 this conjecture follows from the known results. In this
paper we show that the conjecture is true for arithmetic hyperbolic
n-manifolds of dimension n ≥ 30.
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1. Introduction

By hyperbolic n-manifold we mean a complete orientable manifold that is locally
isometric to the hyperbolic n-space H

n. Let M be a complete noncompact
hyperbolic 3-manifold of finite volume. By Thurston’s Dehn surgery theorem
there exists infinitely many compact hyperbolic 3-manifolds obtained from M
by Dehn filling [15, Section 5.8]. These manifolds all have their volume smaller
than vol(M) [15, Theorem 6.5.6]. It is known that the Dehn filling procedure is
specific to manifolds of dimension n = 3 (cf. [1, Section 2.1]). We believe that
so is the minimality of volume of compact manifolds and that for hyperbolic
manifolds in other dimensions the following conjecture should hold:

Conjecture 1. Let N be a compact hyperbolic manifold of dimension n 6=
3. Then there exists a noncompact hyperbolic n-manifold M whose volume is
smaller than the volume of N .

1Belolipetsky supported by a CNPq research grant.
2Emery supported by SNSF, project no. PA00P2-139672 and PZ00P2-148100.
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The set of volumes of hyperbolic n-manifolds is well-ordered (indeed, discrete
if n 6= 3), thus the conjecture states that the smallest complete hyperbolic
n-manifold is noncompact for n 6= 3. Conjecture 1 is known to be true for
dimensions n = 2, 4 and 6: for these n there exist noncompact hyperbolic n-
manifolds M with |χ(M)| = 1 [14, 5], whereas it is a general fact that the Euler
characteristic of a compact hyperbolic manifold is even (cf. [13, Theorem 4.4]).
In this paper we prove the conjecture for arithmetic hyperbolic n-manifolds of
sufficiently large dimension:

Theorem 2. Conjecture 1 holds for arithmetic hyperbolic n-manifolds of di-
mension n ≥ 30.

A folklore conjecture states that the smallest volume is always attained on an
arithmetic hyperbolic n-manifold (in both compact and noncompact cases). We
will refer to this statement as the minimal volume conjecture. This conjecture is
obvious for n = 2, it was proved only recently for n = 3 [6], and there is currently
no any potential approach to resolving this conjecture in higher dimensions. If
true, the minimal volume conjecture together with Theorem 2 would imply
Conjecture 1 for dimensions n ≥ 30. However, Conjecture 1 is weaker than the
minimal volume and we think that it might be easier to attack it directly.
At this point we would like to mention the related picture for hyperbolic n-
orbifolds. By [2, 3], we know the compact and noncompact minimal volume
arithmetic hyperbolic n-orbifolds in all dimensions n ≥ 4. This is complemented
by the previous results for n = 2, 3 (see [loc.cit.]). It follows that the smallest
arithmetic hyperbolic n-orbifold is compact for n = 2, 3, 4 and noncompact for
n ≥ 5. For dimensions n ≤ 9 we do know the smallest volume noncompact hy-
perbolic n-orbifolds thanks to the result of Hild’s thesis ([8]). It turns out that
these orbifolds are arithmetic, supporting the orbifold version of the minimal
volume conjecture.
Let us now describe the contents of the paper. The proof of the main theorem is
based on arithmetic techniques. We start with the minimal volume arithmetic
n-orbifold constructed in [2, 3], which is noncompact for n ≥ 5. Then we
construct a manifold cover of it and try to show that the volume of this manifold
is still smaller than the smallest compact arithmetic n-orbifold, which is also
known from our previous work. Constructing a manifold cover of an orbifold
Γ\H

n is equivalent to finding a torsion-free subgroup of Γ. Our method here
is based on Lemma 3, which can be thought of as a variant of Minkowski’s
lemma that asserts that the kernel of GLN (Z) → GLN (Z/m) is torsion-free
for m > 2. Minkowski’s lemma is the classical tool to construct hyperbolic
manifolds from arithmetic subgroups (see for instance [13, Section 4]). We
observe that applying Lemma 3 on two small primes (see Section 2.3) gives
better results. In particular we show in Section 3 how our method applies to
the problem and proves Theorem 2 for dimensions n ≥ 33. On the other hand,
Minkowski’s lemma (with m = 3) cannot be used to obtain a direct proof for
n < 50.
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The dimension bound in Theorem 2 can be further improved because the com-
pact orbifolds of small volume considered above do have singularities and hence
the volumes of the smallest compact manifolds are larger. In order to obtain
better estimates for these volumes we use the arithmetic information encoded
in the Euler characteristic. This approach works well for even dimensions (see
Sections 5.1 and 5.2). In odd dimensions the Euler characteristic is zero, but
we can still use a similar method. In order to do so we consider even dimen-
sional totally geodesic suborbifolds of the compact odd dimensional orbifolds
of small volume. The details of the argument are explained in Section 5.3
and its application to the case n = 31 is in Section 5.4. It is possible to use
similar considerations for smaller dimensions but the number of variants and
the computational difficulty increase rapidly for smaller n. The problem be-
comes very difficult for n < 10 and we expect that some new ideas or significant
computational advances are required in order to extend our result to this range.

Acknowledgments. Part of this work was done while the second author was
visiting IMPA (Rio de Janeiro, Brazil). He wishes to thank the institute for
the hospitality and support.

2. A method of construction

2.1. Let G be a semisimple algebraic group defined over a number field k.
We denote by Vf the set of finite places of k. For each v ∈ Vf , we denote by
kv, Ov and fv the completion, local ring and residue field defined by v. We
suppose that G is simply connected as an algebraic group. By definition, a
principal arithmetic subgroup of G(k) is a subgroup ΛP = G(k) ∩ ∏

v∈Vf
Pv,

where P = (Pv)v∈Vf
is a coherent collection of parahoric subgroups Pv ⊂ G(kv)

(see [4]). By Bruhat-Tits theory (see [16]), for each v ∈ Vf , there exists a
smooth connected Ov-group scheme Pv with generic fiber G and such that
Pv(Ov) = Pv. We denote by Mv the fv-group defined as the maximal reductive
quotient of Pv/fv. The reduction map Pv → Mv(fv) is surjective. Moreover,
since G is simply connected, we have that Pv/fv (and thus Mv as well) is
connected.

2.2. Let p be the rational prime above v, i.e., p is the characteristic of the
residue field fv. Let us denote by P ∗

v ⊂ Pv the pre-image under the reduction
map of a p-Sylow subgroup of Mv(fv).

Lemma 3. Each torsion element in P ∗
v has an order of the form ps.

Proof. Let Kv be the kernel of the map Pv → Pv(fv). Let g ∈ P ∗
v be an element

of finite order q, and denote by g its image in Pv(fv). It suffices to consider
the case where q is prime. The image of P ∗

v in Pv(fv) is, by definition, the
extension of a p-group by a unipotent fv-group. It follows that the image of
P

∗
v is itself a p-group, and thus we have either g = 1, or q = p. But in the first

case g is contained in Kv, which is a pro-p group (see [11, Lemma 3.8]), and
the conclusion follows as well. �
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2.3. By choosing two primes v and w above two distinct rational primes,
and replacing Pv (resp. Pw) by P ∗

v (resp. P ∗
w) in the coherent collection

P , we obtain by Lemma 3 a torsion-free subgroup Λv,w
P ⊂ ΛP . By strong

approximation of G, the index [ΛP : Λv,w
P ] equals [Pv : P ∗

v ] · [Pw : P ∗
w].

By construction, the index [Pv : P ∗
v ] is equal to the order of Mv(fv) divided by

its highest p-factor. We will usually work with parahoric subgroups for which
Mv is semisimple (for instance, Pv hyperspecial), and in this case [Pv : P ∗

v ]
can be easily computed from the type of Mv using the list of orders of simple
groups over a finite field (see [10]).
For example, if G/kv is a split group of type Br and Pv ⊂ G(kv) is hyperspecial,
then Mv is semisimple of the same type and we obtain:

[Pv : P ∗
v ] =

r
∏

j=1

(q2j
v − 1),(1)

where qv denotes the cardinality of the finite field fv. The product of two such
expressions gives us the index of the torsion-free subgroup Λv,w

P in ΛP . If ΛP

acts on H
n we can then compute the volume of the quotient manifold Λv,w

P \H
n

as a product of this index and the covolume of ΛP .

3. Construction of noncompact manifolds

We will construct noncompact hyperbolic manifolds starting from the arith-
metic lattices of minimal covolume considered in [2, 3]. They are best under-
stood as normalizers of principal arithmetic subgroups of G = Spin(n,1), the
latter Lie group being a two-fold covering of Isom+(Hn).

3.1. We showed in [3, Section 2.1] that if a lattice Γ ⊂ G contains the
center Z of Spin(n,1), then the hyperbolic volume vol(Γ\H

n) is given by
2vol(Sn)µ(Γ\G), where Sn is the n-sphere of constant curvature 1 and µ is
the normalization of the Haar measure on G that was used by Prasad in [12],
and that the volume is the half of this value otherwise. Suppose now that Γ ⊂ G
is torsion-free. Since Z has order 2 in all dimensions, we obtain in this case:

vol(Γ\H
n) = vol(Sn)µ(Γ\G)(2)

If n is even, then 2µ(Γ\G) = |χ(Γ)| (cf. [4, Section 4.2]) and equation (2)
is equivalent to the Gauss-Bonnet formula (note that a torsion-free Γ ⊂ G
is isomorphic to – and thus has same Euler characteristic as – its image in
Isom+(Hn)):

vol(Γ\H
n) =

vol(Sn)

2
|χ(Γ)|, n even.(3)

We recall that the volume of the n-sphere of curvature 1 is given by the following
formula:

vol(Sn) =
2π

n+1
2

Γ(n+1
2 )

,(4)
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where Γ(−) is the Gamma function (recall that for an integer m we have Γ(m) =
(m − 1)!).

3.2. Let ΛP ⊂ Spin(n,1) be the (unique) nonuniform principal arithmetic sub-
group whose normalizer realizes the smallest covolume. Like all nonuniform
arithmetic hyperbolic lattices it is defined over k = Q, so that the set Vf of
finite places corresponds to the rational primes. The structure of the coherent
collection P was determined in [2, 3]. We denote by G the algebraic Q-group
containing ΛP , and we will use the notation introduced in Section 2.

3.3. Let us first deal with the case when n = 2r is even. Then G is of type
Br and the coherent collection P determining ΛP has the following structure
(see [2]): Pv is hyperspecial unless v = 2 and r ≡ 2,3 (4), in which case the
associated reductive F2-group M2 is semisimple of type 2Dr. By Prasad’s
volume formula [12], the Euler characteristic of ΛP is then given by

|χ(ΛP )| = 2λ2(r)C(r)

r
∏

j=1

ζ(2j),(5)

with λq(r) = 1 if r ≡ 0,1 (4) and λq(r) = qr − 1 otherwise, and the constant
C(r) given by

C(r) =

r
∏

j=1

(2j − 1)!

(2π)2j
.(6)

Using the functional equation for the Riemann zeta function, and expressing
its value at negative integers through Bernoulli numbers, we can rewrite (5) as
follows:

|χ(ΛP )| = 2λ2(r)

r
∏

j=1

|B2j |
4j

.(7)

3.4. We can apply the construction presented in Section 2 to ΛP with v = 2
and w = 3. We find that for all r, we have:

λ2(r)[P2 : P ∗
2 ] =

r
∏

j=1

(22j − 1),(8)

the case of trivial λ2(r) being just the computation in (1). Let Γ be the

(isomorphic) image of Λ2,3
P in Isom+(Hn) and Mn = Γ\H

n the corresponding
quotient manifold, which by the construction is noncompact and arithmetic.
From the previous computation we have:

|χ(M2r)| = 2

r
∏

j=1

(4j − 1)(9j − 1)
|B2j |

4j
(9)

= 2C(r)

r
∏

j=1

(4j − 1)(9j − 1)ζ(2j).(10)
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n |χ(M2r)|
4 10

6 910

8 3171350

10 725639764850

12 16654568229539490250

14 54376724439679967985482572750

16 33998109351372684068956597092378802073750

18 5272397653068183031816584035192902513000228940543011250

Table 1. Euler characteristic of noncompact manifolds Mn

3.5. We now construct noncompact hyperbolic manifolds in odd dimensions
n > 3. Let r = (n + 1)/2. Then the Q-group G containing ΛP has type Dr. It
is an inner form (type 1Dr) unless r is even (i.e., n ≡ 3 (4)), in which case it has
type 2Dr and becomes inner over ℓ = Q(

√
−3). The details of the construction

are given in [3], here we only briefly recall the relevant parts.
Let us first suppose that r is odd. Then Pv is hyperspecial unless v = 2 and
r ≡ 3 (4). In the latter case the radical of M2 is a nonsplit one-dimensional
torus, and the semisimple part of M2 has type 2Dr−1. If we let

λ′
q(r) =

(qr − 1)(qr−1 − 1)

q + 1
(11)

for q = 2 with r ≡ 3 (4) and λ′
q(r) = 1 otherwise, we find that in all cases with

odd r we have

λ′
qv

(r)[Pv : P ∗
v ] = (qr

v − 1)

r−1
∏

j=1

(q2j
v − 1).(12)

Moreover, Prasad’s formula together with equations (2) and (4) shows that we
have (with C(−) defined in (6)):

vol(ΛP ) = vol(Sn)λ′
2(r)

(r − 1)!

(2π)r
ζ(r)

r−1
∏

j=1

(2j − 1)!

(2π)2j
ζ(2j)

= λ′
2(r)

C(r − 1)

2r−1
ζ(r)

r−1
∏

j=1

ζ(2j)(13)

= λ′
2(r)ζ(r)

r−1
∏

j=1

|Bj |
8j

.(14)
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Thus in this case we obtain a manifold Mn = Λ2,3
P \H

n, n = 2r−1, r odd, whose
volume is given by

vol(Mn) = ζ(r)(2r − 1)(3r − 1)
r−1
∏

j=1

(4j − 1)(9j − 1)

8j
|B2j |.(15)

Let us finally consider the remaining case n = 2r − 1 with r even. In this case
all parahoric subgroups Pv in the collection P are hyperspecial with the only
exception of v = 3 (which ramifies in ℓ = Q(

√
−3)), where Pv is special. Since 2

does not split in ℓ, the group G is an outer form over Q2 and the F2-group M2

associated to the hyperspecial parahoric P2 is semisimple of type 2Dr. Thus
we have:

[P2 : P ∗
2 ] = (2r + 1)

r−1
∏

j=1

(22j − 1).(16)

For the place v = 3, M3 is semisimple of type Br−1, from which we get

[P3 : P ∗
3 ] =

r−1
∏

j=1

(32j − 1).(17)

Using Prasad’s formula to compute the covolume of ΛP , we finally deduce that

the manifold Mn = Λ2,3
P \H

n, n = 2r − 1, r even, has volume

vol(M2r−1) = 3r−1/2(2r + 1)ζℓ(r)/ζ(r)

r−1
∏

j=1

(4j − 1)(9j − 1)

8j
|B2j |.(18)

3.6. Formulas (15) and (18) allow us to evaluate the volume of the constructed
manifolds Mn using Pari/GP. Moreover, for n even the volume can be deduced
from formula (9) together with (3). We list the values obtained for dimensions
n ≤ 20 in Table 2. It shows, in particular, that the volume grows rapidly with
the dimension.

4. Proof of Theorem 2 for sufficiently large dimension

4.1. We now compare the volume of Mn from the previous section with the
volume of the smallest compact arithmetic hyperbolic n-orbifold On = Γ\H

n.
In the rest of the paper the Euler characteristic χ(On) is to be understood in
the orbifold sense, that is, χ(On) = χ(Γ).
We begin with even dimensions n = 2r ≥ 4. The orbifold On is defined over the
field k = Q(

√
5) and its Euler characteristic is given by

|χ(On)| = 4 · λ4(r) · 5r2+r/2C(r)2
r

∏

j=1

ζk(2j),(19)

with λq(r) = 1 if r is even and λq(r) = qr−1
2 if r is odd [2].
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n vol(Mn)

4 131.594

5 273.467

6 15048.379

7 42504.453

8 47073267.939

9 770938537.303

10 7519493827964.029

11 305396253769850.768

12 98579836734072034892.809

13 36424053767874477954431.531

14 1.555 E29

15 2.059 E32

16 4.074 E40

17 6.691 E44

18 2.335 E54

19 1.797 E59

20 3.734 E70

Table 2. Approximate values of the volume of Mn

By (10) and (19), we have:

|χ(On)|
|χ(Mn)| =

4 · λ4(r) · 5r2+r/2C(r)2
∏r

j=1 ζk(2j)

2C(r)
∏r

j=1(4j − 1)(9j − 1)ζ(2j)
.(20)

Using the basic inequalities ζk(2j) > 1 and
∏r

j=1 ζ(2j) < 2 plus the fact that

λ4(r) ≥ 1 for all r, we obtain the lower bound

|χ(On)|
|χ(Mn)| >

5r2+r/2C(r)
∏r

j=1(4j − 1)(9j − 1)
>

5r2+r/2C(r)

36r2/2+r/2
.(21)

By Stirling’s formula,

C(r) =

r
∏

j=1

(2j − 1)!

(2π)2j
>

r
∏

j=1

(2j − 1)2j−1

2π(2πe)2j−1
.

Applying the Euler–Maclaurin summation formula, we obtain

logC(r) &
1

4
(2r − 1)2 log(2r − 1),

which is ≫ cr2 (for any constant c). Hence for r ≫ 0, we have

|χ(On)|
|χ(Mn)| ≫ 1.
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In fact, a computation shows that it is enough to take r ≥ 18 for the ratio
in the right hand side of (21) to be > 1. A more precise computation of the
expression in (20) using Pari/GP shows that

|χ(On)|
|χ(Mn)| > 1, for n = 2r ≥ 34.

Since On has the smallest volume among compact arithmetic hyperbolic n-
orbifolds, this proves Theorem 2 for these values of n.

4.2. Now consider the odd dimensional case n = 2r − 1 ≥ 5.
The smallest compact odd dimensional arithmetic orbifold On is again defined
over k = Q(

√
5). Its volume is given by

vol(On) =
5r2−r/2 · 11r−1/2 · (r − 1)!

22r−1πr
· Lℓ0|k(r) · C(r − 1)2

r−1
∏

j=1

ζk(2j),(22)

where ℓ0 is the quartic field with a defining polynomial x4 − x3 + 2x − 1 and
Lℓ0|k = ζℓ0

/ζk [3, Thoerem 1].

Note that for any s ≥ 3 we have Lℓ0|k(s) ≥ 1/ζk(3) > 0.973.
By (15), (18) and (22), we have

vol(On)

vol(Mn)
=

5r2
−r/2·11r−1/2·(r−1)!

22r−1πr · Lℓ0|k(r) · C(r − 1)2
∏r−1

j=1 ζk(2j)

A(r) · C(r−1)
2r−1 · ∏r−1

j=1 ζ(2j)(4j − 1)(9j − 1)
,(23)

where A(r) = ζ(r)(2r − 1)(3r − 1) if r is odd and A(r) = 3r−1/2(2r +
1)ζℓ(r)/ζ(r), ℓ = Q(

√
−3), if r is even, and hence

A(r) < 6r · 2 for all r.(24)

Therefore,

vol(On)

vol(Mn)
>

5r2−r/2 · 11r−1/2 · (r − 1)! · C(r − 1)

2rπr6r · 4 · ∏r−1
j=1(4j − 1)(9j − 1)

(25)

>
5(r−1)(r−1/2)C(r − 1)

36r2/2−r/2
· 11r−1/2 · (r − 1)!

51/2−r · 4 · (12π)r
.(26)

Now the first factor has the same form as the ratio in (21), hence by the previous
section it is > 1 for r − 1 ≥ 18. It is an easy exercise to show that for such r,
the second factor is > 1 as well.
We can improve the bound for r by evaluating (23) using Pari/GP. This gives

|χ(On)|
|χ(Mn)| > 1, for n = 2r − 1 ≥ 33.

Together with the even dimensional part it proves Theorem 2 for n ≥ 33.
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5. Lowering the dimension bound

5.1. Improving the bound for dimension requires more careful analysis. We
will begin again with the even dimensional case.
The first dimension to consider is n = 32. Here we have a noncompact arith-
metic manifold Mn with Euler characteristic |χ(Mn)| = 2.354 . . . · 10228. Iron-
ically, we call it “small”, but our study shows that small manifolds in high
dimensions tend to have huge volume. The smallest compact arithmetic n-
orbifold On has |χ(On)| = 8.777 . . . · 10217, which is less than |χ(Mn)|. Using
Pari/GP we can compute (see remark below) the precise value of |χ(On)|,
which is a rational number. Its denominator equals

D = 107887196930872715055177987172922818560000000000000000000,

which is ∼ 1056. A manifold covering of On has to have an (even) integer Euler
characteristic, hence its degree is divisible by D. It follows that the volume of
the smallest possible manifold cover of On is much larger than vol(Mn).

Remark 4. A way to compute the exact value of |χ(On)| is to first use the func-
tional equation for ζk to transform equation (19) into a product of a (known)
rational factor and values ζk(1 − 2j), which are rational. Using Pari/GP the
numerical values of ζk(1 − 2j) can be approximated by rationals, leading to
the number D (it is enough to work with precision \p 80). With this method
based on approximation, the value obtained for D can only be used as a lower
bound for the actual denominator of |χ(On)|, but this is already sufficient for
our purpose. However, a cleaner way to proceed is to use the library of spe-
cial values computed by Alvaro Lozano-Robledo, who obtained them through a
procedure under Pari/GP that computes generalized Bernoulli numbers (see
[9]). This guarantees the correctness of the value computed for D.

In order to complete the discussion for n = 32 we need to consider other max-
imal arithmetic subgroups Γ whose covolume is < vol(Mn). Recall that any
maximal arithmetic subgroup is a normalizer of a principal subgroup. Maximal
arithmetic subgroups other than the one defining On can be either subgroups
defined over k = Q(

√
5) or arithmetic subgroups defined over other totally real

fields. In the latter case, by [2], we know that the next smallest covolume

subgroup has the field of definition Q(
√

2). By the volume formula, the abso-
lute value of its Euler characteristic is > 9.071 · 10271, which is already bigger
than |χ(Mn)|. Therefore, we are only left with the groups defined over k. The
covolume of any such subgroup Γ would have an additional lambda factor in
comparison with vol(On). By [2, Sections 2.3 and 3.2], the smallest possible

lambda factor is λv =
q16

v +1
2 for qv = 4, and it follows that the orbifold corre-

sponding to the principal arithmetic subgroup Λ that Γ normalizes has an Euler
characteristic of absolute value 1.884 . . . · 10227 with denominator 2D. Hence
all manifold covers of this orbifold are much larger than Mn. Now, the index
[Γ : Λ] can be computed the same way as it is done in [2] and [3] and in par-

ticular, since the field k = Q(
√

5) has class number one, this index is a power
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of 2 (whose exponent can be bounded). Using this the result just obtained
immediately extends to the manifold covers of Γ\H

32. The same argument
excludes the case of orbifolds with a lambda factor λv corresponding to qv = 5.
All other possible lambda factors give rise to orbifolds of volume larger than
vol(Mn). This shows that Theorem 2 is true for n = 32.

5.2. Dimension n = 30 is treated in a similar way. Here we have a noncompact
arithmetic manifold Mn with |χ(Mn)| = 1.252 . . . · 10195. The smallest volume
compact arithmetic orbifold On has |χ(On)| = 8.112 . . .·10187 with denominator
5.231 . . . · 1048, hence its manifold covers are larger than Mn. The smallest
covolume cocompact arithmetic subgroup defined over k 6= Q(

√
5) has the field

of definition Q(
√

2) and |χ| > 3.116 · 10235, which is bigger than |χ(Mn)|. For

the other maximal arithmetic subgroups defined over Q(
√

5) we have a different
lambda factor in the volume formula. The values of λ for which |χ| of the
principal subgroup is smaller than |χ(Mn)| are listed below:

λ |χ| denominator of χ
1
2 (515 − 1) 2.305... · 10189 82391859826240770906019357261824 · 1018

1
2 (915 − 1) 1.555... · 10193 41154775137982403049959718912 ·1018

1
2 (1115 − 1) 3.155... · 10194 32109284800854974718802972372893696 · 1016

As before, considering maximal subgroups instead of principal subgroups does
not change the picture and it follows that a manifold cover in each of these
cases is larger than the noncompact manifold Mn.

5.3. Odd dimensional case presents us a different challenge: here the Euler
characteristic is zero and we cannot take advantage of its integral properties in
order to bound the degree of the smooth covers. One of the possible ways to
proceed is to look at the orders of finite subgroups of π1(On). This indeed gives
a bound for the degree, however, it is much smaller than bounds provided by
the denominators of Euler characteristic in the neighboring even dimensions.
Considerably stronger results can be obtained based on the following simple
observation:

Small volume arithmetic hyperbolic orbifolds tend to contain
totally geodesic even dimensional suborbifolds whose Euler
characteristic can be used to obtain good bounds on the de-
grees of the smooth covers.

Indeed, assume that a group Γ has an infinite index subgroup Γ′ and a torsion-
free finite index subgroup ΓM with [Γ : ΓM ] = f . Then ΓM ∩Γ′ is a torsion-free
subgroup of Γ′ of index d ≤ f :

(27) Γ
∞

f

Γ′

d

ΓM
∞

ΓM ∩Γ′
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This proposition can be easily checked by looking at the cosets Γ/ΓM and
Γ′/(ΓM ∩Γ′). It appears to be very useful for bounding degrees of the smooth
covers in odd dimensions.

5.4. We demonstrate the application of the method from 5.3 for dimension
n = 31. By [3, Section 3.5], the minimal volume compact orbifold O31 is defined
by the quadratic form

f31(x0,x1, . . . ,x31) = (3 − 2
√

5)x2
0 + x2

1 + . . .x2
31.

It has vol(O31) = 2.415 . . . ·10200 < vol(M31) = 3.113 . . . ·10202, so we can not a
priori exclude the possibility of some manifold cover of O31 being smaller than
M31.
A restriction f30 of the form f31 to the first 31 coordinates defines a totally
geodesic suborbifold O30

1 ⊂ O31 that has a non-zero Euler characteristic. In
order to compute χ(O30

1 ) we need to control the associated integral structure.
In what follows we will use the notation from [3] and [7]. Consider the quadratic

space (V, 1
2f31). We have the discriminant δ(1

2 f31) = 1
232 (3 − 2

√
5) and the

Hasse-Witt invariant ω(V, 1
2f31) = 1 over all places including the dyadic place

v2 = (2) of k = Q(
√

5). Comparing this data with the local description of the
group Γ of O31 given in [3, Section 3], we conclude that Γ is isomorphic to the
stabilizer of a maximal lattice L in (V, 1

2f31) (this can be also confirmed by

comparing the covolume of Stab(L) computed using [7, Table 3] with vol(O31)
and recalling the uniqueness of O31). The lattice L is defined uniquely up
to a conjugation under G but different (conjugate) lattices may have different
restriction to the subspace (V ′, 1

2f30) of V . Geometrically this corresponds to

choosing different totally geodesic 30-dimensional suborbifolds of O31. In order
to complete the computation we need to fix the lattice L. This can be done as
follows: First take a maximal lattice L′ in (V ′, 1

2f30). Now consider an integral
lattice in V generated by L′ and the vector (0, ...,0,2). It is contained in some
maximal lattice in V and we can choose this lattice to be our lattice L. This
construction implies that the restriction of L onto the subspace V ′ ⊂ V is the
maximal lattice L′ in (V ′, 1

2f30). Now we can use [7, Table 4] to compute the
covolume of Stab(L′), and hence the Euler characteristic of the corresponding
suborbifold:

|χ(O30
1 )| =

415 − 1

2
· 1115 + 1

2
· 1

414

15
∏

i=1

|ζk(1 − 2i)| = 1.694 . . . · 10202,

with denominator

D1 = 290623844184270796846629126144000000000000000000.

Hence by (27), the degree f of any smooth cover of O31 is ≥ D1, and so its
volume

vol(O31) · f > 7.019 . . . · 10247 > vol(M31).(28)
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It remains to check if there are other compact arithmetic 31-dimensional orb-
ifolds that have volume ≤ vol(M31). Similar to the previous discussion, these
can be either defined over a different field k, or have a different splitting field ℓ,
or have a non-trivial lambda factor in the volume formula. Note that by (23)
the ratio

vol(O31)

vol(M31)
> 0.007.(29)

If we change the defining field then its discriminant in the volume formula for

vol(O31) would contribute a factor of at least (8/5)r2−r/2(1/11)r−1/2 > 3.021 ·
1034 (cf. [3]). This immediately brings it out of the range of consideration.

Changing the field ℓ gives a factor ≥
(

400
275

)31/2
= 332.868 . . . (as the field ℓ

that corresponds to the minimal volume orbifold has discriminant Dℓ = 275
and the next possible value is D = 400). This factor is already sufficiently
large to make the volume > vol(M31). Finally, following [3, equation (5)],

the lambda factor is bounded below by 2
3

(

3
4qv

)rv
with qv ≥ 4, rv = 16 if qv 6=

11 and rv = 15 for the remaining place v of k that ramifies in ℓ/k. Hence
the smallest possible lambda factor is at least 28697814, which again makes
the volume of the corresponding orbifolds too large. Similar to the previous
sections, this argument based on principal arithmetic subgroups extends to
maximal arithmetics in a straightforward way.
This finishes the proof of Theorem 2. �
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